

1 *Klebsiella pneumoniae* causes bacteremia using factors that mediate tissue-specific fitness and resistance to
2 oxidative stress

3

4 Caitlyn L. Holmes^{1,2}, Alexis E. Wilcox^{1,2}, Valerie Forsyth², Sara N. Smith², Bridget S. Moricz^{1,2}, Lavinia V.
5 Unverdorben^{1,2}, Sophia Mason^{1,2}, Weisheng Wu³, Lili Zhao⁴, Harry L.T. Mobley², *Michael A. Bachman^{1,2}

6

7

8 ¹Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA

9 ²Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA

10 ³Bioinformatics Core Facility, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA

11 ⁴Research Institute, Beaumont Hospital, Royal Oak, MI, USA.

12

13

14 *Corresponding author

15 mikebach@med.umich.edu

16 **Abstract**

17 Gram-negative bacteremia is a major cause of global morbidity involving three phases of pathogenesis: initial
18 site infection, dissemination, and survival in the blood and filtering organs. *Klebsiella pneumoniae* is a leading
19 cause of bacteremia and pneumonia is often the initial infection. In the lung, *K. pneumoniae* relies on many
20 factors like capsular polysaccharide and branched chain amino acid biosynthesis for virulence and fitness.
21 However, mechanisms directly enabling bloodstream fitness are unclear. Here, we performed transposon
22 insertion sequencing (TnSeq) in a tail-vein injection model of bacteremia and identified 58 *K. pneumoniae*
23 bloodstream fitness genes. These factors are diverse and represent a variety of cellular processes. *In vivo*
24 validation revealed tissue-specific mechanisms by which distinct factors support bacteremia. ArnD, involved in
25 Lipid A modification, was required across blood filtering organs and supported resistance to soluble splenic
26 factors. The purine biosynthesis enzyme PurD largely enhanced liver fitness and was required for replication in
27 serum. PdxA, a member of the endogenous vitamin B6 biosynthesis pathway, optimized replication in serum
28 and lung fitness. The stringent response regulator SspA was required for splenic fitness yet was dispensable in
29 the liver. In a bacteremic pneumonia model that incorporates initial site infection and dissemination, splenic
30 fitness defects were enhanced, and DsbA, SspA, and PdxA increased fitness across bacteremia phases. SspA
31 and PdxA enhanced *K. pneumoniae* resistance to oxidative stress. SspA specifically resists oxidative stress
32 produced by NADPH oxidase Nox2 in the lung, spleen, and liver, as it was a fitness factor in wild-type but not
33 Nox2-deficient (*Cybb*^{-/-}) mice. These results identify site-specific fitness factors that act during the progression
34 of Gram-negative bacteremia. Defining *K. pneumoniae* fitness strategies across bacteremia phases could
35 illuminate therapeutic targets that prevent infection and sepsis.

36

37 **Author Summary**

38 Gram-negative bacteremia is a deadly family of infections that initiate sepsis, a leading cause of global morbidity
39 and mortality. Only a small number of Gram-negative species contribute to the majority of clinical bacteremia.
40 *Klebsiella pneumoniae* is the second leading cause of Gram-negative bacteremia, and the third leading cause
41 of overall bloodstream infection. *K. pneumoniae* is highly linked to hospital-associated infection with increasing
42 antimicrobial resistance, endangering the most vulnerable patients. It is critical to understand the pathogenesis

43 of *K. pneumoniae* bacteremia to better develop targets for future therapies that can prevent these deadly
44 infections. Here, we define over 50 *K. pneumoniae* genes that support bloodstream fitness. These factors are
45 diverse, support tissue-specific fitness, and increase bacterial resistance to oxidative stress. Our study is the first
46 to systematically define *K. pneumoniae* factors enhancing bacteremia in a mammalian system. These results
47 illuminate host-pathogen interactions during *K. pneumoniae* bacteremia that may be extended to additional
48 Gram-negative species.

49

50 **Introduction**

51 Bacteremia, the presence of bacteria in the bloodstream, can initiate sepsis. Defined as immune dysregulation
52 resulting in organ dysfunction, sepsis is a significant cause of global morbidity and mortality (1, 2, 3). Gram-
53 negative species underlie about half of clinical bacteremia cases and are emerging in dominance (4). To
54 establish bacteremia, Gram-negative species follow three phases of pathogenesis. First, bacteria invade or
55 colonize tissues that serve as initial sites of infection. Second, bacteria cross host barriers unique to the initial
56 site and disseminate into the blood. Third, bacteria must survive in the bloodstream by exercising metabolic
57 flexibility and avoiding clearance in filtering organs like the spleen and liver (2). Defining bacterial factors that
58 enhance bacteremia is a step toward treating this family of deadly infections.

59

60 *Klebsiella pneumoniae* is the second leading cause of Gram-negative bacteremia (4). Repeatedly classified as
61 a pathogen of urgent concern by the World Health Organization (5, 6), infection with *K. pneumoniae* is particularly
62 problematic due to a high association with mortality and antimicrobial resistance (7, 8). *K. pneumoniae* is highly
63 linked to hospital associated infection, particularly pneumonia (9). Accordingly, *K. pneumoniae* lung fitness
64 mechanisms have been extensively described and include a wide variety of factors including capsular
65 polysaccharide, branched chain amino acid synthesis, and production of citrate synthetase (10, 11). *K.*
66 *pneumoniae* mechanisms enhancing dissemination have been less thoroughly described but are likely partially
67 dependent on ADP-heptose biosynthesis and siderophores (12, 13). The host hypoxia-inducible factor 1 α (HIF-
68 1 α) in lung epithelial cells also promotes dissemination, although interactions at this step are not well understood
69 (14).

70

71 *K. pneumoniae* factors involved in the last phase of bacteremia, survival in the blood and filtering organs, remain
72 incompletely defined. *In vitro* studies using human serum identified *K. pneumoniae* capsule biosynthesis and
73 lipopolysaccharide (LPS) O-antigen as essential for complement resistance (15, 16). Human serum studies also
74 demonstrated that vitamin biosynthesis and protein translocation using the *tat* system support maximum growth
75 (16). Modeling bacteremia using *Galleria mellonella* further confirmed a role for capsular polysaccharide, LPS,
76 cellular envelope integrity, and iron acquisition systems during infection (17). While *in vitro* studies have
77 consistently identified subsets of *K. pneumoniae* genes required for serum growth and complement evasion,
78 these models cannot define factors that influence fitness in blood filtering organs. Since bloodstream fitness
79 involves both replication and evasion of clearance, some factors may be dispensable for serum growth but is
80 perpetuate bacteremia through interactions within tissues. For example, GmhB, an ADP-heptose biosynthesis
81 enzyme required to produce intact LPS inner core, is dispensable for serum growth and lung fitness but is
82 required for fitness in the liver and spleen during bacteremia (12). Thus, GmhB is an example of a fitness factor
83 specific to the last phase of bacteremia and can only be observed *in vivo*. This demonstrates that approaches
84 defining bloodstream survival mechanisms should incorporate systemic infection to fully reveal *K. pneumoniae*
85 factors perpetuating bacteremia.

86

87 Additionally, *in vivo* models can uncover host-pathogen interactions during bacteremia. To eliminate bacteria,
88 immune cells may induce an oxidative stress response. NADPH oxidases, specifically the phagocytic Nox2,
89 generate bursts of reactive oxygen species (ROS) that are frontline host defense mechanisms during infection
90 (18). Despite the importance of this response, *K. pneumoniae* factors enhancing resistance to ROS-mediated
91 stress have not been detected in blood filtering organs. Immune responses can also vary across organs as
92 tissue-resident cells can have differential interactions with bacteria, including *K. pneumoniae* (19). Varying
93 replication rates of multiple Gram-negative species across tissues during bacteremia highlights that host-
94 pathogen interactions are not uniform between sites (20). Thus, defining bacterial site-specific fitness
95 mechanisms can illuminate host defense strategies.

96

97 Our group has used transposon insertion-site sequencing (TnSeq) to define bacterial genes required for
98 bloodstream fitness in Gram-negative species including *Escherichia coli*, *Serratia marcescens*, *Citrobacter*

99 *freundii*, *Acinetobacter baumannii*, and *Proteus mirabilis* (21, 22, 23, 24, 25, 26). These studies defined an array
100 of bacterial genes enhancing bloodstream fitness. Metabolic flexibility emerged as a prominent feature by which
101 Gram-negative species survive in the blood. Interestingly, no factors have been identified that are universally
102 required across all six species. This highlights that bacteremia may require a species-specific arsenal of fitness
103 mechanisms. Considering the dominance of *K. pneumoniae* infections in clinical settings and resulting high
104 mortality rates (7, 8, 9, 27), it is critical to define mechanisms by which this specific pathogen perpetuates
105 bacteremia. Additionally, *K. pneumoniae* mechanisms of pathogenesis apart from the lung are largely unknown
106 and gaining knowledge of these processes will allow insight into this pathogen.

107
108 To define *K. pneumoniae* bacteremia factors influencing bloodstream survival, we performed TnSeq using a
109 mammalian model of intravascular bacteremia and revealed 58 diverse genes that enhance splenic fitness.
110 Validation studies demonstrate that bacteremia is enhanced by a set of factors relaying tissue-specific fitness in
111 the spleen, serum, and liver. This study is the first to systematically identify *K. pneumoniae* strategies for *in vivo*
112 bloodstream fitness.

113

114 **Results**

115 **Transposon insertion-site sequencing during *K. pneumoniae* bacteremia reveals diverse mechanisms**
116 **enhancing bloodstream fitness.** To define *K. pneumoniae* factors influencing bacteremia pathogenesis,
117 transposon-insertion site sequencing (TnSeq) was performed using a previously described KPPR1 library
118 containing ~25,000 unique mutations (11, 28). To model the third phase of bacteremia, survival in the blood and
119 filtering organs, an intravascular model was used with inoculation of mice via tail vein injection (Fig 1A). This
120 model bypasses the first two phases of bacteremia, initial site infection and dissemination, and allows for direct
121 examination of bloodstream fitness (12, 29). To define potential experimental bottlenecks to the spleen in this
122 model, a fitness-neutral mutant was competed against wild-type KPPR1 at ratios of 1:1, 1:5,000, and 1:10,000.
123 At the 1:10,000 ratio, the mutant was recovered in significantly lower abundance than KPPR1 indicating potential
124 stochastic loss at this ratio (S1 Fig). In contrast, loss was minimal at the 1:5,000 dilution. Therefore, the splenic
125 bottleneck after tail vein injection was determined to be between these dilutions, and 1:8,500 was selected as
126 the desired maximum input complexity to represent approximately 1/3 of the total mutants. To increase the

127 chance of sampling all mutants in the library, the KPPR1 transposon library was used to generate four pools with
128 ~8,500 unique insertions each, and each pool (Pools A-D) was administered to 10 mice.
129
130 Twenty-four hours post-inoculation, total splenic CFU was recovered, DNA was extracted and subjected to
131 sequencing, and the abundance of unique transposon insertions was compared to the inoculum as described in
132 the Materials and Method section. Mean splenic colonization was roughly 1x10⁶ CFU (Fig 1B) and mouse
133 mortality between pools varied widely from 0-70%. As a result, spleen samples from 10, 3, 9, and 10 mice
134 administered pools A, B, C, and D, respectively, were available for analysis. Within the input pools, ~3,800 of
135 the estimated 4,312 non-essential KPPR1 genes contained transposon insertions (S1 Table). Transposon
136 mutations within individual genes varied by pool, ranging from 9,350-12,450 unique transposon insertions. 148
137 genes, 4% of those within the study, were identified as significantly influencing *K. pneumoniae* fitness during
138 bacteremia (Fig 1C). Of significant hits, 58 (44%) genes with transposon insertions resulted in lower recovery
139 compared to the input, revealing bacterial factors enhancing bacteremia. KEGG annotation summaries for these
140 genes demonstrated that a diverse set of *K. pneumoniae* factors enhance bloodstream survival (Table 1). The
141 most highly represented genetic function was metabolism (Fig 1C). Defined by KEGG orthology, no single
142 metabolism type was dominant and synthesis of carbohydrates, nucleotides, amino acids, vitamins, and other
143 substrates supported bloodstream fitness (S2 Fig). In addition, 56% of genes with transposon insertions resulted
144 in higher recovery compared to the input (S2 Table). This pattern indicates a set of genes that suppress
145 pathogenesis since mutations led to enrichment after infection. Most of these hits have unclassified functional
146 KEGG annotations. Of the hits with annotated functions, metabolic pathways were also highly represented in
147 this group (S2 Fig). Since the goal of the present study was to define genes enhancing bacteremia, this group
148 was not analyzed further.
149

Table 1. *K. pneumoniae* splenic fitness factors.

Locus ID	Gene	log₂ Fold Change	p value	GenBank Definition
(VK-55_#)				

		(Spleen/Input Reads)		
VK055_2575	<i>arcA</i>	-4.908	0.040	<i>arcA</i> transcriptional dual regulator
VK055_2352	<i>gmhB</i> (<i>yaeD</i>)	-4.156	0.004	D,D-heptose 1,7-bisphosphate phosphatase
VK055_3845		-4.026	0.012	hypothetical protein
VK055_1303		-3.669	0.017	EAL domain protein
VK055_3527		-3.359	0.005	mannitol dehydrogenase Rossmann domain protein
VK055_4296	<i>recB</i>	-3.346	0.039	exodeoxyribonuclease V, beta subunit
VK055_3731	<i>crp</i>	-3.232	0.014	CRP transcriptional dual regulator
VK055_3327	<i>gidA</i>	-3.212	0.000	tRNA uridine 5-carboxymethylaminomethyl modification enzyme
VK055_3630	<i>arnF</i>	-3.188	0.000	undecaprenyl phosphate-alpha-L-ara4N flippase subunit ArnF
VK055_2866	<i>rplI</i>	-3.119	0.000	ribosomal protein L9
VK055_2766	<i>yadF2</i>	-3.108	0.036	tRNA-Leu
VK055_4748		-3.089	0.002	PTS enzyme I
VK055_4686	<i>purM</i>	-3.085	0.001	phosphoribosylformylglycinamidine cyclo-ligase
VK055_3849	<i>sspA</i>	-2.933	0.001	stringent starvation protein A
VK055_3865	<i>rpoN</i>	-2.864	0.000	RNA polymerase sigma-54 factor
VK055_3832	<i>argR</i>	-2.839	0.003	arginine repressor
VK055_3183		-2.693	0.000	polysaccharide biosynthesis family protein
VK055_3142	<i>tatC</i>	-2.646	0.016	twin arginine-targeting protein translocase TatC

