

1 Exercise alters cortico-basal ganglia network functional connectivity: A 2 mesoscopic level analysis informed by anatomic parcellation defined in the 3 mouse brain connectome

4
5 Zhuo Wang^{a, #}, Erin K. Donahue^{b, #}, Yumei Guo^a, Michael Renteln^c, Giselle M. Petzinger^{b,c}, Michael W.
6 Jakowec^{b,c}, Daniel P. Holschneider^{a,b,c,d, *}

7
8 #These authors contributed equally.

9 ^aDepartment of Psychiatry and Behavioral Sciences, ^bGraduate Program in Neurosciences, ^cDepartment of
10 Neurology, ^dDepartment of Biomedical Engineering, University of Southern California, Los Angeles,
11 California, USA

12
13 * Correspondence to:

14 Daniel P. Holschneider, MD, Department of Psychiatry and Behavioral Sciences, University of Southern
15 California, 1975 Zonal Avenue, KAM 400, MC9037, Los Angeles, CA 90089-9037, USA, Tel: + 1 323 442
16 1536; fax: + 1 323 442 1587; e-mail: holschne@usc.edu

17
18
19 **Declaration of interest:** none.

20
21 **Author statement:** Conceptualization (ZW, EKD, GMP, MWJ, DPH), Methodology (ZW, EKD, DPH),
22 Software (ZW, DPH), Formal Analysis (ZW, DPH), Investigation (ZW, EKD, YG, MR), Resources (EKD, YG,
23 MR), Data Curation (ZW, EKD, DPH), Visualization (ZW, DPH), Writing-Original Draft (ZW, DPH), Writing-
24 Review & Editing (ZW, EKD, GMP, MWJ, DPH), Supervision (MWJ, DPH), Funding Acquisition (ZW, GMP,
25 MWJ, DPH).

26
27 **Author email list:** Zhuo Wang (zhuowang@usc.edu), Erin K. Donahue (ekdonahu@usc.edu), Yumei Guo
28 (yguo@usc.edu), Michael Renteln (mrenteln@gmail.com), Giselle M. Petzinger (petzinge@med.usc.edu),
29 Michael W. Jakowec (Michael.Jakowec@med.usc.edu), Daniel P. Holschneider (holschne@usc.edu)

30
31 **Data/Code availability:** Data and code are available upon request sent to the corresponding author on the
32 condition that a formal data sharing agreement is signed.

33 **ABSTRACT**

34 The basal ganglia are important modulators of the cognitive and motor benefits of exercise. However, the neural
35 networks underlying these benefits remain poorly understood. Our study systematically analyzed exercise-associated
36 changes in functional connectivity in the cortico-basal ganglia-thalamic network during the performance of a new motor
37 task, with regions-of-interest defined based on mesoscopic domains recently defined in the mouse brain structural
38 connectome. Mice were trained on a motorized treadmill for six weeks or remained sedentary (control), thereafter
39 undergoing [¹⁴C]-2-deoxyglucose metabolic brain mapping during wheel walking. Regional cerebral glucose uptake
40 (rCGU) was analyzed in 3-dimensional brains reconstructed from autoradiographic brain sections using statistical
41 parametric mapping. Functional connectivity was assessed by inter-regional correlation of rCGU. Compared to
42 controls, exercised animals showed broad decreases in rCGU in motor areas, but increases in limbic areas, as
43 well as the visual and association cortices. In addition, exercised animals showed (i) increased positive
44 connectivity within and between the motor cortex and caudoputamen (CP), (ii) newly emerged negative connectivity of
45 the substantia nigra pars reticulata with the globus pallidus externus, and CP, and (iii) reduced functional connectivity of
46 the prefrontal cortex (PFC). Increased functional connectivity in the motor circuit in the absence of increases in
47 rCGU strongly suggests greater network efficiency, which is also supported by the reduced involvement of
48 PFC-mediated cognitive control during the performance of a new motor task. Our study delineates exercise-
49 associated changes in functional circuitry at the subregional level and provides a framework for understanding the effects
50 of exercise on new motor learning.

51

52

53 **Keywords:** mouse connectome, functional reorganization, caudate putamen, motor skill learning, brain
54 metabolic mapping, functional connectivity

55

56 **1. INTRODUCTION**

57 It is well documented that exercise improves brain cognitive, motor, and affective functions in health and
58 disease, and has preventive and restorative benefits in neuropsychiatric conditions, as well as in age-associated
59 functional decline (Cotman and Berchtold, 2002; Hillman et al., 2008; Petzinger et al., 2013; Gomes-Osman et
60 al., 2018; Ludyga et al., 2020; Dauwan et al., 2021). At the molecular and cellular level, exercise effects are
61 mediated by brain-derived neurotrophic factor (BDNF) and other signaling molecules, and expressed in
62 multiple forms of brain plasticity, including neurogenesis, synaptogenesis, angiogenesis, improved
63 mitochondrial function, altered neuroexcitability, improved or preserved white matter integrity, and enhanced
64 neuroplasticity (Hillman et al., 2008; Nicolini et al., 2021). While these changes are believed to be beneficial to
65 brain functions in general, how they lead to behavioral improvement remains incompletely understood.
66 Neuroimaging investigation can offer insight of exercise effects by examining changes in functional
67 connectivity on neural networks, thereby bridging the gap between microscopic neural substrates and behavioral
68 outcomes (Won et al., 2021; Moore et al., 2022).

