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Abstract

Computational super-resolution (SR) methods, including conventional analytical algorithms and
deep learning models, have substantially improved optical microscopy. Among them, supervised
deep neural networks have demonstrated outstanding SR performance, however, demanding
abundant high-quality training data, which are laborious and even impractical to acquire due to the
high dynamics of living cells. Here, we develop zero-shot deconvolution networks (ZS-DeconvNet)
that instantly enhance the resolution of microscope images by more than 1.5-fold over the
diffraction limit with 10-fold lower fluorescence than ordinary SR imaging conditions in an
unsupervised manner without the need for either ground truths or additional data acquisition. We
demonstrate the versatile applicability of ZS-DeconvNet on multiple imaging modalities,
including total internal reflection fluorescence microscopy, three-dimensional (3D) wide-field
microscopy, confocal microscopy, lattice light-sheet microscopy, and multimodal structured
illumination microscopy (SIM), which enables multi-color, long-term, super-resolution 2D/3D
imaging of subcellular bioprocesses from mitotic single cells to multicellular embryos of mouse

and C. elegans.
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Introduction

Optical fluorescence microscopy (FM) is an essential tool for biological research. The recent
developments of super-resolution (SR) techniques provide unprecedented resolvability to visualize
the fine dynamic structures of diverse bioprocesses'. However, the gain in spatial resolution via
any SR method comes with trade-offs in other imaging metrics, e.g., duration or speed, which are
equally important for dissecting bioprocesses' 2. Recently, computational SR methods have gained
considerable attention for their ability to instantly enhance the image resolution in silico®, enabling

significant upgradation of existing FM systems and extension of their applicable range.

In general, existing computational SR methods can be classified into two categories: analytical
model-based methods, e.g., deconvolution algorithms*¢, and deep learning-based methods, e.g.,
SR neural networks’ 2, The former category often employs analytical models prescribing certain
assumptions about the specimen and image properties, e.g., sparsity’ and local symmetry!?, to
improve the image resolution with multiple tunable parameters. Parameter tuning is experience-
dependent and time-consuming, and the outputs of analytical models greatly depend on the

parameter sets> 1313

. Moreover, in practical experiments, handcrafted models with certain
assumptions cannot address the full statistical complexity of microscope imaging, thus lacking
robustness and prone to generating artifacts, especially under low signal-to-noise ratio (SNR)
conditions’. On the other hand, deep learning-based SR (DLSR) methods have achieved stunning
success in learning the end-to-end image transformation relationship according to large amounts
of exemplary data without the need for an explicit analytical model’-'?. Of note, the data-driven
inversion scheme via deep learning can approximate not only the pseudoinverse function of the
image degradation process but also the stochastic characteristics of the SR solutions. Nevertheless,
the training of DLSR models requires acquiring large amounts of paired low-resolution (LR) input
images and high-quality ground truth (GT) SR images, which are extremely laborious and
sometimes even impractical due to the rapid dynamics or the low fluorescence SNR in biology
specimens® ® '°_ In addition, the performance of DLSR methods strongly depends on the quality
and quantity of training data'®. These factors significantly hinder the wide application of DLSR
methods in daily imaging experiments despite their compelling SR performance compared to

analytical model based methods™ '°.

Here, we present a zero-shot deconvolution deep neural network (ZS-DeconvNet) framework

that is able to train a DLSR network in an unsupervised manner using as few as only one single

3
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planar image or volumetric image stack of low-resolution and low-SNR. As such, compared to
state-of-the-art DLSR methods’ % 172! the ZS-DeconvNet can adapt to diverse bioimaging
circumstances, where the bioprocesses are too dynamic, too light-sensitive to acquire the ground-
truth SR images, or the image acquisition process is affected by unknown and nonideal factors.
We characterized that ZS-DeconvNet can improve the resolution by more than 1.5-fold with high
fidelity and quantifiability, even when trained on a single low SNR input image and without the
need for image-specific parameter-tuning> '3. We demonstrated that the properly trained ZS-
DeconvNet could infer the high-resolution (HR) image on millisecond timescale, achieving high
throughput long-term SR 2D/3D imaging of multiple organelle interactions, cytoskeletal and
organellar dynamics during the light sensitive processes of migration and mitosis, and subcellular

structures and dynamics in developing C. elegans and mouse embryos.

Results

Development and characterization of ZS-DeconvNet
The concept of ZS-DeconvNet is based on the optical imaging forward model informed

unsupervised inverse problem solver:

argmin ||y — (H x fe(y))l”z €h)

where y denotes the noisy LR image, H denotes the points spread function (PSF) matrix, and fy
represents a deep neural network (DNN) with trainable parameters 6. X and (+), indicate matrix
multiplication and downsampling, respectively. If the DNN is trained directly via the above
objective function, both the desired biology structures and unwanted noise from the acquisition
process, €.g., shot noise, could be enhanced simultaneously, which will substantially degrade the
quality of output images at low SNR conditions®? (Supplementary Fig. 1a). To improve the noise
robustness of ZS-DeconvNet while maintaining its unsupervised characteristic, we adopted an
image recorrupting scheme?? that generates two noise-independent recorrupted images from the
original image using a mixed Gaussian-Poisson noise model, which are then used as inputs and
GTs in the network training (Methods). Furthermore, we introduce the Hessian regularization term,
which has been demonstrated to be useful for mitigating reconstruction artifacts in microscopy
images®* 2°, to regulate the network convergence (Supplementary Fig. 1b-¢). Taken together, the

overall objective function of ZS-DeconvNet can be formulated as:
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N
1 _
arg min NZ L (yi —D7'z,(H X fo(y; + D"2)) l) + ARpessian(fo i + D2))  (2)
i=1
where N is the total number of images to be processed, D is an invertible noise control matrix that
can be calculated according to the signal and noise levels (Methods), and z is a random noise map
that is sampled from a standard normal distribution. We refer to the first part of the objective
function as the degradation term, which accounts for the inference fidelity, and the second part as

the regularization term, rationalizing the SR outputs.

After defining the objective function, we devised a dual-stage DNN architecture composed of
two sequentially connected U-nets? for different subtasks (Fig. 1a, b and Supplementary Fig. 2a).
The first stage serves as a denoiser to generate noise-free images according to the denoising loss
(Methods), and the second stage enhances the image resolution according to the unsupervised
deconvolution loss described above. We empirically found that the dual-stage architecture and the
physical model-regulated loss function stabilize the training procedures and endow interpretability

for the overall network model.