VK055_3343	<i>pstC</i>	-2.620	0.013	phosphate ABC transporter, permease protein PstC
VK055_3357	<i>trmE</i>	-2.612	0.016	tRNA modification GTPase TrmE
VK055_2585	<i>ccmA7</i>	-2.477	0.000	heme ABC exporter, ATP-binding protein CcmA
VK055_3295	<i>glnA</i>	-2.405	0.015	glutamine synthetase, type I
VK055_2525	<i>pdxA2</i> (<i>pdxA</i>)	-2.398	0.000	4-hydroxythreonine-4-phosphate dehydrogenase
VK055_0077	<i>msbB</i>	-2.368	0.000	lipid A biosynthesis (KDO)2-(lauroyl)-lipid IVA acyltransferase
VK055_3612		-2.326	0.000	phosphate transporter family protein
VK055_4701	<i>purC</i>	-2.311	0.039	phosphoribosylaminoimidazolesuccinocarboxamide synthase
VK055_3592	<i>pqqL</i>	-2.293	0.006	insulinase family protease
VK055_1868	<i>dacC</i>	-2.241	0.011	penicillin-binding protein 6
VK055_4583		-2.184	0.007	23S rRNA pseudouridine synthase
VK055_1359		-2.180	0.005	NADH dehydrogenase II
VK055_3293	<i>typA</i>	-2.136	0.001	GTP-binding protein TypA/BipA
VK055_3301	<i>polA</i>	-1.959	0.006	DNA polymerase I, 3' -- 5' polymerase, 5' -- 3' and 3' -- 5' exonuclease
VK055_4601	<i>nadB</i>	-1.944	0.000	L-aspartate oxidase
VK055_1352	<i>mfd</i>	-1.932	0.000	transcription-repair coupling factor
VK055_3186	<i>rfbA</i>	-1.927	0.005	glucose-1-phosphate thymidylyltransferase
VK055_3626	<i>arnD</i>	-1.921	0.011	putative 4-deoxy-4-formamido-L-arabinose-phosphoundecaprenol deformylase ArnD

VK055_3086	<i>purH</i>	-1.914	0.037	phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase
VK055_3088	<i>purD</i>	-1.897	0.010	phosphoribosylamine--glycine ligase
VK055_3046	<i>ubiC</i>	-1.840	0.048	chorismate lyase
VK055_3303		-1.832	0.017	DSBA-like thioredoxin domain protein
VK055_4048	<i>exbB</i>	-1.812	0.014	tonB-system energizer ExbB
VK055_2155	<i>tig</i>	-1.787	0.000	trigger factor
VK055_3158	<i>recQ</i>	-1.775	0.008	ATP-dependent DNA helicase RecQ
VK055_2385	<i>glnD</i>	-1.729	0.010	protein-P-II uridylyltransferase
VK055_3137	<i>fre</i>	-1.718	0.002	NAD(P)H-flavin reductase
VK055_4099	<i>gshB</i>	-1.696	0.039	glutathione synthase
VK055_3257	<i>cpxR</i>	-1.641	0.006	response regulator
VK055_4938		-1.632	0.017	hypothetical protein
VK055_4619	<i>purL</i>	-1.619	0.000	phosphoribosylformylglycinamidine synthase
VK055_3184	<i>wecE</i>	-1.434	0.004	TDP-4-keto-6-deoxy-D-glucose transaminase familyprotein
VK055_3858	<i>arcB</i>	-1.426	0.023	aerobic respiration control sensor protein ArcB
VK055_5102	<i>iroC</i>	-1.409	0.029	lipid A export permease/ATP-binding protein MsbA
VK055_3823		-1.365	0.000	hypothetical protein
VK055_3817		-1.221	0.044	EAL domain protein
VK055_4161	<i>dsbC</i>	-1.167	0.039	thiol:disulfide interchange protein
VK055_2237		-1.120	0.018	ABC transporter transmembrane region 2 family protein
VK055_3679		-1.101	0.047	Glycerol-3-phosphate dehydrogenase

VK055_3152	yedA	-0.999	0.018	carboxylate/amino acid/amine transporter family protein
------------	------	--------	-------	---

150

151 Six of the 58 genes enhancing bacteremia were then selected for characterization based on representing diverse
152 cellular functions, potential conserved Enterobacterales bacteremia fitness factors (22, 23), or being unique to
153 *K. pneumoniae*. Transposon mutants for each gene of interest were selected from a KPPR1 ordered library (30)
154 and growth was observed in rich medium (LB). Apart from *glnA*, a glutamine synthetase, *in vitro* replication was
155 not influenced by mutations within these genes, meaning that contributions to bacteremia were likely unrelated
156 to basic cellular replication in nutrient rich environments (S3 Fig). *K. pneumoniae* bacteremia hits also had
157 varying effects on hypermucoviscosity (S3 Fig). Mutations within *arnD* significantly reduced, as previously
158 reported (30), while mutations within *glnA* and *pdxA* enhanced, hypermucoviscosity.

159

160 ***K. pneumoniae* bacteremia pathogenesis is perpetuated by factors that relay site-specific fitness.** To
161 validate the bacteremia TnSeq results, the five genes of interest that did not demonstrate *in vitro* replication
162 defects were further analyzed: *arnD*, *purD*, *dsbA*, *sspA*, and *pdxA*. Each gene was represented by 3-5 unique
163 transposon insertions within the TnSeq study, and insertion level analysis for each gene's unique mutations
164 across individual animals demonstrated consistent loss in splenic abundance compared to the input (S4 Fig).

165

166 For *in vivo* validation of the TnSeq study, individual transposon mutants were competed against KPPR1 at a 1:1
167 ratio in the intravascular bacteremia model. ArnD, a member of a Lipid A modification system, had the greatest
168 influence on bacteremia, demonstrating an *in vivo* fitness requirement in both the spleen and liver (Fig 2A, S5
169 Fig). A mutant in *purD*, involved in endogenous purine biosynthesis, approached but did not reach significance
170 ($P=0.08$) for splenic fitness defects, but was significantly defective in the liver (Fig 2B, S5 Fig). DsbA, a member
171 of a disulfide bond formation and secretion system, was required in both compartments but had a larger influence
172 on liver fitness (Fig 2C, S5 Fig). In contrast, SspA, a regulator of the stringent starvation response, was required
173 in the spleen but was dispensable in the liver (Fig 2D, S5 Fig). PdxA, a member of the vitamin B6 biosynthesis
174 cascade, had a modest but significant fitness defect in the spleen (Fig 2E, S5 Fig). Notably, each bacteremia
175 factor enhanced fitness in a distinct manner across blood filtering organs. Factors displayed unique patterns of

176 tissue-specific fitness with some, like ArnD and DsbA being required across organs, while PurD, SspA, and PdxA
177 were only required in one organ.

178

179 To confirm that fitness defects were specifically related to disruption of the genes of interest, *arnD* and *sspA*
180 were complemented *in trans* as mutations in these genes resulted in the largest splenic fitness defects.
181 Complementation of *arnD* significantly alleviated bacteremia fitness defects in comparison to *arnD*_{ev},
182 demonstrating that *arnD* enhances splenic and liver fitness (Fig 2F, S5 Fig). However, the *arnD*+pACYC_{*arnD*}
183 strain continued to demonstrate lower fitness in relation to KPPR1_{ev}. This is likely due to polar effects on
184 downstream genes of the collective function of the *arn* system, consisting of other Lipid A modifying enzymes
185 (31). Indeed, another member of the *arn* operon, *arnF*, was a TnSeq hit, further validating a role for this system
186 in bacteremia (Table 1). SspA is a regulator of the complex stringent starvation response and *sspA* mutations
187 lead to higher susceptibility to many environmental stressors (32). SspA complementation (*sspA*+pACYC_{*sspA*})
188 significantly ameliorated *K. pneumoniae* splenic fitness defects (Fig 2G, S5 Fig). Therefore, *in vivo*
189 complementation of both selected factors restored *K. pneumoniae* bacteremia fitness and specifically highlight
190 genes that influence spleen and liver fitness. This confirms that the TnSeq study revealed multiple factors that
191 directly enhance bacteremia as site-specific factors.

192

193 ***K. pneumoniae* utilizes multiple strategies to enhance site-specific fitness during bacteremia, including**
194 **metabolic flexibility, serum resistance, and LPS modification.** Since *in vivo* validation revealed distinct
195 fitness factor contributions to tissue-specific fitness, individual bloodstream compartments were investigated to
196 determine relevant interactions during infection. Bacterial replication occurs across compartments during
197 bacteremia, and metabolic flexibility is critical to growth in the bloodstream (20, 21, 22). To test contributions to
198 growth in serum, each of the five validated bacteremia fitness factors were assessed for *in vitro* replication in
199 mouse serum (Fig 3, S6 Fig). Purine biosynthesis, mediated by PurD, was required for growth in murine and
200 human serum as previously described (17, 33). This defect was not explained by complement resistance, as the
201 *purD* mutant had a similar growth defect in both active and heat inactivated serum (Fig 3B-C, S6 Fig). Genetic
202 complementation of *purD* restored the ability for serum growth compared to the wild-type or *purD* strains carrying
203 an empty complementation vector (Fig 3D, S6 Fig). Purines were sufficient to restore serum growth as

204 exogenous purine supplementation ameliorated *purD* defects (Fig 3E, S6 Fig). Vitamin B6 biosynthesis also
205 maximized replication in murine and human serum, as a *pdxA* mutant showed a mild defect (Fig 3A-C). Genetic
206 complementation of *pdxA* restored normal replication compared to wild-type and *pdxA* strains carrying the empty
207 complementation vector (Fig 3F, S6 Fig). This indicates that the serum is a nutrient restricted environment and
208 *K. pneumoniae* must endogenously produce key metabolites including purines and vitamin B6 to enable
209 bloodstream replication.

210

211 ArnD is a member of a well-described LPS modification system (*arn* operon) that covalently attaches arabinose
212 residues onto Lipid A (31). Mutations in *arnD* render *K. pneumoniae* significantly less hypermucoviscous and
213 reduce capsular polysaccharide production (S3 Fig, (30)). In active human serum, the *arnD* mutant was defective
214 for growth, which was attributable to complement-mediated killing as heat inactivation of human serum restored
215 normal *arnD* replication (Fig 3B-C, S6 Fig). A similar pattern was observed for the control strain *rfaH*, which lacks
216 capsular polysaccharide and is more susceptible to killing by active human serum (11, 12). Interestingly, murine
217 serum replication was enhanced in the absence of ArnD (Fig 3A, S6 Fig). Since ArnD was dispensable for murine
218 serum replication yet required for *in vivo* fitness in blood filtering organs, its fitness contribution in the spleen and
219 liver was investigated (Fig 4). Using spleen and liver organ homogenates from uninfected mice, *ex vivo*
220 competitions were performed for KPPR1 and *arnD*. Both experienced growth in organ homogenates (S7 Fig).
221 The *arnD* mutant had a subtle yet significant fitness defect in liver homogenate and a dramatic fitness defect in
222 splenic homogenate (Fig 4A). To define relevant splenic compartments, splenocytes were removed from the
223 homogenate, leaving only the soluble fraction. Strikingly, the mutant was also defective in splenic filtrate. This
224 indicates that ArnD increases protection against a soluble factor specifically found in the spleen.

225

226 **Splenic fitness is influenced by route of infection.** While ArnD and PurD dramatically influenced spleen and
227 serum fitness, respectively, the contributions of DsbA, SspA, and PdxA to splenic fitness were more subtle (Fig
228 2). DsbA and PdxA were directly linked to enhancing splenic fitness as *K. pneumoniae* fitness defects in *dsbA*
229 and *pdxA* were reproducible in uninfected splenic homogenate, mirroring the finding during infection (Fig 4C, E).
230 PurD and SspA fitness defects in the spleen were not observed in *ex vivo* assays (Fig 4B, D). This could be due
231 to direct, intravascular bacteremia only representing the third phase of pathogenesis and not encompassing the

232 entire infection progression. To determine if DsbA, SspA, and PdxA contributions to splenic fitness could be
233 further resolved, *in vivo* competitions were repeated using a bacteremic pneumonia model. As in the
234 intravascular model, each factor promoted bacteremic pneumonia in a distinct manner. DsbA substantially
235 supported lung fitness (Fig 5A, S8 Fig), linking DsbA to initial site fitness during bacteremia. SspA promoted
236 fitness across sites at similar magnitudes (Fig 5B, S8 Fig), yet splenic fitness defects were more pronounced
237 when incorporating a model with initial site infection and dissemination. Thus, utilization of the bacteremic
238 pneumonia model allows for greater resolution of splenic fitness defects and highlights that some factors, like
239 DsbA, may be most relevant to early phases of bacteremia.

240
241 PdxA significantly enhanced initial site fitness in the lung but had a striking effect on spleen and blood fitness
242 during bacteremic pneumonia. This pattern indicates potential contributions across all three phases of
243 bacteremia as dissemination defects may worsen fitness at secondary sites when compared to initial sites (12).
244 Since the splenic fitness defect was most apparent in the bacteremic pneumonia model, *pdxA* complementation
245 was performed in this infection. However, *in trans* complementation with *pdxA* and its upstream region did not
246 restore fitness at any site (S8 Fig). *pdxA* is a member of a large, multifunctional operon and transposon insertions
247 within *pdxA* may have polar mutations on downstream genes. To investigate the role of this operon in bacteremia,
248 lambda red mutagenesis was used to generate a marked Δp *pdxA* strain which demonstrated similar fitness
249 defects as the transposon *pdxA* mutant (Fig 5D, S8 Fig). Next, the Δp *pdxA* strain was complemented with *pdxA*
250 alone (Δp *pdxA*+pACYC_{*pdxA*}) or *pdxA* plus the downstream operon genes *ksgA*, *apaG* and *apaH*
251 (Δp *pdxA*+pACYC_{operon}). Complementation of *pdxA* alone was sufficient to restore lung fitness completely, and
252 significantly improved fitness in the spleen but not the blood (Fig 5E, S8 Fig). Complementation of *pdxA* and
253 downstream genes also improved fitness across sites (Fig 5E, S8 Fig), but did not significantly alleviate defects
254 in comparison to complementation with *pdxA* only. This indicates that complementation of *pdxA* partially restores
255 fitness defects even when downstream genes are included. Therefore, PdxA is a fitness factor in the lung and
256 spleen.

257
258 **Splenic fitness is enhanced by oxidative stress resistance mechanisms.** Genes enhancing oxidative stress
259 were widely represented in the significant TnSeq hits. For example, previous studies have demonstrated that

260 mutations in *mtlD*, *arcA*, *recQ*, and *cpxR* increase susceptibility to hydrogen peroxide killing across multiple
261 species (34, 35, 36, 37). Accordingly, survival of the *K. pneumoniae* mutants of interest after exposure to
262 hydrogen peroxide was measured (Fig 6A, S9 Fig). The *sspA* and *pdxA* mutants had significant killing compared
263 to KPPR1. SspA and PdxA were directly linked to oxidative stress as complementation of each restored the
264 ability of *K. pneumoniae* to resist oxidative stress (Fig 6B-C, S9 Fig).

265

266 Inflammatory CCR2⁺ monocytes are recruited to the lung during *K. pneumoniae* infection and are associated
267 with clearance of bacteria and higher rates of murine survival (12, 38, 39). To define if SspA and PdxA enhanced
268 bacteremic pneumonia by interactions with CCR2⁺ monocytes and subsequent oxidative stress, infections were
269 repeated in *Ccr2*^{-/-} mice (40). Fitness defects across sites for each strain mirrored that of the wild-type mice and
270 no differences in bacteremia fitness defects were observed between mouse genotypes (Fig 6D-F, S9 Fig). Thus,
271 DsbA, SspA, and PdxA mechanisms enhancing bacteremia fitness likely do not involve interactions with
272 inflammatory monocytes at this early timepoint.

273

274 Nox2, phagocyte NADPH oxidase, generates a powerful ROS burst that serves as a main host defense against
275 pathogens. To define if mechanisms mediating oxidative stress resistance were relevant *in vivo*, Nox2 knockout
276 (*Cybb*^{-/-}) mice were utilized (41). Bacteremic pneumonia was repeated using competitive infections of
277 KPPR1:*sspA* since this mutant showed remarkable susceptibility to oxidative stress and a fitness defect across
278 compartments using this model. In contrast to infections with wild-type mice, SspA was dispensable for fitness
279 across compartments in *Cybb*^{-/-} mice (Fig 6G, S9 Fig). Thus, SspA directly increases *K. pneumoniae* bacteremia
280 fitness by promoting resistance to Nox2-mediated oxidative stress in the lung and spleen. Additionally, KPPR1
281 abundance is significantly increased in the lung of *Cybb*^{-/-} mice compared to wild-type mice, demonstrating that
282 Nox2-mediated oxidative stress can partially control abundance of *K. pneumoniae* in the lung (S9 Fig). These
283 data directly link together a *K. pneumoniae* bacteremia fitness factor to a host mechanism of clearance.