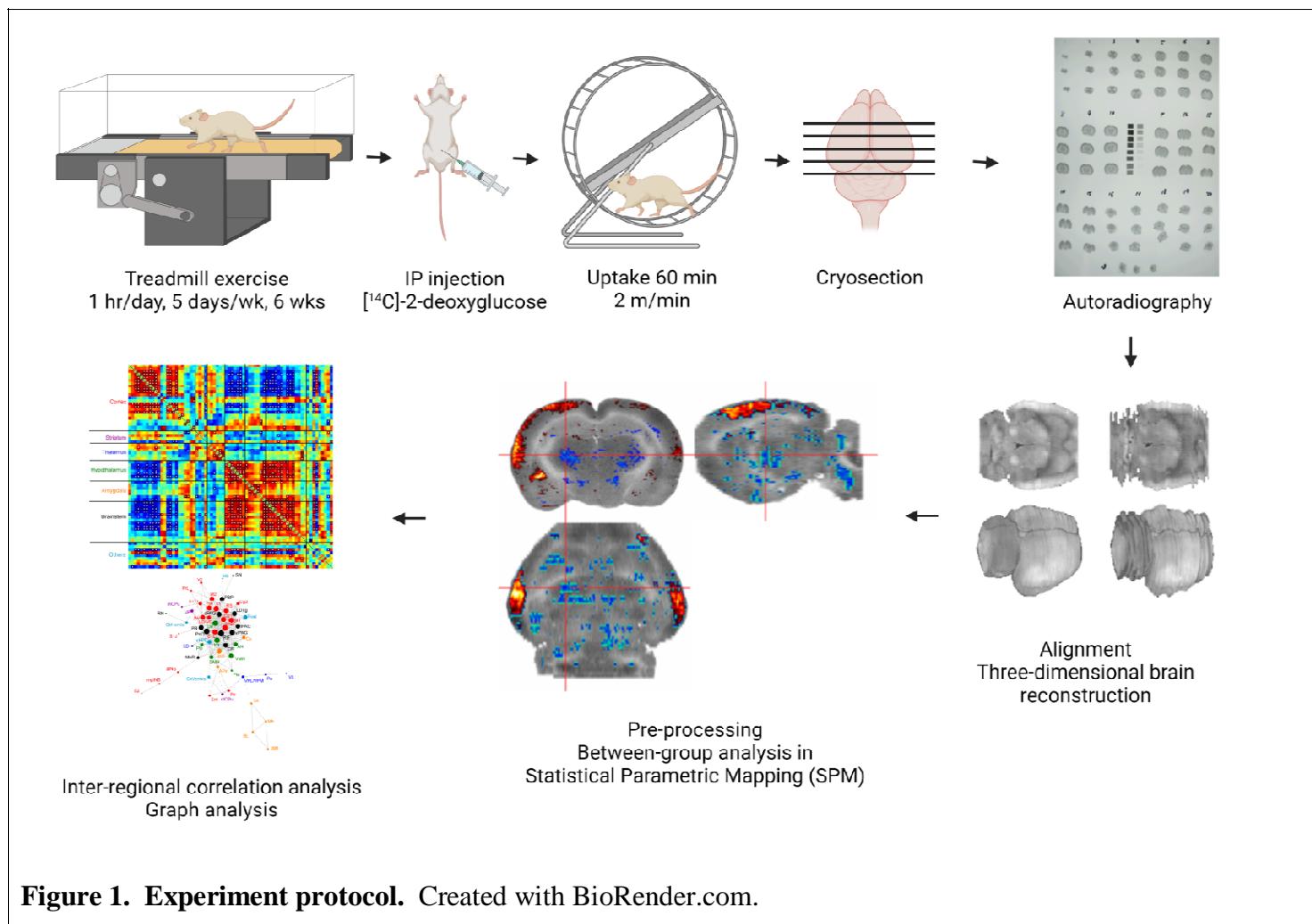
59

70 It is hypothesized that exercise, which involves motor and often cognitive tasks, recruits the cortico-basal
71 ganglia-thalamic (CBT) network to bring about activity-dependent neuroplasticity at local and distant brain
72 sites. Animal research has shown exercise-related metabolic, perfusion and molecular effects in individual
73 regions of the CBT, in particular the caudoputamen (CP), motor cortex, substantia nigra, and thalamus. Yet,
74 only a few studies have examined functional connectivity changes in the CBT network following exercise. We
75 previously reported that in rats with bilateral 6-hydroxydopamine lesion to the CP, exercise partially reinstated
76 cortical sensorimotor functional connectivity lost following dopaminergic deafferentation (Peng et al., 2014)
77 and strengthened connectivity in the CBT and cerebellar-thalamocortical circuits (Wang et al., 2015). Ji et al.
78 (2017) reported an exercise-associated increase in resting-state functional connectivity between putamen and
79 thalamus in human subjects. Increased resting-state functional connectivity of the motor cortex has been
80 reported in normal volunteers following several minutes (McNamara et al., 2007; Sun et al., 2007) or 4 weeks
81 of motor training (Ma et al., 2010). Exercise-associated reduction in resting-state functional connectivity of the
82 basal ganglia has also been reported (Magon et al., 2016; Tao et al., 2017). These studies typically report
83 functional connectivity changes of large areas such as the whole putamen, masking subregional (mesoscopic
84 level) heterogeneity in network structure and function. To our best knowledge, there has not been a systematic
85 analysis of exercise-associated changes in functional connectivity at the mesoscopic level over the CBT
86 network.

37

38 Recent development in the mouse brain connectome has brought unprecedented, detailed information on the
39 structural organization of the CBT network. In particular, newly identified, domains at the mesoscopic level
40 have been defined for key structures of the basal ganglia based on patterns of axonal projections. Dong and
41 coworkers have subdivided CP into 29 domains based on the structural cortico-striatal projectome (Hintiryan et
42 al., 2016), and further subdivided the globus pallidus externus (GPe) into 36 and substantia nigra pars reticulata
43 (SNr) into 14 domains based on projections from the CP (Foster et al., 2021). This connectomic information
44 creates a framework for systematic functional connectivity analysis of the basal ganglia. The current study
45 applied the classic [¹⁴C]-2-deoxyglucose (2DG) uptake autoradiographic method of cerebral metabolic mapping
46 to examine functional reorganization in the CBT network in response to chronic exercise. The well-established
47 2DG method is particularly suitable for high-resolution mapping in awake, freely-moving animals. We applied
48 the newly identified domain definitions of Dong and coworkers in a region-of-interest approach to investigate
49 exercise-associated changes in functional connectivity of the network. Following 6 weeks of exercise training
50 on a motorized horizontal treadmill, glucose uptake was mapped in animals performing a novel, wheel-walking
51 task. There is evidence that chronic exercise promotes motor learning capacity (Li and Spitzer, 2020), with
52 associated changes in functional brain activation correlating with changes in aerobic fitness (Duchesne et al.,
53 2016). Prior work has not examined correlation between aerobic fitness and functional connectivity in the CBT
54 network, which is implicated in new motor learning (Dayan and Cohen, 2011). Our findings provide new
55 insight into how exercise differentially alters functional interactions, both within individual structures and
56 across the CBT network to improve learning capacity. Functional neuroimaging research that harnesses state-
57 of-the-art anatomical connectomic information can bridge the current knowledge gap in understanding exercise
58 effects between the microscopic and behavioral levels.

59


10 **2. MATERIALS AND METHODS**

11 **2.1. Animals**

12 Male C57BL/6J mice were purchased from Jackson Laboratory (Bar Harbor, Maine, USA) and housed in
13 groups of 4-5 per cage on direct woodchip bedding at the University of Southern California vivarium. Animals
14 had *ad libitum* access to laboratory rodent chow and water and were maintained on a 12-hr light/12-hr dark
15 cycle (lights on at 0700 and off at 1900 hours). All experimental procedures involving animals were approved
16 by the Institutional Animal Care and Use Committee at the University of Southern California (Protocol #
17 21044) and carried out in compliance with the National Institutes of Health Guide for the Care and Use of
18 Laboratory Animals, 8th Edition, 2011.

19

20 **2.2. Overview (Fig. 1)**

Figure 1. Experiment protocol. Created with BioRender.com.

21

22 A total of 20 mice were randomized into two groups ($n = 10/\text{group}$, aged 4 - 6 months by the end of
23 experiment): control (sedentary) and exercise. Animals received 6 weeks of exercise training on a motorized
24 treadmill or sedentary treatment, followed by $[^{14}\text{C}]$ -2DG cerebral metabolic mapping while the animals walked

25 in a wheel, a new motor task. The brains were cryosectioned into coronal slices, which were subsequently
26 exposed to films for autoradiography. Digitized images of brain slices were used to reconstruct three-
27 dimensional (3D) brains. These 3D brains were preprocessed using the Statistical Parametric Mapping (SPM)
28 software, followed by statistical tests for between-group differences in regional cerebral glucose uptake
29 (rCGU). For functional connectivity analysis, a total of 176 regions of interest (ROIs) were defined to represent
30 mesoscopic-level domains of the CP, SNr, GPe, and to represent selected cortical and thalamic structures
31 associated with motor and cognitive functions. Pairwise inter-regional correlation matrices were calculated for
32 both groups to assess functional connectivity. Network organization was further analyzed using graph theory
33 analytic tools.

34

35 **2.3. Treadmill exercise**

36 Mice were exercised on motorized treadmills (EXER-6, Columbus Instruments, Columbus, OH, USA) for 1
37 hr/day, 5 days/week over 6 weeks, as previously described (Lundquist et al., 2019) with slight modifications.
38 The exercise protocol included a 20-min warm-up phase when a base speed of 5 m/min was ramped up
39 incrementally every 5 min to a top speed, a 10-min running at the top speed, a 5 min walk break at 5 m/min,
40 another 10-min running at the top speed, and a final 20-min cool-down phase when speed was ramped down
41 every 5 min to a final speed of 5 m/min. During the first several days of exercise, top speed was incrementally
42 increased to allow the mice to adapt to running at higher speed. The final top speed of 19 m/min was
43 introduced on day 8 of exercise. Control sedentary mice were kept in home cages placed on a plastic barrier
44 overlying the motorized treadmills for the same duration (1 hr/day, 5 days/week, 6 weeks) so that they were
45 subjected to similar vibrations and auditory stimulation.

46

47 **2.4. Autoradiographic glucose metabolic mapping during wheel walking**

48 The autoradiographic 2DG uptake method is a well-established approach to functional brain mapping based on
49 a tight coupling between neural activity and metabolism. It is particularly suitable in awake, freely-moving
50 animals, and hence can be applied to exploration of network connectivity in the behaving animal. The protocol
51 is as previously described with modifications (Sokoloff et al., 1977; Holschneider et al., 2019; Needham et al.,
52 2022). For 2 days prior to the day of 2DG mapping, mice were individually familiarized to walk in a closed
53 wheel for 10 min/day at a modest speed of 2 m/min (3.3 cm/s) on a motorized wheel bed (Model 80805A,
54 Lafayette Instrument, Lafayette, IN, USA) — a new motor task that can be learned by all animals at this low
55 speed. Using the wheel-walking task avoided the confound of different familiarity to the treadmill between the
56 exercise and control group. The walking wheel (Model 80801) had an internal diameter of 15 cm and width of
57 5.7 cm, and was equipped with a safety mesh netting (Model 80801MSH25) to prevent the animal's tail from

58 being pinched. Animals were brought to the experimental suite 16 hours before mapping experiments and were
59 fasted of food overnight with water *ad libitum*.

50
51 For 2DG uptake, the animal was administered IP [¹⁴C]-2DG (cat # MC355, Moravek Inc., Brea, CA, USA) at
52 0.3□μCi/g bodyweight in 0.53□ml normal saline. The animal was subsequently placed inside the closed
53 walking wheel to walk at 2 m/min for 60 min to allow uptake of the tracer. At the end of walking, the animal
54 was euthanized by cervical dislocation and the brain was extracted and flash-frozen in methylbutane over dry
55 ice (- 55□°C). The brains were later serially sectioned into 20-μm coronal slices, sampled with a 140-μm inter-
56 slice distance, in a cryostat at - 18□°C (Mikron HM550 OMP, Thermo Fisher Scientific, Waltham, MA, USA).
57 Slices were heat-dried on glass slides and exposed to Kodak Biomax MR diagnostic film (Eastman Kodak,
58 Rochester, NY, USA) for 3 days at room temperature. Autoradiographs were then digitized on an 8-bit grey
59 scale using a voltage-stabilized light box (Northern Light R95 Precision Illuminator, Imaging Research Inc., St.
70 Catharines, Ontario, Canada) and a Retiga 4000R charge-coupled device monochrome camera (QImaging of
71 Teledyne Photometrics, Tucson, AZ, USA).

