
Coexistence in Periodic Environments 

 

Alexa M Scott1*, Carling Bieg1,2, Bailey C McMeans3, Kevin S McCann1 

 

1 Department of Integrative Biology, University of Guelph, Ontario, Canada 

2 Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, 

USA 

3 Department of Biology, University of Toronto, Mississauga, Ontario, Canada 

*corresponding author 

 

ORCIDs and email addresses 

*Alexa M Scott: 0000-0003-0776-0582 (ascott16@uoguelph.ca) 

Carling Bieg: 0000-0003-1552-2007 (carling.bieg@gmail.com) 

Bailey C McMeans: 0000-0002-9793-6811 (bailey.mcmeans@utoronto.ca) 

Kevin S McCann: 0000-0001-6031-7913 (ksmccann@uoguelph.ca) 

 

Keywords: Periodicities, species coexistence, competition, Lotka-Volterra, climate change 

 

Word Count: 5340 (main body) 

Submission Content: Main text, one table, six figures, supplementary material (4 sections) 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2024. ; https://doi.org/10.1101/2023.02.24.529749doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2023.02.24.529749
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

1 

Abstract 1 

Climate change and other anthropogenic impacts are rapidly altering natural environmental 2 

periodicities on a variety of time scales. Despite this, a general theoretical foundation describing 3 

the role of periodic environmental variation in structuring species interactions and ecological 4 

communities is still underdeveloped. Alarmingly, this leaves us unprepared to understand and 5 

predict implications for the maintenance of biodiversity under global change. Here, we extend a 6 

two-species Lotka-Volterra competition model that incorporates periodic forcing between 7 

seasons of high and low production to investigate the effects of changing environmental patterns 8 

on species coexistence. Towards this, we define coexistence criteria for periodic environments 9 

by approximating isocline solutions akin to classical coexistence outcomes. This analytical 10 

approach illustrates that periodic environments (i.e., seasonality) in and of themselves can 11 

mediate different competitive outcomes, and these patterns are general across varying time 12 

scales. Importantly, species coexistence may be incredibly sensitive to changes in these abiotic 13 

periods, suggesting that climate change has the potential to drastically impact the maintenance of 14 

biodiversity in the future.  15 
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2 

Introduction 16 

Nature is abundant with a diverse array of periodic climate signals (Jackson et al. 2021; Pokorný 17 

2021). The complex variations in temperature over time (Jiang and Morin 2007; Klausmeier 18 

2010), for example, can be decomposed into different lengths of underlying periodicities using 19 

spectral analysis, revealing a complex mosaic of short (e.g., seconds, minutes, hours, days), 20 

medium (e.g., months, years), long (e.g., multi-decadal), and very long natural periods (e.g., 100s 21 

to 1000s of years) (Forrest and Miller-Rushing 2010; Vasconcellos et al. 2011; Huntly et al. 22 

2021; Joseph and Kumar 2021; Pokorný 2021). The regularity of these environmental periods 23 

allows for species to adapt and respond to them (Bernhardt et al. 2020; Fretwell 1972; Shuter et 24 

al. 2012; Tonkin et al. 2017), meaning that nature has evolved around, and within, these complex 25 

temporal abiotic signatures (Mathias and Chesson 2013; Varpe 2017; Rudolf 2019). Despite the 26 

long-known recognition of nature’s complex abiotic palette (White and Hastings 2020), 27 

relatively little ecological research has considered the scope of nature’s abiotic variability in 28 

maintaining species diversity (Abrams 2022). 29 

 30 

Researchers have clearly argued that temporal variation (e.g., stochasticity) can promote species 31 

coexistence via fluctuation-dependent coexistence mechanisms (e.g., storage effect, relative 32 

nonlinearity) (Chesson 2000, 2018; Adler et al. 2006; Meyer et al. 2022). With these 33 

mechanisms, temporal niche differentiation enables coexistence between species with different 34 

competitive advantages (Angert et al. 2009; Mathias and Chesson 2013; Miller and Klausmeier 35 

2017). Despite the broad focus on environmental variation, one specific class of variability that 36 

has been less-well explored, yet ought to provide a generalizable and analytically tractable 37 
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3 

entryway into coexistence theory for variable environments, is that of periodic fluctuations – that 38 

is, repeated and predictable fluctuations in environmental conditions. For examples, (Litchman 39 

and Klausmeier 2001) use fast/slow approximations to elegantly show that night/day oscillations 40 

in light can mediate competitive outcomes in phytoplankton – analytical solation that are tricky 41 

to garner from environmentally stochastic models.  42 

 43 

Studies are beginning to suggest that periodic environments may have significant implications 44 

for species coexistence (Mathias and Chesson 2013; Miller and Klausmeier 2017; White and 45 

Hastings 2020). For example, temporally changing resource conditions, which fluctuate between 46 

seasons of high productivity to seasons of very little to no productivity (Fretwell 1972; Chesson 47 

and Huntly 1997), may favour different species at different times of a period (Armstrong and 48 

McGehee 1980; Litchman and Klausmeier 2001; Hastings 2012; Huntly et al. 2021). Similarly, it 49 

has been suggested that certain life history trade-offs and temporal differentiation in competing 50 

species’ performance may alter coexistence outcomes in the face of periodic environments 51 

(Litchman and Klausmeier 2001; McMeans et al. 2020). Recently, Mougi (2020) extended 52 

competition results from single periodicities to polyrhythms (i.e., multiple interacting 53 

periodicities) to show that the coupling of differently timed resource fluctuations may broaden 54 

the range of coexistence between diverse species that rely on limited resources. While these 55 

recent papers highlight the importance of periodic variation, the demand for a more general 56 

theoretical understanding on the role of periodic conditions – either in isolation or as suites of 57 

periodicities (i.e., polyrhythms) – remains (White and Hastings 2020; Abrams 2022). Notably, 58 
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4 

we lack a general understanding of coexistence in periodic environments akin to our well-59 

established theoretical foundation framed around steady-state dynamics. 60 

 61 

The development of such general theory is critical as climate change is currently altering the 62 

nature of these environmental fluctuations (Dijkstra et al 2011; Shuter et al. 2012; Urban et al. 63 

2012; Chesson 2018; Al-Habahbeh et al. 2020). Northern-hemisphere winters are becoming 64 

shorter in length and more moderate (Caldwell et al. 2020; Edlund et al. 2017; Ficker et al. 2017; 65 

Warne et al. 2020), and weather patterns across the globe are becoming more variable and 66 

unpredictable (Fang and Stefan 1998; O’Reilly et al. 2015). In response, many communities have 67 

experienced an increase in species extinction (Urban et al. 2012; Moor 2017; Fung et al. 2020) 68 

and invasion rates (Stachowicz et al. 2002; Sharma et al. 2009; Dijkstra et al. 2011; Cerasoli et 69 

al. 2019; Atkinson et al. 2020). Therefore, as climate change continues to alter the abiotic 70 

conditions to which organisms have adapted to, the mechanisms regulating species coexistence 71 

may be fundamentally altered (di Paola et al. 2012; Korpela et al. 2013; Tunney et al. 2014; 72 

Anderson et al. 2015; Eloranta et al. 2016; Bartley et al. 2019; Caldwell et al. 2020). With all this 73 

in mind, developing an understanding for the mechanisms behind the maintenance of 74 

biodiversity in periodic environments becomes even more crucial. 75 

 76 

Inspired by the fluctuating-light-driven coexistence results of Litchman and Klausmeier (2001), 77 

we sought to develop a generalizable framework for coexistence in fluctuating environments. 78 

Towards this, we extend upon the seasonal coexistence model first introduced by McMeans et al. 79 

(2020) to more broadly explore the role of periodic forcing across time scales (e.g., days to 80 
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5 

multi-decadal) via different biological parameter combinations. We also generalized our 81 

approach by allowing high and low growth periods (not just high growth - no growth alone), 82 

with temporally-differential competitive abilities. Specifically, we extend the classical Lotka-83 

Volterra coexistence criteria to include the role of environmental periodicities. This approach 84 

allows our results to be phrased around classical coexistence conditions with temporally-scaled 85 

inter- and intraspecific competition strengths. Here, we define a period as a unit of time that is 86 

composed of two distinct seasons of variable length and seek to generally explore which 87 

competitive outcomes may occur in these environments and under what biological conditions 88 