284

285 Discussion

286 In this study, we combined murine intravascular bacteremia and TnSeq technology to define bacterial factors
287 required for *K. pneumoniae* fitness during bloodstream infection. We found that *K. pneumoniae* bacteremia is

288 enhanced by diverse factors, indicating that multiple mechanisms of pathogenesis are deployed to promote the
289 phase of bloodstream survival. Bacteremia fitness factors are distinct in their ability to mediate site-specific
290 fitness, with some genes being required for fitness in one site yet dispensable in others. Replication in serum
291 was supported by purine biosynthesis and endogenous vitamin B6 biosynthesis, emphasizing nutrient restriction
292 in this compartment. The ability of *K. pneumoniae* to resist Nox2-mediated oxidative stress during bacteremia
293 was also critical, and we demonstrate direct interactions between a bacteremia fitness factor and ROS *in vivo*.
294

295 Comparing factors required for lung and bloodstream fitness demonstrates that many mechanisms are required
296 across phases of bacteremia, yet others are phase specific. For *K. pneumoniae*, TnSeq has defined a broad
297 spectrum of factors that enhance initial site fitness in the lung (11). *K. pneumoniae* metabolic flexibility is required
298 in the lung through biosynthesis of branched chain (*ilvC/D*) and aromatic (*aroE*) amino acids. However, these
299 factors were not predicted by TnSeq as bloodstream fitness factors in the present study. Other pathways of
300 metabolic flexibility were shared between studies. Multiple members of the purine biosynthesis pathway were
301 predicted to enhance lung and bloodstream fitness, highlighting the importance of this pathway in more than one
302 phase of bacteremia. In contrast, certain factors are unique to later phases of bacteremia. For example, the
303 enzyme GmhB is dispensable for initial site fitness in the lung but was defined by this study and previous work
304 to enhance bloodstream survival (12). Therefore, therapies targeting specific factors may only be relevant in
305 certain phases of disease. By integrating models of direct bacteremia and primary site infection, we were able
306 to study bacteremia fitness factors across distinct phases of pathogenesis.
307

308 Infection at primary sites further illuminated contributions of individual factors across phases of bacteremia. For
309 example, DsbA substantially influenced lung fitness while contributing only subtly to splenic fitness across
310 models. SspA and PdxA were also defined as lung fitness factors, and primary site fitness defects increased
311 resolution of splenic defects. It is possible that site-specific stressors in the lung stimulate bacterial defenses that
312 subsequently change splenic fitness. For example, host fatty acid oxidation elicited by other strains of *K.*
313 *pneumoniae* in the lung results in bacterial adaptation to a new host microenvironment (42). Perhaps these
314 alterations significantly impact fitness at secondary sites, but this has not been experimentally validated for
315 bacteremia. It is also possible that SspA and PdxA contribute to unknown mechanisms of lung dissemination.

316

317 Even within the phase of bloodstream survival, different fitness factors are important in different sites of infection.
318 Despite active replication in both organs, *K. pneumoniae* abundance increases in the liver and decreases in the
319 spleen during bacteremia (19, 20). Tissue-resident cells determine differential host responses across sites, and
320 *K. pneumoniae* site-specific fitness has been minimally investigated. Our results demonstrate that multiple *K.*
321 *pneumoniae* fitness factors contribute to bacteremia through tissue-specific mechanisms as all five factors
322 selected for investigation demonstrated differential fitness patterns across organs (Fig 2). Some factors, like
323 ArnD and DsbA, were required in more than one tissue, while PurD, SspA, and PdxA were required in only one.
324 Thus, the results of this study both illuminate *K. pneumoniae* tissue-specific fitness strategies and define bacterial
325 mutants that can be used as tools to explore host responses at distinct sites.

326

327 Gram-negative species actively replicate in the serum, and the biosynthesis of cellular building blocks is critical
328 for survival in the blood since available nutrients differ by site (10, 22). Purine biosynthesis is required for
329 replication in the blood (33), and our TnSeq results demonstrate that many members of the purine biosynthesis
330 operon enhance *K. pneumoniae* bacteremia. Liver fitness was also enhanced by purine biosynthesis, yet splenic
331 fitness did not reach statistical significance for this test. This tissue-specific dynamic for PurD indicates that
332 purine availability may be more restricted in the serum and liver than the spleen. To our knowledge, the source
333 of splenic purines remains unknown and whether the host actively restricts purine availability in the lung, serum,
334 and liver is undefined.

335

336 Mechanisms of bacteremia fitness extended beyond metabolic flexibility as TnSeq revealed that many genes
337 supporting splenic fitness were also associated with resistance to oxidative stress. Specifically, we discovered
338 that SspA is required for oxidative stress resistance *in vivo*. Mice lacking the NADPH oxidase Nox2 (*Cybb*^{-/-})
339 developed bacteremic pneumonia, yet SspA was dispensable for colonization across sites (Fig 6G) in this
340 background. In contrast, SspA was required for fitness in wild-type mice, which produce a normal ROS response
341 (Fig 5B). This “genetics-squared” approach, comparing infection phenotypes for both *K. pneumoniae* and host
342 mutants allowed resolution of a specific *in vivo* interaction. Thus, the stringent response regulator SspA
343 enhances Gram-negative bacteremia by supporting resistance to oxidative stress, and ROS are responsible for

344 eliciting some portion of *K. pneumoniae* control during bloodstream infection. However, relevant sources of ROS
345 contributing to this response remain unclear. Monocyte-derived macrophages are likely a minimal source of ROS
346 since mice lacking CCR2 do not demonstrate the alleviation of fitness defects in the absence of SspA observed
347 in mice lacking Nox2. Future studies should determine the relevance of neutrophils and other immune cells in
348 this interaction. Notably, SspA displayed tissue-specific fitness during intravascular bacteremia and was required
349 in the spleen yet dispensable in the liver. These differences were not recapitulated *ex vivo* as *sspA* demonstrated
350 no fitness defect in homogenate from either organ. Thus, the oxidative stress either arises from spleen-intrinsic
351 factors that act over a longer time course or from spleen extrinsic factors or cells. In *Francisella tularensis* and
352 *E. coli*, SspA regulates a large network of genes through contact with σ^{70} that alters RNA polymerase
353 transcription of associated genes (43). This dysregulation of a housekeeping sigma factor could create cellular
354 disorder resulting in susceptibility to oxidative and environmental stressors (32). Since the stringent starvation
355 response is a complex system initiated to resist immune cells, redirect metabolism, and promote virulence (44),
356 there could also be multiple additional mechanisms by which SspA supports tissue-specific fitness in addition to
357 ROS resistance.

358

359 The use of *ex vivo* organ homogenate did allow resolution of ArnD-mediated tissue-specific fitness. The *arn*
360 operon is well-documented in its role in modifying LPS Lipid A for the repulsion of cationic antimicrobial peptides
361 (31, 45). While ArnD conveyed a significant fitness advantage in the liver and spleen, a surprising finding was
362 that ArnD also conveyed a fitness advantage in the soluble splenic fraction. The fitness defect in the absence of
363 ArnD is likely due to the secretion of an unidentified factor by splenocytes. Together, use of *ex vivo* organ
364 homogenate suggests that factors inherent to individual tissues may inhibit *K. pneumoniae* growth.

365

366 A limitation of this study is the investigation of only a small subset of genes revealed as enhancing infection.
367 Remarkably, genes defined by TnSeq as influencing bacteremia both supported and suppressed infection. This
368 study focused on factors encoded by genes in which mutations decreased bacteremia fitness. However, other
369 genes in which mutations led to greater *K. pneumoniae* bacteremia fitness may represent factors that are
370 unfavorable for the bacteria during infection. This subset is also highly diverse and should be mined for future
371 studies further understanding bacteremia fitness dynamics. Another limitation of this study is the ongoing lack of

372 *in vivo* models to study the second phase of bacteremia, dissemination. The ability to measure dissemination
373 separately from lung and splenic fitness would further define relevant interactions for each factor.

374

375 Bacteremia is a complex family of infections encompassing multiple sites and responses. Resident cells of the
376 spleen vary widely from those in the liver, and nutrients limited at one site may be abundant in the other. Thus,
377 it is necessary to define factors specifically enhancing bloodstream survival to better understand *K. pneumoniae*
378 bacteremia. This study is the first to define *K. pneumoniae* splenic fitness factors in an *in vivo* mammalian system.
379 Factors enhancing *K. pneumoniae* bacteremia are largely diverse yet represent functions conserved across
380 primary sites and other Gram-negative species and may serve as attractive targets for future therapeutics.

381

382 **Materials and Methods**

383 **Murine Bacteremia.** This study was performed with careful adherence to humane animal handling guidelines
384 (46) and approved by the University of Michigan Institutional Animal Care and Use Committee (protocol:
385 PRO00009406). Mice used were between 6-12 weeks in age, and each experiment used male and female mice.
386 Wild-type, *Ccr2*^{-/-} (40), and *Cybb*^{-/-} (41) mice from the C57BL/6 lineage were bred and maintained at the
387 University of Michigan or directly purchased (Jackson Laboratory, Bar Harbor, ME). In each model of bacteremia,
388 *K. pneumoniae* overnight cultures were centrifuged at 5,000xg for 15 minutes and pellets were resuspended in
389 PBS. Cultures were adjusted to the correct concentration based on OD₆₀₀ measurement. To model bacteremic
390 pneumonia and intravascular bacteremia, mice were infected as previously described (12). For pneumonia,
391 animals were anesthetized with isoflurane and a 50 μ L of PBS containing 1x10⁶ CFU of *K. pneumoniae* was
392 retropharyngeally administered. For intravascular bacteremia, 100 μ L of PBS containing 1x10⁵ CFU of *K.*
393 *pneumoniae* was administered by injection via the tail vein. Mice were sacrificed at 24 hours post-inoculation
394 and lung, spleen, liver, or blood were collected. Cardiac punctures were used to obtain whole blood, which was
395 dispensed into heparin coated tubes (BD, Franklin Lakes, NJ). After collection, organs were homogenized in
396 PBS and bacterial burden was calculated by quantitative plating. When appropriate, competitive infections
397 contained a 1:1 ratio of wild-type KPPR1 and a mutant of interest marked with antibiotic selection. Competitive
398 indices were calculated by CFU using the following equation: (*mutant output/wild-type output*)/(*mutant input/wild-*
399 *type input*).

400

401

Bacterial Strains and Reagents. Reagents were sourced from Sigma-Aldrich (St. Louis, MO) unless otherwise noted. *K. pneumoniae* strains were cultured overnight at 37°C with shaking in LB broth (Fisher Bioreagents, Ottawa, ON) or at 30°C on LB agar plates. Media were supplemented with 40µg/mL kanamycin to select for transposon mutants and isogenic knockout strains, or with 50µg/mL chloramphenicol to select for strains containing the plasmid pACYC184 and its derivatives. All bacterial strains in this study are detailed in S3 Table, and primers are detailed in S4 Table.

407

408

Complementation plasmids were generated as previously described (12). The complementation vector, pACYC184 was linearized by BamHI and HindIII digestion (New England Biolabs, Ipswich, MA). The locus for *arnD*, *purD*, *sspA*, *pdxA*, or *pdxA-ksgA-apaG-apaH*, along with upstream regions within 500 base pairs of the open reading frame predicted to contain the native promoter (predicted by SoftBerry BPROM; Softberry Inc, Mount Kisco, NY), were amplified from KPPR1 using primers with 5' homology to linearized pACYC. For each gene, Gibson assembly was performed using the generated PCR products and linearized pACYC184 according to the manufacturer's protocol with HiFi DNA Assembly Master Mix (New England Biolabs). The *pdxA*_{operon} amplicon and pACYC184 was ligated after digestion using T4 DNA ligase according to the manufacturer's protocol (New England Biolabs). The Gibson or ligated product was transformed into *E. coli* TOP10 (New England Biolabs), and constructs were confirmed using full length plasmid sequencing (Plasmidsaurus, Eugene, OR). Verified plasmids were mobilized into *K. pneumoniae* by electroporation.

419

420

To generate a *pdxA* (VK055_2525) isogenic knockout, Lambda Red mutagenesis was performed as described (10, 11, 12, 47). Briefly, electrocompetent KPPR1 harboring the pKD46 plasmid was generated using an overnight culture grown at 30°C. The culture was diluted into LB broth with 50µg/mL spectinomycin, 50mM L-arabinose, 0.5mM EDTA (Promega, Madison, WI), and 10µM salicylic acid and grown at 30°C until exponential phase. Cells were cooled on ice for 30 minutes and then pelleted at 8,000xg for 15 minutes. Serial washes were performed at 4°C using 50mL 1mM HEPEs pH 7.4 (Gibco, Grand Island, NY), 50mL diH₂O, and 20mL 10% glycerol. To generate site specific targets for *pdxA*, a kanamycin resistance cassette from the pKD4 plasmid was amplified with primers also containing 65 base pairs of homology at the 5' end to the chromosome flanking the

428 *pdxA* open reading frame (S4 Table). This fragment was electroporated into competent KPPR1-pKD46 and
429 transformants were recovered overnight at 30°C, then selected on agar containing kanamycin after a 37°
430 incubation. Knockouts were confirmed with colony PCR using primers flanking and internal to *pdxA*.

431

432 **Transposon insertion-site sequencing (TnSeq).** A previously described KPPR1 transposon library consisting
433 of ~25,000 unique random insertions was used to generate four input pools (11, 28). To generate pools, the
434 library was thawed, mixed, and 1mL was removed, pelleted, and resuspended in fresh PBS (Corning, Corning,
435 NY). The OD₆₀₀ was measured, and the library concentration adjusted to 4x10³ CFU/mL. 100uL of the adjusted
436 library was plated to achieve a density of ~400 distinct colonies on individual plates. To achieve a desired
437 complexity of 8,500 transposon mutants/pool (S2 Fig), 22 plates were scraped and the CFU combined into PBS.
438 This was repeated four times to generate unique pools (Pools A-D) which were stored at -80°C until use.

439

440 Mice were inoculated with one of the four input pools at a dose of 1x10⁶ CFU/mouse in a volume of 100uL via
441 tail vein injection (29). After 24 hours, the mice were euthanized, and spleens were removed and homogenized
442 in 2mL of PBS. Spleen colonization was determined based on quantitative culture using 100uL of homogenate.
443 For each mouse the remaining homogenate was plated in 125uL increments on 100x15mm petri dishes
444 (Corning), incubated at 37°C overnight, scraped, combined in ~125mL PBS, and mixed until homogenous. The
445 OD₆₀₀ was measured and 1x10⁹ CFU was removed, pelleted at 5,000xg for 15 minutes, supernatant removed,
446 and the pellet stored at -80°C until DNA extraction. Any spleen with <8.5x10³ CFU/spleen was removed from the
447 study as this colonization is lower than the inoculum mutant complexity and therefore may yield unreliable results.
448 For each input and spleens with appropriate colonization, DNA was extracted from pellets using the Qiagen
449 DNeasy UltraClean Microbial Kit (Qiagen, Hilden DE) according to the manufacturer's instructions. Purified DNA
450 was submitted to the University of Minnesota Genomics Center for quality verification, library preparation, and
451 sequencing (48). Samples were sequenced using paired-end mode on a NovaSeq 6000 with a depth of 12 million
452 reads/sample. Reads were mapped and normalized as previously described (49), and genes that influence
453 bacteremia fitness were identified using the TnSeqDiff pipeline (50).

