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Abstract

Interferons are essential for innate and adaptive immune responses against a wide variety of
pathogens. Interferon lambda (IFN-A) protects mucosal barriers during pathogen exposure. The
intestinal epithelium is the first contact site for Toxoplasma gondii (T. gondii) with its hosts and
the first defense line that limits parasite infection. Knowledge of very early T. gondii infection
events in the gut tissue is limited and a possible contribution of IFN-A has not been investigated
so far. Here, we demonstrate with systemic interferon lambda receptor (IFNLR1) and conditional
(Villin-Cre) knockout mouse models and bone marrow chimeras of oral T. gondii infection and
mouse intestinal organoids a significant impact of IFN-A signaling in intestinal epithelial cells and
neutrophils to T. gondii control in the gastrointestinal tract. Our results expand the repertoire of
interferons that contribute to the control of T. gondii and may lead to novel therapeutic approaches

against this world-wide zoonotic pathogen.
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Introduction

Interferons (IFNs) are essential regulators of the host immune response against a variety of
microbial infections. Depending on the nature of the unique cell surface receptors required for
signal transduction, they are classified into type | interferons (17 in humans and 18 in mice) that
bind to the heterodimeric receptor complex consisting of IFN-a/p receptor 1 (IFNAR1) and IFN-
o/B receptor 2 (IFNAR2) heterodimers?, type 1l interferon (IFN-y) that binds to IFN-y receptor 1
(IFNGR1) and IFN-y receptor 2 (IFNGR2) heterodimers?, and type 11 interferons (IFN-A1-4 in
humans and IFN-12/3 in mice®) that bind to IFN-A receptor 1 (IFNLR1) and IL10 receptor subunit

B (IL10RB) heterodimers®,

Due to the high degree of overlapping downstream signaling’8, the IFN type I and type 111 systems
were initially considered to be functionally redundant®’. However, in recent years, unique features
of the IFN-A-mediated immune response against respiratory and gastrointestinal viruses>®13,
fungi®*, bacteria'>® and parasites'’'® have been demonstrated. While almost all nucleated cells
respond to type | and type Il interferons, the function of IFN-A is primarily restricted to epithelial
cells at barrier surfaces®® 120 and some immune cell types'#?*-2° due to the tissue tropism of
IFNLR1®:. As an exception, intestinal epithelial cells of adult mice do not express a functional
type | IFN receptor and therefore strongly rely on the IFN-)A system for antimicrobial defense!!%8
Depending on the cell type, the downstream signaling of the type | and 111 IFN system can differ
significantly. Especially in neutrophils, a subset of inflammatory cytokines is induced by type I
but not by type 111 signaling?:27, IFN-A is therefore believed to act locally as the first line of
defense against invading pathogens on mucosal surfaces possibly without activating the
detrimental immune responses mediated by IFN type 126113 |FN-) has also been described to

enhance adaptive immune responses at these sites®?°,
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Toxoplasma gondii (T. gondii) is a foodborne obligate intracellular parasite related to the
Plasmodium genus. About 25-30 % of the world human population is infected but local
seroprevalences can vary significantly*°. Mild “flu-like” symptoms may occur upon infection for
several weeks or months. In patients with a compromised immune system on the other hand, the
parasite can cause serious health problems. Transmission to the fetus upon primary infection of
the mother may lead to miscarriage, stillbirth or child disability®!. The natural route of infection
with T. gondii is the uptake of infective stages, either contained in tissue cysts (bradyzoites) of
intermediate hosts or oocysts (sporozoites) released into the environment by all members within
the family of Felidae323, After ingestion, once tissue cysts or oocysts reach the small intestine,
released parasites can cross the intestinal epithelial barrier (IEB) by either paracellular
transmigration or penetration of the apical cell membrane and passing through the basolateral side
to reach the underlying lamina propria®*** In addition, neutrophils that transmigrate to the
intestinal lumen after oral T. gondii infection, are hijacked by the parasite in order to be spread

across the intestine and are found preferentially infected by T. gondii in the lamina propria®.

Because of the sympatry of cats and mice, a mouse model of toxoplasmosis is of medical
importance for human infections. The innate and adaptative immune responses against T. gondii
rely on IFN-y that is produced early after infection by natural killer (NK) cells, neutrophils and T
cells®-3°, Two families of IFN-y-inducible GTPases are paramount for innate immunity against T.
gondii in mice, the Immunity-Related GTPases (IRG proteins) and Guanylate Binding Proteins
(GBP proteins)?®#, Certain family members were demonstrated to accumulate at the
parasitophorous vacuole membrane (PVM) of T. gondii, a prerequisite for subsequent membrane
disintegration and parasite death®?. Type | IFNs have also been shown to play a protective role

during T. gondii infection by limiting the growth of parasite cysts in the brain*® and reducing
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parasite burden in mesenteric lymph nodes**. Knowledge of very early T. gondii infection events

in intestinal tissues is limited, and a possible contribution of FN-A is unknown.

In the present study, we investigated the role of IFN-A for restriction of T. gondii upon oral
infection with tissue cysts. Our results demonstrate a significant impact of IFN-A signaling to
T. gondii control at the initial infection site. IFN-A signaling in intestinal epithelial cells and
neutrophils is thereby required to limit systemic spread of the parasite resulting in decreased
burden of tissue cysts in the brain. IFN-X also potentiated the T. gondii-specific humoral immune
responses by enhancing the production of immunoglobulin IgG1. These are novel aspects of the
infection biology of the parasite and might help to improve current and/or to develop new treatment

strategies against toxoplasmosis.
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89 Results
90 IFN-A protects mice from lethal oral T. gondii infection

91  Because of the growing evidence that interferon lambda (IFN-X) is protective against a variety of
92 mucosal pathogens?®-131920 e examined the importance of IFN-A signaling upon oral T. gondii
93 infection (Suppl. Figure 1). In IFN-A receptor-deficient (Ifnlr1”-) male mice, a significant increase
94  in mortality compared to wild type mice was observed 10 days after oral administration of freshly
95  prepared T. gondii ME49-derived tissue cysts (Figure 1A). Susceptibility of Ifnlrl”- mice was
96 reflected by increased weight loss compared with wild type (wt) animals (Figure 1A). No apparent
97 differences could be observed between Ifnlrl”- and wt female mice infected with T. gondii ME49-
98  derived tissue cysts in the same experiments. In these cases, all animals succumbed to infection

99  (Figure 1B).