(i.e., different growth rates). Towards this, we employ an analytical approach consistent with the 89 

classical Lotka-Volterra phaseplane theory by developing a simple approximation that allows us 90 

to solve for the isocline solutions of a time-separated periodic model. Specifically, this 91 

approximation allows us to define coexistence criteria for periodic environments. We then 92 

illustrate how periodic environments can, in and of themselves, drive bifurcations (i.e., changing 93 

invasion criteria) such that competitive outcomes (i.e., stable coexistence, competitive exclusion, 94 

and contingent coexistence) are mediated by the environment. We end by discussing our 95 

competition results in light of how climate change is altering the nature of key underlying abiotic 96 

periodicities. 97 

 98 

Methods 99 

We start by extending McMeans et al. (2020)’s annual seasonal model. Here, we define season 100 

more generally as a discrete division in time that repeats itself, or is periodic, of any given length 101 

within a period. As such, summer (more productive) and winter (less productive) seasons in 102 
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6 

McMeans et al. (2020) repeat themselves with a periodicity of one-year, but we may also 103 

similarly decompose other naturally shorter (e.g., seconds (Huntly et al. 2021)) and longer (e.g., 104 

El-Nino Southern Oscillations (Joseph and Kumar 2021)) periods of time into discrete seasons of 105 

more or less productive conditions. Towards this general understanding of periodic 106 

environments, we extend the Lotka-Volterra competition model (Chesson 2018) into a periodic 107 

model that repeatedly alternates between two discrete seasons, a productive (𝑓!) and less 108 

productive (𝑓"!) season. For each species, these functions are modelled with environmentally 109 

specific parameter combinations to incorporate biological constraints within each season, 110 

discussed below (Fig. 1a). The Lotka-Volterra model is defined as: 111 

𝑓#,%(𝑡) =
𝑑𝑋%
𝑑𝑡 = 𝑟#,%𝑋%(1 − ⍺#,%%𝑋% − ⍺#,%&𝑋&) 

(1) 

where j and k represent two competing species, and S represents a season (either productive, P, 112 

or less productive, LP). Here, 𝑟#,% is the intrinsic rate of population growth for species j in a 113 

season, S, 𝛼#,%% is the intraspecific competitive coefficient for species j in season S, and 𝛼#,%& is 114 

the interspecific competitive coefficient describing the effect of species k on species j in season 115 

S. 116 

 117 

When running simulations, and to maintain the spirit of the model assumptions (i.e., productive 118 

and less productive season), we assumed the following simple biologically realistic assumptions:  119 

(1) Maximal growth rates are larger in the productive season than the less productive season 120 

for both species (i.e., 𝑟!,%	> 𝑟"!,%), and; 121 
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7 

(2) Since resources are more available in the productive season compared to the less 122 

productive season, intraspecific competition will be lower in the productive season 123 

compared to the less productive season (i.e., 𝛼!,%% < 𝛼"!,%%). 124 

Further, to incorporate realistic biological trade-offs between competing species, we assumed 125 

that species 1 is a better performer (in terms of growth and competition) in the productive season 126 

compared to species 2, and the opposite is true in the less productive season. Keeping in mind 127 

the previous seasonal constraints, this produces the following realistic parametric trade-offs for 128 

the two species: 129 

(1) Species 1 has a higher growth rate in the productive season (i.e., 𝑟!,( > 𝑟!,)) and a lower 130 

growth rate in the less productive season (i.e., 𝑟"!,) > 𝑟"!,() compared to species 2, and; 131 

(2) Species 1 has a smaller intraspecific competitive coefficient in the productive season (i.e., 132 

𝛼!,(( < 𝛼!,))) and a larger intraspecific competitive coefficient in the less productive 133 

season (i.e., 𝛼"!,(( > 𝛼"!,))) compared to species 2.  134 

These trade-offs are similar to an empirical case study by McMeans et al. (2020) where cold-135 

adapted fish (e.g., lake trout, Salvelinus namaycush) are seasonal generalists with moderate 136 

growth rates year-round, and warm-adapted fish (e.g., smallmouth bass, Micropterus dolomieu), 137 

the lake trout’s competitor, are seasonal specialists with higher growth rates during the summer 138 

and lower growth rates during the winter. Note that we have not set any seasonal constraints on 139 

the interspecific competitive coefficients, therefore, 𝛼#,%& can be any value. 140 

 141 
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8 

With the above assumptions taken into consideration, our model is a periodic step function 142 

(repeats every 1-time unit, or period) that goes through a productive season (P), and a less 143 

productive season (LP), as follows: 144 

𝑑𝑋%
𝑑𝑡 =

-
𝑓!,%(𝑡)										𝑖 < 𝑡 < 𝑖 + 𝜏𝑝
𝑓"!,%(𝑡)						𝑖 + 𝜏𝑝 < 𝑡 < 𝑖 + 𝜏

	
 

(2) 

Where i is the period number (i.e. year) that runs on an integer step size of 1 from 0 to 𝑡*+, (the 145 

number of periods that the model runs for). 𝜏 governs the length of each period, and p is the 146 

proportion of each period that is considered productive (i.e., 𝜏𝑝 is the length of the productive 147 

season; leaving 𝜏(1-p) as the length of the less productive season). The period length, defined by 148 

𝜏, allows us to examine how environmental periodicities, and associated biological trade-offs, 149 

across time scales may influence coexistence. As above, j represents one of the two competitive 150 

species, either species 1 or 2. These periodic functions of 𝑓! and 𝑓"! are defined in equation (1) 151 

as 𝑓#. 152 

 153 

We coded all numerical simulations in Mathematica 12.0. The models are integrated over 154 

numerous periods until an asymptotic state, referred to hereafter as an equilibrium state, despite 155 

within-period variation, has been reached (i.e., mean value from 900 – 1000 time-units) to 156 

remove transient influences. However, within each time unit, as discussed above, they 157 

sequentially follow first productive then less productive parameters corresponding to the given 158 

productive seasonal fraction, p, within the period. The productive seasonal fraction, p, allows us 159 

to change the proportion of the period that is under our productive conditions versus our less 160 

productive conditions, (1-p) (e.g., increase 𝑓!) (Fig. 1b).  161 
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 162 

Finally, all model parameterizations for our simulations can be found in our figure legends and in 163 

the Supplementary Material. Below we first walk through our approximation and then our 164 

general analytical results before highlighting the generality of our analytical solutions using 165 

numerical simulations. For each outcome, we explore how changing the season lengths, via p, 166 

influences competitive coexistence and exclusion (Fig. 1b; Table 1). 167 

 168 

Results 169 

Here, we present our approximated isocline solutions and investigate the resulting coexistence 170 

criteria and behaviour under seasonality. Next, we reveal that changing season length, p, in 171 

response to climate change, mediates coexistence, competitive exclusion, and contingent 172 

coexistence (Fig. 3). Finally, we explore the robustness of our seasonally-mediated outcomes 173 

(i.e., seasonally-driven bifurcations) across a range of period lengths (Figs. 4-6).  174 

 175 

Approximate Isocline Solutions for the Periodic Lotka-Volterra Model 176 

Although we use a periodically forced system, we can use equilibrium concepts to understand 177 

the dynamics of our model. Specifically, our model reaches an attractor such that the densities 178 

fluctuate modestly up and down on the attractor around a mean that does not change (i.e., an 179 

asymptotic state or dynamic equilibrium; Fig.S2.2). Given this equilibrium-like dynamic, we are 180 

interested in considering this asymptotic behaviour in a manner similar to the way we would for 181 

a system that reaches a true equilibrium. Here, we provide an approximation for our model 182 

isoclines and equilibria that mirror those of the original Lotka-Volterra competition model. 183 
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 184 

Note that the isoclines can be solved by recognizing that each period of 𝜏 time units would 185 

necessarily have to result in zero net growth (i.e., no overall changes in density between the start 186 

and end of each period), akin to classical zero-growth isoclines with a deterministic equilibrium. 187 

That is, from System (2), the Xj zero-net-growth condition occurs when ,-!
,.
= 0. From this, the 188 

isocline solution follows as: 189 

5 𝑓!,%(𝑡)
/*

0
= −5 𝑓"!,%(𝑡)

1

/*
 

(3) 

This isocline solution (3) is not analytically tractable (note that each season has dynamics over a 190 

time interval), making it seem as though an isocline approach appears infeasible.  191 

 192 

Towards solving for an approximation for periodically forced isoclines, we take a slightly 193 

different approach then the classical linearization of the full equations (see Litchman and 194 

Klausmeier (2001) for an example). As our model is not tractable with this approach, we instead 195 

proceed by assuming that we can find a linearized approximation to the isocline from the 196 

periodic model by searching for points in phase space where the linearization of each seasons’ 197 

dynamics are exactly negated by each other (for both the X1 and X2 isoclines). We define such 198 

points as zero net growth points in the phaseplane (i.e., a point on the forced model’s isocline) 199 

and we define the collection of these points as the linearized isocline approximation of the 200 

periodically-forced model. Clearly, as the length of the period, 𝜏, goes to 0, the error in this 201 

linear approximation will also go to 0. However, for longer periods or large growth rates (r), 202 

non-linear dynamics may drive this simplification to work poorly (see Supplementary Material 203 
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S4). Because of this, we numerically check our analytical results with numerical calculations 204 

throughout. We note that despite this, the results work surprisingly well across large parameter 205 

values suggesting the linear approximation works even when some degree of nonlinear dynamics 206 

are expressed.  207 

 208 

By assuming that the instantaneous rates of change for each species at this X1-X2 co-ordinate are 209 

linear, we approximate the dynamics over the time period, 𝜏, by solving the equations using the 210 

