

1 **IFN-λ is protective against lethal oral *Toxoplasma gondii* infection**

2 Mateo Murillo-León<sup>1,2,3</sup>, Aura M. Bastidas-Quintero<sup>1,2,3</sup>, Niklas S. Endres<sup>1,2,3,4</sup>, Daniel  
3 Schnepf<sup>1,5</sup>, Estefanía Delgado-Betancourt<sup>6</sup>, Annette Ohnemus<sup>1,2</sup>, Gregory A. Taylor<sup>7,8</sup>, Martin  
4 Schwemmle<sup>1,2</sup>, Peter Staeheli<sup>1,2</sup>, Tobias Steinfeldt<sup>1,2,\*</sup>

5

6 <sup>1</sup> Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany.

7 <sup>2</sup>Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.

8 <sup>3</sup>Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany

9 <sup>4</sup>Current address: Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of  
10 Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany

11 <sup>5</sup>Current address: Immunoregulation Laboratory, The Francis Crick Institute, London, UK

12 <sup>6</sup>FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin,  
13 Germany

14 <sup>7</sup>Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; and Center  
15 for the Study of Aging and Human Development, Duke University Medical Center, NC 27710  
16 Durham, North Carolina, United States of America

17 <sup>8</sup>Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, NC 27705  
18 Durham, North Carolina, United States of America

19 \*Correspondence: [tobias.steinfeldt@uniklinik-freiburg.de](mailto:tobias.steinfeldt@uniklinik-freiburg.de)

20

## Abstract

21 Interferons are essential for innate and adaptive immune responses against a wide variety of  
22 pathogens. Interferon lambda (IFN- $\lambda$ ) protects mucosal barriers during pathogen exposure. The  
23 intestinal epithelium is the first contact site for *Toxoplasma gondii* (*T. gondii*) with its hosts and  
24 the first defense line that limits parasite infection. Knowledge of very early *T. gondii* infection  
25 events in the gut tissue is limited and a possible contribution of IFN- $\lambda$  has not been investigated  
26 so far. Here, we demonstrate with systemic interferon lambda receptor (IFNLR1) and conditional  
27 (Villin-Cre) knockout mouse models and bone marrow chimeras of oral *T. gondii* infection and  
28 mouse intestinal organoids a significant impact of IFN- $\lambda$  signaling in intestinal epithelial cells and  
29 neutrophils to *T. gondii* control in the gastrointestinal tract. Our results expand the repertoire of  
30 interferons that contribute to the control of *T. gondii* and may lead to novel therapeutic approaches  
31 against this world-wide zoonotic pathogen.

32

## Introduction

33 Interferons (IFNs) are essential regulators of the host immune response against a variety of  
34 microbial infections. Depending on the nature of the unique cell surface receptors required for  
35 signal transduction, they are classified into type I interferons (17 in humans and 18 in mice) that  
36 bind to the heterodimeric receptor complex consisting of IFN- $\alpha/\beta$  receptor 1 (IFNAR1) and IFN-  
37  $\alpha/\beta$  receptor 2 (IFNAR2) heterodimers<sup>3</sup>, type II interferon (IFN- $\gamma$ ) that binds to IFN- $\gamma$  receptor 1  
38 (IFNGR1) and IFN- $\gamma$  receptor 2 (IFNGR2) heterodimers<sup>4</sup>, and type III interferons (IFN- $\lambda 1-4$  in  
39 humans and IFN- $\lambda 2/3$  in mice<sup>5</sup>) that bind to IFN- $\lambda$  receptor 1 (IFNLR1) and IL10 receptor subunit  
40  $\beta$  (IL10RB) heterodimers<sup>6-8</sup>.

41 Due to the high degree of overlapping downstream signaling<sup>7,8</sup>, the IFN type I and type III systems  
42 were initially considered to be functionally redundant<sup>6,7</sup>. However, in recent years, unique features  
43 of the IFN- $\lambda$ -mediated immune response against respiratory and gastrointestinal viruses<sup>2,9-13</sup>,  
44 fungi<sup>14</sup>, bacteria<sup>15,16</sup> and parasites<sup>17,18</sup> have been demonstrated. While almost all nucleated cells  
45 respond to type I and type II interferons, the function of IFN- $\lambda$  is primarily restricted to epithelial  
46 cells at barrier surfaces<sup>2,9-13,19,20</sup> and some immune cell types<sup>14,21-25</sup> due to the tissue tropism of  
47 IFNLR1<sup>13</sup>. As an exception, intestinal epithelial cells of adult mice do not express a functional  
48 type I IFN receptor and therefore strongly rely on the IFN- $\lambda$  system for antimicrobial defense<sup>11,26</sup>  
49 Depending on the cell type, the downstream signaling of the type I and III IFN system can differ  
50 significantly. Especially in neutrophils, a subset of inflammatory cytokines is induced by type I  
51 but not by type III signaling<sup>21,23,27</sup>. IFN- $\lambda$  is therefore believed to act locally as the first line of  
52 defense against invading pathogens on mucosal surfaces possibly without activating the  
53 detrimental immune responses mediated by IFN type I<sup>28,1,13</sup>. IFN- $\lambda$  has also been described to  
54 enhance adaptive immune responses at these sites<sup>2,29</sup>.

55 *Toxoplasma gondii* (*T. gondii*) is a foodborne obligate intracellular parasite related to the  
56 *Plasmodium* genus. About 25-30 % of the world human population is infected but local  
57 seroprevalences can vary significantly<sup>30</sup>. Mild “flu-like” symptoms may occur upon infection for  
58 several weeks or months. In patients with a compromised immune system on the other hand, the  
59 parasite can cause serious health problems. Transmission to the fetus upon primary infection of  
60 the mother may lead to miscarriage, stillbirth or child disability<sup>31</sup>. The natural route of infection  
61 with *T. gondii* is the uptake of infective stages, either contained in tissue cysts (bradyzoites) of  
62 intermediate hosts or oocysts (sporozoites) released into the environment by all members within  
63 the family of *Felidae*<sup>32,33</sup>. After ingestion, once tissue cysts or oocysts reach the small intestine,  
64 released parasites can cross the intestinal epithelial barrier (IEB) by either paracellular  
65 transmigration or penetration of the apical cell membrane and passing through the basolateral side  
66 to reach the underlying lamina propria<sup>33,34</sup> In addition, neutrophils that transmigrate to the  
67 intestinal lumen after oral *T. gondii* infection, are hijacked by the parasite in order to be spread  
68 across the intestine and are found preferentially infected by *T. gondii* in the lamina propria<sup>35</sup>.

69 Because of the sympatry of cats and mice, a mouse model of toxoplasmosis is of medical  
70 importance for human infections. The innate and adaptative immune responses against *T. gondii*  
71 rely on IFN- $\gamma$  that is produced early after infection by natural killer (NK) cells, neutrophils and T  
72 cells<sup>36-39</sup>. Two families of IFN- $\gamma$ -inducible GTPases are paramount for innate immunity against *T.*  
73 *gondii* in mice, the Immunity-Related GTPases (IRG proteins) and Guanylate Binding Proteins  
74 (GBP proteins)<sup>40,41</sup>. Certain family members were demonstrated to accumulate at the  
75 parasitophorous vacuole membrane (PVM) of *T. gondii*, a prerequisite for subsequent membrane  
76 disintegration and parasite death<sup>42</sup>. Type I IFNs have also been shown to play a protective role  
77 during *T. gondii* infection by limiting the growth of parasite cysts in the brain<sup>43</sup> and reducing

78 parasite burden in mesenteric lymph nodes<sup>44</sup>. Knowledge of very early *T. gondii* infection events  
79 in intestinal tissues is limited, and a possible contribution of FN-λ is unknown.

80 In the present study, we investigated the role of IFN-λ for restriction of *T. gondii* upon oral  
81 infection with tissue cysts. Our results demonstrate a significant impact of IFN-λ signaling to  
82 *T. gondii* control at the initial infection site. IFN-λ signaling in intestinal epithelial cells and  
83 neutrophils is thereby required to limit systemic spread of the parasite resulting in decreased  
84 burden of tissue cysts in the brain. IFN-λ also potentiated the *T. gondii*-specific humoral immune  
85 responses by enhancing the production of immunoglobulin IgG1. These are novel aspects of the  
86 infection biology of the parasite and might help to improve current and/or to develop new treatment  
87 strategies against toxoplasmosis.

88

89

## Results

### 90 IFN- $\lambda$ protects mice from lethal oral *T. gondii* infection

91 Because of the growing evidence that interferon lambda (IFN- $\lambda$ ) is protective against a variety of  
92 mucosal pathogens<sup>2,9–13,19,20</sup>, we examined the importance of IFN- $\lambda$  signaling upon oral *T. gondii*  
93 infection (**Suppl. Figure 1**). In IFN- $\lambda$  receptor-deficient (*Ifnlr1*<sup>-/-</sup>) male mice, a significant increase  
94 in mortality compared to wild type mice was observed 10 days after oral administration of freshly  
95 prepared *T. gondii* ME49-derived tissue cysts (**Figure 1A**). Susceptibility of *Ifnlr1*<sup>-/-</sup> mice was  
96 reflected by increased weight loss compared with wild type (wt) animals (**Figure 1A**). No apparent  
97 differences could be observed between *Ifnlr1*<sup>-/-</sup> and wt female mice infected with *T. gondii* ME49-  
98 derived tissue cysts in the same experiments. In these cases, all animals succumbed to infection  
99 (**Figure 1B**).

100 Any IFN- $\lambda$ -dependent phenotype in females might have been masked by increased susceptibility  
101 to oral *T. gondii* infection due to reduced body weight compared with male mice. We therefore  
102 infected female mice with Pru-dTomato-derived tissue cysts, a less virulent and cystogenic *T.*  
103 *gondii* strain<sup>45</sup>. *Ifnlr1*<sup>-/-</sup> female mice reached humane end points until 14 days post infection while  
104 a significant higher survival rate was observed in case of wt mice (**Figure 1C**). Susceptibility of  
105 *Ifnlr1*<sup>-/-</sup> mice was reflected by increased weight loss compared with wt animals (**Figure 1C**),  
106 demonstrating that the protective effect of IFN- $\lambda$  upon oral *T. gondii* infection is not sex-  
107 dependent.

108 To assess if type I and III interferons have additive protective effects, we infected interferon alpha  
109 receptor-deficient (*Ifnar1*<sup>-/-</sup>) and double deficient *Ifnar1*<sup>-/-</sup>*Ifnlr1*<sup>-/-</sup> male mice with *T. gondii* ME49-  
110 derived tissue cysts. *Ifnar1*<sup>-/-</sup>*Ifnlr1*<sup>-/-</sup> mice (**Figure 1D**) were highly susceptible, closely resembling

111 the phenotype of single deficient *Ifnlr1*<sup>-/-</sup> mice (**Figure 1A**). *Ifnar1*<sup>-/-</sup> mice were initially more  
112 resistant and started to show severe signs of disease only after day 16 post infection (**Figure 1D**).  
113 These results demonstrate that both types of interferon play a non-redundant role in host defense  
114 against *T. gondii*. While IFN type I is important during the chronic phase, as previously reported<sup>43</sup>,  
115 IFN-λ is rather required in the acute phase of *T. gondii* oral infection.

116 To evaluate if *Ifnlr1*<sup>-/-</sup> mice fail to inhibit *T. gondii* replication, we quantified parasite burden in  
117 different organs by qPCR 9 days post oral infection. *T. gondii* burden was significantly increased  
118 in the ileum of *Ifnlr1*<sup>-/-</sup> compared to wt mice (**Figure 1E**) but no differences were found in liver,  
119 spleen or brain (**Figure 1E**). Immunofluorescence analysis of ileum sections at day 9 post *T. gondii*  
120 oral infection confirmed increased parasite replication in the lamina propria and intestinal  
121 epithelial cells (IECs) of *Ifnlr1*<sup>-/-</sup> compared to wt mice (**Figure 1F**). Thus, IFN-λ is required for the  
122 control of *T. gondii* replication at the initial infection site.

123

124 **IFN-λ signaling in IECs and immune cells mediates protection against oral *T. gondii* infection**  
125 To dissect the impact of IFN-λ signaling in immune cells and IECs on *T. gondii* control, we  
126 generated bone marrow (BM) chimeric mice and infected them orally with *T. gondii* Pru-  
127 tdTomato-derived tissue cysts. A significant increased susceptibility of *Ifnlr1*<sup>-/-</sup> recipient mice that  
128 received BM of *Ifnlr1*<sup>-/-</sup> donor mice was observed compared to wt recipient mice that received wt  
129 BM (**Figure 2A**), hence reproducing our initial findings (**Figure 1A and C**). Interestingly, an  
130 intermediate phenotype was observed for either of the heterologous chimeras (*Ifnlr1*<sup>-/-</sup> recipient  
131 mice that received wt BM and wt recipient mice that received *Ifnlr1*<sup>-/-</sup> BM) (**Figure 2A**). These

132 results suggest that protection of mice from lethal oral *T. gondii* infection requires IFN- $\lambda$  signaling  
133 in both, hematopoietic stem cell- (HSC) and non-HSC-derived cells.