454

455 **Growth Curves.** To assess growth of *K. pneumoniae*, overnights cultures were adjusted to 1×10^7 CFU/mL in
456 the indicated medium. Using an Eon microplate reader and Gen5 software (Version 2.0, BioTek, Winooski, VT),
457 OD₆₀₀ was measured every 15 minutes and samples were incubated at 37°C with aeration for the duration of the
458 experiment. Strains were measured in the following conditions: LB, M9 salts+20% active human serum, M9
459 salts+20% heat inactivated human serum, M9 salts+10% murine serum. Differences in growth were detected
460 by area under the curve (AUC, GraphPad Prism Software, LaJolla, CA).

461

462 **Hypermucoviscosity.** To measure hypermucoviscosity, 500µL of a 1.5mL LB overnight culture for each strain
463 was added to 1.5mL fresh PBS. 900µL of the suspension was used to measure the OD₆₀₀ (pre-spin) while the
464 remaining suspension was centrifuged at 1,000xg for 5 minutes. The OD₆₀₀ of the upper 900µL of supernatant
465 was then measured (post-spin). Hypermucoviscosity=(post-spin)/(pre-spin).

466

467 **Ex vivo Competition Assays.** Uninfected murine spleen and liver were homogenized in 2mL PBS and used for
468 ex vivo competition assays as previously described (12). Briefly, 90µL of homogenate and 10µL of PBS
469 containing 1×10^4 CFU of a 1:1 mixture of *K. pneumoniae* strains were combined and incubated at 37°C for three
470 hours. CFU of each strain at t=0 and t=3 was measured by serial dilutions and quantitative culture from which
471 competitive indices were generated.

472

473 **Oxidative Stress Survival Assay.** To define *K. pneumoniae* survival in the presence of oxidative stress,
474 overnight bacterial cultures were adjusted to 1×10^7 CFU/mL in PBS+1mM H₂O₂ and incubated for 2 hours at
475 37°C. Serial dilutions and quantitative culture defined the abundance of each strain before (t=0) and after (t=2)
476 incubation. Percent survival was defined as [(CFU at t=2)/(CFU at t=0)]*100.

477

478 **Statistical Analysis.** All *in vivo* experiments were performed using at least two independent infections. All *in*
479 *vitro* and *ex vivo* experiments were performed as independent biological replicates. Statistical significance was
480 defined as a *p*-value <0.05 (GraphPad) as determined using: one-sample tests to assess differences from a
481 hypothetical value of zero for competitive indices, unpaired and paired *t* tests to assess differences between two
482 groups, or ANOVAs with Dunnett's multiple comparisons to assess differences among multiple groups.

483

484

485 **Acknowledgements**

486 The authors also thank: Dr. Bethany Moore for supplying the *Ccr2*^{-/-} mouse lineage; Dr. Gabriel Nunez for
487 supplying the *Cybb*^{-/-} mouse lineage; Dr. Jay Vornhagen for assistance with data visualization.

488

489 **References**

490 1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third
491 International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). *JAMA*. 2016;315(8):801-
492 10.

493 2. Holmes CL, Anderson MT, Mobley HLT, Bachman MA. Pathogenesis of Gram-Negative
494 Bacteremia. *Clin Microbiol Rev*. 2021;34(2).

495 3. Reinhart K, Daniels R, Kissoon N, Machado FR, Schachter RD, Finfer S. Recognizing Sepsis
496 as a Global Health Priority - A WHO Resolution. *N Engl J Med*. 2017;377(5):414-7.

497 4. Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS, et al. The Microbiology
498 of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial Surveillance Program.
499 *Antimicrob Agents Chemother*. 2019;63(7):e00355-19.

500 5. WHO. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and
501 development of new antibiotics. World Health Organization; 2017.

502 6. CDC. Antibiotic Resistance Threats in the United State, 2013. Atlanta, GA: U.S. Department of
503 Health and Human Services, Centers for Disease Control and Prevention; 2013.

504 7. Collaborators AR. Global burden of bacterial antimicrobial resistance in 2019: a systematic
505 analysis. *Lancet*. 2022;399(10325):629-55.

506 8. Collaborators EAR. The burden of bacterial antimicrobial resistance in the WHO European
507 region in 2019: a cross-country systematic analysis. *Lancet Public Health*. 2022;7(11):e897-e913.

508 9. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-
509 prevalence survey of health care-associated infections. *N Engl J Med*. 2014;370(13):1198-208.

510 10. Vornhagen J, Sun Y, Breen P, Forsyth V, Zhao L, Mobley HLT, et al. The *Klebsiella pneumoniae*
511 citrate synthase gene, *gltA*, influences site specific fitness during infection. PLoS Pathog.
512 2019;15(8):e1008010.

513 11. Bachman MA, Breen P, Deornellas V, Mu Q, Zhao L, Wu W, et al. Genome-Wide Identification
514 of *Klebsiella pneumoniae* Fitness Genes during Lung Infection. mBio. 2015;6(3):e00775.

515 12. Holmes CL, Smith SN, Gurczynski SJ, Severin GB, Unverdorben LV, Vornhagen J, et al. The
516 ADP-Heptose Biosynthesis Enzyme GmhB is a Conserved Gram-Negative Bacteremia Fitness Factor.
517 Infect Immun. 2022;90(7):e0022422.

518 13. Bachman MA, Lenio S, Schmidt L, Oyler JE, Weiser JN. Interaction of lipocalin 2, transferrin,
519 and siderophores determines the replicative niche of *Klebsiella pneumoniae* during pneumonia. mBio.
520 2012;3(6).

521 14. Holden VI, Breen P, Houle S, Dozois CM, Bachman MA. *Klebsiella pneumoniae* Siderophores
522 Induce Inflammation, Bacterial Dissemination, and HIF-1 α Stabilization during Pneumonia. mBio.
523 2016;7(5):e01397-16.

524 15. Short FL, Di Sario G, Reichmann NT, Kleanthous C, Parkhill J, Taylor PW. Genomic profiling
525 reveals distinct routes to complement resistance in *Klebsiella pneumoniae*. Infect Immun.
526 2020;88(8):e00043-20.

527 16. Weber BS, De Jong AM, Guo ABY, Dharavath S, French S, Fiebig-Comyn AA, et al. Genetic
528 and Chemical Screening in Human Blood Serum Reveals Unique Antibacterial Targets and
529 Compounds against *Klebsiella pneumoniae*. Cell Rep. 2020;32(3):107927.

530 17. Bruchmann S, Feltwell T, Parkhill J, Short FL. Identifying virulence determinants of multidrug-
531 resistant *Klebsiella pneumoniae* in *Galleria mellonella*. Pathog Dis. 2021;79(3).

532 18. Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate
533 immunity-associated pathologies. Cell Mol Immunol. 2015;12(1):5-23.

534 19. Wanford JJ, Hames RG, Carreno D, Jasiunaite Z, Chung WY, Arena F, et al. Interaction
535 of *Klebsiella pneumoniae* with tissue macrophages in a mouse infection model and ex-vivo pig organ
536 perfusions: an exploratory investigation. *Lancet Microbe*. 2021;2(12):e695-e703.

537 20. Anderson MT, Brown AN, Pirani A, Smith SN, Photenhauer AL, Sun Y, et al. Replication
538 Dynamics for Six Gram-Negative Bacterial Species during Bloodstream Infection. *mBio*.
539 2021;12(4):e0111421.

540 21. Armbruster CE, Forsyth VS, Johnson AO, Smith SN, White AN, Brauer AL, et al. Twin arginine
541 translocation, ammonia incorporation, and polyamine biosynthesis are crucial for *Proteus mirabilis*
542 fitness during bloodstream infection. *PLoS Pathog*. 2019;15(4):e1007653.

543 22. Anderson MT, Mitchell LA, Zhao L, Mobley HLT. *Citrobacter freundii* fitness during bloodstream
544 infection. *Sci Rep*. 2018;8(1):11792.

545 23. Anderson MT, Mitchell LA, Zhao L, Mobley HLT. Capsule Production and Glucose Metabolism
546 Dictate Fitness during *Serratia marcescens* Bacteremia. *mBio*. 2017;8(3):e00740-17.

547 24. Subashchandrabose S, Smith S, DeOrnellas V, Crepin S, Kole M, Zahdeh C, et al. *Acinetobacter*
548 *baumannii* Genes Required for Bacterial Survival during Bloodstream Infection. *mSphere*.
549 2016;1(1):e00013-15.

550 25. Subashchandrabose S, Smith SN, Spurbeck RR, Kole MM, Mobley HLT. Genome-wide
551 detection of fitness genes in uropathogenic *Escherichia coli* during systemic infection. *PLoS Pathog*.
552 2013;9(12):e1003788.

553 26. Crépin S, Ottosen EN, Peters K, Smith SN, Himpsl SD, Vollmer W, et al. The lytic
554 transglycosylase MltB connects membrane homeostasis and in vivo fitness of *Acinetobacter*
555 *baumannii*. *Mol Microbiol*. 2018;109(6):745-62.

556 27. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial
557 bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide
558 surveillance study. *Clin Infect Dis*. 2004;39(3):309-17.

559 28. Broberg CA, Wu W, Cavalcoli JD, Miller VL, Bachman MA. Complete Genome Sequence of
560 *Klebsiella pneumoniae* Strain ATCC 43816 KPPR1, a Rifampin-Resistant Mutant Commonly Used in
561 Animal, Genetic, and Molecular Biology Studies. *Genome Announc.* 2014;2(5).

562 29. Smith SN, Hagan EC, Lane MC, Mobley HL. Dissemination and systemic colonization of
563 uropathogenic *Escherichia coli* in a murine model of bacteremia. *mBio*. 2010;1(5):e00262-10.

564 30. Mike LA, Stark AJ, Forsyth VS, Vornhagen J, Smith SN, Bachman MA, et al. A systematic
565 analysis of hypermucoviscosity and capsule reveals distinct and overlapping genes that impact
566 *Klebsiella pneumoniae* fitness. *PLoS Pathog.* 2021;17(3):e1009376.

567 31. Breazeale SD, Ribeiro AA, McClerren AL, Raetz CR. A formyltransferase required for polymyxin
568 resistance in *Escherichia coli* and the modification of lipid A with 4-Amino-4-deoxy-L-arabinose.
569 Identification and function of UDP-4-deoxy-4-formamido-L-arabinose. *J Biol Chem.*
570 2005;280(14):14154-67.

571 32. Hansen AM, Qiu Y, Yeh N, Blattner FR, Durfee T, Jin DJ. SspA is required for acid resistance in
572 stationary phase by downregulation of H-NS in *Escherichia coli*. *Mol Microbiol*. 2005;56(3):719-34.

573 33. Samant S, Lee H, Ghassemi M, Chen J, Cook JL, Mankin AS, et al. Nucleotide biosynthesis is
574 critical for growth of bacteria in human blood. *PLoS Pathog.* 2008;4(2):e37.

575 34. Chaturvedi V, Bartiss A, Wong B. Expression of bacterial *mtlD* in *Saccharomyces cerevisiae*
576 results in mannitol synthesis and protects a glycerol-defective mutant from high-salt and oxidative
577 stress. *J Bacteriol.* 1997;179(1):157-62.

578 35. Wong SM, Alugupalli KR, Ram S, Akerley BJ. The ArcA regulon and oxidative stress resistance
579 in *Haemophilus influenzae*. *Mol Microbiol*. 2007;64(5):1375-90.

580 36. Stohl EA, Seifert HS. *Neisseria gonorrhoeae* DNA recombination and repair enzymes protect
581 against oxidative damage caused by hydrogen peroxide. *J Bacteriol.* 2006;188(21):7645-51.

582 37. López C, Checa SK, Soncini FC. CpxR/CpxA Controls *scsABCD* Transcription To Counteract
583 Copper and Oxidative Stress in *Salmonella enterica* Serovar Typhimurium. *J Bacteriol.* 2018;200(16).

584 38. Xiong H, Carter RA, Leiner IM, Tang YW, Chen L, Kreiswirth BN, et al. Distinct Contributions of
585 Neutrophils and CCR2+ Monocytes to Pulmonary Clearance of Different *Klebsiella pneumoniae*
586 Strains. *Infect Immun.* 2015;83(9):3418-27.

587 39. Xiong H, Keith JW, Samilo DW, Carter RA, Leiner IM, Pamer EG. Innate Lymphocyte/Ly6C(hi)
588 Monocyte Crosstalk Promotes *Klebsiella pneumoniae* Clearance. *Cell.* 2016;165(3):679-89.

589 40. Moore BB, Paine R, Christensen PJ, Moore TA, Sitterding S, Ngan R, et al. Protection from
590 pulmonary fibrosis in the absence of CCR2 signaling. *J Immunol.* 2001;167(8):4368-77.

591 41. Werner JL, Escolero SG, Hewlett JT, Mak TN, Williams BP, Eishi Y, et al. Induction of Pulmonary
592 Granuloma Formation by *Propionibacterium acnes* Is Regulated by MyD88 and Nox2. *Am J Respir Cell*
593 *Mol Biol.* 2017;56(1):121-30.

594 42. Wong Fok Lung T, Charytonowicz D, Beaumont KG, Shah SS, Sridhar SH, Gorrie CL, et al.
595 *Klebsiella pneumoniae* induces host metabolic stress that promotes tolerance to pulmonary infection.
596 *Cell Metab.* 2022;34(5):761-74.e9.

