

1 SP2G: an imaging and analysis pipeline revealing the

2 inter and intra-patient migratory diversity of

3 glioblastoma

4

5 Michele Crestani^{1†}, Nikolaos Kakogiannos^{1,2}, Fabio Iannelli¹, Tania Dini¹, Claudio Maderna¹,

6 Monica Giannotta¹, Giuliana Pelicci^{3,4}, Paolo Maiuri^{1,5}, Pascale Monzo^{1*}, Nils C. Gauthier^{1*}

7

8 ¹IFOM ETS – The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.

9 ²Institute of Immunology, Biomedical Sciences Research Centre “Alexander Fleming”, 34 Fleming
10 Street, 16672 Vari, Greece.

11 ³Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139
12 Milan, Italy.

13 ⁴Department of Translational Medicine, Piemonte Orientale University “Amedeo Avogadro”,
14 28100 Novara, Italy.

15 ⁵Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di
16 Napoli Federico II, Via S. Pansini 5, 80131, Naples, Italy.

17

18 [†]Present address: Laboratory of Applied Mechanobiology, Institute of Translational Medicine,
19 Department of Health Sciences and Technology, ETH Zurich, Vladimir Prelog Weg, CH-8093
20 Zurich, Switzerland

21

22 *Corresponding authors:

23 Pascale Monzo: pascale.monzo@ifom.eu

24 Nils Gauthier: nils.gauthier@ifom.eu

25

26 **Abstract**

27

28 Glioblastomas are heterogeneous, primary brain tumors hiding several sub-populations. Patient-
29 derived xenografts are considered gold-standards to study glioblastoma invasion. However, they
30 present many disadvantages, including time consumption, complex standardization, high cost. To
31 counteract these issues and rapidly identify the most invasive sub-populations, we developed an *in*
32 *vivo* mimicry platform named SP2G (SPheroid SPreading on Grids). Live imaging of tumor-derived
33 spheroids spreading on gridded micro patterns mimicking the brain vasculature recapitulated 3D
34 motility features observed in brain or 3D matrices. Using patient-derived samples coupled with a
35 semi-automated macro suite, SP2G easily characterized and sorted differences in cell migration and
36 motility modes. Moreover, SP2G exposed the hidden intra-patient heterogeneity in cell motility
37 that correlated molecularly to specific integrins. Thus, SP2G constitute a versatile and potentially
38 pan-cancer workflow to identify the diverse invasive tumor sub-populations in patient-derived
39 specimens. SP2G includes an integrative tool, available as open-source Fiji macro suite, for
40 therapeutic evaluations at single patient level.

41

42 **Teaser**

43

44 Cracking the inter and intra-patient diversity in Glioblastoma migration profiles

45

46

47 **Introduction**

48

49 Cell migration is a complex process orchestrated by intracellular, intercellular, and
50 environmental determinants (1). For the most aggressive form of glioma (i.e. grade IV glioma, or
51 glioblastoma (GBM)), studying its motility is opportune given their extremely diffusive nature (2)
52 and heterogeneity within and between patients (3, 4). GBM is endowed with stem cell features (5,
53 6) and only 5.0% of the patients survive after 5 years upon diagnosis (7, 8). Treatment options for
54 GBM rely on surgical resection, coupled with radio- and chemotherapy, which in most cases are
55 insufficient to cure the patient (9, 10). Despite these aggressive treatments, most GBMs recur a few
56 centimeters away from the original site (11, 12).

57 GBM diffusive behavior and population heterogeneity drive GBM recurrence. The
58 combination of these two factors represents the main hindrance to a cure. However, the interplay
59 between heterogeneity and diffusion by migration is unclear. Moreover, the holistic dissection of
60 GBM migration through a scalable, minimal, yet comprehensive imaging and analysis workflow
61 remains challenging. This is because integrating the pre-existing brain structures in a reproducible
62 and 3D-like system often precludes optical accessibility, time profitability, and analytical
63 workflows (13, 14). In 1938, H.J. Scherer described (15) glioma cells as “replacing the nerve cells
64 and their dendrites”, “arranging outside the Virchow-Robin spaces” (i.e., the perivascular space),
65 and “following the surface of thick nerve bundles” (i.e., white matter tracts). These features, thereby
66 named Scherer’s structures, intertwine in a network of topographical linear cues that foster GBM
67 migration (16-22).

68 Considering such network complexity is crucial while designing *in vitro* systems to study
69 GBM migration and its motility modes, as mechanical and chemical cues by the microenvironment
70 are known to influence glioblastoma behavior and molecular signature (23-27). For example, as
71 white matter tract mimics, electrospun fibers (28, 29) and linear grooves (30, 31) provide just a
72 single linear topographical guidance. When under confinement on printed lines mimicking blood
73 vessels topography, glioma cells exhibited a saltatory locomotion similar to the motility modes
74 observed *in vivo* (32), which were partially characterized by employing biocompatible materials
75 that recapitulate 3D invasion (33, 34). Engineered vessels (14) and microvascular networks (35,
76 36), while potentiating GBM migration, are inadequate for broad systematic investigation due to
77 co-culture issues that might compromise GBM stemness, complexity, and reproducibility. Cerebral
78 organoids (37), organotypic brain slices (13, 38), and mouse xenografts (39), fully recapitulate the
79 *in vivo* brain architecture and highlight the collective interconnection of invading GBM in
80 communicating networks. However, they require laborious protocols and are inappropriate for

81 robust analytical tool development needed to accelerate discoveries and diagnosis. Altogether, these
82 impediments preclude a holistic dissection of GBM migration and motility modes and fail to
83 provide a robust and broadly applicable platform to unveil how the cancer heterogeneity found in
84 patients impacts cell invasiveness through motility along brain topographical cues.

85 To fulfill this most needed analytic platform, we thus developed SP2G. It is an easy and
86 time-profitable method that integrates live cell imaging with a dedicated analysis workflow for
87 comprehensively characterizing GBM migration and motility modes well into the intra-patient
88 cancer heterogeneity. SP2G, using live cell imaging, combines spheroid or tumorspheres, as the
89 best patient-derived proxy available in hospitals worldwide, with gridded micropatterns (40), as
90 one of the simplest *in vitro* platforms for efficiently mimicking the brain vascular network.
91 Biologically, spheroids maintain GBM stemness and heterogeneity (41) and, in SP2G, they allow
92 to study cellular interconnections during motility, an hallmark of GBM invasion *in vivo* (39).

93

94 **Results**

95

96 **SP2G mimics glioblastoma invasion on brain blood vessels.**

97 To validate our SP2G assay, we surveyed three-dimensional (3D) and two-dimensional (2D)
98 techniques both with and without vessel-like topographical cues (Fig. 1 and Supplementary Video
99 1). For this survey, we used rat C6 glioma cells, a well-established model that migrate efficiently
100 on host brain vasculature (19). We imaged spheroid spreading (SP2) in 5 different settings: mouse
101 brain slices (Fig. 1A)(42), 3D hydrogels (Fig. 1B,C) (6mg/ml collagen I and 10mg/ml Matrigel)(34,
102 43), 2D flat substrates (laminin-coated dishes) (Fig. 1D) and laminin gridded micropatterns (SP2-
103 G) (Fig. 1E). As observed in figure 1A-E, spheroids spread faster on 2D flat and gridded
104 micropatterns (~8h for the complete dissolution of the spheres) compared to 3D gels (>24h) and
105 brain slices (>48h). More importantly, time projections revealed that C6 cells aligned along the
106 blood vessels in brain slices, while in 3D gels they invaded isotropically (Fig. 1A-C and Fig.
107 S1D,E). Similarly, C6 cells aligned along the grid when migrating on the micropatterns, while they
108 spread out isotropically on 2D-flat (Fig. 1D-E). We quantified spheroid spreading by measuring the
109 areas of the spheroids at various time points (24h for 3D gels and 8h for 2D and micropatterns, Fig.
110 1G). Spheroid spreading in brain slices was not quantifiable due to tissue opacity and scattering of
111 the GFP signal (Fig 1A). As observed in figure 1G, spheroid spreading was higher in matrigel than
112 collagen (10.58 ± 0.75 and 4.76 ± 1.31 , respectively; mean \pm s.d.) and higher on grids than 2D flat
113 (19.73 ± 3.81 and 14.82 ± 2.70 , respectively; mean \pm s.d.). Moreover, spheroid spreading was
114 higher on laminin (LN) than fibronectin (FN), collagen (CN) or poly-L-lysine (PLL) on 2D flat
115 (Fig. S1A,B). This confirmed laminin as the best matrix protein to study glioma motility (28, 31,
116 32, 40). The size of the linear tracks, the distance between the tracks, and the arrangement of
117 junctional nodes were similar to the geometry of immunostained brain blood vessels. Together these
118 results showed that our gridded micropatterns was a simple but realistic proxy to mimic brain blood
119 vessel tracks (Fig. S1C-E).

120 We then compared single cell motility in the 5 settings (Fig. 1H-J and S1F-G). We tracked
121 single cells to evaluate their migration efficiency, as Mean Squared Displacement (MSD, Fig. 1H),
122 mean velocity (Fig. S1F-G) and cell shape (Fig. 1H,I). Cells migrated faster when the experimental
123 setup provided vessel-like topographical cues (Brain slices and grids, Fig. S1C-E), compared to
124 conditions devoid of linear guidance (Collagen, Matrigel and 2D flat, Figs. 1H, S1F-G). On grids
125 and brain slices, cells showed elongated shapes and “stick-slip” motility features (32, 44, 45) (Fig.
126 1I,J and Supplementary Video 1). Conversely, in 3D hydrogels, cells protruded multiple finger-like
127 structures, likely due to the tangled architecture of the microenvironment (Fig. 1I, arrowheads). On

128 flat surfaces cells adopted a fan-like shape as previously described on homogeneous substrates (32,
129 46).

130 Moreover, we found that spheroid spreading and single cell motility were independent of
131 the original spheroid size (Fig. S1H,I), strengthening SP2G reproducibility as spheroid sizes are
132 usually hard to homogenize.

133 Finally, we analyzed the performance of each technique with radar plots using an indexing
134 system from 1 to 5 (poorest to best performance) for 7 key parameters in GBM motility analysis:
135 time profitability, presence of linear topographic cues allowing stick-slip motility, experimental
136 reproducibility, optical accessibility, possibility to implement semi-automated analysis, 3D
137 confinement and *in vivo* mimicry (Fig. 1F). We confirmed SP2G as an optimal approach to cover
138 more requirements than other systems, with the highest scores in time and optical accessibility.
139 SP2G preserved linear cues and junctional nodes, which are crucial in influencing motility modes,
140 decision making for directionality and molecular signatures in different model systems (24-27, 30,
141 32, 40).

142 **SP2G experimental setup and image analysis workflow.**

143 To quantitatively describe cell migration and motility modes, we designed a semi-automated
144 analysis workflow (Fig. 2A,B) composed of 7 open-source ImageJ/Fiji macros, which ultimately
145 delivered 6 outputs: 1) migration area, 2) diffusivity, 3) boundary speed, 4) collective migration, 5)
146 directional persistence and 6) hurdling, i.e. cell crossing the non-adhesive areas (40) (see
147 Supplementary Appendix for computational details and user manual). For a better cell segmentation
148 and a stable readout, grids and spheroids are stained with fluorescent dyes and spreading is imaged
149 by fluorescence and phase contrast microscopy (Fig. 2A and Supplementary Video 2). We divided
150 SP2G image analysis workflow (Fig. 2B and fig. S2A-E) in 2 main steps as follows. The first step
151 processes the raw data semi-automatically and characterizes cell migration with the outputs # 1
152 (migration area, $A(t)$), # 2 (diffusivity, $D(t)$) and # 3 (boundary speed, $v(t)$). This is achieved by
153 combining the binarized images of the grids and the spreading spheroids in order to construct a
154 polygon that connects the grid nodes traveled by the spheroid invasive front at each time point. A
155 time-lapse of a growing polygon representing the leading front of the spheroid is then automatically
156 generated for each spheroid. An average migration area $A(t)$ per cell line (>10 spheres per cell line)
157 is represented by firstly aligning the baricenters of the polygons, and subsequently by extrapolating
158 the mean xy coordinates of all the polygons at each time point (Fig. 2C, output 1). The
159 corresponding numerical values are smoothed and differentiated in time to obtain diffusivity values
160 $D(t)$ (Fig. 2C, output 2). Then, boundary speed $v(t)$ (Fig. 2C, output 3) is derived from the formula
161 $v(t) = D(t) / (2\sqrt{A(t)})$ (see Methods and Supplementary Appendix).