134 Among other immune cell types, neutrophils are preferentially infected by *T. gondii* in the lamina  
135 propria<sup>35</sup> and have been shown to exert different anti-*T. gondii* effector activities<sup>46-48</sup>. Furthermore,  
136 expression of IFNLRs has been demonstrated in murine neutrophils<sup>14,23,24</sup>. Therefore, we  
137 investigated whether IFN- $\lambda$  signaling in neutrophils inhibits *T. gondii* replication. Priming of  
138 mouse BM-derived neutrophils with 3 ng ml<sup>-1</sup> of IFN- $\lambda$ 2 or IFN- $\gamma$  resulted in saturated gene  
139 expression levels of *Isg15* and *Gbp2* (**Suppl. Figure 2**). Next, neutrophils were stimulated with 3  
140 ng ml<sup>-1</sup> of either IFN- $\gamma$  or IFN- $\lambda$  for 8 h and subsequently infected with *T. gondii* ME49-GFP-Luc.  
141 After 10 h of infection, *T. gondii* growth was determined by flow cytometry (**Suppl. Figure 3**).  
142 We observed that both, IFN- $\gamma$ - and IFN- $\lambda$ 2-stimulated neutrophils, were able to significantly  
143 inhibit *T. gondii* replication (**Figure 2B**). These results demonstrate that neutrophils contribute to  
144 *T. gondii* inhibition upon IFN- $\gamma$  and IFN- $\lambda$  stimulation and might explain the intermediate  
145 phenotype observed in one (wt recipient mice that received *Ifnlr1*<sup>-/-</sup> BM) of the heterologous BM  
146 chimeras (**Figure 2A**).

147 To verify the role of IFN- $\lambda$  in IECs (**Figure 2A**), we infected mice lacking IFNLR1 specifically in  
148 the intestinal epithelium (*Ifnlr1*<sup>fl/fl</sup>*Villin-Cre*<sup>+/+</sup>) with *T. gondii* Pru-tdTomato-derived tissue cysts.  
149 Infected *Ifnlr1*<sup>fl/fl</sup>*Villin-Cre*<sup>+/+</sup> mice showed increased weight loss at day 20 post infection (**Figure**  
150 **2C**) as well as increased burden of *T. gondii* tissue cysts in the brain compared to *Ifnlr1*<sup>fl/fl</sup>*Villin-*  
151 *Cre*<sup>-/-</sup> animals (**Figure 2D**). A similar picture emerged when *Ifnlr1*<sup>fl/fl</sup>*Villin-Cre*<sup>+/+</sup> mice were  
152 infected with tissue cysts derived from *T. gondii* ME49 (**Suppl. Figure 4A-B**).

153 Altogether, our data demonstrate that IFN-λ signaling in IECs and neutrophils protects mice  
154 against lethal oral *T. gondii* infection by limiting parasite dissemination from the initial infection  
155 site to other organs including the brain.

156

157 **IFN-λ-dependent control of *T. gondii* in intestinal ODMs is mediated by IRG proteins**

158 Intestinal organoids (“miniguts”) allow to investigate the early events after *T. gondii* infection *ex*  
159 *vivo*<sup>49</sup>. We established small intestine Organoid-Derived Monolayers (ODMs)<sup>49</sup> (**Suppl. Figure**  
160 **5A**) to evaluate the role of IFN-λ in IECs *in vitro*. We found that ODMs secrete IFN-λ2/3 into the  
161 supernatant 48 h post *T. gondii* ME49 infection (**Suppl. Figure 5B**). Priming of IECs with 30 to  
162 60 ng ml<sup>-1</sup> of IFN-λ2 resulted in saturated expression levels of the representative ISGs *Mx1* and  
163 *Irgb6* (**Suppl. Figure 6A**). To assess the impact of type I, II and III IFN on *T. gondii* growth  
164 inhibition, ODMs were therefore stimulated with 60 ng ml<sup>-1</sup> IFN-α<sub>B/D</sub>, IFN-γ or IFN-λ2 for 24 h  
165 and luciferase activity was measured after 48 h of infection with a *T. gondii* luciferase reporter  
166 strain (ME49-GFP-Luc) (**Figure 3A**). Stimulation with IFN-γ or IFN-λ2 led to ~80 % and ~40 %  
167 inhibition of *T. gondii* growth respectively, whereas inhibition of *T. gondii* growth in IFN-α<sub>B/D</sub>-  
168 stimulated ODMs was hardly detectable (**Figure 3A**). The anti-parasitic activity mediated by IFN-  
169 λ2 but not IFN-γ was completely abolished in *Ifnlr1*<sup>-/-</sup> derived ODMs confirming specificity of *T.*  
170 *gondii* inhibition by IFN-λ2 (**Figure 3B**). These results demonstrate a differential impact of each  
171 type of IFN for *T. gondii* control in mouse intestinal ODMs.

172 An essential mechanism of *T. gondii* control in mice is constituted by the IFN-γ-inducible  
173 Immunity-Related GTPases (IRG proteins)<sup>40</sup>. Whereas effector IRG protein localization at the  
174 PVM is a prerequisite for membrane disintegration and parasite clearance<sup>42,50-52</sup>, regulator IRG

175 proteins (Irgm1, Irgm2 and Irgm3) keep the effector IRG proteins in an inactive GDP-bound state  
176 at endomembranes in uninfected cells<sup>53-55</sup>. *Irgm1/Irgm3*<sup>-/-</sup> mice are highly susceptible to *T. gondii*  
177 infection due to mislocalisation of effector IRG proteins<sup>54</sup>. To evaluate the requirement of the IRG  
178 system for IFN-mediated growth inhibition of *T. gondii* in ODMs, we infected wt- and  
179 *Irgm1/Irgm3*<sup>-/-</sup>-derived ODMs after stimulation with IFN- $\gamma$  or IFN- $\lambda$ 2 for 24 h with ME49-GFP-  
180 Luc and determined *T. gondii* growth inhibition at 48 h post infection. We found that *Irgm1/Irgm3*<sup>-/-</sup>-  
181 derived ODMs failed to inhibit *T. gondii* replication upon IFN- $\gamma$  or IFN- $\lambda$ 2 stimulation (**Figure 3C**). These results demonstrate the importance of Irgm1/Irgm3-regulated IRG effector proteins for  
182 *T. gondii* control in intestinal ODMs.

184 To investigate the contribution of IRG proteins to *T. gondii* control at the initial infection site in  
185 more detail, we determined the expression levels of different *IRG* genes upon IFN- $\gamma$  or IFN- $\lambda$ 2  
186 treatment. While stimulation of ODMs with IFN- $\gamma$  induced the expression of *Irga6*, *Irgb6*, *Irgb10*  
187 and *Irgd* but not *Mx1*, a classical IFN type I/III-inducible gene (**Suppl. Figure 6B**), IFN- $\lambda$ 2  
188 treatment resulted in expression of *Irgb6*, *Irgb10*, *Irgd* and *Mx1* but not *Irga6* (**Suppl. Figure 6A-B**). Furthermore, we demonstrated the recruitment of Irgb6 and Irgb10 to the *T. gondii* PVM after  
189 IFN- $\lambda$ 2 treatment, although in lower frequencies compared to IFN- $\gamma$  stimulation (**Figure 3D, F**).  
190 Whereas the mean fluorescent intensities of Irgb6 were essentially the same in IFN- $\gamma$ - and IFN-  
191  $\lambda$ 2-stimulated ODMs, the mean fluorescent intensities of Irgb10 were higher in IFN- $\gamma$ - compared  
192 with IFN- $\lambda$ 2-stimulated ODMs (**Figure 3E-F**). Whether the different patterns of expression of  
193 effector IRG proteins after stimulation with IFN- $\gamma$  or IFN- $\lambda$ 2, that is partially reflected by  
194 accumulation at the *T. gondii*-derived PVM, can explain the differences observed in the magnitude  
195 of *T. gondii* inhibition (**Figure 3A, B, C**) still needs to be determined. Altogether, our data

197 demonstrate that IFN- $\lambda$ 2 induces the expression and vacuolar accumulation of key anti-*T. gondii*  
198 proteins that are necessary to control parasite replication in the small intestine.

199 **IFN- $\lambda$  treatment improves recovery and increases the specific *T. gondii* humoral response**

200 Recombinant IFN- $\lambda$  has been used as a therapeutic or prophylactic strategy to treat viral<sup>12,23,28,56</sup>  
201 and *Cryptosporidium parvum* infections<sup>17,18</sup>. To evaluate the impact of IFN- $\lambda$  treatment on oral *T.*  
202 *gondii* infections, we treated mice intraperitoneally with 1 ug ml<sup>-1</sup> of IFN- $\lambda$ 1/3 daily from day -1  
203 to day 7 of oral infection with tissue cysts of *T. gondii* Pru-dTomato. No statistically significant  
204 differences in survival were observed between IFN- $\lambda$ 1/3-treated or PBS-treated control mice  
205 (**Figure 4A**). However, a significantly improved weight gain after day 17 post infection was  
206 observed in mice treated with IFN- $\lambda$ 1/3 in comparison to control mice (**Figure 4B**). Since reduced  
207 weight recovery after *T. gondii* infection correlated with enhanced cyst burden in the brain (**Figure**  
208 **2C-D, Suppl. Figure 4A-B**), we determined the cyst numbers in the brain of IFN- $\lambda$ 1/3- and PBS-  
209 treated animals. *T. gondii* cyst counts were lower - although not significantly - in brains of mice  
210 treated with IFN- $\lambda$ 1/3 in comparison to PBS-treated control mice (**Figure 4C**) but no differences  
211 in cyst sizes were apparent between IFN- $\lambda$ 1/3-treated and PBS-treated mice (**Figure 4D**),  
212 indicating again that IFN- $\lambda$  reduces *T. gondii* burden during the acute phase of infection rather  
213 than limiting the overall cyst growth during the chronic phase as it was reported for type I IFN<sup>43</sup>.

214

215

## Discussion

216 Coccidia are obligate intracellular parasites that can cause severe disease in humans and animals.  
217 Whereas most coccidian species have a narrow host tropism, *Toxoplasma gondii* (*T. gondii*) can  
218 infect almost all warm-blooded animals. In order to implement a control strategy against *T. gondii*,  
219 one main goal is to reduce the establishment of *T. gondii* tissue cysts and thereby limiting the risk  
220 of the parasite entering the human food chain. In the present study, we demonstrate the importance  
221 of interferon lambda (IFN- $\lambda$ ) signaling for *T. gondii* control at the initial site of infection, the  
222 intestine, consequently reducing the formation of tissue cysts (**Figure 5**).

223 To pass the intestinal barrier, bradyzoites or sporozoites - contained in tissue cysts or oocysts,  
224 respectively - utilize different mechanisms<sup>33,57</sup>. Intestinal epithelial cells (IECs) are the most  
225 abundant epithelial cell type in the small intestine representing the first barrier that is invaded after  
226 release of bradyzoites or sporozoites from ingested tissue cysts or oocysts<sup>58</sup>. Infection of  
227 enterocytes at the apical side and release of tachyzoites after stage conversion and multiple rounds  
228 of intracellular replication at the basolateral side leads to systemic infection<sup>33,34</sup>. Therefore,  
229 intrinsic immune responses in enterocytes are important to limit parasite replication and  
230 dissemination<sup>57,59,60</sup>. Two families of IFN- $\gamma$ -inducible GTPases (i.e. Immunity-Related GTPases  
231 (IRG proteins) and Guanylate Binding Proteins (GBP proteins)) are essential to control *T. gondii*  
232 infection in mice<sup>40,41</sup>, but their anti-*T. gondii* activities have never been evaluated in IECs. Three-  
233 dimensional multicellular organoids highly improve the reliability of host-pathogen interaction  
234 studies<sup>61</sup>. They are derived from stem cells or primary tissue and resemble the anatomy and  
235 physiology of intact organs. Organoid-Derived Monolayers (ODMs) possess most of the  
236 advantages of organoid structures and have been described previously as a suitable system to study  
237 *T. gondii* infection biology<sup>49</sup>. We found that stimulation of intestinal ODMs with IFN- $\gamma$  induced

238 the expression of IRG effector proteins (Irga6, Irgb6, Irgb10 and Irgd). Accumulation at the *T.*  
239 *gondii* parasitophorous vacuolar membrane (PVM) was concomitant with ~80 % inhibition of *T.*  
240 *gondii* replication (**Figure 3A-F**). IFN-λ stimulation resulted in somewhat lower expression levels  
241 of IRG effectors Irgb6, Irgb10 and Irgd, whereas Irga6 was not induced at all. Nevertheless,  
242 vacuolar accumulation of Irgb6 and Irgb10 could be detected and *T. gondii* replication was  
243 inhibited by IFN-λ up to 40 % (**Figure 3A-F**). Whether these differences in *T. gondii* control can  
244 be explained exclusively by the distinct expression patterns of IRG proteins upon IFN-λ or IFN-γ  
245 treatment and respective vacuolar IRG loading phenotypes awaits further investigation. However,  
246 in the absence of IRG regulator proteins Irgm1/Irgm3<sup>54,55</sup> the anti-*T. gondii* effect mediated by  
247 both types of IFNs is completely abrogated (**Figure 3C**), demonstrating the importance of the IRG  
248 system for *T. gondii* control in IECs. At this point, we cannot rule out any contribution of GBP  
249 proteins to *T. gondii* control in IECs, especially because localization of Gbp1 and Gbp2 at the *T.*  
250 *gondii*-derived PVM is also regulated by Irgm1/Irgm3<sup>54</sup>.