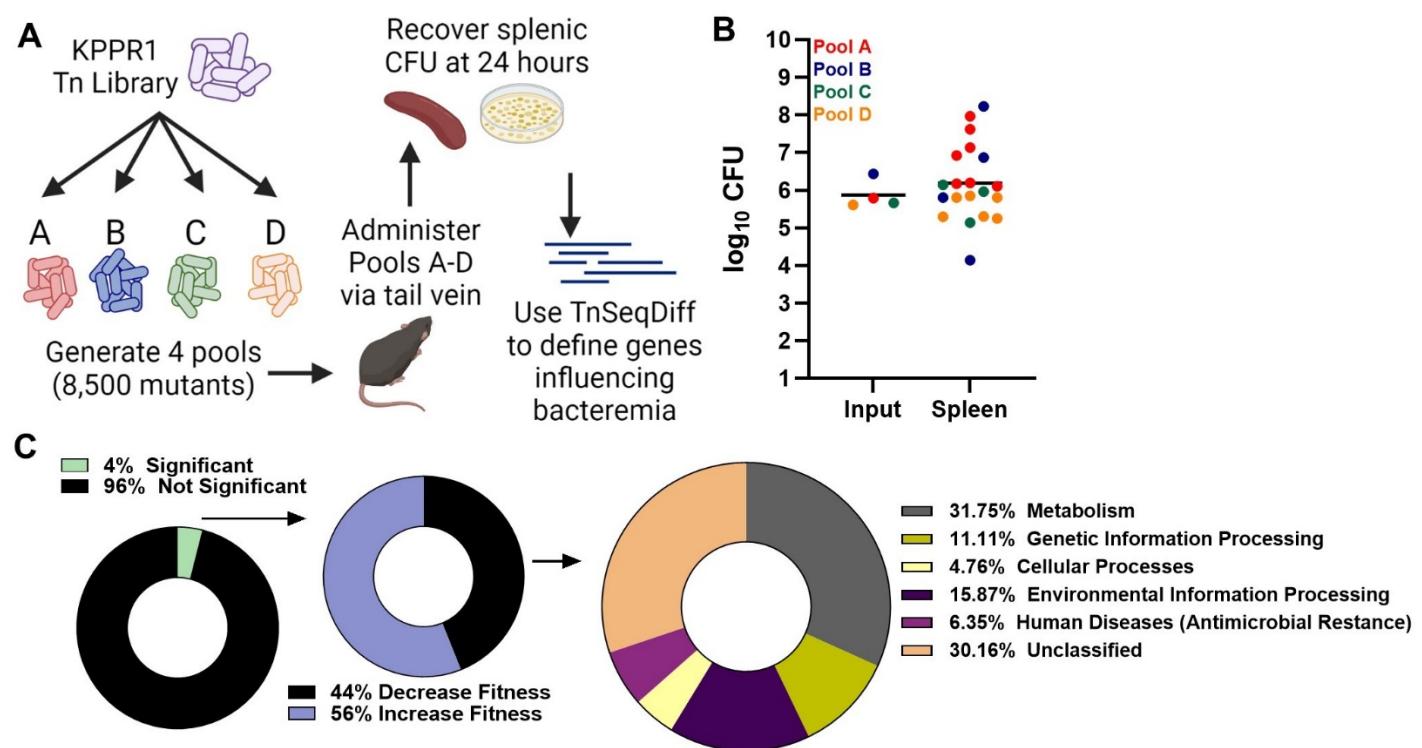
597 43. Travis BA, Ramsey KM, Prezioso SM, Tallo T, Wandzilak JM, Hsu A, et al. Structural Basis for
598 Virulence Activation of *Francisella tularensis*. *Mol Cell.* 2021;81(1):139-52.e10.

599 44. Irving SE, Choudhury NR, Corrigan RM. The stringent response and physiological roles of
600 (pp)pGpp in bacteria. *Nat Rev Microbiol.* 2021;19(4):256-71.

601 45. Tiwari V, Panta PR, Billiot CE, Douglass MV, Herrera CM, Trent MS, et al. A *Klebsiella*
602 *pneumoniae* DedA family membrane protein is required for colistin resistance and for virulence in wax
603 moth larvae. *Sci Rep.* 2021;11(1):24365.

604 46. (US) NRC. Guide for the care and use of laboratory animals. Washington, D.C.: National
605 Academies Press; 2011.

606 47. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in *Escherichia coli* K-
607 12 using PCR products. *Proc Natl Acad Sci U S A.* 2000;97(12):6640-5.

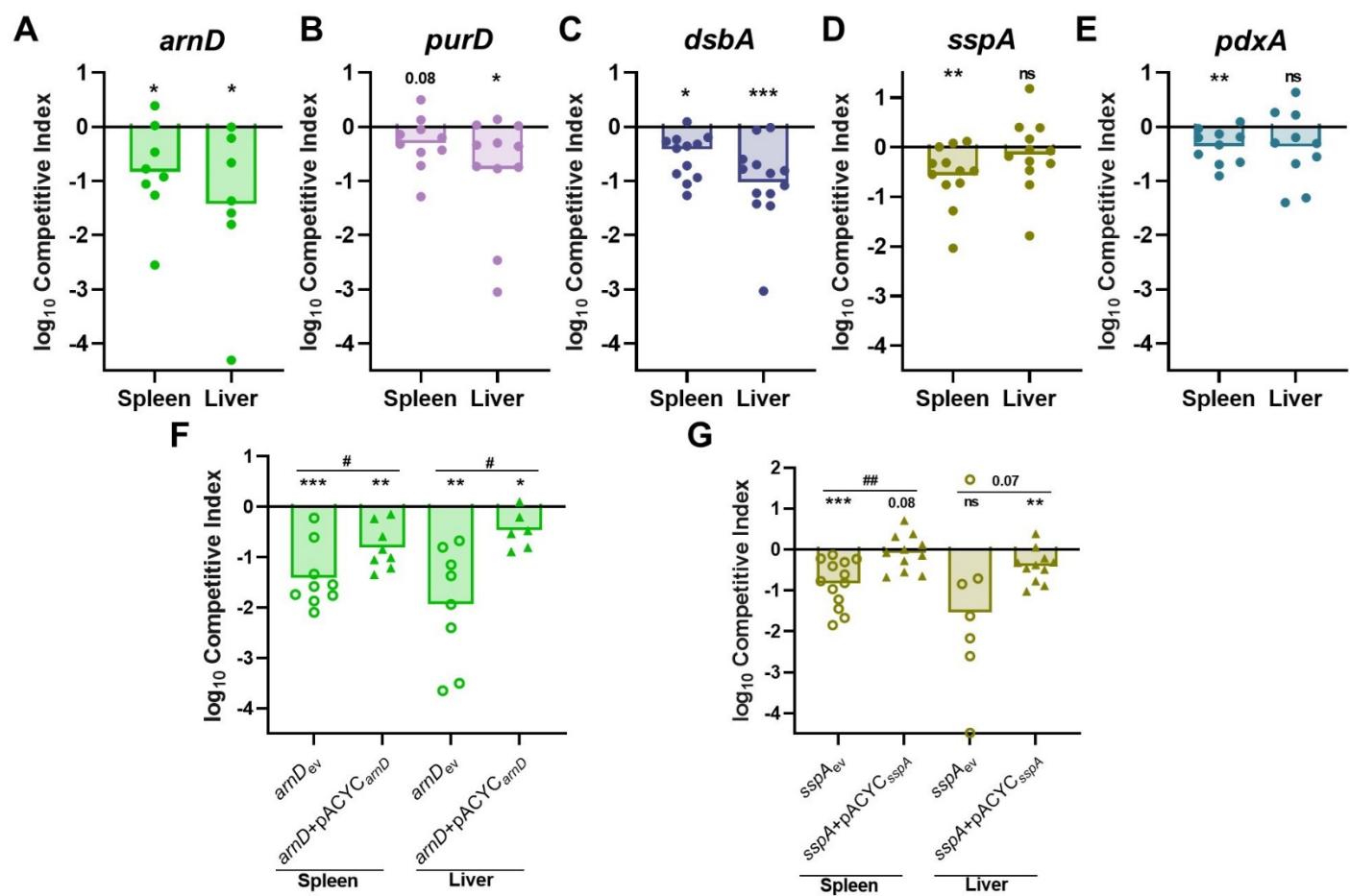

608 48. Palani N. Transposon insertion sequencing (Tn-seq) library preparation protocol - includes UMI
609 for PCR duplicate removal <https://dx.doi.org/10.17504/protocols.io.w9sfh6e2019> [

610 49. Goodman AL, Wu M, Gordon JI. Identifying microbial fitness determinants by insertion
611 sequencing using genome-wide transposon mutant libraries. *Nat Protoc.* 2011;6(12):1969-80.

612 50. Zhao L, Anderson MT, Wu W, T Mobley HL, Bachman MA. TnSeqDiff: identification of
613 conditionally essential genes in transposon sequencing studies. *BMC Bioinformatics.* 2017;18(1):326.

614

615 **Figures**

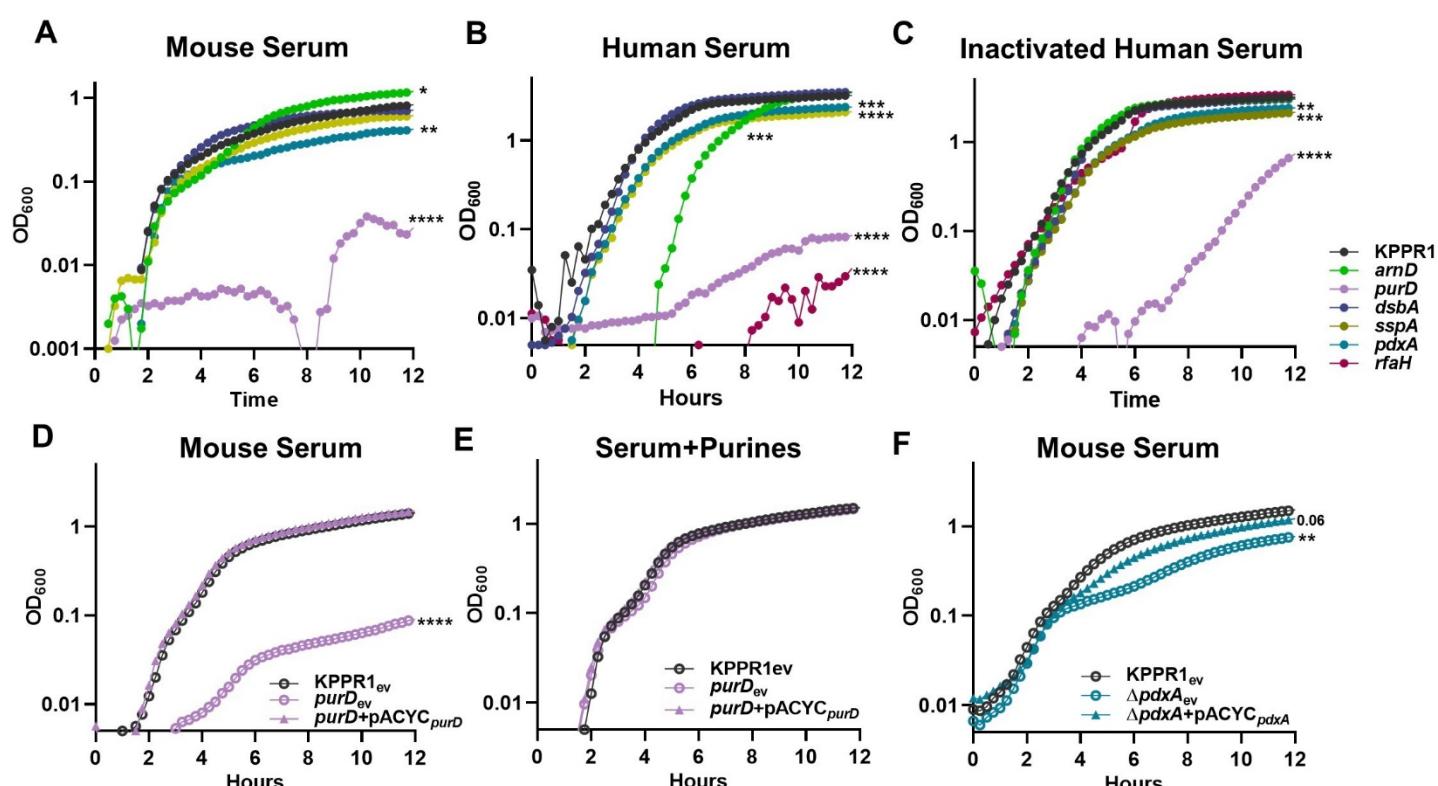


616

617 **Fig 1. Transposon insertion-site sequencing (TnSeq) reveals that *K. pneumoniae* bacteremia is**
618 **enhanced by a set of genes representing diverse fitness mechanisms.** (A) Overview of *K.*
619 *pneumoniae* bacteremia TnSeq. A KPPR1 transposon library was divided into four pools containing
620 8,500 unique insertions and administered to mice via the tail vein at a 1×10^6 CFU dose. After 24 hours,
621 splenic CFU was recovered, and DNA was sequenced. The TnSeqDiff pipeline determined genes
622 influencing fitness. (B) The input and splenic CFU burden for each pool and mouse represented in
623 TnSeq. (C) Genes represented in TnSeq (~3,800 genes) that were defined as influencing infection (132

624 genes), and primary KEGG orthology for genes increasing *K. pneumoniae* fitness during bacteremia
625 (58 genes).