72
73 **2.5. Whole-brain analysis of regional cerebral glucose uptake**

74 For each animal, a 3D brain was reconstructed from 66 digitized, autoradiographic images of coronal sections
75 (voxel size: 40 x 140 x 40 □μm³) using our prior methods (Nguyen et al., 2004). Sections were selected starting
76 at +2.4 mm anterior to the internal landmark of bregma. Adjacent sections were aligned using TurboReg, an
77 automated pixel-based registration algorithm implemented in ImageJ (v.1.35,
78 <https://imagej.nih.gov/ij/index.html>). This algorithm registered each section sequentially to the previous section
79 using a non-warping geometric model that included rotations, rigid-body transformation and nearest-neighbor
80 interpolation. We and others have adapted the SPM package (Wellcome Centre for Neuroimaging, University
81 College London, London, UK) for the analysis of rodent autoradiographic cerebral blood flow and CGU data.
82 For preprocessing, one mouse brain was selected as reference. All brains were spatially normalized to the
83 reference brain in SPM (version 5). Spatial normalization consisted of applying a 12-parameter affine
84 transformation followed by a nonlinear spatial normalization using 3D discrete cosine transforms. All
85 normalized brains were then averaged to create a final brain template. Each original brain was then spatially
86 normalized to the template. Final normalized brains were smoothed with a Gaussian kernel (full-width at half-
87 maximum□=□ 240 x 420 x 240□μm³) to improve the signal-to-noise ratio. Proportional scaling was used to
88 scale the voxel intensities so that the whole-brain average CGU was the same across animals. Global cerebral
89 glucose uptake is believed to change very little with normal physiological alterations in cerebral functional
90 activity (Sokoloff, 1991). This would be expected during the slow walking task in this study.

91

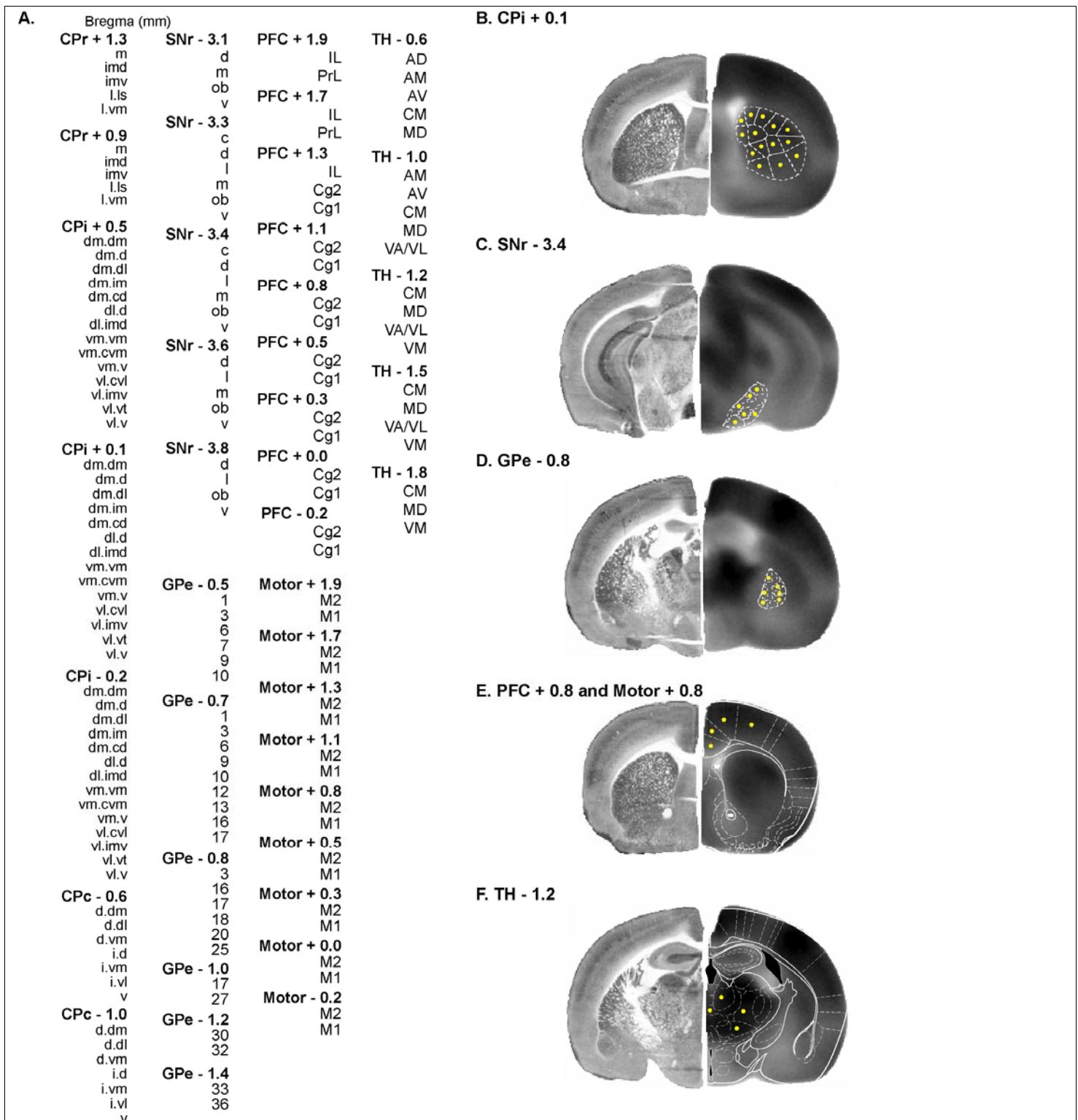
92 Unbiased, voxel-by-voxel Student's *t*-tests between the exercise and control group were performed across the
93 whole brain to access changes in rCGU following exercise using SPM. Threshold for statistical significance
94 was set at $P < 0.05$ at the voxel level with an extent threshold of 200 contiguous significant voxels. This
95 combination reflected a balanced approach to control both Type I and Type II errors. The minimum cluster
96 criterion was applied to avoid basing our results on significance at a single or a small number of suprathreshold
97 voxels. Brain regions were identified according to mouse brain atlases (Dong, 2008; Franklin and Paxinos,
98 2008). Color-coded functional overlays showing statistically significant changes in rCGU were displayed over
99 coronal sections of the template brain in MRIcro (v.1.40, <https://people.cas.sc.edu/rorden/micro/micro.html>).
00

01

02 **2.6. Functional connectivity analysis of the cortico-basal ganglia-thalamic-cortical network**

03 We took an ROI approach to assessing brain functional connectivity. A total of 176 ROIs were defined for six
04 structures critical to motor and cognitive functions, including the CP, SNr, GPe, prefrontal cortex (PFC,
05 including infralimbic, IL; prelimbic, PrL; cingulate area 1 and 2, Cg1 and Cg2), motor cortex (including
06 primary and secondary motor, M1 and M2), and thalamic nuclei (anterodorsal, AD; anteromedial, AM;
07 anteroventral, AV; central medial, CM; mediodorsal, MD; ventral anterior/ventrolateral, VA/VL; ventromedial,
08 VM) (Fig. 2). ROIs were drawn on coronal sections of the template brain in MRIcro. A group of ROIs were
09 defined for each structure at a given bregma level, e.g. 5 ROIs were defined for the rostral caudoputamen at
10 bregma + 1.3 mm (CPr + 1.3, Fig 2A). ROIs for CP, SNr, and GPe were based on mesoscopic-level domain
11 definitions as set forth in the mouse brain anatomical connectome (Hintiryan et al., 2016; Foster et al., 2021).
12 Domain definition maps were transcribed to a visual template. Overlay of this template on to the digitized
13 images allowed ROI definition in a standardized manner. Circular ROIs were drawn near the approximate
14 center of each domain. Some domains too small in size in the SNr and GPe were not included in this analysis.
15 ROIs for PFC, motor cortex, and thalamus were based on the mouse brain atlas (Dong, 2008; Franklin and
16 Paxinos, 2008). A second set of brain slices collected adjacent to each autoradiographic section were
17 histochemically stained for cytochrome oxidase. These histochemical images showing cytoarchitectural details
18 were used to assist in the brain area identification in the autoradiographic images.