162 The second step of SP2G analysis provides the 3 other numerical outputs that characterize
163 motility modes: collective migration (output #4: the higher the values, the more cells migrate as
164 collective strands), directional persistence (output #5: the higher the values, the more cells stay on
165 the same direction) and hurdling (output #6: the higher value the more cells are cutting angles).
166 Only motile cells are considered for motility modes analysis and are defined by an average
167 boundary speed higher than $100 \mu\text{m} / 8 \text{ h}$ ($0.21 \mu\text{m/min}$). The characterization of motility modes is
168 based on running average (RA) movies of the spreading spheroids. We defined the time window to
169 complete $100 \mu\text{m}$ as Δ , which is calculated as $100 \mu\text{m} / \bar{v}$, being \bar{v} the mean $v(t)$. When studying a
170 stand-alone condition, RA movies are generated by shifting Δ and are long 96 (8 hours sampled
171 every 5 min) – Δ frames. However, when comparing the motility modes of conditions with specific
172 $A(t)$, $D(t)$ and $v(t)$, SP2G requires normalization over migration area and boundary speed (see
173 Supplementary File 1). To normalize over migration area, a time step τ has to be identified, where
174 $A(\tau) / A(0)$ is equal to the minimum $A(\text{end}) / A(0)$. Thus, each condition has its τ , such that $A(\tau) /$
175 $A(0)$ is constant among all the conditions. Furthermore, Δ normalizes over the boundary speed and
176 is calculated in the interval $1:\tau$. Each condition is endowed with its own Δ , which is larger as cells
177 are slower. Each movie is $\tau - \Delta$ frames long, covers the same area on average and each frame
178 embeds information on the cell's footprint in the last Δ frames.

179 The analysis of image features in the RA provides numerical outputs for motility modes.
180 SP2G extrapolates collective migration by thresholding the region belonging to the last bin of the
181 RA histogram (Fig. 2B, output 4, green area). Cells migrating collectively formed long strands
182 protruding from the spheroid, thus giving rise to higher values when averaged in the RA. The larger
183 this area, the higher the ratio with the total area (values are between 0 and 1). Strikingly, the
184 numerical outputs of SP2G reflect the collective migration in simulated data of continuous, pseudo-
185 continuous, and diffusive migration of particles at 3 speed regimes (Fig. S2F-I). SP2G computes
186 directional persistence by evaluating the image orientation (Fig. 2B, output 5). Due to its
187 orientation, the grid provides 2 preferential directions for the cell path: 0° , 90° . Therefore, cells
188 capable of turning necessarily leave their footprint along 45° and 135° (the least-preferred
189 directions), increasing their orientation values. SP2G calculates directional persistence as the ratio
190 between orientation values in the preferential and least-preferred directions. Finally, SP2G
191 calculates hurdling, by sampling the intensity of the grid squares (Fig. 2B, output 6; see
192 Supplementary Excel File 2 and Supplementary Appendix). SP2G computes time trends for outputs
193 4-5-6, but, for the sake of simplicity, we reported their average values from the last frame of RA
194 movies. Once calibrated and evaluated with the C6 model, we analyzed patient-derived samples.

196 **SP2G quantifies migratory tactics adopted by glioblastoma cells.**

197 In order to test SP2G analysis workflow, we examined the spreading of 3 patient-derived
198 cell lines known to adopt different single-cell motility modes on grids: NNI-11 (non-motile), NNI-
199 21 (hurdler) and NNI-24 (glider)(40). As observed in figure 3, SP2G confirmed their migratory
200 behavior: within the same time window (4h) the most motile NNI-21 spread further away than the
201 NNI-24 and NNI-11 (Fig. 3A). This behavior was reflected by a greater diffusivity (Fig. 3E,
202 $D_{NNI21}(3h30') = 1585 \pm 282 \mu\text{m}^2/\text{min}$, $D_{NNI24}(3h30') = 324 \pm 204 \mu\text{m}^2/\text{min}$, $D_{NNI11}(3h30') = 91 \pm$
203 $103 \mu\text{m}^2/\text{min}$; mean \pm s.d.) and a greater boundary speed (Fig. 3F, $v_{NNI21}(0:3h30') = 1.54 \pm 0.3$
204 $\mu\text{m}/\text{min}$, $v_{NNI24}(0:3h30') = 0.72 \pm 0.2 \mu\text{m}/\text{min}$, $v_{NNI11}(0:3h30') = 0.19 \pm 0.07 \mu\text{m}/\text{min}$; mean \pm s.d.)
205 (Fig 3b,c,e-g). Moreover, the specific motility modes (hurdler vs glider) could be observed and
206 quantified (Fig. 3D,H-K). Following our previous observations (40), NNI-21 cells migrated
207 stochastically, with jumpy motions reflected by a low directional persistence (3.6 ± 0.7 , NNI24: 8.5
208 ± 2.6 , Fig. 3J) and high hurdling (Fig. 3K). Hurdling was visualized with cumulative distribution
209 functions (CDF, lower slopes indicating more hurdling) and converted to numbers by dividing the
210 average square intensity of the NNI-21 by the one of the NNI-24, returning a relative value of 2.08.
211 NNI-24 displayed higher collective migration than NNI-21 (0.33 ± 0.07 and 0.22 ± 0.04 ,
212 respectively; Fig. 3D,I and Supplementary Video 3)(40).

213 We then evaluated SP2G sensitivity and overall performances by applying a set of
214 cytoskeleton-perturbing drugs to NNI-21 in a dose-dependent manner. We recorded the effects for
215 the Arp2/3 inhibitor CK666, the myosin II inhibitor blebbistatin, the microtubule poison
216 nocodazole, and the actin poison latrunculin-A, each at 2 different concentrations (Fig. S3 and
217 Supplementary Video 4). CK666 did not affect NNI-21 migration, whereas all the other drugs at
218 least halved spheroid spreading (Fig. S3A-E, H). CK666 preserved cell motility modes (Fig. S3F,
219 I, J), while blebbistatin and latrunculin-A increased collective migration and persistence, and
220 decreased hurdling. Nocodazole kept collective migration and directional persistence but slightly
221 decreased hurdling. Overall, these results validated SP2G as a sensitive method for motility
222 screening and highlighted its potency as a platform for drug testing.

223 Cells are known to sense changes in their microenvironment (1), including the chemical
224 nature of the substrate. As observed previously, GBMs have a strong tropism for laminin (28, 31,
225 32, 40). To test SP2G sensitivity towards perturbations of substrate density, we stamped the gridded
226 micropatterns with various laminin concentrations (400, 200, 100, 50, 25, 12.5, 6.25 $\mu\text{g}/\text{ml}$) and a
227 blank condition (no laminin) (Fig. S4). Spheroids did not adhere in the blank and at 6.25 $\mu\text{g}/\text{ml}$.
228 Strikingly, SP2G detected 3 regimes in NNI-21 migration: 400-200 $\mu\text{g}/\text{ml}$, 100-50 $\mu\text{g}/\text{ml}$, 25-12.5
229 $\mu\text{g}/\text{ml}$, which were the only 3 couples non-statistically significant (Kruskal-Wallis test) when

230 performing Dunn's multiple comparison tests of diffusivity and boundary speed (Fig. S4E, F).
231 SP2G measured no differences when analyzing the motility modes, except when comparing
232 hurdling at 400 μ g/ml and 12.5 μ g/ml.

233 Altogether, SP2G emerged as sensitive in characterizing inter-patient heterogeneity in cell
234 migration (NNI-11 vs 21 vs 24) and detected subtle motility differences under fine biochemical
235 perturbations (NNI-21). Therefore, we hypothesized that SP2G could unveil potential intra-patient
236 cancer heterogeneity in migration and motility modes and link this heterogeneity to specific
237 molecular signatures.

238 **SP2G reveals heterogeneity in the migratory tactics adopted by glioblastoma sub-populations
239 isolated from patient-derived tumorspheres.**

240 GBMs were characterized both as inter-(3) and intra-patient (4) heterogeneous tumors.
241 Heterogeneous GBM displayed difference in their genomic (47, 48), epigenetic (49, 50) and
242 transcriptomic (51) profiles, which were mutating under therapy (52) and largely maintained when
243 cultured *in vitro* (53). Using SP2G, we characterized 2 patient-derived samples (the GBM7, Fig. 4
244 and Supplementary Video 5; and the GBM22, Fig. S5 and Supplementary Video 6).

245 Testing the GBM7 bulk, we observed a pool of motile cells tearing apart the initial spheroid
246 into several daughter spheroids, with motile cells carrying 'hitchhiking' non-motile cells (Fig. 4a
247 and Supplementary Video 5). This observation suggested that this cell line was composed of
248 different cell populations. We isolated these sub-populations by single cell cloning and analyzed
249 their phenotype. From the GBM7 cell line, we selected by SP2G 3 motile sub-populations (from
250 most to least motile: #09, #01, #07) and 2 non-motile (#03, #02) (Fig. 4B,C).

251 The motile clones displayed different cell morphologies. Clones #09-#07 had small cell
252 bodies and two thin long processes, whereas clone #01 had a bulkier morphology (Fig. 4B,F and
253 Supplementary Video 5). SP2G detected lower collective migration in clone #09 compared to the
254 other sub-populations, while clone #01 was hurdling the most. SP2G detected no significant
255 changes in directional persistence between the 4 motile clones (Fig. 4K-M). The non-motile clones
256 clustered in islands, with clone #03 aggregating in spheroids. In particular, clone #03 had a bulky
257 shape and larger processes than clone #02 (Fig. 4B,F). To verify the strength of SP2G as a bona-
258 fide alternative to brain tissues, we tested the 5 populations in the brain slice assay. The brain slice
259 assay confirmed the results obtained by SP2G (Fig. 4D and Supplementary Video 5), with 3 motile
260 (#09, #01, #07) and 2 non-motile (#03 and #02) clones. However, a detailed quantitative
261 characterization of behaviors and speeds was nearly impossible with brain slice assay. Similarly,
262 we isolated 3 motile and 2 non-motile sub-populations from the GBM22 patient-derived
263 heterogeneous bulk (Fig. S5 and Supplementary Video 6). Clones #14-#19-#01 had small cell

264 bodies and thin long processes, while clone #08 formed several cell-to-cell interconnections. Clones
265 #16 and #07 grew as islands, and clone #07 clumped in spheroids (Fig. S5B,D). SP2G detected a
266 clear trend from the most motile to the non-motile population in diffusivity and boundary speed
267 (Fig. S5C-H). For motility modes, SP2G classified clone #08 as the most collectively migrating
268 (Fig. S5J), clone #14 as the most hurdling (Fig. S5L), and clone #01 as the most persistent
269 (Fig. S5K).

270 In conclusion, these results showed that sub-populations hidden in patient-derived samples
271 spanned a range of migration modes comparable to those from different patients and SP2G is a
272 valuable platform to unveil them. Next, we asked whether the transcriptional profiles of our sub-
273 populations could account for the differences in cell motility.

274 **Intra-patient heterogeneity in motility modes is correlated with specific molecular signatures.**

275 We profiled transcriptional landscapes of the clones GBM7 by RNA-seq to see if their
276 signatures correlated with their motile phenotype. Differential expression analysis followed by
277 principal component analysis (PCA) showed that the motile (Clones #01, #07 and #09) and the non-
278 motile (Clones #02, #03) groups clustered in 2 distinct clouds, as previously differentiated by SP2G
279 (Fig. 5A). Gene set enrichment analysis (GSEA) of differentially expressed genes in motile versus
280 non-motile groups showed enrichment in the ECM-receptor interaction and focal adhesion
281 pathways (Fig. 5B) that are key pathways linked to motility. Strikingly, z-score of expression levels
282 of integrin genes indicated that the laminin-binding integrins (particularly ITGA1, ITGA3, ITGA6)
283 were enriched in the motile clones compared to the non-motile. Conversely, fibronectin-binding
284 integrins were either poorly expressed or uncorrelated to cell motility (Fig. 5C). These results were
285 confirmed by qPCR that show that the laminin-binding integrins ITGA3 and ITGA6 were highly
286 enriched in the motile clones while the fibronectin-binding integrin ITGAV was not (Fig. 5D).
287 These results were also confirmed by western blot (Fig. 5E). Taken together, these results validate
288 the motile versus non-motile classification made with SP2G and provide insights on the molecular
289 determinants that characterize GBM intra-patient heterogeneity in cell motility.