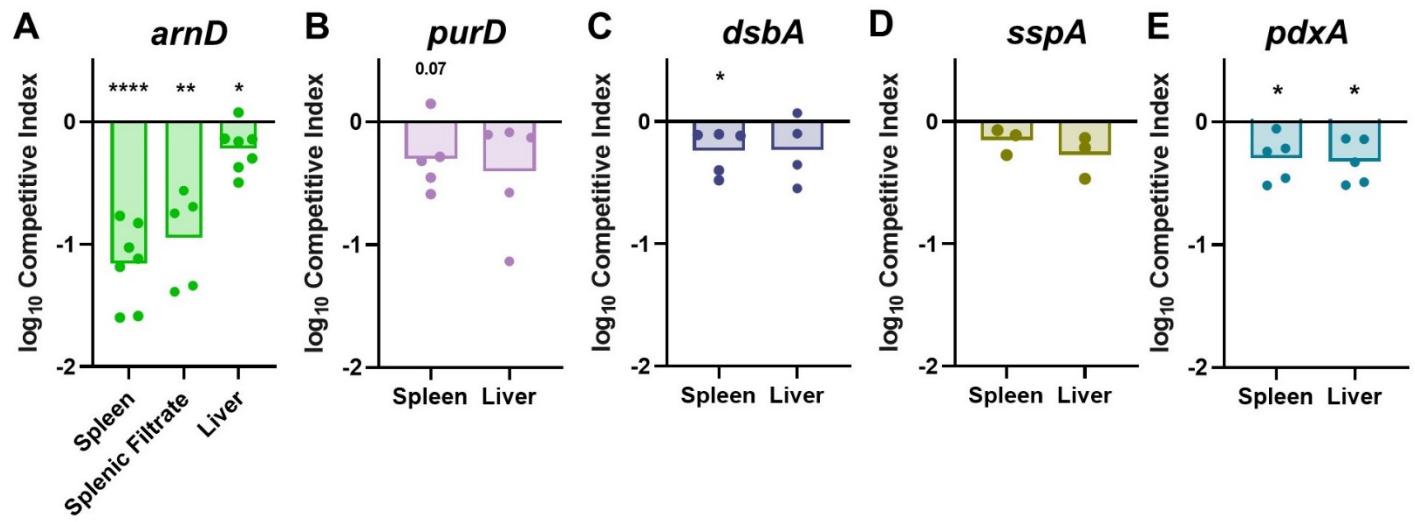
626



627

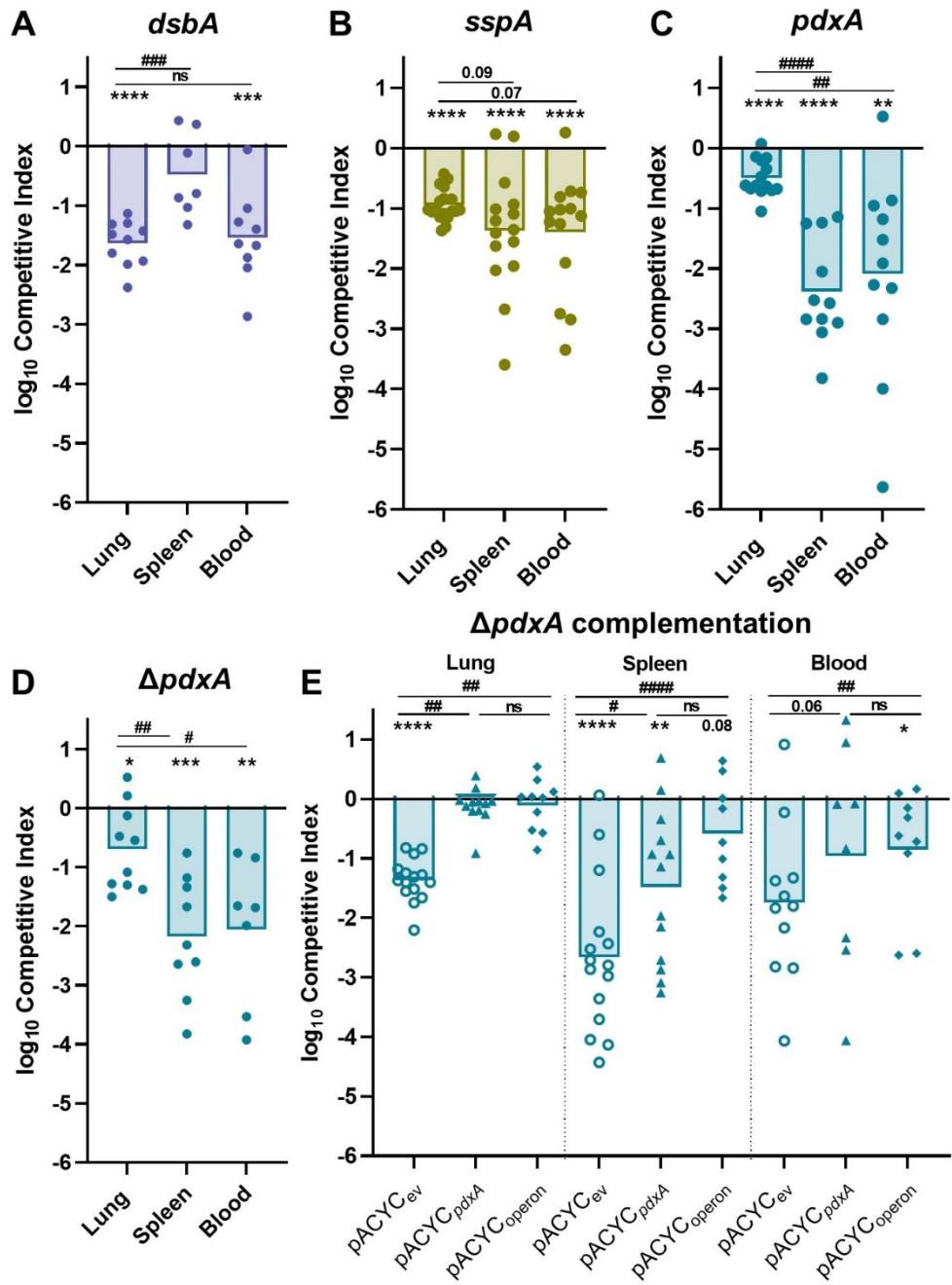
628 **Fig 2. *K. pneumoniae* bacteremia fitness factors directly relay tissue-specific fitness**
629 **advantages.** Five factors indicated by TnSeq as significantly enhancing bacteremia were selected for
630 *in vivo* validation using the tail vein injection model. The 1:1 inoculum consisted of KPPR1 and
631 transposon mutants for (A) *arnD*, (B) *purD*, (C) *dsbA*, (D) *sspA*, or (E) *pdxA*. Competitions were also
632 performed using strains carrying the empty pACYC vector (_{ev}) or complementation provided on
633 pACYC184 under native promoter control for (F) *arnD* (*arnD*+pACYC_{arnD}) or (G) *sspA*
634 (*sspA*+pACYC_{sspA}). Mean \log_{10} competitive index at 24 hours post infection is displayed. For all,

635 *p<0.05, **p<0.01, ***p<0.001 by one sample t test with a hypothetical value of zero; for (F, G) #p<0.05,
 636 ##p<0.01 by unpaired *t* test. For each group, n≥8 mice in at least two independent trials.


637

638

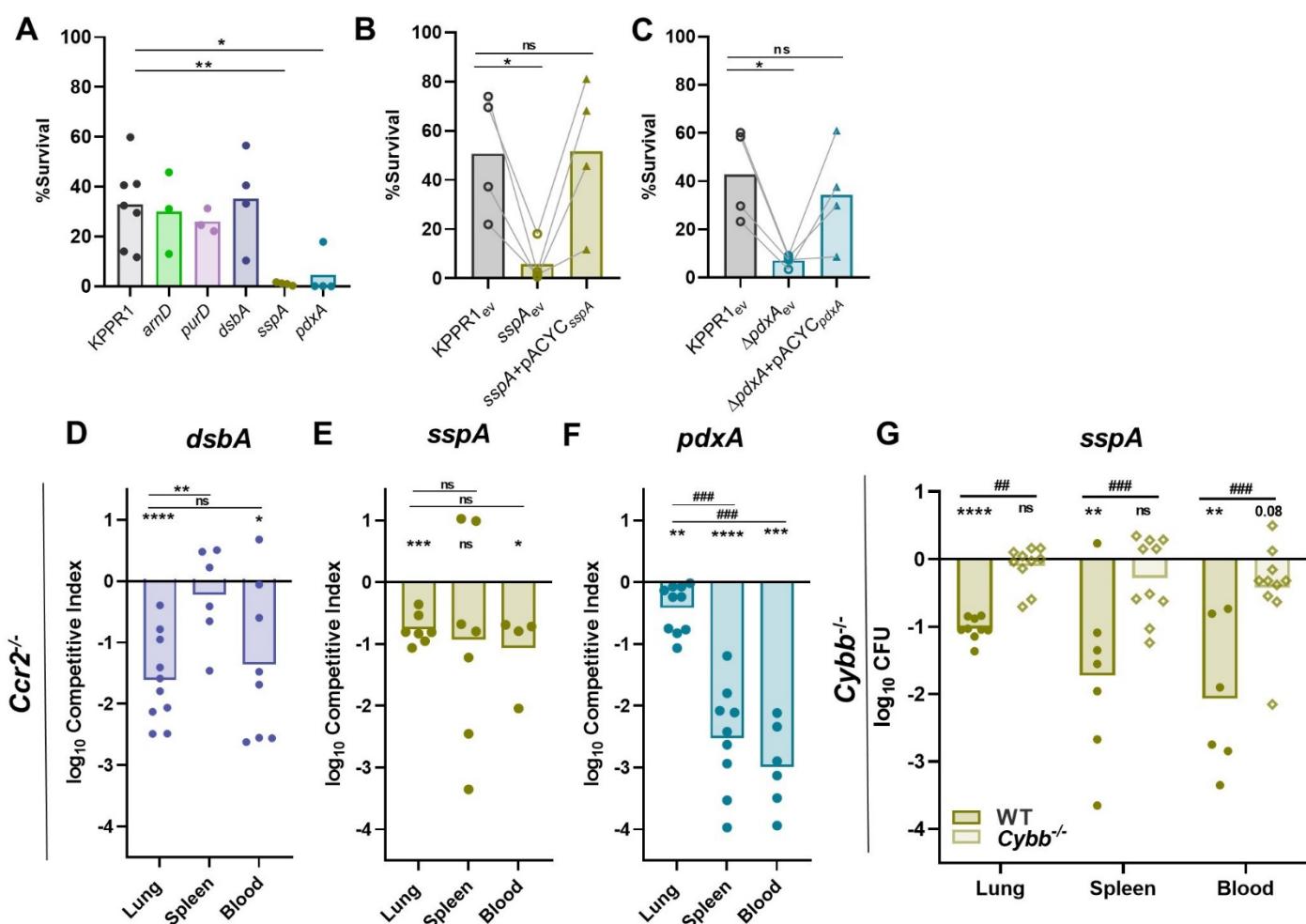
639 **Fig 3. *K. pneumoniae* serum replication requires purine synthesis and is maximized by**
 640 **endogenous vitamin B6 biosynthesis.** *K. pneumoniae* strains were grown in M9 salts supplemented
 641 with (A) 10% mouse serum or 20% human serum that was either (B) active or (C) heat inactivated. *K.*
 642 *pneumoniae* strains carrying the empty vector pACYC (ev) or pACYC expressing (D,E) *purD*
 643 (*purD*+pACYC_{purD}) or (F) *pdxA* (Δ*pdxA*+pACYC_{pdxA}) were grown in 10% mouse serum (D, F). Chemical
 644 complementation for *purD* was measured by supplementation of 1mM purines prior to growth (E). For
 645 all, the OD₆₀₀ was measured every 15 minutes for 12 hours. Differences in growth compared to KPPR1
 646 or KPPR1_{ev} were detected by area under the curve using a one-way ANOVA with Dunnett's multiple
 647 comparison for each strain compared to wild-type; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. For
 648 each group, n=3.


649

650

651 **Fig 4. *K. pneumoniae* bacteremia factors convey fitness advantages through tissue-specific**
652 **interactions within blood-filtering organs.** *Ex vivo* competitions were performed using uninfected
653 murine spleen or liver homogenate with a 1:1 mixture of KPPR1 and transposon mutants for (A) *arnD*,
654 (B) *purD*, (C) *dsbA*, (D) *sspA*, (E) or *pdxA*. Mean \log_{10} competitive index compared to wild-type KPPR1
655 at 3 hours post incubation is displayed. $*p < 0.05$, $**p < 0.01$, $****p < 0.0001$ by one-sample *t* test with a
656 hypothetical value of zero and $n=3-7$ with points representing individual mice.

657

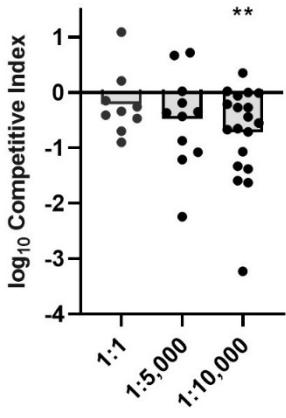


658

659 **Fig 5. Primary site initiation of bacteremia enhances resolution of splenic fitness defects and**
660 **illuminates requirements of factors across phases of pathogenesis.** To model bacteremic
661 pneumonia, mice were infected with 1×10^6 CFU *K. pneumoniae*. Competitive infections were performed
662 with a 1:1 mixture of KPPR1 and a transposon mutant for (A) *dsbA*, (B) *sspA*, or (C) *pdxA* or (D) a *pdxA*
663 knockout ($\Delta p d x A$). (E) Competitions were also performed with strains carrying the empty pACYC vector
664 (_{ev}) or complementation provided on pACYC for *pdxA* only (pACYC_{*pdxA*}) or *pdxA* and downstream
665 members of the operon (pACYC_{*operon*}). Mean \log_{10} competitive index at 24 hours post infection is

666 displayed. For all, * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$ by one-sample t test with a hypothetical
 667 value of zero; # $p<0.05$, ## $p<0.01$, ### $p<0.001$, #### $p<0.0001$ by unpaired t test. For each group, $n\geq 10$
 668 mice in at least two independent infections.

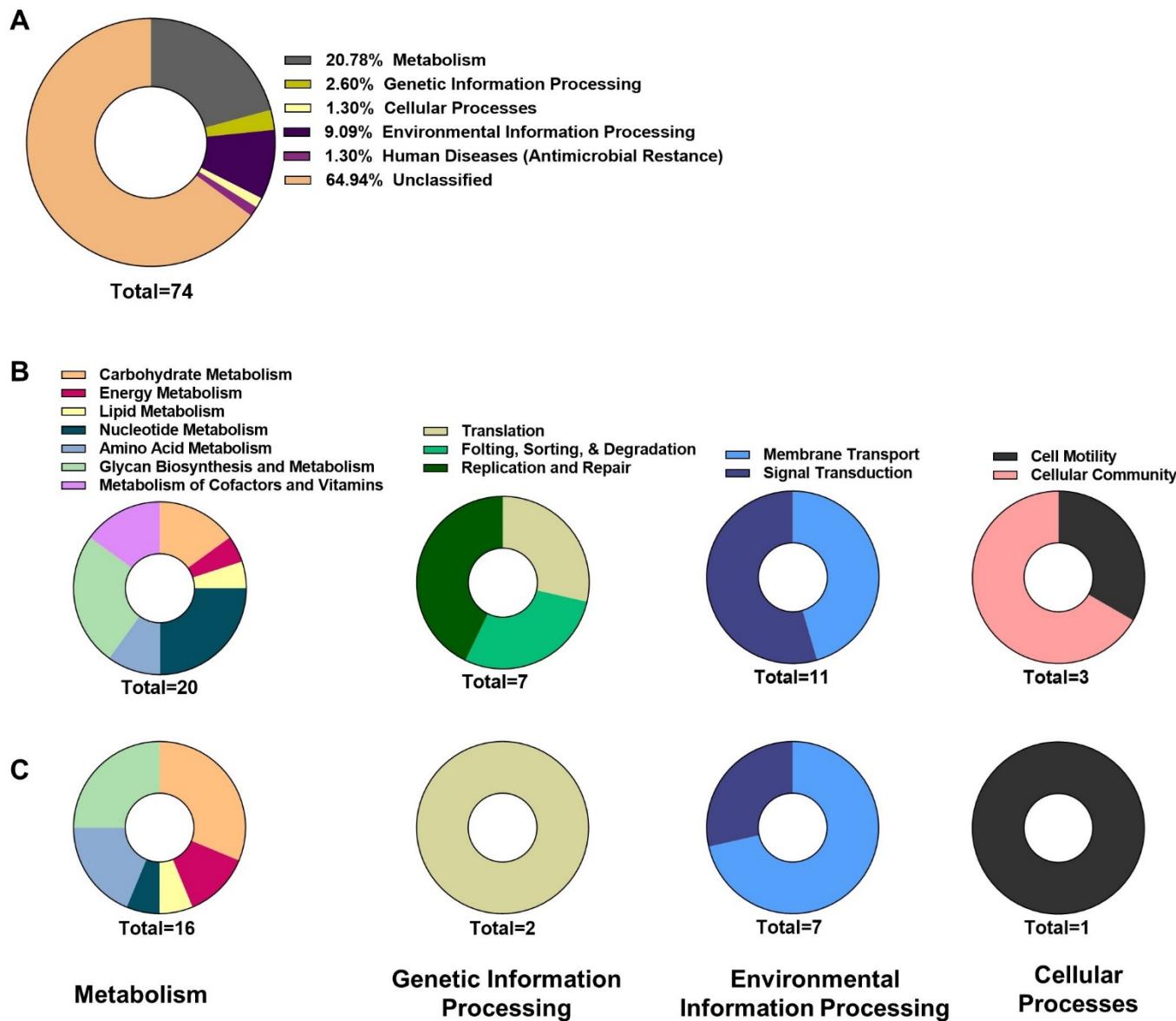
669


670

671 **Fig 6. *K. pneumoniae* splenic fitness is maximized by factors relaying resistance to oxidative**
 672 **stress.** (A) Resistance to oxidative stress was measured by incubating *K. pneumoniae* strains with
 673 H_2O_2 . Complementation was performed by comparing strains carrying empty pACYC (^{ev}) to those with
 674 pACYC expression of (B) *sspA* (*sspA+pACYC_{sspA}*) or (C) *pdxA* (*pdxA+pACYC_{pdxA}*). (D-G) In a model
 675 of bacteremic pneumonia, mice were infected with 1×10^6 CFU *K. pneumoniae* containing a 1:1 mix of
 676 KPPR1 and a transposon mutant for (D) *dsbA*, (E) *sspA*, or (F) *pdxA* in *Ccr2^{-/-}* mice or (G) *sspA* in

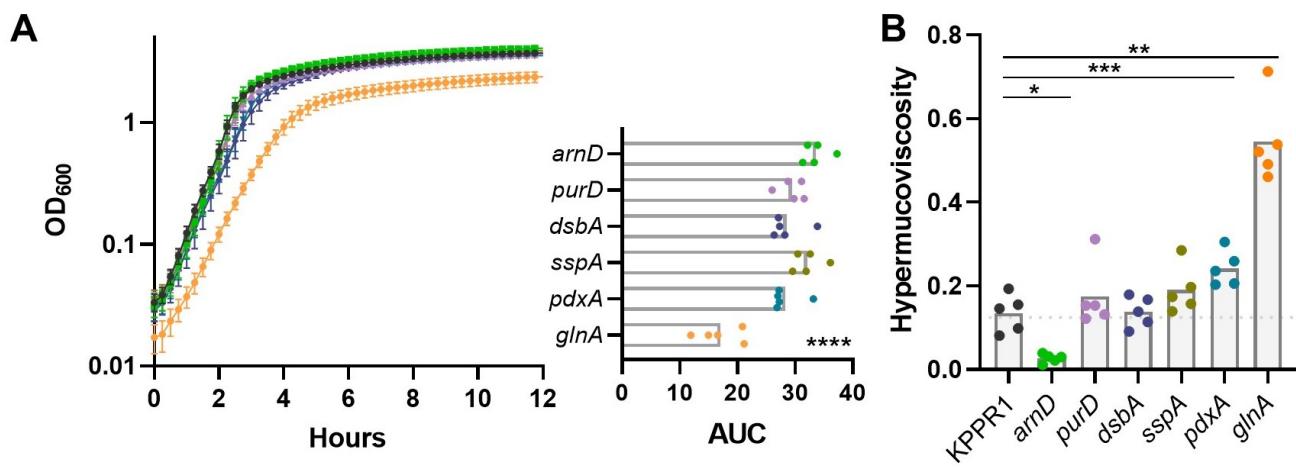
677 *Cybb*^{-/-} mice. For (D-G), mean log₁₀ competitive index at 24 hours post infection is displayed. In (A-C),
678 *p<0.05, **p<0.01 by one-way ANOVA with Dunnett's correction for each strain compared to wild-type,
679 n=4. In B-C, lines connect samples from the same replicate. In (D-G), *p<0.05, **p<0.01, ***p<0.001,
680 ****p<0.0001 by one-sample *t* test with a hypothetical value of zero and ##p<0.01 by unpaired *t* test. For
681 each group, n≥7 mice in two independent infections.