Fundamental Theorem of Calculus over each period (see Supplementary Material S1). That is, 211 

over the interval fraction, 𝜏p, the productive trajectory scales linearly on the co-ordinate X1-X2 as: 212 

𝑑𝑋(
𝑑𝑡 = τ𝑝𝑓!,((𝑋(, 𝑋)) 

(4) 

and the less productive trajectory over the interval fraction 𝜏(1-p) scales linearly as: 213 

𝑑𝑋(
𝑑𝑡 = τ(1 − 𝑝)𝑓"!,((𝑋(, 𝑋)) 

(5) 

Given Equations (4) and (5), then the linearized dynamics at a X1-X2 co-ordinate negate each 214 

other (i.e., resulting in the X1-isocline) when: 215 

τ𝑝𝑓!,((𝑋(, 𝑋)) = −τ(1 − 𝑝)𝑓"!,((𝑋(, 𝑋)) (6) 

This approximation (Equation (6)), if it works, can be solved symbolically as done elegantly for 216 

the classical Lotka-Volterra model and thus allows an entry point into well-known coexistence 217 

analyses and interpretations.  218 

 219 
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From Equation (6), we see that 𝜏	factors	out. After substituting the productive and less 220 

productive models of Equation (1) into Equation (6) and then some algebra, the resulting isocline 221 

solutions, for both species, follow the following form: 222 

𝑋( = −
𝑝𝑟!,(𝛼!,() + (1 − 𝑝)𝑟"!,(𝛼"!,()
𝑝𝑟!,(𝛼!,(( + (1 − 𝑝)𝑟"!,(𝛼"!,((

𝑋) +
𝑝𝑟!,( + (1 − 𝑝)𝑟"!,(

𝑝𝑟!,(𝛼!,(( + (1 − 𝑝)𝑟"!,(𝛼"!,((
 (7) 

 223 

The geometry of the approximated isoclines (Equation (7)) resembles that of the original Lotka-224 

Volterra isoclines, which therefore allows us to identify general rules for coexistence in periodic 225 

environments akin to the original coexistence criteria (Fig. 2a). Here, the isocline approximation 226 

solutions (and therefore coexistence criteria) are now based on temporal-growth-scaled inter- 227 

versus intra-specific competition rates (whereas the original Lotka-Volterra conditions are not 228 

dependent on growth rates; see Table 1 for Lotka-Volterra vs. Seasonal Coexistence Criteria). 229 

Thus, the approximation enables us to generally determine and graphically explore how periodic 230 

environments and biological rates may interact in regulating competitive outcomes (Fig. 2b). 231 

Immediately, based on these conditions, we can see that the duration of each season, and the 232 

corresponding biological conditions within them, play a critical role in regulating competitive 233 

outcomes in periodic environments. That is, our parameter p may drive bifurcations, and 234 

therefore alter competitive outcomes under changing climatic conditions (Fig. 2b). 235 

 236 

We found numerically that this approximation works quite well (see Supplementary Material S2 237 

for examples) and was, for example, able to repeatedly and accurately calculate the transcritical 238 

bifurcation points where an interior equilibrium intersects and exchanges stability, with an axial 239 

solution. Other approaches similar to our approximation, such as Litchman and Klausmeier 240 
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(2001), have been used to accurately investigate species coexistence when organismal dynamics 241 

are fast relative to their forcing speed. Given our assumption of linearity, the relative time scale 242 

of forcing vs. dynamics ought to be important for our approximation’s accuracy. Indeed, when 243 

either the period length (𝜏) or the growth rate (r) becomes larger, the apparent length of each 244 

period increases, allowing for more nonlinearity within each season’s dynamics, which results in 245 

the approximation to fail at predicting the asymptotic behaviour (see Supplementary Material 246 

S4). Nevertheless, the range at which this approximation holds is impressively robust. 247 

 248 

General outcomes of changing environments 249 

Given that changing season lengths may have powerful implications for species coexistence, we 250 

now ask how changing season length, p, (i.e., altering seasonal asymmetry) affects competitive 251 

outcomes. To do this we vary the season length from p=0 (i.e., the full period being entirely less 252 

productive) to p=1 (i.e., the full period being entirely productive). We note that these endpoints 253 

(i.e., p=0 or p=1) are constant (i.e., no seasonality) and thus, they reduce to the classic Lotka-254 

Volterra coexistence criteria based on the individual biological conditions for P or LP (Table 1). 255 

These endpoints also give us reference conditions for exploring the effects of environmental 256 

periodicity and seasonally-mediated coexistence outcomes. 257 

 258 

Since McMeans et al. (2020) found the intriguing case of seasonally-mediated coexistence, we 259 

were interested in using our analytical results to unpack other examples of how seasonal change 260 

could fundamentally alter competitive outcomes. McMeans et al. (2020) noted that where the 261 

boundary conditions yielded competitive exclusion (i.e., exclusion at p=0 and p=1), a seasonal 262 
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model could produce coexistence for intermediate p-values. This is intriguing as it immediately 263 

suggests that alterations in p (say from climate change) can drive exclusion. Importantly, our 264 

analytical solutions (Table 1) suggest that seasonality can mediate all possible competitive 265 

outcomes at intermediate p-values (Fig. 3). Indeed, we found seasonally-mediated coexistence, 266 

competitive exclusion, and contingent coexistence (i.e., alternative states) (Fig. 3a-c 267 

respectively).  268 

 269 

For these seasonally-mediated outcomes, when the qualitative competitive outcome at 270 

intermediate p is fundamentally different from the extremes (i.e., p = 0 and 1), p drives a series 271 

of transcritical bifurcations that move the system between different conditions in Table 1 (shifts 272 

between shaded and clear zones indicate transcritical bifurcations that alter the qualitative nature 273 

of the attractor in Fig. 3). Specifically, under our given sets of parametric combinations, 274 

changing p always drives a series of two bifurcations for these seasonally-mediated outcomes 275 

(Fig. 3). Other competitive outcomes of course are seasonally sensitive as they result in p-driven 276 

bifurcations when coexistence outcomes transition between the two endpoint conditions. 277 

Additionally, we note that these transcritical bifurcations can be considered as changes in the 278 

invasion criteria – in this case, seasonally-altered invasion criterion – as they are commonly 279 

referred to in competition theory. For example, in Fig. 3a, the gray shaded regions indicate that 280 

one species cannot invade from small densities while in the white or unshaded region, it 281 

suddenly can invade from small densities.  282 

 283 
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Finally, clearly not all parameter combinations are sensitive to p-driven bifurcations. In these 284 

cases, p may simply drive changes in species’ densities rather than shifts in the equilibrium 285 

structure (e.g., as seen in McMeans et al. (2020)). While here we broadly unpack p-driven 286 

bifurcations to explore the generality of these outcomes, we note that all results below have 287 

nearby solutions that do not undergo bifurcations yet and are qualitatively similar in terms of the 288 

general effect of p on the isocline and equilibrium geometry.  289 

 290 

Robustness of Seasonally-Mediated Competitive Outcomes 291 

To fully understand how robust the different seasonally-mediated outcomes are we looked at the 292 

bifurcation structure in 2-dimensional parameter space, by using both season length, p, (as in Fig. 293 

3) and the period length, 𝜏, as bifurcation parameters. We note that if seasonally-mediated 294 

outcomes exist across a broad range of period lengths, 𝜏, then this suggests that seasonally-295 

mediated competitive outcomes could be found across a wide range of natural periodicities (from 296 

diurnal to multi-decadal).  297 

 298 

In Fig. 4a, we document cases where a lack of periodicity (i.e., at p=0 or 1) drives competitive 299 

exclusion while for a broad range of 𝜏’s (ranging from 1-100 time units), we have species 300 

coexistence at intermediate p-values. Our analytical solutions allow us to track the “mean 301 

equilibrium” through each transcritical bifurcation from competitive exclusion of species 1 to 302 

species coexistence and finally to competitive exclusion of species 2 as the length of the 303 

productive period, p, increases (i.e., changing p shifts between competitive exclusion and stable 304 

coexistence conditions in Table 1; Figs. 4bi-iii, S3.1). The robustness of this pattern implies that 305 
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for any given 𝜏, seasonality alone can mediate coexistence at intermediate p-values. As the 306 

period length (𝜏) grows, the numerically-generated region of coexistence broadens, and the 307 

second transcritical bifurcation point, the transition between species coexistence and competitive 308 

exclusion of species 2, deviates away from the analytically-determined transcritical bifurcation 309 

point (see more regarding approximation accuracy of seasonally mediated coexistence in S4.1). 310 