290
291

292 **Discussion**

293

294 In heterogeneous tumors such as glioblastoma, some cells can be highly aggressive,
295 migrating long distances from the tumor core by following Scherer's structures, while other cells
296 can be less motile and maybe more proliferative likely remaining in the tumor core. Our goal was
297 to develop a method to rapidly define the various motility modes present in single patients and to
298 identify which ones are the most efficient at invading mammalian brains. In previous studies, we
299 and others, demonstrated that linear patterns were excellent proxy to mimic the brain blood vessel
300 tracks, allowing high resolution imaging and analysis (28-32). In particular, gridded micropatterns
301 allowed to easily differentiate various motility modes (40). Here, we improved our grid system by
302 using spheroid spreading assays (SP2G for SPheroid SPreading on Grids). Besides allowing a
303 faster, semi-automated analysis of the cell migration by tracking the spreading area of the spheres,
304 this assay allows the analysis of the cell motility on a naïve, clean substrate which has never seen a
305 glioma cell, similarly to the surface of brain blood vessels before being invaded by glioblastoma.
306 *In vivo*, GBM exploits the surface of blood vessels as invasive highways (2). Being no cells in the
307 brain further than 25 µm from a capillary (16), the choice of 75 µm as grid edge is a good proxy to
308 mimic the density of the vessel network (54). Moreover, the topography imposed by the grid
309 provides linear cues exploited by cells in *ex vivo* brain slice assays and, likewise, it induces the
310 formation of invasive strands (13, 19) (Fig. 1A,F). Conversely, invasion is isotropic in 3D hydrogels
311 devoid of topographical cues (34, 43) (Fig. 1B,C). Our gridded micropattern triggers motility modes
312 that recapitulate the ones seen in 3D environments (44, 55) while keeping the advantages of simpler
313 *in vitro* systems, such as experimental reproducibility, time profitability and amenability to high-
314 resolution imaging techniques. Brain slice and 3D hydrogel assays recapitulate well the cues of the
315 *in vivo* 3D environment but imaging cell moving inside these systems can be troublesome because
316 of opacity that, in turn, prevents the development of analytical tools.

317 SP2G combines the experimental section with an ImageJ/Fiji toolbox tailored on it (Fig. 2).
318 The toolbox relies on 7 macros that deliver 3 outputs for cell migration (area, diffusivity, boundary
319 speed) and 3 outputs for the motility modes (collective migration, directional persistence, hurdling).
320 The short duration of our experiments (8 hours) reasonably ensures the independence from cell
321 proliferation. We utilized the patient-derived cell lines NNI-11, NNI-21 and NNI-24 as a
322 benchmark to assess the performance of SP2G analytical toolbox (Fig. 3). In our previous work
323 (40), we extensively studied the migration and the motility modes of these 3 cell lines. The NNI-
324 11 were non-motile and highly proliferative, while the NNI-21 and NNI-24 were both diffusive,
325 endowed with a stochastic, jumpy motion (NNI-21, named hurdlers) or following the same track

326 with high persistence (NNI-24, named gliders). Once tested with SP2G, the differences in motility
327 became evident. NNI-11 were non motile and NNI-21 and NNI-24 mirrored their known migration
328 trend (90 $\mu\text{m}/\text{h}$ for the NNI-21 with SP2G and 60 $\mu\text{m}/\text{h}$ for single cells on grid (40); 40 $\mu\text{m}/\text{h}$ and
329 30 $\mu\text{m}/\text{h}$ for the NNI-24 in SP2G vs single cell on grid (40). SP2G identifies the hurdling of NNI-
330 21 as opposed to the high directional persistence of NNI-24 (Fig. 3K). Furthermore, SP2G
331 highlighted the formation of collective strands in the NNI-24, which is boosted as the spheroid acts
332 as a reservoir for the cells to diffusively spread. Altogether these results highlighted SP2G strengths
333 in identifying motility modes with great details and a level of refinements hard to reach with other
334 experimental approaches.

335 For migration and invasion studies, spheroids are the *sine-qua-non* to dissect the motility
336 modes behind the transition from a clustering niche towards a diffusive entity and SP2G offers a
337 platform to tackle these questions. Spheroids also allow to study the influence of biomaterials,
338 microenvironmental cues, and drugs sensitivity in an organoid-like configuration (26, 33, 34, 43,
339 56, 57). Our results using a panel of cytoskeleton-perturbing drugs illustrate the suitability of SP2G
340 as a sensitive drug screening platform. We unveiled that the most invasive patient derived line,
341 NNI-21, was dependent on myosin II, microtubule, and f-actin for migration and motility modes,
342 while it was independent of arp2/3, similarly to previous findings (32). This confirmed the
343 suitability of SP2G as a motility platform to tackle glioblastoma invasion and showed its sensitivity,
344 as differences at low dose of drugs were visible, particularly for microtubule perturbations (Fig.
345 S3). Moreover, SP2G gives access to area, diffusivity, boundary speed, collective migration,
346 directional persistence and hurdling, providing an added value in the understanding of drug effects
347 on glioblastoma behavior. By modifying the density of laminin of the grid (Fig. S4), we showed
348 how SP2G fits in tackling micro-environmental cues like fine differences in the biochemical
349 composition of the substrate.

350 SP2G underlined other key aspects of GBM migration. For example, it revealed the
351 hitchhiking motility mode in our patient-derived samples (Fig. 4A). In our example of the GBM7
352 patient, the spheroid is torn apart into 3 daughter spheroids, leading us to hypothesize the presence
353 of hidden sub-populations within a heterogeneous tumor. This behavior is kept as spheroids
354 maintain intra-heterogeneity and stemness of the native cancer while forming a clustering niche.
355 On one hand, the presence of glioma stem cell niches endows the cancer with plasticity that relies
356 on stemness and heterogeneity (3, 4, 52, 53), but on the other hand, recent avenues propose to
357 leverage this plasticity to induce an indolent differentiation state (i.e. lacking differentiation and
358 tumor initiation capacity) potentially targetable with existing therapies (58). Indeed, heterogeneity

359 is at the heart of potential strategies to tackle glioblastoma and, so far, it was studied only with
360 genomic and transcriptomic tools (47-51), while its effect on motility was poorly understood.

361 Here we have reported how 11 sub-populations derived from 2 patient-derived samples
362 behave differently in terms of migration, hurdling, persistence and collective migration (Fig. 4 and
363 Fig. S5). The sub-populations have different cell shapes, some aggregate spontaneously in islands
364 or spheroids when cultured in 2D, others are prone to form several cell-to-cell interconnections.
365 Furthermore, our transcriptomic analysis (Fig. 5) showed clustering of the motile versus non-motile
366 groups and, while looking for enrichment in gene sets key pathways, ECM-receptor interaction and
367 focal adhesion emerged. We confirmed this result by qPCR and western blot, showing a higher
368 expression in the laminin binding integrins, in agreement with glioma preference for laminin and
369 with the large presence of laminin on brain blood vessels (28, 31). Interestingly, we found a higher
370 protein expression in the motile GBM7 sub-populations for the integrin alpha 6 (Fig. 5E), which is
371 known to regulate glioblastoma stem cells (59). At this stage, we do not know whether there is a
372 correlation between stemness and sub-population motility, neither if the hitchhiking mode might
373 be present *in vivo*. Tracing the history of patients by correlating with *in vivo* data is likely to help
374 on how heterogeneity and GBM diffusivity mutually drive GBM invasion in patients.

375 In summary, we have presented a methodology that integrates the time-lapse imaging of
376 spheroid spreading on grids with an ImageJ/Fiji analytical toolbox that quantitatively characterizes
377 cell migration and motility modes. It is nicknamed SP2G, and we hope it opens up a new standard
378 for motility screenings, potentially extendable as a pan-spheroid approach that helps answering
379 questions on how cell migration impacts on cancer dissemination.

380

381 **Materials and Methods**

382

383 **Cell culture.** Rat C6 cells were cultivated in high-glucose DMEM supplemented with glutamine and 10%
384 fetal bovine serum (FBS). To form spheroids, $\sim 2 \cdot 10^6$ C6 cells were seeded in 6-cm petri dishes previously
385 treated for 1h with 0.2% pluronic F127 in DPBS at room temperature. After 1 day, spheroids between 75
386 and 150 μm in diameter were obtained. Patient-derived GBM samples from the National Neuroscience
387 Institute (NNI-11, NNI-21 and NNI-24) were acquired with informed consent and de-identified in
388 accordance with the SingHealth Centralised Institutional Review Board A. Patient-derived GBM samples
389 (GBM-7, GBM-22) from the laboratory of G. Pelicci (IEO, Milan, Italy) were acquired according to
390 protocols approved by the Institute Ethical Committee for animal use and in accordance with the Italian laws
391 (D.L.vo 116/92 and following additions), which enforce EU 86/609 Directive (Council Directive
392 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions
393 of the Member States regarding the protection of animals used for experimental and other scientific
394 purposes). Our patient-derived GBM cell lines were kept as previously reported(60). Briefly, GBM cell lines
395 were grown in non-adherent conditions utilizing DMEM/F-12 supplemented with sodium pyruvate, non-
396 essential amino acid, glutamine, penicillin/streptomycin, B27 supplement, bFGF (20 ng/ml), EGF (20
397 ng/ml), and heparin (5 mg/ml). Patient-derived GBM cell lines were passaged every 5 days. All the cell lines
398 were maintained at 37 °C and 5% CO₂.

399 **Brain slice invasion assays and staining.** C57BL/6J mice were used for these studies. Both males and
400 females (in equal proportions) within each experiment originated from different litters. All of the animal
401 procedures were in accordance with the Institutional Animal Care and Use Committee, and in compliance
402 with the guidelines established in the Principles of Laboratory Animal Care (directive 86/609/EEC); they
403 were also approved by the Italian Ministry of Health.. The brain slice assay was performed as reported in Er
404 et al.(61) and Polleux and Ghosh(42). Prior to sacrifice, mice were anesthetized, their chest was cut and
405 intra-cardiac injection was performed with 5 ml solution of Dil stain (ThermoFisher D282) to label the
406 luminal side of blood vessels. The Dil stain was diluted 0.5 mg/ml in 100% ethanol and this solution was
407 further diluted 1:10 in a 30% w/v solution of sucrose-DPBS. Brains were then isolated in ice-cold
408 CaCl₂⁺/MgCl₂⁺ 1X HBSS (Euroclone ECB4006) supplemented with 2.5mM HEPES (complete HBSS).
409 Brains were sectioned in 150 or 100 μm thick slices using a Leica VT1200S vibratome and placed in a glass
410 bottom 24-well, which was previously coated at 37 °C overnight using a solution of 12.5 mg/ml laminin and
411 12.5 mg/ml Poly-L-lysine (1 slice/well). Slices were left 3h at 37 °C and 5% CO₂ to consolidate on the
412 substrate. Subsequently, glioma spheroids were gently added and the co-culture was kept 4h at 37 °C and
413 5% CO₂ prior to imaging. Movies were recorded overweekend on a confocal SP5 microscope equipped with
414 temperature, humidity, and CO₂ control utilizing a 20X air objective (1 frame/15 min for rat C6, 1 frame/30
415 min for GBM-7 sub-populations). All the brain slice live experiments were performed with brain slice culture
416 medium (68% L-glutamine supplemented DMEM, 26% complete HBSS, 5% FBS, 1% Penicillin-
417 Streptomycin). For immunofluorescence staining of C6 and blood vessels, the co-culture was then fixed with

418 4% PFA for 20 min and incubated for 1h at room temperature with a blocking solution made of 5% BSA,
419 5% Normal-Donkey-Serum (NDS) and 0.3% Triton-X 100 in DPBS. The co-culture was incubated overnight
420 at 4 °C with 10 mg/ml of Tomato Lectin (Vector Laboratories, #DL-1178) in blocking solution. DAPI was
421 put afterwards. Images were acquired with a Leica SP8 microscope utilizing a 63X oil objective (1 μm Z
422 step).