251 We demonstrated that the specific deletion of the IFN-λ receptor (IFNLR) in IECs causes increased  
252 *T. gondii* colonization in the brain (**Figure 2D, Suppl. Figure 4B**). IFN-λ is produced after  
253 infection (**Suppl. Figure 5B**) by IECs and *T. gondii* replication is inhibited by IFN-λ in our *in vitro*  
254 system (**Figure 3A-C**). We therefore conclude that the IFN-λ-mediated immune response serves  
255 as an early host defense mechanism that limits *T. gondii* replication at the initial site of infection  
256 without provoking possible unfavourable immune responses mediated by IFN type I, similar to the  
257 distinctive role of IFN-λ in protecting mucosal surfaces during viral<sup>2,5,62</sup> and *Cryptosporidium*  
258 *parvum* (*C. parvum*)<sup>17,18</sup> infections. Future studies should determine the spacio-temporal details of  
259 the contribution of both IFNs during the early phases of infection. For example, by using a novel

260 intestinal tissue microphysiological system in which the interaction between epithelium,  
261 endothelium and immune cells upon parasite infection can be analyzed<sup>63</sup>.

262 Systemic deletion of the IFNLR1 rendered mice highly susceptible to oral *T. gondii* infection  
263 (**Figure 1A, C, D**), however, conditional knockout (ko) of the IFNLR1 in IECs or bone marrow  
264 (BM) chimeric mice lacking the IFNLR1 in HSC-derived cells resulted in an intermediate  
265 phenotype (**Figure 2A, C**), indicating that IFN-λ signaling in both, epithelial and HSC-derived  
266 cells, contributes to protect against oral *T. gondii* infection. This is in contrast to experimental *C.*  
267 *parvum* infection of mice, where the IFN-λ-mediated antiparasitic activities were seemingly  
268 conferred exclusively by epithelial cells, even in immune-deficient *Rag2*<sup>-/-</sup>*Il2rg*<sup>-/-</sup> cells<sup>18</sup>. This is  
269 congruent with differences in the tissue tropism. While *C. parvum* infection is restricted to the  
270 intestine, *T. gondii* can establish a systemic infection, hence, systemic immune responses elicited  
271 against *T. gondii* are additionally required to limit dissemination of *T. gondii*.

272 Among other immune cells, neutrophils are preferentially infected by *T. gondii* in the lamina  
273 propria<sup>35</sup> and express the highest IFNLR1 levels<sup>22,27,64,65</sup>. The weak induction of *IRG* and *GBP*  
274 genes in BM-derived neutrophils that we observed (**Suppl. Figure 8**) indicates that the IFN-λ2-  
275 mediated *T. gondii* control in neutrophils does not depend on IRG and GBP proteins and is  
276 mechanistically different from the parasite control elicited by IFN-λ in IECs.

277 IFN-λ acts on different immune cell types, thereby promoting or inhibiting different effector  
278 mechanisms. IFN-λ promotes ROS production by neutrophils to control *Aspergillus fumigatus*  
279 infection<sup>65</sup>, favours Th1 polarization through increased IL-12 production by dendritic cells<sup>66</sup> or  
280 increases indirectly IFN-γ secretion by NK cells<sup>67</sup>. IFN-λ also acts as an immunomodulator in  
281 different inflammatory models (e.g. DSS-induced colitis and arthritis) on neutrophils by  
282 dampening ROS production, NET formation, degranulation and migration capacity, but

283 maintaining phagocytic abilities. IFN- $\lambda$  contributes to healing by maintaining the integrity and  
284 barrier function of epithelia at mucosal surfaces<sup>22,24,64,68</sup>. Mice orally infected with *T. gondii*  
285 develop enteritis due to the loss of Paneth cells, loss of barrier integrity and dysbiosis in an IFN-  
286  $\gamma$ -dependent manner<sup>60,69</sup>. Whether IFN- $\lambda$  promotes or modulates effector functions of other  
287 immune cells in addition to neutrophils during oral *T. gondii* infection still needs to be investigated.

288 Treatment of mice with IFN- $\lambda$  augmented weight recovery and reduced *T. gondii* brain  
289 colonization without affecting *T. gondii* cysts sizes (Figure 4A-D), confirming our results that IFN-  
290  $\lambda$  acts early during *T. gondii* infection by limiting parasite dissemination. IFN- $\lambda$  serves as an  
291 mucosal adjuvant, promoting humoral responses in a thymic stromal lymphopoietin (TSLP)-  
292 dependent manner<sup>2,29</sup>. Interestingly, we found higher levels of secreted IgG1 after 30 days of *T.*  
293 *gondii* infection in the IFN- $\lambda$ -treated group compared to non-treated mice (**Suppl. Figure 7B**). Our  
294 results are suggestive of a potential use of IFN- $\lambda$  as an adjuvant for *T. gondii* vaccine development  
295 strategies, especially those that are delivered through mucosal surfaces.

296 Taken together, our work extends the repertoire of IFNs that contribute to the control of *T. gondii*.  
297 It advances our understanding of fundamental immunology against this worldwide zoonotic  
298 pathogen and might be relevant to enteric parasites *per se*.

299

## References

- 300 1. Lazear, H. M., Schoggins, J. W. & Diamond, M. S. Shared and Distinct Functions of Type I  
301 and Type III Interferons. *Immunity* **50**, 907–923 (2019).
- 302 2. Ye, L. *et al.* Interferon-λ enhances adaptive mucosal immunity by boosting release of thymic  
303 stromal lymphopoietin. *Nat Immunol* **20**, 593–601 (2019).
- 304 3. Novick, D., Cohen, B. & Rubinstein, M. The human interferon  $\alpha$   $\beta$  receptor: Characterization  
305 and molecular cloning. *Cell* **77**, 391–400 (1994).
- 306 4. Pestka, S. *et al.* The interferon gamma (IFN- $\gamma$ ) receptor: a paradigm for the multichain  
307 cytokine receptor. *Cytokine & Growth Factor Reviews* **8**, 189–206 (1997).
- 308 5. Kotenko, S. V. & Durbin, J. E. Contribution of type III interferons to antiviral immunity:  
309 location, location, location. *Journal of Biological Chemistry* **292**, 7295–7303 (2017).
- 310 6. Sheppard, P. *et al.* IL-28, IL-29 and their class II cytokine receptor IL-28R. *Nat Immunol* **4**,  
311 63–68 (2003).
- 312 7. Kotenko, S. V. *et al.* IFN-λs mediate antiviral protection through a distinct class II cytokine  
313 receptor complex. *Nat Immunol* **4**, 69–77 (2003).
- 314 8. Prokunina-Olsson, L. *et al.* A variant upstream of IFNL3 (IL28B) creating a new interferon  
315 gene IFNL4 is associated with impaired clearance of hepatitis C virus. *Nature Genetics* **45**,  
316 164–171 (2013).
- 317 9. Mordstein, M. *et al.* Interferon-λ Contributes to Innate Immunity of Mice against Influenza A  
318 Virus but Not against Hepatotropic Viruses. *PLOS Pathogens* **4**, e1000151 (2008).
- 319 10. Mordstein, M. *et al.* Lambda Interferon Renders Epithelial Cells of the Respiratory and  
320 Gastrointestinal Tracts Resistant to Viral Infections. *Journal of Virology* **84**, 5670–5677  
321 (2010).

322 11. Sommereyns, C., Paul, S., Staeheli, P. & Michiels, T. IFN-Lambda (IFN- $\lambda$ ) Is Expressed in a  
323 Tissue-Dependent Fashion and Primarily Acts on Epithelial Cells In Vivo. *PLOS Pathogens*  
324 **4**, e1000017 (2008).

325 12. Klinkhammer, J. *et al.* IFN- $\lambda$  prevents influenza virus spread from the upper airways to the  
326 lungs and limits virus transmission. *eLife* **7**, e33354 (2018).

327 13. Ye, L., Schnepf, D. & Staeheli, P. Interferon- $\lambda$  orchestrates innate and adaptive mucosal  
328 immune responses. *Nat Rev Immunol* **19**, 614–625 (2019).

329 14. Espinosa Vanessa *et al.* Type III interferon is a critical regulator of innate antifungal immunity.  
330 *Science Immunology* **2**, eaan5357 (2017).

331 15. Cohen, T. S. & Prince, A. S. Activation of inflammasome signaling mediates pathology of  
332 acute *P. aeruginosa* pneumonia. *J Clin Invest* **123**, 1630–1637 (2013).

333 16. Bierne, H. *et al.* Activation of Type III Interferon Genes by Pathogenic Bacteria in Infected  
334 Epithelial Cells and Mouse Placenta. *PLOS ONE* **7**, e39080 (2012).

335 17. Ferguson, S. H. *et al.* Interferon- $\lambda$ 3 Promotes Epithelial Defense and Barrier Function Against  
336 *Cryptosporidium parvum* Infection. *Cellular and Molecular Gastroenterology and*  
337 *Hepatology* **8**, 1–20 (2019).

338 18. Gibson, A. R. *et al.* A genetic screen identifies a protective type III interferon response to  
339 *Cryptosporidium* that requires TLR3 dependent recognition. *PLOS Pathogens* **18**, e1010003  
340 (2022).

341 19. Wack, A., Terczyńska-Dyla, E. & Hartmann, R. Guarding the frontiers: the biology of type III  
342 interferons. *Nat Immunol* **16**, 802–809 (2015).

343 20. Mahlaköiv, T., Hernandez, P., Gronke, K., Diefenbach, A. & Staeheli, P. Leukocyte-Derived  
344 IFN- $\alpha/\beta$  and Epithelial IFN- $\lambda$  Constitute a Compartmentalized Mucosal Defense System that  
345 Restricts Enteric Virus Infections. *PLOS Pathogens* **11**, e1004782 (2015).

346 21. Schnepf Daniel *et al.* Selective Janus kinase inhibition preserves interferon- $\lambda$ -mediated  
347 antiviral responses. *Science Immunology* **6**, eabd5318 (2021).

348 22. Broggi, A., Tan, Y., Granucci, F. & Zanoni, I. IFN- $\lambda$  suppresses intestinal inflammation by  
349 non-translational regulation of neutrophil function. *Nat Immunol* **18**, 1084–1093 (2017).

350 23. Galani, I. E. *et al.* Interferon- $\lambda$  Mediates Non-redundant Front-Line Antiviral Protection  
351 against Influenza Virus Infection without Compromising Host Fitness. *Immunity* **46**, 875–  
352 890.e6 (2017).

353 24. Blazek, K. *et al.* IFN- $\lambda$  resolves inflammation via suppression of neutrophil infiltration and  
354 IL-1 $\beta$  production. *Journal of Experimental Medicine* **212**, 845–853 (2015).

355 25. Santer, D. M. *et al.* Interferon- $\lambda$  treatment accelerates SARS-CoV-2 clearance despite age-  
356 related delays in the induction of T cell immunity. *Nat Commun* **13**, 6992 (2022).

357 26. Lin, J.-D. *et al.* Distinct Roles of Type I and Type III Interferons in Intestinal Immunity to  
358 Homologous and Heterologous Rotavirus Infections. *PLOS Pathogens* **12**, e1005600 (2016).

359 27. Schnepf, D. *et al.* Selective Janus kinase inhibition preserves interferon- $\lambda$ -mediated antiviral  
360 responses. *Science Immunology* **6**, eabd5318 (2021).

361 28. Davidson, S. *et al.* IFN $\lambda$  is a potent anti-influenza therapeutic without the inflammatory side  
362 effects of IFN $\alpha$  treatment. *EMBO Molecular Medicine* **8**, 1099–1112 (2016).

