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Abstract

Climate change and other anthropogenic impacts are rapidly altering natural environmental
periodicities on a variety of time scales. Despite this, a general theoretical foundation describing
the role of periodic environmental variation in structuring species interactions and ecological
communities is still underdeveloped. Alarmingly, this leaves us unprepared to understand and
predict implications for the maintenance of biodiversity under global change. Here, we extend a
two-species Lotka-Volterra competition model that incorporates periodic forcing between
seasons of high and low production to investigate the effects of changing environmental patterns
on species coexistence. Towards this, we define coexistence criteria for periodic environments
by approximating isocline solutions akin to classical coexistence outcomes. This analytical
approach illustrates that periodic environments (i.e., seasonality) in and of themselves can
mediate different competitive outcomes, and these patterns are general across varying time
scales. Importantly, species coexistence may be incredibly sensitive to changes in these abiotic
periods, suggesting that climate change has the potential to drastically impact the maintenance of

biodiversity in the future.
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Introduction

Nature is abundant with a diverse array of periodic climate signals (Jackson et al. 2021; Pokorny
2021). The complex variations in temperature over time (Jiang and Morin 2007; Klausmeier
2010), for example, can be decomposed into different lengths of underlying periodicities using
spectral analysis, revealing a complex mosaic of short (e.g., seconds, minutes, hours, days),
medium (e.g., months, years), long (e.g., multi-decadal), and very long natural periods (e.g., 100s
to 1000s of years) (Forrest and Miller-Rushing 2010; Vasconcellos et al. 2011; Huntly et al.
2021; Joseph and Kumar 2021; Pokorny 2021). The regularity of these environmental periods
allows for species to adapt and respond to them (Bernhardt et al. 2020; Fretwell 1972; Shuter et
al. 2012; Tonkin et al. 2017), meaning that nature has evolved around, and within, these complex
temporal abiotic signatures (Mathias and Chesson 2013; Varpe 2017; Rudolf 2019). Despite the
long-known recognition of nature’s complex abiotic palette (White and Hastings 2020),
relatively little ecological research has considered the scope of nature’s abiotic variability in

maintaining species diversity (Abrams 2022).

Researchers have clearly argued that temporal variation (e.g., stochasticity) can promote species
coexistence via fluctuation-dependent coexistence mechanisms (e.g., storage effect, relative
nonlinearity) (Chesson 2000, 2018; Adler et al. 2006; Meyer et al. 2022). With these
mechanisms, temporal niche differentiation enables coexistence between species with different
competitive advantages (Angert et al. 2009; Mathias and Chesson 2013; Miller and Klausmeier
2017). Despite the broad focus on environmental variation, one specific class of variability that

has been less-well explored, yet ought to provide a generalizable and analytically tractable
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entryway into coexistence theory for variable environments, is that of periodic fluctuations — that
is, repeated and predictable fluctuations in environmental conditions. For examples, (Litchman
and Klausmeier 2001) use fast/slow approximations to elegantly show that night/day oscillations
in light can mediate competitive outcomes in phytoplankton — analytical solation that are tricky

to garner from environmentally stochastic models.

Studies are beginning to suggest that periodic environments may have significant implications
for species coexistence (Mathias and Chesson 2013; Miller and Klausmeier 2017; White and
Hastings 2020). For example, temporally changing resource conditions, which fluctuate between
seasons of high productivity to seasons of very little to no productivity (Fretwell 1972; Chesson
and Huntly 1997), may favour different species at different times of a period (Armstrong and
McGehee 1980; Litchman and Klausmeier 2001; Hastings 2012; Huntly et al. 2021). Similarly, it
has been suggested that certain life history trade-offs and temporal differentiation in competing
species’ performance may alter coexistence outcomes in the face of periodic environments
(Litchman and Klausmeier 2001; McMeans et al. 2020). Recently, Mougi (2020) extended
competition results from single periodicities to polyrhythms (i.e., multiple interacting
periodicities) to show that the coupling of differently timed resource fluctuations may broaden
the range of coexistence between diverse species that rely on limited resources. While these
recent papers highlight the importance of periodic variation, the demand for a more general
theoretical understanding on the role of periodic conditions — either in isolation or as suites of

periodicities (i.e., polyrhythms) — remains (White and Hastings 2020; Abrams 2022). Notably,
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we lack a general understanding of coexistence in periodic environments akin to our well-

established theoretical foundation framed around steady-state dynamics.

The development of such general theory is critical as climate change is currently altering the
nature of these environmental fluctuations (Dijkstra et al 2011; Shuter et al. 2012; Urban et al.
2012; Chesson 2018; Al-Habahbeh et al. 2020). Northern-hemisphere winters are becoming
shorter in length and more moderate (Caldwell et al. 2020; Edlund et al. 2017; Ficker et al. 2017;
Warne et al. 2020), and weather patterns across the globe are becoming more variable and
unpredictable (Fang and Stefan 1998; O’Reilly et al. 2015). In response, many communities have
experienced an increase in species extinction (Urban et al. 2012; Moor 2017; Fung et al. 2020)
and invasion rates (Stachowicz et al. 2002; Sharma et al. 2009; Dijkstra et al. 2011; Cerasoli et
al. 2019; Atkinson et al. 2020). Therefore, as climate change continues to alter the abiotic
conditions to which organisms have adapted to, the mechanisms regulating species coexistence
may be fundamentally altered (di Paola et al. 2012; Korpela et al. 2013; Tunney et al. 2014;
Anderson et al. 2015; Eloranta et al. 2016; Bartley et al. 2019; Caldwell et al. 2020). With all this
in mind, developing an understanding for the mechanisms behind the maintenance of

biodiversity in periodic environments becomes even more crucial.

Inspired by the fluctuating-light-driven coexistence results of Litchman and Klausmeier (2001),
we sought to develop a generalizable framework for coexistence in fluctuating environments.
Towards this, we extend upon the seasonal coexistence model first introduced by McMeans et al.

(2020) to more broadly explore the role of periodic forcing across time scales (e.g., days to
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81  multi-decadal) via different biological parameter combinations. We also generalized our
82  approach by allowing high and low growth periods (not just high growth - no growth alone),
83  with temporally-differential competitive abilities. Specifically, we extend the classical Lotka-
84  Volterra coexistence criteria to include the role of environmental periodicities. This approach
85 allows our results to be phrased around classical coexistence conditions with temporally-scaled
86 inter- and intraspecific competition strengths. Here, we define a period as a unit of time that is
87  composed of two distinct seasons of variable length and seek to generally explore which
88  competitive outcomes may occur in these environments and under what biological conditions
89 (i.e., different growth rates). Towards this, we employ an analytical approach consistent with the
90 classical Lotka-Volterra phaseplane theory by developing a simple approximation that allows us
91  to solve for the isocline solutions of a time-separated periodic model. Specifically, this
92  approximation allows us to define coexistence criteria for periodic environments. We then
93 illustrate how periodic environments can, in and of themselves, drive bifurcations (i.e., changing
94  invasion criteria) such that competitive outcomes (i.e., stable coexistence, competitive exclusion,
95  and contingent coexistence) are mediated by the environment. We end by discussing our
96  competition results in light of how climate change is altering the nature of key underlying abiotic
97  periodicities.
98
99  Methods

100  We start by extending McMeans et al. (2020)’s annual seasonal model. Here, we define season

101  more generally as a discrete division in time that repeats itself, or is periodic, of any given length

102  within a period. As such, summer (more productive) and winter (less productive) seasons in


https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.24.529749; this version posted October 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

103  McMeans et al. (2020) repeat themselves with a periodicity of one-year, but we may also

104  similarly decompose other naturally shorter (e.g., seconds (Huntly et al. 2021)) and longer (e.g.,
105  EI-Nino Southern Oscillations (Joseph and Kumar 2021)) periods of time into discrete seasons of
106  more or less productive conditions. Towards this general understanding of periodic

107  environments, we extend the Lotka-Volterra competition model (Chesson 2018) into a periodic
108  model that repeatedly alternates between two discrete seasons, a productive (fp) and less

109  productive (f;p) season. For each species, these functions are modelled with environmentally
110  specific parameter combinations to incorporate biological constraints within each season,

111 discussed below (Fig. 1a). The Lotka-Volterra model is defined as:

dX; (1)
fs,j(t) = prae s Xi(1 — ag ;i Xj — & ) Xi)

112  wherej and & represent two competing species, and S represents a season (either productive, P,
113 or less productive, LP). Here, 5 ; is the intrinsic rate of population growth for species j in a

114 season, S, ag j; is the intraspecific competitive coefficient for species j in season S, and ag jy, is
115  the interspecific competitive coefficient describing the effect of species & on species j in season
116 S.