To characterize and evaluate ZS-DeconvNet, we first simulated the microscopy images of
punctate and tubular structures contaminated by Gaussian-Poisson noise at escalating signal levels
from 5 to 25 average photon counts, which allowed us to systematically test how the recorrupting
hyperparameter settings at different imaging conditions influence the final outputs. We found that
the optimal hyperparameters are independent of the image contents and signal levels
(Supplementary Figs. 3-5), thus enabling parameter tuning-free applications of ZS-DeconvNet
onto various biological specimens and imaging configurations. Next, we compared the
performance of the ZS-DeconvNet models trained with the data augmented by recorrupting a
single noisy image with analytical deconvolution algorithms or the models trained with numbers
of simulated or independently acquired images. To do so, we employed the total internal reflective

fluorescence (TIRF) illumination mode of our home-built multimodal structured illumination
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Fig. 1 | Zero-shot deconvolution networks. a, The dual-stage architecture of ZS-DeconvNet and the schematic of its
training phase. b, The schematic of the inference phase of ZS-DeconvNet. ¢, Representative SR images of Lyso and
MTs reconstructed by RL deconvolution (second column), sparse deconvolution (third column) and ZS-DeconvNet
(fourth column). The clear WF images are displayed for reference. d, Statistical comparisons of RL deconvolution,
sparse deconvolution and ZS-DeconvNet in terms of PSNR and FRC resolution (n=100). e, Full width at half
maximum (FWHM) comparisons of clear WF images and processed images via RL deconvolution, sparse
deconvolution and ZS-DeconvNet. The theoretical diffraction limit is labelled with the gray dashed line for reference.
f, Running time comparison between GPU-based sparse deconvolution and ZS-DeconvNet (average from 25 testing
images of 1024x1024 pixels). Center line, medians; limits, 75% and 25%; whiskers, the larger value between the
largest data point and the 75th percentiles plus 1.5% the interquartile range (IQR), and the smaller value between the
smallest data point and the 25th percentiles minus 1.5% the IQR; outliers, data points larger than the upper whisker or

smaller than the lower whisker. Scale bar, 1.5 pm (a), 5 um (c), 2 um (zoom-in regions in c).

microscopy (Multi-SIM)* 27 (Methods) to acquire ~20 sets of images at low- and high-SNR for
each subcellular structure of lysosomes (Lyso) and microtubules (MTs). We found that although

6
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137 the ZS-DeconvNet was trained with the augmented data from a single input image, the perceptual
138 quality and quantified metrics of its output images were comparable with the images from the
139 model trained with larger amounts of data (Supplementary Fig. 6). Moreover, the peak signal-to-
140  noise ratio (PSNR) and resolution of ZS-DeconvNet images were substantially better than those
141  generated by analytical algorithms, such as the classic Richardson-Lucy (RL) and the latest
142 developed sparse deconvolution® (Fig. 1c-¢). In addition, the throughput rate of a well-trained ZS-
143 DeconvNet is >100-fold higher than that of the sparse deconvolution algorithm (Fig. 1f). These
144 characterizations demonstrate that ZS-DeconvNet is able to generate high-quality DLSR images
145 of 1.5-fold resolution improvement relative to the diffraction limit while using the least training
146  data, which holds great potential to upgrade the imaging performance of diverse microscope
147  systems, and extend their applicability into a wide variety of bioprocesses that are challenging for

148  conventional methods.

149  Long-term observation of bioprocesses sensitive to phototoxicity

150 Cell adhesion and migration are essential in morphogenetic processes and contribute to many
151  diseases®®. Visualizing cytoskeletal dynamics at high resolution during the adhesion/migration
152 process is critical for elucidating the underlying mechanism. However, due to severe
153  photosensitivity, the whole processes of cell adhesion and migration are typically recorded at low
154  framerates, i.e., several seconds per frame, and low light intensities” 2. Under these imaging
155  conditions, either RL deconvolution or temporal continuity-based self-supervised learning’
156  (Methods) fails to recover and sharpen the intricate structure of F-actin and myosin-II (Fig. 2a,
157 Supplementary Fig. 7, and Supplementary Video 1). In contrast, the ZS-DeconvNet model
158  effectively improves both the SNR and resolution of the two-color time-lapse recordings of cell
159  spreading processes after dropping a cell coexpressing mEmerald-Lifeact and mCherry-myosin-
160  IIA onto a coverslip (Fig. 2b and Supplementary Video 2). Intriguingly, we observed that in certain
161  substances cells crawled around the contact site to explore the neighborhood before spreading and
162 adhering (Fig. 2c and Supplementary Video 3). The cell crawling was preceded by the polarized
163 accumulation of myosin-II at the cell rear, leading to cell migration in the opposite direction driven
164 by posterior myosin-II contractility. Moreover, the migration direction could be swiftly changed
165  in response to the dynamic redistribution of myosin-II within the cell (Fig. 2d). These results

166  demonstrate that the kinetics of cell adhesion and migration can be faithfully recorded by
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Fig. 2 | Long-term SR imaging of rapid and photo-sensitive bioprocesses via ZS-DeconvNet. a, Representative
SR images reconstructed by ZS-DeconvNet of F-actin cytoskeleton and myosin-II in a COS-7 cell co-expressing
mEmerald-lifeact and mCherry-myosin-ITA. Comparisons of raw noisy TIRF image and images processed by RL
deconvolution, DeepCAD-based deconvolution and ZS-DeconvNet are displayed. b, Two-color time-lapse SR images
enhanced via ZS-DeconvNet showing the coordinated dynamics of F-actin (cyan) and myosin-II (yellow) over the
whole spreading process after placing a COS-7 cell onto a coverslip (Supplementary Video 2). ¢, d, Two-color time-
lapse SR images enhanced via ZS-DeconvNet of F-actin and myosin-II in a crawling COS-7 cell showing that myosin-
II preferentially concentrates to the rear of the cell (outlined by yellow dashed lines in d), opposite to crawling direction
(indicated by the white arrows in d) (Supplementary Video 3). e, Representative SR image generated via ZS-
DeconvNet of recycling endosomes (REs, green) and late endosomes (LEs, magenta) in a gene-edited SUM-159 cell
endogenously expressing EGFP-Rab11 and mCherry-Lamp1 (Supplementary Video 4). f, Time-lapse images illustrate
the directional movement of a RE in rod-like shape, and the subsequent fusion with plasma membrane. g, Typical
trajectories of RE (top) and LE (bottom) movements showing the rapid directional motility of RE, and the bidirectional
nature of LE. h, Comparisons of the speed, displacement, and travelling time between Lyso/LEs and REs, and
quantification of the residence time of REs near their exocytosis sites before fusing with plasma membrane. A small
number of data points exceeding transportation time of 150s or displacement of 60 um were not displayed for better
presentation of the distributions. We provided all source data in Extended Data files. i, Time-lapse images illustrate
three LEs tether each other and co-migrate for certain distance before splitting into individual LEs. Scale bar, 5 pm (a,

¢, and d), 2 pm (zoom-in regions in a), 8 um (b), 3 um (e), 0.5 pm (zoom-in region in e), 1 um (g, f, and 1).

ZS-DeconvNet-assisted imaging without perturbing this lengthy and vulnerable process.