423 **Collagen and matrigel invasion assays.** A previous protocol was adapted for collagen and matrigel
424 assays(62). Briefly, 20 ml of polydimethylsiloxane (PDMS; Sylgard 184 Dow Corning) were casted at 1:10
425 ratio by mixing curing agent and silicone elastomer base, respectively, in a 10-cm plate. 6-mm PDMS wells
426 were obtained by punching holes with a biopsy puncher in 18x18 mm PDMS squares. The PDMS wells
427 were bound on a 24 mm coverslip via plasma treatment (90 s) followed by 5 min at 80 °C. Each 6-mm well
428 was then treated with 1 mg/ml poly-d-lysine at 37 °C for 3h, rinsed in milliQ water, and cured overnight at
429 80 °C. Meanwhile, rat C6 spheroids were incubated in medium with 5 μM Dil stain for 3 h, then collected,
430 centrifuged at 500 rpm for 2 minutes and re-suspended in 1 ml of medium. 10 μl of spheroid suspension was
431 then mixed with 80 μl of 6 mg/ml collagen solution (Collagen I from rat tail, Corning #354249 diluted in
432 cell culture medium, 10% v/v 1.2% NaHCO₃, 5% 1M HEPES, 1.5% 1M NaOH) or 10 mg/ml Matrigel
433 (reconstituted basement membrane, rBM, Trevigen # 3445-005-01). The spheroids embedded in
434 unpolymerized solutions were placed in the 6-mm PDMS wells and left at 37 °C for 1h to polymerize. With
435 this method between 5 and 15 spheroids per well were obtained. Afterwards, medium was added and movies
436 of invading spheroids were acquired on an IX83 inverted microscope (Olympus) equipped with a Confocal
437 Spinning Disk unit, temperature, humidity, and CO₂ control. A 10X objective was utilized, along with an
438 IXON 897 Ultra camera (Andor) and OLYMPUS cellSens Dimension software. Movies were obtained for
439 > 24 hours (1 frame / 15 min) with 7.5mm Z step for RFP and DIC channels.

440 **Quantification of SP2 with area ratio and MSD.** For SP2 in collagen and matrigel assays, SP2 was
441 obtained as the ratio between the area occupied by spheroids at 24 and 0 hours. The area was calculated as
442 the maximum intensity projection firstly in Z, then in time, of the fluorescent channel. For SP2 in 2D flat
443 and grid, the ratio between the areas at 8 and 0 hours was calculated, and the areas were obtained utilizing
444 the maximum intensity projection in time. For MSD calculation we utilized a published protocol(63). To get
445 XY coordinates overtime, manual tracking was performed with the dedicated plugin in Fiji. For brain slice,
446 collagen and Matrigel cells were followed for 14 h respectively considering as initial time point 24 h, 10 h
447 and 10 h to fully visualize single cells.

448 **Microcontact printing.** Microcontact printing was performed as we described (60). Briefly, we casted 1:10
449 PDMS from a dedicated silicon mold, cut it into 1x1 or 1x2 cm² stamps, and coated with 50 μg/ml laminin
450 (ThermoFisherScientific, 23017015) in DPBS for 20 min. Each stamp was then air-blow dried, leant on a
451 35-mm dish, then gently removed. In case of a plastic dish, the surface was then passivated with 0.2%
452 pluronic F127 in DPBS at room temperature for 1 h, whereas for glass poly-l-lysine-grafted polyethylene
453 glycol (0.1 mg/ml, pLL-PEG, SuSoS) was utilized. Dishes were then rinsed 4 times with DPBS and kept in

454 medium until spheroids were seeded. For printing laminin concentrations from 400 to 6.25 $\mu\text{g}/\text{ml}$, a sequence
455 of 6 serial dilutions (1:1 in DPBS) was carried out.

456 **SP2G experimental and image analysis workflow.** In SP2G experimental section, the laminin solution for
457 the gridded micropattern was mixed with 7 $\mu\text{g}/\text{ml}$ BSA-conjugated-647 in order to visualize it. Similarly, 1-
458 day old or 5-days old spheroids (for rat C6 or human patient-derived glioma, respectively) were incubated
459 in medium with 5 μM Dil stain for 3 hours in 6-well plates previously passivated with 0.2% pluronic F127.
460 Spheroids were then deposited on the grid and the samples were placed under the microscope and left 5 to
461 15 min to equilibrate. Afterwards, 8-hours time-lapse movies were recorded using a 10X objective mounted
462 on a Leica AM TIRF MC system or onto an Olympus ScanR inverted microscope (1 frame / 5 min). 3
463 channels per time point (phase contrast, Dil stain fluorescence for the cells, BSA-647 fluorescence for the
464 grid) were acquired in live cell imaging for the experiments in Fig. 3 and Extended Data Fig. 4. 2 channels
465 per time point were acquired in the other experiments, since the grid fluorescence was recorded for just 1
466 frame before and 1 frame after the time-lapse movie. For the Experiments in Extended Data Fig. 4 cells were
467 not fluorescently labeled and Dil stain channel was not acquired, the drugs were injected 25 min after
468 imaging onset. For the characterization of cell migration, we utilized the SP2G analytical toolbox that
469 measured the polygonal area $A(t)$. Briefly, as SP2G formed the polygon to track the invasive boundary, the
470 code initially multiplied the binarized grid nodes with the binarized spreading spheroid in order to obtain
471 only the node traveled by at least 1 cell. Then, SP2G iteratively checked whether a node has blinked for at
472 least 3 consecutive time frames. If this condition is met, the node is added to the polygon. Therefore, SP2G
473 always stopped tracking 2 frames earlier than the total duration of any movie. Afterwards, from $A(t)$ we
474 derived the diffusivity $D(t) = dA(t) / dt$, where dt was the time frame in the time-lapse movies (5 min) and
475 $dA(t)$ was the difference between 2 polygonal areas at subsequent time steps. For the calculation of single
476 cell velocity $v(t) = D(t) / (2 * \sqrt{A(t)})$, being now $L = \sqrt{A(t)}$ the edge of the square having an area equivalent
477 to the polygon, the following 2-equation system was solved:

478

$$\begin{cases} D(t) = \frac{\delta A(t)}{\delta t} \\ L(t) = \sqrt{A(t)} \end{cases}$$

480

481 That inferred

$$482 D(t) = \frac{\delta L^2(t)}{\delta t} = L \frac{\delta L(t)}{\delta t} + L^2 \frac{\delta L(t)}{\delta t} = 2L \frac{\delta L(t)}{\delta t}$$

483

484 The following was obtained

$$485 \frac{\delta L(t)}{\delta t} = \frac{\delta A(t)}{\delta t} \frac{1}{2L} = D(t) \frac{1}{2\sqrt{A(t)}}$$

486

487 that corresponded to the value of the boundary speed. In this way a length gradient was inferred from an area
488 gradient.

489 For the characterization of the motility modes we extrapolated all the parameters from RA movies and
490 averaged data from several spheroids. Collective migration values were obtained by thresholding each frame
491 of the RA within the last histogram bin, that necessarily spans up to 255 (the maximum value of an 8-bit
492 image). The ratio

493

$$494 \frac{\#Counts[Last\ bin]}{\#Total\ Counts}$$

495

496 Returns the collective migration. The rationale behind this assumption was that collective strands generated
497 high intensity values when averaged, since many cells travelled the same path. Therefore, in the RA movie
498 there were zones of high intensity. Vice versa, single entities generated low intensities when averaged, since
499 no cells other than the single one contributed to the final average value. Background pixels were set to NaN
500 (see Supplementary Appendix).

501 Directional persistence is calculated through the function “OrientationJ distribution” of the OrientationJ
502 plugin(64), which returns the orientation field (OF): it consists in 180 values (1 per direction, sampled every
503 1°). Reasonably, we assumed that the spheroid spreading is isotropic, and therefore SP2G averages the
504 values 0-90, 1-91, etc. and gets 90 values. The following ratio

505

$$506 \frac{OF[0^\circ] + OF[1^\circ] + OF[2^\circ] + OF[3^\circ] + OF[87^\circ] + OF[88^\circ] + OF[89^\circ]}{OF[42^\circ] + OF[43^\circ] + OF[44^\circ] + OF[45^\circ] + OF[46^\circ] + OF[47^\circ] + OF[48^\circ]}$$

507

508 Returns the directional persistence. It is the ratio between the direction of least resistance to cell migration
509 (i.e. the ones provided by the grid segments) and the direction of most resistance (the one a cell has
510 necessarily to face when undergoing a directional change).

511 **Simulation of particle diffusion.** Simulated data were generated with a custom-written code in imageJ/Fiji.

512 Briefly, the function

513

```
514 Speed_particle = speed*(1+random("gaussian"));
```

515

516 Was applied at each time step to generate motion. “speed” was equal to 2, 2.5 or 3 and “random(“gaussian”)”
517 returned a Gaussian distributed pseudorandom number with mean 0 and standard deviation 1. Continuity
518 was set by imposing a 100% overlap probability to moving particles, pseudo-continuity a 99% probability,
519 pure diffusivity with no constraints.

520 **RNA sequencing.** For the RNA analysis, all the cell lines were plated on laminin at 10 µg/ml and lysed at
521 70-90% confluence. RNA was extracted with the RNAeasy Mini Kit (Qiagen) as per manufacturer

522 specifications. RNA concentration was measured using Qubit 4.0 and its integrity evaluated with an Agilent
523 Bioanalyzer 2100 utilizing Nano RNA kit (RIN > 8). An indexed-fragment library per sample was arranged
524 from 500ng totalRNA using Illumina Stranded mRNA Prep ligation kit (Illumina) as per manufacturer's
525 instructions. Libraries were checked for proper size using Agilent Bioanalyzer 2100 High Sensitivity DNA
526 kit, then normalized and equimolarly pooled to perform a multiplexed sequencing run and quantified with
527 Qubit HS DNA kit. As a positive control, 5% of Illumina pre-synthesized PhiX library was incorporated in
528 the sequencing mix. Sequencing was carried out in Paired End mode (2x75nt) with an Illumina
529 NextSeq550Dx, generating on average 60 million PE reads per library. Reads were aligned with the STAR
530 aligner (v 2.6.1d) to the GRCh38/hg38 assembly human reference genome.

531 Differential gene expression analysis was accomplished with the Bioconductor package DESeq2 (v 1.30.0)
532 that assessed variance-mean dependence in count data from sequencing data. Besides, the differential
533 expression was evaluated by employing a negative binomial distribution-based model with DESeq2. The
534 Bioconductor package fgsea (v 1.16.0) and GSEA software (including Reactome, KEGG, oncogenic
535 signature and ontology gene sets available from the GSEA Molecular Signatures Database,
536 <https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp?collections>) were utilized for preranked gene set
537 enrichment analysis (GSEA) to assess pathway enrichment in transcriptional data.

538 **RNA extraction and qPCR analysis.** For the qPCR analysis, all the cell lines were plated on laminin at 10
539 µg/ml and lysed at 70-90% confluence. RNA was extracted with the RNAeasy Mini Kit (Qiagen) as per
540 manufacturer specifications. Real-time PCR performed with a 7500 Real-Time PCR System (Thermo
541 Fisher). The following parameters were utilized: pre-PCR step of 20 s at 95 °C, followed by 40 cycles of 1
542 s at 95 °C and 20 s at 60 °C. Samples were amplified with primers and probes for each target, and for all the
543 targets, one NTC sample was run. Raw data (Ct) were analyzed with Excel using the DDCT method to
544 calculate the relative fold gene expression. DCT were calculated using GAPDH as housekeeping gene and
545 averaged (3 independent experiments). For the mRNA expression of selected integrins data were normalized
546 against the expression of the GBM7 sub-population #03.

547 **Analysis of RNA sequencing data.** Reads were aligned to the GRCh38/hg38 assembly human reference
548 genome using the STAR aligner (v 2.6.1d)(65) and reads were quantified using Salmon (v1.4.0)(66).
549 Differential gene expression analysis was performed using the Bioconductor package DESeq2 (v 1.30.0)(67)
550 that estimates variance-mean dependence in count data from high-throughput sequencing data and tests for
551 differential expression exploiting a negative binomial distribution-based model. Pre-ranked GSEA for
552 evaluating pathway enrichment in transcriptional data was carried out using the Bioconductor package
553 fgsea(68), taking advantage of the Kyoto Encyclopedia of Genes and Genomes (KEGG) gene set available
554 from the GSEA Molecular Signatures Database (<https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp?collections>).