100  Any IFN-A-dependent phenotype in females might have been masked by increased susceptibility
101 to oral T. gondii infection due to reduced body weight compared with male mice. We therefore
102  infected female mice with Pru-dtTomato-derived tissue cysts, a less virulent and cystogenic T.
103 gondii strain®. Ifnlr1’- female mice reached humane end points until 14 days post infection while
104  asignificant higher survival rate was observed in case of wt mice (Figure 1C). Susceptibility of
105  Ifnlrl” mice was reflected by increased weight loss compared with wt animals (Figure 1C),
106  demonstrating that the protective effect of IFN-A upon oral T. gondii infection is not sex-

107  dependent.

108  Toassess if type I and Il interferons have additive protective effects, we infected interferon alpha
109  receptor-deficient (Ifnarl”") and double deficient Ifnarl”1fnlr1”- male mice with T. gondii ME49-

110  derived tissue cysts. Ifnarl”1fnlr1’-mice (Figure 1D) were highly susceptible, closely resembling
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111 the phenotype of single deficient Ifnlrl” mice (Figure 1A). Ifnarl” mice were initially more
112 resistant and started to show severe signs of disease only after day 16 post infection (Figure 1D).
113 These results demonstrate that both types of interferon play a non-redundant role in host defense
114  against T. gondii. While IFN type | is important during the chronic phase, as previously reported,

115  IFN-A is rather required in the acute phase of T. gondii oral infection.

116  To evaluate if Ifnlr17 mice fail to inhibit T. gondii replication, we quantified parasite burden in
117  different organs by gPCR 9 days post oral infection. T. gondii burden was significantly increased
118 in the ileum of Ifnlrl” compared to wt mice (Figure 1E) but no differences were found in liver,
119  spleen or brain (Figure 1E). Immunofluorescence analysis of ileum sections at day 9 post T. gondii
120  oral infection confirmed increased parasite replication in the lamina propria and intestinal
121 epithelial cells (IECs) of Ifnlr1-compared to wt mice (Figure 1F). Thus, IFN-A is required for the

122 control of T. gondii replication at the initial infection site.
123
124  IFN-Asignaling in IECs and immune cells mediates protection against oral T. gondii infection

125  To dissect the impact of IFN-A signaling in immune cells and IECs on T. gondii control, we
126  generated bone marrow (BM) chimeric mice and infected them orally with T. gondii Pru-
127  tdTomato-derived tissue cysts. A significant increased susceptibility of Ifnlr1 recipient mice that
128  received BM of Ifnlrl”- donor mice was observed compared to wt recipient mice that received wt
129 BM (Figure 2A), hence reproducing our initial findings (Figure 1A and C). Interestingly, an
130  intermediate phenotype was observed for either of the heterologous chimeras (Ifnlrl” recipient

131 mice that received wt BM and wt recipient mice that received Ifnlrl”- BM) (Figure 2A). These
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132 results suggest that protection of mice from lethal oral T. gondii infection requires IFN-A signaling

133 in both, hematopoietic stem cell- (HSC) and non-HSC-derived cells.

134  Among other immune cell types, neutrophils are preferentially infected by T. gondii in the lamina
135  propria® and have been shown to exert different anti-T. gondii effector activities**-*8, Furthermore,
136 expression of IFNLRs has been demonstrated in murine neutrophils 4224 Therefore, we
137  investigated whether IFN-A signaling in neutrophils inhibits T. gondii replication. Priming of
138 mouse BM-derived neutrophils with 3 ng mI™* of IFN-A2 or IFN-y resulted in saturated gene
139  expression levels of 1sg15 and Gbp2 (Suppl. Figure 2). Next, neutrophils were stimulated with 3
140  ng ml~tof either IFN-y or IFN-A for 8 h and subsequently infected with T. gondii ME49-GFP-Luc.
141  After 10 h of infection, T. gondii growth was determined by flow cytometry (Suppl. Figure 3).
142  We observed that both, IFN-y- and IFN-A2-stimulated neutrophils, were able to significantly
143 inhibit T. gondii replication (Figure 2B). These results demonstrate that neutrophils contribute to
144  T. gondii inhibition upon IFN-y and IFN-A stimulation and might explain the intermediate
145  phenotype observed in one (wt recipient mice that received Ifnlrl”- BM) of the heterologous BM

146  chimeras (Figure 2A).

147  To verify the role of IFN-X in IECs (Figure 2A), we infected mice lacking IFNLR1 specifically in
148  the intestinal epithelium (Ifnlri"MVillin-Cre*") with T. gondii Pru-tdTomato-derived tissue cysts.
149 Infected Ifnlr1™Villin-Cre*- mice showed increased weight loss at day 20 post infection (Figure
150  2C) as well as increased burden of T. gondii tissue cysts in the brain compared to Ifnlr1"™Villin-
151  Cre” animals (Figure 2D). A similar picture emerged when Ifnlri™villin-Cre*" mice were

152 infected with tissue cysts derived from T. gondii ME49 (Suppl. Figure 4A-B).
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153  Altogether, our data demonstrate that IFN-A signaling in IECs and neutrophils protects mice
154  against lethal oral T. gondii infection by limiting parasite dissemination from the initial infection

155  site to other organs including the brain.
156
157  IFN-A-dependent control of T. gondii in intestinal ODMs is mediated by IRG proteins

158 Intestinal organoids (“miniguts”) allow to investigate the early events after T. gondii infection ex
159  vivo*. We established small intestine Organoid-Derived Monolayers (ODMs)* (Suppl. Figure
160  5A) to evaluate the role of IFN-A in IECs in vitro. We found that ODMSs secrete IFN-A2/3 into the
161  supernatant 48 h post T. gondii ME49 infection (Suppl. Figure 5B). Priming of IECs with 30 to
162 60 ng mlt of IFN-A2 resulted in saturated expression levels of the representative 1ISGs Mx1 and
163 Irgb6 (Suppl. Figure 6A). To assess the impact of type I, Il and Il IFN on T. gondii growth
164  inhibition, ODMs were therefore stimulated with 60 ng ml™* IFN-og/p, IFN-y or IFN-A2 for 24 h
165  and luciferase activity was measured after 48 h of infection with a T. gondii luciferase reporter
166  strain (ME49-GFP-Luc) (Figure 3A). Stimulation with IFN-y or IFN-A2 led to ~80 % and ~40 %
167  inhibition of T. gondii growth respectively, whereas inhibition of T. gondii growth in IFN-os/b-
168  stimulated ODMswas hardly detectable (Figure 3A). The anti-parasitic activity mediated by IFN-
169 A2 but not IFN-y was completely abolished in Ifnlrl’- derived ODMs confirming specificity of T.
170  gondii inhibition by IFN-A2 (Figure 3B). These results demonstrate a differential impact of each

171 type of IFN for T. gondii control in mouse intestinal ODMs.