682


683 **Supporting Information**

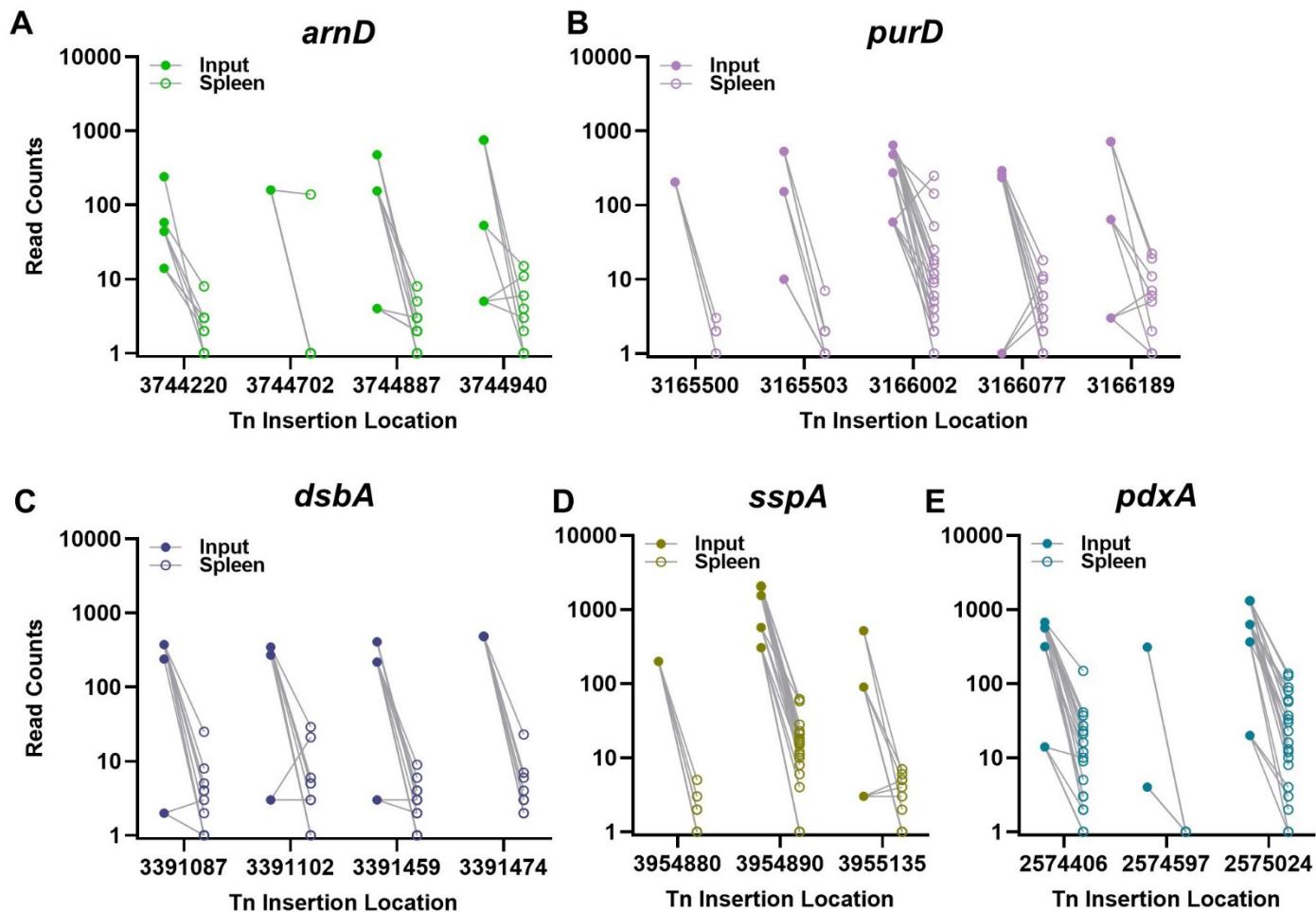
684

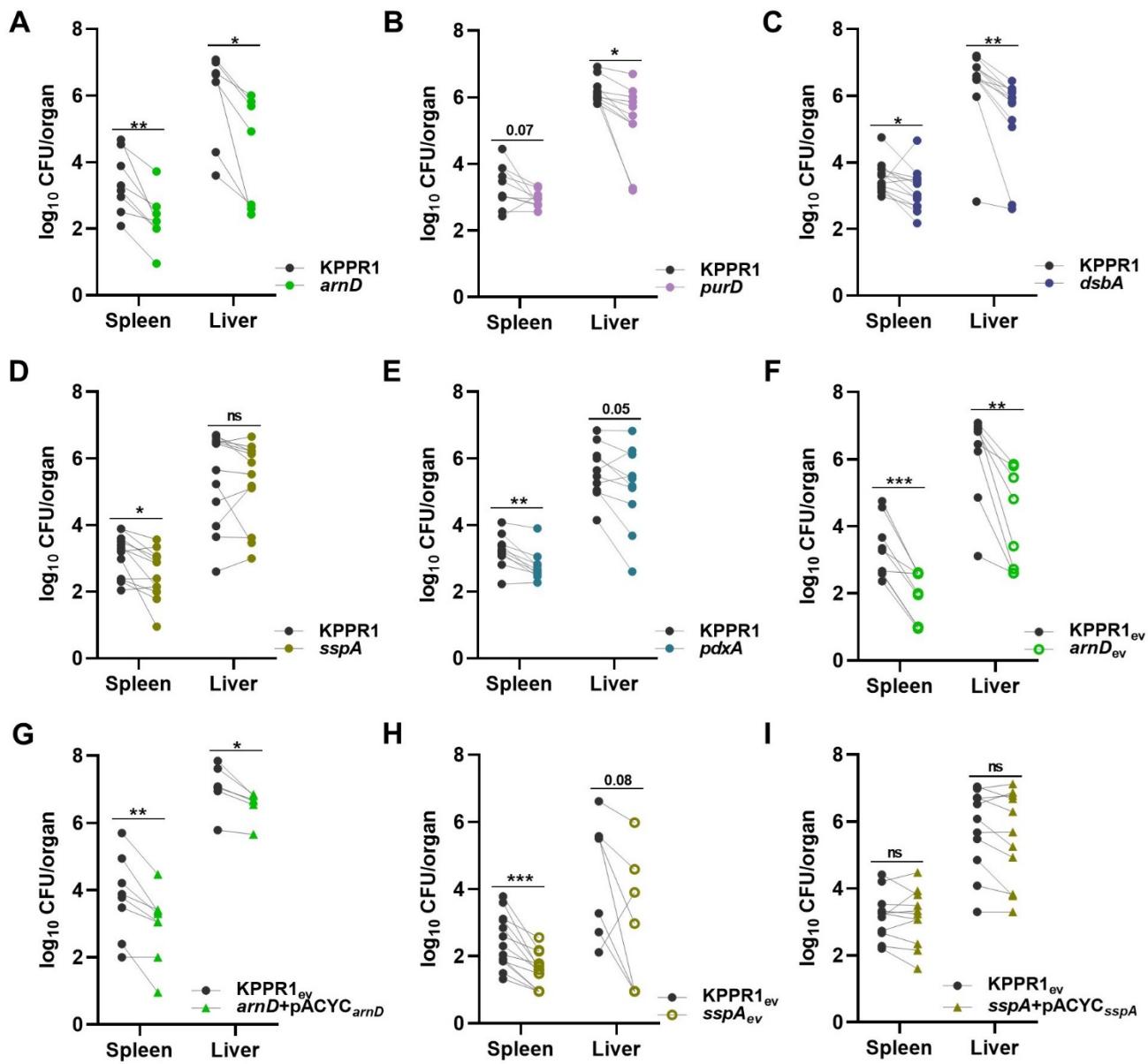
685 **S1 Fig. Estimations of experimental bottlenecks in the tail-vein injection model of *K.*
686 *pneumoniae* bacteremia.** Estimation of *in vivo* bottlenecks were determined by competing KPPR1
687 against a neutral fitness transposon mutant (VK055_1912) at varying ratios in the tail vein injection
688 model. **p<0.01 by one sample *t* test with a hypothetical value of 0.


689

690

691 **S2 Fig. KEGG orthology annotations for genes influencing *K. pneumoniae* bacteraemia. (A)**
692 Primary KEGG annotations for the 74 genes defined as suppressing fitness. Secondary KEGG
693 annotations for (B) the 58 genes increasing (from Figure 1), or (C) the 74 genes suppressing, *K.*
694 *pneumoniae* bacteraemia fitness. Number=total genes within each annotation, unclassified genes were
695 not included in secondary annotation analysis.

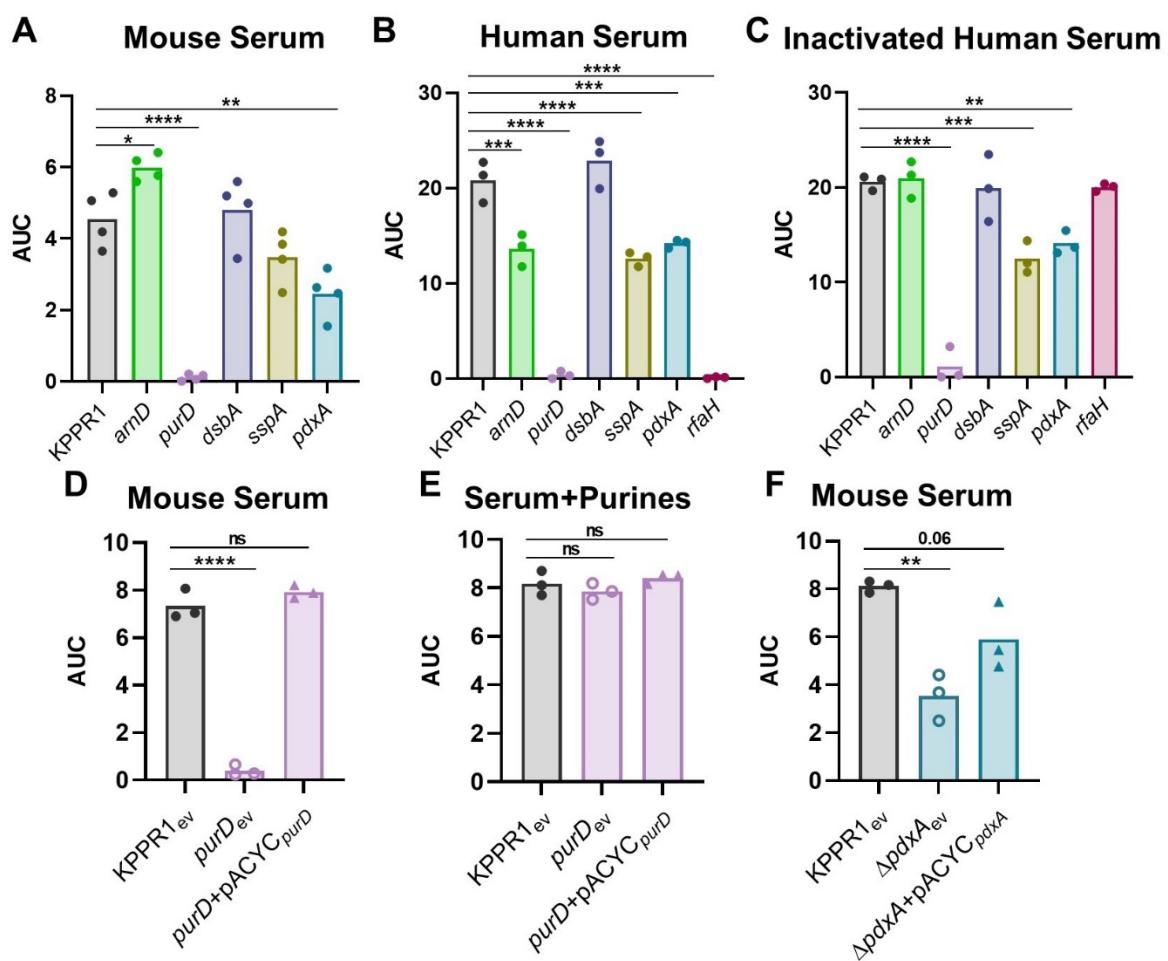

696



697

698 **S3 Fig. Genes enhancing bacteremia are largely dispensable for *in vitro* replication and have**
699 **differential effects on hypermucoviscosity.** (A) *K. pneumoniae* strains with transposon mutations in
700 genes influencing bacteremia were grown in LB and the OD₆₀₀ was measured every 15 minutes for
701 12 hours. (B) Hypermucoviscosity was measured for each strain; hypermucoviscosity=(post-spin)/(pre-
702 spin). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by one-way ANOVA with Dunnett's multiple
703 comparison for each strain compared to KPPR1; n=5.