This suggests that the analytical bifurcation structure is sensitive to different parametric values 311 

(which is also suggested by the seasonal coexistence criteria shown in Table 1), but nonetheless, 312 

the result of seasonally-mediated coexistence is qualitatively general. We note that the simple 313 

linear prediction breaks down as r𝜏 grows (i.e., larger 𝜏r allows the nonlinear dynamics to 314 

express themselves; see Supplementary Material S4.1). Thus, we see that seasonally-mediated 315 

coexistence occurs very broadly suggesting that a large range of natural periodicities may be 316 

powerful drivers of coexistence. 317 

 318 

Similarly, in Fig. 5a, we document cases where species coexistence occurs in static environments 319 

(i.e., at p=0 or 1), while competitive exclusion occurs at intermediate p-values over a broad range 320 

of 𝜏’s (here, from 1-40 time units). Following McMeans et al. (2020)’s naming convention, we 321 

refer to this as seasonally-mediated competitive exclusion. As in the above case, with increasing 322 

p, our analytical approximation tracks the isoclines and the “mean equilibrium” from stable 323 

coexistence to competitive exclusion of species 2 through a transcritical bifurcation on the X2=0 324 

axis, and finally back through the axis (via another bifurcation) to stable coexistence (Figs. 5b, 325 

S3.2). The transcritical bifurcations points determined by our analytical solution accurately track 326 

the numerical solutions over several period length values of 𝜏 before the seasonal bifurcations 327 
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cease at higher values of 𝜏. Again, we note that the simple linear prediction breaks down as 𝜏r 328 

grows (i.e., larger 𝜏r allows the nonlinear dynamics to express themselves; see Supplementary 329 

Material S4.2). The 2-dimensional bifurcation diagram again shows a broad range in 𝜏-values 330 

that yield competitive exclusion; however, it does not stretch across all 𝜏-values (i.e., very large 331 

period lengths). While the exact range of parameter space that this seasonally-mediated 332 

competitive exclusion occurs at is clearly dependent on other parameters, this result is still quite 333 

general over a wide range of 𝜏-values, suggesting that periodic environments may also be 334 

powerful drivers of competitive exclusion. Here, as 𝜏 grows, this tongue of competitive 335 

exclusion slowly shrinks across intermediate values of p. Again, this is an interesting result, 336 

which suggests that simple alterations in season length may fundamentally alter competitive 337 

outcomes.  338 

 339 

Finally, in Fig. 6a, similar to the above seasonally-mediated coexistence case with competitive 340 

exclusion at the boundaries (i.e., p=0 or 1), we now document cases where contingent 341 

coexistence (i.e., alternative states) occurs at intermediate p values across a broad range of 𝜏’s 342 

(here, from 1-100 time units). Although this outcome is quite similar to seasonally-mediated 343 

coexistence with competitive exclusion being located at each boundary (i.e., p=0 or 1), its 344 

isocline geometry, based off of parametric combinations, results in seasonally-mediated 345 

contingent coexistence at intermediate p-values (Figs. 6bi-iii, S3.3). Our approximation tracks 346 

the analytical non-trivial (interior) equilibrium, which in this case is unstable in positive (X1, X2) 347 

state space (Fig. 6bii). Here, initial densities determine which species will dominate and which 348 

species will become extinct with time (i.e., which of the two stable axial solutions, shown in Fig. 349 
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6bii, the system will end up at). The robustness of this pattern also implies that for any given 𝜏, 350 

seasonality may be a powerful driver of contingent coexistence (i.e., changing p moves from 351 

competitive exclusion to contingent coexistence conditions in Table 1). As 𝜏 grows, the 352 

numerically-generated contingent coexistence region expands across higher productive season 353 

lengths before it narrows around lower lengths of the productive season. Again, our analytical 354 

solution accurately determines at which p values the transcritical bifurcations will occur for very 355 

small 𝜏 values, but falls off with larger period lengths, 𝜏 (see Supplementary Material S4.3 for 356 

approximation accuracy of seasonally mediated contingent coexistence), despite the general 357 

phenomenon remaining across time scales. 358 

 359 

These three seasonally-mediated outcomes suggest that seasonal alterations, due to climate 360 

change, may drive precipitous changes in competitive systems. All of these seasonally-mediated 361 

outcomes appear general and may be found across various ecosystems that experience abiotic 362 

fluctuations of any period length. Similarly, for a given period length (e.g., annual variation), 363 

these outcomes may be highly general for competing organisms with a range of life history 364 

strategies (i.e., vital rates that dictate the speed of biotic dynamics relative to any environmental 365 

variation). On the other hand, depending on parametric values, not all instances of periodic 366 

variation will drive these series of bifurcations. Under some conditions, there are simply p-driven 367 

changes in species densities between the boundary conditions where only one bifurcation (Figs. 368 

S2.1e, S2.1f) or no bifurcations (Figs. S2.1d) are found under changing periodicities.   369 
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Discussion 370 

Here, we present a linear approximation similar in approach to other periodic models (e.g., Han 371 

et al. (1999); Litchman and Klausmeier (2001)) to analytically solve for a periodic Lotka-372 

Volterra competition model (see Table 1 for seasonal coexistence criteria). Our linear 373 

approximation quantitatively breaks down for large values in tr but still largely operates to 374 

qualitatively predict the nature of periodic-forcing on competition (e.g., Fig. 4a,6a).  This 375 

approximation, akin to the longstanding classical Lotka-Volterra coexistence conditions, 376 

importantly allows us to derive a parallel set of coexistence conditions for periodic 377 

environments. With the inclusion of periodic environmental forcing, we find that species 378 

coexistence depends on seasonal-growth-scaled inter- versus intra-specific competition strengths 379 

(Table 1). That is, where classical stable coexistence requires intraspecific competition to be 380 

greater than interspecific competition, for both species, we show that intraspecific competition, 381 

scaled by seasonal growth, must be greater than interspecific competition, scaled by seasonal 382 

growth, for both species.   383 

 384 

These seasonal coexistence conditions importantly suggest that species’ coexistence may be 385 

incredibly sensitive to changes in season length. While McMeans et al. (2020) found seasonally-386 

mediated coexistence through empirically-motivated numerical simulations, our results show that 387 

seasonality can mediate coexistence, competitive exclusion, and contingent coexistence (Fig. 3). 388 

That is, seasonality, in and of itself, can drive all possible competitive outcomes (i.e., Table 1). 389 

As these seasonally-mediated outcomes appear across a vast range of period lengths (Fig. 4-6), 390 

this suggests that these seasonally-mediated outcomes are quite robust, and can be found across a 391 
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wide range of different temporal scales and life history strategies (i.e., fast vs. slow life history 392 

strategies). 393 

 394 

As the change in season length (p) may have an important role in mediating competitive 395 

outcomes (Fig. 3), climate change is altering environmental periodicities across a range of 396 

temporal scales (Dijkstra et al. 2011; Shuter et al. 2012; Urban et al. 2012; Chesson 2018; Al-397 

Habahbeh et al. 2020), and our results suggest that this could have sudden and drastic – 398 

sometimes unpredictable – effects on coexistence. Often the responses to changing seasons are 399 

nonlinear, and some of these outcomes are unexpected based on the classical Lotka-Volterra 400 

conditions under non-seasonal environments (e.g., nonlinear paths between the boundary 401 

conditions at p = 0 and 1; Figs. 3b, 5, S2.1b and d). As an example, we find cases where 402 

competitive exclusion occurs under intermediate season lengths, even though coexistence is 403 

expected under the same non-seasonal conditions (i.e., coexistence occurs for entirely low- or 404 

entirely high-productive conditions; Fig. 3b). Alarmingly, these strong nonlinear effects of 405 

changing season length, p, suggest that precipitous changes in species density and composition 406 

may unexpectedly occur as climate change alters the nature of seasonality. 407 

 408 

Although simple, the seasonal competition model we examined here is based on biologically 409 

realistic assumptions about competitive species in temporally varying environments. First, 410 

periodic environments are commonly reflected by times of high and low productivity, where 411 

species tend to flourish during the productive seasons, and decline (e.g., mortality-dominated) 412 

during the less productive seasons as resource availability becomes sparse (Fretwell 1972; 413 
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Litchman and Klausmeier 2001; Mutze 2009; Klausmeier 2010; Hastings 2012; Lyu et al. 2016; 414 