172 An essential mechanism of T. gondii control in mice is constituted by the IFN-y-inducible
173 Immunity-Related GTPases (IRG proteins)®. Whereas effector IRG protein localization at the

174  PVM is a prerequisite for membrane disintegration and parasite clearance*>°%>2 regulator IRG


https://doi.org/10.1101/2023.02.24.529861
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.24.529861; this version posted February 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

175  proteins (Irgm1, Irgm2 and Irgm3) keep the effector IRG proteins in an inactive GDP-bound state
176  at endomembranes in uninfected cells®*-*°. Irgm1/lrgm3”- mice are highly susceptible to T. gondii
177  infection due to mislocalisation of effector IRG proteins®. To evaluate the requirement of the IRG
178  system for IFN-mediated growth inhibition of T. gondii in ODMs, we infected wt- and
179 lrgm1/lrgm37-derived ODMs after stimulation with IFN-y or IFN-A2 for 24 h with ME49-GFP-
180  Luc and determined T. gondii growth inhibition at 48 h post infection. We found that Irgm1/Irgm3
181  ~-derived ODMs failed to inhibit T. gondii replication upon IFN-y or IFN-A2 stimulation (Figure
182  3C). These results demonstrate the importance of Irgm1/Irgm3-regulated IRG effector proteins for

183  T. gondii control in intestinal ODMs.

184  To investigate the contribution of IRG proteins to T. gondii control at the initial infection site in
185  more detail, we determined the expression levels of different IRG genes upon IFN-y or IFN-A2
186  treatment. While stimulation of ODMs with IFN-y induced the expression of Irga6, Irgh6, Irgh10
187 and Irgd but not Mx1, a classical IFN type I/Ill-inducible gene (Suppl. Figure 6B), IFN-A2
188  treatment resulted in expression of Irgh6, 1rgb10, Irgd and Mx1 but not Irga6 (Suppl. Figure 6A-
189  B). Furthermore, we demonstrated the recruitment of Irgh6 and Irgb10 to the T. gondii PVM after
190  IFN-A2 treatment, although in lower frequencies compared to IFN-y stimulation (Figure 3D, F).
191  Whereas the mean fluorescent intensities of Irgh6 were essentially the same in IFN-y- and IFN-
192  A2-stimulated ODMs, the mean fluorescent intensities of 1rgb10 were higher in IFN-y- compared
193  with IFN-A2-stimulated ODMs (Figure 3E-F). Whether the different patterns of expression of
194  effector IRG proteins after stimulation with IFN-y or IFN-A2, that is partially reflected by
195  accumulation at the T. gondii-derived PVM, can explain the differences observed in the magnitude

196  of T. gondii inhibition (Figure 3A, B, C) still needs to be determined. Altogether, our data
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197  demonstrate that IFN-A2 induces the expression and vacuolar accumulation of key anti-T. gondii

198  proteins that are necessary to control parasite replication in the small intestine.
199  IFN-A treatment improves recovery and increases the specific T. gondii humoral response

200  Recombinant IFN-A has been used as a therapeutic or prophylactic strategy to treat viral'>2328:56
201 and Cryptosporidium parvum infections'’*8, To evaluate the impact of IFN-) treatment on oral T.
202 gondii infections, we treated mice intraperitoneally with 1 ug ml of IFN-A1/3 daily from day -1
203  to day 7 of oral infection with tissue cysts of T. gondii Pru-dtTomato. No statistically significant
204  differences in survival were observed between IFN-A1/3-treated or PBS-treated control mice
205  (Figure 4A). However, a significantly improved weight gain after day 17 post infection was
206  observed in mice treated with IFN-A1/3 in comparison to control mice (Figure 4B). Since reduced
207  weight recovery after T. gondii infection correlated with enhanced cyst burden in the brain (Figure
208  2C-D, Suppl. Figure 4A-B), we determined the cyst numbers in the brain of IFN-A1/3- and PBS-
209 treated animals. T. gondii cyst counts were lower - although not significantly - in brains of mice
210  treated with IFN-A1/3 in comparison to PBS-treated control mice (Figure 4C) but no differences
211 in cyst sizes were apparent between IFN-A1/3-treated and PBS-treated mice (Figure 4D),
212 indicating again that IFN-A reduces T. gondii burden during the acute phase of infection rather

213 than limiting the overall cyst growth during the chronic phase as it was reported for type | IFN“,

214
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215 Discussion

216  Coccidia are obligate intracellular parasites that can cause severe disease in humans and animals.
217  Whereas most coccidian species have a narrow host tropism, Toxoplasma gondii (T. gondii) can
218 infect almost all warm-blooded animals. In order to implement a control strategy against T. gondii,
219  one main goal is to reduce the establishment of T. gondii tissue cysts and thereby limiting the risk
220  of the parasite entering the human food chain. In the present study, we demonstrate the importance
221 of interferon lambda (IFN-A) signaling for T. gondii control at the initial site of infection, the

222  intestine, consequently reducing the formation of tissue cysts (Figure 5).