363 29. Ye, L. *et al.* Interferon- $\lambda$  Improves the Efficacy of Intranasally or Rectally Administered  
364 Influenza Subunit Vaccines by a Thymic Stromal Lymphopoietin-Dependent Mechanism.  
365 *Frontiers in Immunology* **12**, (2021).

366 30. Hakimi Mohamed-Ali, Olias Philipp, & Sibley L. David. Toxoplasma Effectors Targeting  
367 Host Signaling and Transcription. *Clinical Microbiology Reviews* **30**, 615–645 (2017).

368 31. Dubey, J. P. Toxoplasma Gondii. in *Medical Microbiology* (ed. Baron, S.) (University of  
369 Texas Medical Branch at Galveston, 1996).

370 32. Dubey, J. P., Miller, N. L. & Frenkel, J. K. THE TOXOPLASMA GONDII OOCYST FROM  
371 CAT FECES. *Journal of Experimental Medicine* **132**, 636–662 (1970).

372 33. Delgado Betancourt, E. *et al.* From Entry to Early Dissemination—Toxoplasma gondii's  
373 Initial Encounter With Its Host. *Frontiers in Cellular and Infection Microbiology* **9**, (2019).

374 34. Jones, E. J., Korcsmaros, T. & Carding, S. R. Mechanisms and pathways of Toxoplasma gondii  
375 transepithelial migration. *null* **5**, e1273865 (2017).

376 35. Coombes, J. L. *et al.* Motile invaded neutrophils in the small intestine of Toxoplasma gondii-  
377 infected mice reveal a potential mechanism for parasite spread. *Proceedings of the National  
378 Academy of Sciences* **110**, E1913–E1922 (2013).

379 36. Sturge, C. R. *et al.* TLR-independent neutrophil-derived IFN- $\gamma$  is important for host resistance  
380 to intracellular pathogens. *Proceedings of the National Academy of Sciences* **110**, 10711–  
381 10716 (2013).

382 37. Denkers, E. Y., Gazzinelli, R. T., Martin, D. & Sher, A. Emergence of NK1.1+ cells as  
383 effectors of IFN-gamma dependent immunity to Toxoplasma gondii in MHC class I-deficient  
384 mice. *Journal of Experimental Medicine* **178**, 1465–1472 (1993).

385 38. Mason, N. J., Liou, H.-C. & Hunter, C. A. T Cell-Intrinsic Expression of c-Rel Regulates Th1  
386 Cell Responses Essential for Resistance to *Toxoplasma gondii*. *J. Immunol.* **172**,  
387 3704 (2004).

388 39. Hunter C A, Subauste C S, Van Cleave V H, & Remington J S. Production of gamma interferon  
389 by natural killer cells from *Toxoplasma gondii*-infected SCID mice: regulation by interleukin-  
390 10, interleukin-12, and tumor necrosis factor alpha. *Infection and Immunity* **62**, 2818–2824  
391 (1994).

392 40. Howard, J. C., Hunn, J. P. & Steinfeldt, T. The IRG protein-based resistance mechanism in  
393 mice and its relation to virulence in *Toxoplasma gondii*. *Current Opinion in Microbiology* **14**,  
394 414–421 (2011).

395 41. Praefcke, G. J. K. Regulation of innate immune functions by guanylate-binding proteins.  
396 *International Journal of Medical Microbiology* **308**, 237–245 (2018).

397 42. Martens, S. *et al.* Disruption of *Toxoplasma gondii* Parasitophorous Vacuoles by the Mouse  
398 p47-Resistance GTPases. *PLOS Pathogens* **1**, e24 (2005).

399 43. Matta, S. K. *et al.* *Toxoplasma gondii* effector TgIST blocks type I interferon signaling to  
400 promote infection. *Proceedings of the National Academy of Sciences* **116**, 17480–17491  
401 (2019).

402 44. Han, S.-J. *et al.* Internalization and TLR-dependent type I interferon production by monocytes  
403 in response to *Toxoplasma gondii*. *Immunology & Cell Biology* **92**, 872–881 (2014).

404 45. Christiansen, C. *et al.* In vitro maturation of *Toxoplasma gondii* bradyzoites in human  
405 myotubes and their metabolomic characterization. *Nat Commun* **13**, 1168 (2022).

406 46. Biswas, A. *et al.* Behavior of Neutrophil Granulocytes during *Toxoplasma gondii* Infection in  
407 the Central Nervous System. *Frontiers in Cellular and Infection Microbiology* **7**, (2017).

408 47. Bliss, S. K., Zhang, Y. & Denkers, E. Y. Murine Neutrophil Stimulation by *Toxoplasma gondii*  
409 Antigen Drives High Level Production of IFN- $\gamma$ -Independent IL-12. *The Journal of*  
410 *Immunology* **163**, 2081–2088 (1999).

411 48. Abi Abdallah, D. S. *et al.* Toxoplasma gondii Triggers Release of Human and Mouse  
412 Neutrophil Extracellular Traps. *Infection and Immunity* **80**, 768–777 (2012).

413 49. Holthaus, D., Delgado-Betancourt, E., Aebischer, T., Seeber, F. & Klotz, C. Harmonization of  
414 Protocols for Multi-Species Organoid Platforms to Study the Intestinal Biology of Toxoplasma  
415 gondii and Other Protozoan Infections. *Frontiers in Cellular and Infection Microbiology* **10**,  
416 (2021).

417 50. Martens, S. & Howard, J. The Interferon-Inducible GTPases. *Annual Review of Cell and*  
418 *Developmental Biology* **22**, 559–589 (2006).

419 51. Ling, Y. M. *et al.* Vacuolar and plasma membrane stripping and autophagic elimination of  
420 Toxoplasma gondii in primed effector macrophages. *Journal of Experimental Medicine* **203**,  
421 2063–2071 (2006).

422 52. Zhao, Y. O., Khaminets, A., Hunn, J. P. & Howard, J. C. Disruption of the Toxoplasma gondii  
423 Parasitophorous Vacuole by IFN $\gamma$ -Inducible Immunity-Related GTPases (IRG Proteins)  
424 Triggers Necrotic Cell Death. *PLOS Pathogens* **5**, e1000288 (2009).

425 53. Hunn, J. P. *et al.* Regulatory interactions between IRG resistance GTPases in the cellular  
426 response to Toxoplasma gondii. *The EMBO Journal* **27**, 2495–2509 (2008).

427 54. Haldar, A. K. *et al.* IRG and GBP Host Resistance Factors Target Aberrant, “Non-self”  
428 Vacuoles Characterized by the Missing of “Self” IRGM Proteins. *PLOS Pathogens* **9**,  
429 e1003414 (2013).

430 55. Maric-Biresev, J. *et al.* Loss of the interferon- $\gamma$ -inducible regulatory immunity-related GTPase  
431 (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal  
432 function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection. *BMC*  
433 *Biology* **14**, 33 (2016).

434 56. Beer, J. *et al.* Impaired immune response drives age-dependent severity of COVID-19. *Journal*  
435 *of Experimental Medicine* **219**, e20220621 (2022).

436 57. Snyder, L. M. & Denkers, E. Y. From Initiators to Effectors: Roadmap Through the Intestine  
437 During Encounter of Toxoplasma gondii With the Mucosal Immune System. *Frontiers in*  
438 *Cellular and Infection Microbiology* **10**, (2021).

439 58. Speer, C. A. & Dubey, J. P. Ultrastructure of early stages of infections in mice fed Toxoplasma  
440 gondii oocysts. *Parasitology* **116**, 35–42 (1998).

441 59. Raetz, M. *et al.* Parasite-induced TH1 cells and intestinal dysbiosis cooperate in IFN- $\gamma$ -  
442 dependent elimination of Paneth cells. *Nat Immunol* **14**, 136–142 (2013).

443 60. Burger, E. *et al.* Loss of Paneth Cell Autophagy Causes Acute Susceptibility to Toxoplasma  
444 gondii-Mediated Inflammation. *Cell Host & Microbe* **23**, 177-190.e4 (2018).

445 61. White, R., Blow, F., Buck, A. H. & Duque-Correa, M. A. Organoids as tools to investigate  
446 gastrointestinal nematode development and host interactions. *Frontiers in Cellular and*  
447 *Infection Microbiology* **12**, (2022).

448 62. Walker, F. C., Sridhar, P. R. & Baldridge, M. T. Differential roles of interferons in innate  
449 responses to mucosal viral infections. *Trends in Immunology* **42**, 1009–1023 (2021).

450 63. Humayun, M. *et al.* Innate immune cell response to host-parasite interaction in a human  
451 intestinal tissue microphysiological system. *Science Advances* **8**, eabm8012 (2022).

452 64. Chrysanthopoulou, A. *et al.* Interferon lambda1/IL-29 and inorganic polyphosphate are novel  
453 regulators of neutrophil-driven thromboinflammation. *The Journal of Pathology* **243**, 111–122  
454 (2017).

455 65. Espinosa, V. *et al.* Type III interferon is a critical regulator of innate antifungal immunity.  
456 *Science Immunology* **2**, eaan5357 (2017).

457 66. Koltsida, O. *et al.* IL-28A (IFN- $\lambda$ 2) modulates lung DC function to promote Th1 immune  
458 skewing and suppress allergic airway disease. *EMBO Molecular Medicine* **3**, 348–361 (2011).

459 67. Lasfar, A. *et al.* Concerted action of IFN- $\alpha$  and IFN- $\lambda$  induces local NK cell immunity and  
460 halts cancer growth. *Oncotarget* **7**, 49259–49267 (2016).

461 68. Zanoni, I., Granucci, F. & Broggi, A. Interferon (IFN)- $\lambda$  Takes the Helm: Immunomodulatory  
462 Roles of Type III IFNs. *Frontiers in Immunology* **8**, (2017).

463 69. Araujo, A. *et al.* IFN- $\gamma$  mediates Paneth cell death via suppression of mTOR. *eLife* **10**, e60478  
464 (2021).

465

466

## Methods

467 ***T. gondii* propagation**

468 *T. gondii* tachyzoites ME49 (clone B7-21), ME49-GFP-Luc<sup>1</sup> and Pru- $\Delta$ hxgprt-tdTomato (Pru-  
469 tdTomato)<sup>2</sup> were propagated in confluent human foreskin fibroblasts (HFF1) in DMEM medium  
470 containing high glucose supplemented with 100 U ml<sup>-1</sup> penicillin, 100 mg ml<sup>-1</sup> streptomycin and  
471 2 % fetal bovine serum.

472

473 ***T. gondii* tissue cysts preparation**

474 For *T. gondii* tissue cyst preparation, C57BL/6 (BL/6) mice were infected with 200 to 500 *T. gondii*  
475 tachyzoites via intraperitoneal (i.p.) injection or with 5 to 15 tissue cysts freshly prepared from the  
476 brain of infected donor animals via oral gavage. Four to six weeks post infection, mice were  
477 euthanized by cervical dislocation. Brains were harvested and suspended in 2 ml PBS before  
478 mincing using a 18G and 20G needle respectively. Cyst numbers were determined via DBA-FITC  
479 staining at 20x magnification as described previously<sup>3,4</sup>.

480

481 **Animal strains and infection conditions**

482 BL/6 mice were purchased from Janvier laboratories. B6.A2G-Mx1 mice carrying intact *Mx1*  
483 alleles (designated wt), congenic B6.A2G-Mx1-*Ifnar1*<sup>-/-</sup> mice lacking functional IFN- $\alpha$  receptors  
484 (designated *Ifnar1*<sup>-/-</sup>) and B6.A2G-Mx1-*Ifnlrl*<sup>-/-</sup> mice lacking functional IFN- $\lambda$  receptors  
485 (designated *Ifnlrl*<sup>-/-</sup>) or double receptor-deficient mice B6.A2G-Mx1-*Ifnar1*<sup>-/-</sup>*Ifnlrl*<sup>-/-</sup> (designated  
486 *Ifnar1*<sup>-/-</sup>*Ifnlrl*<sup>-/-</sup>) were described before<sup>5</sup>. B6.A2G-Mx1-*Ifnlrl*<sup>fl/fl</sup>*Villin-Cre*<sup>+/+</sup> mice lacking

487 functional IFN-λ receptors (IFNLR1) in intestinal epithelial cells (IECs) (designated  
488 *Ifnlr1*<sup>f/f</sup>*Villin-Cre*<sup>+/−</sup>) and control littermates B6.A2G-Mx1-*Ifnlr1*<sup>f/f</sup>*Villin-Cre*<sup>−/−</sup> (designated  
489 *Ifnlr1*<sup>f/f</sup>*Villin-Cre*<sup>−/−</sup>) were described before<sup>6</sup>. Animals in all experimental groups were sex- and  
490 age-matched.

491 For survival experiments, mice were infected by oral gavage with 5 to 10 freshly prepared tissue  
492 cysts in a total volume of 200 µl sterile PBS. Infected mice were monitored daily for 30 to 35 days.  
493 Relative weight loss was calculated based on the weight at the day of infection.

