

Coexistence in Periodic Environments

Alexa M Scott^{1*}, Carling Bieg^{1,2}, Bailey C McMeans³, Kevin S McCann¹

¹ Department of Integrative Biology, University of Guelph, Ontario, Canada

² Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA

³ Department of Biology, University of Toronto, Mississauga, Ontario, Canada

*corresponding author

ORCIDs and email addresses

Alexa M Scott: 0000-0003-0776-0582 (ascott16@uoguelph.ca)

Carling Bieg: 0000-0003-1552-2007 (carling.bieg@gmail.com)

Bailey C McMeans: 0000-0002-9793-6811 (bailey.mcmeans@utoronto.ca)

Kevin S McCann: 0000-0001-6031-7913 (ksmccann@uoguelph.ca)

Keywords: Periodicities, species coexistence, competition, Lotka-Volterra, climate change

Word Count: 5340 (main body)

Submission Content: Main text, one table, six figures, supplementary material (4 sections)

1 Abstract

2 Climate change and other anthropogenic impacts are rapidly altering natural environmental
3 periodicities on a variety of time scales. Despite this, a general theoretical foundation describing
4 the role of periodic environmental variation in structuring species interactions and ecological
5 communities is still underdeveloped. Alarmingly, this leaves us unprepared to understand and
6 predict implications for the maintenance of biodiversity under global change. Here, we extend a
7 two-species Lotka-Volterra competition model that incorporates periodic forcing between
8 seasons of high and low production to investigate the effects of changing environmental patterns
9 on species coexistence. Towards this, we define coexistence criteria for periodic environments
10 by approximating isocline solutions akin to classical coexistence outcomes. This analytical
11 approach illustrates that periodic environments (i.e., seasonality) in and of themselves can
12 mediate different competitive outcomes, and these patterns are general across varying time
13 scales. Importantly, species coexistence may be incredibly sensitive to changes in these abiotic
14 periods, suggesting that climate change has the potential to drastically impact the maintenance of
15 biodiversity in the future.

16 **Introduction**

17 Nature is abundant with a diverse array of periodic climate signals (Jackson et al. 2021; Pokorný
18 2021). The complex variations in temperature over time (Jiang and Morin 2007; Klausmeier
19 2010), for example, can be decomposed into different lengths of underlying periodicities using
20 spectral analysis, revealing a complex mosaic of short (e.g., seconds, minutes, hours, days),
21 medium (e.g., months, years), long (e.g., multi-decadal), and very long natural periods (e.g., 100s
22 to 1000s of years) (Forrest and Miller-Rushing 2010; Vasconcellos et al. 2011; Huntly et al.
23 2021; Joseph and Kumar 2021; Pokorný 2021). The regularity of these environmental periods
24 allows for species to adapt and respond to them (Bernhardt et al. 2020; Fretwell 1972; Shuter et
25 al. 2012; Tonkin et al. 2017), meaning that nature has evolved around, and within, these complex
26 temporal abiotic signatures (Mathias and Chesson 2013; Varpe 2017; Rudolf 2019). Despite the
27 long-known recognition of nature's complex abiotic palette (White and Hastings 2020),
28 relatively little ecological research has considered the scope of nature's abiotic variability in
29 maintaining species diversity (Abrams 2022).

30

31 Researchers have clearly argued that temporal variation (e.g., stochasticity) can promote species
32 coexistence via fluctuation-dependent coexistence mechanisms (e.g., storage effect, relative
33 nonlinearity) (Chesson 2000, 2018; Adler et al. 2006; Meyer et al. 2022). With these
34 mechanisms, temporal niche differentiation enables coexistence between species with different
35 competitive advantages (Angert et al. 2009; Mathias and Chesson 2013; Miller and Klausmeier
36 2017). Despite the broad focus on environmental variation, one specific class of variability that
37 has been less-well explored, yet ought to provide a generalizable and analytically tractable

38 entryway into coexistence theory for variable environments, is that of periodic fluctuations – that
39 is, repeated and predictable fluctuations in environmental conditions. For examples, (Litchman
40 and Klausmeier 2001) use fast/slow approximations to elegantly show that night/day oscillations
41 in light can mediate competitive outcomes in phytoplankton – analytical solution that are tricky
42 to garner from environmentally stochastic models.

43

44 Studies are beginning to suggest that periodic environments may have significant implications
45 for species coexistence (Mathias and Chesson 2013; Miller and Klausmeier 2017; White and
46 Hastings 2020). For example, temporally changing resource conditions, which fluctuate between
47 seasons of high productivity to seasons of very little to no productivity (Fretwell 1972; Chesson
48 and Huntly 1997), may favour different species at different times of a period (Armstrong and
49 McGehee 1980; Litchman and Klausmeier 2001; Hastings 2012; Huntly et al. 2021). Similarly, it
50 has been suggested that certain life history trade-offs and temporal differentiation in competing
51 species' performance may alter coexistence outcomes in the face of periodic environments
52 (Litchman and Klausmeier 2001; McMeans et al. 2020). Recently, Mougi (2020) extended
53 competition results from single periodicities to polryrhythms (i.e., multiple interacting
54 periodicities) to show that the coupling of differently timed resource fluctuations may broaden
55 the range of coexistence between diverse species that rely on limited resources. While these
56 recent papers highlight the importance of periodic variation, the demand for a more general
57 theoretical understanding on the role of periodic conditions – either in isolation or as suites of
58 periodicities (i.e., polryrhythms) – remains (White and Hastings 2020; Abrams 2022). Notably,

59 we lack a general understanding of coexistence in periodic environments akin to our well-
60 established theoretical foundation framed around steady-state dynamics.

61

62 The development of such general theory is critical as climate change is currently altering the
63 nature of these environmental fluctuations (Dijkstra et al 2011; Shuter et al. 2012; Urban et al.
64 2012; Chesson 2018; Al-Hababbeh et al. 2020). Northern-hemisphere winters are becoming
65 shorter in length and more moderate (Caldwell et al. 2020; Edlund et al. 2017; Ficker et al. 2017;
66 Warne et al. 2020), and weather patterns across the globe are becoming more variable and
67 unpredictable (Fang and Stefan 1998; O'Reilly et al. 2015). In response, many communities have
68 experienced an increase in species extinction (Urban et al. 2012; Moor 2017; Fung et al. 2020)
69 and invasion rates (Stachowicz et al. 2002; Sharma et al. 2009; Dijkstra et al. 2011; Cerasoli et
70 al. 2019; Atkinson et al. 2020). Therefore, as climate change continues to alter the abiotic
71 conditions to which organisms have adapted to, the mechanisms regulating species coexistence
72 may be fundamentally altered (di Paola et al. 2012; Korpela et al. 2013; Tunney et al. 2014;
73 Anderson et al. 2015; Eloranta et al. 2016; Bartley et al. 2019; Caldwell et al. 2020). With all this
74 in mind, developing an understanding for the mechanisms behind the maintenance of
75 biodiversity in periodic environments becomes even more crucial.

76

77 Inspired by the fluctuating-light-driven coexistence results of Litchman and Klausmeier (2001),
78 we sought to develop a generalizable framework for coexistence in fluctuating environments.
79 Towards this, we extend upon the seasonal coexistence model first introduced by McMeans et al.
80 (2020) to more broadly explore the role of periodic forcing across time scales (e.g., days to

81 multi-decadal) via different biological parameter combinations. We also generalized our
82 approach by allowing high and low growth periods (not just high growth - no growth alone),
83 with temporally-differential competitive abilities. Specifically, we extend the classical Lotka-
84 Volterra coexistence criteria to include the role of environmental periodicities. This approach
85 allows our results to be phrased around classical coexistence conditions with temporally-scaled
86 inter- and intraspecific competition strengths. Here, we define a period as a unit of time that is
87 composed of two distinct seasons of variable length and seek to generally explore which
88 competitive outcomes may occur in these environments and under what biological conditions
89 (i.e., different growth rates). Towards this, we employ an analytical approach consistent with the
90 classical Lotka-Volterra phaseplane theory by developing a simple approximation that allows us
91 to solve for the isocline solutions of a time-separated periodic model. Specifically, this
92 approximation allows us to define coexistence criteria for periodic environments. We then
93 illustrate how periodic environments can, in and of themselves, drive bifurcations (i.e., changing
94 invasion criteria) such that competitive outcomes (i.e., stable coexistence, competitive exclusion,
95 and contingent coexistence) are mediated by the environment. We end by discussing our
96 competition results in light of how climate change is altering the nature of key underlying abiotic
97 periodicities.

98

99 **Methods**

100 We start by extending McMeans et al. (2020)'s annual seasonal model. Here, we define season
101 more generally as a discrete division in time that repeats itself, or is periodic, of any given length
102 within a period. As such, summer (more productive) and winter (less productive) seasons in

103 McMeans et al. (2020) repeat themselves with a periodicity of one-year, but we may also
104 similarly decompose other naturally shorter (e.g., seconds (Huntly et al. 2021)) and longer (e.g.,
105 El-Nino Southern Oscillations (Joseph and Kumar 2021)) periods of time into discrete seasons of
106 more or less productive conditions. Towards this general understanding of periodic
107 environments, we extend the Lotka-Volterra competition model (Chesson 2018) into a periodic
108 model that repeatedly alternates between two discrete seasons, a productive (f_P) and less
109 productive (f_{LP}) season. For each species, these functions are modelled with environmentally
110 specific parameter combinations to incorporate biological constraints within each season,
111 discussed below (Fig. 1a). The Lotka-Volterra model is defined as:

$$f_{S,j}(t) = \frac{dX_j}{dt} = r_{S,j}X_j(1 - \alpha_{S,jj}X_j - \alpha_{S,jk}X_k) \quad (1)$$

112 where j and k represent two competing species, and S represents a season (either productive, P ,
113 or less productive, LP). Here, $r_{S,j}$ is the intrinsic rate of population growth for species j in a
114 season, S , $\alpha_{S,jj}$ is the intraspecific competitive coefficient for species j in season S , and $\alpha_{S,jk}$ is
115 the interspecific competitive coefficient describing the effect of species k on species j in season
116 S .

117
118 When running simulations, and to maintain the spirit of the model assumptions (i.e., productive
119 and less productive season), we assumed the following simple biologically realistic assumptions:
120 (1) Maximal growth rates are larger in the productive season than the less productive season
121 for both species (i.e., $r_{P,j} > r_{LP,j}$), and;

122 (2) Since resources are more available in the productive season compared to the less
123 productive season, intraspecific competition will be lower in the productive season
124 compared to the less productive season (i.e., $\alpha_{P,jj} < \alpha_{LP,jj}$).
125 Further, to incorporate realistic biological trade-offs between competing species, we assumed
126 that species 1 is a better performer (in terms of growth and competition) in the productive season
127 compared to species 2, and the opposite is true in the less productive season. Keeping in mind
128 the previous seasonal constraints, this produces the following realistic parametric trade-offs for
129 the two species:
130 (1) Species 1 has a higher growth rate in the productive season (i.e., $r_{P,1} > r_{P,2}$) and a lower
131 growth rate in the less productive season (i.e., $r_{LP,2} > r_{LP,1}$) compared to species 2, and;
132 (2) Species 1 has a smaller intraspecific competitive coefficient in the productive season (i.e.,
133 $\alpha_{P,11} < \alpha_{P,22}$) and a larger intraspecific competitive coefficient in the less productive
134 season (i.e., $\alpha_{LP,11} > \alpha_{LP,22}$) compared to species 2.
135 These trade-offs are similar to an empirical case study by McMeans et al. (2020) where cold-
136 adapted fish (e.g., lake trout, *Salvelinus namaycush*) are seasonal generalists with moderate
137 growth rates year-round, and warm-adapted fish (e.g., smallmouth bass, *Micropterus dolomieu*),
138 the lake trout's competitor, are seasonal specialists with higher growth rates during the summer
139 and lower growth rates during the winter. Note that we have not set any seasonal constraints on
140 the interspecific competitive coefficients, therefore, $\alpha_{S,jk}$ can be any value.
141

142 With the above assumptions taken into consideration, our model is a periodic step function
143 (repeats every 1-time unit, or period) that goes through a productive season (P), and a less
144 productive season (LP), as follows:

$$\frac{dX_j}{dt} = \begin{cases} f_{P,j}(t) & i < t < i + \tau p \\ f_{LP,j}(t) & i + \tau p < t < i + \tau \end{cases} \quad (2)$$

145 Where i is the period number (i.e. year) that runs on an integer step size of 1 from 0 to t_{pra} (the
146 number of periods that the model runs for). τ governs the length of each period, and p is the
147 proportion of each period that is considered productive (i.e., τp is the length of the productive
148 season; leaving $\tau(1-p)$ as the length of the less productive season). The period length, defined by
149 τ , allows us to examine how environmental periodicities, and associated biological trade-offs,
150 across time scales may influence coexistence. As above, j represents one of the two competitive
151 species, either species 1 or 2. These periodic functions of f_P and f_{LP} are defined in equation (1)
152 as f_S .

153

154 We coded all numerical simulations in Mathematica 12.0. The models are integrated over
155 numerous periods until an asymptotic state, referred to hereafter as an equilibrium state, despite
156 within-period variation, has been reached (i.e., mean value from 900 – 1000 time-units) to
157 remove transient influences. However, within each time unit, as discussed above, they
158 sequentially follow first productive then less productive parameters corresponding to the given
159 productive seasonal fraction, p , within the period. The productive seasonal fraction, p , allows us
160 to change the proportion of the period that is under our productive conditions versus our less
161 productive conditions, $(1-p)$ (e.g., increase f_P) (Fig. 1b).

162

163 Finally, all model parameterizations for our simulations can be found in our figure legends and in
164 the Supplementary Material. Below we first walk through our approximation and then our
165 general analytical results before highlighting the generality of our analytical solutions using
166 numerical simulations. For each outcome, we explore how changing the season lengths, via p ,
167 influences competitive coexistence and exclusion (Fig. 1b; Table 1).

168

169 **Results**

170 Here, we present our approximated isocline solutions and investigate the resulting coexistence
171 criteria and behaviour under seasonality. Next, we reveal that changing season length, p , in
172 response to climate change, mediates coexistence, competitive exclusion, and contingent
173 coexistence (Fig. 3). Finally, we explore the robustness of our seasonally-mediated outcomes
174 (i.e., seasonally-driven bifurcations) across a range of period lengths (Figs. 4-6).

175

176 **Approximate Isocline Solutions for the Periodic Lotka-Volterra Model**

177 Although we use a periodically forced system, we can use equilibrium concepts to understand
178 the dynamics of our model. Specifically, our model reaches an attractor such that the densities
179 fluctuate modestly up and down on the attractor around a mean that does not change (i.e., an
180 asymptotic state or dynamic equilibrium; Fig.S2.2). Given this equilibrium-like dynamic, we are
181 interested in considering this asymptotic behaviour in a manner similar to the way we would for
182 a system that reaches a true equilibrium. Here, we provide an approximation for our model
183 isoclines and equilibria that mirror those of the original Lotka-Volterra competition model.

184

185 Note that the isoclines can be solved by recognizing that each period of τ time units would
186 necessarily have to result in zero net growth (i.e., no overall changes in density between the start
187 and end of each period), akin to classical zero-growth isoclines with a deterministic equilibrium.
188 That is, from System (2), the X_j zero-net-growth condition occurs when $\frac{dx_j}{dt} = 0$. From this, the
189 isocline solution follows as:

$$\int_0^{\tau p} f_{P,j}(t) = - \int_{\tau p}^{\tau} f_{LP,j}(t) \quad (3)$$

190 This isocline solution (3) is not analytically tractable (note that each season has dynamics over a
191 time interval), making it seem as though an isocline approach appears infeasible.

192

193 Towards solving for an approximation for periodically forced isoclines, we take a slightly
194 different approach than the classical linearization of the full equations (see Litchman and
195 Klausmeier (2001) for an example). As our model is not tractable with this approach, we instead
196 proceed by assuming that we can find a linearized approximation to the isocline from the
197 periodic model by searching for points in phase space where the linearization of each seasons'
198 dynamics are exactly negated by each other (for both the X_1 and X_2 isoclines). We define such
199 points as **zero net growth** points in the phaseplane (i.e., a point on the forced model's isocline)
200 and we define the collection of these points as **the linearized isocline approximation of the**
201 **periodically-forced model**. Clearly, as the length of the period, τ , goes to 0, the error in this
202 linear approximation will also go to 0. However, for longer periods or large growth rates (r),
203 non-linear dynamics may drive this simplification to work poorly (see Supplementary Material

204 S4). Because of this, we numerically check our analytical results with numerical calculations
205 throughout. We note that despite this, the results work surprisingly well across large parameter
206 values suggesting the linear approximation works even when some degree of nonlinear dynamics
207 are expressed.

208

209 By assuming that the instantaneous rates of change for each species at this X_1 - X_2 co-ordinate are
210 linear, we approximate the dynamics over the time period, τ , by solving the equations using the
211 Fundamental Theorem of Calculus over each period (see Supplementary Material S1). That is,
212 over the interval fraction, zp , the productive trajectory scales linearly on the co-ordinate X_1 - X_2 as:

$$\frac{dX_1}{dt} = \tau p f_{P,1}(X_1, X_2) \quad (4)$$

213 and the less productive trajectory over the interval fraction $\tau(1-p)$ scales linearly as:

$$\frac{dX_1}{dt} = \tau(1-p) f_{LP,1}(X_1, X_2) \quad (5)$$

214 Given Equations (4) and (5), then the linearized dynamics at a X_1 - X_2 co-ordinate negate each
215 other (i.e., resulting in the X_1 -isocline) when:

$$\tau p f_{P,1}(X_1, X_2) = -\tau(1-p) f_{LP,1}(X_1, X_2) \quad (6)$$

216 This approximation (Equation (6)), if it works, can be solved symbolically as done elegantly for
217 the classical Lotka-Volterra model and thus allows an entry point into well-known coexistence
218 analyses and interpretations.