Vihtakari et al. 2016). These periods therefore impact species’ growth rates, but also offer the 415 

potential for differential responses of competing species to seasonally-driven environmental 416 

variation (Chesson and Huntly 1997; Forrest and Miller-Rushing 2010; Shuter et al. 2012; Gao et 417 

al. 2016; Chesson 2018; Huang et al. 2019). It is well known that competing species can display 418 

temporal trade-offs in stochastic environments that can promote coexistence (Angert et al. 2009; 419 

Shuter et al. 2012; Mougi 2020). For instance, Litchman and Klausmeier (2001) discovered that 420 

slow fluctuations in light promote stable coexistence between competing species of 421 

phytoplankton who exhibit trade-offs in performance across temporally changing resource 422 

availability. More recently, and consistent with our theoretical results here, empirical evidence is 423 

beginning to suggest species may show trade-offs to regular seasonal fluctuations that might 424 

promote coexistence. For example, a species may be a seasonal specialist (e.g., display a very 425 

high growth rate during the summer and a low growth rate during the winter) while its 426 

competitor may be more of a temporal generalist, who’s able to maintain roughly the same 427 

growth rate year-round (Niiyama 1990; Chan et al. 2009; Abrams et al. 2013; Korpela et al. 428 

2013; Meyer et al. 2022).  429 

 430 

While we concentrate on temporal forcing in our model, seasonal signals in competition may 431 

often be related to spatial-temporal and behavioural patterns that govern species’ competitive 432 

outcomes (McMeans et al. 2020). As an example, in some cases, species may migrate (Holt and 433 

Fryxell 2011; Teitelbaum et al. 2015; Tavecchia et al. 2016; le Corre et al. 2020; Moorter et al. 434 

2021) or hibernate (Campbell et al. 2008; Giraldo-Perez et al. 2016) during less productive 435 
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seasons, opting out of competition when resources are scarce (Suski and Ridgway 2009). These 436 

behavioural strategies may counteract potential negative effects of periodic variation to some 437 

extent and thus promote coexistence by reducing competitive interactions during unfavourable 438 

times. More empirical research is needed to further understand these spatial and behavioural 439 

strategies, and seasonal trade-offs between competitive species, in order to understand their 440 

mechanistic role in maintaining biodiversity with climate change. 441 

 442 

As nature abounds with temporal variation, grasping a better understanding of coexistence 443 

mechanisms in these fluctuating environments is now even more crucial with climate change. 444 

We have provided an analytical solution to begin understanding these effects. Our research has 445 

uncovered three competitive outcomes that could be found across a large range of natural 446 

periodicities and life history strategies. As species coexistence appears to be incredibly sensitive 447 

to periodic variation, climate change has the potential to drastically impact future competitive 448 

outcomes in the natural world. 449 
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Table 1: Lotka-Volterra Coexistence Conditions vs. Seasonal Coexistence Conditions. 644 

 Lotka – Volterra 

Criteria 

Seasonal Coexistence  

Criteria 

Stable 
  Coexistence 

⍺𝟏𝟏 > ⍺𝟐𝟏 

 

⍺𝟐𝟐 > ⍺𝟏𝟐 

𝐩𝐫𝐏,𝟏⍺𝐏,𝟏𝟏 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟏⍺𝐋𝐏,𝟏𝟏
𝐩𝐫𝐏,𝟏 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟏

>
𝐩𝐫𝐏,𝟐⍺𝐏,𝟐𝟏 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟐⍺𝐋𝐏,𝟐𝟏

𝐩𝐫𝐏,𝟐 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟐
 

𝐩𝐫𝐏,𝟐⍺𝐏,𝟐𝟐 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟐⍺𝐋𝐏,𝟐𝟐
𝐩𝐫𝐏,𝟐 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟐

>
𝐩𝐫𝐏,𝟏⍺𝐏,𝟏𝟐 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟏⍺𝐋𝐏,𝟏𝟐

𝐩𝐫𝐏,𝟏 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟏
 

Competitive  
  Exclusion  
  by sp1 

⍺𝟏𝟏 > ⍺𝟐𝟏 

 

⍺𝟐𝟐 < ⍺𝟏𝟐 

𝐩𝐫𝐏,𝟏⍺𝐏,𝟏𝟏 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟏⍺𝐋𝐏,𝟏𝟏
𝐩𝐫𝐏,𝟏 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟏

>
𝐩𝐫𝐏,𝟐⍺𝐏,𝟐𝟏 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟐⍺𝐋𝐏,𝟐𝟏

𝐩𝐫𝐏,𝟐 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟐
 

𝐩𝐫𝐏,𝟐⍺𝐏,𝟐𝟐 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟐⍺𝐋𝐏,𝟐𝟐
𝐩𝐫𝐏,𝟐 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟐

<
𝐩𝐫𝐏,𝟏⍺𝐏,𝟏𝟐 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟏⍺𝐋𝐏,𝟏𝟐

𝐩𝐫𝐏,𝟏 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟏
 

Competitive  
  Exclusion 
  by sp2 

⍺𝟏𝟏 > ⍺𝟐𝟏 

 

⍺𝟐𝟐 < ⍺𝟏𝟐 

𝐩𝐫𝐏,𝟏⍺𝐏,𝟏𝟏 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟏⍺𝐋𝐏,𝟏𝟏
𝐩𝐫𝐏,𝟏 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟏

>
𝐩𝐫𝐏,𝟐⍺𝐏,𝟐𝟏 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟐⍺𝐋𝐏,𝟐𝟏

𝐩𝐫𝐏,𝟐 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟐
 

𝐩𝐫𝐏,𝟐⍺𝐏,𝟐𝟐 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟐⍺𝐋𝐏,𝟐𝟐
𝐩𝐫𝐏,𝟐 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟐

<
𝐩𝐫𝐏,𝟏⍺𝐏,𝟏𝟐 + (𝟏 − 𝐩)𝐫𝐋𝐏,𝟏⍺𝐋𝐏,𝟏𝟐
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Figure 1 646 

 647 
Fig. 1 Model schematic investigates the projected mean equilibrium density over the length of 648 
the productive season when species compete under different periodic conditions. a) The model 649 
set-up investigates two time-separated seasons with different environmental conditions 650 
(productive (white box) and less productive (gray box)). In numerical simulations, competitive 651 
species, X1 (white fish) and X2 (black fish), exhibit different trade-offs in response to these 652 
differing environmental conditions, where each species may experience different levels of inter- 653 
to intraspecific competitive interactions (thickness of arrows) depending on which species may 654 
have an overall better performance (in terms of growth and competition) in one season compared 655 
to the other. An experiment is projected over many periods (say 1000 time-units) of length 𝜏 656 
until it reaches an asymptotic state (we refer to this as an equilibrium despite the within-year 657 
variation). b) In the model experiment, the projected mean equilibrium density, which represents 658 
a fluctuating’ species density at its asymptote, is calculated as the duration of the productive 659 
season (as a proportion of each time unit) varies from 0 – 1.  660 
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Figure 2 661 

 662 

Fig. 2 Isocline approximation of X1 density on X2 density. a) Stable coexistence isocline 663 
approximation on phaseplane of X1 (dashed line) and X2 (solid line) densities. Approximate 664 
isocline solutions for a given species occur when the instantaneous rate of change (represented 665 
by vector arrows) in each season, scaled by seasonal duration, are equal and opposite of each 666 
other (i.e., they “cancel” each other out such that the net change over a full period is null). Refer 667 
to Table 1 for similarities to Lotka–Volterra coexistence conditions. b i-iii) illustrates a p-driven 668 
bifurcation, showing the movement of the isoclines as the productivity season travels from i) p = 669 
0.5; coexistence, to ii) p = 0.6; transcritical bifurcation, to iii) p = 0.7; competitive exclusion of 670 
species 2. Parametric values: αP,11=0.44, αP,22=0.66, αP,12=0.25, αP,21=0.53, αLP,11=1.11, 671 
αLP,22=0.83, αLP,12=1.83, αLP,21=0.48, rP,1=1.7, rP,2=1.2, rLP,1=0.3, rLP,2=1.  672 
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Figure 3 673 

 674 

Fig. 3 Numerical simulations of mean density over length of productive season (p) for 675 
seasonally-mediated outcomes. White zone represents stable coexistence, light gray zone 676 
represents competitive exclusion, and dark gray zone represents contingent coexistence where 677 
the equilibrium is unstable and multiple attractors exist between the two species. a) Seasonally-678 
mediated coexistence. Parametric values: αP,21=0.35, αP,12=0.165, αP,11=0.33, αP,22=0.436, 679 
rP,1=1.7, rP,2=1.2, αLP,21=0.385, αLP,12=0,805, αLP,11=0.73, αLP,22=0.55, rLP,1=0.3, rLP,2=1. b) 680 
Seasonally-mediated competitive exclusion. Parametric values: αP,21=0.29, αP,12=0.38, 681 
αP,11=0.31, αP,22=0.44, rP,1=4, rP,2=1.2, αLP,21=1.27, αLP,12=1.02, αLP,11=1,67, αLP,22=1.18 rLP,1=0.3, 682 
rLP,2=1. c) Seasonally-mediated contingent coexistence. Parametric values; αP,21=0.548, 683 
αP,12=0.33, αP,11=0.33, αP,22=0.363, rP,1=1.7, rP,2=1.2, αLP,21=1.31, αLP,12=1.89, αLP,11=1.65, 684 
αLP,22=0.66, rLP,1=0.3, rLP,2=1.  685 
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Figure 4 686 