494 For IFN-λ treatment, mice were treated i.p. with 1 µg of human IFN-λ1/3<sup>7</sup> (proven to be cross-  
495 reactive in mice) or mock-treated with PBS/0.1 % BSA from day -1 to day 7 of oral infection with  
496 10 *T. gondii* Pru-tdTomato-derived tissue cysts and monitored daily for 30 days.

497 Mice were kept under specific-pathogen-free conditions in the local animal facility (Department  
498 for Microbiology, Virology and Hygiene, Freiburg). All animal experiments were performed in  
499 accordance with the guidelines of the German animal protection law and the Federation for  
500 Laboratory Animal Science Associations. Experiments were approved by the state of Baden-  
501 Württemberg (Regierungspräsidium Freiburg; reference number G-19/89, G-20/155, and G-  
502 22/068).

503

#### 504 **Generation of bone marrow chimeras**

505 Five days before bone marrow transplantation (day -5 to day -1), wt and *Ifnlr1*<sup>−/−</sup> sex- and age-  
506 matched recipient mice received daily 20 mg of busulfan per kg body weight i.p. as previously  
507 described<sup>8</sup>. A suspension of bone marrow cells prepared from wt or *Ifnlr1*<sup>−/−</sup> donor mice were  
508 adoptively transferred into recipient animals. The recipient mice were given drinking water

509 containing 2 g/l neomycin for 3 weeks after busulfan treatment. Eight weeks post BM  
510 transplantation, mice were orally infected with 5 *T. gondii* Pru-tdTomato-derived tissue cysts and  
511 monitored daily for 30 days.

512

### 513 **Isolation of bone marrow-derived neutrophils**

514 Following the manufacturer's protocol, neutrophils were negatively enriched using the EasySep™  
515 Mouse Neutrophil Enrichment Kit (StemCell Technologies) from the bone marrow of adult wt  
516 mice. The cells were resuspended in PBS supplemented with 2 % FCS and 1 mM EDTA and  
517 cultured in RPMI medium supplemented with 100 U ml<sup>-1</sup> penicillin, 100 µg ml<sup>-1</sup> streptomycin, 10  
518 % FCS, 1 mM sodium pyruvate (Capricorn Scientific) and 4 mM glutaMAX (Thermo Fisher  
519 Scientific).

520

### 521 **Generation of intestine Organoid-Derived Monolayers**

522 Small intestine organoids from wt, *Ifnlr1*<sup>-/-</sup> and *Irgm1/Irgm3*<sup>-/-</sup> mice were generated according to  
523 StemCell technologies protocols. Stem cell enriched spheroids were cultured in Stem Cell  
524 enrichment medium (SC medium) as described before<sup>9</sup>.

525 To grow organoids as Organoid-Derived Monolayers (ODMs), 96 well plates, Ibidi µ-chambers  
526 or transwells were coated with 50 µl/well basement membranes (BME) diluted 1:20 in  
527 adDMEM<sup>+/++</sup> o/n at 4°C or for at least 30 min at 37°C. The coating solution was aspirated and the  
528 cell culture kept at 37°C for another 30 min. Three to four days old organoids were recovered as  
529 described above, centrifuged at 300 g and 4°C for 5 min, and the pellets resuspended in 1 ml pre-  
530 warmed TrypLE (Thermo Scientific) + 10 µM Y-27632 (MedChemExpress). After incubation in

531 a 37°C water bath for 2 min, the suspension was aspirated twice with a 1 ml syringe and a 20G  
532 needle pre-coated with organoid washing medium containing trypsin to create a single-cell  
533 suspension. To stop trypsinization, 10 ml adDMEM<sup>+/+</sup> were added, the suspension centrifuged at  
534 300 g and 4°C for 5 min, the pellet resuspended in an appropriate volume of ODM seeding  
535 medium, and the cell concentration determined using a hemocytometer (~ 6x10<sup>4</sup> cells/cm<sup>2</sup> were  
536 seeded). One day after seeding, the medium was exchanged to 90 % ODM differentiation medium.  
537 Additional medium changes were done every second day. ODMs were cultured for 6 days before  
538 IFN stimulation.

539

540 ***T. gondii* replication assays**

541 Enriched bone marrow-derived neutrophils were primed with 3 ng ml<sup>-1</sup> of IFN-λ2<sup>10</sup>, IFN-γ  
542 (Peprotech) for 8 h and infected with *T. gondii* GFP-Luc at a multiplicity of infection (MOI) of 2.  
543 At 10 h post infection, neutrophils were recovered from culture plates using 200 µl of Accutase  
544 Cell Dissociation Solution (Sigma-Aldrich) for 25 min at 37°C. Cells were incubated in 200 µl  
545 FACS buffer containing 1 µl Zombie NIR fixable dye for 30 min to determine cell viability  
546 (Zombie Green™ Fixable Viability Kit, BioLegend). Cells were fixed for 15 min in 200 µl PFA 2  
547 %. To avoid unspecific antibody binding, Fc blocking was performed using anti-FcγIII/II CD16/32  
548 receptor antibody (Clone 93) for 10 min on ice. Cells were stained with fluorochrome-conjugated  
549 antibodies against cell surface markers for 20 min on ice (Table 1). Cells were finally washed in  
550 200 µl of FACS buffer and resuspended in 300 µl FACS buffer. A FACS Canto II flow cytometer  
551 (Becton Dickinson) was used to collect 100.000 events and data were analyzed with FlowJo  
552 software.

553 Percent of *T. gondii* infected neutrophils (CD45<sup>+</sup>, Ly6G<sup>+</sup>, GFP<sup>+</sup>) was compared between treated  
554 and non-treated conditions. Percent of *T. gondii* inhibition was defined as “ $i = 100 - [\% \text{ of } (\text{CD45}^+, \text{Ly6G}^+, \text{GFP}^+) \text{ treated}] / [\% \text{ of } (\text{CD45}^+, \text{Ly6G}^+, \text{GFP}^+) \text{ untreated}] * 100$ ”.

556 To evaluate inhibition of *T. gondii* replication by IFNs in IECs, ODMs were primed o/n with 60  
557 ng ml<sup>-1</sup> IFN-λ2<sup>10</sup>, IFN-γ (Peprotech) or IFN-α<sub>B/D</sub><sup>11</sup> and infected with *T. gondii* ME49-GFP-Luc at  
558 a MOI of 0.25 for 48 h. Cells were washed once with PBS and lysed for at least 1 h with 40 μl 1x  
559 passive lysis buffer (Promega) at RT. 20 μl of lysate were transferred to a white flat-bottom 96-  
560 well plate (Thermo Scientific) and luciferase activity was measured in a Tecan infinite 200Pro by  
561 automatic injection of 50 μl luciferase assay substrate (Promega) and 10 sec integration time.

562 Inhibition of *T. gondii* replication was calculated as “ $i = 100\% - (L_{\text{treated}} / L_{\text{mock}}) * 100\%$ ”, where  
563 “ $i$ ” is the inhibition of *T. gondii* replication and “ $L$ ” is the luminescence in the IFN-treated or  
564 untreated wells. Negative *T. gondii* inhibition values were set to zero.

565

### 566 ***T. gondii* quantification and ISG expression by qPCR**

567 Wt and *Ifnlr1*<sup>-/-</sup> mice were infected orally with 15 *T. gondii* ME49-GFP-Luc-derived tissue cysts  
568 in a total volume of 200 μl sterile PBS. After 9 days of infection, biopsies from ileum, spleen, liver  
569 and brain were taken and preserved in DNA/RNA shield (Zymo Research) at -80°C until  
570 DNA/RNA isolation. RNA and DNA was isolated with the Direct-zol<sup>TM</sup> DNA/RNA kit (Zymo  
571 Research). Parasite load was quantified from purified DNA by a probe-based qPCR using specific  
572 primers that amplify the 529 bp repetitive element (RE) in the parasite genome (Table 2)<sup>12</sup>.  
573 Purified *T. gondii* DNA was used to create a standard curve for calculation of parasite load. DNA  
574 was amplified using Luna® Universal Probe qPCR Master Mix (NEB England Biolabs).

575 For *ISG* induction, purified neutrophils or ODMs were primed with different concentrations of  
576 IFN- $\gamma$  or INF- $\lambda$ 2 for 4 h. Afterwards, RNA was purified using the Direct-zol<sup>TM</sup> RNA Miniprep Kit  
577 (Zymo Research) according to the manufacturer's protocol. Complementary DNA (cDNA) was  
578 generated for each replicate using the LunaScript RT Supermix (New England Biolabs) based on  
579 the manufacturer's instructions. The cDNA served as template for the amplification of genes of  
580 interest (Table 2), using SYBR green I containing Luna<sup>®</sup> Universal qPCR Master Mix (NEB  
581 England Biolabs). The qPCR was performed using the QuantStudio 5 Real-Time PCR System  
582 (Applied Biosystems by Thermo Fisher Scientific). The increase in mRNA expression was  
583 determined by the 2- $\Delta\Delta Ct$  method relative to the expression of the house-keeping gene *Ubc* or  $\Delta Ct$   
584 relative to *Actin*.

585

## 586 **ELISA**

587 *T. gondii*-specific antibodies in serum of IFN- $\lambda$ 1/3 treated mice were determined by ELISA as  
588 described previously<sup>3</sup>. Briefly, high-binding 96-well microtiter plates (MaxiSorp, Nunc) were  
589 coated with total *T. gondii* antigen and incubated overnight at 4°C. Next, the ELISA plates were  
590 washed four times with washing buffer (PBS containing 0.05 % Tween 20) and blocked with 1 %  
591 BSA in PBS for 1 h at 37°C. Plates were washed four times with washing buffer. Afterwards,  
592 1:128 diluted serum were added and incubated for 1 h at room temperature. Plates were washed  
593 four times with washing buffer. Horseradish peroxidase-labelled antibodies directed against either  
594 total IgG (62-6520, Invitrogen) or IgG1 (A10551, Invitrogen) were added to each well and  
595 incubated for 1 h at room temperature. Plates were washed four times and incubated with  
596 tetramethylbenzidine (TMB) substrate (Biologend) for 10 min at room temperature. The reaction  
597 was stopped by adding 0.5 M H<sub>2</sub>SO<sub>4</sub> and the absorbance was measured at 450 nm and 570 nm

598 (background). *T. gondii* specific IgG or IgG1 values were calculated relative to values from non-  
599 infected mice.

600 IFN-λ2/3 concentration was determined by commercial sandwich ELISA (R&D Systems) from  
601 supernatants infected or not with *T. gondii* after 24 or 48 h post infection.

602

### 603 **Immunofluorescence**

604 Antigen retrieval in deparaffinized paraformaldehyde-fixed ileum tissue sections from wt and  
605 *Ifnlr1*<sup>-/-</sup> mice was performed with 0.01 M sodium citrate buffer as previously described<sup>13</sup>. Slides  
606 were blocked with 10 % normal donkey serum (Jackson ImmunoResearch) and stained o/n with  
607 rat anti GRA7 (*T. gondii* PVM marker) and E-Cadherin (Cell Signalling) followed by 1 h  
608 incubation with the appropriate Cy3-, or Cy5-conjugated secondary antibodies and DAPI. Slides  
609 were mounted in Fluor Save Reagent (Calbiochem). Tissue sections were visualized using a Zeiss  
610 Axioplan 2 non-inverted fluorescence microscope.

611 ODMs were infected with *T. gondii* ME49 for 2 h at MOI 4. Monolayers were washed two times  
612 with PBS and fixed for 30 min at RT with 4 % PFA. Cells were permeabilized and stained as  
613 previously described<sup>14</sup>. Antibodies and dilutions are listed in Table 1. Intensities were determined  
614 by taking the average of 4 intensity values along 2 lines crossing the PV perpendicularly subtracted  
615 by the respective background fluorescence, as described previously<sup>80</sup>. The measurements were  
616 done using the Fiji/ImageJ software with a custom macro (code can be found at  
617 <https://github.com/Kartoffelecke/PVM-profiler>). Pictures were taken on the Zeiss Observer 7 with  
618 a 40x magnification.

619

620 **Statistical analysis**

621 All statistical analyses were performed using GraphPad Prism 9.1 software. P-values were  
622 determined by an appropriate statistical test. One-way ANOVA followed by Tukey's multiple  
623 comparison was used to test differences between three or more groups. Depending on the data  
624 distribution, Student's t-test or Mann Whitney test was used for two-group comparisons. For *in*  
625 *vivo* experiments, a log-rank Mantel-Cox test was used to test survival differences between groups.  
626 All error bars indicate the mean and standard error of the mean (SEM) of at least three independent  
627 experiments. P-values; \*\*\*\*p < 0.0001, \*\*\*p < 0.001, \*\*p < 0.0, \*p < 0.05, n.s. no significant.