219

220 From Equation (6), we see that τ factors out. After substituting the productive and less
221 productive models of Equation (1) into Equation (6) and then some algebra, the resulting isocline
222 solutions, for both species, follow the following form:

$$X_1 = -\frac{pr_{P,1}\alpha_{P,12} + (1-p)r_{LP,1}\alpha_{LP,12}}{pr_{P,1}\alpha_{P,11} + (1-p)r_{LP,1}\alpha_{LP,11}} X_2 + \frac{pr_{P,1} + (1-p)r_{LP,1}}{pr_{P,1}\alpha_{P,11} + (1-p)r_{LP,1}\alpha_{LP,11}} \quad (7)$$

223
224 The geometry of the approximated isoclines (Equation (7)) resembles that of the original Lotka-
225 Volterra isoclines, which therefore allows us to identify general rules for coexistence in periodic
226 environments akin to the original coexistence criteria (Fig. 2a). Here, the isocline approximation
227 solutions (and therefore coexistence criteria) are now based on temporal-growth-scaled inter-
228 versus intra-specific competition rates (whereas the original Lotka-Volterra conditions are not
229 dependent on growth rates; see Table 1 for Lotka-Volterra vs. Seasonal Coexistence Criteria).
230 Thus, the approximation enables us to generally determine and graphically explore how periodic
231 environments and biological rates may interact in regulating competitive outcomes (Fig. 2b).
232 Immediately, based on these conditions, we can see that the duration of each season, and the
233 corresponding biological conditions within them, play a critical role in regulating competitive
234 outcomes in periodic environments. That is, our parameter p may drive bifurcations, and
235 therefore alter competitive outcomes under changing climatic conditions (Fig. 2b).

236
237 We found numerically that this approximation works quite well (see Supplementary Material S2
238 for examples) and was, for example, able to repeatedly and accurately calculate the transcritical
239 bifurcation points where an interior equilibrium intersects and exchanges stability, with an axial
240 solution. Other approaches similar to our approximation, such as Litchman and Klausmeier

241 (2001), have been used to accurately investigate species coexistence when organismal dynamics
242 are fast relative to their forcing speed. Given our assumption of linearity, the relative time scale
243 of forcing vs. dynamics ought to be important for our approximation's accuracy. Indeed, when
244 either the period length (τ) or the growth rate (r) becomes larger, the apparent length of each
245 period increases, allowing for more nonlinearity within each season's dynamics, which results in
246 the approximation to fail at predicting the asymptotic behaviour (see Supplementary Material
247 S4). Nevertheless, the range at which this approximation holds is impressively robust.

248

249 **General outcomes of changing environments**

250 Given that changing season lengths may have powerful implications for species coexistence, we
251 now ask how changing season length, p , (i.e., altering seasonal asymmetry) affects competitive
252 outcomes. To do this we vary the season length from $p=0$ (i.e., the full period being entirely less
253 productive) to $p=1$ (i.e., the full period being entirely productive). We note that these endpoints
254 (i.e., $p=0$ or $p=1$) are constant (i.e., no seasonality) and thus, they reduce to the classic Lotka-
255 Volterra coexistence criteria based on the individual biological conditions for P or LP (Table 1).
256 These endpoints also give us reference conditions for exploring the effects of environmental
257 periodicity and seasonally-mediated coexistence outcomes.

258

259 Since McMeans et al. (2020) found the intriguing case of seasonally-mediated coexistence, we
260 were interested in using our analytical results to unpack other examples of how seasonal change
261 could fundamentally alter competitive outcomes. McMeans et al. (2020) noted that where the
262 boundary conditions yielded competitive exclusion (i.e., exclusion at $p=0$ and $p=1$), a seasonal

263 model could produce coexistence for intermediate p -values. This is intriguing as it immediately
264 suggests that alterations in p (say from climate change) can drive exclusion. Importantly, our
265 analytical solutions (Table 1) suggest that seasonality can mediate all possible competitive
266 outcomes at intermediate p -values (Fig. 3). Indeed, we found seasonally-mediated coexistence,
267 competitive exclusion, and contingent coexistence (i.e., alternative states) (Fig. 3a-c
268 respectively).

269

270 For these seasonally-mediated outcomes, when the qualitative competitive outcome at
271 intermediate p is fundamentally different from the extremes (i.e., $p = 0$ and 1), p drives a series
272 of transcritical bifurcations that move the system between different conditions in Table 1 (shifts
273 between shaded and clear zones indicate transcritical bifurcations that alter the qualitative nature
274 of the attractor in Fig. 3). Specifically, under our given sets of parametric combinations,
275 changing p always drives a series of two bifurcations for these seasonally-mediated outcomes
276 (Fig. 3). Other competitive outcomes of course are seasonally sensitive as they result in p -driven
277 bifurcations when coexistence outcomes transition between the two endpoint conditions.

278 Additionally, we note that these transcritical bifurcations can be considered as changes in the
279 invasion criteria – in this case, seasonally-altered invasion criterion – as they are commonly
280 referred to in competition theory. For example, in Fig. 3a, the gray shaded regions indicate that
281 one species cannot invade from small densities while in the white or unshaded region, it
282 suddenly can invade from small densities.

283

284 Finally, clearly not all parameter combinations are sensitive to p -driven bifurcations. In these
285 cases, p may simply drive changes in species' densities rather than shifts in the equilibrium
286 structure (e.g., as seen in McMeans et al. (2020)). While here we broadly unpack p -driven
287 bifurcations to explore the generality of these outcomes, we note that all results below have
288 nearby solutions that do not undergo bifurcations yet and are qualitatively similar in terms of the
289 general effect of p on the isocline and equilibrium geometry.

290

291 **Robustness of Seasonally-Mediated Competitive Outcomes**

292 To fully understand how robust the different seasonally-mediated outcomes are we looked at the
293 bifurcation structure in 2-dimensional parameter space, by using both season length, p , (as in Fig.
294 3) and the period length, τ , as bifurcation parameters. We note that if seasonally-mediated
295 outcomes exist across a broad range of period lengths, τ , then this suggests that seasonally-
296 mediated competitive outcomes could be found across a wide range of natural periodicities (from
297 diurnal to multi-decadal).

298

299 In Fig. 4a, we document cases where a lack of periodicity (i.e., at $p=0$ or 1) drives competitive
300 exclusion while for a broad range of τ 's (ranging from 1-100 time units), we have species
301 coexistence at intermediate p -values. Our analytical solutions allow us to track the "mean
302 equilibrium" through each transcritical bifurcation from competitive exclusion of species 1 to
303 species coexistence and finally to competitive exclusion of species 2 as the length of the
304 productive period, p , increases (i.e., changing p shifts between competitive exclusion and stable
305 coexistence conditions in Table 1; Figs. 4bi-iii, S3.1). The robustness of this pattern implies that

306 for any given τ , seasonality alone can mediate coexistence at intermediate p -values. As the
307 period length (τ) grows, the numerically-generated region of coexistence broadens, and the
308 second transcritical bifurcation point, the transition between species coexistence and competitive
309 exclusion of species 2, deviates away from the analytically-determined transcritical bifurcation
310 point (see more regarding approximation accuracy of seasonally mediated coexistence in S4.1).
311 This suggests that the analytical bifurcation structure is sensitive to different parametric values
312 (which is also suggested by the seasonal coexistence criteria shown in Table 1), but nonetheless,
313 the result of seasonally-mediated coexistence is qualitatively general. We note that the simple
314 linear prediction breaks down as $r\tau$ grows (i.e., larger $r\tau$ allows the nonlinear dynamics to
315 express themselves; see Supplementary Material S4.1). Thus, we see that seasonally-mediated
316 coexistence occurs very broadly suggesting that a large range of natural periodicities may be
317 powerful drivers of coexistence.

318
319 Similarly, in Fig. 5a, we document cases where species coexistence occurs in static environments
320 (i.e., at $p=0$ or 1), while competitive exclusion occurs at intermediate p -values over a broad range
321 of τ 's (here, from 1-40 time units). Following McMeans et al. (2020)'s naming convention, we
322 refer to this as seasonally-mediated competitive exclusion. As in the above case, with increasing
323 p , our analytical approximation tracks the isoclines and the “mean equilibrium” from stable
324 coexistence to competitive exclusion of species 2 through a transcritical bifurcation on the $X_2=0$
325 axis, and finally back through the axis (via another bifurcation) to stable coexistence (Figs. 5b,
326 S3.2). The transcritical bifurcation points determined by our analytical solution accurately track
327 the numerical solutions over several period length values of τ before the seasonal bifurcations

328 cease at higher values of τ . Again, we note that the simple linear prediction breaks down as τr
329 grows (i.e., larger τr) allows the nonlinear dynamics to express themselves; see Supplementary
330 Material S4.2). The 2-dimensional bifurcation diagram again shows a broad range in τ -values
331 that yield competitive exclusion; however, it does not stretch across all τ -values (i.e., very large
332 period lengths). While the exact range of parameter space that this seasonally-mediated
333 competitive exclusion occurs at is clearly dependent on other parameters, this result is still quite
334 general over a wide range of τ -values, suggesting that periodic environments may also be
335 powerful drivers of competitive exclusion. Here, as τ grows, this tongue of competitive
336 exclusion slowly shrinks across intermediate values of p . Again, this is an interesting result,
337 which suggests that simple alterations in season length may fundamentally alter competitive
338 outcomes.

339

340 Finally, in Fig. 6a, similar to the above seasonally-mediated coexistence case with competitive
341 exclusion at the boundaries (i.e., $p=0$ or 1), we now document cases where contingent
342 coexistence (i.e., alternative states) occurs at intermediate p values across a broad range of τ 's
343 (here, from 1-100 time units). Although this outcome is quite similar to seasonally-mediated
344 coexistence with competitive exclusion being located at each boundary (i.e., $p=0$ or 1), its
345 isocline geometry, based off of parametric combinations, results in seasonally-mediated
346 contingent coexistence at intermediate p -values (Figs. 6bi-iii, S3.3). Our approximation tracks
347 the analytical non-trivial (interior) equilibrium, which in this case is unstable in positive (X_1, X_2)
348 state space (Fig. 6bii). Here, initial densities determine which species will dominate and which
349 species will become extinct with time (i.e., which of the two stable axial solutions, shown in Fig.

350 6bii, the system will end up at). The robustness of this pattern also implies that for any given τ ,
351 seasonality may be a powerful driver of contingent coexistence (i.e., changing p moves from
352 competitive exclusion to contingent coexistence conditions in Table 1). As τ grows, the
353 numerically-generated contingent coexistence region expands across higher productive season
354 lengths before it narrows around lower lengths of the productive season. Again, our analytical
355 solution accurately determines at which p values the transcritical bifurcations will occur for very
356 small τ values, but falls off with larger period lengths, τ (see Supplementary Material S4.3 for
357 approximation accuracy of seasonally mediated contingent coexistence), despite the general
358 phenomenon remaining across time scales.

359

360 These three seasonally-mediated outcomes suggest that seasonal alterations, due to climate
361 change, may drive precipitous changes in competitive systems. All of these seasonally-mediated
362 outcomes appear general and may be found across various ecosystems that experience abiotic
363 fluctuations of any period length. Similarly, for a given period length (e.g., annual variation),
364 these outcomes may be highly general for competing organisms with a range of life history
365 strategies (i.e., vital rates that dictate the speed of biotic dynamics relative to any environmental
366 variation). On the other hand, depending on parametric values, not all instances of periodic
367 variation will drive these series of bifurcations. Under some conditions, there are simply p -driven
368 changes in species densities between the boundary conditions where only one bifurcation (Figs.
369 S2.1e, S2.1f) or no bifurcations (Figs. S2.1d) are found under changing periodicities.

370 **Discussion**

371 Here, we present a linear approximation similar in approach to other periodic models (e.g., Han
372 et al. (1999); Litchman and Klausmeier (2001)) to analytically solve for a periodic Lotka-
373 Volterra competition model (see Table 1 for seasonal coexistence criteria). Our linear
374 approximation quantitatively breaks down for large values in τr but still largely operates to
375 qualitatively predict the nature of periodic-forcing on competition (e.g., Fig. 4a,6a). This
376 approximation, akin to the longstanding classical Lotka-Volterra coexistence conditions,
377 importantly allows us to derive a parallel set of coexistence conditions for periodic
378 environments. With the inclusion of periodic environmental forcing, we find that species
379 coexistence depends on seasonal-growth-scaled inter- versus intra-specific competition strengths
380 (Table 1). That is, where classical stable coexistence requires intraspecific competition to be
381 greater than interspecific competition, for both species, we show that intraspecific competition,
382 scaled by seasonal growth, must be greater than interspecific competition, scaled by seasonal
383 growth, for both species.

384

385 These seasonal coexistence conditions importantly suggest that species' coexistence may be
386 incredibly sensitive to changes in season length. While McMeans et al. (2020) found seasonally-
387 mediated coexistence through empirically-motivated numerical simulations, our results show that
388 seasonality can mediate coexistence, competitive exclusion, and contingent coexistence (Fig. 3).
389 That is, seasonality, in and of itself, can drive all possible competitive outcomes (i.e., Table 1).
390 As these seasonally-mediated outcomes appear across a vast range of period lengths (Fig. 4-6),
391 this suggests that these seasonally-mediated outcomes are quite robust, and can be found across a

392 wide range of different temporal scales and life history strategies (i.e., fast vs. slow life history
393 strategies).

394

395 As the change in season length (p) may have an important role in mediating competitive
396 outcomes (Fig. 3), climate change is altering environmental periodicities across a range of
397 temporal scales (Dijkstra et al. 2011; Shuter et al. 2012; Urban et al. 2012; Chesson 2018; Al-
398 Hababbeh et al. 2020), and our results suggest that this could have sudden and drastic –
399 sometimes unpredictable – effects on coexistence. Often the responses to changing seasons are
400 nonlinear, and some of these outcomes are unexpected based on the classical Lotka-Volterra
401 conditions under non-seasonal environments (e.g., nonlinear paths between the boundary
402 conditions at $p = 0$ and 1; Figs. 3b, 5, S2.1b and d). As an example, we find cases where
403 competitive exclusion occurs under intermediate season lengths, even though coexistence is
404 expected under the same non-seasonal conditions (i.e., coexistence occurs for entirely low- or
405 entirely high-productive conditions; Fig. 3b). Alarmingly, these strong nonlinear effects of
406 changing season length, p , suggest that precipitous changes in species density and composition
407 may unexpectedly occur as climate change alters the nature of seasonality.

408

409 Although simple, the seasonal competition model we examined here is based on biologically
410 realistic assumptions about competitive species in temporally varying environments. First,
411 periodic environments are commonly reflected by times of high and low productivity, where
412 species tend to flourish during the productive seasons, and decline (e.g., mortality-dominated)
413 during the less productive seasons as resource availability becomes sparse (Fretwell 1972;

414 Litchman and Klausmeier 2001; Mutze 2009; Klausmeier 2010; Hastings 2012; Lyu et al. 2016;
415 Vihtakari et al. 2016). These periods therefore impact species' growth rates, but also offer the
416 potential for differential responses of competing species to seasonally-driven environmental
417 variation (Chesson and Huntly 1997; Forrest and Miller-Rushing 2010; Shuter et al. 2012; Gao et
418 al. 2016; Chesson 2018; Huang et al. 2019). It is well known that competing species can display
419 temporal trade-offs in stochastic environments that can promote coexistence (Angert et al. 2009;
420 Shuter et al. 2012; Mougi 2020). For instance, Litchman and Klausmeier (2001) discovered that
421 slow fluctuations in light promote stable coexistence between competing species of
422 phytoplankton who exhibit trade-offs in performance across temporally changing resource
423 availability. More recently, and consistent with our theoretical results here, empirical evidence is
424 beginning to suggest species may show trade-offs to regular seasonal fluctuations that might
425 promote coexistence. For example, a species may be a seasonal specialist (e.g., display a very
426 high growth rate during the summer and a low growth rate during the winter) while its
427 competitor may be more of a temporal generalist, who's able to maintain roughly the same
428 growth rate year-round (Niiyama 1990; Chan et al. 2009; Abrams et al. 2013; Korpela et al.
429 2013; Meyer et al. 2022).

430

431 While we concentrate on temporal forcing in our model, seasonal signals in competition may
432 often be related to spatial-temporal and behavioural patterns that govern species' competitive
433 outcomes (McMeans et al. 2020). As an example, in some cases, species may migrate (Holt and
434 Fryxell 2011; Teitelbaum et al. 2015; Tavecchia et al. 2016; le Corre et al. 2020; Moorter et al.
435 2021) or hibernate (Campbell et al. 2008; Giraldo-Perez et al. 2016) during less productive

436 seasons, opting out of competition when resources are scarce (Suski and Ridgway 2009). These
437 behavioural strategies may counteract potential negative effects of periodic variation to some
438 extent and thus promote coexistence by reducing competitive interactions during unfavourable
439 times. More empirical research is needed to further understand these spatial and behavioural
440 strategies, and seasonal trade-offs between competitive species, in order to understand their
441 mechanistic role in maintaining biodiversity with climate change.

442

443 As nature abounds with temporal variation, grasping a better understanding of coexistence
444 mechanisms in these fluctuating environments is now even more crucial with climate change.
445 We have provided an analytical solution to begin understanding these effects. Our research has
446 uncovered three competitive outcomes that could be found across a large range of natural
447 periodicities and life history strategies. As species coexistence appears to be incredibly sensitive
448 to periodic variation, climate change has the potential to drastically impact future competitive
449 outcomes in the natural world.

450

451 **Acknowledgements**

452 We would like to thank Cortland K. Griswold for his comments and suggestions that helped
453 improve this manuscript. We would also like to thank the University of Guelph's Elgin Card
454 Scholarship in Terrestrial Ecology (Grant number [I5023]) awarded to AMS, and the NSERC
455 Discovery Grant granted to KSM (Grant number [400353]) for funding this research.

456 **Code accessibility**

457 All code to reproduce the above analyses and figures have been archived on [Zenodo](#) (version

458 1.0).

