
CELLOGRAPH: A SEMI-SUPERVISED APPROACH TO ANALYZING MULTI-CONDITION SINGLE-CELL RNA SEQUENCING DATA USING GRAPH NEURAL NETWORKS

A bioRxiv PREPRINT

Jamshaid A. Shahir

Department of Genetics

Curriculum in Bioinformatics and Computational Biology

Computational Medicine Program

University of North Carolina at Chapel Hill Chapel Hill, NC 27599

jashahir@live.unc.edu

Natalie Stanley

Department of Computer Science

Curriculum in Bioinformatics and Computational Biology

Computational Medicine Program

University of North Carolina at Chapel Hill Chapel Hill, NC 27599

natalie@cs.unc.edu

Jeremy E. Purvis *

Department of Genetics

Curriculum in Bioinformatics and Computational Biology

Curriculum in Genetics and Molecular Biology

Lineberger Comprehensive Cancer Center

Computational Medicine Program

University of North Carolina at Chapel Hill Chapel Hill, NC 27599

purvisj@email.unc.edu

February 24, 2023

ABSTRACT

With the growing number of single-cell datasets collected under more complex experimental conditions, there is an opportunity to leverage single-cell variability to reveal deeper insights into how cells respond to perturbations. Many existing approaches rely on discretizing the data into clusters for differential gene expression (DGE), effectively ironing out any information unveiled by the single-cell variability across cell-types. In addition, DGE often assumes a statistical distribution that, if erroneous, can lead to false positive differentially expressed genes. Here, we present Cellograph: a semi-supervised framework that uses graph neural networks to quantify the effects of perturbations at single-cell granularity. Cellograph not only measures how prototypical cells are of each condition but also learns a latent space that is amenable to interpretable data visualization and clustering. The learned gene weight matrix from training reveals pertinent genes driving the differences between conditions. We demonstrate the utility of our approach on publicly-available datasets including cancer drug therapy, stem cell reprogramming, and organoid differentiation. Cellograph outperforms existing methods for quantifying the effects of experimental perturbations and offers a novel framework to analyze single-cell data using deep learning.

Keywords Graph neural networks · single-cell genomics · semi-supervised learning

*corresponding author

CELLOGRAPH: A SEMI-SUPERVISED APPROACH TO ANALYZING MULTI-CONDITION SINGLE-CELL RNA SEQUENCING DATA USING GRAPH NEURAL NETWORKS

16 1 Introduction

17 The rapid progression of single-cell technologies (Klein et al., 2015) has enabled scientists to accumulate complex
18 datasets to study differentiation and developmental trajectories in response to differing experimental perturbations,
19 assess the efficacy of a drug in treating of disease, and evaluate the efficiency of different reprogramming protocols.
20 Regardless of the preceding experimental design, many single cell RNA sequencing analyses follow the same pipeline
21 (Luecken and Theis, 2019): pre-processing and quality control followed by clustering and differential gene expression.
22 In the context of studying more continuous phenomena such as differentiation or cell reprogramming, trajectory
23 analysis may also be employed (Haghverdi et al., 2016). However, in the case of multiple experimental conditions
24 such as different time points sampled for sequencing in cell reprogramming, or varying concentrations of a cancer
25 drug, these methods may fall short in faithfully summarizing the underlying biology. In particular, clustering and
26 differential gene expression give a bulk summary of the transcriptomic variation between computationally-inferred
27 discrete populations, but do not explicitly consider the single-cell variability within treatment groups, such as how
28 prototypical an individual cell is of its assigned treatment group.
29
30

31 1.1 Related Methods

32 Differential abundance methods can rectify these challenges by quantifying differences between and within conditions
33 at a finer resolution. Milo tests for differential abundance on k -nearest neighbor (k NN) graphs by aggregating cells into
34 overlapping neighborhoods and performing a quasi-likelihood F test. Dann et al. (2021). This returns a metric of the
35 log-fold change of the differential abundance in each neighborhood. However, because Milo aggregates cells into
36 neighborhoods, it does not provide single-cell resolution providing insight into the impact each perturbation has on an
37 individual cell.
38

39 Covarying Neighbor Analysis (CNA) Reshef et al. (2021) performs association analysis agnostic of parameter
40 tuning, making it an efficient method. Like Milo, it aggregates cells into neighborhoods, and calculates a
41 neighborhood abundance matrix (NAM), where each entry $C_{n,m}$ is the relative abundance of cells from sample
42 n in neighborhood m . From there, it derives principal components where positive loadings correspond to higher
43 abundance while negative loadings correspond to lower abundance. This enables the characterization of transcriptional
44 changes corresponding to maximal variation in neighborhood abundance across samples. Association testing is
45 performed between transcriptional changes and attributes of interest using the first k NAM-PCs. It returns the Spearman
46 correlation between the attribute and abundance of the neighborhood anchored at each cell, providing a single-cell
47 metric. However, its performance falls short when considering more than two conditions.
48

49 MELD (Burkhardt et al., 2021) sought out to quantify the effect of an experimental perturbation on individual
50 cells in scRNA-seq data using graph signal-processing to infer a sample-associated density that is then normalized
51 to give a probability of each cell belonging to a condition of interest defined as a relative likelihood. The authors also
52 introduced a novel clustering approach, called Vertex Frequency Clustering (VFC), which clusters data according to not
53 just transcriptomic similarity but also how the MELD-derived relative likelihood scores, thereby identifying populations
54 of cells similarly enriched or depleted in conditions according to the perturbation response. However, the original
55 study restricted evaluation to datasets with two conditions to discriminate between: a control condition and a single
56 perturbed condition, and therefore did not consider multiple treatment conditions, which are prevalent and can provide
57 more insight, for instance, the response of a drug at various time intervals, combining drugs, or administration of a
58 differentiation stimulus at different time-points. Furthermore, robust calculation of the sample-associated likelihood
59 relies on computationally-expensive parameter estimation that can take upwards of 12 hours with 36 cores on a
60 high-performance computing cluster for a dataset of 26,827 cells. In addition, VFC is memory-intensive, which limits
61 its scalability to larger datasets.
62

1.2 Graph Neural Networks

63 In recent years, the rapidly-emerging field of deep learning has seen utility in scRNA-seq analysis (Amadio et al.,
64 2019; Lopez et al., 2018; Wang et al., 2021). More recently, graph neural networks (GNN) have demonstrated promise
65 in capturing the structural information of scRNA-seq data via the graphical representation the high-dimensional
66 assay naturally lends itself towards, with cells as vertices or nodes, and edges between them representing similarity
67 in gene expression. This connectivity enables the model to naturally leverage the relationship between similar
68 cells in a variety of tasks, most notably clustering and imputation. GNNs pass in graphical representations of data
69 as input to perform a myriad of classification tasks, namely node classification, edge classification, and graph

CELLOGRAPH: A SEMI-SUPERVISED APPROACH TO ANALYZING MULTI-CONDITION SINGLE-CELL RNA SEQUENCING DATA USING GRAPH NEURAL NETWORKS

70 classification. Unlike convolutional neural networks (CNNs) which involve multiple layers and can take a long
 71 time to train depending on the size of the data, GNNs require only a few layers to achieve high performance
 72 in a fraction of the time. Furthermore, whereas CNNs require large amounts of training data, GNNs can learn
 73 patterns in data in a semi-supervised fashion: they take the entire data structure as input, but only a paucity of
 74 nodes are labeled; a larger portion is held out for validation and testing purposes. The applications of GNNs has
 75 been demonstrated in the case of graph classification, edge classification, and node classification. For example,
 76 scGNN (Wang et al., 2021) used GNNs and a Gaussian mixture model to perform imputation and cell clustering.
 77 Another study used Graph Attention Networks (GATs) (Ravindra et al., 2020), (Veličković et al., 2017) which
 78 are a subset of GNNs based on the self-attention mechanism commonly used in natural language processing, to
 79 predict disease state in scRNA-seq data from multiple sclerosis patients, followed by another study from the same
 80 group applied to COVID-19 patients (Sehanobish et al., 2020). GATs have also been used as part of variational
 81 graph autoencoders to facilitate clustering. Finally, GNNs have been used in conjunction with relational networks
 82 to predict breast cancer subtypes in bulk RNA-seq data (Rhee et al., 2018). However, their potential to ascertain
 83 the responsiveness of individual cells to perturbations in order to gauge the efficacy of the experimental stimulus,
 84 particularly in complex experimental designs that span multiple conditions or time points, has not been formally assessed.
 85
 86 In this work, we introduce Cellograph: a novel computational framework using Graph Convolutional Net-
 87 works (GCN) (Kipf and Welling, 2016) - which are the graph analogue of CNNs - to perform node classification
 88 on scRNA-seq data collected from multiple conditions, treating the individual cells as nodes. Cellograph uses a
 89 two-layer GCN to learn a latent representation of the single-cell data according to how representative each cell is of its
 90 ground truth sample label. This latent space can be easily clustered to derive groups of cells associated with similar
 91 treatment response and transcriptomics, as well as projected into two dimensions for visualization purposes. Cellograph
 92 outperforms existing approaches in quantifying the effects of perturbations and offers a novel GNN framework to
 93 cluster and visualize single-cell data. In the following sections, we discuss the workflow of Cellograph, demonstrate its
 94 performance on three published scRNA-seq datasets, and benchmark it against previously published methods using
 95 cross-categorical entropy and normalized mutual information (McDaid et al., 2011).