117

118  When running simulations, and to maintain the spirit of the model assumptions (i.e., productive
119  and less productive season), we assumed the following simple biologically realistic assumptions:
120 (1) Maximal growth rates are larger in the productive season than the less productive season

121 for both species (i.e., 7p ;> 17p ;), and;
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122 (2) Since resources are more available in the productive season compared to the less
123 productive season, intraspecific competition will be lower in the productive season
124 compared to the less productive season (i.e., ap j; < app j;j)-

125  Further, to incorporate realistic biological trade-offs between competing species, we assumed
126  that species 1 is a better performer (in terms of growth and competition) in the productive season
127  compared to species 2, and the opposite is true in the less productive season. Keeping in mind
128  the previous seasonal constraints, this produces the following realistic parametric trade-offs for

129  the two species:

130 (1) Species 1 has a higher growth rate in the productive season (i.e., 7p ; > 7p ;) and a lower
131 growth rate in the less productive season (i.€., 1.p » > 77p 1) compared to species 2, and;
132 (2) Species 1 has a smaller intraspecific competitive coefficient in the productive season (i.e.,
133 @p11 < Ap ) and a larger intraspecific competitive coefficient in the less productive

134 season (i.e., @1p 11 > @ p22) compared to species 2.

135  These trade-offs are similar to an empirical case study by McMeans et al. (2020) where cold-
136  adapted fish (e.g., lake trout, Salvelinus namaycush) are seasonal generalists with moderate

137  growth rates year-round, and warm-adapted fish (e.g., smallmouth bass, Micropterus dolomieu),
138 the lake trout’s competitor, are seasonal specialists with higher growth rates during the summer
139  and lower growth rates during the winter. Note that we have not set any seasonal constraints on
140  the interspecific competitive coefficients, therefore, ag j; can be any value.

141
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142  With the above assumptions taken into consideration, our model is a periodic step function
143  (repeats every 1-time unit, or period) that goes through a productive season (P), and a less

144  productive season (LP), as follows:

aX; fp;(®) i<t<i+1p (2)
dr - \fipj() itmp<t<i+r

145  Where i is the period number (i.e. year) that runs on an integer step size of 1 from 0 to t,,,.4 (the
146  number of periods that the model runs for). 7 governs the length of each period, and p is the
147  proportion of each period that is considered productive (i.e., Tp is the length of the productive
148  season; leaving 7(/-p) as the length of the less productive season). The period length, defined by
149 7 allows us to examine how environmental periodicities, and associated biological trade-offs,
150  across time scales may influence coexistence. As above, j represents one of the two competitive
151  species, either species 1 or 2. These periodic functions of fp and f;p are defined in equation (1)
152  asfs.

153

154  We coded all numerical simulations in Mathematica 12.0. The models are integrated over

155  numerous periods until an asymptotic state, referred to hereafter as an equilibrium state, despite
156  within-period variation, has been reached (i.e., mean value from 900 — 1000 time-units) to

157  remove transient influences. However, within each time unit, as discussed above, they

158  sequentially follow first productive then less productive parameters corresponding to the given
159  productive seasonal fraction, p, within the period. The productive seasonal fraction, p, allows us
160  to change the proportion of the period that is under our productive conditions versus our less

161  productive conditions, (/-p) (e.g., increase fp) (Fig. 1b).
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162

163  Finally, all model parameterizations for our simulations can be found in our figure legends and in
164  the Supplementary Material. Below we first walk through our approximation and then our

165  general analytical results before highlighting the generality of our analytical solutions using
166  numerical simulations. For each outcome, we explore how changing the season lengths, via p,
167  influences competitive coexistence and exclusion (Fig. 1b; Table 1).

168

169  Results

170  Here, we present our approximated isocline solutions and investigate the resulting coexistence
171  criteria and behaviour under seasonality. Next, we reveal that changing season length, p, in

172  response to climate change, mediates coexistence, competitive exclusion, and contingent

173  coexistence (Fig. 3). Finally, we explore the robustness of our seasonally-mediated outcomes
174  (i.e., seasonally-driven bifurcations) across a range of period lengths (Figs. 4-6).

175

176  Approximate Isocline Solutions for the Periodic Lotka-Volterra Model

177  Although we use a periodically forced system, we can use equilibrium concepts to understand
178  the dynamics of our model. Specifically, our model reaches an attractor such that the densities
179  fluctuate modestly up and down on the attractor around a mean that does not change (i.e., an
180  asymptotic state or dynamic equilibrium; Fig.S2.2). Given this equilibrium-like dynamic, we are
181  interested in considering this asymptotic behaviour in a manner similar to the way we would for
182  asystem that reaches a true equilibrium. Here, we provide an approximation for our model

183  isoclines and equilibria that mirror those of the original Lotka-Volterra competition model.
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184
185  Note that the isoclines can be solved by recognizing that each period of ztime units would
186  necessarily have to result in zero net growth (i.e., no overall changes in density between the start

187  and end of each period), akin to classical zero-growth isoclines with a deterministic equilibrium.
188  That is, from System (2), the X; zero-net-growth condition occurs when % = (. From this, the

189  isocline solution follows as:

fo U = - f ;fu»,ju) ©)

190  This isocline solution (3) is not analytically tractable (note that each season has dynamics over a
191  time interval), making it seem as though an isocline approach appears infeasible.

192

193  Towards solving for an approximation for periodically forced isoclines, we take a slightly

194  different approach then the classical linearization of the full equations (see Litchman and

195  Klausmeier (2001) for an example). As our model is not tractable with this approach, we instead
196  proceed by assuming that we can find a linearized approximation to the isocline from the

197  periodic model by searching for points in phase space where the linearization of each seasons’
198  dynamics are exactly negated by each other (for both the X; and X> isoclines). We define such
199  points as zero net growth points in the phaseplane (i.e., a point on the forced model’s isocline)
200 and we define the collection of these points as the linearized isocline approximation of the
201  periodically-forced model. Clearly, as the length of the period, z; goes to 0, the error in this
202  linear approximation will also go to 0. However, for longer periods or large growth rates (7),

203 non-linear dynamics may drive this simplification to work poorly (see Supplementary Material

10
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204  S4). Because of this, we numerically check our analytical results with numerical calculations
205  throughout. We note that despite this, the results work surprisingly well across large parameter
206  values suggesting the linear approximation works even when some degree of nonlinear dynamics
207  are expressed.