556 **Protein extraction and western blots.** Total cell extracts were obtained utilizing RIPA buffer (100 mM
557 NaCl; 1 mM EGTA; 50 mM Tris pH7.4; 1% TX100) complemented with a cocktail of protease inhibitors
558 (Roche). The Pierce BCA protein assay kit #23225 (ThermoScientific) was utilized to quantify proteins,

559 which were then denatured with SDS and resolved by SDS-PAGE using typically 8% acrylamide gels.
560 Transfers were done on Polyvinylidene Fluoride (PVDF) membranes in methanol-containing transfer buffer.
561 Blocking was done with milk diluted to 5% in PBS-0.1% tween for 1h at room temperature and antibodies
562 were blotted overnight at 4 °C. HRP-secondary antibodies were incubated for 1-2 hours at room temperature
563 in 5% milk and ECL were performed using the Amersham ECL Western Blotting Detection Reagents
564 (Cat.no. RPN2106 from GE Healthcare). Detection was done using CL-Xposure films (Cat.no. 34089 from
565 Thermoscientific). The following antibodies were used: anti-integrin alpha V (Abcam ab179475, diluted
566 1:1000), anti-integrin alpha 6 (Novus NBP1-85747, diluted 1:500).

567 **Statistical analysis.** All the statistical analysis was performed with Prism 9 (GraphPad). P-values were
568 calculated as indicated in figure legends, as well as number of samples and independent experiments. The
569 plots were generated with Prism 9 and ggplot2. Google sheets was utilized for the radar plots in Fig. 1.
570 Kolmogorov-Smirnov tests were performed on Matlab utilizing the function
571 kstest2(groupA,groupB,'Alpha',0.05). All the SP2G macros and the supplementary appendix containing
572 detailed instructions on installation and run are freely available on the repository figshare at the following
573 link: <https://figshare.com/projects/SP2G/148246>.

574
575

576 **References**

- 577
- 578 1. P. Friedl, S. Alexander, Cancer invasion and the microenvironment: plasticity and
579 reciprocity. *Cell* **147**, 992-1009 (2011).
- 580 2. V. A. Cuddapah, S. Robel, S. Watkins, H. Sontheimer, A neurocentric perspective on
581 glioma invasion. *Nat Rev Neurosci* **15**, 455-465 (2014).
- 582 3. C. W. Brennan, R. G. Verhaak, A. McKenna, B. Campos, H. Noushmehr, S. R. Salama, S.
583 Zheng, D. Chakravarty, J. Z. Sanborn, S. H. Berman, The somatic genomic landscape of
584 glioblastoma. *Cell* **155**, 462-477 (2013).
- 585 4. A. P. Patel, I. Tirosh, J. J. Trombetta, A. K. Shalek, S. M. Gillespie, H. Wakimoto, D. P.
586 Cahill, B. V. Nahed, W. T. Curry, R. L. Martuza, Single-cell RNA-seq highlights intratumoral
587 heterogeneity in primary glioblastoma. *Science* **344**, 1396-1401 (2014).
- 588 5. R. Galli, E. Binda, U. Orfanelli, B. Cipelletti, A. Gritti, S. De Vitis, R. Fiocco, C. Foroni, F.
589 Dimeco, A. Vescovi, Isolation and characterization of tumorigenic, stem-like neural
590 precursors from human glioblastoma. *Cancer Res* **64**, 7011-7021 (2004).
- 591 6. S. K. Singh, I. D. Clarke, M. Terasaki, V. E. Bonn, C. Hawkins, J. Squire, P. B. Dirks,
592 Identification of a cancer stem cell in human brain tumors. *Cancer Res* **63**, 5821-5828
593 (2003).
- 594 7. D. N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. K.
595 Cavenee, H. Ohgaki, O. D. Wiestler, P. Kleihues, D. W. Ellison, The 2016 World Health
596 Organization Classification of Tumors of the Central Nervous System: a summary. *Acta
597 Neuropathol* **131**, 803-820 (2016).
- 598 8. Q. T. Ostrom, H. Gittleman, P. Liao, C. Rouse, Y. Chen, J. Dowling, Y. Wolinsky, C. Kruchko,
599 J. Barnholtz-Sloan, CBTRUS statistical report: primary brain and central nervous system
600 tumors diagnosed in the United States in 2007-2011. *Neuro Oncol* **16 Suppl 4**, iv1-63
601 (2014).
- 602 9. A. Giese, R. Bjerkvig, M. E. Berens, M. Westphal, Cost of migration: invasion of malignant
603 gliomas and implications for treatment. *J Clin Oncol* **21**, 1624-1636 (2003).
- 604 10. L. C. Hou, A. Veeravagu, A. R. Hsu, V. C. Tse, Recurrent glioblastoma multiforme: a review
605 of natural history and management options. *Neurosurg Focus* **20**, E5 (2006).
- 606 11. M. E. Davis, Glioblastoma: Overview of Disease and Treatment. *Clin J Oncol Nurs* **20**, S2-8
607 (2016).
- 608 12. M. Lacroix, D. Abi-Said, D. R. Journey, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E.
609 McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, R. Sawaya, A
610 multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of
611 resection, and survival. *J Neurosurg* **95**, 190-198 (2001).
- 612 13. T. Ohnishi, H. Matsumura, S. Izumoto, S. Hiraga, T. Hayakawa, A novel model of glioma
613 cell invasion using organotypic brain slice culture. *Cancer Res* **58**, 2935-2940 (1998).
- 614 14. C. Wang, J. Li, S. Sinha, A. Peterson, G. A. Grant, F. Yang, Mimicking brain tumor-
615 vasculature microanatomical architecture via co-culture of brain tumor and endothelial
616 cells in 3D hydrogels. *Biomaterials* **202**, 35-44 (2019).
- 617 15. H. Scherer, Structural development in gliomas. *The American Journal of Cancer* **34**, 333-
618 351 (1938).
- 619 16. N. J. Abbott, A. A. Patabendige, D. E. Dolman, S. R. Yusof, D. J. Begley, Structure and
620 function of the blood-brain barrier. *Neurobiol Dis* **37**, 13-25 (2010).
- 621 17. G. P. Cribaro, E. Saavedra-López, L. Romarate, I. Mitxitorena, L. R. Díaz, P. V. Casanova,
622 M. Roig-Martínez, J. M. Gallego, A. Perez-Vallés, C. Barcia, Three-dimensional vascular

- 623 microenvironment landscape in human glioblastoma. *Acta neuropathologica*
624 *communications* **9**, 1-20 (2021).

625 18. A. P. Di Giovanna, A. Tibo, L. Silvestri, M. C. Mullenbroich, I. Costantini, A. L. Allegra
626 Mascaro, L. Sacconi, P. Frasconi, F. S. Pavone, Whole-Brain Vasculature Reconstruction at
627 the Single Capillary Level. *Sci Rep* **8**, 12573 (2018).

628 19. A. Farin, S. O. Suzuki, M. Weiker, J. E. Goldman, J. N. Bruce, P. Canoll, Transplanted
629 glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. *Glia*
630 **53**, 799-808 (2006).

631 20. J. Holash, P. Maisonneuve, D. Compton, P. Boland, C. Alexander, D. Zagzag, G.
632 Yancopoulos, S. Wiegand, Vessel cooption, regression, and growth in tumors mediated
633 by angiopoietins and VEGF. *Science* **284**, 1994-1998 (1999).

634 21. F. Winkler, Y. Kienast, M. Fuhrmann, L. Von Baumgarten, S. Burgold, G. Mitteregger, H.
635 Kretzschmar, J. Herms, Imaging glioma cell invasion *in vivo* reveals mechanisms of
636 dissemination and peritumoral angiogenesis. *Glia* **57**, 1306-1315 (2009).

637 22. S. Watkins, S. Robel, I. F. Kimbrough, S. M. Robert, G. Ellis-Davies, H. Sontheimer,
638 Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma
639 cells. *Nat Commun* **5**, 4196 (2014).

640 23. J. Cha, P. Kim, Biomimetic strategies for the glioblastoma microenvironment. *Frontiers in*
641 *Materials* **4**, 45 (2017).

642 24. I. Manini, F. Caponnetto, A. Bartolini, T. Ius, L. Mariuzzi, C. Di Loreto, A. P. Beltrami, D.
643 Cesselli, Role of Microenvironment in Glioma Invasion: What We Learned from In Vitro
644 Models. *Int J Mol Sci* **19**, (2018).

645 25. M. C. de Gooijer, M. Guillen Navarro, R. Bernards, T. Wurdinger, O. van Tellingen, An
646 Experimenter's Guide to Glioblastoma Invasion Pathways. *Trends Mol Med* **24**, 763-780
647 (2018).

648 26. K. J. Wolf, J. Chen, J. D. Coombes, M. K. Aghi, S. Kumar, Dissecting and rebuilding the
649 glioblastoma microenvironment with engineered materials. *Nature Reviews Materials* **4**,
650 651-668 (2019).

651 27. P. Monzo, M. Crestani, N. C. Gauthier, "In Vitro Mechanobiology of Glioma: Mimicking
652 the Brain Blood Vessels and White Matter Tracts Invasion Paths" in *Brain Tumors*
653 (Springer, 2021), pp. 159-196.

654 28. A. Jain, M. Betancur, G. D. Patel, C. M. Valmikinathan, V. J. Mukhatyar, A. Vakharia, S. B.
655 Pai, B. Brahma, T. J. MacDonald, R. V. Bellamkonda, Guiding intracortical brain tumour
656 cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres. *Nat Mater*
657 **13**, 308-316 (2014).

658 29. S. S. Rao, M. T. Nelson, R. Xue, J. K. DeJesus, M. S. Viapiano, J. J. Lannutti, A. Sarkar, J. O.
659 Winter, Mimicking white matter tract topography using core-shell electrospun nanofibers
660 to examine migration of malignant brain tumors. *Biomaterials* **34**, 5181-5190 (2013).

661 30. D. Gallego-Perez, N. Higuita-Castro, L. Denning, J. DeJesus, K. Dahl, A. Sarkar, D. J.
662 Hansford, Microfabricated mimics of *in vivo* structural cues for the study of guided tumor
663 cell migration. *Lab Chip* **12**, 4424-4432 (2012).

664 31. J. Cha, I. Koh, Y. Choi, J. Lee, C. Choi, P. Kim, Tapered microtract array platform for
665 antimigratory drug screening of human glioblastoma multiforme. *Adv Healthc Mater* **4**,
666 405-411 (2015).