96 2 Methods

97 2.1 Overview of the Cellograph algorithm

98 Consider a data set of n cells with m genes measured. Cellograph learns a low-dimensional representation of each cell
 99 through node classification. A k NN graph representation of the data is first constructed where each cell is represented
 100 by the top 10-30 principal components (PCs) and edges connect cells that are similar in this space (Figure 1A). We
 101 define this k NN graph as a tuple $G = (V, E)$, where V is the set of vertices or nodes, and E is the set of edges between
 102 nodes. A common matrix representation of G is the adjacency matrix $A \in \mathbb{R}^{n \times n}$. We train a two-layer GCN on the
 103 derived graph as follows:
 104 Considering c experimental conditions, let Z be an n by c matrix of probabilities of observing a cell in an experimental
 105 condition. We define Z as follows:

$$Z = f(X, A) = \text{softmax}(\tilde{A}\sigma(\tilde{A}XW^{(0)})W^{(1)}).$$

Here, $\tilde{A} = \hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}$ and $\hat{A} = A + I$.

We define each hidden layer as the normalized graph Laplacian

$$H^{(l+1)} = \sigma(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}H^{(l)}W^{(l)}).$$

The softmax function is defined as

$$\text{softmax}(\hat{z}) = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}.$$

106
 107
 108 Each $H^{(l)} \in \mathbb{R}^{n \times h_l}$ is a latent embedding of the nodes in layer l , $\hat{A} = A + I$ is the symmetric adjacency
 109 matrix, \hat{D} is the degree matrix of \hat{A} , with degrees of each node along the diagonal, $W^{(l)}$ is a learned weight matrix for
 110 layer l , and σ is a LeakyRelu function for GCNs. The GCN learns an embedding $H^{(0)} = \sigma(\tilde{A}XW^{(0)}) \in \mathbb{R}^{n \times h}$ it
 111 iteratively orders cells according to how prototypical they are of the experimental labels in question in h -dimensional
 112 space (in all of our experiments, $h = 16$).
 113

CELLOGRAPH: A SEMI-SUPERVISED APPROACH TO ANALYZING MULTI-CONDITION SINGLE-CELL RNA SEQUENCING DATA USING GRAPH NEURAL NETWORKS

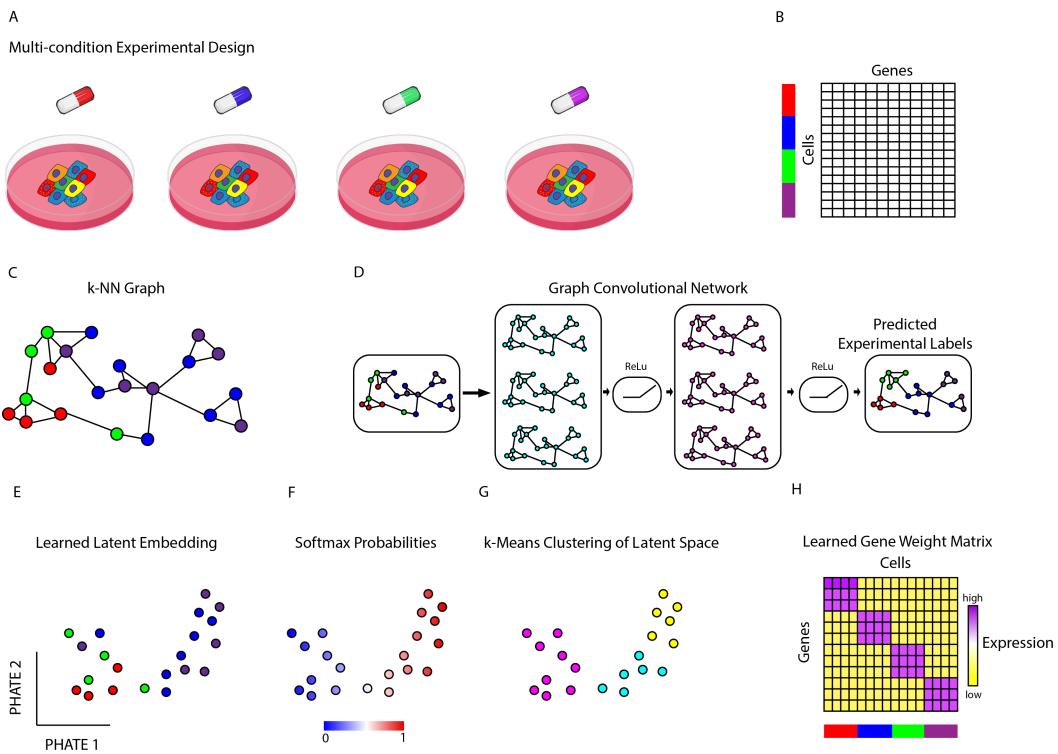


Figure 1: Illustrative overview of Cellograph algorithm. Single-cell data collected from multiple sample drug treatments (A,B) is converted to a kNN graph (C), where cells are nodes, and edges denote connections between transcriptionally similar cells. The colored rectangles (B) correspond to the different samples represented by the drugs in (A). This kNN is fed in as input to a two-layer GCN (D) that quantitatively and visually learns how prototypical each cell is of its experimental label through the learned latent embedding (E) and softmax probabilities (F), respectively. The learned latent space is amenable to k-means clustering (G). Finally, we can use a weight matrix (H) parameterized by the genes in our dataset to identify the most informative genes in distinguishing between conditions.

114 We project cells based on their computed latent space representation into two dimensions with PHATE (Moon
 115 et al., 2019), which gives a more interpretable visualization than applying PHATE to the original data by learning a
 116 lower-dimensional representation of the data based on both transcriptomic similarity, and similarity across ground truth
 117 conditions. We can also directly apply k -means clustering to $H^{(0)}$, obtaining more informative clusters as evidenced
 118 by higher normalized mutual information (NMI) scores (McDaid et al., 2011), a common metric for benchmarking
 119 clustering algorithms that measures how concordant the clusters were with the original ground truth sample assignments.
 120 $W^{(1)}$ is an $h \times m$ learned weight matrix, where m is the number of genes. If we take the transpose of $W^{(1)}$ and rank
 121 the summed entries across rows, we can identify the top-weighted genes the model found most informative in learning
 122 the difference between the experimental conditions. Unlike differential gene expression, which is generally applied to
 123 arbitrarily clustered data, the learned weight matrix can provide a direct transcriptomic comparison between ground
 124 truth conditions agnostic of statistical models.
 125

126 As mentioned previously, GNNs learn in a semi-supervised manner, where the entire graph is seen during
 127 the training, but only a fraction of the nodes are labeled. We randomly select 1 – 3% of nodes from each condition as
 128 training nodes where labels are not hidden, and sample a larger proportion for testing and validation. We employ a
 129 categorical cross-entropy loss function for minimization during training. Unless specified otherwise, we train the GNN
 130 for 200 epochs with a patience of 30, which is the number of epochs with no improvement after which the training
 131 terminates. The source code for Cellograph is available at <https://github.com/jashahir/cellograph>

132 3 Results

133 We demonstrated the biological application of Cellograph on three published single-cell RNA sequencing datasets:
 134 a human organoid model of intestinal stem cells differentiating to Paneth cells with or without a stimulus to en-

CELLOGRAPH: A SEMI-SUPERVISED APPROACH TO ANALYZING MULTI-CONDITION SINGLE-CELL RNA SEQUENCING DATA USING GRAPH NEURAL NETWORKS

135 enhance the efficiency of the differentiation (Mead et al., 2022); a non-small-cell lung carcinoma (NSCLC) cell line
136 that was treated with a drug called Erlotinib at various time points and later temporarily withdrawn from the drug
137 for several days (Aissa et al., 2021); and a myogenesis model of transdifferentiation and traditional cell repro-
138 gramming (Yagi et al., 2021). The metadata and digital gene expression data for the human organoid dataset was
139 downloaded from <https://singlecell.broadinstitute.org> (study SCP1318). The Erlotinib drug holiday dataset was
140 downloaded from the National Center for Biotechnology Information's database Gene Expression Omnibus (GEO)
141 (<https://www.ncbi.nlm.nih.gov/geo>) under the accession number GSE134841. The myogenesis dataset was downloaded
142 from GEO under the accession number GSE171039. We benchmarked the performance of Cellograph against the
143 aforementioned differential abundance methods, MELD, Milo, and CNA. Our results show robust performance of
144 Cellograph on these distinct datasets, and provide valuable biological insights.