208

209 By assuming that the instantaneous rates of change for each species at this X;-X> co-ordinate are
210  linear, we approximate the dynamics over the time period, z, by solving the equations using the
211 Fundamental Theorem of Calculus over each period (see Supplementary Material S1). That is,
212 over the interval fraction, zp, the productive trajectory scales linearly on the co-ordinate X;-X> as:

dX 4
d_tl = 1pfp1 (X1, X32) @

213  and the less productive trajectory over the interval fraction z(/-p) scales linearly as:

ax >
d_tl =1(1 = p)frp1 (X1, X2) >

214 Given Equations (4) and (5), then the linearized dynamics at a X;-X> co-ordinate negate each
215  other (i.e., resulting in the X;-isocline) when:

fpa (X1, X2) = —t(1 — p)fip 1 (X1, X3) (0)
216  This approximation (Equation (6)), if it works, can be solved symbolically as done elegantly for
217  the classical Lotka-Volterra model and thus allows an entry point into well-known coexistence

218  analyses and interpretations.

219

11
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220 From Equation (6), we see that zfactors out. After substituting the productive and less
221  productive models of Equation (1) into Equation (6) and then some algebra, the resulting isocline
222  solutions, for both species, follow the following form:

Prp1ap12 + (1 —p)Tp1QLp 12 pre1 + (1 —p)rips (7)
- 2
Prp1apa11 + (L —P)Tip1ap 11 Prp1Qp11 + 1- p)rLP,laLP,ll

X1:

223

224  The geometry of the approximated isoclines (Equation (7)) resembles that of the original Lotka-
225  Volterra isoclines, which therefore allows us to identify general rules for coexistence in periodic
226  environments akin to the original coexistence criteria (Fig. 2a). Here, the isocline approximation
227  solutions (and therefore coexistence criteria) are now based on temporal-growth-scaled inter-
228  versus intra-specific competition rates (whereas the original Lotka-Volterra conditions are not
229  dependent on growth rates; see Table 1 for Lotka-Volterra vs. Seasonal Coexistence Criteria).
230  Thus, the approximation enables us to generally determine and graphically explore how periodic
231  environments and biological rates may interact in regulating competitive outcomes (Fig. 2b).
232 Immediately, based on these conditions, we can see that the duration of each season, and the
233  corresponding biological conditions within them, play a critical role in regulating competitive
234  outcomes in periodic environments. That is, our parameter p may drive bifurcations, and

235  therefore alter competitive outcomes under changing climatic conditions (Fig. 2b).

236

237  We found numerically that this approximation works quite well (see Supplementary Material S2
238  for examples) and was, for example, able to repeatedly and accurately calculate the transcritical
239  Dbifurcation points where an interior equilibrium intersects and exchanges stability, with an axial

240  solution. Other approaches similar to our approximation, such as Litchman and Klausmeier

12
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241  (2001), have been used to accurately investigate species coexistence when organismal dynamics
242  are fast relative to their forcing speed. Given our assumption of linearity, the relative time scale
243  of forcing vs. dynamics ought to be important for our approximation’s accuracy. Indeed, when
244  cither the period length (7) or the growth rate (r) becomes larger, the apparent length of each
245  period increases, allowing for more nonlinearity within each season’s dynamics, which results in
246  the approximation to fail at predicting the asymptotic behaviour (see Supplementary Material
247  S4). Nevertheless, the range at which this approximation holds is impressively robust.

248

249  General outcomes of changing environments

250  Given that changing season lengths may have powerful implications for species coexistence, we
251  now ask how changing season length, p, (i.e., altering seasonal asymmetry) affects competitive
252  outcomes. To do this we vary the season length from p=0 (i.e., the full period being entirely less
253  productive) to p=1 (i.e., the full period being entirely productive). We note that these endpoints
254  (i.e., p=0 or p=1) are constant (i.e., no seasonality) and thus, they reduce to the classic Lotka-
255  Volterra coexistence criteria based on the individual biological conditions for P or LP (Table 1).
256  These endpoints also give us reference conditions for exploring the effects of environmental
257  periodicity and seasonally-mediated coexistence outcomes.

258

259  Since McMeans et al. (2020) found the intriguing case of seasonally-mediated coexistence, we
260  were interested in using our analytical results to unpack other examples of how seasonal change
261  could fundamentally alter competitive outcomes. McMeans et al. (2020) noted that where the

262  boundary conditions yielded competitive exclusion (i.e., exclusion at p=0 and p=1), a seasonal
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263  model could produce coexistence for intermediate p-values. This is intriguing as it immediately
264  suggests that alterations in p (say from climate change) can drive exclusion. Importantly, our
265 analytical solutions (Table 1) suggest that seasonality can mediate all possible competitive

266  outcomes at intermediate p-values (Fig. 3). Indeed, we found seasonally-mediated coexistence,
267  competitive exclusion, and contingent coexistence (i.e., alternative states) (Fig. 3a-c

268  respectively).

269

270  For these seasonally-mediated outcomes, when the qualitative competitive outcome at

271  intermediate p is fundamentally different from the extremes (i.e., p = 0 and 1), p drives a series
272  of transcritical bifurcations that move the system between different conditions in Table 1 (shifts
273  between shaded and clear zones indicate transcritical bifurcations that alter the qualitative nature
274  of the attractor in Fig. 3). Specifically, under our given sets of parametric combinations,

275 changing p always drives a series of two bifurcations for these seasonally-mediated outcomes
276  (Fig. 3). Other competitive outcomes of course are seasonally sensitive as they result in p-driven
277  bifurcations when coexistence outcomes transition between the two endpoint conditions.

278  Additionally, we note that these transcritical bifurcations can be considered as changes in the
279 invasion criteria — in this case, seasonally-altered invasion criterion — as they are commonly

280  referred to in competition theory. For example, in Fig. 3a, the gray shaded regions indicate that
281  one species cannot invade from small densities while in the white or unshaded region, it

282  suddenly can invade from small densities.

283
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284  Finally, clearly not all parameter combinations are sensitive to p-driven bifurcations. In these
285  cases, p may simply drive changes in species’ densities rather than shifts in the equilibrium

286  structure (e.g., as seen in McMeans et al. (2020)). While here we broadly unpack p-driven

287  Dbifurcations to explore the generality of these outcomes, we note that all results below have

288  nearby solutions that do not undergo bifurcations yet and are qualitatively similar in terms of the
289  general effect of p on the isocline and equilibrium geometry.

290

291  Robustness of Seasonally-Mediated Competitive Outcomes

292  To fully understand how robust the different seasonally-mediated outcomes are we looked at the
293  bifurcation structure in 2-dimensional parameter space, by using both season length, p, (as in Fig.
294  3) and the period length, z; as bifurcation parameters. We note that if seasonally-mediated

295  outcomes exist across a broad range of period lengths, 7, then this suggests that seasonally-

296 mediated competitive outcomes could be found across a wide range of natural periodicities (from
297  diurnal to multi-decadal).

298

299 In Fig. 4a, we document cases where a lack of periodicity (i.e., at p=0 or 1) drives competitive
300  exclusion while for a broad range of 7’s (ranging from 1-100 time units), we have species

301  coexistence at intermediate p-values. Our analytical solutions allow us to track the “mean

302  equilibrium” through each transcritical bifurcation from competitive exclusion of species 1 to
303  species coexistence and finally to competitive exclusion of species 2 as the length of the

304  productive period, p, increases (i.e., changing p shifts between competitive exclusion and stable

305  coexistence conditions in Table 1; Figs. 4bi-iii, S3.1). The robustness of this pattern implies that
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306 for any given z; seasonality alone can mediate coexistence at intermediate p-values. As the

307  period length (7) grows, the numerically-generated region of coexistence broadens, and the

308  second transcritical bifurcation point, the transition between species coexistence and competitive
309  exclusion of species 2, deviates away from the analytically-determined transcritical bifurcation
310  point (see more regarding approximation accuracy of seasonally mediated coexistence in S4.1).
311 This suggests that the analytical bifurcation structure is sensitive to different parametric values
312  (which is also suggested by the seasonal coexistence criteria shown in Table 1), but nonetheless,
313  the result of seasonally-mediated coexistence is qualitatively general. We note that the simple
314 linear prediction breaks down as rz grows (i.e., larger zrallows the nonlinear dynamics to

315  express themselves; see Supplementary Material S4.1). Thus, we see that seasonally-mediated
316  coexistence occurs very broadly suggesting that a large range of natural periodicities may be
317  powerful drivers of coexistence.