704

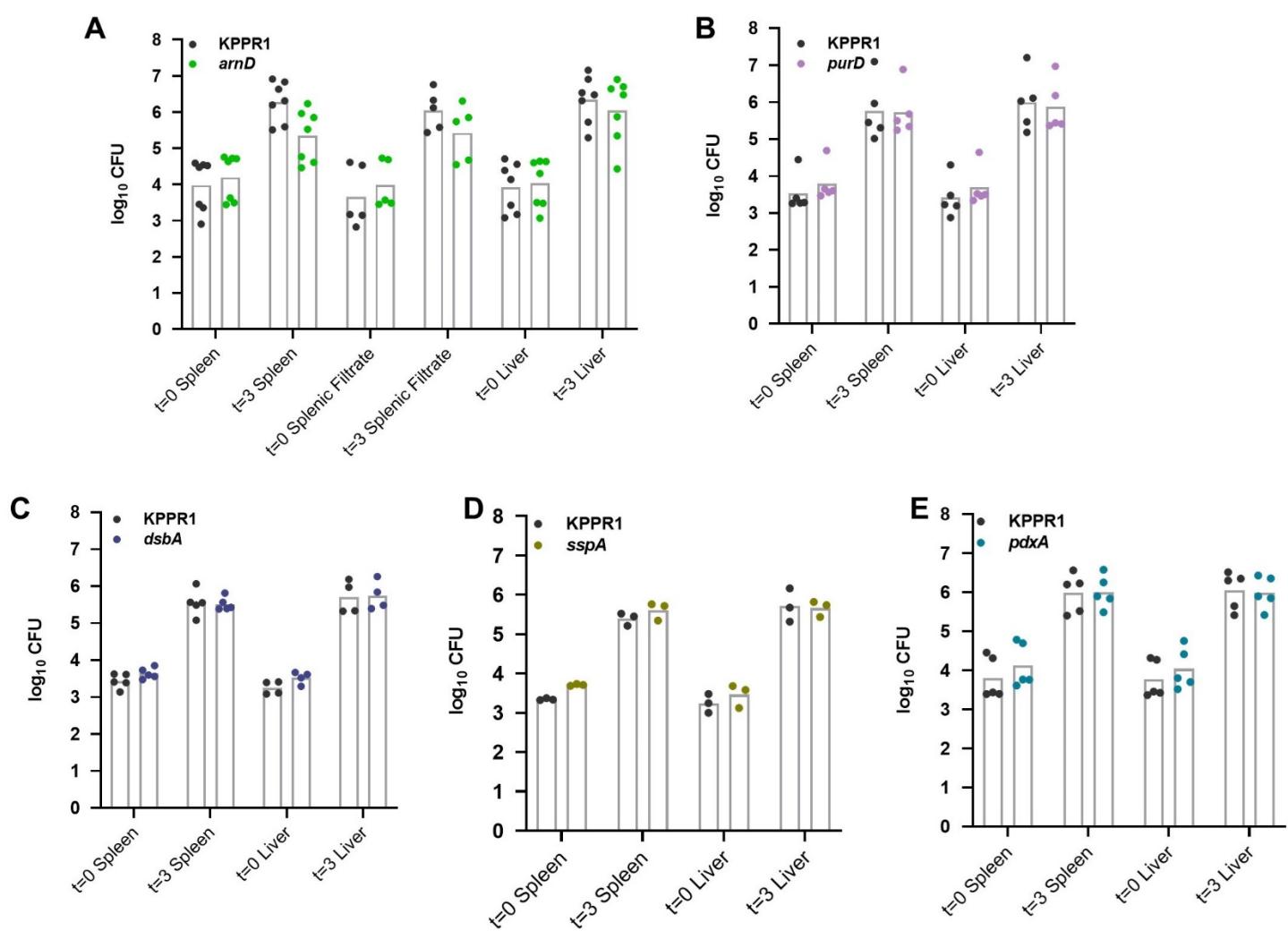


712

713 **S5 Fig. CFU summary for tail vein injections.** Five factors indicated by TnSeq as significantly
 714 enhancing bacteremia were selected for *in vivo* validation using the tail vein injection model. The 1:1
 715 inoculum consisted of KPPR1 and transposon mutants for (A) *arnD*, (B) *purD*, (C) *dsbA*, (D) *sspA*, or
 716 (E) *pdxA*. Competitions were also performed using strains carrying the empty pACYC vector (_{ev}) within
 717 KPPR1 and (F) *arnD* or (H) *sspA*. Complementation was provided on pACYC under control of the native
 718 promoter of (G) *arnD* (*arnD+pACYC_{arnD}*) or (I) *sspA* (*sspA+pACYC_{sspA}*). Mean \log_{10} CFU burden in the
 719 spleen and liver at 24 hours post infection is displayed, corresponding to competitive indices in Figure

720 2. *p<0.05, **p<0.01, ***p<0.001 by paired t test with Holm-Sidak multiple comparison. For each group,
721 n≥8 mice in at least two independent infections.

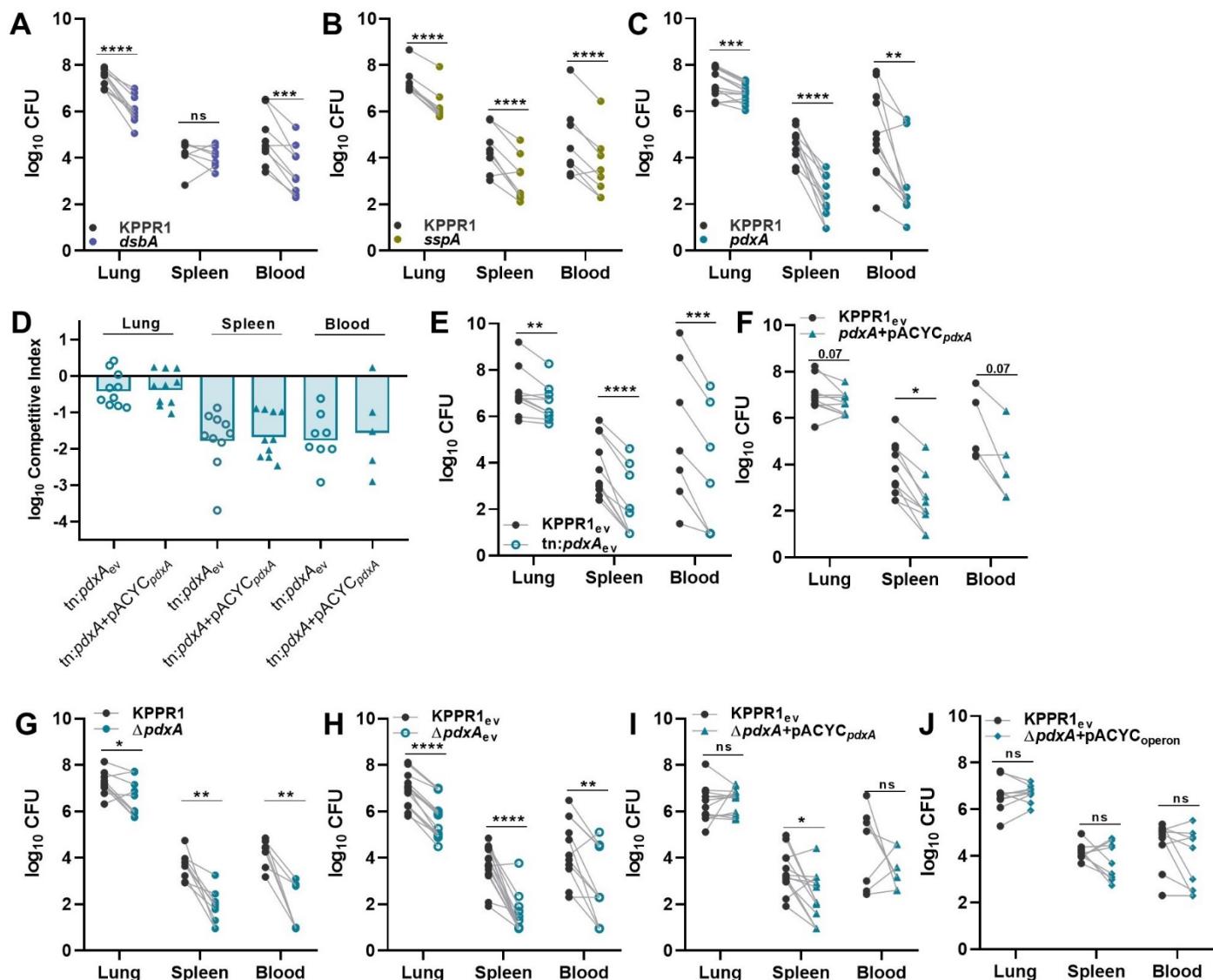
722



723

724 **S6 Fig. Area under the curve values for *K. pneumoniae* growth in serum.** Area under the curve
725 (AUC) was calculated for the growth of individual strains in each condition represented in Figure 3. *K.*
726 *pneumoniae* strains were grown in M9 salts supplemented with (A) 10% mouse serum or 20% human
727 serum that was either (B) active or (C) heat inactivated. *K. pneumoniae* strains carrying the empty
728 vector pACYC (ev) or pACYC expressing (D,E) *purD* (*purD*+pACYC_{purD}) or (F) *pdxA*
729 (Δ *pdxA*+pACYC_{pdxA}) were grown in 10% mouse serum (D, F). Chemical complementation for *purD* was
730 measured by supplementation of 1mM purines prior to growth (E). For all, the OD₆₀₀ was measured
731 every 15 minutes for 12 hours. Differences in growth compared to KPPR1 or KPPR1_{ev} were detected

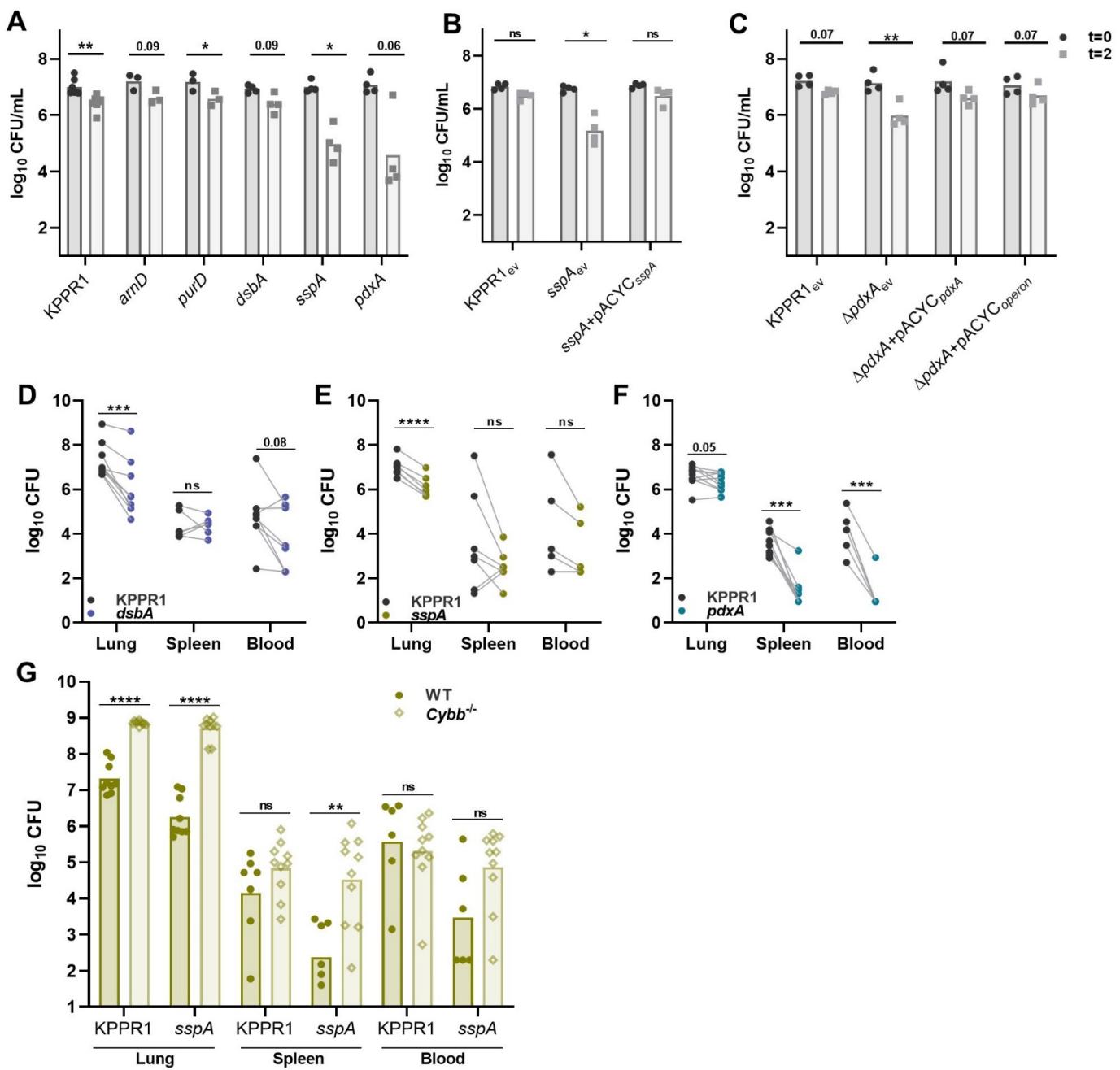
732 by area under the curve using a one-way ANOVA with Dunnett's multiple comparison for each strain
733 compared to wild-type; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. For each, n=3.


734

735

736 **S7 Fig. CFU summary for ex vivo competitions.** *K. pneumoniae* strains were competed at a 1:1 ratio
737 in organ homogenate generated from uninfected mice. An input of 1×10^5 CFU was added to each well
738 and incubated at 37°C for 3 hours. Log₁₀ CFU/well for each strain at the start (t=0) and end (t=3) of the
739 incubation are displayed, corresponding to competitive indices in Figure 4. n≥3 competitions in
740 individual mouse organs.

741



742

743 **S8 Fig. CFU summary for bacteremic pneumonia.** To model bacteremic pneumonia, mice were
744 infected with 1×10^6 CFU *K. pneumoniae*. Competitive infections were performed with a 1:1 mixture of
745 KPPR1 and transposon mutants for (A) *dsbA*, (B) *sspA*, or (C-F) *pdxA* or (G-J) a *pdxA* knockout
746 ($\Delta p d x A$). Competitions were performed with strains carrying the pACYC vector (_{ev}) or *pdxA*
747 complementation provided on pACYC under control of the native promoter for *pdxA* only (D, F, I;
748 pACYC_{*pdxA*}) or *pdxA* and downstream members of the operon (J; pACYC_{operon}). Mean log₁₀ bacterial
749 burden at 24 hours post infection is displayed corresponding to competitive indices in Figure 5. For (A-
750 C, E-J), *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by paired *t* test with Holm-Sidak multiple

751 comparison. For (D) no comparisons were significant between competitive indices within each tissue
 752 by unpaired *t* test. For each group, n≥10 mice in at least two independent infections.

753

754

755 **S9 Fig. CFU summary for *in vitro* and *in vivo* oxidative stress resistance.** (A) Resistance to
 756 oxidative stress was measured by incubating *K. pneumoniae* strains with H₂O₂. Complementation was
 757 performed by comparing strains carrying empty pACYC (_{ev}) to those with pACYC expression of (B)

758 *sspA* (*sspA*+pACYC_{*sspA*}) or (C) *pdxA* (*pdxA*+pACYC_{*pdxA*}). For (A-C), mean log₁₀ CFU/mL is displayed.

759 (D-G) In a model of bacteremic pneumonia, mice were infected with 1x10⁶ CFU *K. pneumoniae*

760 containing a 1:1 mix of KPPR1 and a transposon mutant for (D) *dsbA*, (E) *sspA*, or (F) *pdxA* in *Ccr2*^{-/-}

761 mice or (G) *sspA* in *Cybb*^{-/-} mice. For (A-F), *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by paired *t*

762 test with Holm-Sidak multiple comparison. For (G), **p<0.01, ****p<0.0001 by unpaired *t* test. For each

763 group, n≥7 mice in two independent infections.