459 **Literature Cited**

- 460 Abrams PA (2022) Competition in seasonal environments. In: Competition Theory in Ecology.
461 Oxford University Press, pp 171–208
- 462 Abrams PA, Tucker CM, Gilbert B (2013) Evolution of the storage effect. *Evolution* (N Y)
463 67:315–327. <https://doi.org/10.1111/j.1558-5646.2012.01756.x>
- 464 Adler PB, HilleRisLambers J, Kyriakidis PC, et al (2006) Climate variability has a stabilizing
465 effect on the coexistence of prairie grasses. *Proc Natl Acad Sci U S A* 103:12793–12798.
466 <https://doi.org/10.1073/pnas.0600599103>
- 467 Al-Hababbeh AK, Kortsch S, Bluhm BA, et al (2020) Arctic coastal benthos long-term responses
468 to perturbations under climate warming. *Philos Trans A Math Phys Eng Sci* 378:20190355.
469 <https://doi.org/10.1098/rsta.2019.0355>
- 470 Anderson KD, Heron SF, Pratchett MS (2015) Species-specific declines in the linear extension
471 of branching corals at a subtropical reef, Lord Howe Island. *Coral Reefs* 34:479–490.
472 <https://doi.org/10.1007/s00338-014-1251-1>
- 473 Angert AL, Huxman TE, Chesson P, Venable DL (2009) Functional tradeoffs determine species
474 coexistence via the storage effect. *Proc Natl Acad Sci U S A* 106:11641–11645.
475 <https://doi.org/10.1073/pnas.0904512106>
- 476 Armstrong RA, McGehee R (1980) Competitive Exclusion. *American Society of Naturalist*
477 115:151–170
- 478 Atkinson J, King NG, Wilmes SB, Moore PJ (2020) Summer and winter marine heatwaves favor
479 an invasive over native seaweeds. *J Phycol* 56:1591–1600.
480 <https://doi.org/10.1111/jpy.13051>
- 481 Bartley TJ, McCann KS, Bieg C, et al (2019) Food web rewiring in a changing world. *Nat Ecol
482 Evol* 3:345–354. <https://doi.org/10.1038/s41559-018-0772-3>
- 483 Bernhardt J, O'Connor M, Sunday J, Gonzalez A (2020) Life in fluctuating environments. *Philos
484 Trans R Soc Lond B Biol Sci* 375:1–22. <https://doi.org/10.32942/osf.io/dgmr4>
- 485 Caldwell TJ, Chandra S, Feher K, et al (2020) Ecosystem response to earlier ice break-up date:
486 Climate-driven changes to water temperature, lake-habitat-specific production, and trout
487 habitat and resource use. *Glob Chang Biol* 26:5475–5491.
488 <https://doi.org/10.1111/gcb.15258>
- 489 Campbell HA, Fraser KPP, Bishop CM, et al (2008) Hibernation in an Antarctic fish: On ice for
490 winter. *PLoS One* 3:.. <https://doi.org/10.1371/journal.pone.0001743>

- 491 Cerasoli F, Iannella M, Biondi M (2019) Between the hammer and the anvil: How the combined
492 effect of global warming and the non-native common slider could threaten the european
493 pond turtle. *Management of Biological Invasions* 10:428–448.
494 <https://doi.org/10.3391/mbi.2019.10.3.02>
- 495 Chan B, Durrett R, Lanchier N (2009) Coexistence for a multitype contact process with seasons.
496 *Annals of Applied Probability* 19:1921–1943. <https://doi.org/10.1214/09-AAP599>
- 497 Chesson P (2018) Updates on mechanisms of maintenance of species diversity. *Journal of
498 Ecology* 106:1773–1794. <https://doi.org/10.1111/1365-2745.13035>
- 499 Chesson P (2000) Mechanisms of maintenance of speacies diversity. *Annu Rev Ecol Syst*
500 31:343–366. <https://doi.org/10.1146/annurev.ecolsys.31.1.343>
- 501 Chesson P, Huntly N (1997) The roles of harsh and fluctuating conditions in the dynamics of
502 ecological communities. *Am Nat* 150:519–553
- 503 di Paola A, Valentini R, Paparella F (2012) Climate change threatens coexistence within
504 communities of mediterranean forested wetlands. *PLoS One* 7:.
505 <https://doi.org/10.1371/journal.pone.0044727>
- 506 Dijkstra JA, Westerman EL, Harris LG (2011) The effects of climate change on species
507 composition, succession and phenology: A case study. *Glob Chang Biol* 17:2360–2369.
508 <https://doi.org/10.1111/j.1365-2486.2010.02371.x>
- 509 Edlund MB, Almendinger JE, Fang X, et al (2017) Effects of climate change on lake thermal
510 structure and biotic response in northern wilderness lakes. *Water (Basel)* 9:1–35.
511 <https://doi.org/10.3390/w9090678>
- 512 Eloranta AP, Helland IP, Sandlund OT, et al (2016) Community structure influences species'
513 abundance along environmental gradients. *Journal of Animal Ecology* 85:273–282.
514 <https://doi.org/10.1111/1365-2656.12461>
- 515 Fang X, Stefan HG (1998) Potential climate warming effects on ice covers of small lakes in the
516 contiguous U.S. *Cold Reg Sci Technol* 27:119–140. [https://doi.org/10.1016/S0165-232X\(97\)00027-X](https://doi.org/10.1016/S0165-
517 232X(97)00027-X)
- 518 Ficker H, Luger M, Gassner H (2017) From dimictic to monomictic: Empirical evidence of
519 thermal regime transitions in three deep alpine lakes in Austria induced by climate change.
520 *Freshw Biol* 62:1335–1345. <https://doi.org/10.1111/fwb.12946>
- 521 Forrest J, Miller-Rushing AJ (2010) Toward a synthetic understanding of the role of phenology
522 in ecology and evolution. *Philosophical Transactions of the Royal Society B: Biological
523 Sciences* 365:3101–3112. <https://doi.org/10.1098/rstb.2010.0145>
- 524 Fretwell SD (1972) *Populations in a seasonal environment*. Princeton University Press

- 525 Fung T, Chisholm RA, Anderson-Teixeira K, et al (2020) Temporal population variability in
526 local forest communities has mixed effects on tree species richness across a latitudinal
527 gradient. *Ecol Lett* 23:160–171. <https://doi.org/10.1111/ele.13412>
- 528 Gao G, Ponsard S, Lu Z, et al (2016) Different thermal responses in two coexisting aphids may
529 account for differences in their seasonal abundance in cotton fields. *Int J Pest Manag*
530 62:288–294. <https://doi.org/10.1080/09670874.2016.1185551>
- 531 Giraldo-Perez P, Herrera P, Campbell A, et al (2016) Winter is coming: Hibernation reverses the
532 outcome of sperm competition in a fly. *J Evol Biol* 29:371–379.
533 <https://doi.org/10.1111/jeb.12792>
- 534 Han BP, Virtanen M, Koponen J, Straškraba M (1999) Predictors of light-limited growth and
535 competition of phytoplankton in a well-mixed water column. *J Theor Biol* 197:439–450.
536 <https://doi.org/10.1006/jtbi.1998.0885>
- 537 Hastings A (2012) Temporally varying resources amplify the importance of resource input in
538 ecological populations. *Biol Lett* 8:1067–1069. <https://doi.org/10.1098/rsbl.2012.0669>
- 539 Holt RD, Fryxell JM (2011) Theoretical reflections on the evolution of migration. In: Milner-
540 Gulland EJ, Fryxell JM, Sinclair ARE (eds) *Animal migration*. Oxford University Press,
541 New York, pp 17–31
- 542 Huang L, Xue W, Herben T (2019) Temporal niche differentiation among species changes with
543 habitat productivity and light conditions. *Journal of Vegetation Science* 30:438–447.
544 <https://doi.org/10.1111/jvs.12741>
- 545 Huntly N, Freischel AR, Miller AK, et al (2021) Coexistence of “cream skimmer” and “crumb
546 picker” phenotypes in nature and in cancer. 9:1–18.
547 <https://doi.org/10.3389/fevo.2021.697618>
- 548 Jackson MC, Pawar S, Woodward G (2021) The temporal dynamics of multiple stressor effects:
549 From individuals to ecosystems. *Trends Ecol Evol* 36:402–410.
550 <https://doi.org/10.1016/j.tree.2021.01.005>
- 551 Jiang L, Morin PJ (2007) Temperature fluctuation facilitates coexistence of competing species in
552 experimental microbial communities. *Journal of Animal Ecology* 76:660–668.
553 <https://doi.org/10.1111/j.1365-2656.2007.01252.x>
- 554 Joseph D, Kumar VS (2021) Response of ocean surface waves to the co-occurrence of Boreal
555 Summer Intra-Seasonal Oscillation and El Niño Southern Oscillation. *Clim Dyn* 57:1155–
556 1171. <https://doi.org/10.1007/s00382-021-05763-3>
- 557 Klausmeier CA (2010) Successional state dynamics: A novel approach to modeling
558 nonequilibrium foodweb dynamics. *J Theor Biol* 262:584–595.
559 <https://doi.org/10.1016/j.jtbi.2009.10.018>

- 560 Korpela K, Delgado M, Henttonen H, et al (2013) Nonlinear effects of climate on boreal rodent
561 dynamics: Mild winters do not negate high-amplitude cycles. *Glob Chang Biol* 19:697–710.
562 <https://doi.org/10.1111/gcb.12099>
- 563 le Corre M, Dussault C, Côté SD (2020) Where to spend the winter? The role of intraspecific
564 competition and climate in determining the selection of wintering areas by migratory
565 caribou. *Oikos* 129:512–525. <https://doi.org/10.1111/oik.06668>
- 566 Litchman E, Klausmeier CA (2001) Competition of phytoplankton under fluctuating light.
567 *American Naturalist* 157:170–187. <https://doi.org/10.1086/318628>
- 568 Lyu L, Deng X, Zhang Q bin (2016) Elevation pattern in growth coherency on the southeastern
569 Tibetan Plateau. *PLoS One* 11:1–15. <https://doi.org/10.1371/journal.pone.0163201>
- 570 Mathias A, Chesson P (2013) Coexistence and evolutionary dynamics mediated by seasonal
571 environmental variation in annual plant communities. *Theor Popul Biol* 84:56–71.
572 <https://doi.org/10.1016/j.tpb.2012.11.009>
- 573 McMeans BC, McCann KS, Guzzo MM, et al (2020) Winter in water: Differential responses and
574 the maintenance of biodiversity. *Ecol Lett* 23:922–938. <https://doi.org/10.1111/ele.13504>
- 575 Meyer I, Steinmetz B, Shnerb NM (2022) How the storage effect and the number of temporal
576 niches affect biodiversity in stochastic and seasonal environments. *PLoS Comput Biol*
577 18:1–21. <https://doi.org/10.1371/journal.pcbi.1009971>
- 578 Miller ET, Klausmeier CA (2017) Evolutionary stability of coexistence due to the storage effect
579 in a two-season model. *Theor Ecol* 10:91–103. <https://doi.org/10.1007/s12080-016-0314-z>
- 580 Moor H (2017) Life history trade-off moderates model predictions of diversity loss from climate
581 change. *PLoS One* 12:1–21. <https://doi.org/10.1371/journal.pone.0177778>
- 582 Moorter B van, Singh NJ, Rolandsen CM, et al (2021) Seasonal release from competition
583 explains partial migration in European moose. *Oikos* 130:1548–1561.
584 <https://doi.org/10.1111/oik.07875>
- 585 Mougi A (2020) Polyrhythmic foraging and competitive coexistence. *Sci Rep* 10:1–7.
586 <https://doi.org/10.1038/s41598-020-77483-3>
- 587 Mutze GJ (2009) Changes in body condition and body size affect breeding and recruitment in
588 fluctuating house mouse populations in south-eastern Australia. *Austral Ecol* 34:278–293.
589 <https://doi.org/10.1111/j.1442-9993.2008.01929.x>
- 590 Niiyama K (1990) The role of seed dispersal and seedling traits in colonization and coexistence
591 of *Salix* species in a seasonally flooded habitat. *Ecol Res* 5:317–331

- 592 O'Reilly CM, Sharma S, Gray DK, et al (2015) Rapid and highly variable warming of lake
593 surface waters around the globe. *Geophys Res Lett* 42:10773–10781.
594 <https://doi.org/10.1002/2015GL066235>
- 595 Pokorný V (2021) Polyrhythmic arrangements: Rhythm as a dynamic principle in the
596 constitution of environments. *Open Philosophy* 4:394–403. <https://doi.org/10.1515/oppphil-2020-0192>
- 598 Rudolf VHW (2019) The role of seasonal timing and phenological shifts for species coexistence.
599 *Ecol Lett* 22:1324–1338. <https://doi.org/10.1111/ele.13277>
- 600 Scranton K, Vasseur DA (2016) Coexistence and emergent neutrality generate synchrony among
601 competitors in fluctuating environments. *Theor Ecol* 9:353–363.
602 <https://doi.org/10.1007/s12080-016-0294-z>
- 603 Sharma S, Jackson DA, Minns CK (2009) Quantifying the potential effects of climate change
604 and the invasion of smallmouth bass on native lake trout populations across Canadian lakes.
605 *Ecography* 32:517–525. <https://doi.org/10.1111/j.1600-0587.2008.05544.x>
- 606 Shuter BJ, Finstad AG, Helland IP, et al (2012) The role of winter phenology in shaping the
607 ecology of freshwater fish and their sensitivities to climate change. *Aquat Sci* 74:637–657.
608 <https://doi.org/10.1007/s00027-012-0274-3>
- 609 Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002) Linking climate change and
610 biological invasions: Ocean warming facilitates nonindigenous species invasions. *Proc Natl
611 Acad Sci U S A* 99:15497–15500. <https://doi.org/10.1073/pnas.242437499>
- 612 Suski CD, Ridgway MS (2009) Winter biology of centrarchid fishes. In: Cooke SJ, Philipp DP
613 (eds) *Centrarchid Fishes*. Blackwell Publishing Ltd., pp 264–292
- 614 Tavecchia G, Tenan S, Pradel R, et al (2016) Climate-driven vital rates do not always mean
615 climate-driven population. *Glob Chang Biol* 22:3960–3966.
616 <https://doi.org/10.1111/gcb.13330>
- 617 Teitelbaum CS, Fagan WF, Fleming CH, et al (2015) How far to go? Determinants of migration
618 distance in land mammals. *Ecol Lett* 18:545–552. <https://doi.org/10.1111/ele.12435>
- 619 Tonkin JD, Bogan MT, Bonada N, et al (2017) Seasonality and predictability shape temporal
620 species diversity. *Ecology* 98:1201–1216. <https://doi.org/10.1002/ecy.1761>
- 621 Tredennick AT, Adler PB, Adler FR (2017) The relationship between species richness and
622 ecosystem variability is shaped by the mechanism of coexistence. *Ecol Lett* 20:958–968.
623 <https://doi.org/10.1111/ele.12793>
- 624 Tunney TD, McCann KS, Lester NP, Shuter BJ (2014) Effects of differential habitat warming on
625 complex communities. *Proc Natl Acad Sci U S A* 111:8077–8082.
626 <https://doi.org/10.1073/pnas.1319618111>

- 627 Urban MC, de Meester L, Vellend M, et al (2012) A crucial step toward realism: Responses to
628 climate change from an evolving metacommunity perspective. *Evol Appl* 5:154–167.
629 <https://doi.org/10.1111/j.1752-4571.2011.00208.x>
- 630 Varpe Ø (2017) Life history adaptations to seasonality. *Integr Comp Biol* 57:943–960.
631 <https://doi.org/10.1093/icb/icx123>
- 632 Vasconcellos RM, Araújo FG, de Sousa Santos JN, de Araújo Silva M (2011) Diel seasonality in
633 fish biodiversity in a sandy beach in south-eastern Brazil. *Marine Biological Association of*
634 *the United Kingdom* 91:1337–1344. <https://doi.org/10.1017/S0025315410000652>
- 635 Vihtakari M, Renaud PE, Clarke LJ, et al (2016) Decoding the oxygen isotope signal for
636 seasonal growth patterns in Arctic bivalves. *Palaeogeogr Palaeoclimatol Palaeoecol*
637 446:263–283. <https://doi.org/10.1016/j.palaeo.2016.01.008>
- 638 Warne CPK, McCann KS, Rooney N, et al (2020) Geography and morphology affect the ice
639 duration dynamics of northern hemisphere lakes worldwide. *Geophys Res Lett* 47:1–10.
640 <https://doi.org/10.1029/2020GL087953>
- 641 White ER, Hastings A (2020) Seasonality in ecology: Progress and prospects in theory.
642 *Ecological Complexity* 44:1–6. <https://doi.org/10.1016/j.ecocom.2020.100867>
- 643

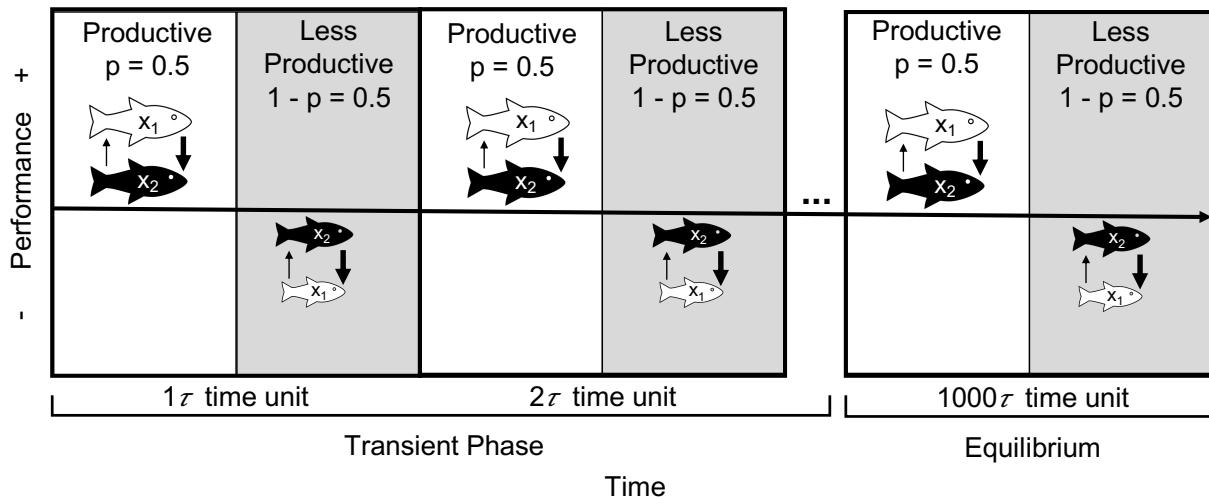
644 **Table 1:** Lotka-Volterra Coexistence Conditions vs. Seasonal Coexistence Conditions.