318

319  Similarly, in Fig. 5a, we document cases where species coexistence occurs in static environments
320 (i.e., at p=0 or 1), while competitive exclusion occurs at intermediate p-values over a broad range
321  of 7’s (here, from 1-40 time units). Following McMeans et al. (2020)’s naming convention, we
322  refer to this as seasonally-mediated competitive exclusion. As in the above case, with increasing
323  p, our analytical approximation tracks the isoclines and the “mean equilibrium” from stable

324  coexistence to competitive exclusion of species 2 through a transcritical bifurcation on the X>=0
325 axis, and finally back through the axis (via another bifurcation) to stable coexistence (Figs. 5b,
326  S3.2). The transcritical bifurcations points determined by our analytical solution accurately track

327  the numerical solutions over several period length values of zbefore the seasonal bifurcations
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328  cease at higher values of 7. Again, we note that the simple linear prediction breaks down as zr
329  grows (i.e., larger zrallows the nonlinear dynamics to express themselves; see Supplementary
330  Material S4.2). The 2-dimensional bifurcation diagram again shows a broad range in z-values
331  that yield competitive exclusion; however, it does not stretch across all z=values (i.e., very large
332  period lengths). While the exact range of parameter space that this seasonally-mediated

333  competitive exclusion occurs at is clearly dependent on other parameters, this result is still quite
334  general over a wide range of z=values, suggesting that periodic environments may also be

335  powerful drivers of competitive exclusion. Here, as 7 grows, this tongue of competitive

336  exclusion slowly shrinks across intermediate values of p. Again, this is an interesting result,
337  which suggests that simple alterations in season length may fundamentally alter competitive
338  outcomes.

339

340  Finally, in Fig. 6a, similar to the above seasonally-mediated coexistence case with competitive
341  exclusion at the boundaries (i.e., p=0 or 1), we now document cases where contingent

342  coexistence (i.e., alternative states) occurs at intermediate p values across a broad range of z’s
343  (here, from 1-100 time units). Although this outcome is quite similar to seasonally-mediated
344  coexistence with competitive exclusion being located at each boundary (i.e., p=0 or 1), its

345  isocline geometry, based off of parametric combinations, results in seasonally-mediated

346  contingent coexistence at intermediate p-values (Figs. 6bi-iii, S3.3). Our approximation tracks
347  the analytical non-trivial (interior) equilibrium, which in this case is unstable in positive (X;, X2)
348  state space (Fig. 6bii). Here, initial densities determine which species will dominate and which

349  species will become extinct with time (i.e., which of the two stable axial solutions, shown in Fig.

17


https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.24.529749; this version posted October 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

350  6bii, the system will end up at). The robustness of this pattern also implies that for any given z,
351  seasonality may be a powerful driver of contingent coexistence (i.e., changing p moves from
352  competitive exclusion to contingent coexistence conditions in Table 1). As 7z grows, the

353  numerically-generated contingent coexistence region expands across higher productive season
354  lengths before it narrows around lower lengths of the productive season. Again, our analytical
355  solution accurately determines at which p values the transcritical bifurcations will occur for very
356  small zvalues, but falls off with larger period lengths, 7 (see Supplementary Material S4.3 for
357  approximation accuracy of seasonally mediated contingent coexistence), despite the general
358  phenomenon remaining across time scales.

359

360  These three seasonally-mediated outcomes suggest that seasonal alterations, due to climate

361  change, may drive precipitous changes in competitive systems. All of these seasonally-mediated
362  outcomes appear general and may be found across various ecosystems that experience abiotic
363  fluctuations of any period length. Similarly, for a given period length (e.g., annual variation),
364  these outcomes may be highly general for competing organisms with a range of life history

365  strategies (i.e., vital rates that dictate the speed of biotic dynamics relative to any environmental
366  variation). On the other hand, depending on parametric values, not all instances of periodic

367  variation will drive these series of bifurcations. Under some conditions, there are simply p-driven
368  changes in species densities between the boundary conditions where only one bifurcation (Figs.

369  S2.1e, S2.1f) or no bifurcations (Figs. S2.1d) are found under changing periodicities.
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370  Discussion

371  Here, we present a linear approximation similar in approach to other periodic models (e.g., Han
372  etal. (1999); Litchman and Klausmeier (2001)) to analytically solve for a periodic Lotka-

373  Volterra competition model (see Table 1 for seasonal coexistence criteria). Our linear

374  approximation quantitatively breaks down for large values in z but still largely operates to
375  qualitatively predict the nature of periodic-forcing on competition (e.g., Fig. 4a,6a). This

376  approximation, akin to the longstanding classical Lotka-Volterra coexistence conditions,

377  importantly allows us to derive a parallel set of coexistence conditions for periodic

378  environments. With the inclusion of periodic environmental forcing, we find that species

379  coexistence depends on seasonal-growth-scaled inter- versus intra-specific competition strengths
380  (Table 1). That is, where classical stable coexistence requires intraspecific competition to be
381  greater than interspecific competition, for both species, we show that intraspecific competition,
382  scaled by seasonal growth, must be greater than interspecific competition, scaled by seasonal

383  growth, for both species.

384

385  These seasonal coexistence conditions importantly suggest that species’ coexistence may be

386 incredibly sensitive to changes in season length. While McMeans et al. (2020) found seasonally-
387  mediated coexistence through empirically-motivated numerical simulations, our results show that
388  secasonality can mediate coexistence, competitive exclusion, and contingent coexistence (Fig. 3).
389  That is, seasonality, in and of itself, can drive all possible competitive outcomes (i.e., Table 1).
390  As these seasonally-mediated outcomes appear across a vast range of period lengths (Fig. 4-6),

391  this suggests that these seasonally-mediated outcomes are quite robust, and can be found across a
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392  wide range of different temporal scales and life history strategies (i.e., fast vs. slow life history
393  strategies).

394

395  As the change in season length (p) may have an important role in mediating competitive

396  outcomes (Fig. 3), climate change is altering environmental periodicities across a range of
397  temporal scales (Dijkstra et al. 2011; Shuter et al. 2012; Urban et al. 2012; Chesson 2018; Al-
398  Habahbeh et al. 2020), and our results suggest that this could have sudden and drastic —

399  sometimes unpredictable — effects on coexistence. Often the responses to changing seasons are
400 nonlinear, and some of these outcomes are unexpected based on the classical Lotka-Volterra
401  conditions under non-seasonal environments (e.g., nonlinear paths between the boundary

402  conditions at p = 0 and 1; Figs. 3b, 5, S2.1b and d). As an example, we find cases where

403  competitive exclusion occurs under intermediate season lengths, even though coexistence is
404  expected under the same non-seasonal conditions (i.e., coexistence occurs for entirely low- or
405 entirely high-productive conditions; Fig. 3b). Alarmingly, these strong nonlinear effects of
406 changing season length, p, suggest that precipitous changes in species density and composition
407  may unexpectedly occur as climate change alters the nature of seasonality.