628

629 **Table 1. Antibodies**

| Species                                        | Antigen                          | Type      | Conjugat  | Dilution                          | Reference / Origin         |
|------------------------------------------------|----------------------------------|-----------|-----------|-----------------------------------|----------------------------|
| <b>Immunofluorescence primary antibodies</b>   |                                  |           |           |                                   |                            |
| mouse                                          | Irga6                            | moAb      | -         | 1:2000                            | 10D7 <sup>15</sup>         |
| mouse                                          | Irgb6                            | moAb      | -         | 1:3000                            | B34 <sup>16</sup>          |
| rabbit                                         | Irgb10                           | antiserum | -         | 1:6000                            | 940/6 <sup>17</sup>        |
| rabbit                                         | E-Cadherin (24E10)               | moAb      | -         | 1:400                             | 3195 (Cell Signalling)     |
| <b>Immunofluorescence secondary antibodies</b> |                                  |           |           |                                   |                            |
| donkey                                         | mouse IgG                        | poAb      | Alexa 555 | 1:5000                            | A31570 (Life Technologies) |
| donkey                                         | rabbit IgG                       | poAb      | Alexa 555 | 1:5000                            | A31572 (Life Technologies) |
| donkey                                         | rat IgG                          | poAb      | Alexa 488 | 1:5000                            | A21208 (Life Technologies) |
| <b>Flow cytometry antibodies</b>               |                                  |           |           |                                   |                            |
| rat IgG2a, κ                                   | anti-mouse Ly-6G (1A8)           | moAb      | APC       | 0.06 µg per 10 <sup>6</sup> cells | 127613 (Biolegend)         |
| rat IgG2b, κ                                   | anti-mouse CD45 (30-F11)         | moAb      | PerCP     | 0.25 µg per 10 <sup>6</sup> cells | 103129 (Biolegend)         |
| rat IgG2b, κ                                   | purified anti-mouse CD16/32 (93) | moAb      | -         | 1.0 µg per 10 <sup>6</sup> cells  | 101301 (Biolegend)         |

630

631

632 **Table 2. Primers**

| Primer                  | Sequence                                    |
|-------------------------|---------------------------------------------|
| Irga6 (f) <sup>19</sup> | 5'-GGGTACTTACTTCCTAAAAATAGTTTCT-3'          |
| Irga6 (r) <sup>19</sup> | 5'-TCACAGGACTTCAGCTTAATTAGA-3'              |
| Irgb6 (f)*              | 5'-CCCACAAGCGTCACGTATT-3'                   |
| Irgb6 (r)*              | 5'-ATGCCACCAAGTGGAAATGGT-3'                 |
| Irgb10 (f)*             | 5'-TGCTGTCAAGTGAGCCGAAT-3'                  |
| Irgb10 (r)*             | 5'-AAGGCCAGTGGCTACGAATC-3'                  |
| Mx1 (f) <sup>20</sup>   | 5'-TCTGAGGAGAGCCAGACGAT-3'                  |
| Mx1 (r) <sup>20</sup>   | 5'-ACTCTGGTCCCCATGACAG-3'                   |
| Isg15 (f) <sup>20</sup> | 5'-GAGCTAGAGCCTGCAGCAAT-3'                  |
| Isg15 (r) <sup>20</sup> | 5'-TTCTGGCAATCTGCTTCTT-3'                   |
| Actin (f) <sup>19</sup> | 5'-ACCTTCTACAATGAGCTGCG-3'                  |
| Actin (r) <sup>19</sup> | 5'-CTGGATGGCTACGTACATGG-3'                  |
| Gbp1 (f)*               | 5'-GCAGAAAGGTGACAACCAGA-3'                  |
| Gbp1 (r)*               | 5'-CCTGCTGGTTGATGGTTCC-3'                   |
| Gbp2 (f)*               | 5'-AGCTGCACTATGTGACGGAG-3'                  |
| Gbp2 (r)*               | 5'-AGGTTGGAAAGAAGCCCACAA-3'                 |
| Gbp5 (f)*               | 5'-AGGTCAACGGACCTCGTCTA-3'                  |
| Gbp5 (r)*               | 5'-CCGGGCCAAGGTTACTACTG-3'                  |
| RE Probe <sup>12</sup>  | 5'-6-FAM-TACAGACGC-ZEN-GATGCCGCTCC-3'TABkFQ |
| RE (f) <sup>12</sup>    | 5'-GCC ACA GAA GGG ACA GAA GT-3'            |
| RE (r) <sup>12</sup>    | 5'-ACC CTC GCC TTC ATC TAC AG-3'            |
| Ubc                     | QT00245189, QuantiTect Primer Assay, Qiagen |

633 \* This study

634

635 **Intestinal organoid media<sup>9</sup>**

636 **adDMEM<sup>+/+/-</sup>**

637 adDMEM/F-12 (Gibco 12634028)

638 + 75 U mL<sup>-1</sup> penicillin

639 + 75 µg mL<sup>-1</sup> streptomycin (Gibco 15140122)

640 + 10 mM HEPES pH 7.5

641 + 1x GlutaMax (Gibco 35050061)

642

643 **Stem Cell enrichment (SC) organoid medium**

644 adDMEM/F-12

645 + 50 % L-WRN conditioned medium

646 + 20 % R-spondin conditioned medium

647 + 10 % noggin conditioned medium

648 + 75 U mL<sup>-1</sup> penicillin + 75 µg mL<sup>-1</sup> streptomycin (Gibco 15140122)

649 + 10 mM HEPES pH 7.5

650 + 1x GlutaMax (Gibco 35050061)

651 + 1 mM N-acetylcysteine (Sigma)

652 + 10 mM nicotinamid (Sigma)

653 + 1x B27 supplement (Gibco 17504044)

654 + 1x N2 supplement (Gibco 17502048)

655 + 50 ng mL<sup>-1</sup> mEGF (StemCell Technologies)

656 + 500 nM A83-01 (StemCell Technologies)

657 + 10 µM SB202190 (StemCell Technologies)

658 **Organoid washing medium**

659 adDMEM<sup>+/+/-</sup> + 10 % FCS

660

661 **Organoid freezing medium**

662 adDMEM<sup>+/+/-</sup> + 20 % FCS + 10 % DMSO

663

664 **ODM seeding medium**

665 adDMEM/F-12

666 + 50 % L-WRN conditioned medium

667 + 20 % R-spondin conditioned medium

668 + 10 % noggin conditioned medium

669 + 75 U mL<sup>-1</sup> penicillin + 75 µg mL<sup>-1</sup> streptomycin (Gibco 15140122)

670 + 10 mM HEPES pH 7.5

671 + 1x GlutaMax (Gibco 35050061)

672 + 1 mM N-acetylcysteine (Sigma)

673 + 10 mM nicotinamid (Sigma)

674 + 1x B27 supplement (Gibco 17504044)

675 + 1x N2 supplement (Gibco 17502048)

676 + 50 ng/mL mEGF (StemCell Technologies)

677 + 10 µM Y-27632

678

679

680

681 **ODM differentiation medium**

682 adDMEM/F-12

683 + 20 % R-spondin conditioned medium

684 + 10 % noggin conditioned medium

685 + 75 U mL<sup>-1</sup> penicillin + 75 µg mL<sup>-1</sup> streptomycin (Gibco 15140122)

686 + 10 mM HEPES pH 7.5

687 + 1x GlutaMax (Gibco 35050061)

688 + 1 mM N-acetylcysteine (Sigma)

689 + 10 mM nicotinamid (Sigma)

690 + 1x B27 supplement (Gibco 17504044)

691 + 1x N2 supplement (Gibco 17502048)

692 + 50 ng mL<sup>-1</sup> mEGF (StemCell Technologies)

693 **Additional references**

- 694 1. Saeij, J. P. J., Boyle, J. P., Grigg, M. E., Arrizabalaga, G. & Boothroyd, J. C.  
695 Bioluminescence Imaging of *Toxoplasma gondii* Infection in Living Mice Reveals  
696 Dramatic Differences between Strains. *Infection and Immunity* **73**, 695–702 (2005).
- 697 2. Chtanova, T. *et al.* Dynamics of Neutrophil Migration in Lymph Nodes during Infection.  
698 *Immunity* **29**, 487–496 (2008).
- 699 3. Christiansen, C. *et al.* In vitro maturation of *Toxoplasma gondii* bradyzoites in human  
700 myotubes and their metabolomic characterization. *Nat Commun* **13**, 1168 (2022).
- 701 4. Matta, S. K. *et al.* *Toxoplasma gondii* effector TgIST blocks type I interferon signaling to  
702 promote infection. *Proceedings of the National Academy of Sciences* **116**, 17480–17491  
703 (2019).
- 704 5. Mordstein, M. *et al.* Lambda Interferon Renders Epithelial Cells of the Respiratory and  
705 Gastrointestinal Tracts Resistant to Viral Infections. *Journal of Virology* **84**, 5670–5677  
706 (2010).
- 707 6. Linden, J. *et al.* Interferon- $\lambda$  Receptor Expression: Novel Reporter Mouse Reveals Within-  
708 and Cross-Tissue Heterogeneity. *Journal of Interferon & Cytokine Research* (2020)  
709 doi:10.1089/jir.2019.0265.
- 710 7. Yu, D. *et al.* Design and evaluation of novel interferon lambda analogs with enhanced  
711 antiviral activity and improved drug attributes. *DDDT* **10**, 163–182 (2016).
- 712 8. Peake, K. *et al.* Busulfan as a Myelosuppressive Agent for Generating Stable High-level  
713 Bone Marrow Chimerism in Mice. *JoVE* 52553 (2015) doi:10.3791/52553.
- 714 9. Holthaus, D., Delgado-Betancourt, E., Aebischer, T., Seeber, F. & Klotz, C. Harmonization  
715 of Protocols for Multi-Species Organoid Platforms to Study the Intestinal Biology of  
716 *Toxoplasma gondii* and Other Protozoan Infections. *Frontiers in Cellular and Infection*  
717 *Microbiology* **10**, (2021).

718 10. Dellgren, C., Gad, H. H., Hamming, O. J., Melchjorsen, J. & Hartmann, R. Human  
719 interferon-λ3 is a potent member of the type III interferon family. *Genes Immun* **10**, 125–  
720 131 (2009).

721 11. Horisberger, M. A. & de Staritzky, K. 1987. A Recombinant Human Interferon-α B/D  
722 Hybrid with a Broad Host-range. *Journal of General Virology* **68**, 945–948.

723 12. Edvinsson, B., Lappalainen, M. & Evengård, B. Real-time PCR targeting a 529-bp repeat  
724 element for diagnosis of toxoplasmosis. *Clinical Microbiology and Infection* **12**, 131–136  
725 (2006).

726 13. Pott, J. *et al.* IFN-λ determines the intestinal epithelial antiviral host defense. *Proceedings  
727 of the National Academy of Sciences* **108**, 7944–7949 (2011).

728 14. Steinfeldt, T. *et al.* Phosphorylation of Mouse Immunity-Related GTPase (IRG) Resistance  
729 Proteins Is an Evasion Strategy for Virulent *Toxoplasma gondii*. *PLOS Biology* **8**, e1000576  
730 (2010).

731 15. Papic, N., Hunn, J. P., Pawlowski, N., Zerrahn, J. & Howard, J. C. Inactive and active states  
732 of the interferon-inducible resistance GTPase, Irga6, in vivo. *Journal of Biological  
733 Chemistry* **283**, 32143–32151 (2008).

734 16. Carlow, D. A., Teh, S.-J. & Teh, H.-S. Specific Antiviral Activity Demonstrated by TGTP,  
735 A Member of a New Family of Interferon-Induced GTPases. *J. Immunol.* **161**, 2348 (1998).

736 17. Hermanns, T., Müller, U. B., Könen-Waisman, S., Howard, J. C. & Steinfeldt, T. The  
737 *Toxoplasma gondii* rhoptry protein ROP18 is an Irga6-specific kinase and regulated by the  
738 dense granule protein GRA7. (2015) doi:10.1111/cmi.12499.

739 18. Martens, S. *et al.* Mechanisms Regulating the Positioning of Mouse p47 Resistance  
740 GTPases LRG-47 and IIGP1 on Cellular Membranes: Retargeting to Plasma Membrane  
741 Induced by Phagocytosis. *The Journal of Immunology* **173**, 2594–2606 (2004).

742 19. Matta, S. K. *et al.* NADPH Oxidase and Guanylate Binding Protein 5 Restrict Survival of

743 Avirulent Type III Strains of *Toxoplasma gondii* in Naive Macrophages. *mBio* **9**, e01393-

744 18 (2018).

745 20. Beer, J. *et al.* Impaired immune response drives age-dependent severity of COVID-19.

746 *Journal of Experimental Medicine* **219**, e20220621 (2022).