667 32. P. Monzo, Y. K. Chong, C. Guetta-Terrier, A. Krishnasamy, S. R. Sathe, E. K. Yim, W. H. Ng,
668 B. T. Ang, C. Tang, B. Ladoux, N. C. Gauthier, M. P. Sheetz, Mechanical confinement

- triggers glioma linear migration dependent on formin FHOD3. *Mol Biol Cell* **27**, 1246-1261 (2016).
33. J. Cha, S. G. Kang, P. Kim, Strategies of Mesenchymal Invasion of Patient-derived Brain Tumors: Microenvironmental Adaptation. *Sci Rep* **6**, 24912 (2016).
34. T. A. Ulrich, A. Jain, K. Tanner, J. L. MacKay, S. Kumar, Probing cellular mechanobiology in three-dimensional culture with collagen-agarose matrices. *Biomaterials* **31**, 1875-1884 (2010).
35. D. Truong, R. Fiorelli, E. S. Barrientos, E. L. Melendez, N. Sanai, S. Mehta, M. Nikkhah, A three-dimensional (3D) organotypic microfluidic model for glioma stem cells - Vascular interactions. *Biomaterials* **198**, 63-77 (2019).
36. M. T. Ngo, J. N. Sarkaria, B. A. C. Harley, Pericytes and Astrocytes Instruct Glioblastoma Invasion, Proliferation, and Therapeutic Response within an Engineered Brain Perivascular Niche Model. *bioRxiv*, 2022.2004.2027.489740 (2022).
37. A. Linkous, D. Balamatsias, M. Snuderl, L. Edwards, K. Miyaguchi, T. Milner, B. Reich, L. Cohen-Gould, A. Storaska, Y. Nakayama, E. Schenkein, R. Singhania, S. Cirigliano, T. Magdeldin, Y. Lin, G. Nanjangud, K. Chadalavada, D. Pisapia, C. Liston, H. A. Fine, Modeling Patient-Derived Glioblastoma with Cerebral Organoids. *Cell Rep* **26**, 3203-3211 e3205 (2019).
38. M. A. Marques-Torrejon, E. Gangoso, S. M. Pollard, Modelling glioblastoma tumour-host cell interactions using adult brain organotypic slice co-culture. *Dis Model Mech* **11**, (2018).
39. M. Osswald, E. Jung, F. Sahm, G. Solecki, V. Venkataramani, J. Blaes, S. Weil, H. Horstmann, B. Wiestler, M. Syed, L. Huang, M. Ratliff, K. Karimian Jazi, F. T. Kurz, T. Schmenger, D. Lemke, M. Gommel, M. Pauli, Y. Liao, P. Haring, S. Pusch, V. Herl, C. Steinhäuser, D. Krunic, M. Jarahian, H. Miletic, A. S. Berghoff, O. Griesbeck, G. Kalamakis, O. Garaschuk, M. Preusser, S. Weiss, H. Liu, S. Heiland, M. Platten, P. E. Huber, T. Kuner, A. von Deimling, W. Wick, F. Winkler, Brain tumour cells interconnect to a functional and resistant network. *Nature* **528**, 93-98 (2015).
40. P. Monzo, M. Crestani, Y. K. Chong, A. Ghisleni, K. Hennig, Q. Li, N. Kakogiannos, M. Giannotta, C. Richichi, T. Dini, Adaptive mechanoproperties mediated by the formin FMN1 characterize glioblastoma fitness for invasion. *Developmental cell*, (2021).
41. C. G. Hubert, M. Rivera, L. C. Spangler, Q. Wu, S. C. Mack, B. C. Prager, M. Couce, R. E. McLendon, A. E. Sloan, J. N. Rich, A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. *Cancer research* **76**, 2465-2477 (2016).
42. F. Polleux, A. Ghosh, The slice overlay assay: a versatile tool to study the influence of extracellular signals on neuronal development. *Science's STKE* **2002**, pl9-pl9 (2002).
43. M. Vinci, S. Gowan, F. Boxall, L. Patterson, M. Zimmermann, W. Court, C. Lomas, M. Mendiola, D. Hardisson, S. A. Eccles, Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. *BMC Biol* **10**, 29 (2012).
44. J. E. Ron, P. Monzo, N. C. Gauthier, R. Voituriez, N. S. Gov, One-dimensional cell motility patterns. *Physical Review Research* **2**, 033237 (2020).
45. J. Johnson, M. O. Nowicki, C. H. Lee, E. A. Chiocca, M. S. Viapiano, S. E. Lawler, J. J. Lannutti, Quantitative analysis of complex glioma cell migration on electrospun polycaprolactone using time-lapse microscopy. *Tissue Eng Part C Methods* **15**, 531-540 (2009).

- 716 46. C. Beadle, M. C. Assanah, P. Monzo, R. Vallee, S. S. Rosenfeld, P. Canoll, The role of
717 myosin II in glioma invasion of the brain. *Mol Biol Cell* **19**, 3357-3368 (2008).
- 718 47. C. Neftel, J. Laffy, M. G. Filbin, T. Hara, M. E. Shore, G. J. Rahme, A. R. Richman, D.
719 Silverbush, M. L. Shaw, C. M. Hebert, An integrative model of cellular states, plasticity,
720 and genetics for glioblastoma. *Cell* **178**, 835-849. e821 (2019).
- 721 48. S. Piccirillo, R. Combi, L. Cajola, A. Patrizi, S. Redaelli, A. Bentivegna, S. Baronchelli, G.
722 Maira, B. Pollo, A. Mangiola, Distinct pools of cancer stem-like cells coexist within human
723 glioblastomas and display different tumorigenicity and independent genomic evolution.
724 *Oncogene* **28**, 1807-1811 (2009).
- 725 49. J. Klughammer, B. Kiesel, T. Roetzer, N. Fortelny, A. Nemc, K.-H. Nenning, J. Furtner, N. C.
726 Sheffield, P. Datlinger, N. Peter, The DNA methylation landscape of glioblastoma disease
727 progression shows extensive heterogeneity in time and space. *Nature medicine* **24**, 1611-
728 1624 (2018).
- 729 50. X. Lu, N. P. Maturi, M. Jarvius, I. Yildirim, Y. Dang, L. Zhao, Y. Xie, E. Tan, P. Xing, R.
730 Larsson, Cell-lineage controlled epigenetic regulation in glioblastoma stem cells
731 determines functionally distinct subgroups and predicts patient survival. *Nature
732 Communications* **13**, 1-16 (2022).
- 733 51. S. Darmanis, S. A. Sloan, D. Croote, M. Mignardi, S. Chernikova, P. Samghababi, Y. Zhang,
734 N. Neff, M. Kowarsky, C. Caneda, Single-cell RNA-seq analysis of infiltrating neoplastic
735 cells at the migrating front of human glioblastoma. *Cell reports* **21**, 1399-1410 (2017).
- 736 52. J. Wang, E. Cazzato, E. Ladewig, V. Frattini, D. I. Rosenblom, S. Zairis, F. Abate, Z. Liu, O.
737 Elliott, Y. J. Shin, J. K. Lee, I. H. Lee, W. Y. Park, M. Eoli, A. J. Blumberg, A. Lasorella, D. H.
738 Nam, G. Finocchiaro, A. Iavarone, R. Rabidan, Clonal evolution of glioblastoma under
739 therapy. *Nat Genet* **48**, 768-776 (2016).
- 740 53. V. G. LeBlanc, D. L. Trinh, S. Aslanpour, M. Hughes, D. Livingstone, D. Jin, B. Y. Ahn, M. D.
741 Blough, J. G. Cairncross, J. A. Chan, Single-cell landscapes of primary glioblastomas and
742 matched explants and cell lines show variable retention of inter-and intratumor
743 heterogeneity. *Cancer Cell* **40**, 379-392. e379 (2022).
- 744 54. M. Fenech, V. Girod, V. Claveria, S. Meance, M. Abkarian, B. Charlot, Microfluidic blood
745 vasculature replicas using backside lithography. *Lab Chip* **19**, 2096-2106 (2019).
- 746 55. A. D. Doyle, F. W. Wang, K. Matsumoto, K. M. Yamada, One-dimensional topography
747 underlies three-dimensional fibrillar cell migration. *Journal of cell biology* **184**, 481-490
748 (2009).
- 749 56. P. Gritsenko, W. Leenders, P. Friedl, Recapitulating in vivo-like plasticity of glioma cell
750 invasion along blood vessels and in astrocyte-rich stroma. *Histochem Cell Biol* **148**, 395-
751 406 (2017).
- 752 57. E. Serres, F. Debarbieux, F. Stanchi, L. Maggiorella, D. Grall, L. Turchi, F. Burel-Vandenbos,
753 D. Figarella-Branger, T. Virolle, G. Rougon, E. Van Obberghen-Schilling, Fibronectin
754 expression in glioblastomas promotes cell cohesion, collective invasion of basement
755 membrane in vitro and orthotopic tumor growth in mice. *Oncogene* **33**, 3451-3462
756 (2014).
- 757 58. M. L. Suvà, I. Tirosh, The glioma stem cell model in the era of single-cell genomics. *Cancer
758 cell* **37**, 630-636 (2020).
- 759 59. J. D. Lathia, J. Gallagher, J. M. Heddleston, J. Wang, C. E. Eyler, J. MacSwords, Q. Wu, A.
760 Vasanji, R. E. McLendon, A. B. Hjelmeland, Integrin alpha 6 regulates glioblastoma stem
761 cells. *Cell stem cell* **6**, 421-432 (2010).

- 762 60. M. Crestani, T. Dini, N. C. Gauthier, P. Monzo, Protocol to assess human glioma
763 propagating cell migration on linear micropatterns mimicking brain invasion tracks. *STAR*
764 *protocols* **3**, 101331 (2022).
- 765 61. E. E. Er, M. Valiente, K. Ganesh, Y. Zou, S. Agrawal, J. Hu, B. Griscom, M. Rosenblum, A.
766 Boire, E. Brogi, Pericyte-like spreading by disseminated cancer cells activates YAP and
767 MRTF for metastatic colonization. *Nature cell biology* **20**, 966-978 (2018).
- 768 62. Y. Shin, S. Han, J. S. Jeon, K. Yamamoto, I. K. Zervantonakis, R. Sudo, R. D. Kamm, S.
769 Chung, Microfluidic assay for simultaneous culture of multiple cell types on surfaces or
770 within hydrogels. *Nature protocols* **7**, 1247-1259 (2012).
- 771 63. R. Gorelik, A. Gautreau, Quantitative and unbiased analysis of directional persistence in
772 cell migration. *Nature protocols* **9**, 1931-1943 (2014).
- 773 64. R. Rezakhanlha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. v. Bouting, F. Van
774 De Vosse, M. Unser, N. Stergiopoulos, Experimental investigation of collagen waviness and
775 orientation in the arterial adventitia using confocal laser scanning microscopy.
Biomechanics and modeling in mechanobiology **11**, 461-473 (2012).
- 776 65. A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson,
777 T. R. Gingeras, STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21 (2013).
- 778 66. R. Patro, G. Duggal, M. I. Love, R. A. Irizarry, C. Kingsford, Salmon provides fast and bias-
779 aware quantification of transcript expression. *Nature methods* **14**, 417-419 (2017).
- 780 67. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for
781 RNA-seq data with DESeq2. *Genome biology* **15**, 1-21 (2014).
- 782 68. A. Sergushichev, An algorithm for fast preranked gene set enrichment analysis using
783 cumulative statistic calculation. *BioRxiv* **60012**, 1-9 (2016).
- 784
- 785
- 786

787 **Acknowledgments**

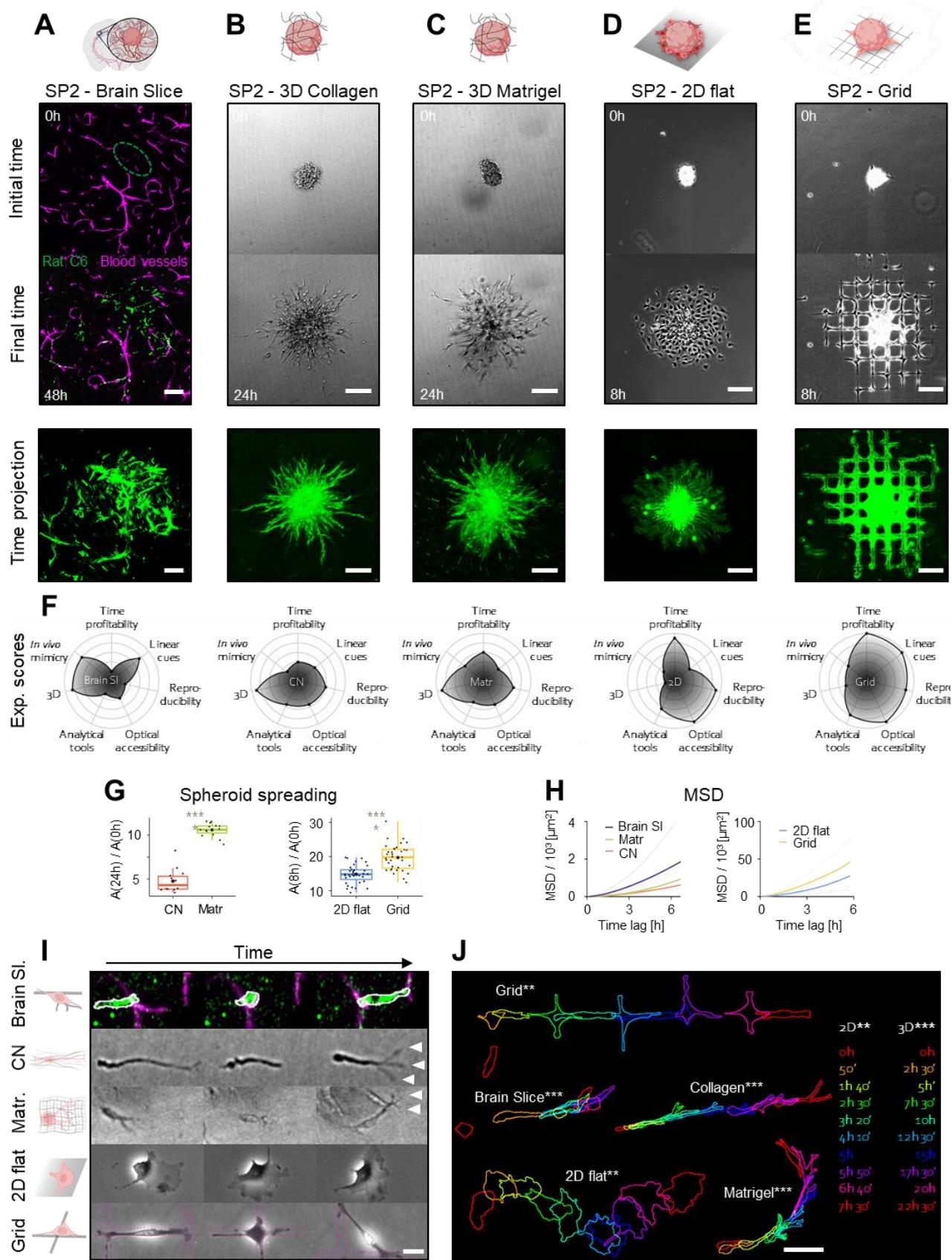
788
789 We are grateful to the IFOM imaging facility personnel, in particular D. Parazzoli for technical
790 support, the IFOM cell culture facility personnel, the MBI microfabrication facility personnel, in
791 particular Sree Vaishnavi Sundararajan. We thank Marco Foiani and Giorgio Scita (IFOM), Virgile
792 Viasnoff (MBI), Marc-Antoine Fardin (Institut Jacques Monod), Nir Gov (Weizmann Institute of
793 Science, Israel), Scita's and Maiuri's groups for helpful discussions and critical comments on the
794 manuscript.