Visualizing the rapid dynamics of the endolysosomal system

The endolysosomal system includes diverse types of vesicles that function in a highly dynamic,
yet well-organized manner. Although live-cell fluorescence imaging has remarkably improved our
understanding of the endolysosomal system, most studies had to overexpress the proteins of
interest to record their rapid dynamics?’, which often resulted in artifact morphologies or behaviors.
With ZS-DeconvNet, we were able to image the knock-in SUM-159 cell line endogenously
expressing EGFP-Rabl1 and mCherry-Lampl for 1,500 frames at ~150 nm resolution and 3
frames per second (fps) in two colors (Fig. 2e and Supplementary Video 4), thereby allowing us
to visualize and track the rapid motion of recycling-endosomes (REs) and lysosomes or late
endosomes (LEs) on a substantially finer spatiotemporal scale and longer observation window than
previously achieved®'. As exemplified in Fig. 2f and g, we found that the majority of REs (n = 505
tracks) experienced a directional movement, with a total displacement of 6.7 + 5.4 um at a high
speed of 2.2 + 1.2 um/s (instantaneous speed exceeding 5.3 pm/s), with a rare intermediate pause,
then stopped at specific sites for a period of 13.5 + 10.3 sec (Fig. 2h) before fusing with the plasma

membrane. This observation suggests that REs might be efficiently transported over long ranges

9
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203  to regions near the plasma membrane to facilitate subsequent exocytosis. Unexpectedly, ZS-
204  DeconvNet captured multiple fission events of the Rabl1-positive REs, in which both separated
205  REs underwent exocytosis sequentially (Supplementary Fig. 8a) or one RE moved away
206  (Supplementary Fig. 8b). This observation indicates that the highly specialized Rabl1-positive

207  REs may be subject to further cargo sorting right before exocytosis.

208 In contrast, the movements of LEs were typically discontinuous and proceeded in a
209  bidirectional stop-and-go manner at a relatively slow speed of 1.6 £ 0.6 um/s (n = 230 tracks) (Fig.
210 2h, i). Although the transportation of LEs seemed inefficient, the LEs often persisted for a long
211 period of 91.8 s with a total displacement as long as 23.6 um (averaged from n = 230 tracks) (Fig.
212 2h). Interestingly, we noticed that two or more LEs sometimes tended to tether each other in a kiss-
213 and-stay fashion and migrate for a certain distance before splitting into individual LEs again (Fig.
214 2i and Supplementary Fig. 8c), which might facilitate the directional movement of LEs without
215 sufficient motor-protein-adaptors for long-range transportation. These complex dynamics of LEs
216  suggest that their positioning and mobility are delicately regulated by multiple factors, such as

217  MT-based motors and membrane contacts.

218 3D ZS-DeconvNet for lattice light-sheet microscopy

219 Volumetric live-cell imaging conveys more biological information than 2D observations; however,
220 it is subject to much severer phototoxicity, photobleaching and out-of-focus fluorescence
221  contamination. To extend the superior capability of ZS-DeconvNet to volumetric SR imaging, we
222 upgraded the backbone of the dual-stage network architecture into a 3D RCAN, which has been
223 demonstrated to be suitable for volumetric image restoration’*? (Fig. 3a, b and Supplementary Fig.
224 2b). Next, we integrated our previously proposed spatially interleaved self-supervised (SiS)
225  learning scheme’ with the physical model-informed self-supervised inverse problem solver to
226  construct the 3D ZS-DeconvNet. The 3D ZS-DeconvNet with SiS scheme follows a simpler data
227  augmentation procedure (Methods), while achieving comparative or even better performance than

228 the recorruption-based strategy (Supplementary Fig. 9).

10
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Fig. 3 | Characterizations and demonstrations of 3D ZS-DeconvNet. a, The network architecture of 3D ZS-
DeconvNet and the schematic of its training phase. b, The schematic of the inference phase of 3D ZS-DeconvNet. ¢,
Representative maximum intensity projection (MIP) SR images (MIP) of F-actin, Mito outer membrane, and ER
reconstructed by sparse deconvolution (second column), 3D ZS-DeconvNet (third column), and LLS-SIM (fourth
column). Average sCMOS counts of the highest 1% pixels for raw images before processed are labelled on the top
right corner. d, Statistical comparisons of RL deconvolution, sparse deconvolution and ZS-DeconvNet in terms of
PSNR and resolution on different specimens (n=40). The resolution was measured by Fourier ring correlation
analysis®® with F-actin image stacks. Center line, medians; limits, 75% and 25%; whiskers, maximum and minimum.

e, Time-lapse three-color 3D rendering images reconstructed via 3D ZS-DeconvNet of ER, H2B, and Mito, showing
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their transformations in morphology and distribution as well as interaction dynamics during mitosis (Supplementary
Video 5). f, Representative three-color images obtained with conventional LLSM (first column), sparse deconvolution
(second column), DeepCAD based deconvolution (third column) (Methods), and 3D ZS-DeconvNet (fourth column).
The comparisons are performed on two typical timepoints of the time-lapse data shown in e. Scale bar, 5 um (c, e, and
f), 1.5 um (zoom-in regions of ¢), 2 um (zoom-in regions of f).

We demonstrate that even when trained with a single noisy image stack, 3D ZS-DeconvNet
significantly improves the SNR and provides a laterally isotropic spatial resolution enhancement
by over 1.5-fold (Supplementary Fig. 10). We systematically assessed the 3D ZS-DeconvNet
model with datasets of three different biological specimens acquired via our home-built lattice
light-sheet structured illumination microscopy>* (LLS-SIM) (Methods). We found that 3D ZS-
DeconvNet successfully reconstructed the elaborate filaments of F-actin, the hollowing structure
of the mitochondrial (Mito) outer membrane, and the intricate networks of the endoplasmic
reticulum (ER) with high fidelity and resolution comparable to LLS-SIM images acquired under
high-SNR conditions (Fig. 3c). The quantifications of PSNR and resolution illustrate that the 3D
ZS-DeconvNet model substantially outperforms conventional analytical model-based approaches

in diverse biological specimens (Fig. 3d).