 687 

Fig. 4 Two-dimensional bifurcation diagram of seasonally-mediated coexistence. a) seasonally-688 
mediated coexistence expanding over a wide range of period lengths (𝜏). The red dashed lines 689 
represent the isocline approximation’s prediction of the two transcritical bifurcation points at 690 
p=0.115 and p=0.69 (see Fig. S3.1 for complete transition across p, and S4.1 for explanation of 691 
approximation accuracy of seasonally mediated coexistence). b) isocline approximation tracks 692 
the approximate equilibrium, which represents the mean asymptotic behavior, as the productive 693 
season (p) increases from i) p=0.1; competitive exclusion of species 1, to ii) p=0.4; stable 694 
coexistence, to iii) p=0.8; competitive exclusion of species 2. Filled in circles are stable 695 
equilibrium points, and open circles are unstable equilibrium points. Parametric values: 696 
αP,21=0.35, αP,12=0.165, αP,11=0.33, αP,22=0.436, rP,1=1.7, rP,2=1.2, αLP,21=0.385, αLP,12=0,805, 697 
αLP,11=0.73, αLP,22=0.55, rLP,1=0.3, rLP,2=1. 698 
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Figure 5 700 

 701 

Fig. 5 Two-dimensional bifurcation diagram of seasonally-mediated competitive exclusion. a) 702 
seasonally-mediated competitive exclusion expanding over a wide range of period lengths (𝜏). 703 
The red dashed lines represent the isocline approximation’s prediction of the two transcritical 704 
bifurcation points at p=0.04 and p=0.97 (see Fig. S3.2 for complete transition across p, and S4.2 705 
for explanation of approximation accuracy of seasonally mediated competitive exclusion). b) 706 
isocline approximation tracks the approximate equilibrium, which represents the mean 707 
asymptotic behaviour, as the productive season increases from i) p=0.0; stable coexistence, to ii) 708 
p=0.3; competitive exclusion of species 2, and back to iii) p=1.0; stable coexistence. Filled in 709 
circles are stable equilibrium points, and open circles are unstable equilibrium points. Parametric 710 
values: αP,21=0.29, αP,12=0.38, αP,11=0.31, αP,22=0.44, rP,1=4, rP,2=1.2, αLP,21=1.27, αLP,12=1.02, 711 
αLP,11=1,67, αLP,22=1.18 rLP,1=0.3, rLP,2=1.  712 
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Figure 6 713 

 714 

Fig. 6 Two-dimensional bifurcation diagram of seasonally-mediated contingent coexistence. a) 715 
seasonally-mediated contingent coexistence expanding over a wide range of period length (𝜏). 716 
The red dashed lines represent the isocline approximation’s prediction of the two transcritical 717 
bifurcation points at p=0.07 and p=0.69 (see Fig. S3.3 for complete transition across p, and S4.3 718 
for explanation of approximation accuracy of seasonally mediated contingent coexistence). b) 719 
isocline approximation tracks the approximate equilibrium, which represents the mean 720 
asymptotic behaviour, as the productive season increases from i) p=0.0; competitive exclusion of 721 
species 1, to ii) p=0.4; contingent coexistence, to iii) p=0.8; competitive exclusion of species 2. 722 
Filled in circles are stable equilibrium points, and open circles are unstable equilibrium points. 723 
Parametric values; αP,21=0.548, αP,12=0.33, αP,11=0.33, αP,22=0.363, rP,1=1.7, rP,2=1.2, αLP,21=1.31, 724 
αLP,12=1.89, αLP,11=1.65, αLP,22=0.66, rLP,1=0.3, rLP,2=1.  725 
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Coexistence in Periodic Environments: Supplementary Material 726 

S1: A Linearization of the Periodic Lotka-Volterra Dynamics 727 

If we consider any point on the phaseplane (X1-X2) due to the productive season that lasts from 0 728 

to 𝜏p where 𝜏 is the period length, and p is the proportion of each period that is considered 729 

productive, then we know: 730 

𝑋!,((𝜏𝑝) = 𝑋!,((0) + 5
𝑑𝑋!,(
𝑑𝑡

/*

0
𝑑𝑡 

 

(1) 

𝑋!,)(𝜏𝑝) = 𝑋!,)(0) + 5
𝑑𝑋!,)
𝑑𝑡

/*

0
𝑑𝑡 

 

(2) 

These dynamics follow the differential equation over the trajectory from 0 to 𝜏p starting at the 731 

values XP,j(0). We linearize the trajectory over 0 to 𝜏p by assuming the ,2',!
,.

 remains constant 732 

(e.g., we calculate the instantaneous ,2',!
,.

 for a point in the phaseplane, say for time (0)). As this 733 

is now a constant, we can use the Fundamental Theorem of Calculus to solve for Equations (1) 734 

and (2) above yielding:  735 

𝑋!,((𝜏𝑝) − 𝑋!,((0) =
𝑑𝑋!,(
𝑑𝑡

		𝑡		 @
𝜏𝑝

0  

 

(3) 

𝑋!,((𝜏𝑝) − 𝑋!,((0) = 𝜏𝑝
𝑑𝑋!,(
𝑑𝑡 − 0

𝑑𝑋!,(
𝑑𝑡   

(4) 

𝑋!,((𝜏𝑝) − 𝑋!,((0) = 𝜏𝑝
𝑑𝑋!,(
𝑑𝑡   

(5) 

Similarly, we solve for the less productive season between 𝜏p and 𝜏, giving us: 736 
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𝑋"!,((𝜏) − 𝑋"!,((𝜏𝑝) = 𝜏(1 − 𝑝)
𝑑𝑋"!,(
𝑑𝑡   

(6) 

Thus, the linearization estimates the trajectory as a linear scale movement following the length of 737 

the time interval (either 𝜏p, or 𝜏(1 – p)). We can take this simple estimate to estimate the within 738 

seasonal dynamics and use them to estimate the periodic 0-isoclines. 739 

 740 

Given Equations (5) and (6), the X1 isocline occurs when: 741 

𝜏𝑝
𝑑𝑋!,(
𝑑𝑡 = −𝜏(1 − 𝑝)

𝑑𝑋"!,(
𝑑𝑡  (7) 

 742 

With this approximation, we substitute the productive and less productive Lotka-Volterra models 743 

into equation (7): 744 

𝜏𝑝	𝑟!,(𝑋((1 − ⍺!,((𝑋( − ⍺!,()𝑋)) = −𝜏(1 − 𝑝)	𝑟"!,(𝑋((1 − ⍺"!,((𝑋( − ⍺"!,()𝑋)) (8) 

 745 

Noticing that 𝜏 cancels out, we can now solve for the isocline solution: 746 

𝑋( = −
𝑝𝑟!,(𝛼!,() + (1 − 𝑝)𝑟"!,(𝛼"!,()
𝑝𝑟!,(𝛼!,(( + (1 − 𝑝)𝑟"!,(𝛼"!,((

𝑋) +
𝑝𝑟!,( + (1 − 𝑝)𝑟"!,(

𝑝𝑟!,(𝛼!,(( + (1 − 𝑝)𝑟"!,(𝛼"!,((
 (9) 

 747 

Similarly, we would perform the same steps to find the isocline solution for X2. This isocline 748 

approximation, for both species, allows us to determine coexistence criteria for seasonal 749 

environments.  750 
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S2: Isocline Approximation and Numerical Simulation Comparison 751 