223 To pass the intestinal barrier, bradyzoites or sporozoites - contained in tissue cysts or oocysts,
224  respectively - utilize different mechanisms®®’. Intestinal epithelial cells (IECs) are the most
225  abundant epithelial cell type in the small intestine representing the first barrier that is invaded after
226  release of bradyzoites or sporozoites from ingested tissue cysts or oocysts®. Infection of
227  enterocytes at the apical side and release of tachyzoites after stage conversion and multiple rounds
228  of intracellular replication at the basolateral side leads to systemic infection®***. Therefore,
229 intrinsic immune responses in enterocytes are important to limit parasite replication and
230  dissemination®"°%%, Two families of IFN-y-inducible GTPases (i.e. Immunity-Related GTPases
231  (IRG proteins) and Guanylate Binding Proteins (GBP proteins)) are essential to control T. gondii
232 infection in mice*>*!, but their anti-T. gondii activities have never been evaluated in IECs. Three-
233 dimensional multicellular organoids highly improve the reliability of host-pathogen interaction
234  studies®’. They are derived from stem cells or primary tissue and resemble the anatomy and
235  physiology of intact organs. Organoid-Derived Monolayers (ODMs) possess most of the
236  advantages of organoid structures and have been described previously as a suitable system to study

237  T. gondii infection biology*®. We found that stimulation of intestinal ODMs with IFN-y induced
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238  the expression of IRG effector proteins (Irga6, Irgh6, Irgh10 and Irgd). Accumulation at the T.
239  gondii parasitophorous vacuolar membrane (PVM) was concomitant with ~80 % inhibition of T.
240  gondii replication (Figure 3A-F). IFN-A stimulation resulted in somewhat lower expression levels
241 of IRG effectors Irgh6, Irgh10 and Irgd, whereas Irga6 was not induced at all. Nevertheless,
242  vacuolar accumulation of Irgh6 and Irgh10 could be detected and T. gondii replication was
243 inhibited by IFN-A up to 40 % (Figure 3A-F). Whether these differences in T. gondii control can
244 be explained exclusively by the distinct expression patterns of IRG proteins upon IFN-A or IFN-y
245  treatment and respective vacuolar IRG loading phenotypes awaits further investigation. However,
246 in the absence of IRG regulator proteins Irgm1/lrgm3°+*° the anti-T. gondii effect mediated by
247  both types of IFNs is completely abrogated (Figure 3C), demonstrating the importance of the IRG
248  system for T. gondii control in IECs. At this point, we cannot rule out any contribution of GBP
249  proteins to T. gondii control in IECs, especially because localization of Gbpl and Gbp2 at the T.

250  gondii-derived PVM is also regulated by lrgm1/lrgm3>.

251  We demonstrated that the specific deletion of the IFN-A receptor (IFNLR) in IECs causes increased
252  T. gondii colonization in the brain (Figure 2D, Suppl. Figure 4B). IFN-A is produced after
253 infection (Suppl. Figure 5B) by IECs and T. gondii replication is inhibited by IFN-A in our in vitro
254  system (Figure 3A-C). We therefore conclude that the IFN-A-mediated immune response serves
255  as an early host defense mechanism that limits T. gondii replication at the initial site of infection
256  without provoking possible unfavourable immune responses mediated by IFN type I, similar to the
257  distinctive role of IFN-) in protecting mucosal surfaces during viral>>%? and Cryptosporidium
258  parvum (C. parvum)!”1® infections. Future studies should determine the spacio-temporal details of

259 the contribution of both IFNs during the early phases of infection. For example, by using a novel
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260 intestinal tissue microphysiological system in which the interaction between epithelium,

261 endothelium and immune cells upon parasite infection can be analyzed®.

262  Systemic deletion of the IFNLR1 rendered mice highly susceptible to oral T. gondii infection
263  (Figure 1A, C, D), however, conditional knockout (ko) of the IFNLR1 in IECs or bone marrow
264  (BM) chimeric mice lacking the IFNLR1 in HSC-derived cells resulted in an intermediate
265  phenotype (Figure 2A, C), indicating that IFN-A signaling in both, epithelial and HSC-derived
266  cells, contributes to protect against oral T. gondii infection. This is in contrast to experimental C.
267  parvum infection of mice, where the IFN-A-mediated antiparasitic activities were seemingly
268  conferred exclusively by epithelial cells, even in immune-deficient Rag2™”112rg” cells®. This is
269  congruent with differences in the tissue tropism. While C. parvum infection is restricted to the
270  intestine, T. gondii can establish a systemic infection, hence, systemic immune responses elicited

271  against T. gondii are additionally required to limit dissemination of T. gondii.

272 Among other immune cells, neutrophils are preferentially infected by T. gondii in the lamina
273 propria®® and express the highest IFNLR1 levels??26485 The weak induction of IRG and GBP
274  genes in BM-derived neutrophils that we observed (Suppl. Figure 8) indicates that the IFN-A2-
275 mediated T. gondii control in neutrophils does not depend on IRG and GBP proteins and is

276  mechanistically different from the parasite control elicited by IFN-A in IECs.

277  IFN-A acts on different immune cell types, thereby promoting or inhibiting different effector
278  mechanisms. IFN-A promotes ROS production by neutrophils to control Aspergillus fumigatus
279  infection®, favours Th1 polarization through increased IL-12 production by dendritic cells®® or
280 increases indirectly IFN-y secretion by NK cells®”. IFN-) also acts as an immunomodulator in
281  different inflammatory models (e.g. DSS-induced colitis and arthritis) on neutrophils by

282  dampening ROS production, NET formation, degranulation and migration capacity, but
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283  maintaining phagocytic abilities. IFN-A contributes to healing by maintaining the integrity and
284  barrier function of epithelia at mucosal surfaces?2246488 Mice orally infected with T. gondii
285  develop enteritis due to the loss of Paneth cells, loss of barrier integrity and dysbiosis in an IFN-
286  y-dependent manner®®®®, Whether IFN-A promotes or modulates effector functions of other

287  immune cells in addition to neutrophils during oral T. gondii infection still needs to be investigated.

288  Treatment of mice with IFN-A augmented weight recovery and reduced T. gondii brain
289  colonization without affecting T. gondii cysts sizes (Figure 4A-D), confirming our results that IFN-
290 A acts early during T. gondii infection by limiting parasite dissemination. IFN-A serves as an
291  mucosal adjuvant, promoting humoral responses in a thymic stromal lymphopoietin (TSLP)-
292  dependent manner®>?. Interestingly, we found higher levels of secreted 1gG1 after 30 days of T.
293  gondii infection in the IFN-A-treated group compared to non-treated mice (Suppl. Figure 7B). Our
294  results are suggestive of a potential use of IFN-A as an adjuvant for T. gondii vaccine development

295  strategies, especially those that are delivered through mucosal surfaces.