Long-term volumetric super-resolution imaging enabled by 3D ZS-DeconvNet

Volumetric observation of cell division at high spatiotemporal resolution is of vital importance for
exploring mitosis-related biological mechanisms, such as the mechanism that allocates the
numerous distinct organelles in the cytoplasm into each daughter cell*>*¢. Due to the extreme light
sensitivity and vulnerability of mitotic cells, previous volumetric SR imaging of this process has
relied on the low-light LLS-SIM system and supervised learning-based SR reconstruction’.
However, collecting high-quality training data is extremely laborious and sometimes impractical
because the morphology and distribution of organelles usually undergo dramatic changes during
mitosis®®. Here, we demonstrate that the self-supervised 3D ZS-DeconvNet model can be generally
applied to superresolve the fine subcellular structures of the ER, Mito, and chromosomes from
noisy LLSM volumes without the need for additional training data, thus enabling fast and long-
term volumetric SR observation of multiple organelles for 1,000 timepoints at 10 sec intervals in
a mitotic HeLa cell (Fig. 3e and Supplementary Video 5). Moreover, the unsupervised property of
ZS-DeconvNet allows us to integrate the transfer adaptation learning strategy’ to fully exploit the

structural content in each noisy volume, which yielded the best 3D SR performance (Methods). In
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contrast, the conventional prior-dependent deconvolution algorithm® and temporally interleaved

self-supervised learning’ 3% 38

method both failed to restore the high-frequency details of the
specimens because of the low SNR condition and weak temporal consistency between adjacent
timepoints (Fig. 3f and Methods). Furthermore, according to the low invasiveness provided by 3D
ZS-DeconvNet, a group of mitotic HeLa cells labeled with H2B-mCherry and HeLa-mEmerald-
SC35 were imaged in a large field of view (FOV) of 100X50X25 pum? for more than 300 timepoints,
thereby recording the entire disassembly and reassembly processes of nuclear speckles at a high
spatiotemporal resolution (Supplementary Fig. 11 and Supplementary Video 6). In brief, 3D ZS-
DeconvNet allows biologists to easily explore various light-sensitive bioprocesses with low

invasiveness at substantially higher spatiotemporal resolution without the need for any additional

datasets or optical setup modifications.

ZS-DeconvNet for confocal and wide-field microscopy

The ZS-DeconvNet relies on the randomness of noises and the low-pass filter characteristic of
optical microscopes, which are common for various types of microscopy modalities. On this basis,
we expect that ZS-DeconvNet can be generally applied to all microscopy, e.g., the most commonly
used confocal microscopy and wide-field (WF) microscopy. To investigate the performance of 3D
ZS-DeconvNet on confocal data, we employed our home-built confocal microscope to acquire a
four-color volume of the mouse early embryo immunostained for the microtubule, chromosomes,
actin, and apical domain (Methods), which play key roles in the first cell fate decision and are
critical for embryo development***!. We then trained 3D ZS-DeconvNet models on this single
noisy volume and processed the original data with the trained models. As shown in Fig. 4a, b, 3D
ZS-DeconvNet significantly enhances the SNR, contrast, and resolution of the confocal data
volume and resolves the fine structures of microtubule bridges and actin rings (Fig. 4c, d,
Supplementary Fig. 12, and Supplementary Video 7). These results indicate that ZS-DeconvNet
enables a higher spatial resolution at a lower photon budget for confocal microscopy in imaging
specimens on large scale, e.g., mouse early embryos, which is critical to research on cell polarity*!

intracellular transport and blastocyst formation*’.

We next imaged Caenorhabditis elegans embryos marked apical junctions, cell membranes and
lysosomes using the 3D WF mode of our Multi-SIM system (Methods). To ensure that C. elegans

embryo development was not disturbed, we acquired raw image stacks at relatively low light
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excitation in intervals of 30 seconds for more than 200 timepoints. However, under such conditions,
the WF images are heavily contaminated by both out-of-focus background and noise (Fig. 4e, f).
Even in this challenging situation, 3D ZS-DeconvNet images presented considerable suppression
upon noise and background while enhancing the spatial resolution of the subcellular details (Fig.
4e, g and Supplementary Video 8), thus allowing us to investigate the elaborate process of
embryonic development, e.g., hypodermal cell fusion*’ (Fig. 4h), even via a simple WF

microscope.

a Confocal . b Confocal e, C E

3D ZS-DeconvNet

min

- 3D ZS-DeconvNet
WF + 3D ZS-DeconvNet - 13 min
Apical junction + membrane .

Fig. 4 | Generalization of ZS-DeconvNet to multiple imaging modalities. a, b, Representative confocal (top left),

sparse deconvolution (bottom left), and 3D ZS-DeconvNet enhanced (right) images of an early mouse embryo
immunostained for microtubule (cyan), chromosomes (orange), actin rings (magenta), and apical domain (green). ¢,
d, Magnified regions of microtubule bridges (c) and actin rings (d) labelled with while dashed boxes in (a) and (b)
acquired via confocal microscopy, sparse deconvolution, and 3D ZS-DeconvNet. e, Representative WF (center region)
and 3D ZS-DeconvNet enhanced (surrounding region) images of a C. elegans embryo with apical junction, cell
membrane (cyan) and lysosomes (red) labelled. f, g, Lysosome channel of the central region in (c) color-coded for
distance from the substrate. Both WF (d) and 3D ZS-DeconvNet processed images are shown for comparison. h,
Time-lapse 3D ZS-DeconvNet enhanced images showing the process of hypodermal cell fusion (red arrows) during
the development of a C. elegans embryo. Scale bar, 5 um (a, b, €), 2um (¢, d), 3 um (g, h), 1 um (zoom-in region of

g). Gamma value, 0.7 for cytomembrane and lysosomes in the C. elegans embryo.
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ZS denoising and resolution enhancement in multimodal SIM images

Among the various forms of SR microscopy, structured illumination microscopy (SIM) is often
recognized as a balanced option for SR live-cell imaging because it needs less than ten raw
modulated images to provide a twofold improvement in spatial resolution" 2. Nevertheless,
conventional SIM has two critical limitations: first, further resolution enhancement requires
considerably more raw data, i.e., at least 25 raw images are needed for nonlinear SIM to obtain a
sub-80 nm resolution** *4; second, the postreconstruction of SIM images generally requires raw
images with a high SNR to eliminate noise-induced reconstructed artifacts, thus impairing fast,
low-light, and long-term live-cell imaging. Recent studies have explored supervised learning
approaches by either denoising SIM images” ** or reconstructing SR SIM images directly from
noisy raw images® ?° to achieve low-light SIM reconstruction; however, these methods require
abundant training data and do not further enhance the resolution. In light of the superb denoising
and SR capability of ZS-DeconvNet, we integrated the zero-shot learning scheme with the
conventional SIM reconstruction algorithm. We designed the ZS-DeconvNet enhanced SIM (ZS-
DeconvNet-SIM) model to simultaneously denoise and sharpen SR SIM images in an
unsupervised manner (Fig. 5a, and Methods). Resorting to the remarkable improvement in both
SNR and resolution provided by ZS-DeconvNet-SIM (Supplementary Fig. 13a-d), the hollow
structure of clathrin-coated pits (CCPs) ina SUM-159 cell and the densely interlaced cytoskeletons
in a COS-7 cell, which are indistinguishable in WF and conventional SIM images, were clearly

resolved (Fig. 5b, c).