408

409  Although simple, the seasonal competition model we examined here is based on biologically
410 realistic assumptions about competitive species in temporally varying environments. First,
411  periodic environments are commonly reflected by times of high and low productivity, where
412  species tend to flourish during the productive seasons, and decline (e.g., mortality-dominated)

413  during the less productive seasons as resource availability becomes sparse (Fretwell 1972;
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414  Litchman and Klausmeier 2001; Mutze 2009; Klausmeier 2010; Hastings 2012; Lyu et al. 2016;
415  Vihtakari et al. 2016). These periods therefore impact species’ growth rates, but also offer the
416  potential for differential responses of competing species to seasonally-driven environmental
417  variation (Chesson and Huntly 1997; Forrest and Miller-Rushing 2010; Shuter et al. 2012; Gao et
418 al. 2016; Chesson 2018; Huang et al. 2019). It is well known that competing species can display
419  temporal trade-offs in stochastic environments that can promote coexistence (Angert et al. 2009;
420  Shuter et al. 2012; Mougi 2020). For instance, Litchman and Klausmeier (2001) discovered that
421  slow fluctuations in light promote stable coexistence between competing species of

422  phytoplankton who exhibit trade-offs in performance across temporally changing resource

423  availability. More recently, and consistent with our theoretical results here, empirical evidence is
424  beginning to suggest species may show trade-offs to regular seasonal fluctuations that might
425  promote coexistence. For example, a species may be a seasonal specialist (e.g., display a very
426  high growth rate during the summer and a low growth rate during the winter) while its

427  competitor may be more of a temporal generalist, who’s able to maintain roughly the same

428  growth rate year-round (Niiyama 1990; Chan et al. 2009; Abrams et al. 2013; Korpela et al.
429  2013; Meyer et al. 2022).

430

431  While we concentrate on temporal forcing in our model, seasonal signals in competition may
432  often be related to spatial-temporal and behavioural patterns that govern species’ competitive
433  outcomes (McMeans et al. 2020). As an example, in some cases, species may migrate (Holt and
434  Fryxell 2011; Teitelbaum et al. 2015; Tavecchia et al. 2016; le Corre et al. 2020; Moorter et al.

435  2021) or hibernate (Campbell et al. 2008; Giraldo-Perez et al. 2016) during less productive
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436  seasons, opting out of competition when resources are scarce (Suski and Ridgway 2009). These
437  behavioural strategies may counteract potential negative effects of periodic variation to some
438  extent and thus promote coexistence by reducing competitive interactions during unfavourable
439 times. More empirical research is needed to further understand these spatial and behavioural
440  strategies, and seasonal trade-offs between competitive species, in order to understand their
441  mechanistic role in maintaining biodiversity with climate change.

442

443  As nature abounds with temporal variation, grasping a better understanding of coexistence

444  mechanisms in these fluctuating environments is now even more crucial with climate change.
445  We have provided an analytical solution to begin understanding these effects. Our research has
446  uncovered three competitive outcomes that could be found across a large range of natural

447  periodicities and life history strategies. As species coexistence appears to be incredibly sensitive
448  to periodic variation, climate change has the potential to drastically impact future competitive
449  outcomes in the natural world.
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644  Table 1: Lotka-Volterra Coexistence Conditions vs. Seasonal Coexistence Conditions.

Lotka — Volterra

Seasonal Coexistence

Criteria Criteria
Stable 041 > Ozq Pres0p11 + (1 — P)ripa0ipar _ Prp20p2g + (1 — PIIipaip2y
Coexistence pres + (1 —pirps prez + (1 — p)rip:
Oy > Oy Prp20p 2z + (1 — P)lipatipzz _ Prp10piz + (1 — P)lip1ip 2
prez + (1 —pirip; pres + (1 = pirips
Competitive g1 > Opq Prp10p 11 + (1 = P)Iip10ip11 _ Prp20p21 + (1 — P)lip20ipoy
Exclusion pres + (1 —pirps prez + (1 — p)rip:
by spi
Oy < Oq3 Prp20p 2z + (1 — P)lipatipzz  Prp10piz + (1 — P)lip1ip sz
pPrez + (1 — p)rip: pres + (1 —p)rips
Competitive g1 > Opq Prp10p11 + (1 = P)Iip10ip11 _ Prp20p21 + (1 — P)lip20ipoy
Exclusion pres + (1 —pirps prez + (1 —p)rip:
by sp2
Oy < Qg Prp20p22 + (1 — P)rpp20p2z  Prpapaz + (1 — PIIip10ip12
Prez + (1 —p)rip: pres + (1 —p)rips
Contingent ap1 < Ozg Prp10p11 + (1 — P)lip10up11 _ Pre20p21 + (1 — PIripo0ip21
Coexistence pPres + (1 —pirps prez + (1 —p)rip:
Oy < Qg Prp20p22 + (1 — P)rpp20ip2z  Prpapaz + (1 — PIIip10ip 12

prpz + (1 — p)rip,

prp1 + (1 —p)rips
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Figure 1

a) Model Set Up
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Fig. 1 Model schematic investigates the projected mean equilibrium density over the length of
the productive season when species compete under different periodic conditions. a) The model
set-up investigates two time-separated seasons with different environmental conditions
(productive (white box) and less productive (gray box)). In numerical simulations, competitive
species, X; (white fish) and X> (black fish), exhibit different trade-offs in response to these
differing environmental conditions, where each species may experience different levels of inter-
to intraspecific competitive interactions (thickness of arrows) depending on which species may
have an overall better performance (in terms of growth and competition) in one season compared
to the other. An experiment is projected over many periods (say 1000 time-units) of length 7
until it reaches an asymptotic state (we refer to this as an equilibrium despite the within-year
variation). b) In the model experiment, the projected mean equilibrium density, which represents
a fluctuating’ species density at its asymptote, is calculated as the duration of the productive
season (as a proportion of each time unit) varies from 0 — 1.
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Fig. 2 Isocline approximation of X; density on X> density. a) Stable coexistence isocline
approximation on phaseplane of X; (dashed line) and X> (solid line) densities. Approximate
isocline solutions for a given species occur when the instantaneous rate of change (represented
by vector arrows) in each season, scaled by seasonal duration, are equal and opposite of each
other (i.e., they “cancel” each other out such that the net change over a full period is null). Refer
to Table 1 for similarities to Lotka—Volterra coexistence conditions. b i-iii) illustrates a p-driven
bifurcation, showing the movement of the isoclines as the productivity season travels from 1) p =
0.5; coexistence, to ii) p = 0.6; transcritical bifurcation, to iii) p = 0.7; competitive exclusion of
species 2. Parametric values: ap ;,=0.44, ap2:=0.66, ap 12=0.25, ap2/=0.53, arp,1/=1.11,
01p,22=0.83, arp 12=1.83, arp2/=0.48, rp=1.7, rp2=1.2, r1p1=0.3, rp=1.
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Fig. 3 Numerical simulations of mean density over length of productive season (p) for
seasonally-mediated outcomes. White zone represents stable coexistence, light gray zone
represents competitive exclusion, and dark gray zone represents contingent coexistence where
the equilibrium is unstable and multiple attractors exist between the two species. a) Seasonally-
mediated coexistence. Parametric values: ap2;=0.35, ap,12=0.165, ap,1:=0.33, ap2,=0.436,
re1=1.7, rp2=1.2, arp21=0.385, arp,12=0,805, arp,1;=0.73, arp,22=0.55, r1r,1=0.3, rip=1. b)
Seasonally-mediated competitive exclusion. Parametric values: ap2/=0.29, ap,;2=0.38,
op.11=0.31, ap2:=0.44, rp.;=4, rp2=1.2, orp2i=1.27, orp,12=1.02, arp,1,/=1,67, arp2=1.18 rrp;=0.3,
rp2=1. ¢) Seasonally-mediated contingent coexistence. Parametric values; ap 2;/=0.548,
op,12=0.33, ap.11=0.33, ap2:=0.363, rp.=1.7, rp2=1.2, arp2/=1.31, arp.12=1.89, arp.1;=1.65,
01p,22=0.66, r.p1=0.3, rip=1.
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Fig. 4 Two-dimensional bifurcation diagram of seasonally-mediated coexistence. a) seasonally-
mediated coexistence expanding over a wide range of period lengths (7). The red dashed lines
represent the isocline approximation’s prediction of the two transcritical bifurcation points at
p=0.115 and p=0.69 (see Fig. S3.1 for complete transition across p, and S4.1 for explanation of
approximation accuracy of seasonally mediated coexistence). b) isocline approximation tracks
the approximate equilibrium, which represents the mean asymptotic behavior, as the productive
season (p) increases from 1) p=0.1; competitive exclusion of species 1, to ii) p=0.4; stable
coexistence, to iii) p=0.8; competitive exclusion of species 2. Filled in circles are stable
equilibrium points, and open circles are unstable equilibrium points. Parametric values:
op.21=0.35, ap,12=0.165, ap,1;1=0.33, ap2,=0.436, rp,/=1.7, rp=1.2, arp,2:/=0.385, arp,12=0,805,
orp,11=0.73, arp.22=0.55, rip,1=0.3, repo=1.
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702  Fig. 5 Two-dimensional bifurcation diagram of seasonally-mediated competitive exclusion. a)
703  seasonally-mediated competitive exclusion expanding over a wide range of period lengths (7).
704  The red dashed lines represent the isocline approximation’s prediction of the two transcritical
705  bifurcation points at p=0.04 and p=0.97 (see Fig. S3.2 for complete transition across p, and S4.2
706  for explanation of approximation accuracy of seasonally mediated competitive exclusion). b)
707  isocline approximation tracks the approximate equilibrium, which represents the mean