19


20 Mean optical density of each ROI was extracted from each mouse brain using the MarsBaR toolbox for SPM
21 (v.0.42, <http://marsbar.sourceforge.net>). We applied pairwise inter-regional correlation analysis to investigate
22 brain functional connectivity. This is a well-established method, which has been applied to analyze rodent brain
23 mapping data of multiple modalities, including autoradiographic 2DG (Soncrant et al., 1986; Nair and
Gonzalez-Lima, 1999), autoradiographic cerebral blood flow (Wang et al., 2011), cytochrome oxidase

24 histochemistry (Shumake et al., 2004; Fidalgo et al., 2011), activity regulated *c-fos* gene expression (Wheeler et
25 al., 2013), and functional magnetic resonance imaging (fMRI) data (Schwarz et al., 2007). In this approach,
26 correlations were calculated in an *inter*-subject manner at a single time point, i.e., across subjects within a
27 group, and similar to functional connectivity analyses often performed in positron emission tomography (PET)
28 data. The method precluded analysis of temporal dynamics of functional brain activation and differed from the
29 *intra*-subject cross correlation analysis often used on fMRI time series data. While these different brain
30 mapping modalities and analytic methods provide complementary information on brain functional connectivity,
31 in comparing the results one should consider the possibility that differences in the time scales of data sampling,
32 may result in the differential recruitment of ancillary regions (Di and Biswal, 2012; Buckner et al., 2013; Honey
33 et al., 2007; Hutchison et al., 2013; Wehrl et al., 2013).

34
35 Pearson's correlation coefficients between pairs of ROIs were calculated across subjects within a group in
36 Matlab (Mathworks, Inc., Natick, MA, USA) to construct a correlation matrix. The matrices were visualized as
37 heatmaps with Z-scores of Pearson's correlation coefficients color-coded. Statistical significance of between-
38 group difference in correlation coefficient was evaluated using the Fisher's Z-transform test ($P < 0.05$):

$$39 Z = \frac{\frac{1}{2} \ln \frac{1+r_1}{1-r_1} - \frac{1}{2} \ln \frac{1+r_2}{1-r_2}}{\sqrt{\frac{1}{n_1-3} + \frac{1}{n_2-3}}},$$

40 where r_1 and r_2 denote correlation coefficient in group 1 and group 2, while n_1 and n_2 denote sample size for
41 each group. A positive Z value indicates that r_1 is greater than r_2 .

Figure 2. Definition of regions of interest (ROIs) for functional connectivity analysis. (A) List of 176 ROIs defined. A group of ROIs are defined for each structure at a given bregma level, e.g. CPr + 1.3, rostral caudoputamen at bregma + 1.3 mm. CPi/CPc, intermediate/caudal caudoputamen; SNr, substantia nigra pars reticulata; GPe, globus pallidus externus; PFC, prefrontal cortex (Cg1/Cg2, cingulate area 1/2. IL, infralimbic. PrL, prelimbic); M1/M2, primary/secondary motor cortex; TH, thalamic nuclei (AD, anterodorsal. AM, anteromedial. AV, anteroventral. CM, central medial. MD, mediiodorsal. VA/VL, ventral anterior/ventrolateral. VM, ventromedial). (B) ROI definition for CPi domains at bregma + 0.1 mm as defined in (Hintiryan et al., 2016). The hemisphere on the left shows histochemical staining for cytochrome oxidase from a representative

brain used to assist brain area identification. The hemisphere on the right is a coronal section of the template brain showing [¹⁴C]-2-deoxyglucose uptake. ROIs (red circles) are drawn near the approximate center of each domain. **(C)(D)** ROI definition for SNr domains at bregma - 3.4 mm and GPe domains at - 0.8 mm according to Foster et al. (2021). Some domains too small in size were not included in this analysis. **(E)** ROI definition for PFC and motor cortex at bregma + 0.8 mm. White outlines are modified from the mouse brain atlas (Franklin and Paxinos, 2008). **(F)** ROI definition for TH at bregma - 1.2 mm.

12

13 To further facilitate between-group comparison of intra- or inter-structural functional connectivity, we defined
14 *connectivity density* for a structure (or between two structures) as the number of connections expressed as a
15 percentage of the total number of possible connections. For example, the total number of possible intra-
16 structural connections among the 18 motor cortex ROIs is 153. There were 45 positive intra-motor cortex
17 connections in the exercise group. The intra-motor cortex connectivity density was therefore + 29.4%.
18 Connectivity density was calculated separately for positive and negative connections (correlations).

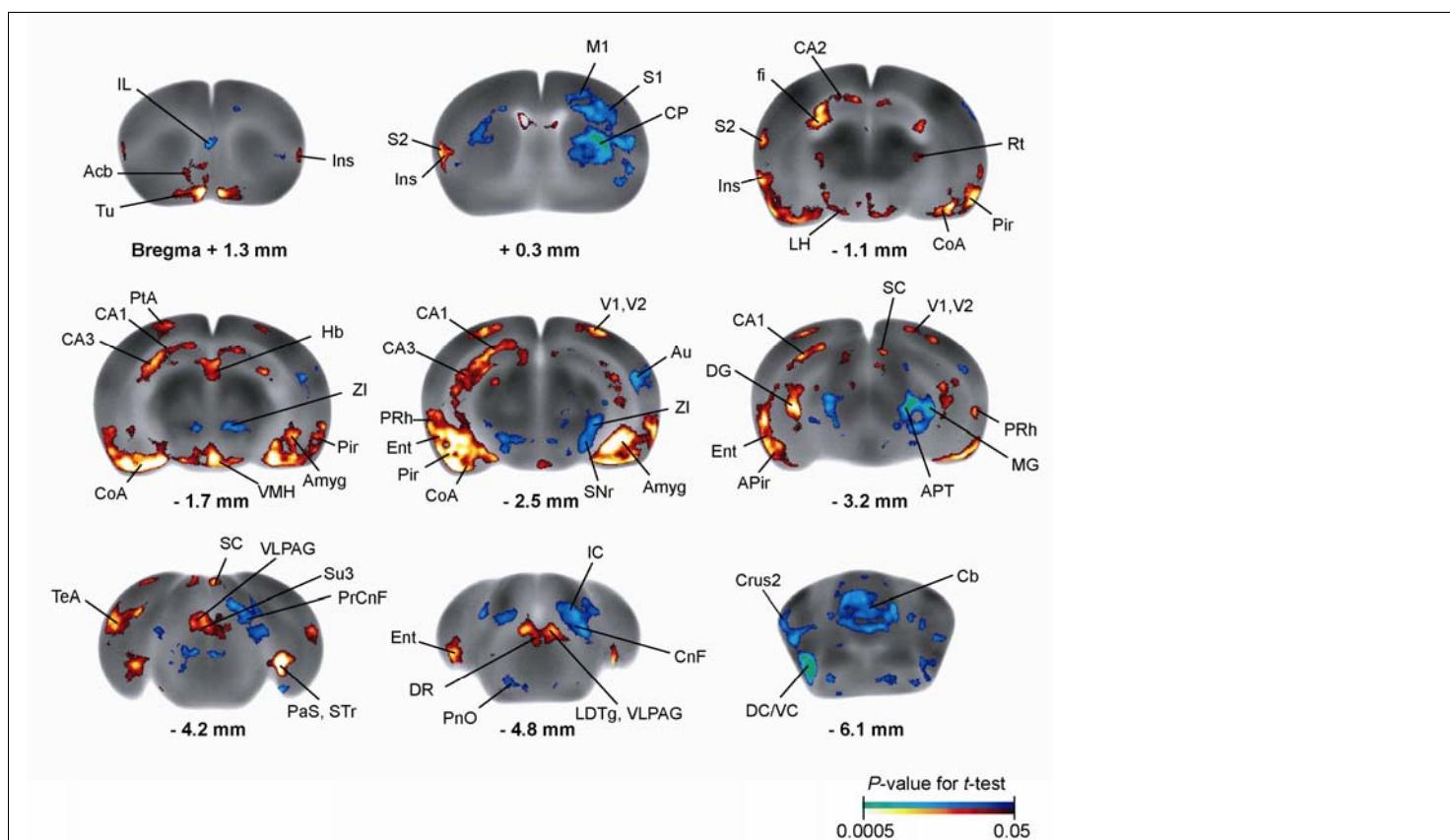
19

20 To delineate organization of the functional networks identified by the correlation matrices, graph theoretical
21 analysis was performed as previously described (Wang et al., 2012) with the Pajek software (version 2.03,
22 <http://pajek.imfm.si/doku.php>). Each ROI was represented by a node in a graph, and two nodes with significant
23 correlation (positive or negative) were linked by an edge. A Kamada–Kawai algorithm was implemented to
24 arrange (energize) the graph such that strongly connected nodes were placed closer to each other, while weakly
25 connected nodes were placed further apart. Such energized graph provided an intuitive visualization of the
26 network organization. To identify network hubs, connectivity degree of each node (degree centrality) was
27 calculated as the number of edges linking it to the rest of the network. Intuitively, nodes with higher degrees
28 were more central in the network organization. Nodes with degrees ranked in the top 10% were considered
29 hubs.