	Lotka – Volterra	Seasonal Coexistence
	Criteria	Criteria
Stable Coexistence	$\alpha_{11} > \alpha_{21}$	$\frac{pr_{p,1}\alpha_{p,11} + (1-p)r_{lp,1}\alpha_{lp,11}}{pr_{p,1} + (1-p)r_{lp,1}} > \frac{pr_{p,2}\alpha_{p,21} + (1-p)r_{lp,2}\alpha_{lp,21}}{pr_{p,2} + (1-p)r_{lp,2}}$
	$\alpha_{22} > \alpha_{12}$	$\frac{pr_{p,2}\alpha_{p,22} + (1-p)r_{lp,2}\alpha_{lp,22}}{pr_{p,2} + (1-p)r_{lp,2}} > \frac{pr_{p,1}\alpha_{p,12} + (1-p)r_{lp,1}\alpha_{lp,12}}{pr_{p,1} + (1-p)r_{lp,1}}$
Competitive Exclusion by sp_1	$\alpha_{11} > \alpha_{21}$	$\frac{pr_{p,1}\alpha_{p,11} + (1-p)r_{lp,1}\alpha_{lp,11}}{pr_{p,1} + (1-p)r_{lp,1}} > \frac{pr_{p,2}\alpha_{p,21} + (1-p)r_{lp,2}\alpha_{lp,21}}{pr_{p,2} + (1-p)r_{lp,2}}$
	$\alpha_{22} < \alpha_{12}$	$\frac{pr_{p,2}\alpha_{p,22} + (1-p)r_{lp,2}\alpha_{lp,22}}{pr_{p,2} + (1-p)r_{lp,2}} < \frac{pr_{p,1}\alpha_{p,12} + (1-p)r_{lp,1}\alpha_{lp,12}}{pr_{p,1} + (1-p)r_{lp,1}}$
Competitive Exclusion by sp_2	$\alpha_{11} > \alpha_{21}$	$\frac{pr_{p,1}\alpha_{p,11} + (1-p)r_{lp,1}\alpha_{lp,11}}{pr_{p,1} + (1-p)r_{lp,1}} > \frac{pr_{p,2}\alpha_{p,21} + (1-p)r_{lp,2}\alpha_{lp,21}}{pr_{p,2} + (1-p)r_{lp,2}}$
	$\alpha_{22} < \alpha_{12}$	$\frac{pr_{p,2}\alpha_{p,22} + (1-p)r_{lp,2}\alpha_{lp,22}}{pr_{p,2} + (1-p)r_{lp,2}} < \frac{pr_{p,1}\alpha_{p,12} + (1-p)r_{lp,1}\alpha_{lp,12}}{pr_{p,1} + (1-p)r_{lp,1}}$
Contingent Coexistence	$\alpha_{11} < \alpha_{21}$	$\frac{pr_{p,1}\alpha_{p,11} + (1-p)r_{lp,1}\alpha_{lp,11}}{pr_{p,1} + (1-p)r_{lp,1}} < \frac{pr_{p,2}\alpha_{p,21} + (1-p)r_{lp,2}\alpha_{lp,21}}{pr_{p,2} + (1-p)r_{lp,2}}$
	$\alpha_{22} < \alpha_{12}$	$\frac{pr_{p,2}\alpha_{p,22} + (1-p)r_{lp,2}\alpha_{lp,22}}{pr_{p,2} + (1-p)r_{lp,2}} < \frac{pr_{p,1}\alpha_{p,12} + (1-p)r_{lp,1}\alpha_{lp,12}}{pr_{p,1} + (1-p)r_{lp,1}}$

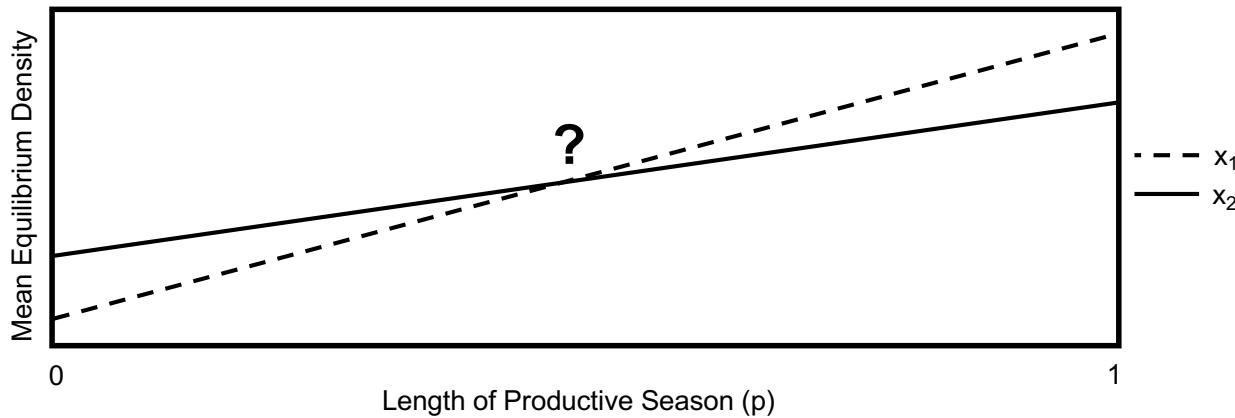
645

646 **Figure 1**

a) Model Set Up



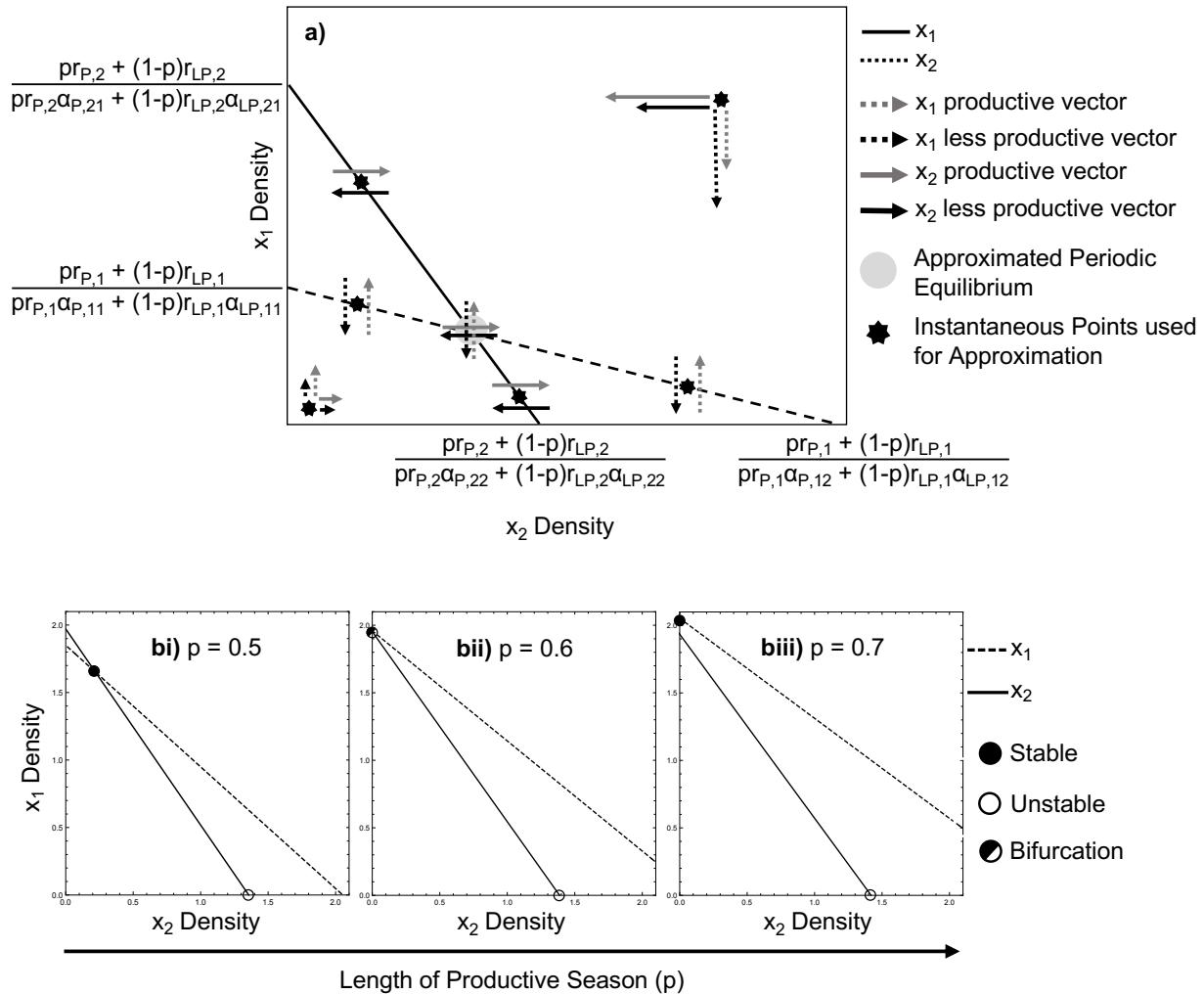
b) Model Experiment



647

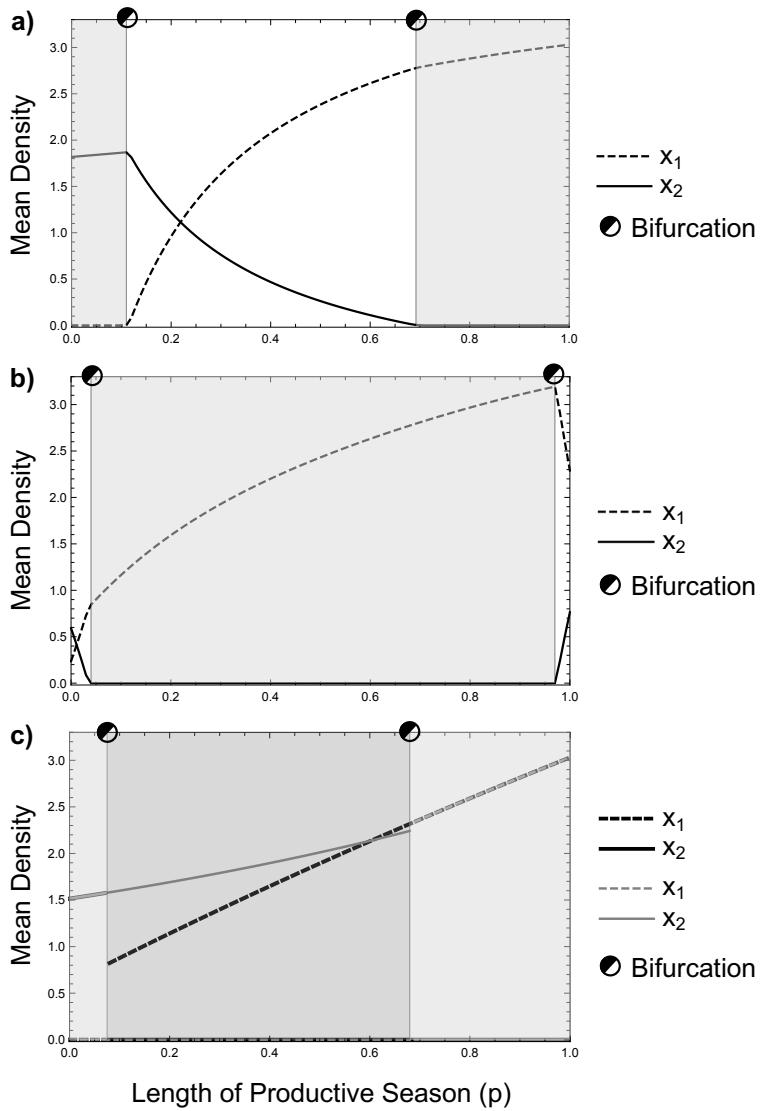
648 **Fig. 1** Model schematic investigates the projected mean equilibrium density over the length of
 649 the productive season when species compete under different periodic conditions. a) The model
 650 set-up investigates two time-separated seasons with different environmental conditions
 651 (productive (white box) and less productive (gray box)). In numerical simulations, competitive
 652 species, X_1 (white fish) and X_2 (black fish), exhibit different trade-offs in response to these
 653 differing environmental conditions, where each species may experience different levels of inter-
 654 to intraspecific competitive interactions (thickness of arrows) depending on which species may
 655 have an overall better performance (in terms of growth and competition) in one season compared
 656 to the other. An experiment is projected over many periods (say 1000 time-units) of length τ
 657 until it reaches an asymptotic state (we refer to this as an equilibrium despite the within-year
 658 variation). b) In the model experiment, the projected mean equilibrium density, which represents
 659 a fluctuating' species density at its asymptote, is calculated as the duration of the productive
 660 season (as a proportion of each time unit) varies from 0 – 1.

661 **Figure 2**



662

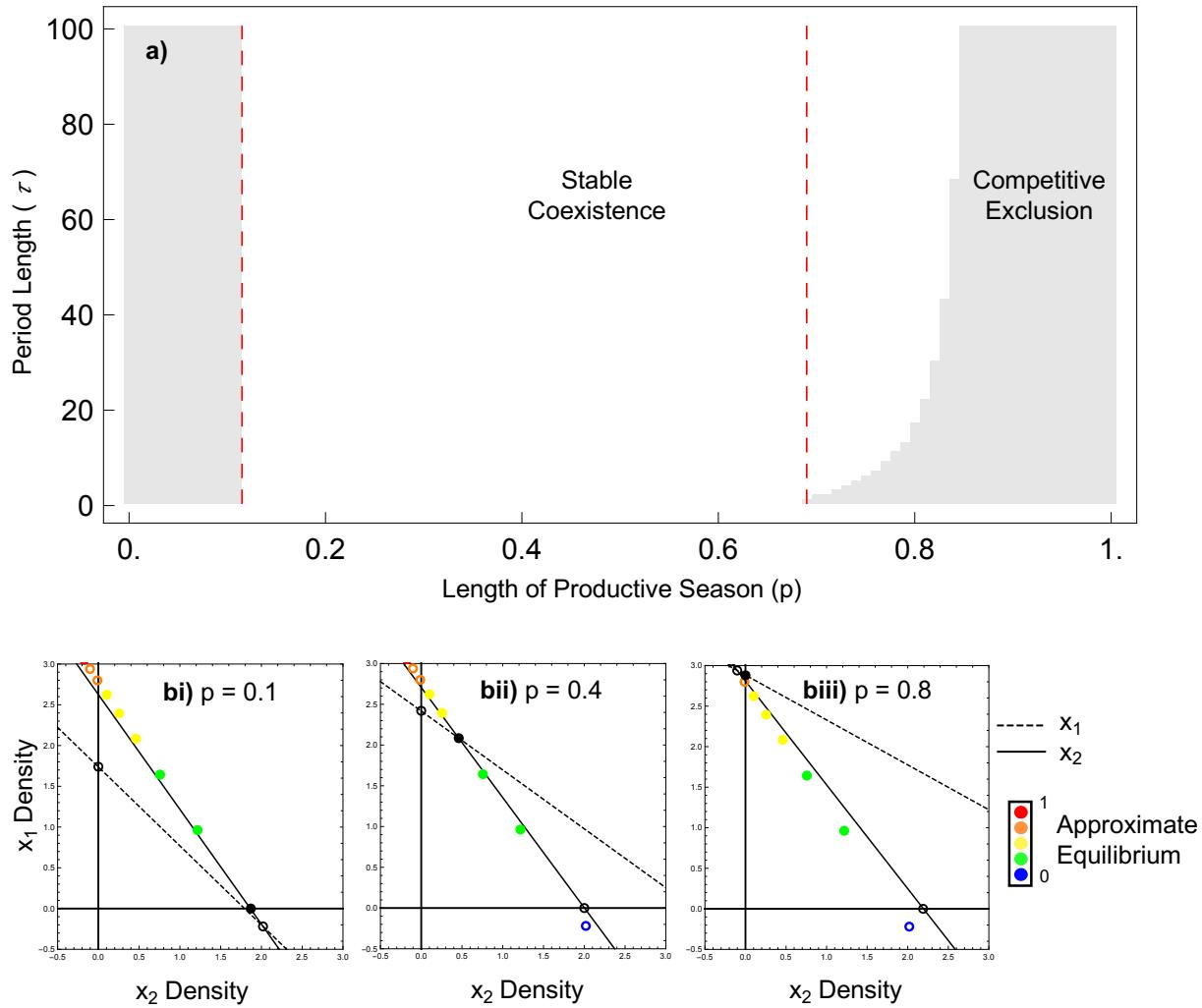
663 **Fig. 2** Isocline approximation of X_1 density on X_2 density. a) Stable coexistence isocline
664 approximation on phaseplane of X_1 (dashed line) and X_2 (solid line) densities. Approximate
665 isocline solutions for a given species occur when the instantaneous rate of change (represented
666 by vector arrows) in each season, scaled by seasonal duration, are equal and opposite of each
667 other (i.e., they “cancel” each other out such that the net change over a full period is null). Refer
668 to Table 1 for similarities to Lotka–Volterra coexistence conditions. b i-iii) illustrates a p -driven
669 bifurcation, showing the movement of the isoclines as the productivity season travels from i) $p =$
670 0.5; coexistence, to ii) $p = 0.6$; transcritical bifurcation, to iii) $p = 0.7$; competitive exclusion of
671 species 2. Parametric values: $\alpha_{P,11}=0.44$, $\alpha_{P,22}=0.66$, $\alpha_{P,12}=0.25$, $\alpha_{P,21}=0.53$, $\alpha_{LP,11}=1.11$,
672 $\alpha_{LP,22}=0.83$, $\alpha_{LP,12}=1.83$, $\alpha_{LP,21}=0.48$, $r_{P,1}=1.7$, $r_{P,2}=1.2$, $r_{LP,1}=0.3$, $r_{LP,2}=1$.