747

748 **Acknowledgments**

749 We are especially thankful for all support from the Institute of Virology under the direction of

750 Hartmut Hengel. We thank Philipp P. Petric, Precious Cramer and Peter Reuther from the

751 University Medical Center for technical assistance. We are equally grateful to Aladin

752 Haimovici from the University Medical Center Freiburg for providing organoid conditional

753 media and for helpful discussions. We thank Frank Seeber and Christian Klotz from the Robert

754 Koch-Institute very much for assistance with generation and maintenance of organoids.

755 Jonathan C. Howard from the Fundação Calouste Gulbenkian generously provided antibodies

756 against IRG proteins. Rune Hartmann and Hans Hendrik Gaad from the Department of

757 Molecular Biology and Genetics, Aarhus University, kindly provided recombinant IFN- $\lambda$ 2. T.S.

758 received funding from the Deutsche Forschungsgemeinschaft STE 2348/2-1 and STE 2348/2-

759 2, and University of Freiburg, Medical Faculty, Research Commission STE 2134/20. M.M.L.

760 received funding (Research Grants–Doctoral Programmes in Germany) from the German

761 Academic Exchange Service (DAAD). G.T. received funding from the US National Institutes

762 of Health (AI145929 and AI148243). The funders had no role in study design, data collection

763 and interpretation, or the decision to submit the work for publication.

764

765 **Author contributions**

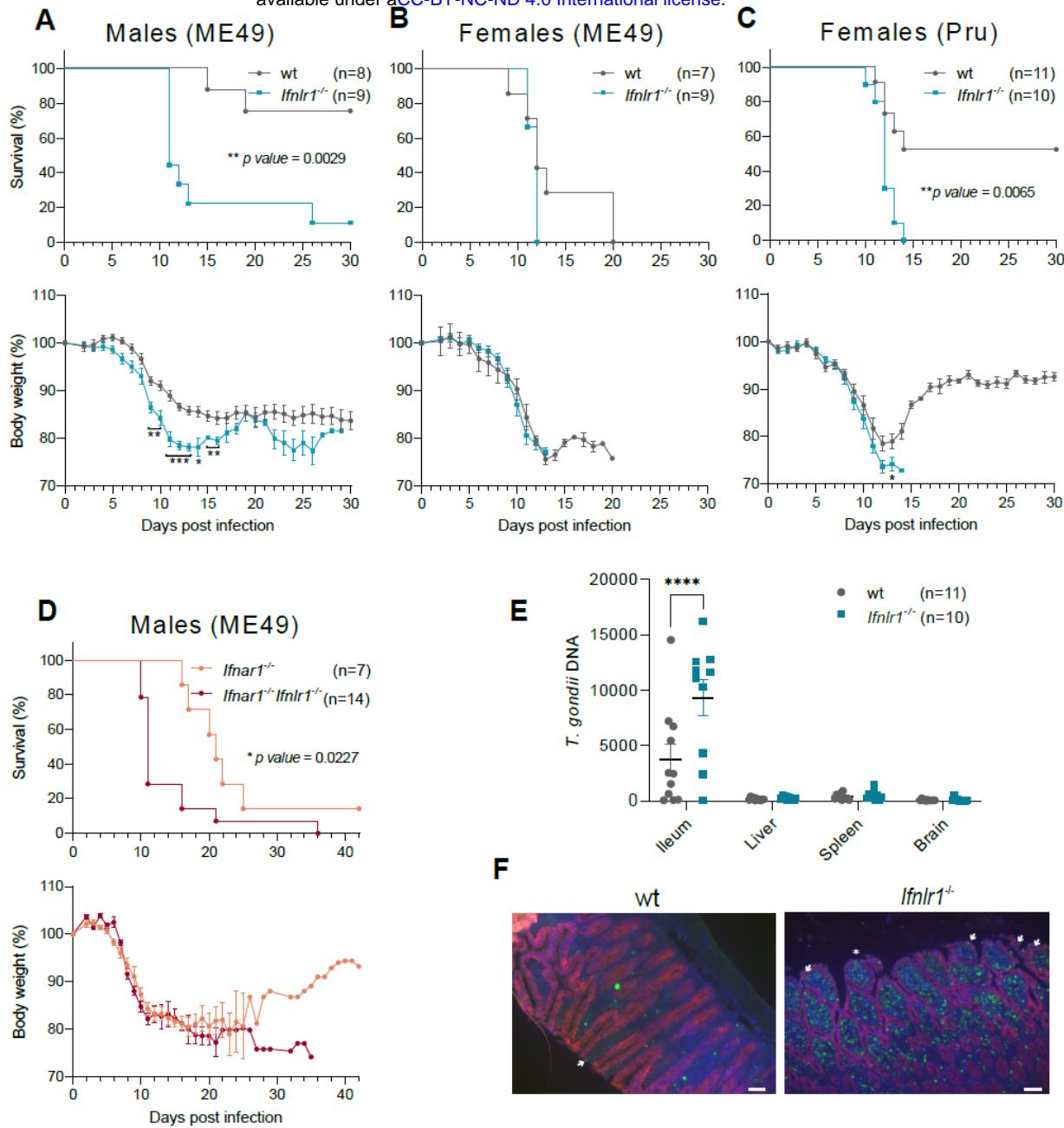
766 Mateo Murillo-León: Conceptualisation; Formal analysis; Investigation; Methodology;  
767 Writing-original draft; Writing-review & editing. Aura Maria Bastidas Quintero: Formal  
768 analysis; Investigation; Methodology; Writing-review & editing; Niklas Endres: Formal  
769 analysis; Investigation; Methodology; Writing-review & editing. Daniel Schnepf: Formal  
770 analysis; Investigation; Methodology; Writing-review & editing. Estefanía Delgado-Betacourt:  
771 Methodology; Writing-review & editing. Annette Ohnemus: Investigation; Methodology;  
772 Writing-review & editing Gregory Alan Taylor: Resources; Writing-review & editing. Martin  
773 Schwemmle: Resources; Writing-review & editing. Peter Staeheli: Formal analysis,  
774 Investigation; Methodology; Writing-review & editing. Tobias Steinfeldt: Conceptualisation;  
775 Resources; Data curation; Validation; Supervision; Fundig acquisition; Project Administration;  
776 Formal analysis; Methodology; Writing-original draft; Writing-review & editing.

777

778 **Competing interests**

779 The authors declare that they have no competing interests.

780


781 **Data availability**

782 This study includes no data deposited in external repositories.

783

784

785



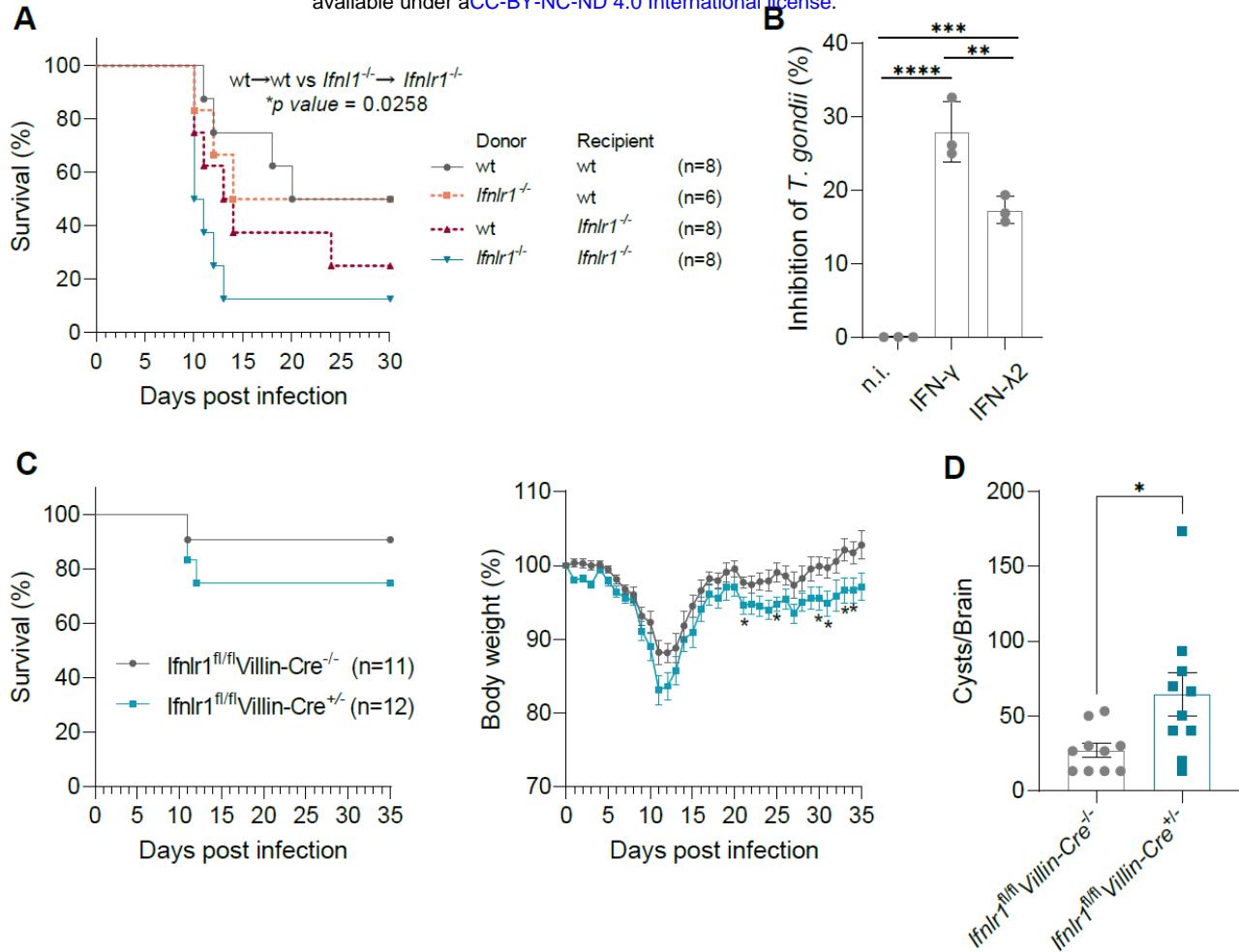
786

787 **Figure 1. *Ifnlr1*<sup>-/-</sup> mice are highly susceptible to *T. gondii* oral infection. A, B, D.** *wt*,  
 788 *Ifnlr1*<sup>-/-</sup>, *Ifnar1*<sup>-/-</sup> or *Ifnar1*<sup>-/-</sup>*Ifnlr1*<sup>-/-</sup> mice were infected with 5 *T. gondii* ME49 or C. 10 *T. gondii*  
 789 Pru-tdTomato tissue cysts. Weight loss and survival were monitored daily for 30 days. Data  
 790 were pooled from two independent experiments. **A.** Survival (upper panel), \*\*p = 0.0029  
 791 determined by Log-rank (Mantel-Cox) test; weight loss (lower panel), \*p = 0.04, \*\*p ≤ 0.002,  
 792 \*\*\*p ≤ 0.0007 determined by unpaired t test. **C.** Survival (upper panel), \*\*p = 0.0065  
 793 determined by Log-rank (Mantel-Cox) test; weight loss (lower panel), \*p = 0.03 determined by

794 unpaired t test. **D.** Survival (upper panel),  $p = 0.0227$  determined by Log-rank (Mantel-Cox)

795 test. **E-F.** *T. gondii* replication in the intestine of *Ifnlr1<sup>-/-</sup>* and wt animals. *Ifnlr1<sup>-/-</sup>* and wt mice

796 were infected with 15 *T. gondii* ME49-GFP-Luc tissue cysts for 9 days. **E.** *T. gondii* DNA