 752 

Fig. S2.1 Comparison of Isocline Approximation against Numerical Simulations. White zone 753 
represents stable coexistence, light gray zone represents competitive exclusion, and dark gray 754 
zone represents contingent coexistence. a) Seasonally mediated coexistence. Parametric values: 755 
αP,21=0.35, αP,12=0.165, αP,11=0.33, αP,22=0.436, rP,1=1.7, rP,2=1.2, αLP,21=0.385, αLP,12=0,805, 756 
αLP,11=0.73, αLP,22=0.55, rLP,1=0.3, rLP,2=1. b) Seasonally mediated competitive exclusion. 757 
Parametric values: αP,21=0.29, αP,12=0.38, αP,11=0.31, αP,22=0.44, rP,1=4, rP,2=1.2, αLP,21=1.27, 758 
αLP,12=1.02, αLP,11=1,67, αLP,22=1.18 rLP,1=0.3, rLP,2=1. c) Seasonally mediated contingent 759 
coexistence. The equilibrium is unstable in the dark gray zone and multiple attractors exist 760 
between the two species. Parametric values: αP,21=0.548, αP,12=0.33, αP,11=0.33, αP,22=0.363, 761 
rP,1=1.7, rP,2=1.2, αLP,21=1.31, αLP,12=1.89, αLP,11=1.65, αLP,22=0.66, rLP,1=0.3, rLP,2=1. d) 762 
Counterintuitive mean density change. Parametric values: αP,21=0.2, αP,12=0.155, αP,11=0.315, 763 
αP,22=0.335, rP,1=1.7, rP,2=1.2, αLP,21=0.57, αLP,12=0.4, αLP,11=1, αLP,22=0.715, rLP,1=0.3, rLP,2=1. e) 764 
Mean density changes with competitive exclusion in the less productive season. Parametric 765 
values: αP,21=0.288, αP,12=0.15, αP,11=0.336, αP,22=0.402, rP,1=1.7, rP,2=1.2, αLP,21=0.354, 766 
αLP,12=0.75, αLP,11=0.666, αLP,22=0.462, rLP,1=0.3, rLP,2=1. f) Mean density changes with 767 
competitive exclusion in the productive season. Parametric values: αP,21=0.35, αP,12=0.165, 768 
αP,11=0.33, αP,22=0.44, rP,1=1.7, rP,2=1.2, αLP,21=0.28, αLP,12=0.825, αLP,11=0.73, αLP,22=0.94, 769 
rLP,1=0.3, rLP,2=1.   770 
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 771 

Fig. S2.2 Time Series at p = 0.5, and 𝜏 = 1 for the comparison of isocline approximation against 772 
numerical simulations. a) Seasonally mediated coexistence. Parametric values: αP,21=0.35, 773 
αP,12=0.165, αP,11=0.33, αP,22=0.436, rP,1=1.7, rP,2=1.2, αLP,21=0.385, αLP,12=0,805, αLP,11=0.73, 774 
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αLP,22=0.55, rLP,1=0.3, rLP,2=1. b) Seasonally mediated competitive exclusion. Parametric values: 775 
αP,21=0.29, αP,12=0.38, αP,11=0.31, αP,22=0.44, rP,1=4, rP,2=1.2, αLP,21=1.27, αLP,12=1.02, 776 
αLP,11=1,67, αLP,22=1.18 rLP,1=0.3, rLP,2=1. ci) Seasonally mediated contingent coexistence. X1 777 
competitively excluded X2. Parametric values: αP,21=0.548, αP,12=0.33, αP,11=0.33, αP,22=0.363, 778 
rP,1=1.7, rP,2=1.2, αLP,21=1.31, αLP,12=1.89, αLP,11=1.65, αLP,22=0.66, rLP,1=0.3, rLP,2=1. cii) 779 
Seasonally mediated contingent coexistence. X2 competitively excluded X1. Parametric values: 780 
αP,21=0.548, αP,12=0.33, αP,11=0.33, αP,22=0.363, rP,1=1.7, rP,2=1.2, αLP,21=1.31, αLP,12=1.89, 781 
αLP,11=1.65, αLP,22=0.66, rLP,1=0.3, rLP,2=1. d) Counterintuitive mean density change. Parametric 782 
values: αP,21=0.2, αP,12=0.155, αP,11=0.315, αP,22=0.335, rP,1=1.7, rP,2=1.2, αLP,21=0.57, αLP,12=0.4, 783 
αLP,11=1, αLP,22=0.715, rLP,1=0.3, rLP,2=1. e) Mean density changes with competitive exclusion in 784 
the less productive season. Parametric values: αP,21=0.288, αP,12=0.15, αP,11=0.336, αP,22=0.402, 785 
rP,1=1.7, rP,2=1.2, αLP,21=0.354, αLP,12=0.75, αLP,11=0.666, αLP,22=0.462, rLP,1=0.3, rLP,2=1. f) Mean 786 
density changes with competitive exclusion in the productive season. Parametric values: 787 
αP,21=0.35, αP,12=0.165, αP,11=0.33, αP,22=0.44, rP,1=1.7, rP,2=1.2, αLP,21=0.28, αLP,12=0.825, 788 
αLP,11=0.73, αLP,22=0.94, rLP,1=0.3, rLP,2=1.   789 
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S3: Tracking Isocline Approximation across Productivity Length for all Seasonally 790 

Mediated Competitive Outcomes 791 

 792 

Fig. S3.1 Seasonally mediated coexistence isocline approximation. Isocline approximation 793 
tracking the interior equilibrium as the productive season increases in length from a) p=0.1; 794 
competitive exclusion of species 1, to b) p=0.115; transcritical bifurcation, to c) p=0.4; stable 795 
coexistence, to d) p=0.69; transcritical bifurcation, to e) p=0.8; competitive exclusion of species 796 
2. Parametric values: αP,21=0.35, αP,12=0.165, αP,11=0.33, αP,22=0.436, rP,1=1.7, rP,2=1.2, 797 
αLP,21=0.385, αLP,12=0,805, αLP,11=0.73, αLP,22=0.55, rLP,1=0.3, rLP,2=1.   798 
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 799 

Fig. S3.2 Seasonally mediated competitive exclusion isocline approximation. Isocline 800 
approximation tracking the interior equilibrium as the productive season increases in length from 801 
a) p=0.0; stable coexistence, to b) p=0.04; transcritical bifurcation, to c) p=0.3; competitive 802 
exclusion of species 2, to d) p=0.97; transcritical bifurcation, to e) p=1.0; stable coexistence. 803 
Parametric values: αP,21=0.29, αP,12=0.38, αP,11=0.31, αP,22=0.44, rP,1=4, rP,2=1.2, αLP,21=1.27, 804 
αLP,12=1.02, αLP,11=1,67, αLP,22=1.18 rLP,1=0.3, rLP,2=1.   805 
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 806 

Fig. S3.3 Seasonally mediated contingent coexistence isocline approximation. Isocline 807 
approximation tracking the interior equilibrium as the productive season increases in length from 808 
a) p=0.0; competitive exclusion of species 1, to b) p=0.07; transcritical bifurcation, to c) p=0.4; 809 
contingent coexistence, to d) p=0.69; transcritical bifurcation, to e) p=0.8; competitive exclusion 810 
of species 2. Parametric values: αP,21=0.548, αP,12=0.33, αP,11=0.33, αP,22=0.363, rP,1=1.7, 811 
rP,2=1.2, αLP,21=1.31, αLP,12=1.89, αLP,11=1.65, αLP,22=0.66, rLP,1=0.3, rLP,2=1.   812 
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S4: Accuracy of the Linear Isocline Approximation 813 

Our results hold for a broad range of period lengths but clearly depend on specific 814 

parameterizations that alter the timescale or the effects of timescale. Recall that our 815 

approximation operates by assuming a zero population growth rate exists in the phaseplane 816 

where linearization’s of the Lotka-Volterra equations cancel out over the high growth and low 817 

growth periods (i.e., linearization of the high growth for species X1 and species X2 are both equal 818 

and opposite in sign to the low growth linearization). Given this assumption, we can immediately 819 

ask when we expect nonlinear dynamics to dominate and potentially threaten the validity of the 820 

linear assumption. First, the longer the period of the forced parameters (t), then the longer the 821 

time the dynamics have to fall off the linear assumption. Further, the larger the growth rates (r), 822 

the larger the potential for nonlinear dynamics even with smaller periods (t). As a result, we can 823 

say the larger the product rt, the more likely our assumption of linearity is threatened. 824 

Effectively, 𝜏r sets the relative pace of the seasonal dynamics.  825 

 826 

Recognizing that linear assumptions will lose accuracy when dynamics become nonlinear with 827 

longer periods and fast growth rates (i.e., there is more time for dynamics to become nonlinear), 828 

we first compare the dynamics (set by the original growth rates in the manuscript) with the 829 

approximation’s accuracy when the period length (𝜏) is increased. Next, we slow the dynamics 830 

by dividing all species’ growth rates (r) by 10-units and compare the approximation’s accuracy 831 

with these dynamics when the period length increases. Our results below show that indeed our 832 

approximation can fall off, but even here for large, combined values of rt, the approximation 833 

remains a reasonable qualitative predictor of steady state behaviour for seasonally-mediated 834 



 

 

 46 

coexistence and contingent coexistent (S4.1 and S4.3 respectively). We note that the seasonally 835 

mediated competitive exclusion is not as robust (S4.2).  836 

 837 

As seen in Fig. 4a, the analytical approximation still accurately predicts the numerically 838 

generated transcritical bifurcation at p = 0.11 (mean densities transition between competitive 839 

exclusion of species 1 to coexistence of both species), even when the period length (𝜏), reaches 840 