673 **Figure 3**

674

675 **Fig. 3** Numerical simulations of mean density over length of productive season (p) for
676 seasonally-mediated outcomes. White zone represents stable coexistence, light gray zone
677 represents competitive exclusion, and dark gray zone represents contingent coexistence where
678 the equilibrium is unstable and multiple attractors exist between the two species. a) Seasonally-
679 mediated coexistence. Parametric values: $\alpha_{P,21}=0.35$, $\alpha_{P,12}=0.165$, $\alpha_{P,11}=0.33$, $\alpha_{P,22}=0.436$,
680 $r_{P,1}=1.7$, $r_{P,2}=1.2$, $\alpha_{LP,21}=0.385$, $\alpha_{LP,12}=0.805$, $\alpha_{LP,11}=0.73$, $\alpha_{LP,22}=0.55$, $r_{LP,1}=0.3$, $r_{LP,2}=1$. b)
681 Seasonally-mediated competitive exclusion. Parametric values: $\alpha_{P,21}=0.29$, $\alpha_{P,12}=0.38$,
682 $\alpha_{P,11}=0.31$, $\alpha_{P,22}=0.44$, $r_{P,1}=4$, $r_{P,2}=1.2$, $\alpha_{LP,21}=1.27$, $\alpha_{LP,12}=1.02$, $\alpha_{LP,11}=1.67$, $\alpha_{LP,22}=1.18$ $r_{LP,1}=0.3$,
683 $r_{LP,2}=1$. c) Seasonally-mediated contingent coexistence. Parametric values; $\alpha_{P,21}=0.548$,
684 $\alpha_{P,12}=0.33$, $\alpha_{P,11}=0.33$, $\alpha_{P,22}=0.363$, $r_{P,1}=1.7$, $r_{P,2}=1.2$, $\alpha_{LP,21}=1.31$, $\alpha_{LP,12}=1.89$, $\alpha_{LP,11}=1.65$,
685 $\alpha_{LP,22}=0.66$, $r_{LP,1}=0.3$, $r_{LP,2}=1$.

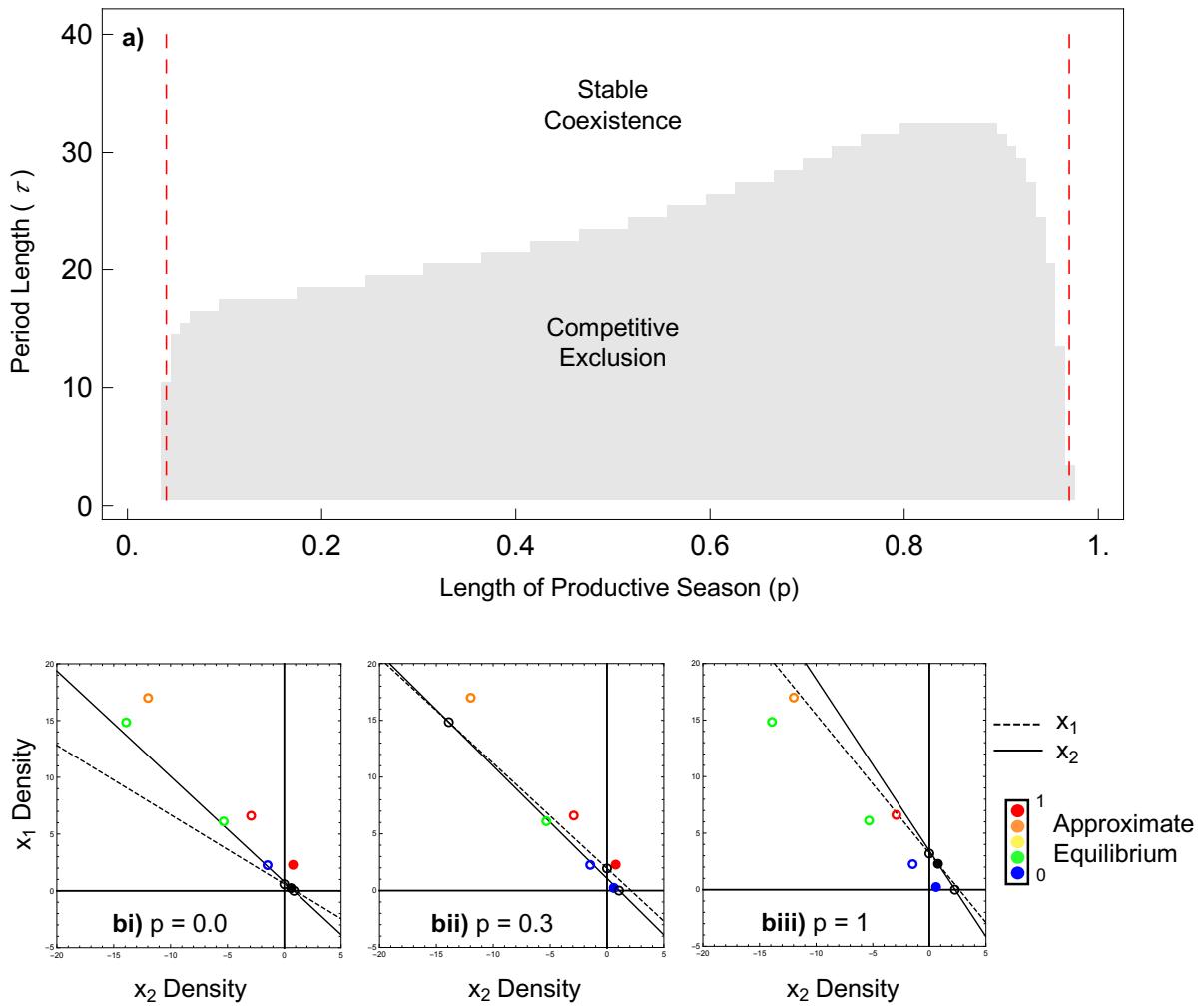
686 **Figure 4**



687

688 **Fig. 4** Two-dimensional bifurcation diagram of seasonally-mediated coexistence. a) seasonally-
689 mediated coexistence expanding over a wide range of period lengths (τ). The red dashed lines
690 represent the isocline approximation's prediction of the two transcritical bifurcation points at
691 $p=0.115$ and $p=0.69$ (see Fig. S3.1 for complete transition across p , and S4.1 for explanation of
692 approximation accuracy of seasonally mediated coexistence). b) isocline approximation tracks
693 the approximate equilibrium, which represents the mean asymptotic behavior, as the productive
694 season (p) increases from i) $p=0.1$; competitive exclusion of species 1, to ii) $p=0.4$; stable
695 coexistence, to iii) $p=0.8$; competitive exclusion of species 2. Filled in circles are stable
696 equilibrium points, and open circles are unstable equilibrium points. Parametric values:
697 $\alpha_{P,21}=0.35$, $\alpha_{P,12}=0.165$, $\alpha_{P,11}=0.33$, $\alpha_{P,22}=0.436$, $r_{P,1}=1.7$, $r_{P,2}=1.2$, $\alpha_{LP,21}=0.385$, $\alpha_{LP,12}=0.805$,
698 $\alpha_{LP,11}=0.73$, $\alpha_{LP,22}=0.55$, $r_{LP,1}=0.3$, $r_{LP,2}=1$.
699

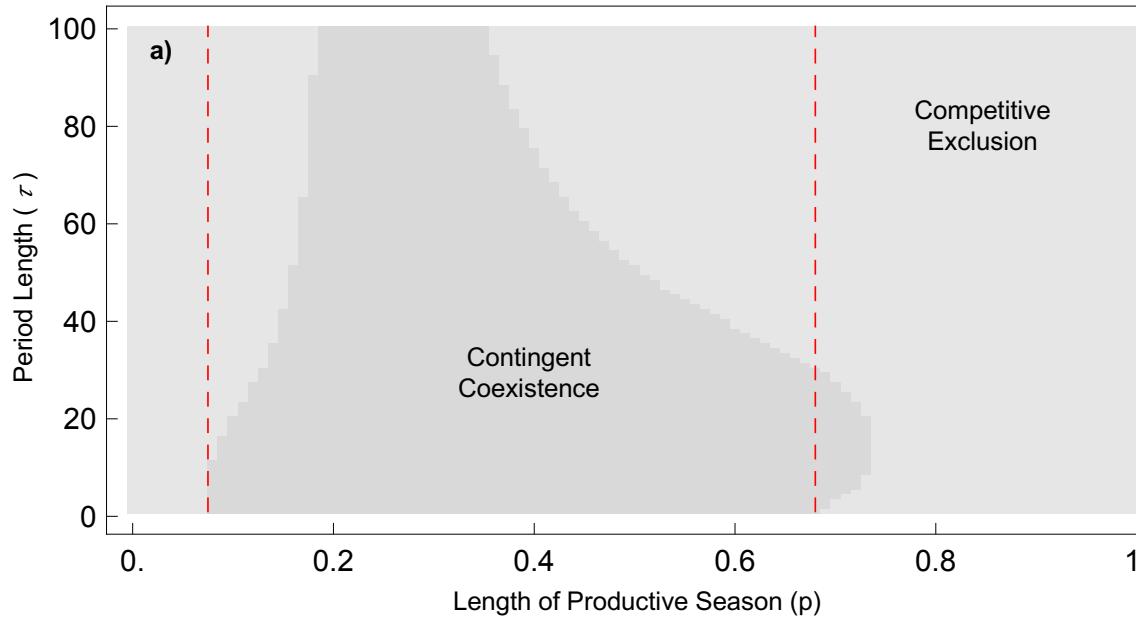
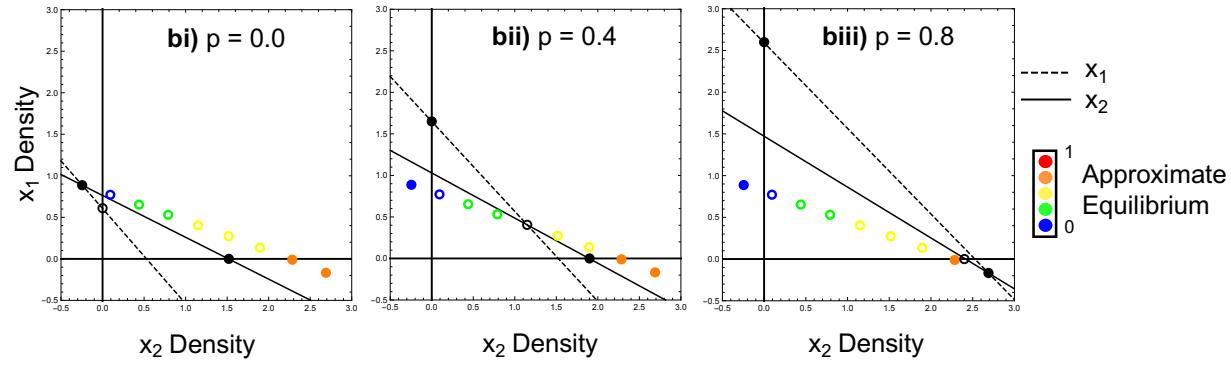
700 **Figure 5**



701

702 **Fig. 5** Two-dimensional bifurcation diagram of seasonally-mediated competitive exclusion. a) 703 seasonally-mediated competitive exclusion expanding over a wide range of period lengths (τ). 704 The red dashed lines represent the isocline approximation's prediction of the two transcritical 705 bifurcation points at $p=0.04$ and $p=0.97$ (see Fig. S3.2 for complete transition across p , and S4.2 706 for explanation of approximation accuracy of seasonally mediated competitive exclusion). b) 707 isocline approximation tracks the approximate equilibrium, which represents the mean 708 asymptotic behaviour, as the productive season increases from i) $p=0.0$; stable coexistence, to ii) 709 $p=0.3$; competitive exclusion of species 2, and back to iii) $p=1.0$; stable coexistence. Filled in 710 circles are stable equilibrium points, and open circles are unstable equilibrium points. Parametric 711 values: $\alpha_{P,21}=0.29$, $\alpha_{P,12}=0.38$, $\alpha_{P,11}=0.31$, $\alpha_{P,22}=0.44$, $r_{P,1}=4$, $r_{P,2}=1.2$, $\alpha_{LP,21}=1.27$, $\alpha_{LP,12}=1.02$, 712 $\alpha_{LP,11}=1.67$, $\alpha_{LP,22}=1.18$ $r_{LP,1}=0.3$, $r_{LP,2}=1$.

713 **Figure 6**



714

715 **Fig. 6** Two-dimensional bifurcation diagram of seasonally-mediated contingent coexistence. a) 716 seasonally-mediated contingent coexistence expanding over a wide range of period length (τ). 717 The red dashed lines represent the isocline approximation's prediction of the two transcritical 718 bifurcation points at $p=0.07$ and $p=0.69$ (see Fig. S3.3 for complete transition across p , and S4.3 719 for explanation of approximation accuracy of seasonally mediated contingent coexistence). b) 720 isocline approximation tracks the approximate equilibrium, which represents the mean 721 asymptotic behaviour, as the productive season increases from i) $p=0.0$; competitive exclusion of 722 species 1, to ii) $p=0.4$; contingent coexistence, to iii) $p=0.8$; competitive exclusion of species 2. 723 Filled in circles are stable equilibrium points, and open circles are unstable equilibrium points. 724 Parametric values; $\alpha_{P,21}=0.548$, $\alpha_{P,12}=0.33$, $\alpha_{P,11}=0.33$, $\alpha_{P,22}=0.363$, $r_{P,1}=1.7$, $r_{P,2}=1.2$, $\alpha_{LP,21}=1.31$, 725 $\alpha_{LP,12}=1.89$, $\alpha_{LP,11}=1.65$, $\alpha_{LP,22}=0.66$, $r_{LP,1}=0.3$, $r_{LP,2}=1$.

726 **Coexistence in Periodic Environments: Supplementary Material**

727 **S1: A Linearization of the Periodic Lotka-Volterra Dynamics**

728 If we consider any point on the phaseplane (X_1 - X_2) due to the productive season that lasts from 0
 729 to τp where τ is the period length, and p is the proportion of each period that is considered
 730 productive, then we know:

$$X_{P,1}(\tau p) = X_{P,1}(0) + \int_0^{\tau p} \frac{dX_{P,1}}{dt} dt \quad (1)$$

$$X_{P,2}(\tau p) = X_{P,2}(0) + \int_0^{\tau p} \frac{dX_{P,2}}{dt} dt \quad (2)$$

731 These dynamics follow the differential equation over the trajectory from 0 to τp starting at the
 732 values $X_{P,j}(0)$. We linearize the trajectory over 0 to τp by assuming the $\frac{dX_{P,j}}{dt}$ remains constant
 733 (e.g., we calculate the instantaneous $\frac{dX_{P,j}}{dt}$ for a point in the phaseplane, say for time (0)). As this
 734 is now a constant, we can use the Fundamental Theorem of Calculus to solve for Equations (1)
 735 and (2) above yielding:

$$X_{P,1}(\tau p) - X_{P,1}(0) = \frac{dX_{P,1}}{dt} t \Big|_0^{\tau p} \quad (3)$$

$$X_{P,1}(\tau p) - X_{P,1}(0) = \tau p \frac{dX_{P,1}}{dt} - 0 \frac{dX_{P,1}}{dt} \quad (4)$$

$$X_{P,1}(\tau p) - X_{P,1}(0) = \tau p \frac{dX_{P,1}}{dt} \quad (5)$$

736 Similarly, we solve for the less productive season between τp and τ , giving us:

$$X_{LP,1}(\tau) - X_{LP,1}(\tau p) = \tau(1-p) \frac{dX_{LP,1}}{dt} \quad (6)$$

737 Thus, the linearization estimates the trajectory as a linear scale movement following the length of
 738 the time interval (either τp , or $\tau(1-p)$). We can take this simple estimate to estimate the within
 739 seasonal dynamics and use them to estimate the periodic 0-isoclines.