145 **3.1 Cellograph captures shifts in cell type abundance during human intestinal organoid differentiation**

146 We first applied Cellograph to an organoid model of intestinal stem cells differentiating to Paneth cells with or without
147 KPT-330, an inhibitor of the nuclear exporter, Exportin 1, which was demonstrated in the original study (Mead et al.,
148 2022) to enhance the abundance of Paneth cells following differentiation. Samples were collected from 6 donors for
149 sequencing following 6 days of treatment with or without KPT-330. We will refer to these two conditions as KPT
150 and control cells, respectively. We trained Cellograph using a two-layer GCN with 80 out of the 2484 cells labeled,
151 such that 40 were labeled for each condition. We projected the learned latent space to 2 dimensions with PHATE and
152 colored cells according to the probability of belonging to the KPT-treated condition (Figure 2A). We obtain a smooth
153 gradient of cells along the PHATE plot, with cells arranged according to how impacted they are by KPT treatment. To
154 determine if this gradient reflected meaningful biology, we extracted the 25 top-weighted genes from the learned weight
155 matrix and visualized them with a heatmap categorized by the two treatment groups (Figure 2B). This is derived from
156 the first layer of the GCN and parameterizes each gene, where the model upweights genes it finds most relevant in
157 distinguishing between conditions. Among the top 25 genes is GDF15, a marker of DUOX2+ WAE-like and WAE-like
158 cells, which is highly expressed in KPT-treated cells, where these cell types are more abundant due to the greater
159 efficiency of Paneth cell differentiation (Zhang et al., 2019; Yang et al., 2021). Conversely, KLK6 is highly expressed in
160 the control-treated population, which has been shown to mediate the multipotency of intestinal stem cells (Schrader
161 et al., 2015; Zhou et al., 2021).

162
163 We also performed k -means clustering on the latent space learned by Cellograph with $k = 3$ (Figure 2A,C).
164 Unlike clustering the original PCA-reduced data, which just focuses on differences in the transcriptome, Cellograph
165 implicitly clusters according to how responsive cells are to the KPT-330 treatment. This successfully groups together
166 cells predicted to belong to the KPT-treated group (called the responsive cluster), a mixed population of cells predicted
167 to be either control or KPT-treated cells (intermediate cluster), and a cluster of cells predicted to be prototypical of the
168 control population (naive cluster).

169
170 Based on the softmax probabilities learned by Cellograph, we assigned cells to the control or KPT-treated
171 populations independent of their ground truth labels, and created composition plots according to cluster assignment (fig.
172 2D). We see that Cellograph's predictions corroborate the compositional changes in cell types abundance discussed
173 in the original study, namely with decreases in dividing stem cell and progenitor populations, increases in quiescent
174 progenitors, enterocytes, and DUOX2+ WAE-like cells.

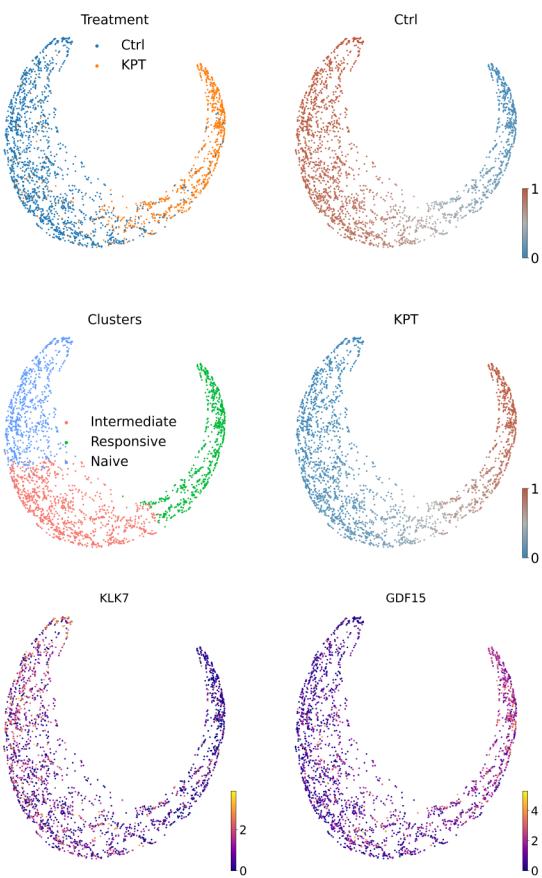
175
176 Finally, we mapped the cell type annotations onto the clusters obtained by Cellograph (Figure 2D) and ob-
177 serve a high abundance of cycling cells, progenitor cells, and WAE-like cells in the Naive cluster, followed by a
178 decrease of WAE-like cells and progenitor cells in the intermediate population, and a high proportion of DUOX2+
179 WAE-like cells in the responsive cluster. Altogether, these results demonstrate Cellograph's ability to identify and
180 visualize cells affected by KPT-330 stimulation.

181 **3.2 Cellograph models heterogeneity in cancer drug response during a drug holiday**

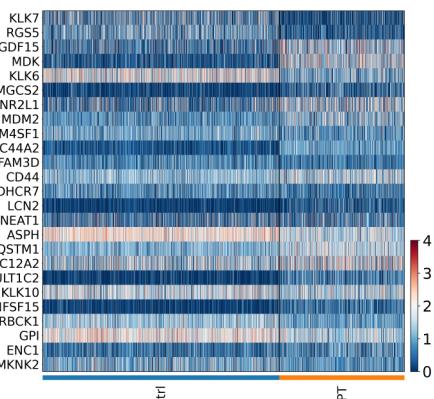
182 Encouraged by Cellograph's performance on the human intestinal organoid dataset, we next investigated how well it
183 could capture heterogeneity in response to cancer drugs under complex treatment regimes. We trained Cellograph on
184 a scRNA-seq dataset of 3042 PC9 cells treated with Erlotinib (Aissa et al., 2021) - a tyrosine kinase inhibitor used
185 to treat non-small cell lung cancer (NSCLC) - for 11 days, followed by withdrawal of the drug for 6 days, referred
186 to as a drug holiday, where select cells were either retreated with Erlotinib or treated with DMSO as a control. The
187 cells were sequenced at 5 timepoints: 0 days with no Erlotinib treatment, 2 days of Erlotinib treatment, 11 days of
188 Erlotinib treatment, at day 19 with or without re-exposure to Erlotinib on day 17, following 6 days of removal from the
189 drug. We trained Cellograph on the dataset with 30 cells labeled for each condition using a 2-layer GCN. We project

CELLOGRAPH: A SEMI-SUPERVISED APPROACH TO ANALYZING MULTI-CONDITION SINGLE-CELL RNA SEQUENCING DATA USING GRAPH NEURAL NETWORKS