296  Taken together, our work extends the repertoire of IFNs that contribute to the control of T. gondii.
297 It advances our understanding of fundamental immunology against this worldwide zoonotic

298  pathogen and might be relevant to enteric parasites per se.
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466 Methods

467  T.gondii propagation

468  T. gondii tachyzoites ME49 (clone B7-21), ME49-GFP-Luc! and Pru-Ahxgprt-tdTomato (Pru-
469  tdTomato)? were propagated in confluent human foreskin fibroblasts (HFF1) in DMEM medium
470  containing high glucose supplemented with 100 U ml* penicillin, 100 mg ml* streptomycin and

471 2 % fetal bovine serum.
472
473  T. gondii tissue cysts preparation

474  ForT. gondii tissue cyst preparation, C57BL/6 (BL/6) mice were infected with 200 to 500 T. gondii
475  tachyzoites via intraperitoneal (i.p.) injection or with 5 to 15 tissue cysts freshly prepared from the
476  brain of infected donor animals via oral gavage. Four to six weeks post infection, mice were
477  euthanized by cervical dislocation. Brains were harvested and suspended in 2 ml PBS before
478  mincing using a 18G and 20G needle respectively. Cyst numbers were determined via DBA-FITC

479  staining at 20x magnification as described previously®*.
480
481  Animal strains and infection conditions

482  BL/6 mice were purchased from Janvier laboratories. B6.A2G-Mx1 mice carrying intact Mx1
483 alleles (designated wt), congenic B6.A2G-Mx1-Ifnarl” mice lacking functional IFN-a receptors
484  (designated Ifnarl”) and B6.A2G-Mx1-Ifnlrl”- mice lacking functional IFN-A receptors
485  (designated Ifnlr1”) or double receptor-decient mice B6.A2G-Mx1-Ifnarl” Ifnlrl” (designated

486  Ifnarl”Ifnlrl”) were described before®. B6.A2G-Mx1-1fnlrl"Villin-Cre*- mice lacking
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487  functional IFN-A receptors (IFNLR1) in intestinal epithelial cells (IECs) (designated
488  Ifnlri™Villin-Cre*”) and control littermates B6.A2G-Mx1-1fnlr1™Villin-Cre” (designated
489  Ifnlri™Villin-Cre™) were described before®. Animals in all experimental groups were sex- and

490  age-matched.

491  For survival experiments, mice were infected by oral gavage with 5 to 10 freshly prepared tissue
492  cysts in a total volume of 200 pl sterile PBS. Infected mice were monitored daily for 30 to 35 days.

493  Relative weight loss was calculated based on the weight at the day of infection.

494  For IFN-)\ treatment, mice were treated i.p. with 1 pug of human IFN-A1/37 (proven to be cross-
495  reactive in mice) or mock-treated with PBS/0.1 % BSA from day -1 to day 7 of oral infection with

496 10 T. gondii Pru-tdTomato-derived tissue cysts and monitored daily for 30 days.

497  Mice were kept under specific-pathogen-free conditions in the local animal facility (Department
498  for Microbiology, Virology and Hygiene, Freiburg). All animal experiments were performed in
499  accordance with the guidelines of the German animal protection law and the Federation for
500 Laboratory Animal Science Associations. Experiments were approved by the state of Baden-
501  Wirttemberg (Regierungsprasidium Freiburg; reference number G-19/89, G-20/155, and G-

502  22/068).
503
504 Generation of bone marrow chimeras

505  Five days before bone marrow transplantation (day -5 to day -1), wt and Ifnlr1” sex- and age-
506  matched recipient mice received daily 20 mg of busulfan per kg body weight i.p. as previously
507  described®. A suspension of bone marrow cells prepared from wt or Ifnlrl’- donor mice were

508  adoptively transferred into recipient animals. The recipient mice were given drinking water
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509 containing 2 g/l neomycin for 3 weeks after busulfan treatment. Eight weeks post BM
510 transplantation, mice were orally infected with 5 T. gondii Pru-tdTomato-derived tissue cysts and

511  monitored daily for 30 days.
512
513  Isolation of bone marrow-derived neutrophils

514  Following the manufacturer’s protocol, neutrophils were negatively enriched using the EasySep™
515  Mouse Neutrophil Enrichment Kit (StemCell Technologies) from the bone marrow of adult wt
516  mice. The cells were resuspended in PBS supplemented with 2 % FCS and 1 mM EDTA and
517  cultured in RPMI medium supplemented with 100 U ml penicillin, 100 pg ml *streptomycin, 10
518 % FCS, 1 mM sodium pyruvate (Capricorn Scientific) and 4 mM glutaMAX (Thermo Fisher
519  Scientific).

520

521  Generation of intestine Organoid-Derived Monolayers

522 Small intestine organoids from wt, Ifnlrl” and Irgm1/lrgm37 mice were generated according to
523  StemCell technologies protocols. Stem cell enriched spheroids were cultured in Stem Cell

524  enrichment medium (SC medium) as described before®.

525  To grow organoids as Organoid-Derived Monolayers (ODMs), 96 well plates, Ibidi p-chambers
526  or transwells were coated with 50 pl/well basement membranes (BME) diluted 1:20 in
527  adDMEM**"* o/n at 4°C or for at least 30 min at 37°C. The coating solution was aspirated and the
528  cell culture kept at 37°C for another 30 min. Three to four days old organoids were recovered as
529  described above, centrifuged at 300 g and 4°C for 5 min, and the pellets resuspended in 1 ml pre-

530 warmed TrypLE (Thermo Scientific) + 10 uM Y-27632 (MedChemExpress). After incubation in
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531  a 37°C water bath for 2 min, the suspension was aspirated twice with a 1 ml syringe and a 20G
532 needle pre-coated with organoid washing medium containing trypsin to create a single-cell
533  suspension. To stop trypsinization, 10 ml adDMEM*** were added, the suspension centrifuged at
534 300 g and 4°C for 5 min, the pellet resuspended in an appropriate volume of ODM seeding
535  medium, and the cell concentration determined using a hemocytometer (~ 6x10* cells/cm? were
536  seeded). One day after seeding, the medium was exchanged to 90 % ODM differentiation medium.
537  Additional medium changes were done every second day. ODMs were cultured for 6 days before