30

31 **2.7. Cytochrome oxidase histochemical staining**

32 A second set of brain slices adjacent to sections of the autoradiographic reference brain were collected and
33 histochemically stained for cytochrome oxidase. Histochemical images showing cytoarchitectural details were
34 used to assist brain area identification in the autoradiographic images. Histochemical staining was undertaken
35 with a protocol adapted from (Puga et al., 2007). In brief, staining proceeded at 4 °C as follows: (a) Pre-
36 incubation fixation for 5 min in a phosphate buffer (0.1 M, pH 7.6) containing 10% sucrose and 0.5%
37 glutaraldehyde; (b) Rinse 5 min x 3 times with phosphate buffer (0.1 M, pH 7.6) containing 10% sucrose; (c)
38 Color intensification for 10 min in a Tris buffer (0.05M, pH 7.6) containing 275 mg/L cobalt chloride (CoCl₂),
39 0.5% DMSO, and 10% sucrose; (d) Rinse for 5min with phosphate buffer (0.1 M, pH 7.6) containing 10%
40 sucrose; (e) Staining incubation for 60 min at 37 °C with O₂ bubbling in 700 ml 0.1M phosphate buffer

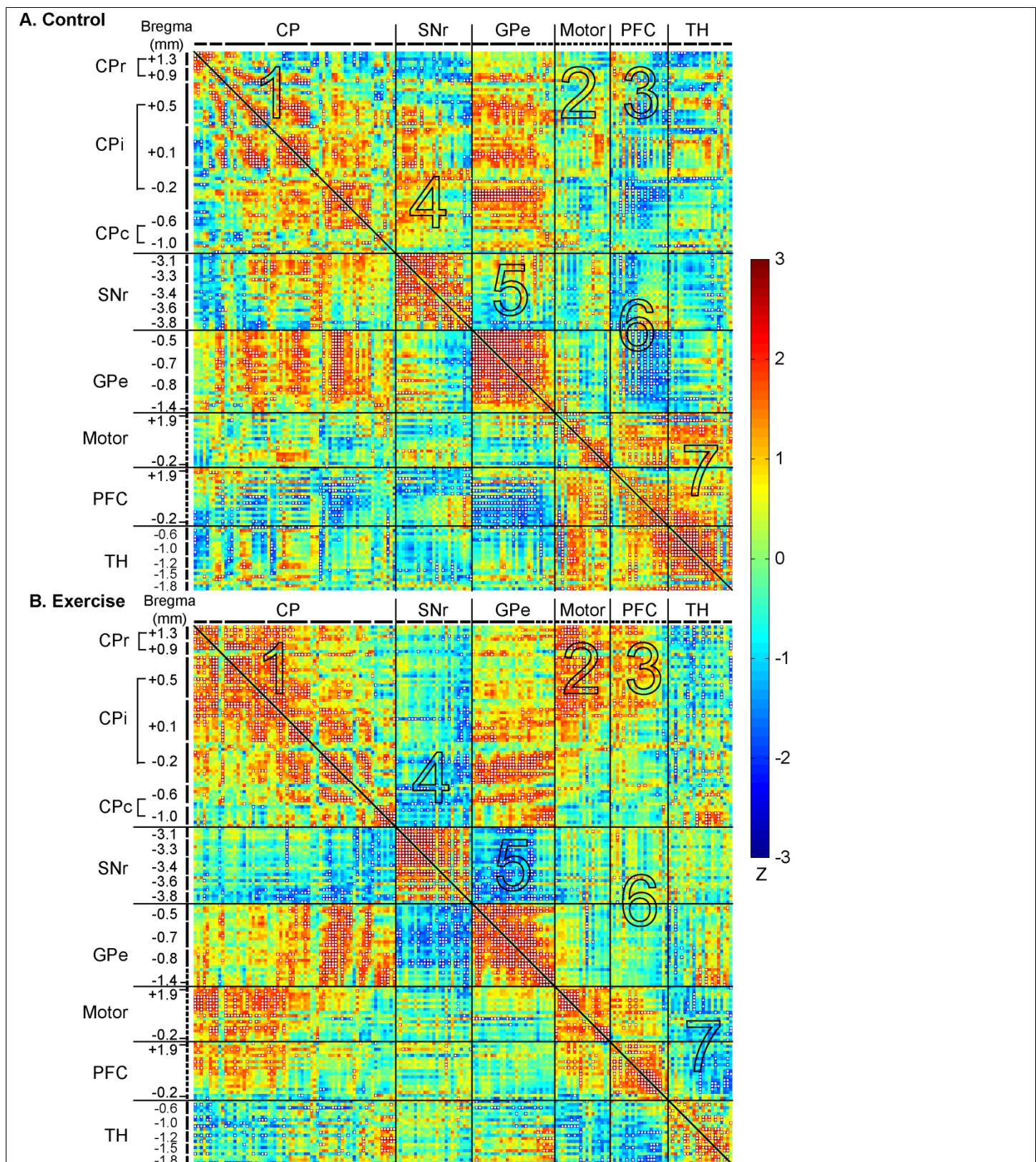

71 containing 10% sucrose, 14 mg of catalase, 350 mg of diaminobenzidine tetrahydrochloride (DAB), 52.5 mg
72 cytochrome c, and 1.75 ml of DMSO; (f) Stain termination/fixation at RT for 30 min in 0.1M phosphate buffer
73 containing 10% sucrose and 10% formalin; (g) Dehydration with ethanol and clearing with xylene. Slides were
74 coverslipped with Permount. Histological images were digitized and used to reconstruct a 3D brain as
75 described above for autoradiographic images.

76

77 **3. RESULTS**

78 **3.1. Effects of exercise on regional cerebral glucose uptake**

79 Exercise resulted in broad changes across the CBT network during wheel walking (**Fig. 3**). Significant rCGU
80 decreases were seen in the exercise compared to control group in motor regions, including primary motor
81 cortex, the basal ganglia (intermediate CP, SNr), zona incerta, cerebellum (vermis, crus 2 of the ansiform
82 lobule), as well as associated motor regions (cuneiform nucleus, precuneiform area), and sensory regions,
83 including cortical areas (auditory, IL, primary somatosensory), medial geniculate nucleus, inferior colliculus,
84 dorsal and ventral cochlear nucleus, anterior pretectal nucleus, and pontine reticular nucleus oral part.
85 Exercised compared to control animals showed statistically significant rCGU increases in the limbic areas,
86 including the hippocampus (CA1, CA2, CA3 fields, dentate gyrus, fimbria), parasubiculum, entorhinal cortex,
87 piriform cortex, insula, amygdala, hypothalamus (lateral and ventromedial), nucleus accumbens, dorsal raphe,
88 periaqueductal gray (ventrolateral, supraoculomotor) ($P < 0.05$, ≥ 200 significant contiguous voxels).
89 Significant increases were also seen in the secondary somatosensory, primary and secondary visual, perirhinal,
90 parietal association, and temporal association cortices, as well as in the olfactory tubercle, reticular thalamic
91 nucleus, habenular nucleus, superior colliculus, and laterodorsal tegmental nucleus.


Figure 3. Exercise effects on regional cerebral glucose uptake (rCGU). Color-coded overlays show statistically significant increases (red) and decreases (blue) in rCGU in the exercise compared to the control group ($P < 0.05$ and extent threshold > 200 contiguous voxels, Student's *t*-test). Shown are representative coronal sections of the template brain. Regions are identified according to the mouse brain atlas (Dong, 2008;

Franklin and Paxinos, 2008). Abbreviations: Acb, nucleus (n.) accumbens; Amyg, amygdala; APir, amygdalopiriform transition; APT, anterior pretectal n.; Au, auditory cortex (cx); CA1/CA2/CA3, field CA1/CA2/CA3 hippocampus; CnF, cuneiform n.; CoA, cortical amygdala; CP, caudoputamen; Crus2, crus 2 of the ansiform lobule; DC/VC, dorsal/ventral cochlear n.; DG, dentate gyrus; DR, dorsal raphe n.; Ent, entorhinal cx; fi, fimbria; Hb, habenular n.; IC, inferior colliculus; IL, infralimbic cx; Ins, insular cx; LDTg, laterodorsal tegmental n.; LH, lateral hypothalamus; M1, primary motor cx; MG, medial geniculate n.; PaS, parasubiculum; Pir, piriform cx; PhO, pontine reticular n. oral part; PrCnF, precuneiform area; PRh, perirhinal cx; PtA, parietal association cx; Rt, reticular thalamic n.; S1/S2, primary/secondary somatosensory cx; SC, superior colliculus; SNr, substantia nigra pars reticulata; STr, subiculum transition area; Su3, supraoculomotor periaqueductal gray; TeA, temporal association cx; Tu, olfactory tubercle; V1/V2, primary/secondary visual cx; VLPAG, ventrolateral periaqueductal gray; VMH, ventromedial hypothalamic n.; ZI, zona incerta.