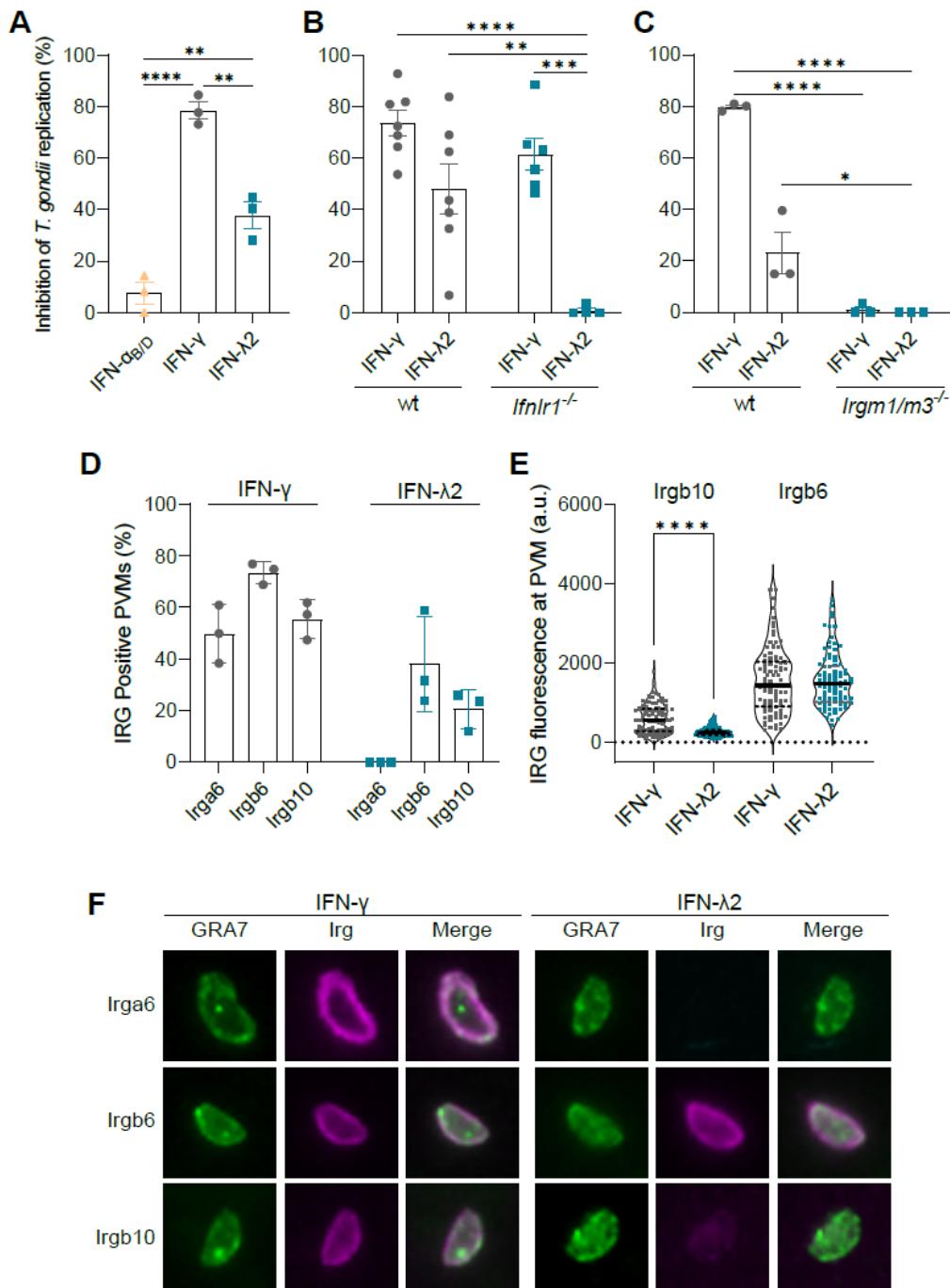

797 (genomes) was quantified by qPCR. Data were pooled from two independent experiments,

798 \*\*\*\* $p < 0.0001$  determined by ANOVA with Tukey's multiple-comparison test. **F.** *T. gondii*

799 replication in the ileum of *Ifnlr1<sup>-/-</sup>* and wt mice from **E** was visualized by immunofluorescence.

800 Arrows indicate infected IECs, the asterisk indicates damaged epithelium.

801




802

803 **Figure 2. IECs and neutrophils contribute to IFN- $\lambda$ -mediated protection from oral *T.***  
 804 ***gondii* infection. A.** Bone marrow-chimeric mice were infected with 10 *T. gondii* Pru-tdTomato  
 805 tissue cysts. Survival was monitored daily for 30 days. Survival, \*p = 0.0258 determined by  
 806 Log-rank (Mantel-Cox) test. **B.** *T. gondii* replication is inhibited in neutrophils. Neutrophils  
 807 were primed for 8 h with indicated cytokines and infected with *T. gondii* ME49-GFP-Luc for  
 808 10 h. *T. gondii* inhibition was assessed by FACS. Results represent the mean and SEM of three  
 809 independent experiments performed in duplicates or triplicates, \*\*p = 0.0058, \*\*\*p = 0.0004,  
 810 \*\*\*\*p <0.0001 determined by ANOVA with Tukey's multiple-comparison test. **C-D.** The  
 811 absence of IFNLR1 in the intestine leads to reduced weight recovery and higher cyst burden.  
 812 **C, D.** *Ifnlr1*<sup>fl/fl</sup>*Villin-Cre*<sup>+/-</sup> and *Ifnlr1*<sup>fl/fl</sup>*Villin-Cre*<sup>-/-</sup> mice littermates were infected with 10 *T.*  
 813 *gondii* Pru-tdTomato tissue cysts. Survival and weight loss were monitored daily for 35 days.

814 Data were pooled from three independent experiments. **C.** Weight loss (right hand panel),  $^*p \leq$   
815 0.043 determined by Unpaired t test. **D.** Cyst burden in the brain was determined 35 days post  
816 infection,  $^*p = 0.0238$  determined by Unpaired t test.

817



818

819 **Figure 3. *T. gondii* replication is inhibited in ODMs. A, B, C.** Organoid-Derived Monolayers  
820 (ODMs) were treated o/n with indicated cytokines and luciferase activity was measured 48 h  
821 post infection. **A.** *T. gondii* replication is inhibited by IFN- $\lambda$  or IFN- $\gamma$  in wt ODMs. Data  
822 represent the mean and SEM of three independent experiments performed in triplicates, \*\* $p \leq$   
823 0.0055, \*\*\* $p < 0.0001$  determined by ANOVA with Tukey's multiple-comparison test. **B.** *T.*

824 *T. gondii* inhibition is lost in *Igm1*<sup>-/-</sup> ODMs. Results represent the mean and SEM of 4-7

825 independent experiments performed in triplicates, \*\* $p = 0.0018$ , \*\*\* $p = 0.0002$ , \*\*\*\* $p < 0.0001$

826 determined by ANOVA with Tukey's multiple-comparison test. **C.** *T. gondii* inhibition is

827 abrogated in *Irgm1/Irgm3*<sup>-/-</sup> ODMs. Data represent the mean and SEM of three independent

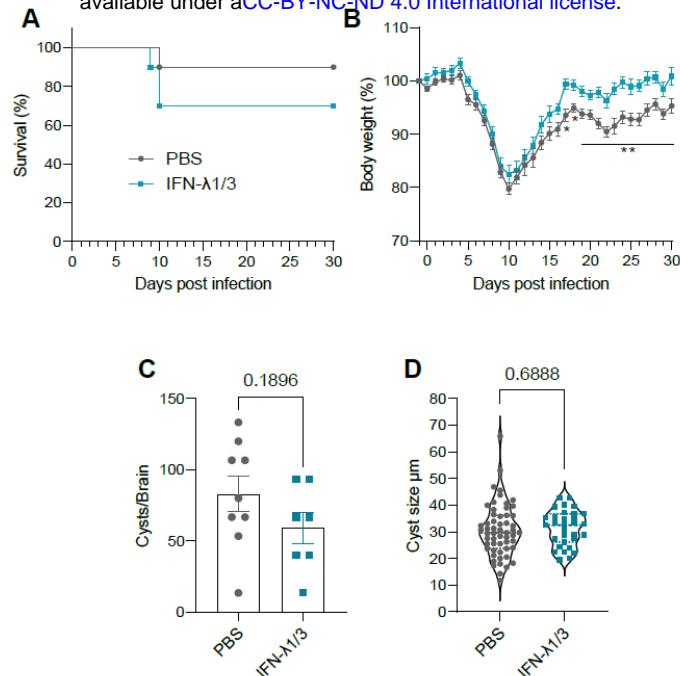
828 experiments performed in duplicates or triplicates, \* $p = 0.0233$ , \*\*\*\* $p < 0.0001$  determined by

829 ANOVA with Tukey's multiple-comparison test. **D-F.** IRG protein accumulation at the *T.*

830 *gondii* PVM. ODMs were treated o/n with indicated cytokines and IRG proteins detected 2 h

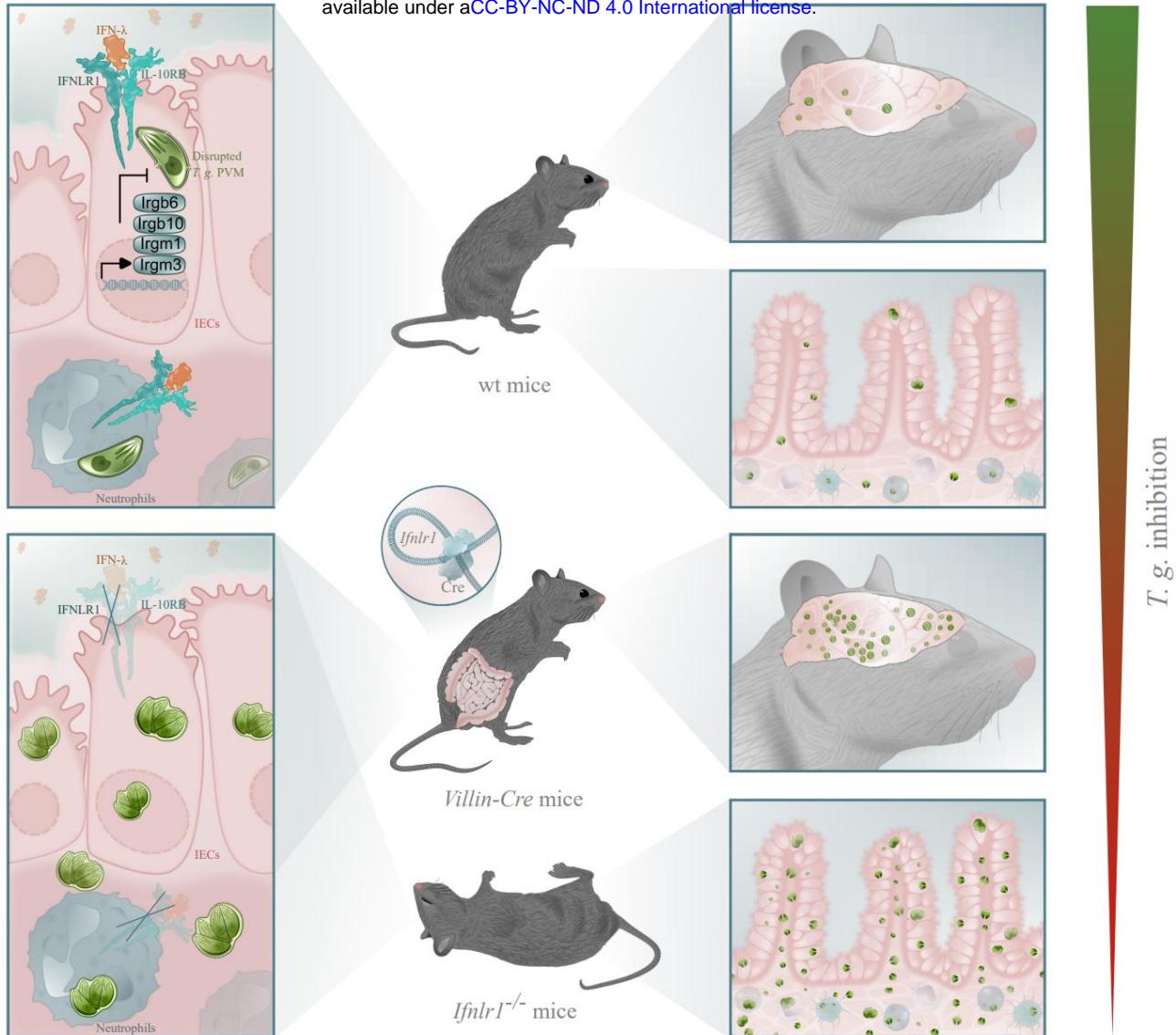
831 post *T. gondii* infection. **D.** Frequencies of IRG protein positive PVMs. 100 vacuoles were

832 evaluated in each of three independent experiments. **E.** Intensities of IRG proteins at the PVM.


833 30 vacuoles were evaluated in three independent experiments respectively, \*\*\*\* $p < 0.0001$

834 determined by Unpaired t test. **F.** Fluorescent images of IRG proteins at the PVM 2 h post

835 infection.


836

837



838

839 **Figure 4. IFN-λ treatment improves recovery after oral *T. gondii* infection. A-D.** Mice  
840 were treated (i.p. injection) with 1  $\mu\text{g}$  of IFN-λ1/3 or mock-treated with PBS/0.1 % BSA from  
841 day -1 to day 7 of oral *T. gondii* infection with 10 Pru-tdTomato-derived tissue cysts and weight  
842 was monitored daily for 30 days. **A.** Survival. **B.** Weight loss,  $**p \leq 0.0037$  determined by  
843 Unpaired t test. **C, D.** Cyst numbers in the brain and cyst sizes were determined by DBA  
844 staining at 30 days post infection.