740

741 Given Equations (5) and (6), the X_1 isocline occurs when:

$$\tau p \frac{dX_{P,1}}{dt} = -\tau(1-p) \frac{dX_{LP,1}}{dt} \quad (7)$$

742

743 With this approximation, we substitute the productive and less productive Lotka-Volterra models
 744 into equation (7):

$$\tau p r_{P,1} X_1 (1 - \alpha_{P,11} X_1 - \alpha_{P,12} X_2) = -\tau(1-p) r_{LP,1} X_1 (1 - \alpha_{LP,11} X_1 - \alpha_{LP,12} X_2) \quad (8)$$

745

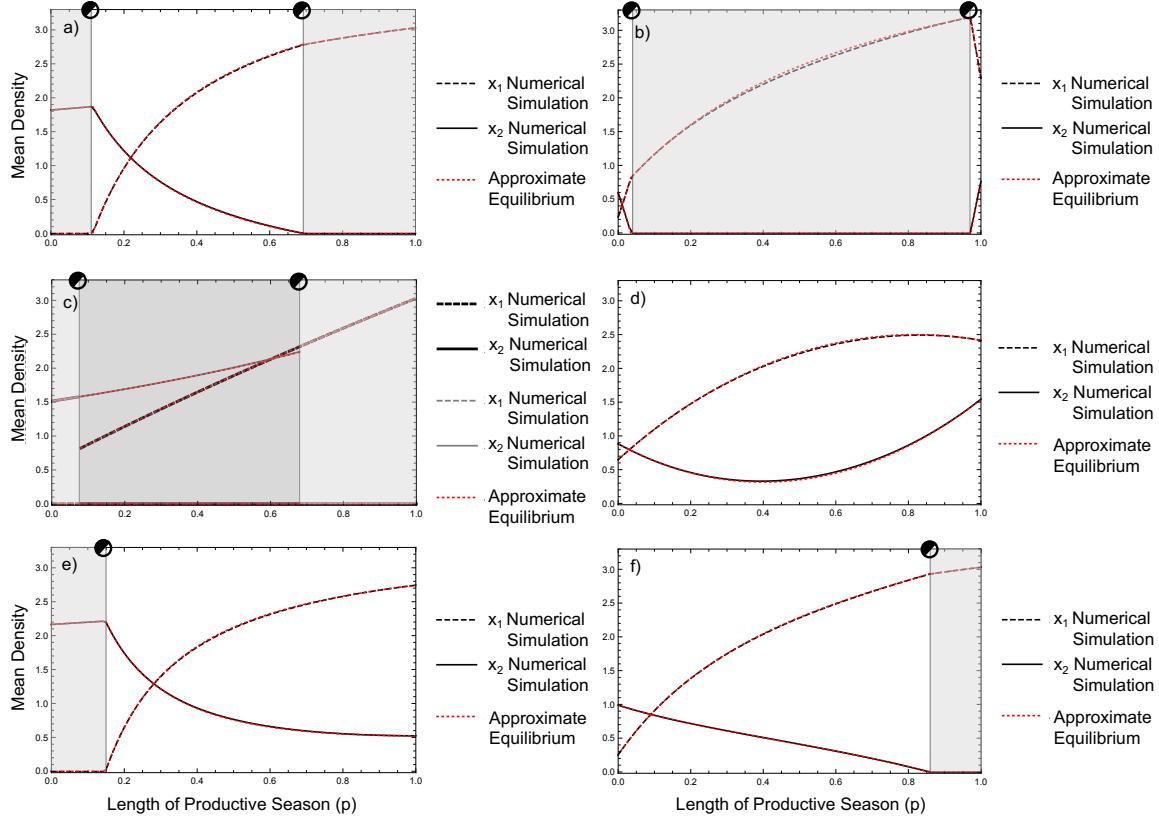
746 Noticing that τ cancels out, we can now solve for the isocline solution:

$$X_1 = -\frac{pr_{P,1}\alpha_{P,12} + (1-p)r_{LP,1}\alpha_{LP,12}}{pr_{P,1}\alpha_{P,11} + (1-p)r_{LP,1}\alpha_{LP,11}} X_2 + \frac{pr_{P,1} + (1-p)r_{LP,1}}{pr_{P,1}\alpha_{P,11} + (1-p)r_{LP,1}\alpha_{LP,11}} \quad (9)$$

747

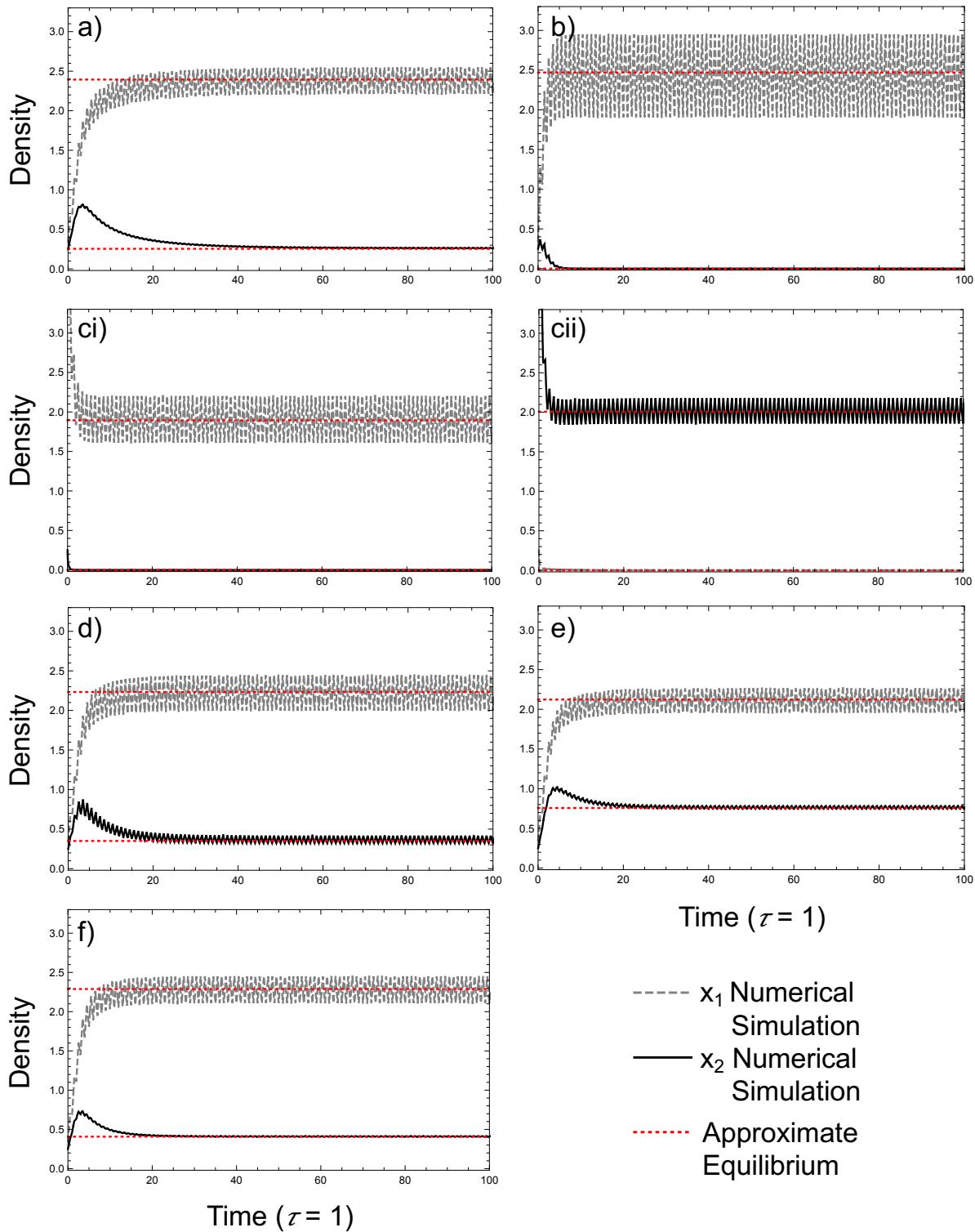
748 Similarly, we would perform the same steps to find the isocline solution for X_2 . This isocline
 749 approximation, for both species, allows us to determine coexistence criteria for seasonal
 750 environments.

751 **S2: Isocline Approximation and Numerical Simulation Comparison**



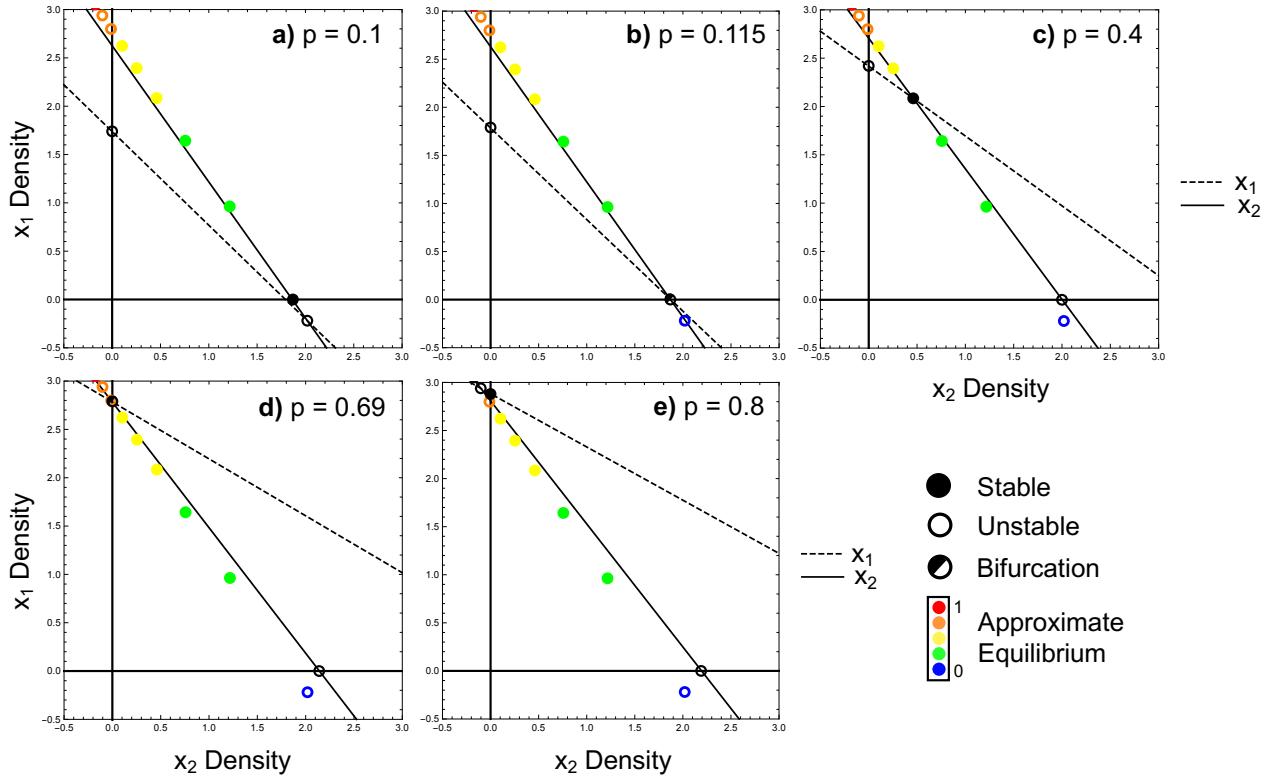
752

753 **Fig. S2.1** Comparison of Isocline Approximation against Numerical Simulations. White zone
754 represents stable coexistence, light gray zone represents competitive exclusion, and dark gray
755 zone represents contingent coexistence. a) Seasonally mediated coexistence. Parametric values:
756 $\alpha_{P,21}=0.35$, $\alpha_{P,12}=0.165$, $\alpha_{P,11}=0.33$, $\alpha_{P,22}=0.436$, $r_{P,1}=1.7$, $r_{P,2}=1.2$, $\alpha_{LP,21}=0.385$, $\alpha_{LP,12}=0.805$,
757 $\alpha_{LP,11}=0.73$, $\alpha_{LP,22}=0.55$, $r_{LP,1}=0.3$, $r_{LP,2}=1$. b) Seasonally mediated competitive exclusion.
758 Parametric values: $\alpha_{P,21}=0.29$, $\alpha_{P,12}=0.38$, $\alpha_{P,11}=0.31$, $\alpha_{P,22}=0.44$, $r_{P,1}=4$, $r_{P,2}=1.2$, $\alpha_{LP,21}=1.27$,
759 $\alpha_{LP,12}=1.02$, $\alpha_{LP,11}=1.67$, $\alpha_{LP,22}=1.18$, $r_{LP,1}=0.3$, $r_{LP,2}=1$. c) Seasonally mediated contingent
760 coexistence. The equilibrium is unstable in the dark gray zone and multiple attractors exist
761 between the two species. Parametric values: $\alpha_{P,21}=0.548$, $\alpha_{P,12}=0.33$, $\alpha_{P,11}=0.33$, $\alpha_{P,22}=0.363$,
762 $r_{P,1}=1.7$, $r_{P,2}=1.2$, $\alpha_{LP,21}=1.31$, $\alpha_{LP,12}=1.89$, $\alpha_{LP,11}=1.65$, $\alpha_{LP,22}=0.66$, $r_{LP,1}=0.3$, $r_{LP,2}=1$. d)
763 Counterintuitive mean density change. Parametric values: $\alpha_{P,21}=0.2$, $\alpha_{P,12}=0.155$, $\alpha_{P,11}=0.315$,
764 $\alpha_{P,22}=0.335$, $r_{P,1}=1.7$, $r_{P,2}=1.2$, $\alpha_{LP,21}=0.57$, $\alpha_{LP,12}=0.4$, $\alpha_{LP,11}=1$, $\alpha_{LP,22}=0.715$, $r_{LP,1}=0.3$, $r_{LP,2}=1$. e)
765 Mean density changes with competitive exclusion in the less productive season. Parametric
766 values: $\alpha_{P,21}=0.288$, $\alpha_{P,12}=0.15$, $\alpha_{P,11}=0.336$, $\alpha_{P,22}=0.402$, $r_{P,1}=1.7$, $r_{P,2}=1.2$, $\alpha_{LP,21}=0.354$,
767 $\alpha_{LP,12}=0.75$, $\alpha_{LP,11}=0.666$, $\alpha_{LP,22}=0.462$, $r_{LP,1}=0.3$, $r_{LP,2}=1$. f) Mean density changes with
768 competitive exclusion in the productive season. Parametric values: $\alpha_{P,21}=0.35$, $\alpha_{P,12}=0.165$,
769 $\alpha_{P,11}=0.33$, $\alpha_{P,22}=0.44$, $r_{P,1}=1.7$, $r_{P,2}=1.2$, $\alpha_{LP,21}=0.28$, $\alpha_{LP,12}=0.825$, $\alpha_{LP,11}=0.73$, $\alpha_{LP,22}=0.94$,
770 $r_{LP,1}=0.3$, $r_{LP,2}=1$.



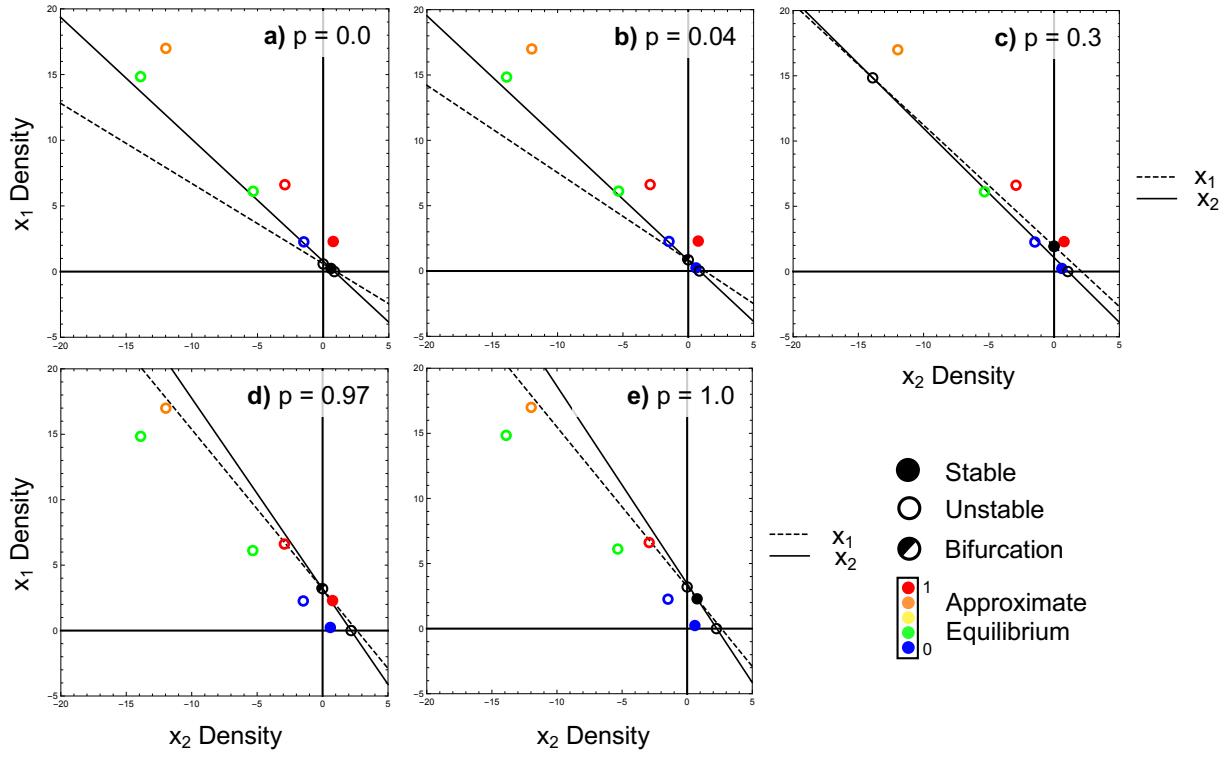
775 $\alpha_{LP,22}=0.55$, $r_{LP,1}=0.3$, $r_{LP,2}=1$. b) Seasonally mediated competitive exclusion. Parametric values:
 776 $\alpha_{P,21}=0.29$, $\alpha_{P,12}=0.38$, $\alpha_{P,11}=0.31$, $\alpha_{P,22}=0.44$, $r_{P,1}=4$, $r_{P,2}=1.2$, $\alpha_{LP,21}=1.27$, $\alpha_{LP,12}=1.02$,
 777 $\alpha_{LP,11}=1.67$, $\alpha_{LP,22}=1.18$ $r_{LP,1}=0.3$, $r_{LP,2}=1$. ci) Seasonally mediated contingent coexistence. X_1
 778 competitively excluded X_2 . Parametric values: $\alpha_{P,21}=0.548$, $\alpha_{P,12}=0.33$, $\alpha_{P,11}=0.33$, $\alpha_{P,22}=0.363$,
 779 $r_{P,1}=1.7$, $r_{P,2}=1.2$, $\alpha_{LP,21}=1.31$, $\alpha_{LP,12}=1.89$, $\alpha_{LP,11}=1.65$, $\alpha_{LP,22}=0.66$, $r_{LP,1}=0.3$, $r_{LP,2}=1$. cii)
 780 Seasonally mediated contingent coexistence. X_2 competitively excluded X_1 . Parametric values:
 781 $\alpha_{P,21}=0.548$, $\alpha_{P,12}=0.33$, $\alpha_{P,11}=0.33$, $\alpha_{P,22}=0.363$, $r_{P,1}=1.7$, $r_{P,2}=1.2$, $\alpha_{LP,21}=1.31$, $\alpha_{LP,12}=1.89$,
 782 $\alpha_{LP,11}=1.65$, $\alpha_{LP,22}=0.66$, $r_{LP,1}=0.3$, $r_{LP,2}=1$. d) Counterintuitive mean density change. Parametric
 783 values: $\alpha_{P,21}=0.2$, $\alpha_{P,12}=0.155$, $\alpha_{P,11}=0.315$, $\alpha_{P,22}=0.335$, $r_{P,1}=1.7$, $r_{P,2}=1.2$, $\alpha_{LP,21}=0.57$, $\alpha_{LP,12}=0.4$,
 784 $\alpha_{LP,11}=1$, $\alpha_{LP,22}=0.715$, $r_{LP,1}=0.3$, $r_{LP,2}=1$. e) Mean density changes with competitive exclusion in
 785 the less productive season. Parametric values: $\alpha_{P,21}=0.288$, $\alpha_{P,12}=0.15$, $\alpha_{P,11}=0.336$, $\alpha_{P,22}=0.402$,
 786 $r_{P,1}=1.7$, $r_{P,2}=1.2$, $\alpha_{LP,21}=0.354$, $\alpha_{LP,12}=0.75$, $\alpha_{LP,11}=0.666$, $\alpha_{LP,22}=0.462$, $r_{LP,1}=0.3$, $r_{LP,2}=1$. f) Mean
 787 density changes with competitive exclusion in the productive season. Parametric values:
 788 $\alpha_{P,21}=0.35$, $\alpha_{P,12}=0.165$, $\alpha_{P,11}=0.33$, $\alpha_{P,22}=0.44$, $r_{P,1}=1.7$, $r_{P,2}=1.2$, $\alpha_{LP,21}=0.28$, $\alpha_{LP,12}=0.825$,
 789 $\alpha_{LP,11}=0.73$, $\alpha_{LP,22}=0.94$, $r_{LP,1}=0.3$, $r_{LP,2}=1$.