Furthermore, we integrated 3D ZS-DeconvNet with LLS-SIM to develop the 3D ZS-
DeconvNet LLS-SIM modality. By incorporating the anisotropic PSF of conventional LLS-SIM3*
into the training process, 3D ZS-DeconvNet LLS-SIM not only prominently enhanced the contrast
and resolution in all three dimensions but also provided an isotropic lateral resolution of
approximately 150 nm (Fig. 5d, e, and Supplementary Fig. 13e-g). These successful applications
of ZS-DeconvNet to multimodal SIM systems demonstrate its capability to further extend the

spatiotemporal resolution bandwidth of existing SR techniques.
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! Output SR image
SIM Denoising Enhance Res.

a Raw SIM images

Denoising loss
Deconvolution loss

Raw SIM image . SIM + ZS-DeconyNet Conv. SIM] c Raw SIM image SIM + ZS=DeconvNet

Fig. 5 | Zero-shot denoising and resolution enhancement in multimodal SIM data. a, Schematic of the training

procedure of ZS-DeconvNet for SIM. b, Progression of SNR and resolution improvement across the CCPs in a SUM-
159 cell, from raw SIM images (left), conventional SIM image (right), and ZS-DeconvNet enhanced SIM image
(middle). ¢, Progression of SNR and resolution improvement across the microtubules in a COS-7 cell, from raw SIM
images (left), conventional SIM image (right), and ZS-DeconvNet enhanced SIM image (middle). d, Representative
maximum intensity projection (MIP) images of F-actin in a HeLa cell obtained via LLSM, LLS-SIM, and LLS-SIM
enhanced by 3D ZS-DeconvNet across three dimensions. e, Representative MIP images of mitochondrial outer
membrane labelled with TOMM20 in a 293 T cell obtained via LLSM, LLS-SIM, and LLS-SIM enhanced by 3D ZS-

DeconvNet across three dimensions. Scale bar, 1 um (a), 2 um (b, ¢), 0.5 um (zoom-in regions in b, ¢), 3 um (d, e).
Discussion

The ultimate goal of live imaging is to collect the most spatiotemporal information about
bioprocesses with the least invasiveness to biological specimens. However, the mutual restrictions

between imaging speed, duration, resolution, and SNR in fluorescence microscopy together result

in the spatiotemporal bandwidth limitation*®, which limits the synergistic improvement in all these
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aspects. For instance, to obtain higher spatial resolution, conventional SR techniques have to rely
on repetitive acquisitions or additional excitation!, which aggravates phototoxicity and
photobleaching, impeding fast, long-term observations of bioprocesses. To address the
spatiotemporal bandwidth limitations in microscopy, in this manuscript, we proposed the versatile
framework ZS-DeconvNet, which can be incorporated with any optical fluorescence microscope
to instantly enhance image SNR and resolution without compromising other imaging properties.
We emphasize that the application of ZS-DeconvNet does not require image-specific parameter-
tuning thus avoiding errors caused by irrational parameter selections (Supplementary Fig. 14) and
that ZS-DeconvNet can be well trained with only one slice or stack of raw images (Supplementary
Figs. 6, 10) without using assumptions of structural sparsity> and spatiotemporal continuity®>3% 3%,
The qualitative and quantitative evaluations on both simulated and experimental data show that
our methods substantially enhance the image quality and resolution by more than 1.5-fold with
high fidelity, even under low-light conditions, thereby permitting fast, long-term, super-resolution
observations of multiple subcellular dynamics.

The proposed ZS-DeconvNet method has wide functionality for various types of imaging
modalities, from scanning-based microscopy, e.g., confocal microscopy and two-photon
microscopy, to wide-field detection-based microscopy, e.g., TIRF, 3D WF microscopy, LLSM,
and multimodal SIM. We demonstrate its capabilities with more than 10 distinct fixed- or live-
specimens imaged via six different microscopy setups, including planar and volumetric imaging
of multiple organelles in single cells, observations of subcellular dynamics and interactions during
cell mitosis, and multi-color 3D imaging of early mouse embryos and C. elegans embryos.
Moreover, we demonstrate that our ZS-DeconvNet can conveniently be implemented on any
existing imaging system to notably improve the SNR, contrast, and resolution (Figs. 4, 5). The
functionality and convenience of ZS-DeconvNet demonstrate its great potential in upgrading the

performance of existing optical microscopy.

Several improvements and extensions of ZS-DeconvNet can be envisioned. First, a recently
published work!? that devised a network architecture incorporating the image formation process
to accelerate deconvolution suggests that the backbone architecture of ZS-DeconvNet can be
further improved in terms of a lightweight structure and effectiveness, thereby obtaining better SR
performance with less computation time. Second, although we presented only the applications of

ZS-DeconvNet on SIM, it can be reasonably speculated that other optics-based SR techniques,

17


https://doi.org/10.1101/2023.02.24.529803
http://creativecommons.org/licenses/by-nc-nd/4.0/

392
393
394
395
396
397
398
399

400

401

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.24.529803; this version posted February 27, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

such as photoactivated localization microscopy*’, stimulated emission depletion microscopy*®, and
image scanning microscopy®’, can be improved by integrating ZS-DeconvNet into their image
processing pipelines. Third, due to the lack of generalization, users need to train a specialized
model for each type of specimen to achieve the best performance. Incorporating domain
adaptation®’ or domain generalization™® techniques with our methods may effectively alleviate the
burden of applying trained models into unseen domains. Finally, we used a spatially invariant PSF
for the well-calibrated imaging systems in this work. With spatially varying PSF, the functionality
of ZS-DeconvNet can be further extended to various image processing tasks, such as phase space

light-field reconstruction and digital adaptive optics®'.
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Methods

Optical systems

Multi-SIM system

The Multi-SIM system was built based on an invented fluorescence microscope (Ti2E, Nikon).
Three laser beams of 488 nm (Genesis-MX-SLM, Coherent), 560 nm (2RU-VFL-P-500-560, MPB
Communications), and 640 nm (LBX-640-500, Oxxius), were combined collinearly, and then
passed through an acousto-optic tunable filter (AOTF, AOTFnC-400.650, AA Quanta Tech),
which serves to select the desired laser wavelength and control its power and exposure time.
Afterwards the selected laser light was expanded and sent into an illumination modulator, which
is composed of a ferroelectric spatial light modulator (SLM, QXGA-3DM, Forth Dimension
Display), a polarization beam splitter, and an achromatic half-wave plate. Different illumination
modes were generated by adjusting the patterns displayed on the SLM, e.g., grating patterns of 3-
phase x 3-orientation at 1.41 NA for TIRF-SIM or 1.35 NA for GI-SIM. Next, the modulated light
was passed through a polarization rotator consisting of a liquid crystal cell (Meadowlark, LRC-
200) and a quarter-wave plate, which rotated the linear polarization to maintain the s-polarization
necessary, thus maximizing the pattern contrast for all pattern orientations. The diffraction orders,
except for =1 orders for TIRF/GI-SIM, were filtered out by a spatial mask, and then relayed onto
the back focal plane of the objectives (1.49 NA, Nikon). The raw SIM images excited by different
illumination patterns were sequentially collected by the same objective, then separated by a
dichroic beam splitter (Chroma, ZT405/488/560/647tpc), finally captured with a sSCMOS camera
(Hamamatsu, Orca Flash 4.0 v3). Besides TIRF/GI-SIM modes used in this work, the Multi-SIM
system integrated diverse SIM modalities including nonlinear-SIM and 3D-SIM into a single setup,

which has been commercially available from Nanolnsights Inc. (nanoinsights-tech.com).