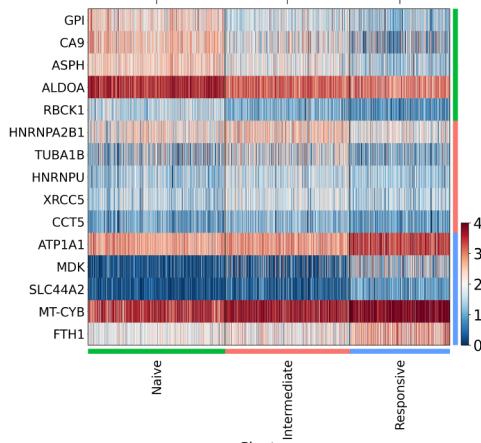
A



B



C



D

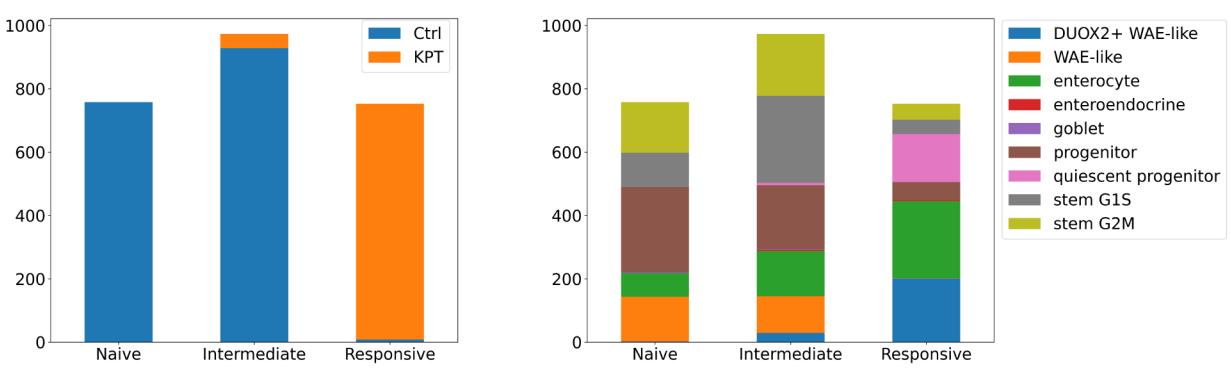


Figure 2: Cellograph identifies treatment groups and distinguishes genes defining these groups on a human organoid dataset. (A) PHATE projection of learned latent space, with cells colored by treatment labels, probabilities of belonging to control or KPT-treated cells, clusters obtained by k-means clustering of the learned latent embedding with $k = 3$, and gene expression of GDF15 and KLK7. (B) Heatmap of top 25 weighted genes from parameterized gene weight matrix. (C) Heatmap of differentially expressed genes between clusters derived from Cellograph. (D) Compositional plot of predicted treatment groups from the softmax probabilities ($p > 0.5$) (left) and cell types annotated by the original study (right) partitioned by clusters.

CELLOGRAPH: A SEMI-SUPERVISED APPROACH TO ANALYZING MULTI-CONDITION SINGLE-CELL RNA SEQUENCING DATA USING GRAPH NEURAL NETWORKS

190 the learned latent space into 2 dimensions with PHATE, which gives a clear temporal separation of the 6 treatment
191 groups. Coloring cells according to the probability of belonging to each of the conditions provides a narrow distribution
192 of scores in cells in the condition of interest, with the notable exception of Day 11 (Erlotinib before holiday) and
193 Day 19 (Erlotinib after holiday), suggesting a non-uniform response to the drug in these cells both before and after
194 the drug holiday (Figure 3D). The heatmap of the top 25 weighted genes from training (Figure 3B) reveals TUBA1B
195 and CCDC80 as pertinent genes in distinguishing the conditions, which are both markers of drug resistance, with
196 CCDC80 highly expressed in D11 cells, corroborating the original study's observations of CCDC80, whereas TUBA1B
197 expression is particularly elevated in D19 Erl cells. MT-ND6 is also strongly weighted and appears to uniformly define
198 the population of cells that were treated with DMSO following the drug holiday. This is a mitochondrial gene which has
199 been previously implicated in colorectal adenocarcinoma and associated with changing energy requirements due to cells
200 aggressively proliferating (Wallace et al., 2016). Clustering the learned latent space identifies three clusters among these
201 two conditions (Figure 3A,D), one consisting of cells predicted to have a prototypical response after 11 days of Erlotinib
202 treatment (cluster 3), and similarly for day 19 after re-exposure to the drug (cluster 5), followed by a mixed population
203 of both cell types (cluster 2). Differential expression between the three clusters (Figure 3C) identified high expression
204 of TUBA1B in cluster 5, which is associated with poor prognosis in NSCLC, suggesting persisting drug tolerance after
205 the holiday period. Similarly, we observe differential expression of INHBA in cluster 3, a senescence mediator that's
206 associated with prognosis in many cancer types (Zhao et al., 2022). Interestingly, TUBA1B and INHBA expression are
207 significantly reduced in the day 19 population that was not retreated with Erlotinib. Altogether, Cellograph captures
208 clinically relevant genes driving heterogeneity in response to treatment, as well as identifying additional genes such as
209 MT-ND6 that were not captured using previous approaches.

210 **3.3 Cellograph distinguishes between transdifferentiation and dedifferentiation in myogenesis**

211 Finally, we assessed Cellograph's ability to distinguish cells undergoing distinct cell state transitions temporally
212 on a scRNA-seq dataset of 33,380 mouse embryonic fibroblasts (MEF) undergoing either dedifferentiation to adult
213 stem cells called induced myogenic progenitor cells (iMPCs) or myogenic transdifferentiation to myotubes (Yagi
214 et al., 2021). The original study was motivated to understand the transcriptional and epigenetic mechanisms of how
215 over-expression of the MyoD transcription factor induced MEFs to undergo reprogramming to either myotubes or
216 iMPCs with a MyoD-inducible transgenic model. The myotubes were induced by overexpression of MyoD, while the
217 addition of small molecules produced Pax7⁺ iMPCs that were very similar to primary muscle stem cells. The authors
218 used trajectory analysis via diffusion maps and UMAP embeddings of combined single-cell data of MEFs expressing
219 MyoD or MyoD + a cocktail of small molecule inhibitors (forskolin, RepSox, and CHIR99021, collectively abbreviated
220 as "FRC" in the original paper) to reveal that dedifferentiation and transdifferentiation follow two different trajectories.

221 We trained Cellograph on this dataset with 200 cells per treatment group labeled for training for 400 epochs
222 and obtained a single trajectory that starts with transdifferentiation and culminates in dedifferentiation to Pax7⁺
223 iMPCs. The original study revealed an overlap between the major fraction of day 4 MyoD-treated cells and
224 day4/8 MyoD+FRC-treated cells in their UMAP and DPT embeddings. Interestingly, however, Cellograph detects
225 no significant overlap (Figure 4A), which is further supported by the derived probabilities of belonging to each
226 of the experimental groups. Looking at the top-weighted genes from training the model, high expression of
227 CRABP1 and LUM distinguished the transdifferentiating population, whereas dedifferentiation was weighted by
228 high expression of cyclin D1, suggesting cell cycle entry is a necessary step to producing iMPCs. CRABP1 is
229 known to promote stem cell proliferation by its downregulation (Lin et al., 2017). However, it does not appear
230 to inversely vary with cyclin D1 nor directly vary with CDKN1C, another top-weighted gene associated with
231 dedifferentiation that codes for p57 (Matsuoka et al., 1995), a well-characterized cell cycle inhibitor, thus making
232 it an interesting candidate gene to investigate further for its functional role in myogenesis. Furthermore, CDKN1C
233 is known to be stimulated by MyoD expression (Figliola and Maione, 2004). Interestingly, Pax7⁺ iMPCs have
234 minimal cyclin D1 expression and instead high expression of CDKN1C. Satellite cells re-enter the cell cycle in
235 response to injury through asymmetric division, thus, this cell population likely resides in a quiescent, unstimulated state.

236
237 STMN2, an early neuronal marker, was also identified as a pertinent gene in distinguishing between these
238 processes, with high expression in the transdifferentiation condition, perhaps owing to the instability and inefficiency of
239 generating myotubes with MyoD alone. Other genes exhibit more monotonically changing trends, such as GM4218,
240 PRUNE2, and TIMP1, that correspond to the silencing of the MEF program. Clustering the latent space and mapping
241 the clusters onto the PHATE embedding distinguished between the different treatment conditions and heterogeneity in
242 the MyoD+FRC day 8 condition, in particular, differential expression of MYOG, which specifies the myotube fate, was
243 observed in the majority of cells, and corroborates observations from trajectory analysis in the original study, where
244 this gene is observed in both trajectories. Altogether, Cellograph is able to successfully distinguish these biological
245 processes, and identify additional gene programs explaining these differences.