790 **S3: Tracking Isocline Approximation across Productivity Length for all Seasonally
791 Mediated Competitive Outcomes**



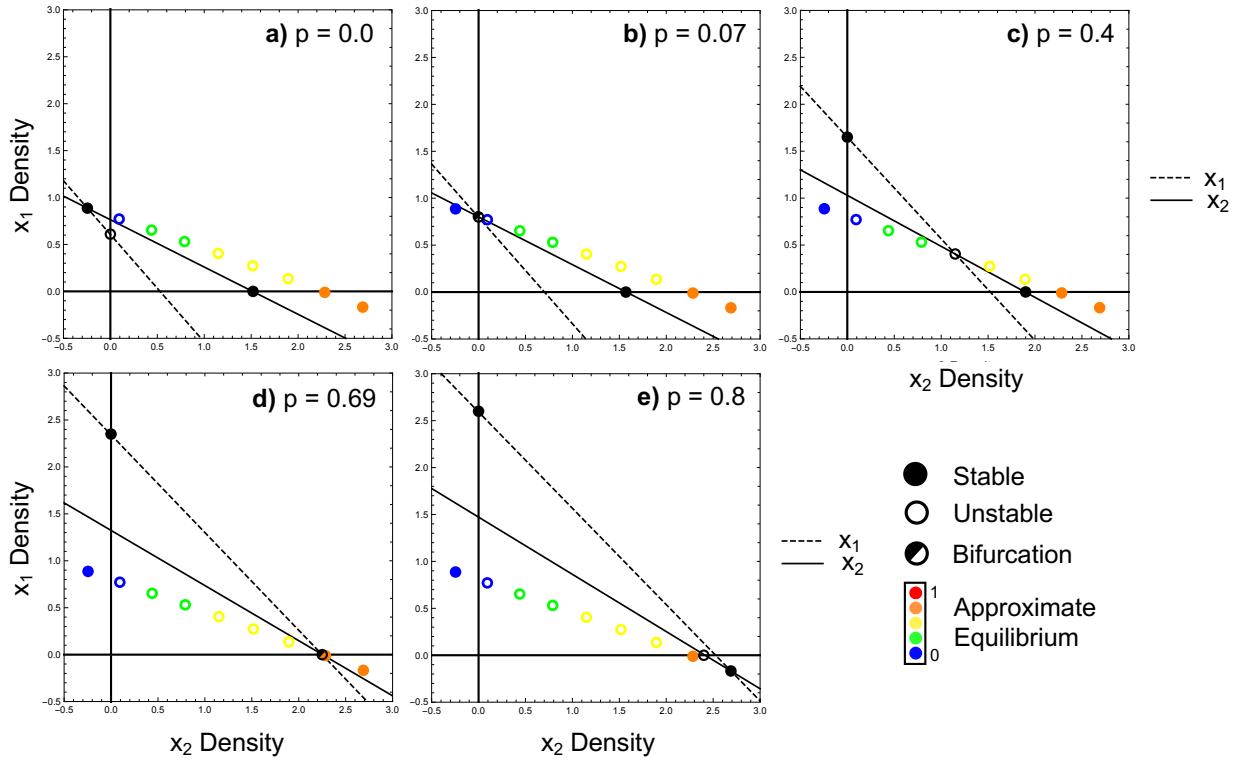
792

793 **Fig. S3.1** Seasonally mediated coexistence isocline approximation. Isocline approximation
794 tracking the interior equilibrium as the productive season increases in length from a) $p=0.1$;
795 competitive exclusion of species 1, to b) $p=0.115$; transcritical bifurcation, to c) $p=0.4$; stable
796 coexistence, to d) $p=0.69$; transcritical bifurcation, to e) $p=0.8$; competitive exclusion of species
797 2. Parametric values: $\alpha_{P,21}=0.35$, $\alpha_{P,12}=0.165$, $\alpha_{P,11}=0.33$, $\alpha_{P,22}=0.436$, $r_{P,1}=1.7$, $r_{P,2}=1.2$,
798 $\alpha_{LP,21}=0.385$, $\alpha_{LP,12}=0.805$, $\alpha_{LP,11}=0.73$, $\alpha_{LP,22}=0.55$, $r_{LP,1}=0.3$, $r_{LP,2}=1$.



799

800 **Fig. S3.2** Seasonally mediated competitive exclusion isocline approximation. Isocline
 801 approximation tracking the interior equilibrium as the productive season increases in length from
 802 a) $p=0.0$; stable coexistence, to b) $p=0.04$; transcritical bifurcation, to c) $p=0.3$; competitive
 803 exclusion of species 2, to d) $p=0.97$; transcritical bifurcation, to e) $p=1.0$; stable coexistence.
 804 Parametric values: $\alpha_{P,2I}=0.29$, $\alpha_{P,12}=0.38$, $\alpha_{P,1I}=0.31$, $\alpha_{P,22}=0.44$, $r_{P,1}=4$, $r_{P,2}=1.2$, $\alpha_{LP,2I}=1.27$,
 805 $\alpha_{LP,12}=1.02$, $\alpha_{LP,1I}=1.67$, $\alpha_{LP,22}=1.18$ $r_{LP,1}=0.3$, $r_{LP,2}=1$.



806

807 **Fig. S3.3** Seasonally mediated contingent coexistence isocline approximation. Isocline
 808 approximation tracking the interior equilibrium as the productive season increases in length from
 809 a) $p=0.0$; competitive exclusion of species 1, to b) $p=0.07$; transcritical bifurcation, to c) $p=0.4$;
 810 contingent coexistence, to d) $p=0.69$; transcritical bifurcation, to e) $p=0.8$; competitive exclusion
 811 of species 2. Parametric values: $\alpha_{P,2I}=0.548$, $\alpha_{P,12}=0.33$, $\alpha_{P,1I}=0.33$, $\alpha_{P,22}=0.363$, $r_{P,I}=1.7$,
 812 $r_{P,2}=1.2$, $\alpha_{LP,2I}=1.31$, $\alpha_{LP,12}=1.89$, $\alpha_{LP,1I}=1.65$, $\alpha_{LP,22}=0.66$, $r_{LP,I}=0.3$, $r_{LP,2}=1$.

813 **S4: Accuracy of the Linear Isocline Approximation**

814 Our results hold for a broad range of period lengths but clearly depend on specific
815 parameterizations that alter the timescale or the effects of timescale. Recall that our
816 approximation operates by assuming a zero population growth rate exists in the phaseplane
817 where linearization's of the Lotka-Volterra equations cancel out over the high growth and low
818 growth periods (i.e., linearization of the high growth for species X_1 and species X_2 are both equal
819 and opposite in sign to the low growth linearization). Given this assumption, we can immediately
820 ask when we expect nonlinear dynamics to dominate and potentially threaten the validity of the
821 linear assumption. First, the longer the period of the forced parameters (τ), then the longer the
822 time the dynamics have to fall off the linear assumption. Further, the larger the growth rates (r),
823 the larger the potential for nonlinear dynamics even with smaller periods (τ). As a result, we can
824 say the larger the product $r\tau$, the more likely our assumption of linearity is threatened.

825 Effectively, $r\tau$ sets the relative pace of the seasonal dynamics.

826

827 Recognizing that linear assumptions will lose accuracy when dynamics become nonlinear with
828 longer periods and fast growth rates (i.e., there is more time for dynamics to become nonlinear),
829 we first compare the dynamics (set by the original growth rates in the manuscript) with the
830 approximation's accuracy when the period length (τ) is increased. Next, we slow the dynamics
831 by dividing all species' growth rates (r) by 10-units and compare the approximation's accuracy
832 with these dynamics when the period length increases. Our results below show that indeed our
833 approximation can fall off, but even here for large, combined values of $r\tau$, the approximation
834 remains a reasonable qualitative predictor of steady state behaviour for seasonally-mediated

835 coexistence and contingent coexistent (S4.1 and S4.3 respectively). We note that the seasonally
836 mediated competitive exclusion is not as robust (S4.2).

837

838 As seen in Fig. 4a, the analytical approximation still accurately predicts the numerically
839 generated transcritical bifurcation at $p = 0.11$ (mean densities transition between competitive
840 exclusion of species 1 to coexistence of both species), even when the period length (τ), reaches
841 100 time-units. This is due to the large difference between the productive and less-productive
842 growth rates of species 1. However, the approximation begins to inaccurately predict where the
843 second numerically generated transcritical bifurcation will occur ($p = 0.69$; mean density
844 transition between coexistence and competitive exclusion of species 2) when $\tau = 5$ time-units
845 (Fig. S4.11b). With the original growth rates used in the manuscript, when the period length is
846 small ($\tau = 1$), the seasonal dynamics are relatively linear, and the approximation accurately
847 predict the true mean densities from the numerical simulation (Figs. S4.11a and S4.12a).
848 However, as we increase the period length to 5 time-units, the dynamics become more nonlinear
849 as, with enough time, species' densities reach their seasonal equilibrium and spend more time at
850 these fixed points (Fig. S4.12b). Here, the numerically generated mean densities will be skewed
851 closer towards this equilibrium, while the linear approximation fails to capture this (Fig. S4.11b).
852 When all growth rates are slowed down (all r 's divided by 10 units), the seasonal dynamics
853 become more linear, and the approximation is more accurately able to track the mean densities
854 even when the period length (τ) is increased from 1 (Figs S4.11c and S4.12c) to 5 time-units
855 (Figs S4.11d and S4.12d).

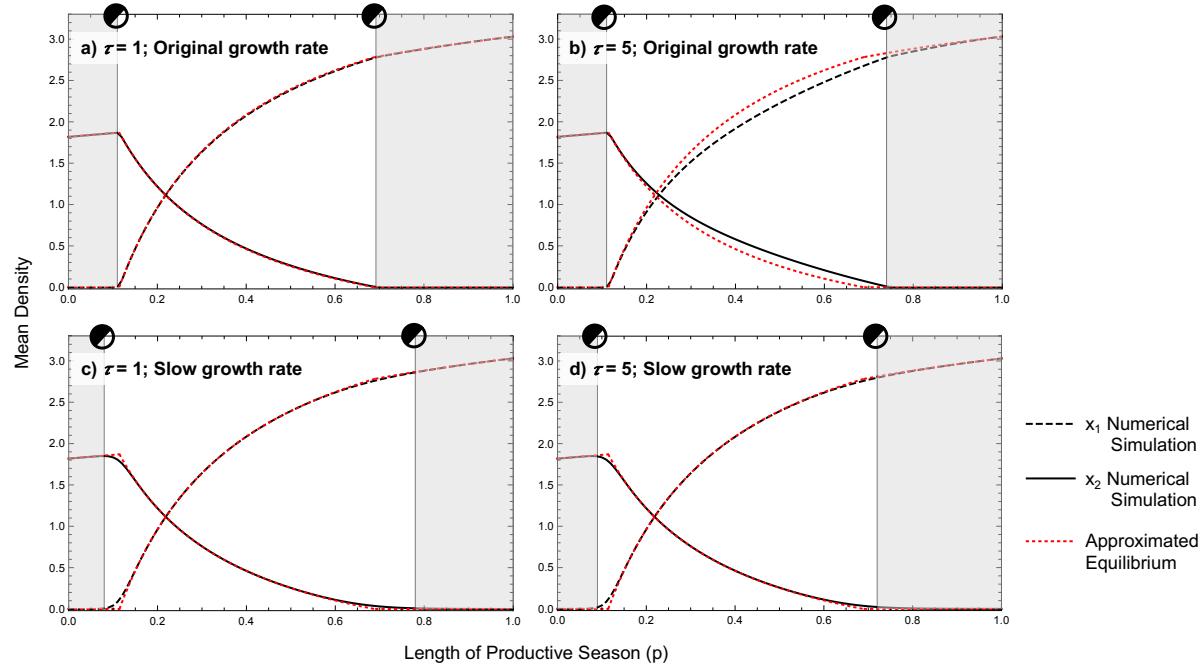
856

857 In Fig. 5a, the approximation still predicts seasonally mediated competitive exclusion, even
858 when species coexist at very large period lengths ($\tau > 33$ time units) across all p -values.
859 However, when τ is increased from 1 to 10 time-units with the original growth rates, the
860 dynamics become more nonlinear (Figs. S4.22a and S4.22b respectively) and the approximation
861 begins to fail at tracking the numerically-generated mean densities throughout the entire range of
862 p -values (Figs. S4.21a and S4.21b respectively), though it still captures the qualitative behavior
863 and presence of the bifurcations. When growth rates are smaller, the seasonal dynamics are now
864 more linear (Figs. S4.22c and FigsS4.22d), and the approximation more accurately tracks the
865 numerically generated mean densities as τ increases from 1 to 10 time-units (Figs. S4.22c and
866 FigsS4.22d respectively).

867

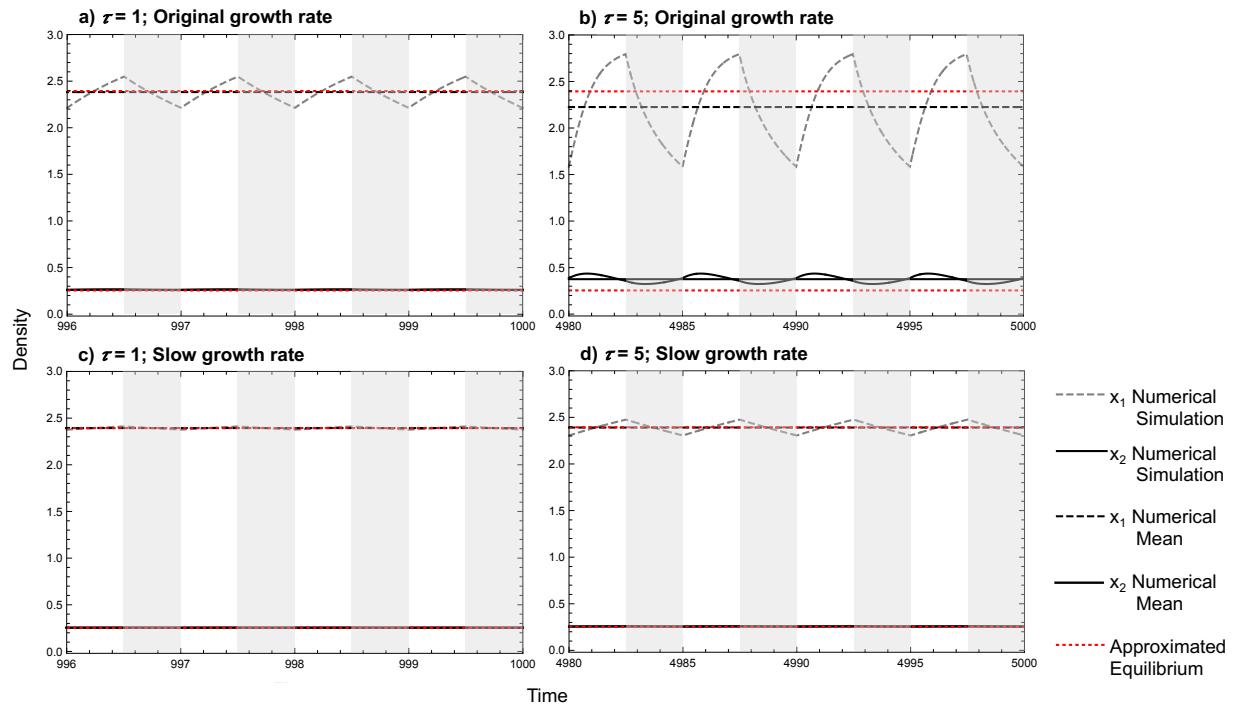
868 For seasonally mediated contingent coexistence, as the period length (τ) increases, the region of
869 contingent coexistence from the numerically-generated results first broadens and then shrinks
870 (Fig. 6a). With the original growth rates, as the period length is increased from 1 to 20 time-
871 units, the seasonal dynamics become more nonlinear (Figs. S4.32a and S4.32b respectively), and
872 the approximation is unable to track the true bifurcations based on our numerical results (Figs.
873 S4.31a and S4.31b respectively). When the growth rates are a tenth of their original size (all r 's
874 divided by 10 units), the dynamics slow down and are now more linear as τ is increased (Figs.
875 S4.32c and S4.32d), allowing the approximation to more accurately track the numerically-
876 generated mean densities over the entire range of p -values (Figs. S4.31c and S4.31d).