538 IFN stimulation.

539

540 T.gondii replication assays

541  Enriched bone marrow-derived neutrophils were primed with 3 ng ml~tof IFN-A2%°, IFN-y
542  (Peprotech) for 8 h and infected with T. gondii GFP-Luc at a multiplicity of infection (MOI) of 2.
543 At 10 h post infection, neutrophils were recovered from culture plates using 200 ul of Accutase
544  Cell Dissociation Solution (Sigma-Aldrich) for 25 min at 37°C. Cells were incubated in 200 pl
545 FACS buffer containing 1 pl Zombie NIR fixable dye for 30 min to determine cell viability
546  (Zombie Green™ Fixable Viability Kit, BioLegend). Cells were fixed for 15 min in 200 ul PFA 2
547  %. Toavoid unspecific antibody binding, Fc blocking was performed using anti-Fcyll1/I1 CD16/32
548  receptor antibody (Clone 93) for 10 min on ice. Cells were stained with fluorochrome-conjugated
549  antibodies against cell surface markers for 20 min on ice (Table 1). Cells were finally washed in
550 200 pl of FACS buffer and resuspended in 300 pl FACS buffer. A FACS Canto Il flow cytometer
551  (Becton Dickinson) was used to collect 100.000 events and data were analyzed with FlowJo

552  software.
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553  Percent of T. gondii infected neutrophils (CD45*, Ly6G*, GFP*) was compared between treated
554  and non-treated conditions. Percent of T. gondii inhibition was defined as “i = 100 - [% of (CD45",

555 Ly6G", GFP*) tretated] / [% of (CD45", Ly6G*, GFP") untretated] * 100”.

556  To evaluate inhibition of T. gondii replication by IFNs in IECs, ODMs were primed o/n with 60
557 ng mli™t IFN-A21%, IFN-y (Peprotech) or IFN-as/p'! and infected with T. gondii ME49-GFP-Luc at
558 a MOI of 0.25 for 48 h. Cells were washed once with PBS and lysed for at least 1 h with 40 pl 1x
559  passive lysis buffer (Promega) at RT. 20 ul of lysate were transferred to a white flat-bottom 96-
560  well plate (Thermo Scientific) and luciferase activity was measured in a Tecan infinite 200Pro by

561  automatic injection of 50 ul luciferase assay substrate (Promega) and 10 sec integration time.

562 Inhibition of T. gondii replication was calculated as “i = 100% - (Ltreated / Lmock) * 100%”, where
563  “i" is the inhibition of T. gondii replication and “L” is the luminescence in the IFN-treated or

564  untreated wells. Negative T. gondii inhibition values were set to zero.
565
566  T.gondii quantification and ISG expression by qPCR

567 Wt and Ifnlrl” mice were infected orally with 15 T. gondii ME49-GFP-Luc-derived tissue cysts
568 inatotal volume of 200 ul sterile PBS. After 9 days of infection, biopsies from ileum, spleen, liver
569 and brain were taken and preserved in DNA/RNA shield (Zymo Research) at -80°C until
570 DNA/RNA isolation. RNA and DNA was isolated with the Direct-zol™ DNA/RNA kit (Zymo
571  Research). Parasite load was quantified from purified DNA by a probe-based qPCR using specific
572 primers that amplify the 529 bp repetitive element (RE) in the parasite genome (Table 2)*.
573  Purified T. gondii DNA was used to create a standard curve for calculation of parasite load. DNA

574  was amplified using Luna® Universal Probe gqPCR Master Mix (NEB England Biolabs).
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575  For ISG induction, purified neutrophils or ODMs were primed with different concentrations of
576  IFN-y or INF-A2 for 4 h. Afterwards, RNA was purified using the Direct-zol™ RNA Miniprep Kit
577  (Zymo Research) according to the manufacturer’s protocol. Complementary DNA (cDNA) was
578  generated for each replicate using the LunaScript RT Supermix (New England Biolabs) based on
579  the manufacturer’s instructions. The cDNA served as template for the amplification of genes of
580 interest (Table 2), using SYBR green | containing Luna® Universal gPCR Master Mix (NEB
581 England Biolabs). The gPCR was performed using the QuantStudio 5 Real-Time PCR System
582  (Applied Biosystems by Thermo Fisher Scientific). The increase in mRNA expression was
583  determined by the 2-AACt method relative to the expression of the house-keeping gene Ubc or ACt

584  relative to Actin.
585
586 ELISA

587  T. gondii-specific antibodies in serum of IFN-A1/3 treated mice were determined by ELISA as
588  described previously®. Briefly, high-binding 96-well microtiter plates (MaxiSorp, Nunc) were
589  coated with total T. gondii antigen and incubated overnight at 4°C. Next, the ELISA plates were
590  washed four times with washing buffer (PBS containing 0.05 % Tween 20) and blocked with 1 %
591  BSA in PBS for 1 h at 37°C. Plates were washed four times with washing buffer. Afterwards,
592  1:128 diluted serum were added and incubated for 1 h at room temperature. Plates were washed
593  four times with washing buffer. Horseradish peroxidase-labelled antibodies directed against either
594  total IgG (62-6520, Invitrogen) or 1gG1l (A10551, Invitrogen) were added to each well and
595 incubated for 1 h at room temperature. Plates were washed four times and incubated with
596 tetramethylbenzidine (TMB) substrate (Biologend) for 10 min at room temperature. The reaction

597  was stopped by adding 0.5 M H2SO4 and the absorbance was measured at 450 nm and 570 nm
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598  (background). T. gondii specific 1gG or 1gG1 values were calculated relative to values from non-

599 infected mice.

600  IFN-A2/3 concentration was determined by commercial sandwich ELISA (R&D Systems) from

601  supernatants infected or not with T. gondii after 24 or 48 h post infection.
602
603  Immunofluorescence

604  Antigen retrieval in deparaffinized paraformaldehyde-fixed ileum tissue sections from wt and
605  Ifnlrl” mice was performed with 0.01 M sodium citrate buffer as previously described?3. Slides
606  were blocked with 10 % normal donkey serum (Jackson ImmunoResearch) and stained o/n with
607 rat anti GRA7 (T. gondii PVM marker) and E-Cadherin (Cell Signalling) followed by 1 h
608 incubation with the appropriate Cy3-, or Cy5-conjugated secondary antibodies and DAPI. Slides
609  were mounted in Fluor Save Reagent (Calbiochem). Tissue sections were visualized using a Zeiss
610  Axioplan 2 non-inverted fluorescence microscope.