LLS-SIM system

The home-built LLS-SIM system was developed from the original design®*. Similar to the laser
combinator and pattern modulator used in our Multi-SIM system, three lasers of 488 nm, 560 nm,
and 640 nm (MPB Communications) were selected and controlled by an AOTF, and then
modulated by the lattice patterns displayed on the SLM. The excitation light was then filtered by

an annular mask equivalent to 0.5 outer NA and 0.375 inner NA for the excitation objective
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(Special Optics). Subsequently, the filtered excitation light passed through a pair of galvo mirrors
(x- and z-galvo) (Cambridge Technology, 6210H). In LLS-SIM mode, the lattice patterns of 3-
phase were sequentially displayed on the SLM and synchronized with the programmed “ON” time
of AOTF, and then scanned by the sample piezo in a step size of 0.39 pm, which equals to a z-
interval of 0.2 um, to acquire the volumetric LLSM images. In LLSM mode, a fixed lattice pattern
was quickly dithered by x-galvo, and then scanned by the sample piezo. In particular, we used the
triangle wave when reversing the scanning direction of the piezo stage to minimize the flyback
time to an extreme. Live cell specimens were held in a customized microscope incubator (OKO
lab, H301-LLSM-SS316) to maintain the physiology condition of 37°C and 5% CO2 during
imaging. The emission light was collected by the detection objective (Nikon, CFI Apo LWD
25XW, 1.INA) and captured by a sSCMOS camera (Hamamatsu, Orca Fusion).

Confocal system

The home-built confocal microscopy was developed as a modification of the image-scanning
microscopy system> based on a commercial invented fluorescence microscope (Ti2E, Nikon).
Four laser beams of 405 nm, 488 nm, 561 nm, and 640 nm (BDL-405-SMN, BDL-488-SMN,
BDS-561-SMY-FBE, and BDL-640-SMN, Becker & Hickel) were collinearly combined and then
expended by 6.25 times. After being reflected by a multi-band dichroic mirror (Di03-
R405/488/561/635, Semrock), the lasers were passed through two galvanometer scanners (8315k,
CT Cambridge Technology) and then directed toward the objective (CFI SR HP Plan Apo Lambda
S 100XC/1.35NA, Sil, Nikon) via a scan lens and a tube lens. The emission fluorescence was
collected by the same objective, descanned, and passed through the multi-band dichroic mirror and
then separated into the green channel and then red channel by a dichroic beam splitter (FF573-
DIO1, Semrock). The green-channel signals (filtered by FF02-447/60, FF03-525/50, Semrock)
were collected by a single photon counting module (SPCM-AQRH-44, Excelitas) and finally
counted by a digital counter (BNC-2121, National Instruments). The red-channel signals (filtered
by FF01-609/57, FF01-679/41, Semrock) were collected by a fiber bundle and then captured by a
multi-channel photomultiplier tube (PML-16-GASP) and quantified by a single photon counter
(SPC-164-PCI, Becker & Hickel). The pinhole was kept open during image acquisition and the
overall magnification factor was 333x for the green channel and 666x for the red channel. The
data acquisition/visualization/processing was operated by a home-developed software based on

LabView (National Instruments) and the software also controlled all microscope devices during
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the image acquisition, such as the galvanometer scanners, the axial piezo stage, and the laser power
by sending analog signals via a field-programmable-gate-array card (NI PXIe-7868R, National

Instruments).

Architectures and objective functions of ZS-DeconvNet

ZS-DeconvNet adopts a dual-stage architecture, which factorizes low-SNR super-resolution task
into two sequential subdivisions of denoising and deconvolution, and each stage is responsible for
one subtask, respectively. The dual-stage design is helpful to regulating the training procedures
and eliminating the noise-induced artifacts in the final outputs''. For 2D images, a simplified U-
net models?® with four down- and up-sampling modules are used as the backbone of each stage.
The overall network architecture of ZS-DeconvNet we used for 2D image SR in this work is shown
in Supplementary Fig. 2a. In the training phase, we designed a combined loss function consisting
of a denoising term and a deconvolution term, which respectively corresponds to the denoising
stage and the deconvolution stage:

L3Y) = 1laen(@¥) + (1 = 1D)Laec (YY) (3)
where (¥,¥) indicates the recorrupted image pair (see next section for the details of image
recorruption), and u is a scalar weighting factor to balance the two terms, which we empirically
set as 0.5 in our experiments.

For 3D ZS-DeconvNet, we deploy 3D RCAN as the backbone model for the two stages, each
of which includes two residual groups consisting of four channel attention blocks. The overall
architecture is illustrated in Supplementary Fig. 2b. During training procedures, the 3D ZS-
DeconvNet is optimized iteratively following a similar combined loss function to its 2D versions,
nevertheless, with two major modifications in detail: first, the image pairs used for training were
generated by axial sampling rather than via recorruption, resulting in a totally parameter-free data
augmentation strategy; second, the gap amending regularization (GAR)!'® was implemented in both
denoising term and deconvolution term to correct the inconsistency between the inputs and targets
which are originally interleaved in the same noisy image stack.

It is noteworthy that since the theoretical basis of ZS-DeconvNet is model-agnostic, both U-
net and RCAN are not the only applicative backbone models but the widely adopted and efficient
ones. Equipping ZS-DeconvNet with other state-of-the-art network architectures, e.g., DFCAN®
and RLN'?, may further improve its denoising and SR capability.

24


https://doi.org/10.1101/2023.02.24.529803
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.24.529803; this version posted February 27, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Implementation details of ZS-DeconvNet

The image pairs (¥, ) used for training 2D ZS-DeconvNet models were generated following a
modified scheme from the original recorrupted to recorrupted strategy?’ under the assumption of
mixed Poisson-Gaussian noise distributions, where three hyperparameters f5;, 5, @ needed to be
pre-characterized. The recorruption procedure from a single noisy image y can be represented in
matrix form as:

y=y+D'z 4)

y=y-D7'z (5
where D = al is an invertible matrix defined as a magnified unit matrix by a factor of a, which
controls the overall magnitude of added noises, and z is a random noise map sampled from a
Gaussian distribution with zero means:

z~N(0,02%I) (6)

o? =B H(y —b) +p, (7)

where £5; is the Poissonian factor affecting the variance of the signal-dependent shot noise, and £,
is the Gaussian factor representing the variance of additive Gaussian noises. b is the background,
approximately regarded as a fixed value related to the camera, by subtracting which we extracted
fluorescence signals from the sample. H(*) is a linear low-pass filter used to preliminarily smooth
the image and reduce the noise, and we adopted an averaging filter with a size of 5 pixels in our
experiments.