708  asymptotic behaviour, as the productive season increases from i) p=0.0; stable coexistence, to ii)
709  p=0.3; competitive exclusion of species 2, and back to iii) p=1.0; stable coexistence. Filled in
710  circles are stable equilibrium points, and open circles are unstable equilibrium points. Parametric
711 wvalues: ap2/=0.29, ap,12=0.38, ap,1/=0.31, ap2:=0.44, rp =4, rp>=1.2, arp2:=1.27, arp 1=1.02,
712 oarp1=1,67, arp22=1.18 rrp=0.3, rp=1.
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Fig. 6 Two-dimensional bifurcation diagram of seasonally-mediated contingent coexistence. a)
seasonally-mediated contingent coexistence expanding over a wide range of period length (7).
The red dashed lines represent the isocline approximation’s prediction of the two transcritical
bifurcation points at p=0.07 and p=0.69 (see Fig. S3.3 for complete transition across p, and S4.3
for explanation of approximation accuracy of seasonally mediated contingent coexistence). b)
isocline approximation tracks the approximate equilibrium, which represents the mean
asymptotic behaviour, as the productive season increases from 1) p=0.0; competitive exclusion of
species 1, to ii) p=0.4; contingent coexistence, to iii) p=0.8; competitive exclusion of species 2.
Filled in circles are stable equilibrium points, and open circles are unstable equilibrium points.
Parametric values; ap2=0.548, ap,12=0.33, ap,1:=0.33, ap2,=0.363, rp=1.7, rp=1.2, arp2/=1.31,
orp,12=1.89, arp,1/=1.65, arp22=0.66, rip=0.3, rip=1.

36



726

727

728

729

730

731

732

733

734

735

736

Coexistence in Periodic Environments: Supplementary Material

S1: A Linearization of the Periodic Lotka-Volterra Dynamics

If we consider any point on the phaseplane (X;-X>) due to the productive season that lasts from 0
to zp where 7 is the period length, and p is the proportion of each period that is considered

productive, then we know:

w dXP,l
Xp1(tp) = Xp1(0) +f dt dt
0
(1)
P dx
Xpo(tp) = Xp,(0) + f dl;'Z dt
’ @)

These dynamics follow the differential equation over the trajectory from 0 to zp starting at the

dXP.j
dt

values Xp;(0). We linearize the trajectory over 0 to zp by assuming the remains constant
dXp

dt'j for a point in the phaseplane, say for time (0)). As this

(e.g., we calculate the instantaneous

is now a constant, we can use the Fundamental Theorem of Calculus to solve for Equations (1)

and (2) above yielding:
p
dXr, t

Xp1(tp) — Xp1(0) = dz;,1 0 3)

ax ax

XP,1(TP) —Xp,(0) =1p d};l -0 d?l
4)
dXP,l
Xpa1(tp) — Xp1(0) = 1P dt

(5

Similarly, we solve for the less productive season between zp and z, giving us:
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dX1pa
dt

X1p1(T) — Xp1p1(tp) = (1 —p)
(6)

Thus, the linearization estimates the trajectory as a linear scale movement following the length of
the time interval (either zp, or z(1 — p)). We can take this simple estimate to estimate the within

seasonal dynamics and use them to estimate the periodic 0-isoclines.

Given Equations (5) and (6), the X; isocline occurs when:

dX dX
™ —di’l =—-17(1—p) dL:'l )

With this approximation, we substitute the productive and less productive Lotka-Volterra models
into equation (7):

1p1 X1 (1— ap11X1 — O(10,12X2) =—1t(1l-p)rp X, (1— A p11X1 — aLP,lZXZ) (8)

Noticing that z cancels out, we can now solve for the isocline solution:

Prp1ap12 + (1 —p)Tp1aLp 12 prp1+ (1 —p)rips 9)
- 2
Prp1Qp11 t+ (1 =p)1p1arpa1 prp1apq1 + (1 — p)rLP,laLP,ll

X1:

Similarly, we would perform the same steps to find the isocline solution for X>. This isocline
approximation, for both species, allows us to determine coexistence criteria for seasonal

environments.
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S2: Isocline Approximation and Numerical Simulation Comparison
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752

753  Fig. S2.1 Comparison of Isocline Approximation against Numerical Simulations. White zone
754  represents stable coexistence, light gray zone represents competitive exclusion, and dark gray
755  zone represents contingent coexistence. a) Seasonally mediated coexistence. Parametric values:
756  ap2=0.35, ap12=0.165, op,1;=0.33, ap2:=0.436, rp;=1.7, rp2=1.2, orp,2:=0.385, arp,12=0,805,
757  o0rp11=0.73, arp22=0.55, rp,1=0.3, rzp2=1. b) Seasonally mediated competitive exclusion.