877 **S4.1 Approximation Accuracy of Seasonally Mediated Coexistence**



878

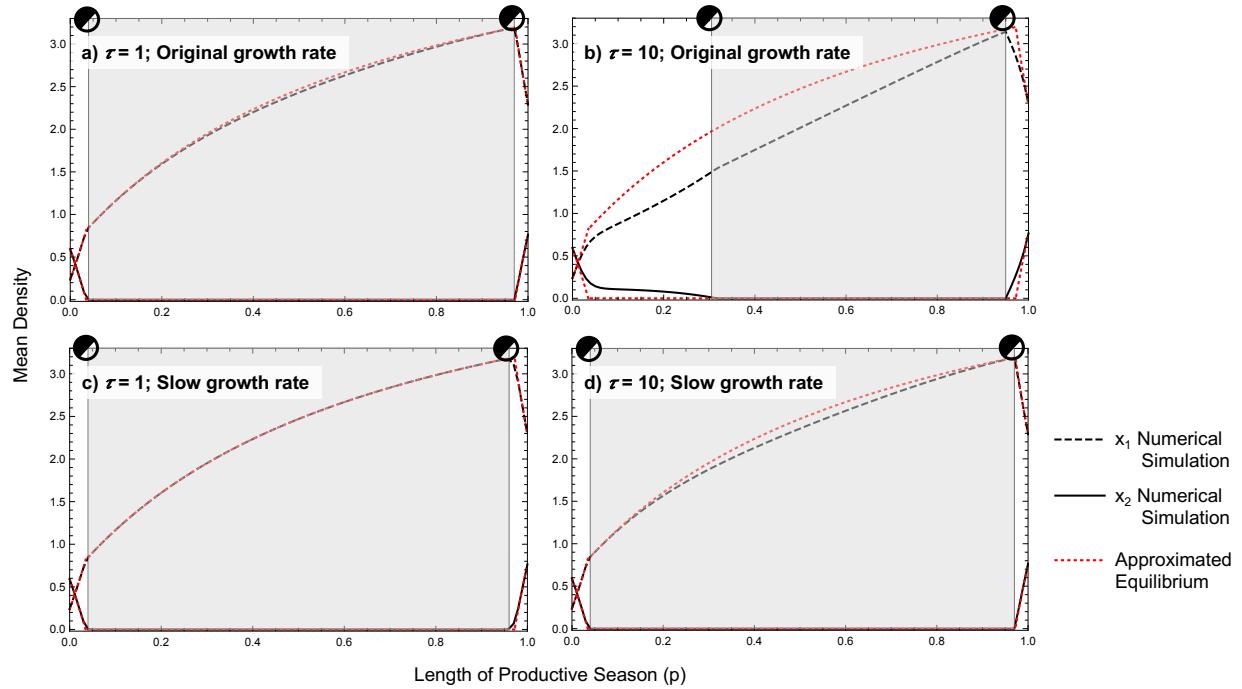
879 **Fig. S4.11** Isocline approximation – mean density plots over the length of the productive season
 880 (p) for seasonally-mediated coexistence. White zones represent coexistence and light grey zones
 881 represent competitive exclusion. a) and b) original growth rates (those used throughout
 882 manuscript: $r_{P1} = 1.7$, $r_{P2} = 1.2$, $r_{LP1} = 1$, $r_{LP2} = 0.3$) when the period length $\tau = 1$ and 5 time-
 883 units respectively. c) and d) all growth rates have been divided by 10 units ($r_{P1} = 0.17$, $r_{P2} = 0.12$,
 884 $r_{LP1} = 0.1$, $r_{LP2} = 0.03$) when the period length = 1 and 5 time-units respectively. Parametric
 885 values: $\alpha_{P,21}=0.35$, $\alpha_{P,12}=0.165$, $\alpha_{P,11}=0.33$, $\alpha_{P,22}=0.436$, $\alpha_{LP,21}=0.385$, $\alpha_{LP,12}=0.805$, $\alpha_{LP,11}=0.73$,
 886 $\alpha_{LP,22}=0.55$.



887

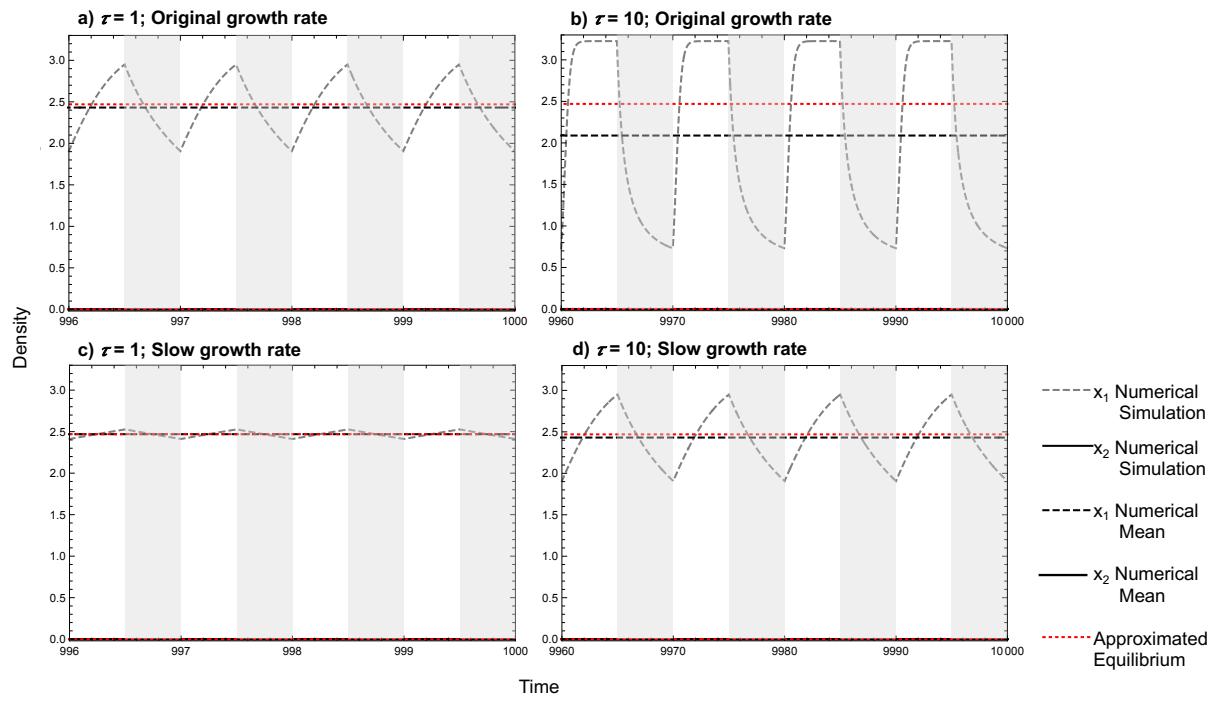
888 **Fig. S4.12** Isocline approximation – time series for seasonally-mediated coexistence. Length of
 889 productive season (p) = 0.5 represented by white zones, and light grey zones represent the less-
 890 productive season. a) and b) original growth rates (those used throughout manuscript: $r_{P1} = 1.7$,
 891 $r_{P2} = 1.2$, $r_{LP1} = 1$, $r_{LP2} = 0.3$) when the period length $\tau = 1$ and 5 time-units respectively. c) and
 892 d) all growth rates have been divided by 10 units ($r_{P1} = 0.17$, $r_{P2} = 0.12$, $r_{LP1} = 0.1$, $r_{LP2} = 0.03$)
 893 when the period length = 1 and 5 time-units respectively. Parametric values: $\alpha_{P,21}=0.35$,
 894 $\alpha_{P,12}=0.165$, $\alpha_{P,11}=0.33$, $\alpha_{P,22}=0.436$, $\alpha_{LP,21}=0.385$, $\alpha_{LP,12}=0.805$, $\alpha_{LP,11}=0.73$, $\alpha_{LP,22}=0.55$.

895 **S4.2 Approximation Accuracy of Seasonally Mediated Competitive Exclusion**



896

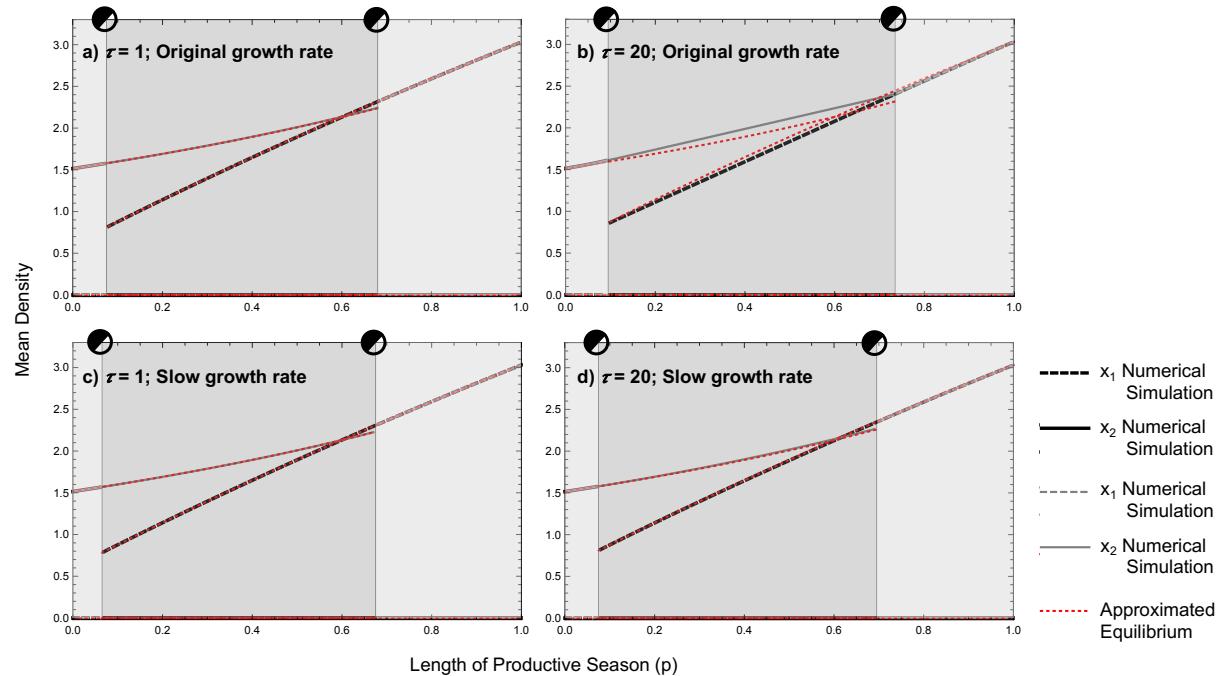
897 **Fig. S4.21** Isocline approximation – mean density plots over the length of the productive season
 898 (p) for seasonally-mediated competitive exclusion. White zones represent coexistence and light
 899 grey zones represent competitive exclusion. a) and b) original growth rates (those used
 900 throughout manuscript: $r_{P1} = 4$, $r_{P2} = 1.2$, $r_{LP1} = 1$, $r_{LP2} = 0.3$) when the period length $\tau = 1$ and
 901 10 time-units respectively. c) and d) all growth rates have been divided by 10 units ($r_{P1} = 0.4$, r_{P2}
 902 = 0.12, $r_{LP1} = 0.1$, $r_{LP2} = 0.03$) when the period length = 1 and 10 time-units respectively.
 903 Parametric values: $\alpha_{P,21}=0.29$, $\alpha_{P,12}=0.38$, $\alpha_{P,11}=0.31$, $\alpha_{P,22}=0.44$, $\alpha_{LP,21}=1.27$, $\alpha_{LP,12}=1.02$,
 904 $\alpha_{LP,11}=1.67$, $\alpha_{LP,22}=1.18$.



905

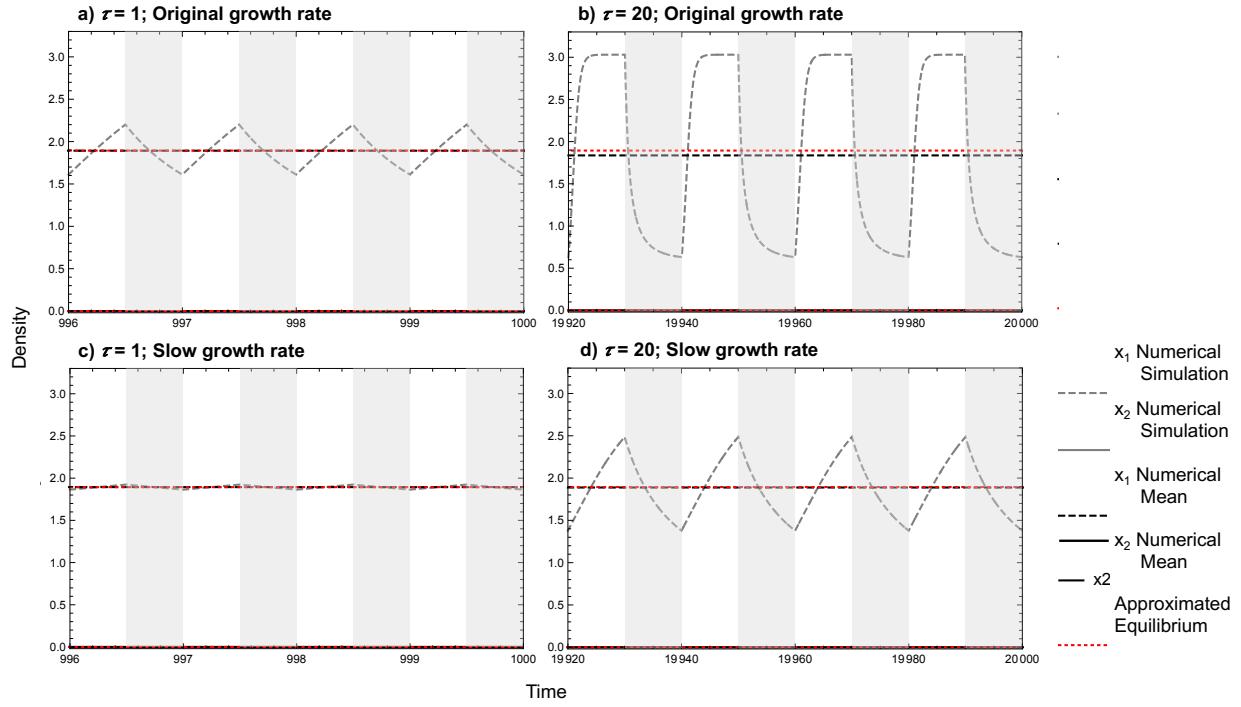
906 **Fig. S4.22** Isocline approximation – time series for seasonally-mediated competitive exclusion.
 907 Length of productive season (p) = 0.5 represented by white zones, and light grey zones represent
 908 the less-productive season. a) and b) original growth rates (those used throughout manuscript: r_{P1}
 909 = 4, $r_{P2} = 1.2$, $r_{LP1} = 1$, $r_{LP2} = 0.3$) when the period length $\tau = 1$ and 10 time-units respectively. c)
 910 and d) all growth rates have been divided by 10 units ($r_{P1} = 0.4$, $r_{P2} = 0.12$, $r_{LP1} = 0.1$, $r_{LP2} =$
 911 0.03) when the period length = 1 and 10 time-units respectively. Parametric values: $\alpha_{P,21}=0.29$,
 912 $\alpha_{P,12}=0.38$, $\alpha_{P,11}=0.31$, $\alpha_{LP,21}=0.44$, $\alpha_{LP,22}=1.27$, $\alpha_{LP,12}=1.02$, $\alpha_{LP,11}=1.67$, $\alpha_{LP,22}=1.18$.

913 **S4.3 Approximation Accuracy of Seasonally Mediated Contingent Coexistence**



914

915 **Fig. S4.31** Isocline approximation – mean density plots over the length of the productive season
916 (p) for seasonally-mediated contingent coexistence. Light grey zones represent competitive
917 exclusion and grey zones represent contingent coexistence. a) and b) original growth rates (those
918 used throughout manuscript: $r_{P1} = 1.7$, $r_{P2} = 1.2$, $r_{LP1} = 1$, $r_{LP2} = 0.3$) when the period length $\tau =$
919 1 and 20 time-units respectively. c) and d) all growth rates have been divided by 10 units ($r_{P1} =$
920 0.17, $r_{P2} = 0.12$, $r_{LP1} = 0.1$, $r_{LP2} = 0.03$) when the period length = 1 and 20 time-units
921 respectively. Parametric values: $\alpha_{P,21}=0.548$, $\alpha_{P,12}=0.33$, $\alpha_{P,11}=0.33$, $\alpha_{LP,21}=1.31$,
922 $\alpha_{LP,12}=1.89$, $\alpha_{LP,11}=1.65$, $\alpha_{LP,22}=0.66$.



923

924 **Fig. S4.32** Isocline approximation – time series for seasonally-mediated contingent coexistence.
925 Length of productive season (p) = 0.5 represented by white zones, and light grey zones represent
926 the less-productive season. a) and b) original growth rates (those used throughout manuscript: r_{P1}
927 = 1.7, r_{P2} = 1.2, r_{LP1} = 1, r_{LP2} = 0.3) when the period length τ = 1 and 20 time-units respectively.
928 c) and d) all growth rates have been divided by 10 units (r_{P1} = 0.17, r_{P2} = 0.12, r_{LP1} = 0.1, r_{LP2} =
929 0.03) when the period length = 1 and 20 time-units respectively. Parametric values: $\alpha_{P,21}$ =0.548,
930 $\alpha_{P,12}$ =0.33, $\alpha_{P,11}$ =0.33, $\alpha_{P,22}$ =0.363, $\alpha_{LP,21}$ =1.31, $\alpha_{LP,12}$ =1.89, $\alpha_{LP,11}$ =1.65, $\alpha_{LP,22}$ =0.66.