The theoretically optimal value of both ; and a is 1, while £, is dependent to the camera and
can be estimated from the sample-free region of the image itself or pre-calibrated following
standard protocols®®. Evaluations on simulated data has shown that the best denoising and SR
performance are achieved at the theoretically optimal values of these hyperparameters regardless
of the structure and SNR of the testing images (Supplementary Figs. 3, 4). Lower signal levels
may lead to heavier artifacts in the output images of ZS-DeconvNet, but will not change the
optimal value of hyperparameters, while our method still outperforms other unsupervised
deconvolution approaches (Supplementary Fig. 5).

For ZS-DeconvNet implementations of 2D-SIM, i.e., TIRF/GI-SIM (Fig. 5b, c), every set of
raw SIM images were first augmented into two sets of recorrupted raw images through Eq. 4 and
8, and reconstructed into a pair of SR SIM images via the conventional SIM reconstruction

algorithm. The generated SIM image pairs were then used for self-supervised training in a similar
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manner to 2D WF images. For 3D modalities such as 3D-SIM and LLS-SIM (Fig. 5d, e), post-
reconstructed volumetric SIM data instead of the raw images were axially sampled into two SIM
stacks respectively containing odd and even slices, which were used in subsequent training
procedures of 3D ZS-DeconvNet models with loss functions. The schematic workflow of ZS-
DeconvNet-SIM is shown in Fig. 5a.

In this work, ZS-DeconvNet models were trained on a PC with an Intel Core 17-11700
processor and an RTX 3090 graphic processing card (NVIDIA) under the software environment
of TensorFlow 2.5.0 and python 3.9.7. Training was typically conducted with the Adam optimizer
and an initial learning rate of 0.5 X 10™*, which would decay with a factor of 0.8 every 10,000
iterations. Training batch size was 4 for 2D images and 3 for 3D stacks. The entire training process
usually required 50,000 iterations for 2D images and 10,000 iterations for 3D stacks. Elapsed time
of training 50,000 iterations for 2D images of 128 %128 pixels and 10,000 iterations for 3D stacks
of 64x64x13 voxels was ~45 minutes and ~4 hours, respectively. To eliminate the edge artifacts
induced by deconvolution, we typically padded 2 blank slices at the top and bottom of 3D stacks
and a margin of 8 pixels for each xy-slice in both training and inference processes (Supplementary
Fig. 15a). Particularly, when processing the time-lapsing data of cell mitosis (Fig. 3e, f), the
unsupervised property of ZS-DeconvNet enabled a transfer adaptation learning strategy’ in which
we first trained a general model for each biological structure with data of the entire process and
then finetuned the pre-trained model for each timepoint with a small number of training steps
(typically 50 iterations taking ~1 min) to fully exploit the structural information of the raw data

and obtain the optimal SR performance.

Data post-processing and SR image evaluation

For imaging modalities employing wide-filed detection such as LLSM, the fixed pattern noise
(FPN) which are induced by the nonuniformity in the pixel sensitivity of the camera cannot be
removed by noise2noise-based schemes®. In our implementation of ZS-DeconvNet, the FPN
would be enhanced in the deconvolution stage and became nonnegligible especially at imaging
conditions of extremely low SNR. For sCMOS sensors, which are the most common in
fluorescence microscopy, the fixed pattern usually presents a regular appearance of horizontal or
vertical stripes attributed to the column amplifier. To this end, we simply applied an apodization

mask in Fourier domain to suppress the stripy artifacts while preserving other frequency
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components of the samples (Supplementary Fig. 15b). It is noted that the fixed pattern noise can
also be fundamentally removed by pre-calibration for the acquired raw images before sent into the
network model following the well-established procedures® > 36,

Other computational SR approaches compared in this work, i.e., the sparse deconvolution®,
DeepCAD-based deconvolution®’, and SRRF!? are implemented following the instructions in the
original papers. Specifically, we tried our best to select the optimal hyperparameters for sparse
deconvolution and SRRF to obtain a reconstructed image with the least artifacts and the highest
resolution. And the DeepCAD-based deconvolution (Figs. 2a and 3f) was carried out by integrating
the temporally sampling scheme into our ZS-DeconvNet framework, that was, using images
temporally sampled from the time-lapsing data for training our dual-stage network models.

To quantitatively evaluate the SR performance of 2D ZS-DeconvNet and other computational
SR approaches with only diffraction limited references, we calculated PSNR between clear WF
targets and SR images degraded with the PSF by following three steps: (1) Convolving the SR
image with the corresponding PSF and down-sampling the convolved image y to the size of GT;

(2) Normalizing the GT image x in the range of [0, 1] and then applying a linear transformation®

46 to the convolved image y to match its dynamic range with x:

Yy=ay+b (8)
(a,b) = argmin(||6,y + 6, — x|3) 9
(61,62)€R?

(3) Calculating the PSNR between the normalized GT image x and linearly transformed image .

For PSNR evaluation of 3D ZS-DeconvNet (Fig. 3d), we directly leveraged the LLS-SIM
images as the reference in that both of LLS-SIM and our 3D ZS-DeconvNet provided a resolution
improvement by ~1.5-fold theoretically. The overall calculation process is similar to the 2D cases,
except that the SR stacks were not convolved and the PSNR was only calculated within the feature-

only regions with a threshold of 0.02 to avoid obtaining an abnormally high value of PSNR.
Biological sample preparation

Cell culture, transfection, and staining
Cos7 and 293T cells were cultured in DMEM (Gibco), supplemented with 10% fetal bovine serum
(Gibco) and 1% penicillin-streptomycin in 37°C with 5% COx. For live cell imaging, the coverslips

were pre-coated with 50ug ml™! of collagen and cells were seeded onto coverslips with about 70%

27


https://doi.org/10.1101/2023.02.24.529803
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.24.529803; this version posted February 27, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

density before transfection. After 12 h, cells were transfected with plasmids using Lipofectamine
3000 (Invitrogen) according to the manufacturer’s protocol. Cells were imaged for 12-24 hours
after transfection. HeLa stable cell lines marked endoplasmic reticulum protein and Cos7 cells
marked Lifeact were constructed by lentivirus and retrovirus packaging methods respectively, and
also cultured in DMEM (Gibco) supplemented with 10% fetal bovine serum (Gibco) and 1%
penicillin-streptomycin in 37°C with 5% COx. Cells were plated about 80% density 12-24 h before
imaging. All live cell imaging were performed in a stage top incubator (Okolab) to maintain
condition at 37°C with 5% COz. Where indicated, the cells transfected with Halo Tag plasmids
were labelled with JF549 ligand following the published protocol 7, and the cells were imaged
immediately afterward. The plasmid constructs used in this study include Lifeact-mEmerald,
clathrin-mEmerald, 3xmEmerald-Ensconsin, Lampl-Halo, 2xmEmerald-Tomm20, Myosin2-

Halo, KDEL-mCherry and Halo-Calnexin.