CELLOGRAPH: A SEMI-SUPERVISED APPROACH TO ANALYZING MULTI-CONDITION SINGLE-CELL RNA SEQUENCING DATA USING GRAPH NEURAL NETWORKS

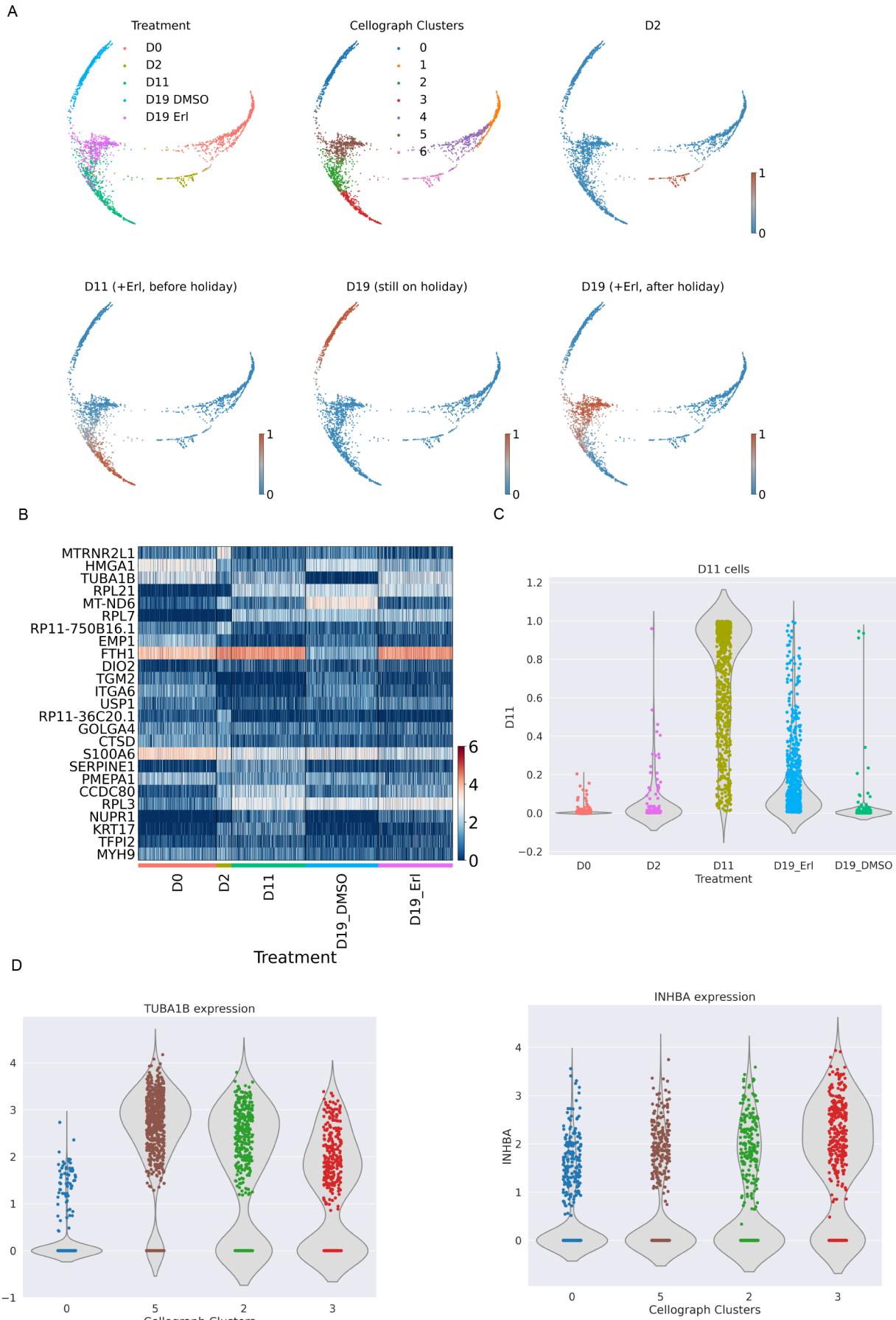


Figure 3: Cellograph defines genetic signatures of distinct drug responses in the drug holiday dataset. (A) PHATE embeddings of the learned latent space colored according to the treatment labels, clusters, and treatment probabilities (day 0 not shown). (B) Heatmap of top 25 weighted genes from learned parameterized gene weight matrix. (C) The

CELLOGRAPH: A SEMI-SUPERVISED APPROACH TO ANALYZING MULTI-CONDITION SINGLE-CELL RNA SEQUENCING DATA USING GRAPH NEURAL NETWORKS

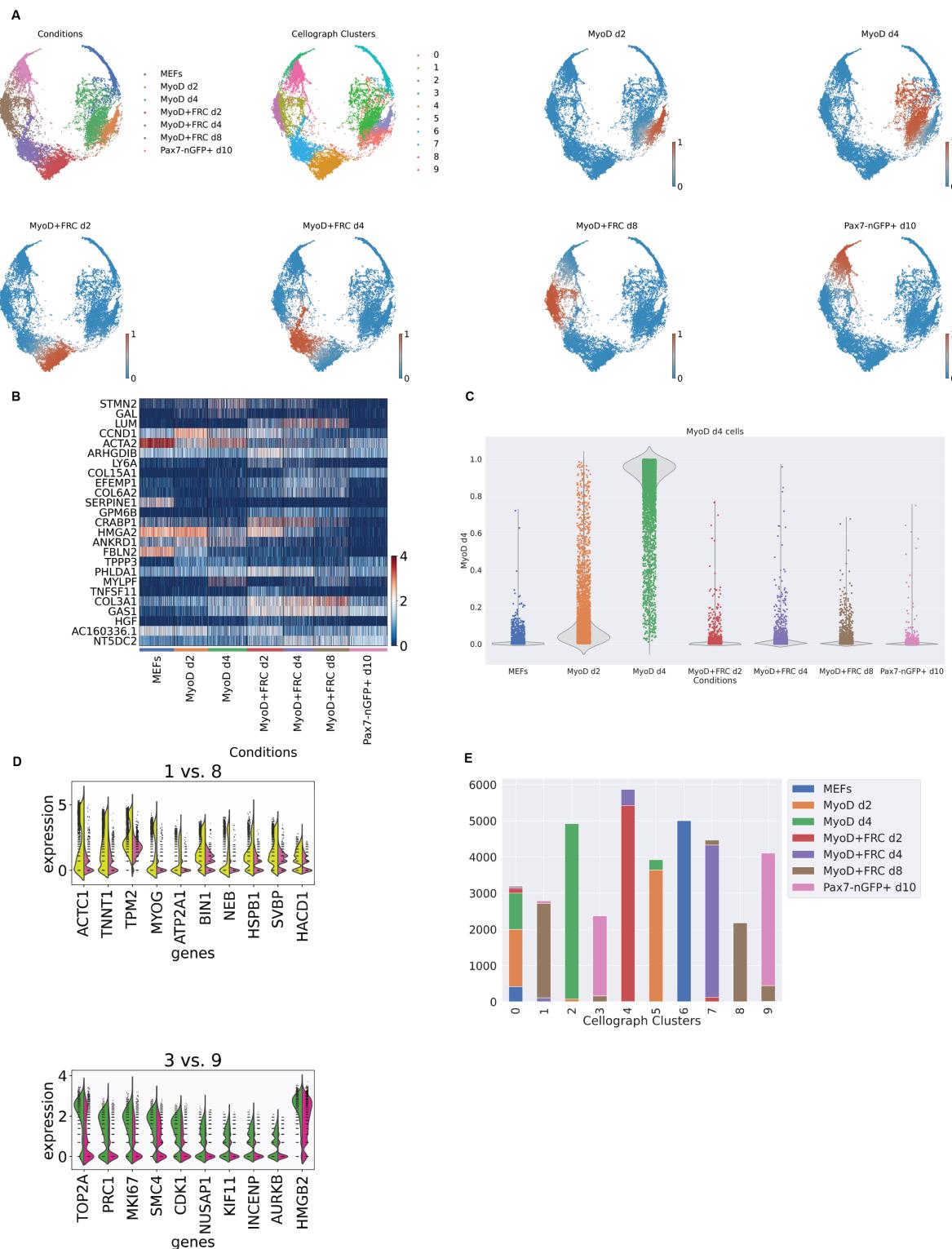


Figure 4: Cellograph distinguishes the molecular mechanisms of transdifferentiation and dedifferentiation in myogenesis. (A) PHATE embeddings of learned latent space annotated according to treatment conditions, clusters, and softmax probabilities of all conditions except for MEFs, defining the in-group variation. (B) Heatmap of top weighted genes from parameterized gene weight matrix, identifying pertinent genes such as cyclin D1 and CRABP1. (C) Violin plot of softmax probabilities of cells belonging to the MyoD/day 4 treatment group, showing similarities to the MyoD/day 2 population. (D) Violin plots of top 20 differentially expressed genes between clusters 1 and 8 and clusters 3 and 9, which define the Pax7⁺ cells and MyoD+FRC/day 8 treated cells, respectively. (E) Compositional plot of predicted cell types partitioned by cluster