611  ODMs were infected with T. gondii ME49 for 2 h at MOI 4. Monolayers were washed two times
612  with PBS and fixed for 30 min at RT with 4 % PFA. Cells were permeabilized and stained as
613  previously described'®. Antibodies and dilutions are listed in Table 1. Intensities were determined
614 by taking the average of 4 intensity values along 2 lines crossing the PV perpendicularly subtracted
615 by the respective background fluorescence, as described previously®’. The measurements were
616 done using the Fiji/lmage] software with a custom macro (code can be found at
617  https://github.com/Kartoffelecke/PVVM-profiler). Pictures were taken on the Zeiss Observer 7 with
618  a 40x magnification.

619
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Statistical analysis

All statistical analyses were performed using GraphPad Prism 9.1 software. P-values were

determined by an appropriate statistical test. One-way ANOVA followed by Tukey’s multiple

comparison was used to test differences between three or more groups. Depending on the data

distribution, Student’s t-test or Mann Whitney test was used for two-group comparisons. For in

vivo experiments, a log-rank Mantel-Cox test was used to test survival differences between groups.

All error bars indicate the mean and standard error of the mean (SEM) of at least three independent

experiments. P-values; ****p < 0.0001, ***p < 0.001, **p < 0.0, *p < 0.05, n.s. no significant.

Table 1. Antibodies

Species Antigen Type Conjugat  Dilution Reference / Origin
Immunofluorescence primary antibodies
mouse Irga6 moAb - 1:2000 10D7%
mouse Irgh6 moAb - 1:3000 B3416
rabbit Irgh10 antiserum - 1:6000 940/6%7
rabbit E-Cadherin (24E10) moAb - 1:400 3195 (Cell Signalling)
Immunofluorescence secondary antibodies
donkey mouse 1gG poAb Alexa 555 1:5000 A31570 (Life Technologies)
donkey rabbit 1gG poAb Alexa 555 1:5000 A31572 (Life Technologies)
donkey rat 19gG poAb Alexa 488 1:5000 A21208 (Life Technologies)
Flow cytometry antobodies
rat 1gG2a, anti-mouse Ly-6G moAb APC 0.06 pg per 127613 (Biolegend)
(1A8) 10° cells
rat IgG2b, « anti-mouse CD45 (30- moAb PerCP 0.25 g per 103129 (Biolegend)
F11) 109 cells
rat IgG2b, purified anti-mouse moAb - 1.0 g 101301 (Biolegend)
CD16/32 (93) per 106 cells
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632  Table 2. Primers

Primer Sequence
Irga6 (f)*° 5-GGGTACTTACTTCCTAAAAATAGTTTTCT-3
Irga6 (r)%° 5-TCACAGGACTTCAGCTTAATTAGA-3’
Irgh6 (f)* 5-CCCACAAGCGTCACGTATTC-3
Irgh6 (r)* 5-ATGCCACCAAGTGGAATGGT-3"

Irgb10 (f)* 5-TGCTGTCAAGTGAGCCGAAT-3

Irgb10 (r)* 5-AAGGCCAGTGGCTACGAATC-3’

Mx1 (H)® 5-TCTGAGGAGAGCCAGACGAT-3’

Mx1 ()% 5-ACTCTGGTCCCCAATGACAG-3’

Isg15 (H)® 5-GAGCTAGAGCCTGCAGCAAT-3

Isg15 (r)?° 5 -TTCTGGGCAATCTGCTTCTT-3’

Actin (f)1° 5-ACCTTCTACAATGAGCTGCG-3"

Actin (r)% 5 -CTGGATGGCTACGTACATGG-3

Gbpl (H)* 5-GCAGAAGGGTGACAACCAGA-3’

Gbpl (n)* 5-CCTGCTGGTTGATGGTTCCT-3"

Gbp2 (f)* 5-AGCTGCACTATGTGACGGAG-3”

Gbp2 (r)* 5-AGGTTGGAAAGAAGCCCACAA-3
Gbp5 (f)* 5-AGGTCAACGGACCTCGTCTA-3

Gbp5 ()* 5-CCGGGCCAAGGTTACTACTG-3

RE Probe!? 5-6-FAM-TACAGACGC-ZEN-GATGCCGCTCC-3'IABKFQ
RE (f)*2 5-GCC ACA GAA GGG ACA GAA GT-3’
RE (r)*? 5-ACC CTC GCC TTC ATC TAC AG-3’

Ubc QT00245189, QuantiTect Primer Assay, Qiagen

633  * This study

634
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635 Intestinal organoid media®

636 adDMEM***

637 adDMEM/F-12 (Gibco 12634028)

638  + 75U mL™* penicillin

639  + 75 ug mL* streptomycin (Gibco 15140122)
640 +10mM HEPESpH 7.5

641  + 1x GlutaMax (Gibco 35050061)

642

643  Stem Cell enrichment (SC) organoid medium
644 adDMEM/F-12

645 +50 % L-WRN conditioned medium

646  + 20 % R-spondin conditioned medium

647  + 10 % noggin conditioned medium

648  + 75U mL? penicillin + 75 pg mL* streptomycin (Gibco 15140122)
649 + 10 mM HEPES pH 7.5

650  + 1x GlutaMax (Gibco 35050061)

651 +1 mM N-acetylcystein (Sigma)

652  + 10 mM nicotinamid (Sigma)

653  + 1x B27 supplement (Gibco 17504044)

654  + 1x N2 supplement (Gibco 17502048)

655 + 50 ng mL* mEGF (StemCell Technologies)
656  + 500 nM A83-01 (StemCell Technologies)

657 + 10 uM SB202190 (StemCell Technologies)
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Organoid washing medium

adDMEM*** + 10 % FCS

Organoid freezing medium

adDMEM*** + 20 % FCS + 10 % DMSO

ODM seeding medium

adDMEM/F-12

+ 50 % L-WRN conditioned medium

+ 20 % R-spondin conditioned medium

+ 10 % noggin conditioned medium

+75 U mL? penicillin + 75 pg mL™? streptomycin (Gibco 15140122)
+ 10 mM HEPES pH 7.5

+ 1x GlutaMax (Gibco 35050061)

+ 1 mM N-acetylcystein (Sigma)

+ 10 mM nicotinamid (Sigma)

+ 1x B27 supplement (Gibco 17504044)

+ 1x N2 supplement (Gibco 17502048)

+ 50 ng/mL mEGF (StemCell Technologies)

+ 10 uM Y-27632
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681  ODM differentiation medium