92

93 **3.2. Sedentary control group: Functional connectivity of the cortico-basal ganglia-thalamic network**

94 In the control group (**Fig. 4A** and **Supplementary Table S1**), functional connectivity of the network was
95 characterized by strong, positive intra-structural connectivity in the SNr (+ 45.7%, positive connectivity
96 density), GPe (+ 58.1%), and thalamus (+ 48.6%); and modest, primarily positive intra-structural connectivity
97 in the CP (+ 11.0%), motor cortex (+ 23.5%), and mPFC (+ 19.3%) (**Fig. 4A**, along the diagonal line).
98 Primarily positive inter-structural connectivity was seen between the CP and GPe (+ 13.9%), motor cortex and
99 PFC (+ 9.6%), motor cortex and thalamus (+ 12.7%), and PFC and thalamus (+ 17.0%). The PFC showed
00 primarily negative connectivity with the basal ganglia: with CP (-7.8%, negative connectivity density), with
01 SNr (- 7.4%), and with GPe (- 21.4%) (**Supplementary Table S2**).

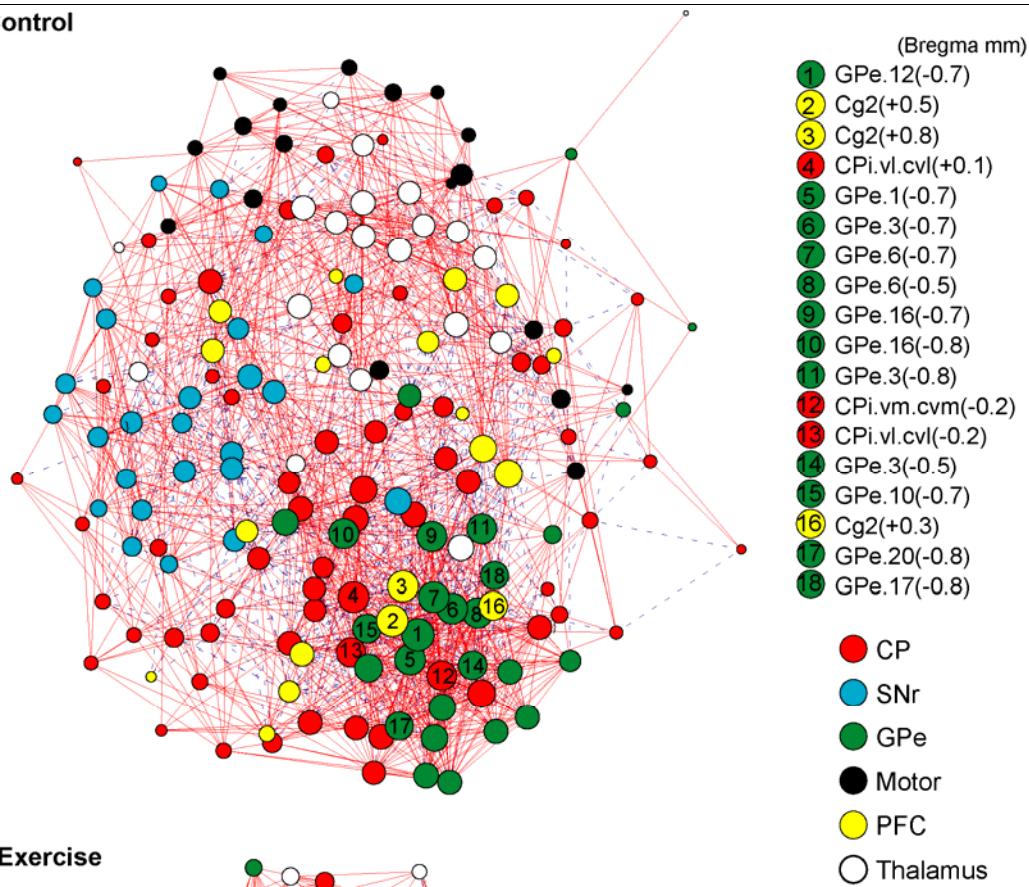
Figure 4. Exercise effects on functional connectivity of the cortico-basal ganglia-thalamic-cortical network. (A) Inter-regional correlation matrix shows functional connectivity patterns in the control group. Z scores of Pearson's correlation coefficients are color-coded with positive and negative values shown in warm and cold colors, respectively. The matrix is symmetric across the diagonal line from upper left to lower

right. Significant correlations ($P < 0.05$) are marked with white dots and interpreted as functional connections. Regions of interest are arranged in the sequence shown in **Fig. 2A**. They are grouped by structure, and further grouped by bregma level (marked by short, black lines) and arranged from rostral to caudal within each structure. **(B)** Inter-regional correlation matrix in the exercise group. CP, caudoputamen (CPr/CPi/CPc, rostral/intermediate/caudal); SNr, substantia nigra pars reticulata; GPe, globus pallidus externus; PFC, prefrontal cortex; TH, thalamus. The large numbers embedded in the heatmaps label pathways showing major exercise effects: 1, intra-CP; 2, CP-Motor cortex; 3, CP-PFC; 4, SNr-CP; 5, SNr-GPe; 6, PFC-SNr and PFC-GPe; 7, intra-TH, TH-Motor cortex, and TH-PFC.

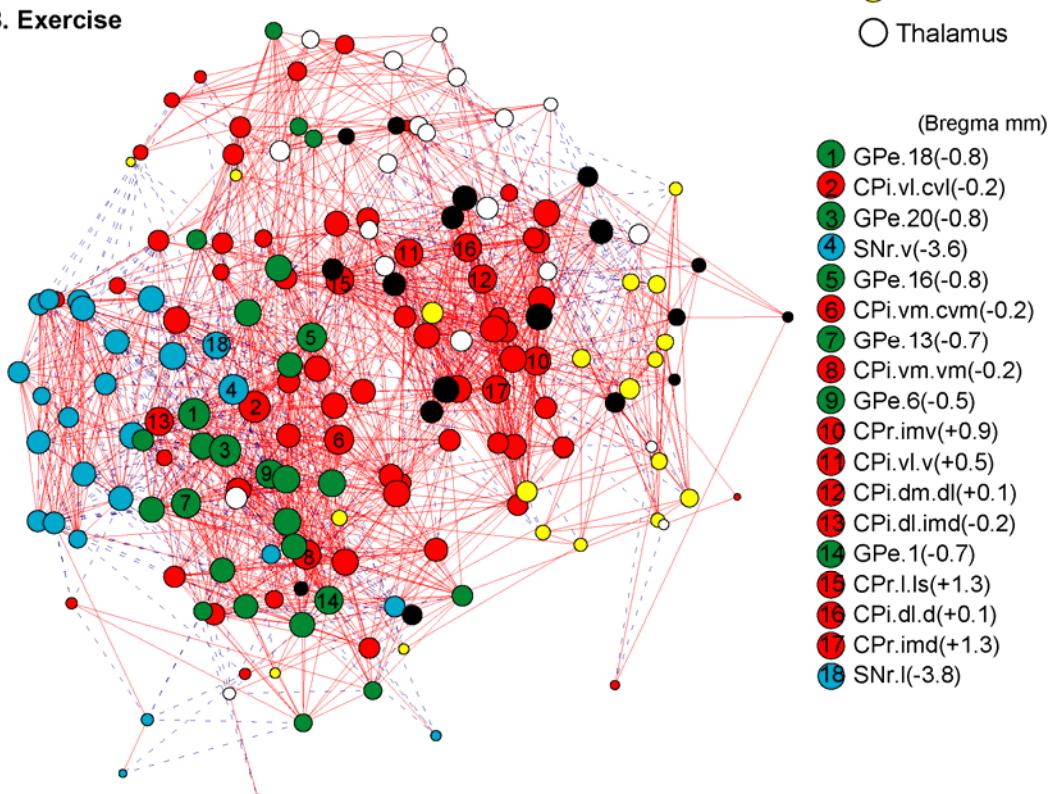
2

3 **Fig. 5A** shows a connectivity graph of the control group based on the correlation matrix. The graph was
4 energized using the Kamada-Kawai algorithm to help visualize network organization. Consistent with their
5 high intra-structural connectivity, the SNr (blue nodes), GPe (green), and thalamus (white) each formed
6 separate clusters. The motor cortex nodes (black) were closely connected with the thalamic cluster. The CP
7 nodes (red) and PFC nodes (yellow) were both more scattered, making connections with all other clusters, while
8 showing a particularly high level of integration with the GPe cluster. Nodes with the highest connectivity
9 degrees (top 10%) were considered network hubs and included 12 GPe nodes, 3 intermediate CP (CPi) nodes,
10 and 3 PFC nodes (Cg2).