247 **3.4 Cellograph outperforms published differential abundance methods and popular single-cell clustering**
248 **methods**

Finally, we benchmarked Cellograph's performance in identifying cells most impacted by perturbations against three published methods: MELD, Milo (Dann et al. (2021)), and Covarying Neighbor Analysis (CNA) (Reshef et al. (2021)) - and compared its clustering performance to popular single-cell clustering methods. We used the categorical cross-entropy objective function in the first evaluation as we believed a method quantifying experimental perturbations should capture a broad range of signals for each experimental label it is trying to predict. In particular, it quantifies the difference between two pairs of discrete probability distributions by calculating the following sum,

$$\text{Loss} = - \sum_{k=1}^K t_k * \log y_k,$$

249 where t_k corresponds to a ground truth label and y_k is the softmax probability for the k th class. It is commonly used in
250 classification tasks for neural networks as it favors high probabilities for stereotypically correct assignments while low
251 probabilities for others, which motivated us to use it as our objective function in training Cellograph. When applied to
252 all the cells in our datasets, we obtain consistently lower loss scores than MELD (Table 1).

253
254 When evaluating Cellograph relative to Milo and CNA, however, we could not perform direct quantitative
255 comparison. Milo tests for differential abundance on kNN graphs by aggregating cells into overlapping neighborhoods
256 and performing a quasi-likelihood F test. This returns a metric of the log-fold change of the differential abundance
257 in each neighbor, not a single-cell measurement giving the probability of that cell belonging to one treatment class
258 versus another. Thus, we cannot perform a direct quantitative comparison and instead present a qualitative assessment
259 of performance. Running Milo on the human organoid dataset, we observe a positive correlation between the
260 Milo-derived log-fold changes in differential abundance and the probability of cells belonging to the KPT-treated group.
261 However, when applied to the drug holiday and myogenesis datasets, which have more complex experimental
262 designs with multiple conditions, Milo fails to yield clear, interpretable results, with low DA in the untreated
263 population, high DA in the cells after one day of Erlotinib treatment, and minimal DA in all other conditions. Similarly,
264 in the myogenesis dataset, we observe high DA in Pax7-treated cells, low DA in MEFs, and minimal DA everywhere else.

265
266 CNA performs association analysis agnostic of parameter tuning, making it an efficient method. Like Milo,
267 it aggregates cells into neighborhoods, and calculates a neighborhood abundance matrix (NAM), where each entry
268 $C_{n,m}$ is the relative abundance of cells from sample n in neighborhood m . From there, it derives principal components
269 where positive loadings correspond to higher abundance while negative loadings correspond to lower abundance.
270 This enables the characterization of transcriptional changes corresponding to maximal variation in neighborhood
271 abundance across samples. Association testing is performed between transcriptional changes and attributes of
272 interest using the first k NAM-PCs. It returns the Spearman correlation between the attribute and abundance of the
273 neighborhood anchored at each cell. Applied to the human organoid dataset with the KPT treatment status as the
274 attribute of interest, we obtain similar results as our method, MELD, and Milo with high correlation observed in the
275 KPT-treated cells, and low correlation in the observed cells, compared to the probability of observing cells in the
276 KPT-treated group. However, on the Erlotinib and myogenesis datasets, like Milo, we obtain results incongruous
277 with Cellograph or MELD's performance, or even Milo. High abundance is predicted for cells treated right before
278 holiday and following the holiday, regardless of whether cells were retreated with Erlotinib, whereas low abundance is
279 observed in both the untreated cells and cells treated with Erlotinib for one day, while cells with 11 days of treatment
280 have zero correlation. Since this dataset spans multiple conditions whereas unlike MELD or Cellograph, CNA
281 calculates one set of metrics, it was difficult to interpret these results in the context of the experiment. We obtained
282 similarly incongruous results for the myogenesis dataset (Figure 5). Altogether, Cellograph provides robust and
283 interpretable results for more complex experimental designs with multiple treatment groups compared to CNA and
284 Milo, and performs consistently better than MELD with a significantly lower runtime for optimal performance (Figure 6).

285
286 When evaluating clustering performance with NMI, k -means clustering on the learned latent space consistently
287 outperformed popular algorithms, Leiden, Louvain, and k -means clustering on data in PCA space (100
288 independent runs for each clustering approach) (Figure 7). Altogether, Cellograph outperforms MELD in estimating
289 how prototypical cells are of their ground truth labels, and consistently ranks higher than standard algorithms for
290 clustering.

CELLOGRAPH: A SEMI-SUPERVISED APPROACH TO ANALYZING MULTI-CONDITION SINGLE-CELL RNA SEQUENCING DATA USING GRAPH NEURAL NETWORKS

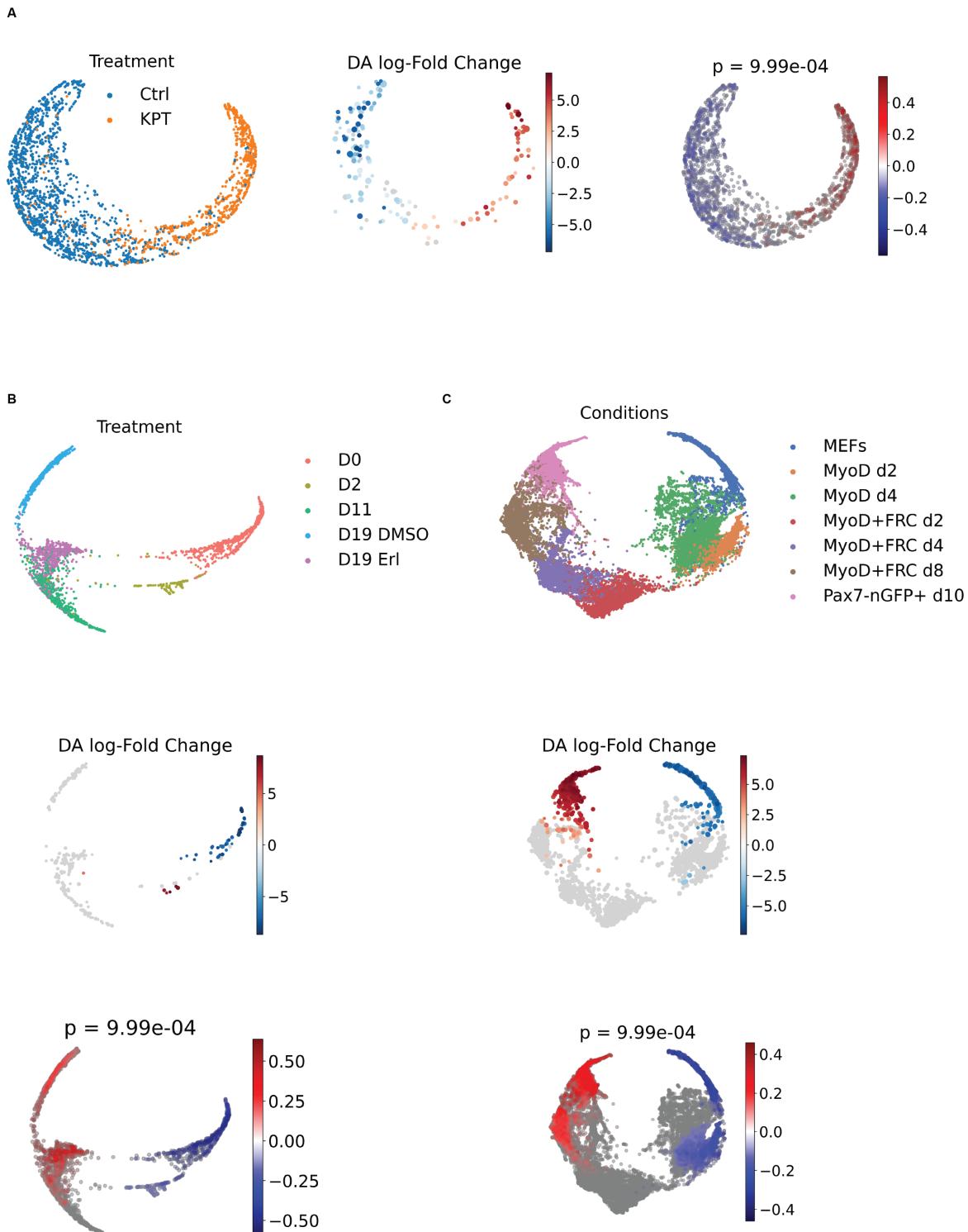


Figure 5: Results of running Milo and CNA on the datasets evaluated. (A) Output of running Milo and CNA on the human organoid dataset. (B) Output of running Milo and CNA on the drug holiday dataset. (C) Output of running Milo and CNA on the myogenesis dataset