Genome edited cell lines

SUM159 cells were genome edited sequentially to incorporate EGFP to the N-terminus of Rab11A
and then Halo to the C-terminus of Lamp1 using the CRISPR/Cas9 approach®®>°. The single-guide
RNA (sgRNA) targeting sequences are 5’-TCGCTCCTCGGCCGCGCAAT-3’ for RAB11A and
5’-CTATCTAGCCTGGTGCACGC-3’ for LAMP]I.

SUM159 were transfected with the EGFP-Rab11A donor plasmid, the plasmid coding for the
spCas9 and the free PCR product containing the sgRNA targeting sequence using Lipofectamin
3000 (Invitrogen) according to the manufacturer’s instruction. The cells expressing EGFP were
enriched by fluorescence-activated cell sorting (FACS) (FACSAria II, BD Biosciences), and
further subjected to single cell sorting to 96-well plates. The monoclonal cells with successful
EGFP incorporation were identified by PCR screening using GoTaq Polymerase (Promega). The
clonal SUM159 cells expressing EGFP-Rab11A ™" were subjected to the second round of genome
editing to incorporate Lamp1-Halo in the genome as described above. The transfected cells were
stained by the Janelia Fluor 646 HaloTag Ligands (Promega) and then enriched by FACS. The
monoclonal SUM159 cells expressing both EGFP-Rab11A ™" and Lamp1-Halo"* were confirmed
by PCR and western blot analysis.
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SUM159 cells were genome edited to incorporate EGFP to the C-terminus of clathrin light
chain A (clathrin-EGFP) using the TALEN-based approach as described®. The clathrin-EGFP
expressing cells were enriched by two sequential bulk sorting.

HeLa cells lines were genome edited to incorporate mEmerald into the N- terminus of human
genomic SC35 using CRISPR-Cas9 gene editing system. The sgRNA targeting sequence is 5°-
CGAGCAGCACTCCTAATGAT-3’ for SC35, and the sgRNA was ligated into pX330A-1x2
(Addgene, 58766). To construct donor vector, mEmerald flanked with about 1800bp homology
arms complementary to the 3’ end of human genomic SC35 locus were ligated to pEASY-blunt
(Transgene, CB101). HeLa cells were transfected with sgRNA vectors and donor vectors at a 3:1
ratio. After 48 hours, cells positive expressed mEmerald were sorted using FACS (FACSAria 111,
BD Biosciences). After one week, H2B-mCherry lentivirus were infected sorted cells and then
separated monoclonal cell into 96-well. About two weeks, cell clones were identified by PCR and

western blot, homozygous cells were used for the study.

Lentivirus packaging and stable cell line

For lentivirus packaging, the lentiviral transfer vector DNA, together with psPAX2 packaging and
pMD?2.G envelope plasmid DNA were co-transfected to HEK293T cells using Lipofectamine 3000
(Invitrogen) following the manufacturer’s protocol. After 2 days, supernatant containing viral
particles was harvested and filtered with a 0.45-mm filter (Millipore), 200 ul of filtered viral
supernatant was added to the cells. Forty-eight hours after transduction, the positive cells were
enriched by flow cytometer (FACSAria I1I, BD Biosciences) and then plated one cell per well into
96-well plates, Monoclonal cells were used for our experiments. Specifically, Calnexin-halo for
HeLa used in Fig. 3; Lifeact-mEmerald for Cos7 used in Figs. 3 and 5; calnexin-mEmerald, Mito-
dsRed and Halo-H2B for HeLa cells used in Fig. 3; H2B-mCherry for HeLa-mEmerald-SC35 used
in Supplementary Fig. 11.

C. elegans embryo preparation

C. elegans strains were cultured at 20 °C on nematode growth medium (NGM) plates seeded with
OP50 following standard protocols®. TV52712/wyEx51119/dlg-1p::GFP::PLCAPH]; jcls1[ajm-
1::GFP+UNC-29(+)+rol-6(sul006)]; gxIs257 [ced-1p::nuc-1::mCherry + unc-76(+)]] was used
in this study. The plasmid dl/g-Ip::GFP::PLCdPH was constructed following the Clontech In-

Fusion PCR Cloning System® and microinjected to jclsl;qxIs257. Extrachromosomal array
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wyEx51119 marked epidermal cell membrane. jcls/ marked the apical junctional domain of C.
elegans®. gxIs257 marked lysosomes in epidermal cells®.

About 50 L4 stage transgenic worms were put onto NGM plates with freshly OP50 48 to 60
hours before experiments. Transgenic eggs were collected under the dissecting fluorescent
microscope (Olympus MVX10), and mounted on 3% agarose pads. Lima bean to 2-fold stage
embryos were then imaged using the 3D WF mode of our Multi-SIM system.

Mouse embryo preparation

Mice used in this study were of C57BL/6J background. All animal experiments were approved by
the Animal Care and Use Committees (IACUC) of the Institute of Biophysics, Chinese Academy
of Sciences, Beijing, China. Pre-implantation embryos were isolated from 5-6-week-old females,
superovulated by intraperitoneal injection of 5 international units (IU) of pregnant mares’ serum
gonadotropin (PMSG; LEE BIOSOLUTIONS) and 5 IU human chorionic gonadotropin (hCG;
Millipore) 48 h later, and mated with male mice. Zygotes were recovered at E0.5 in M2 medium
(Millipore) and cultured in KSOM medium (Millipore) in CO2 incubator (Thermo Scientific) at
37°C with 5% CO2 until the late 8-cell stage.

For immunofluorescence, embryos were fixed with 4% paraformaldehyde in PBS for 30 min
at room temperature (RT) and washed with PBS three times. Embryos were then permeabilized in
0.5% TritonX-100 (Sigma) in PBS for 20 min at RT, washed in PBS three times, blocked in 1%
bovine serum albumin in PBS for 1 h at RT and incubated with anti-pERM antibody (Abcam,
ab76247), anti-alpha-tubulin-FITC (Sigma, F2168-.2ML) and Phalloidin-Rhodamine (Molecular
Probes, R415) overnight at 4°C. Then, embryos were washed in PBS three times, incubated with
secondary antibodies (Life technologies) for 1 h at RT, stained with Hoescht 33342 (Thermo) for

15 min at RT, washed in PBS three times and imaged by the home-built confocal microscope.

3D image visualization
The axially color-coded images of lysosomes shown in Fig. 4f, g were generated with Fiji. The 3D
rendering images of mitosis cell and mouse embryos shown in Figs. 3e, f were visualized and

generated by using of the commercial software Amira.
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