758  Parametric values: ap2/=0.29, ap,12=0.38, ap,1;=0.31, ap2:=0.44, rp =4, rp=1.2, orp2:=1.27,
759  arp12=1.02, arp,1=1,67, arp22=1.18 rrp=0.3, r.p2=1. ¢) Seasonally mediated contingent

760  coexistence. The equilibrium is unstable in the dark gray zone and multiple attractors exist

761  between the two species. Parametric values: ap2;/=0.548, ap,12=0.33, ap,1/=0.33, ap2:=0.363,
762  rpi=1.7,rp2=1.2, arp2i=1.31, arp,12=1.89, arp,1/=1.65, arp,2:=0.66, rip =0.3, rip=1. d)

763  Counterintuitive mean density change. Parametric values: ap2/=0.2, ap,12=0.155, ap,1;=0.315,
764  0p2=0.335,rp=1.7, rp2=1.2, arp2/=0.57, arp,12=0.4, orp,1/=1, arp,22=0.715, rrp,;=0.3, rep2=1. €)
765  Mean density changes with competitive exclusion in the less productive season. Parametric
766  values: ap2/=0.288, ap 12=0.15, ap,1:=0.336, ap2,=0.402, rp=1.7, rp2=1.2, arp,2/=0.354,

767  arp,12=0.75, arp,1/=0.666, arp2:=0.462, rip =0.3, rrp=1. f) Mean density changes with

768  competitive exclusion in the productive season. Parametric values: ap2,=0.35, ap 12=0.165,
769  ap1=0.33, ap2:=0.44, rp;=1.7, rp=1.2, arp2/=0.28, arpr,12=0.825, orp,1:=0.73, orp2:=0.94,
770  rip=0.3, rep2=1.
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772  Fig. S2.2 Time Series at p = 0.5, and 7= 1 for the comparison of isocline approximation against
773  numerical simulations. a) Seasonally mediated coexistence. Parametric values: ap,2;=0.35,
774  ap2=0.165, ap1:=0.33, 0p2:=0.436, rp;=1.7, rp2=1.2, arp2/=0.385, arp,12=0,805, arpr,1/=0.73,

40



775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

orp,22=0.55, r.p,1=0.3, rip2=1. b) Seasonally mediated competitive exclusion. Parametric values:
op,21=0.29, ap,12=0.38, ap,1;=0.31, ap2=0.44, rp =4, rp=1.2, oarp2/=1.27, orp.12=1.02,
orp,11=1,67, arp22=1.18 rp 1=0.3, rrp2=1. ci) Seasonally mediated contingent coexistence. X;
competitively excluded X>. Parametric values: ap2,=0.548, ap,12=0.33, ap,1/=0.33, ap2:=0.363,
rei=1.7, rp2=1.2, arp2i=1.31, arp,12=1.89, arp,1:=1.65, arp,2:=0.66, r.p 1=0.3, rrp2=1. cii)
Seasonally mediated contingent coexistence. X> competitively excluded X;. Parametric values:
op2:=0.548, ap12=0.33, ap,1;=0.33, ap2,=0.363, rp;=1.7, rp2=1.2, arp2:=1.31, arp,1>=1.89,
orp,11=1.65, arp22=0.66, rrp,;=0.3, r.p2=1. d) Counterintuitive mean density change. Parametric
values: ap2:/=0.2, op,12=0.155, ap,1/=0.315, ap2,=0.335, rp;=1.7, rp2=1.2, 01p,2:/=0.57, orp,12=0.4,
orp,11=1, arp22=0.715, rrp1=0.3, r.p2=1. €) Mean density changes with competitive exclusion in
the less productive season. Parametric values: ap 2;=0.288, ap 12=0.15, ap 1,=0.336, ap,2:=0.402,
rp=1.7, rp2=1.2, orp,21=0.354, arp 12=0.75, arp,11=0.666, arp2:=0.462, rrp ;=0.3, rrp2=1. f) Mean
density changes with competitive exclusion in the productive season. Parametric values:
op2=0.35, ap 12=0.165, ap,1;/=0.33, ap2,=0.44, rp,=1.7, rp,=1.2, arp2/=0.28, arp 12=0.825,
orp,11=0.73, arp22=0.94, r.p 1=0.3, rp2=1.
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790  S3: Tracking Isocline Approximation across Productivity Length for all Seasonally

791  Mediated Competitive Outcomes
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792

793  Fig. S3.1 Seasonally mediated coexistence isocline approximation. Isocline approximation

794 tracking the interior equilibrium as the productive season increases in length from a) p=0.1;
795  competitive exclusion of species 1, to b) p=0.115; transcritical bifurcation, to c) p=0.4; stable
796  coexistence, to d) p=0.69; transcritical bifurcation, to e) p=0.8; competitive exclusion of species
797 2. Parametric values: ap2/=0.35, ap12=0.165, op,1;=0.33, ap,2:=0.436, rp;=1.7, rp,=1.2,

798  arp2=0.385, arp 12=0,805, arp,1/=0.73, arp,22=0.55, rip=0.3, rrp=1.
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800  Fig. S3.2 Seasonally mediated competitive exclusion isocline approximation. Isocline

801  approximation tracking the interior equilibrium as the productive season increases in length from
802 a) p=0.0; stable coexistence, to b) p=0.04; transcritical bifurcation, to ¢) p=0.3; competitive

803  exclusion of species 2, to d) p=0.97; transcritical bifurcation, to e) p=1.0; stable coexistence.
804  Parametric values: ap2/=0.29, ap,12=0.38, ap,1;=0.31, ap2:=0.44, rp =4, rp=1.2, orp2/=1.27,
805  wpi2=1.02, arp,1i=1,67, arp2:=1.18 rrp.;=0.3, rrp2=1.

43



806

807
808
809
810
811
812

a)p=0.0 b) p =0.07 c)p=04

251 25F

20F 20f

>

=

n s s

c

[ e N N N Bttt X1
(@] — X2
23

L L L
0.5 1.0 15 20 25 3.0

Xz Density

@ Stable
O Unstable
@ Bifurcation

x4 Density

! Approximate
o Equilibrium

L L L L r L L L L L
~05 0.0 05 10 15 20 25 30 -05 0.0 05 1.0 15 20 25 3.0

X, Density X, Density

Fig. S3.3 Seasonally mediated contingent coexistence isocline approximation. Isocline
approximation tracking the interior equilibrium as the productive season increases in length from
a) p=0.0; competitive exclusion of species 1, to b) p=0.07; transcritical bifurcation, to c) p=0.4;
contingent coexistence, to d) p=0.69; transcritical bifurcation, to ) p=0.8; competitive exclusion
of species 2. Parametric values: ap2,/=0.548, ap,12=0.33, ap,1/=0.33, ap22=0.363, rp=1.7,
rp2=1.2, orp2/=1.31, orp,12=1.89, arp,1/=1.65, orp 22=0.66, r.p /=0.3, rrp=1.
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S4: Accuracy of the Linear Isocline Approximation

Our results hold for a broad range of period lengths but clearly depend on specific
parameterizations that alter the timescale or the effects of timescale. Recall that our
approximation operates by assuming a zero population growth rate exists in the phaseplane
where linearization’s of the Lotka-Volterra equations cancel out over the high growth and low
growth periods (i.e., linearization of the high growth for species X; and species X; are both equal
and opposite in sign to the low growth linearization). Given this assumption, we can immediately
ask when we expect nonlinear dynamics to dominate and potentially threaten the validity of the
linear assumption. First, the longer the period of the forced parameters (7), then the longer the
time the dynamics have to fall off the linear assumption. Further, the larger the growth rates (7),
the larger the potential for nonlinear dynamics even with smaller periods (7). As a result, we can
say the larger the product 7, the more likely our assumption of linearity is threatened.

Effectively, zr sets the relative pace of the seasonal dynamics.

Recognizing that linear assumptions will lose accuracy when dynamics become nonlinear with
longer periods and fast growth rates (i.e., there is more time for dynamics to become nonlinear),
we first compare the dynamics (set by the original growth rates in the manuscript) with the
approximation’s accuracy when the period length (7) is increased. Next, we slow the dynamics
by dividing all species’ growth rates () by 10-units and compare the approximation’s accuracy
with these dynamics when the period length increases. Our results below show that indeed our
approximation can fall off, but even here for large, combined values of rz, the approximation

remains a reasonable qualitative predictor of steady state behaviour for seasonally-mediated
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835  coexistence and contingent coexistent (S4.1 and S4.3 respectively). We note that the seasonally
836  mediated competitive exclusion is not as robust (S4.2).