CELLOGRAPH: A SEMI-SUPERVISED APPROACH TO ANALYZING MULTI-CONDITION SINGLE-CELL RNA SEQUENCING DATA USING GRAPH NEURAL NETWORKS

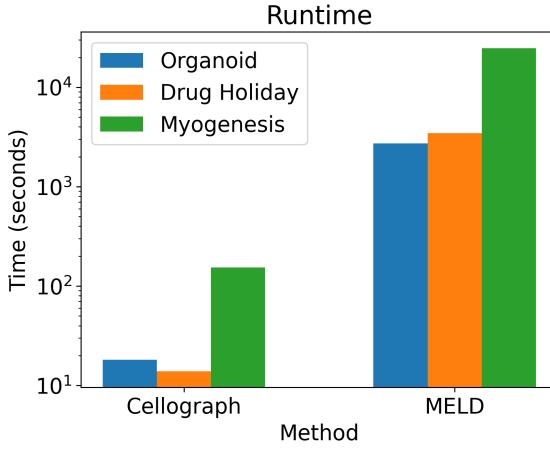


Figure 6: Runtime of Cellograph’s performance versus MELD’s on optimal parameter settings under each of the datasets on a log scale. Cellograph consistently outperforms MELD on each dataset, while using fewer computing resources.

Table 1: Categorical cross-entropy of Cellograph vs MELD on all cells

Dataset	Cellograph	MELD (optimal settings)
Organoid	0.297	0.374
Drug Holiday	0.252	0.452
Myogenesis	0.193	0.605

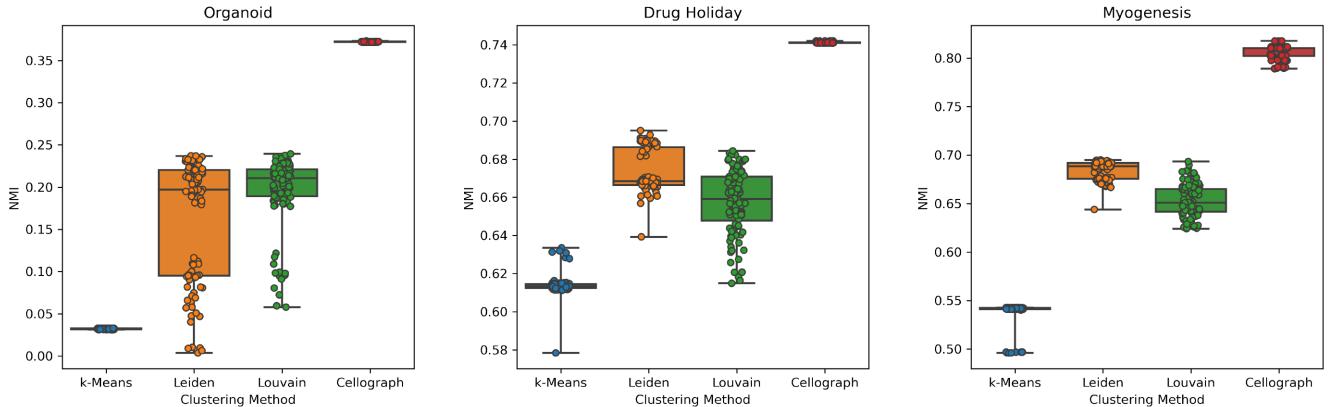


Figure 7: Distributions of 100 independent NMI calculations for each clustering algorithm for all three datasets evaluated, quantifying concordance between the cluster assignments and ground truth labels

CELLOGRAPH: A SEMI-SUPERVISED APPROACH TO ANALYZING MULTI-CONDITION SINGLE-CELL RNA SEQUENCING DATA USING GRAPH NEURAL NETWORKS

291 **4 Discussion**

292 When designing single-cell experiments exploring the impacts of different treatments, it is vital to leverage the
293 single-cell heterogeneity present. The increasing complexity of the experimental design (e.g., multiple treatments,
294 various timepoints, etc) can result in diminishing returns from standard differential gene expression and clustering
295 approaches due to the biological and technical variability present at the single-cell level. Existing approaches like
296 MELD and VFC are apt for studying the effects of one experimental treatment, but cannot be easily generalized to
297 more complicated experimental programs. We designed Cellograph to address this challenge. Beyond just quantifying
298 single-cell responses to perturbations analogously to MELD, Cellograph's primary innovation lies in its novel way
299 of visualizing and clustering single-cell data by means of graph neural networks, which, through the parameterized
300 gene weight matrix, provides its interpretable means of understanding which genes drive the difference between
301 conditions. We have shown that our approach improves clustering on three diverse datasets compared to standard
302 clustering approaches, as well as captures a stronger signal of the ground truth experimental label compared to MELD.
303 Clustering agnostic of experimental conditions can fail to take into consideration the diversity of cellular responses to
304 these perturbations and how those correspond to the transcriptomic variation. By applying simple k-means clustering
305 to the latent space, we can obtain more informative clusters that enable deeper biological insight, especially in
306 populations under the same experimental treatment. In addition to improved differential gene expression, we also obtain
307 complementary information from the parameterized weight matrix after training, which reveals the most important
308 genes in distinguishing between different treatments.
309

310 In a published dataset of donor-provided organoid samples, we were able to successfully corroborate original
311 findings, while providing a visually informative view of the data, and revealed novel insights into drivers of
312 KPT-mediated organoid differentiation. Similarly, in our drug holiday application, we identified additional markers
313 of drug resistance using the parameterized gene weight matrix, and described heterogeneity of cells in response to
314 Erlotinib after 11 days and post-holiday, while characterizing the popular that was retreated after the holiday that could
315 inform future experiments into druggable targets for NSCLC. Finally, in our myogenesis evaluation, we identified shared
316 features between transdifferentiation and dedifferentiation, while capturing relevant markers that distinguished the two
317 processes. We anticipate Cellograph will find a wide range of application to other biological contexts and different
318 single-cell modalities as an all-in-one framework for facilitating visualization, clustering, and single-cell responses to
319 perturbations, on top of its efficiency. For example, this work could find utility in clinical applications to studying
320 heterogeneity in patient-treated samples in response to an experimental cancer drug. This could be also employed
321 to study impacts of cancer drugs on cell cycle in protein immunofluorescence imaging data (Gut et al., 2018). The
322 graph neural network architecture of node classification could even be extended to graph classification for looking
323 at multiple patient samples, as is common in mass cytometry, or regression to predict continuous variables such as
324 cellular pseudotime in the context of differentiation, cell cycle age (Stallaert et al., 2022), or gestational age in data
325 from pregnant women (Aghaeepour et al., 2017), and may be further explored in future work.

326 **References**

327 Aghaeepour, N., Ganio, E. A., Mcilwain, D., Tsai, A. S., Tingle, M., Van Gassen, S., Gaudilliere, D. K., Baca, Q.,
328 McNeil, L., Okada, R., and et al. (2017). An immune clock of human pregnancy. *Science Immunology*, 2(15).

329 Aissa, A. F., Islam, A. B., Ariss, M. M., Go, C. C., Rader, A. E., Conrardy, R. D., Gajda, A. M., Rubio-Perez, C.,
330 Valyi-Nagy, K., Pasquinelli, M., and et al. (2021). Single-cell transcriptional changes associated with drug tolerance
331 and response to combination therapies in cancer. *Nature Communications*, 12(1).