100 time-units. This is due to the large difference between the productive and less-productive 841 

growth rates of species 1. However, the approximation begins to inaccurately predict where the 842 

second numerically generated transcritical bifurcation will occur (p = 0.69; mean density 843 

transition between coexistence and competitive exclusion of species 2) when 𝜏 = 5 time-units 844 

(Fig. S4.11b). With the original growth rates used in the manuscript, when the period length is 845 

small (𝜏 = 1), the seasonal dynamics are relatively linear, and the approximation accurately 846 

predict the true mean densities from the numerical simulation (Figs. S4.11a and S4.12a). 847 

However, as we increase the period length to 5 time-units, the dynamics become more nonlinear 848 

as, with enough time, species’ densities reach their seasonal equilibrium and spend more time at 849 

these fixed points (Fig. S4.12b). Here, the numerically generated mean densities will be skewed 850 

closer towards this equilibrium, while the linear approximation fails to capture this (Fig. S4.11b). 851 

When all growth rates are slowed down (all r’s divided by 10 units), the seasonal dynamics 852 

become more linear, and the approximation is more accurately able to track the mean densities 853 

even when the period length (𝜏) is increased from 1 (Figs S4.11c and S4.12c) to 5 time-units 854 

(Figs S4.11d and S4.12d). 855 

 856 
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In Fig. 5a, the approximation still predicts seasonally mediated competitive exclusion, even 857 

when species coexist at very large period lengths (𝜏 > 33 time units) across all p-values. 858 

However, when 𝜏 is increased from 1 to 10 time-units with the original growth rates, the 859 

dynamics become more nonlinear (Figs. S4.22a and S4.22b respectively) and the approximation 860 

begins to fail at tracking the numerically-generated mean densities throughout the entire range of 861 

p-values (Figs. S4.21a and S4.21b respectively), though it still captures the qualitative behavior 862 

and presence of the bifurcations. When growth rates are smaller, the seasonal dynamics are now 863 

more linear (Figs. S4.22c and FigsS4.22d), and the approximation more accurately tracks the 864 

numerically generated mean densities as 𝜏 increases from 1 to 10 time-units (Figs. S4.22c and 865 

FigsS4.22d respectively).  866 

 867 

For seasonally mediated contingent coexistence, as the period length (𝜏) increases, the region of 868 

contingent coexistence from the numerically-generated results first broadens and then shrinks 869 

(Fig. 6a). With the original growth rates, as the period length is increased from 1 to 20 time-870 

units, the seasonal dynamics become more nonlinear (Figs. S4.32a and S4.32b respectively), and 871 

the approximation is unable to track the true bifurcations based on our numerical results (Figs. 872 

S4.31a and S4.31b respectively). When the growth rates are a tenth of their original size (all r’s 873 

divided by 10 units), the dynamics slow down and are now more linear as 𝜏 is increased (Figs. 874 

S4.32c and S4.32d), allowing the approximation to more accurately track the numerically-875 

generated mean densities over the entire range of p-values (Figs. S4.31c and S4.31d).  876 
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S4.1 Approximation Accuracy of Seasonally Mediated Coexistence 877 

 878 

Fig. S4.11 Isocline approximation – mean density plots over the length of the productive season 879 
(p) for seasonally-mediated coexistence. White zones represent coexistence and light grey zones 880 
represent competitive exclusion. a) and b) original growth rates (those used throughout 881 
manuscript: rP1 = 1.7, rP2 = 1.2, rLP1 = 1, rLP2 = 0.3) when the period length 𝜏 = 1 and 5 time-882 
units respectively. c) and d) all growth rates have been divided by 10 units (rP1 = 0.17, rP2 = 0.12, 883 
rLP1 = 0.1, rLP2 = 0.03) when the period length = 1 and 5 time-units respectively. Parametric 884 
values: αP,21=0.35, αP,12=0.165, αP,11=0.33, αP,22=0.436, αLP,21=0.385, αLP,12=0,805, αLP,11=0.73, 885 
αLP,22=0.55.  886 
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 887 

Fig. S4.12 Isocline approximation – time series for seasonally-mediated coexistence. Length of 888 
productive season (p) = 0.5 represented by white zones, and light grey zones represent the less-889 
productive season. a) and b) original growth rates (those used throughout manuscript: rP1 = 1.7, 890 
rP2 = 1.2, rLP1 = 1, rLP2 = 0.3) when the period length 𝜏 = 1 and 5 time-units respectively. c) and 891 
d) all growth rates have been divided by 10 units (rP1 = 0.17, rP2 = 0.12, rLP1 = 0.1, rLP2 = 0.03) 892 
when the period length = 1 and 5 time-units respectively. Parametric values: αP,21=0.35, 893 
αP,12=0.165, αP,11=0.33, αP,22=0.436, αLP,21=0.385, αLP,12=0,805, αLP,11=0.73, αLP,22=0.55.  894 
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S4.2 Approximation Accuracy of Seasonally Mediated Competitive Exclusion 895 

 896 

Fig. S4.21 Isocline approximation – mean density plots over the length of the productive season 897 
(p) for seasonally-mediated competitive exclusion. White zones represent coexistence and light 898 
grey zones represent competitive exclusion. a) and b) original growth rates (those used 899 
throughout manuscript: rP1 = 4, rP2 = 1.2, rLP1 = 1, rLP2 = 0.3) when the period length 𝜏 = 1 and 900 
10 time-units respectively. c) and d) all growth rates have been divided by 10 units (rP1 = 0.4, rP2 901 
= 0.12, rLP1 = 0.1, rLP2 = 0.03) when the period length = 1 and 10 time-units respectively. 902 
Parametric values: αP,21=0.29, αP,12=0.38, αP,11=0.31, αP,22=0.44, αLP,21=1.27, αLP,12=1.02, 903 
αLP,11=1,67, αLP,22=1.18.  904 
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 905 

Fig. S4.22 Isocline approximation – time series for seasonally-mediated competitive exclusion. 906 
Length of productive season (p) = 0.5 represented by white zones, and light grey zones represent 907 
the less-productive season. a) and b) original growth rates (those used throughout manuscript: rP1 908 
= 4, rP2 = 1.2, rLP1 = 1, rLP2 = 0.3) when the period length 𝜏 = 1 and 10 time-units respectively. c) 909 
and d) all growth rates have been divided by 10 units (rP1 = 0.4, rP2 = 0.12, rLP1 = 0.1, rLP2 = 910 
0.03) when the period length = 1 and 10 time-units respectively. Parametric values: αP,21=0.29, 911 
αP,12=0.38, αP,11=0.31, αP,22=0.44, αLP,21=1.27, αLP,12=1.02, αLP,11=1,67, αLP,22=1.18.   912 
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S4.3 Approximation Accuracy of Seasonally Mediated Contingent Coexistence 913 

 914 

Fig. S4.31 Isocline approximation – mean density plots over the length of the productive season 915 
(p) for seasonally-mediated contingent coexistence. Light grey zones represent competitive 916 
exclusion and grey zones represent contingent coexistence. a) and b) original growth rates (those 917 
used throughout manuscript: rP1 = 1.7, rP2 = 1.2, rLP1 = 1, rLP2 = 0.3) when the period length 𝜏 = 918 
1 and 20 time-units respectively. c) and d) all growth rates have been divided by 10 units (rP1 = 919 
0.17, rP2 = 0.12, rLP1 = 0.1, rLP2 = 0.03) when the period length = 1 and 20 time-units 920 
respectively. Parametric values: αP,21=0.548, αP,12=0.33, αP,11=0.33, αP,22=0.363, αLP,21=1.31, 921 
αLP,12=1.89, αLP,11=1.65, αLP,22=0.66.  922 
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 923 

Fig. S4.32 Isocline approximation  – time series for seasonally-mediated contingent coexistence. 924 
Length of productive season (p) = 0.5 represented by white zones, and light grey zones represent 925 
the less-productive season. a) and b) original growth rates (those used throughout manuscript: rP1 926 
= 1.7, rP2 = 1.2, rLP1 = 1, rLP2 = 0.3) when the period length 𝜏 = 1 and 20 time-units respectively. 927 
c) and d) all growth rates have been divided by 10 units (rP1 = 0.17, rP2 = 0.12, rLP1 = 0.1, rLP2 = 928 
0.03) when the period length = 1 and 20 time-units respectively. Parametric values: αP,21=0.548, 929 
αP,12=0.33, αP,11=0.33, αP,22=0.363, αLP,21=1.31, αLP,12=1.89, αLP,11=1.65, αLP,22=0.66.  930 
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