11


12 **3.3. Exercise group: Functional connectivity of the cortico-basal ganglia-thalamic network**

13 The exercise compared to control group showed broad changes in functional connectivity (**Fig. 4B**, **Fig. 6**, and
14 **Supplementary Tables S1 and S2**) and network organization (**Fig. 5B**). The following major differences
15 comparing exercise and control group correspond to areas numbered 1 through 7 in **Fig. 4** and **Fig. 6**. (1) Intra-
16 CP connectivity density increased from + 11.0% in the control to + 20.0% in the exercise group. Increased
17 connections were mainly located in rostral CP (CPr) and dorsal aspect of CPi. (2) In the exercise group, new,
18 positive connections were formed between CPr/CPi and motor cortex. (3) CP-PFC connectivity changed
19 polarity from - 7.8% in the control to + 3.6% in the exercise group. New, positive connections involved mainly
20 CPr and CPi. (4) CP-SNr connectivity turned predominantly negative in the exercise group, with a - 6.3%
21 density involving mainly CPi and caudal CP (CPc). (5) SNr-GPe connectivity turned predominantly negative in
22 the exercise group, with a - 18.5% density. (6) Negative connectivity between PFC and the basal ganglia
23 observed predominantly in the control group was largely absent in the exercise group. (7) Intra-thalamic
24 connectivity density decreased from + 48.6% in the control to + 22.4% in the exercise group. A predominantly
25 positive thalamus-motor cortex connectivity (+ 12.7%) and thalamus-PFC connectivity (+ 17.0%) seen in the


26 control group changed polarity in the exercise group to a predominantly negative connectivity of - 5.3% and -
27 7.3%, respectively.
28

29 **Fig. 5B** shows energized connectivity graph of the exercise group. The PFC nodes (yellow) and thalamic nodes
30 (white) were marginalized. Motor cortex nodes (black) became more integrated towards the center of the
31 network through connections with CP nodes (red). The CP played a more central role in the network, with a
32 greater number of CP nodes functioning as hubs compared to in the control group. These CP nodes showed
33 greater connectivity with the GPe and SNr through ROIs mostly caudal to the bregma, and with the motor
34 cortex through ROIs mostly rostral to the bregma. Network hubs consisted of 10 CP nodes (up from 3 in the
35 control group), 6 GPe nodes (down from 12 in the control group), and 2 new SNr nodes. There was no network
36 hub in the PFC in the exercise group, consistent with decreases in functional connectivity of the PFC nodes with
37 the other structures (**Supplemental Table S2**).
38
39
40

A. Control

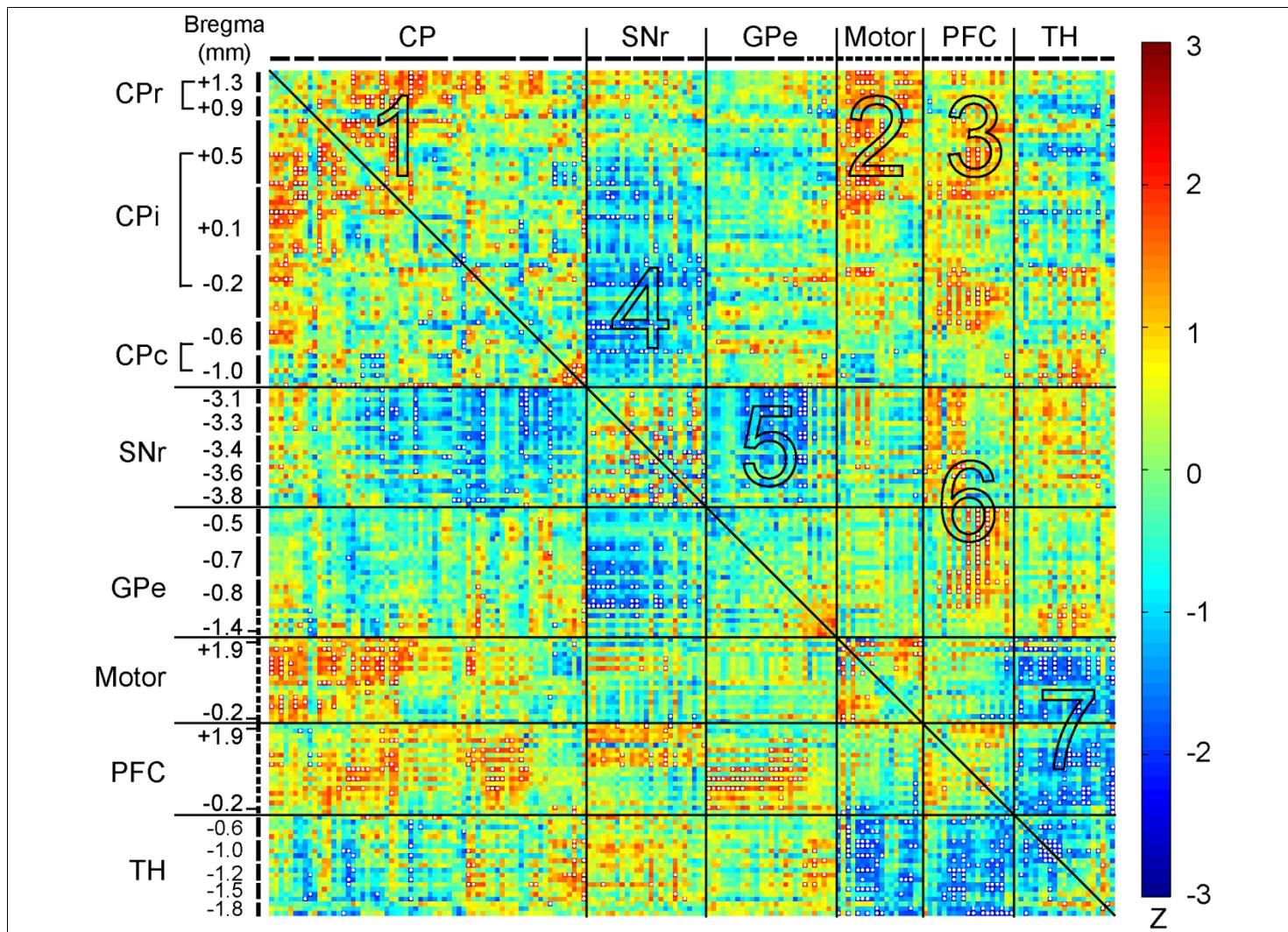

B. Exercise

Figure 5. Exercise effects on the organization of connectivity graphs of the cortico-basal ganglia-thalamic-cortical network. (A) The functional connectivity network of the control group is represented with a graph, in which nodes represent regions of interest (ROIs) and edges represent significant correlations. Solid

red lines denote significant positive correlations, whereas dashed blue lines denote significant negative correlations. The graph is energized using the Kamada–Kawai algorithm that places strongly connected nodes closer to each other while keeping weakly connected nodes further apart. The size of each node (in area) is proportional to its degree, a measurement of the number of connections linking the node to other nodes in the network. ROIs with the highest degree (top 10%) are considered hubs of the network and labeled with their ranking numbers. Nodes are color-coded to facilitate identification of nodes belonging to the same structure. **(B)** Connectivity graph of the exercise group. CP, caudoputamen; SNr, substantia nigra pars reticulata; GPe, globus pallidus externus; PFC, prefrontal cortex.