332 Amodio, M., van Dijk, D., Srinivasan, K., Chen, W. S., Mohsen, H., Moon, K. R., Campbell, A., Zhao, Y., Wang, X.,
333 Venkataswamy, M., and et al. (2019). Exploring single-cell data with deep multitasking neural networks. *Nature
334 Methods*, 16(11):1139–1145.

335 Burkhardt, D. B., Stanley, J. S., Tong, A., Perdigoto, A. L., Gigante, S. A., Herold, K. C., Wolf, G., Giraldez, A. J., van
336 Dijk, D., Krishnaswamy, S., and et al. (2021). Quantifying the effect of experimental perturbations at single-cell
337 resolution. *Nature Biotechnology*, 39(5):619–629.

338 Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D., and Marioni, J. C. (2021). Differential abundance
339 testing on single-cell data using k-nearest neighbor graphs. *Nature Biotechnology*, 40(2):245–253.

340 Figliola, R. and Maione, R. (2004). Myod induces the expression of p57kip2 in cells lacking p21cip1/waf1: Overlapping
341 and distinct functions of the two cdk inhibitors. *Journal of Cellular Physiology*, 200(3):468–475.

CELLOGRAPH: A SEMI-SUPERVISED APPROACH TO ANALYZING MULTI-CONDITION SINGLE-CELL RNA SEQUENCING DATA USING GRAPH NEURAL NETWORKS

342 Gut, G., Herrmann, M. D., and Pelkmans, L. (2018). Multiplexed protein maps link subcellular organization to cellular
343 states. *Science*, 361(6401).

344 Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F., and Theis, F. J. (2016). Diffusion pseudotime robustly reconstructs
345 lineage branching. *Nature Methods*.

346 Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional networks. *CoRR*,
347 abs/1609.02907.

348 Klein, A., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L., Weitz, D., and Kirschner, M. (2015).
349 Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. *Cell*, 161(5):1187–1201.

350 Lin, Y.-L., Persaud, S. D., Nhieu, J., and Wei, L.-N. (2017). Cellular retinoic acid–binding protein 1 modulates stem
351 cell proliferation to affect learning and memory in male mice. *Endocrinology*, 158(9):3004–3014.

352 Lopez, R., Regier, J., Cole, M. B., Jordan, M. I., and Yosef, N. (2018). Deep generative modeling for single-cell
353 transcriptomics. *Nature Methods*, 15(12):1053–1058.

354 Luecken, M. D. and Theis, F. J. (2019). Current best practices in single-cell rna-seq analysis: A tutorial. *Molecular
355 Systems Biology*, 15(6).

356 Matsuoka, S., Edwards, M. C., Bai, C., Parker, S., Zhang, P., Baldini, A., Harper, J. W., and Elledge, S. J. (1995).
357 P57kip2, a structurally distinct member of the p21cip1 cdk inhibitor family, is a candidate tumor suppressor gene.
358 *Genes and Development*, 9(6):650–662.

359 McDaid, A. F., Greene, D., and Hurley, N. (2011). Normalized mutual information to evaluate overlapping community
360 finding algorithms.

361 Mead, B. E., Hattori, K., Levy, L., Imada, S., Goto, N., Vukovic, M., Sze, D., Kummerlowe, C., Matute, J. D., Duan,
362 J., and et al. (2022). Screening for modulators of the cellular composition of gut epithelia via organoid models of
363 intestinal stem cell differentiation. *Nature Biomedical Engineering*, 6(4):476–494.

364 Moon, K. R., van Dijk, D., Wang, Z., Gigante, S., Burkhardt, D. B., Chen, W. S., Yim, K., Elzen, A. v., Hirn, M. J.,
365 Coifman, R. R., and et al. (2019). Visualizing structure and transitions in high-dimensional biological data. *Nature
366 Biotechnology*, 37(12):1482–1492.

367 Ravindra, N., Sehanobish, A., Pappalardo, J. L., Hafler, D. A., and van Dijk, D. (2020). Disease state prediction from
368 single-cell data using graph attention networks. *Proceedings of the ACM Conference on Health, Inference, and
369 Learning*.

370 Reshef, Y. A., Rumker, L., Kang, J. B., Nathan, A., Korsunsky, I., Asgari, S., Murray, M. B., Moody, D. B., and
371 Raychaudhuri, S. (2021). Co-varying neighborhood analysis identifies cell populations associated with phenotypes
372 of interest from single-cell transcriptomics. *Nature Biotechnology*, 40(3):355–363.

373 Rhee, S., Seo, S., and Kim, S. (2018). Hybrid approach of relation network and localized graph convolutional filtering
374 for breast cancer subtype classification. *Proceedings of the Twenty-Seventh International Joint Conference on
375 Artificial Intelligence*.

376 Schrader, C. H., Kolb, M., Zaoui, K., Flechtenmacher, C., Grabe, N., Weber, K.-J., Hielscher, T., Plinkert, P. K., and
377 Hess, J. (2015). Kallikrein-related peptidase 6 regulates epithelial-to-mesenchymal transition and serves as prognostic
378 biomarker for head and neck squamous cell carcinoma patients. *Molecular Cancer*, 14(1).

379 Sehanobish, A., Ravindra, N. G., and van Dijk, D. (2020). Gaining insight into sars-cov-2 infection and covid-19
380 severity using self-supervised edge features and graph neural networks.

381 Stallaert, W., Kedziora, K. M., Taylor, C. D., Zikry, T. M., Ranek, J. S., Sobon, H. K., Taylor, S. R., Young, C. L., Cook,
382 J. G., Purvis, J. E., and et al. (2022). The structure of the human cell cycle. *Cell Systems*, 13(1):103.

383 Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2017). Graph attention networks.

384 Wallace, L., Mehrabi, S., Bacanamwo, M., Yao, X., and Aikhionbare, F. O. (2016). Expression of mitochondrial
385 genes mt-nd1, mt-nd6, mt-cyb, mt-coi, mt-atp6, and 12s/mt-rnr1 in colorectal adenopolyps. *Tumor Biology*,
386 37(9):12465–12475.

CELLOGRAPH: A SEMI-SUPERVISED APPROACH TO ANALYZING MULTI-CONDITION SINGLE-CELL RNA SEQUENCING DATA USING GRAPH NEURAL NETWORKS

387 Wang, J., Ma, A., Chang, Y., Gong, J., Jiang, Y., Qi, R., Wang, C., Fu, H., Ma, Q., Xu, D., and et al. (2021). Scgnn is a
388 novel graph neural network framework for single-cell rna-seq analyses. *Nature Communications*, 12(1).

389 Yagi, M., Ji, F., Charlton, J., Cristea, S., Messemer, K., Horwitz, N., Di Stefano, B., Tsopoulidis, N., Hoetker, M. S.,
390 Huebner, A. J., and et al. (2021). Dissecting dual roles of myod during lineage conversion to mature myocytes and
391 myogenic stem cells. *Genes and Development*, 35(17-18):1209–1228.

392 Yang, M., Darwish, T., Larraufie, P., Rimmington, D., Cimino, I., Goldspink, D. A., Jenkins, B., Koulman, A., Brighton,
393 C. A., Ma, M., and et al. (2021). Inhibition of mitochondrial function by metformin increases glucose uptake,
394 glycolysis and gdf-15 release from intestinal cells. *Scientific Reports*, 11(1).

395 Zhang, Y., Jiang, M., Nouraie, M., Roth, M. G., Tabib, T., Winters, S., Chen, X., Sembrat, J., Chu, Y., Cardenes, N.,
396 and et al. (2019). Gdf15 is an epithelial-derived biomarker of idiopathic pulmonary fibrosis. *American Journal of
397 Physiology-Lung Cellular and Molecular Physiology*, 317(4).

398 Zhao, K., Yi, Y., Ma, Z., and Zhang, W. (2022). Inhba is a prognostic biomarker and correlated with immune cell
399 infiltration in cervical cancer. *Frontiers in Genetics*, 12.

400 Zhou, D., He, Y., Li, H., and Huang, W. (2021). Klk6 mediates stemness and metabolism of gastric carcinoma cells via
401 the pi3k/akt/mTOR signaling pathway. *Oncology Letters*, 22(6).