795
796 **Funding**

797
798 This work was supported by:
799 IFOM (starting package to NCG),
800 Italian Association for Cancer Research (AIRC) Investigator Grant (IG) 20716 to NCG
801 Italian Association for Cancer Research (AIRC) Three-year fellowship "MilanoMarathon -
802 oggicorropereAIRC" - Rif. 22461 to MC,
803 MC is a PhD student within the European School of Molecular Medicine (SEMM).

804
805 **Author contributions:**

806 M.C., N.C.G. and P.M. conceptualized the research project.
807 M.C. and P.M. developed the computer codes and algorithms.
808 M.C., P.M., and N.C.G. analyzed the data.
809 M.C., N.K. T.D., C.M., M.G., and P.M. performed the experiments.
810 F.I. analyzed the RNAseq data
811 N.C.G. and G.P. provided the resources.
812 M.C. wrote the original draft.
813 M.C., P.M., and N.C.G. reviewed and edited the manuscript.
814 N.C.G. supervised the research activity.

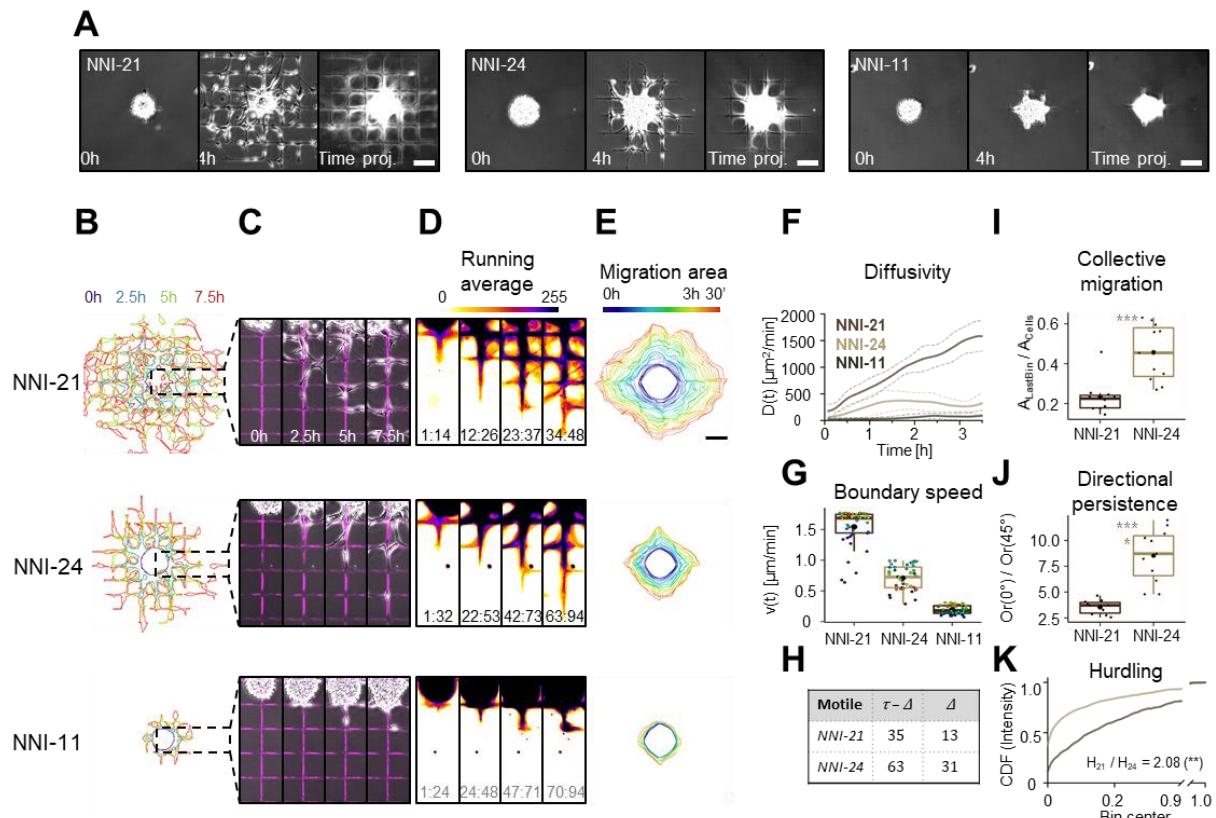

815
816 **Competing interests**

817 Authors declare that they have no competing interests.

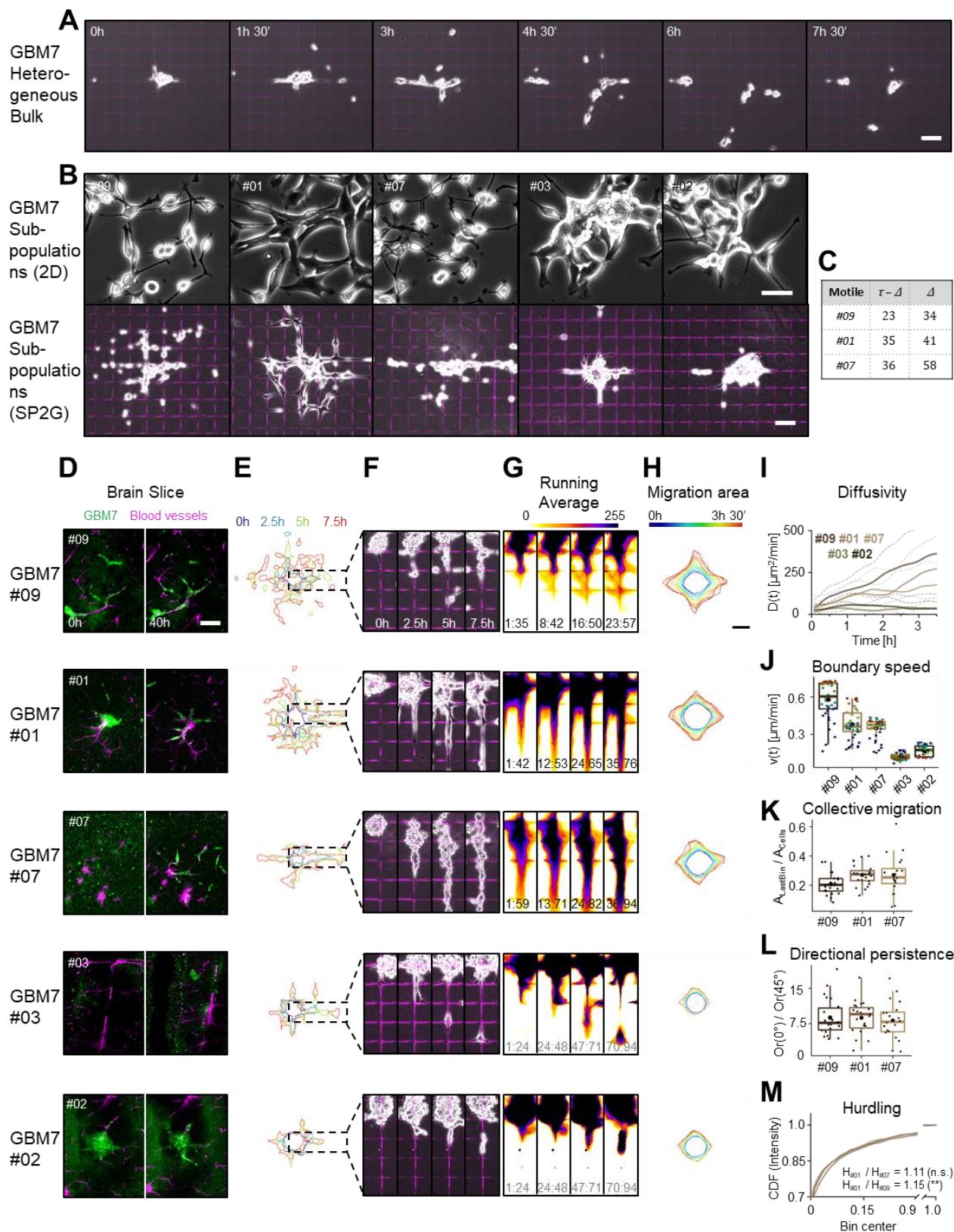
818
819 **Data and materials availability**

820 All data are available in the main text or the supplementary materials.

821



824 **Fig. 1. Spheroid spreading on grids (SP2G) mimics glioblastoma invasion on brain blood**
825 **vessels. (A-E)** Rat C6 glioma cells cultured as spheroid were stained (green, DiOC6 dye) and
826 seeded on mouse brain slices (A), in collagen gel (B), in matrigel (C), on laminin-coated dishes
827 (D), on gridded micropatterns (E) and imaged for 48h (A), 24h (B,C) or 8h (D,E). First and last
828 images of the movies (upper panels) and time-projections (lower panels) are shown. The dashed
829 oval corresponds to the initial area of the spheroid in the brain slice. **(F)** Radar plots summarizing
830 experimental scores (1 to 5) of time profitability, presence of linear cues, experimental
831 reproducibility, optical accessibility, possibility to develop analytical tools, three-dimensionality
832 (3D) and in vivo mimicry for each setting. **(G)** Quantification of spheroid spreading in collagen gel,
833 matrigel, 2D flat and grid ($n = 14, 15, 35, 35$ spheroids). Two-tailed unpaired t-test (****,
834 $p < 0.0001$). **(H)** Mean squared displacement (MSD) plots obtained from single cell tracks migrating
835 in brain slice, collagen gel, matrigel, 2D flat and grid ($n = 80, 95, 90, 216, 216$ tracks; 5 to 7 tracks
836 per spheroid. $n = 2, 2, 2, 6, 6$ independent experiments). Friedman test for Brain slice-Collagen-
837 Matrigel ($p < 0.0001$ in all the multiple comparisons), Mann-Whitney test for 2D-grid ($p = 0.0001$).
838 **(I)** Snapshots of single cells moving away from the spheroid in each setting, extracted from movie
839 S1. **(J)** Panel summarizing cell shapes for C6 cell motility in each setting. Time is color-coded as
840 indicated. Bars are 100 μm (A-E), 20 μm (I), and 50 μm (J)