682 adDMEM/F-12

683  + 20 % R-spondin conditioned medium
684  + 10 % noggin conditioned medium

685 + 75U mL™* penicillin + 75 pg mL™* streptomycin (Gibco 15140122)
686 + 10 mM HEPES pH 7.5

687  + 1x GlutaMax (Gibco 35050061)

688 +1 mM N-acetylcystein (Sigma)

689  + 10 mM nicotinamid (Sigma)

690  + 1x B27 supplement (Gibco 17504044)
691  + 1x N2 supplement (Gibco 17502048)

692  + 50 ng mL! mEGF (StemCell Technologies)
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Figure 1. Ifnlrl” mice are highly susceptible to T. gondii oral infection. A, B, D. wt,
Ifnlrl”, Ifnarl” or Ifnarl”Ifnlr1”- mice were infected with 5 T. gondii ME49 or C. 10 T. gondii
Pru-tdTomato tissue cysts. Weight loss and survival were monitored daily for 30 days. Data
were pooled from two independent experiments. A. Survival (upper panel), **p = 0.0029
determined by Log-rank (Mantel-Cox) test; weight loss (lower panel), *p = 0.04, **p < 0.002,
***n < 0.0007 determined by unpaired t test. C. Survival (upper panel), **p = 0.0065

determined by Log-rank (Mantel-Cox) test; weight loss (lower panel), *p = 0.03 determined by
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unpaired t test. D. Survival {@{Rpr paien =y 20227 éreterenitisentsy Log-rank (Mantel-Cox)
test. E-F. T. gondii replication in the intestine of Ifnlr1” and wt animals. Ifnlr1”- and wt mice
were infected with 15 T. gondii ME49-GFP-Luc tissue cysts for 9 days. E. T. gondii DNA
(genomes) was quantified by gPCR. Data were pooled from two independent experiments,
****n < 0.0001 determined by ANOVA with Tukey’s multiple-comparison test. F. T. gondii
replication in the ileum of Ifnlr1”- and wt mice from E was visualized by immunofluorescence.

Arrows indicate infected IECs, the asterisk indicates damaged epithelium.
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Figure 2. IECs and neutrophils contribute to IFN-A-mediated protection from oral T.
gondii infection. A. Bone marrow-chimeric mice were infected with 10 T. gondii Pru-tdTomato
tissue cysts. Survival was monitored daily for 30 days. Survival, *p = 0.0258 determined by
Log-rank (Mantel-Cox) test. B. T. gondii replication is inhibited in neutrophils. Neutrophils
were primed for 8 h with indicated cytokines and infected with T. gondii ME49-GFP-Luc for
10 h. T. gondii inhibition was assessed by FACS. Results represent the mean and SEM of three
independent experiments performed in duplicates or triplicates, **p = 0.0058, ***p = 0.0004,
****p <0.0001 determined by ANOVA with Tukey’s multiple-comparison test. C-D. The
absence of IFNLR1 in the intestine leads to reduced weight recovery and higher cyst burden.
C, D. Ifnlri"Villin-Cre*” and Ifnlri™Villin-Cre”- mice littermates were infected with 10 T.

gondii Pru-tdTomato tissue cysts. Survival and weight loss were monitored daily for 35 days.
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814  Data were pooled from thre® #RM¥pEREHtERpEAMBAS "EMRRTRIMENSSs (right hand panel), *p <
815  0.043 determined by Unpaired t test. D. Cyst burden in the brain was determined 35 days post

816 infection, *p = 0.0238 determined by Unpaired t test.
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819  Figure 3. T. gondii replication is inhibited in ODMs. A, B, C. Organoid-Derived Monolayers
820 (ODMs) were treated o/n with indicated cytokines and luciferase activity was measured 48 h
821  post infection. A. T. gondii replication is inhibited by IFN-A or IFN-y in wt ODMs. Data
822  represent the mean and SEM of three independent experiments performed in triplicates, **p <

823 0. 0055, ****p < 0.0001 determined by ANOVA with Tukey’s multiple-comparison test. B. T.
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gondii inhibition is lost ifvirlerideQENIENREAAS FeprEsEntctrE mean and SEM of 4-7
independent experiments performed in triplicates, **p = 0.0018, ***p = 0.0002, ****p < 0.0001
determined by ANOVA with Tukey’s multiple-comparison test. C. T. gondii inhibition is
abrogated in Irgm1/lrgm3” ODMs. Data represent the mean and SEM of three independent
experiments performed in duplicates or triplicates, *p = 0.0233, ****p < 0.0001 determined by
ANOVA with Tukey’s multiple-comparison test. D-F. IRG protein accumulation at the T.
gondii PVM. ODMs were treated o/n with indicated cytokines and IRG proteins detected 2 h
post T. gondii infection. D. Frequencies of IRG protein positive PVMs. 100 vacuoles were
evaluated in each of three independent experiments. E. Intensities of IRG proteins at the PVM.
30 vacuoles were evaluated in three independent experiments respectively, ****p < 0.0001
determined by Unpaired t test. F. Fluorescent images of IRG proteins at the PVM 2 h post

infection.
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Figure. 4. IFN-A treatment improves recovery after oral T. gondii infection. A-D. Mice
were treated (i.p. injection) with 1 pg of IFN-A1/3 or mock-treated with PBS/0.1 % BSA from
day -1 to day 7 of oral T. gondii infection with 10 Pru-tdTomato-derived tissue cysts and weight
was monitored daily for 30 days. A. Survival. B. Weight loss, **p < 0.0037 determined by
Unpaired t test. C, D. Cyst numbers in the brain and cyst sizes were determined by DBA

staining at 30 days post infection.
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846  Figure 5. Importance of IFN-A signaling for T. gondii control at the initial site of infection.
847  Wild type (wt) mice survive oral T. gondii infection with tissue cysts. Loss of early IFN-A-
848  mediated T. gondii control in intestinal epithelial cells (IECs) (Villin-Cre) and neutrophils
849  increases T. gondii replication in the intestine and colonisation to the brain, explaining the acute
850  death of systemic interferon lambda receptor knockout (Ifnlr1”-) mice. Whereas IRG proteins
851 likely contribute to IFN-A-mediated inhibition of T. gondii in IECs, the mechanism for parasite

852 inhibition in neutrophils seems to be IRG-independent.

853
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