837

838  Asseen in Fig. 4a, the analytical approximation still accurately predicts the numerically

839  generated transcritical bifurcation at p = 0.11 (mean densities transition between competitive
840  exclusion of species 1 to coexistence of both species), even when the period length (7), reaches
841 100 time-units. This is due to the large difference between the productive and less-productive
842  growth rates of species 1. However, the approximation begins to inaccurately predict where the
843  second numerically generated transcritical bifurcation will occur (p = 0.69; mean density

844  transition between coexistence and competitive exclusion of species 2) when 7= 5 time-units
845  (Fig. S4.11b). With the original growth rates used in the manuscript, when the period length is
846  small (7= 1), the seasonal dynamics are relatively linear, and the approximation accurately

847  predict the true mean densities from the numerical simulation (Figs. S4.11a and S4.12a).

848  However, as we increase the period length to 5 time-units, the dynamics become more nonlinear
849  as, with enough time, species’ densities reach their seasonal equilibrium and spend more time at
850 these fixed points (Fig. S4.12b). Here, the numerically generated mean densities will be skewed
851  closer towards this equilibrium, while the linear approximation fails to capture this (Fig. S4.11b).
852  When all growth rates are slowed down (all ’s divided by 10 units), the seasonal dynamics
853  become more linear, and the approximation is more accurately able to track the mean densities
854  even when the period length (7) is increased from 1 (Figs S4.11c and S4.12¢) to 5 time-units
855  (Figs S4.11d and S4.12d).

856
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In Fig. 5a, the approximation still predicts seasonally mediated competitive exclusion, even
when species coexist at very large period lengths (7> 33 time units) across all p-values.
However, when 7is increased from 1 to 10 time-units with the original growth rates, the
dynamics become more nonlinear (Figs. S4.22a and S4.22b respectively) and the approximation
begins to fail at tracking the numerically-generated mean densities throughout the entire range of
p-values (Figs. S4.21a and S4.21b respectively), though it still captures the qualitative behavior
and presence of the bifurcations. When growth rates are smaller, the seasonal dynamics are now
more linear (Figs. S4.22c and FigsS4.22d), and the approximation more accurately tracks the
numerically generated mean densities as zincreases from 1 to 10 time-units (Figs. S4.22c and

FigsS4.22d respectively).

For seasonally mediated contingent coexistence, as the period length (7) increases, the region of
contingent coexistence from the numerically-generated results first broadens and then shrinks
(Fig. 6a). With the original growth rates, as the period length is increased from 1 to 20 time-
units, the seasonal dynamics become more nonlinear (Figs. S4.32a and S4.32b respectively), and
the approximation is unable to track the true bifurcations based on our numerical results (Figs.
S4.31a and S4.31b respectively). When the growth rates are a tenth of their original size (all ’s
divided by 10 units), the dynamics slow down and are now more linear as zis increased (Figs.
S4.32c and S4.32d), allowing the approximation to more accurately track the numerically-

generated mean densities over the entire range of p-values (Figs. S4.31c and S4.31d).
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S4.1 Approximation Accuracy of Seasonally Mediated Coexistence
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Fig. S4.11 Isocline approximation — mean density plots over the length of the productive season
(p) for seasonally-mediated coexistence. White zones represent coexistence and light grey zones
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represent competitive exclusion. a) and b) original growth rates (those used throughout
manuscript: rp; = 1.7, rp2 = 1.2, rrpr = 1, rzp2 = 0.3) when the period length 7= 1 and 5 time-

units respectively. ¢) and d) all growth rates have been divided by 10 units (7p; = 0.17, rp2 = 0.12,

rrer = 0.1, r.p2 = 0.03) when the period length = 1 and 5 time-units respectively. Parametric
values: ap,2/=0.35, ap,12=0.165, ap 1;=0.33, ap 2,=0.436, arp2:/=0.385, arp,12=0,805, arp,1/=0.73,

orp,22=0.55.
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Fig. S4.12 Isocline approximation — time series for seasonally-mediated coexistence. Length of
productive season (p) = 0.5 represented by white zones, and light grey zones represent the less-
productive season. a) and b) original growth rates (those used throughout manuscript: rp; = 1.7,
rp2=1.2, ripr = 1, rzp2 = 0.3) when the period length 7= 1 and 5 time-units respectively. c¢) and
d) all growth rates have been divided by 10 units (rp; = 0.17, rp> = 0.12, rp; = 0.1, rzp2 = 0.03)
when the period length = 1 and 5 time-units respectively. Parametric values: ap,2/=0.35,

op 12=0.165, ap 1/=0.33, 0p 2,=0.436, arp2/=0.385, arp 12=0,805, arp 1;=0.73, orp,22=0.55.
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S4.2 Approximation Accuracy of Seasonally Mediated Competitive Exclusion
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Fig. S4.21 Isocline approximation — mean density plots over the length of the productive season
(p) for seasonally-mediated competitive exclusion. White zones represent coexistence and light

grey zones represent competitive exclusion. a) and b) original growth rates (those used

throughout manuscript: rp; =4, rp2 = 1.2, rep; = 1, rep2 = 0.3) when the period length 7= 1 and
10 time-units respectively. ¢) and d) all growth rates have been divided by 10 units (rp; = 0.4, rp2
=0.12, r.p; = 0.1, r2p2 = 0.03) when the period length = 1 and 10 time-units respectively.
Parametric values: ap2/=0.29, ap,12=0.38, ap,1/=0.31, ap2:=0.44, arp2/=1.27, arp,12=1.02,

orp,11=1,67, arp2=1.18.
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906  Fig. S4.22 Isocline approximation — time series for seasonally-mediated competitive exclusion.
907  Length of productive season (p) = 0.5 represented by white zones, and light grey zones represent
908  the less-productive season. a) and b) original growth rates (those used throughout manuscript: 7p;
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S4.3 Approximation Accuracy of Seasonally Mediated Contingent Coexistence
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Fig. S4.31 Isocline approximation — mean density plots over the length of the productive season
(p) for seasonally-mediated contingent coexistence. Light grey zones represent competitive
exclusion and grey zones represent contingent coexistence. a) and b) original growth rates (those
used throughout manuscript: rp; = 1.7, rp2 = 1.2, rrpr = 1, rrp2 = 0.3) when the period length 7=
1 and 20 time-units respectively. ¢) and d) all growth rates have been divided by 10 units (rp; =
0.17, rp2=0.12, rzp; = 0.1, rp2 = 0.03) when the period length = 1 and 20 time-units
respectively. Parametric values: ap2/=0.548, ap 12=0.33, ap,1,/=0.33, ap2,=0.363, arp2/=1.31,
orp,12=1.89, arp 1/=1.65, arp22=0.66.
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924  Fig. S4.32 Isocline approximation — time series for seasonally-mediated contingent coexistence.
925  Length of productive season (p) = 0.5 represented by white zones, and light grey zones represent
926  the less-productive season. a) and b) original growth rates (those used throughout manuscript: 7p;
927 =1.7,rp2=1.2,rp; = 1, rep2 = 0.3) when the period length 7= 1 and 20 time-units respectively.
928 c¢) and d) all growth rates have been divided by 10 units (rp; = 0.17, rp2 = 0.12, rzp; = 0.1, rip2 =
929  0.03) when the period length = 1 and 20 time-units respectively. Parametric values: ap2/=0.548,
930  ap12=0.33, ap,1/=0.33, ap22=0.363, arp2/=1.31, arp,12=1.89, arp,1;=1.65, arp2:=0.66.
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