841

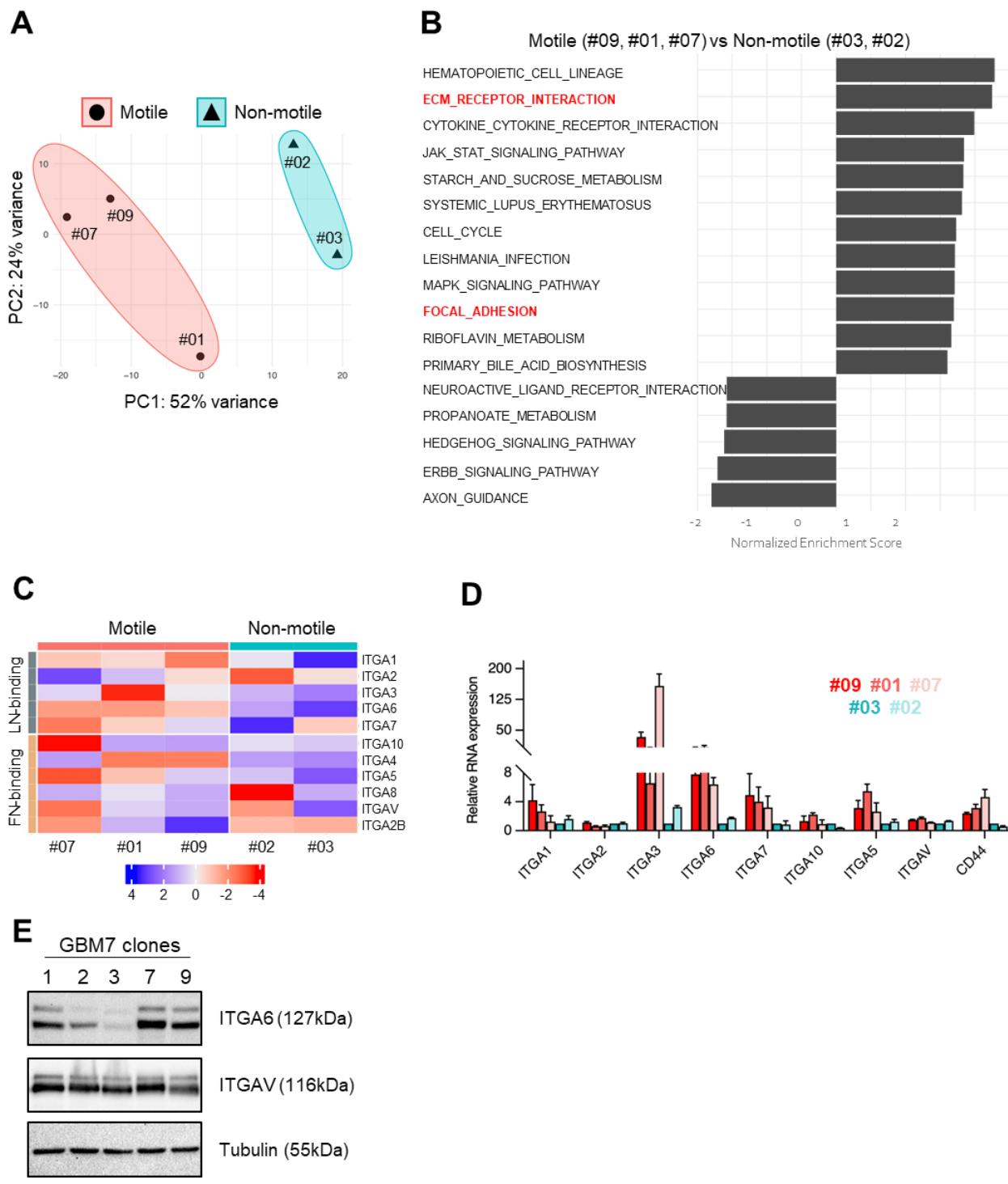

844 **Fig. 2. SP2G experimental setup and image analysis workflow.** **(A)** Spheroids are stained (red,
845 Dil), seeded on fluorescent gridded micro-patterns (coated with laminin mixed with BSA 647) and
846 imaged for 8h. **(B)** Cells and grids images are segmented in binary images that are multiplied to
847 isolate the grid nodes covered by the invasive boundary. Polygons tracking the spheroid spreading
848 in time are then reconstructed and averaged. The time trend is projected and color-coded to visualize
849 migration area $A(t)$ (output #1). Diffusivity $D(t)$ is obtained by differentiating $A(t)$ (output #2).
850 Spheroid boundary speed $v(t)$ is obtained from $D(t)$ and $A(t)$ (output #3). Normalization of $A(t)$ and
851 $v(t)$: τ , corresponding to the frame at which each cell line has migrated the same distance as the
852 slowest cell line (C_2) at the end of the acquisition (8h or more), and Δ , corresponding to the time
853 window to complete 100 μm , are identified and all the movies are cut at τ . Running average (RA)
854 movies are created by shifting Δ in the interval $1:\tau$ and cell motility modes are characterized by
855 extrapolating features from the RA movies: collective migration (output #4) is obtained by
856 thresholding the area (outlined in green) of pixels belonging to the last bin of the histogram;
857 directional persistence (output #5) is obtained by evaluating image orientation; hurdling (output #6)
858 is obtained by sampling the intensities of the grid squares.
859

Fig. 3. SP2G quantifies cell migratory tactics. Patient-derived glioblastoma spheroids were seeded on fluorescent gridded micropatterns, imaged for 8h, and analyzed as indicated in fig 2 ($n = 10, 11, 13$ spheroids, $n = 2, 2, 2$ independent experiments for NNI-21, NNI-24 and NNI-11 respectively). (A) Snapshots of the movies at 0 h, 4 h, and time projections. (B-D) Cellular edges (B) and corresponding overlays of the phase contrast and the fluorescent grid images (C) at 4 time points (0h, 2.5h, 5h, 7.5h) and corresponding running average (RA) (D). The time window Δ constituting the corresponding RA frame is indicated at the bottom of each panel: for the non-motile $\tau = 94$, $\Delta = 24$. (E) Average polygon visualizing migration area. (F) Diffusivity over 3 h 30' ($p < 0.0001$, Kruskal-Wallis test). Dashed lines are standard deviation. Dunn's multiple comparison test: $p < 0.0001$ for all. (G) Mean boundary speed over 3h 30'. Each dot represents a time-point and is color-coded as in (E) ($p < 0.0001$, Kruskal-Wallis test). Dunn's multiple comparison test: $p < 0.0001$ for all. (H) Δ (number of frames needed to travel 100 μm) and $\tau - \Delta$ (number of frames in the RA movie) in motile cell lines (faster than 100 $\mu\text{m} / 8 \text{ h} = 0.21 \mu\text{m/min}$) (I) Collective migration for the motile cells NNI-21 and NNI-24. Each dot represents a spheroid. $p = 0.0004$, two-tailed unpaired t-test. (J) Directional persistence for the motile cells NNI21 and NNI24. It is visualized as the ratio between the orientation along 0° and along 45° ($\text{Or}(0^\circ) / \text{Or}(45^\circ)$, see methods). Each dot represents a spheroid. $p < 0.0001$, two-tailed unpaired t-test. (K) Hurdling is visualized as the Cumulative Distribution Function (CDF) of the normalized mean intensity of the grid squares (image intensity is sampled in each square). $p = 0.0032$ (**), Kolmogorov-Smirnov test. The ratio indicates the relationship between the average mean intensities (the sum of the mean intensity from all the squares divided by the total number of squares) of the 2 cell lines. All the bars are 100 μm . In all the boxplots, the middle horizontal line represents the median and the black dot is the mean value. Time and image intensity are color-coded as indicated.

888 **Fig. 4. SP2G reveals migration heterogeneity in glioblastoma sub-populations isolated from**
889 **patient-derived tumorspheres.** Spheroids from GBM7 original cell line and isolated
890 subpopulations (clones #01, #02, #03, #07, #09) were seeded on fluorescent gridded micropatterns,
891 imaged for 8h, and analyzed as indicated in fig 2 **(A)** Snapshots of the movies of the original
892 population at the indicated time-points **(B)** Phase-contrast pictures of the GBM7 sub-populations
893 cultured on laminin (top panel, bar is 50 μ m) and after SP2G at 8 hours (bottom, bar is 100 μ m).
894 **(C)** Δ and $\tau - \Delta$ of the motile subpopulations. **(D)** Spheroid Spreading of GBM7 sub-populations
895 (green, DiOC6 dye) in brain slices at 0 h and 40 h. **(E-G)** SP2G analysis of the clones #01, #02,
896 #03, #07, #09 ($n = 22, 23, 20, 22, 22$ spheroids; $n = 3$ independent experiments): Cellular edges (E)
897 and corresponding overlays of the phase contrast and the fluorescent grid images (F) at 4 time points
898 and corresponding running average (RA) (G). The time window Δ constituting the corresponding
899 RA frame is indicated at the bottom of each panel: for the non-motile $\tau = 94$, $\Delta = 24$. **(H)** Average
900 polygon visualizing migration area. **(I)** Diffusivity over 3 h 30' ($p < 0.0001$, Kruskal-Wallis test).
901 Dashed lines are the standard deviation. Dunn's multiple comparison test: #09 vs #03 / #02, #01 vs
902 #03 / #02, #07 vs #03 / #02 $p < 0.0001$; others n.s. **(J)** Mean boundary speed over 3h 30'. Each dot
903 represents a time-point and is color-coded as in (H) ($p < 0.0001$, Kruskal-Wallis test). Dunn's
904 multiple comparison test: #09 vs #03 / #02, #01 vs #03 / #02, #07 vs #03 / #02 $p < 0.0001$; #09 - #01
905 $p = 0.0054$; #09 vs #07 $p = 0.0013$; others n.s. **(K)** Collective migration for the motile cells #09, #01
906 and #07. Each dot represents a spheroid. $p = 0.0458$, ordinary one-way ANOVA. Multiple
907 comparisons all n.s. (#09 vs #01 $p = 0.0696$; #09 vs #07 $p = 0.0903$). **(L)** Directional persistence for
908 the motile cells #09, #01 and #07. It is visualized as the ratio between the orientation along 0° and
909 along 45° ($Or(0^\circ) / Or(45^\circ)$, see methods). Each dot represents a spheroid. n.s, ordinary one-way
910 ANOVA. Multiple comparisons all n.s. **(M)** Hurdling is visualized as the Cumulative Distribution
911 Function (CDF) of the normalized mean intensity of the grid squares. The ratio indicates the
912 relationship between the average mean intensities of the most hurdling (#01) against the others. The
913 results of Kolmogorov-Smirnov tests between #01 vs #07 $p = 0.7992$ (n.s.), #01 vs #09 $p = 0.0087$
914 (***) are indicated in parenthesis. Bars are 100 μ m (A, B bottom panel, D) and 50 μ m (B, top panel).
915 In all the boxplots, the middle horizontal line represents the median and the black dot is the mean
916 value. Time and image intensity are color-coded as indicated.

919 **Fig. 5. Intra-patient heterogeneity in motility modes is correlated with specific molecular**
920 **signatures.** (A) Principal component analysis showing segregation of the 5 GBM7 sub-population
921 in motile and non-motile groups. (B) Gene set enrichment analysis (GSEA) of differentially
922 expressed genes in the motile vs non-motile group. GSEA was performed using the Kyoto
923 Encyclopedia of Genes and Genomes (KEGG) gene set in the GSEA molecular signatures database.
924 Moderated t-statistic was used to rank the genes. Reported are Normalized Enrichment Scores
925 (NES) of enriched pathways (with the fill color of the bar corresponding to the P-value. P-value
926 was calculated as the number of random genes with the same or more extreme ES value divided by
927 the total number of generated gene sets. (C) Heatmap representing z-score of expression levels of
928 integrins. Laminin-binding integrins (ITGA1,2,3,6,7,10) are enriched in the motile clones. (D)
929 mRNA expression levels of ITGA1, ITGA2, ITGA3, ITGA5, ITGA6, ITGA7, ITGA10, ITGAV,
930 and CD44 determined by qRT-PCR in the 5 GBM7 sub-populations. The data are normalized over
931 the expression in clone #03. n=3 independent experiments each. (E) Expression of ITGA6, ITGAV,
932 tubulin, in total cell extracts of the 5 GBM7 sub-populations.

933

934