41

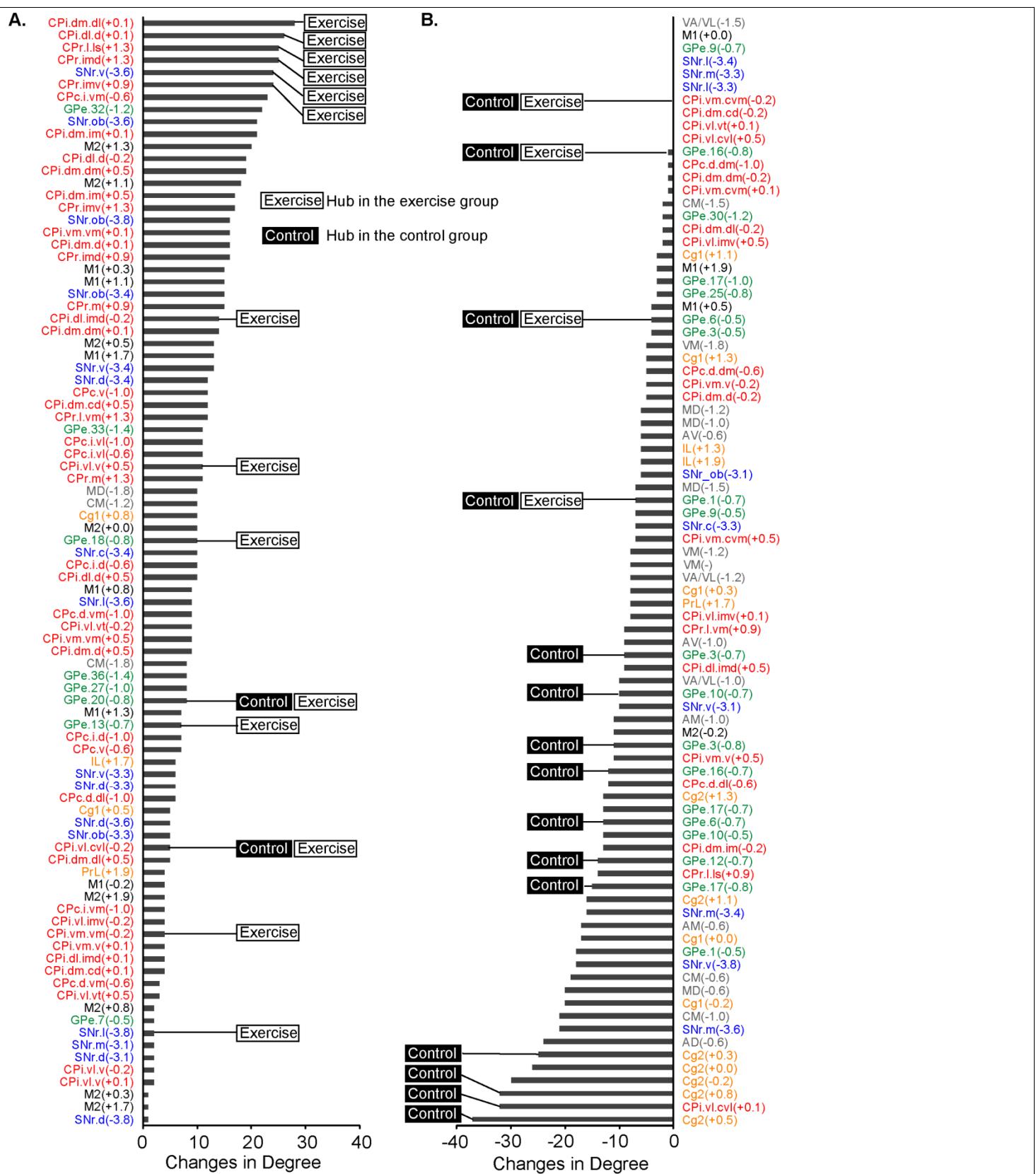


Figure 6. Exercise vs. control group: Changes in functional connectivity. The matrix of Fisher's Z-statistics represents differences in Pearson's correlation coefficients (r) between exercise and control groups. Positive/negative Z values indicate greater/smaller r in the exercise compared to control group. Significant between-group differences ($P < 0.05$) were marked with white dots. CP, caudoputamen (CPr/CPI/CPC,

rostral/intermediate/caudal); SNr, substantia nigra pars reticulata; GPe, globus pallidus externus; PFC, prefrontal cortex; TH, thalamus. The large numbers embedded in the heatmap label pathways showing major exercise effects: 1, intra-CP; 2, CP-Motor cortex; 3, CP-PFC; 4, SNr-CP; 5, SNr-GPe; 6, PFC-SNr and PFC-GPe; 7, intra-TH, TH-Motor cortex, and TH-PFC.

12

13 **Fig. 7** shows connectivity degree changes in the exercise compared to control group of all ROIs in a ranked
14 order. Among those with the highest gains in degree were CPr, CPi, SNr, M1, and M2 ROIs (**Fig. 7A**). ROIs
15 with the greatest losses in degree were from the Cg2, thalamus, and GPe (**Fig. 7B**).

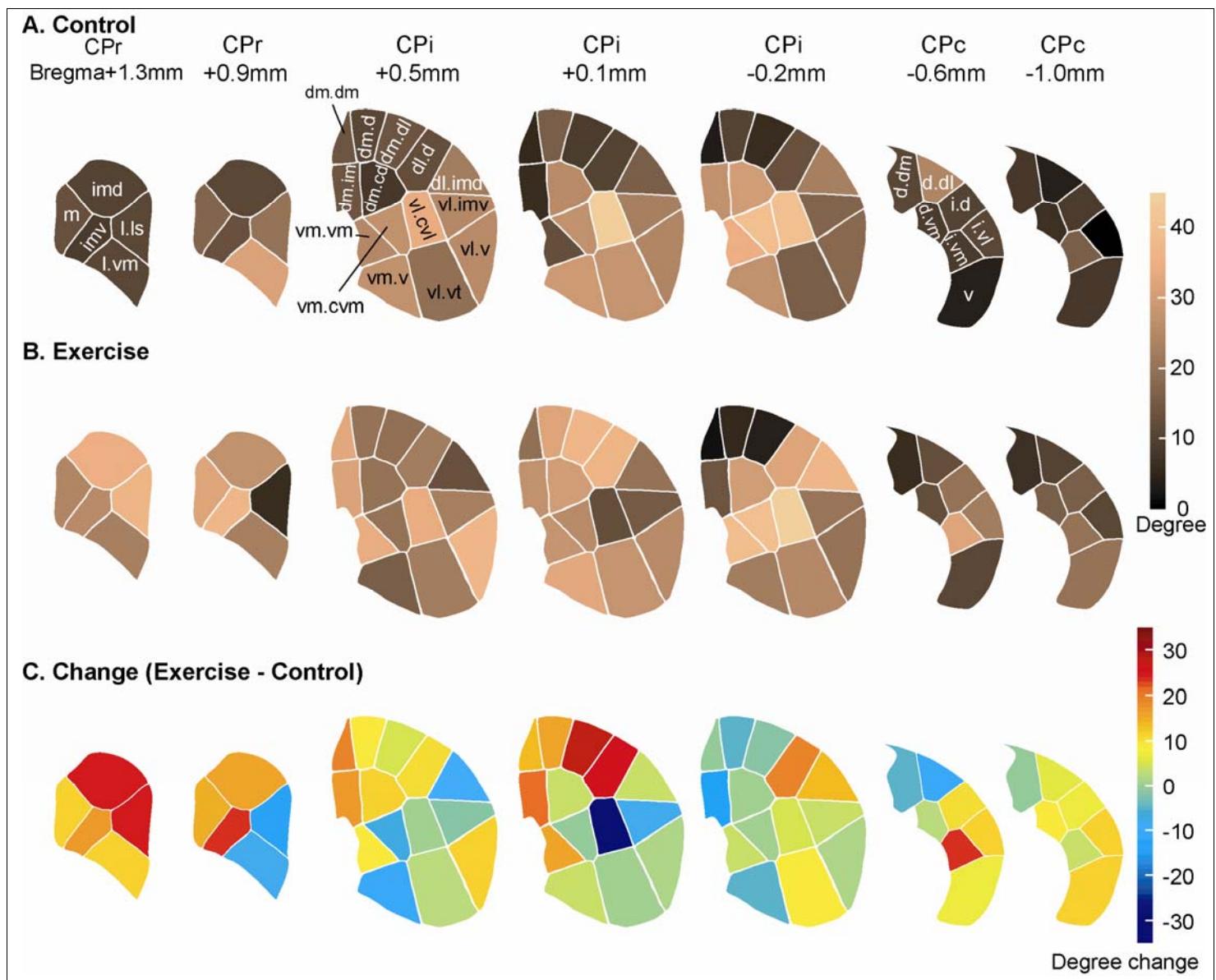


Figure 7. Functional connectivity degree changes comparing the exercise and control group. (A) Regions of interest (ROIs) showing increases in degree in the exercise compared to control group. (B) ROIs showing no changes or decreases in degree in the exercise compared to control group. Bregma levels of ROIs are included

in parentheses. ROIs identified as network hubs in **Figs. 5A and 5B** are labeled with "Control" and "Exercise" text boxes. CPr/CPi/CPc, rostral /intermediate/caudal caudoputamen; SNr, substantia nigra pars reticulata; GPe, globus pallidus externus; Cg1/Cg2, cingulate cortex area 1/2; IL, infralimbic cortex; PrL, prelimbic cortex; M1/M2, primary/secondary motor cortex; thalamic nuclei (AD, anterodorsal. AM, anteromedial. AV, anteroventral. CM, central medial. MD, mediodorsal. VA/VL, ventral anterior/ventrolateral. VM, ventromedial).

46

47 **Fig. 8** summarizes functional connectivity degrees of CP domains in the control and exercise groups, as well as
48 exercise-associated changes along the rostral-caudal axis. The domain maps were modified from (Hintiryan et
49 al., 2016). In the exercise compared to control group, domains showing the most gains in degree included most
50 domains in the CPr, the dorsomedial area of CPi (CPi.dm), the dorsolateral area of CPi (CPi.dl.d), and the
51 intermediate and ventral areas of CPc (CPc.i.vm, CPc.v), while some domains in the lateral area of CPr (CPr.l),
52 ventral areas of CPi (CPi.vm, CPi.vl), and dorsal area of CPc (CPc.d) showed decreases in degree.

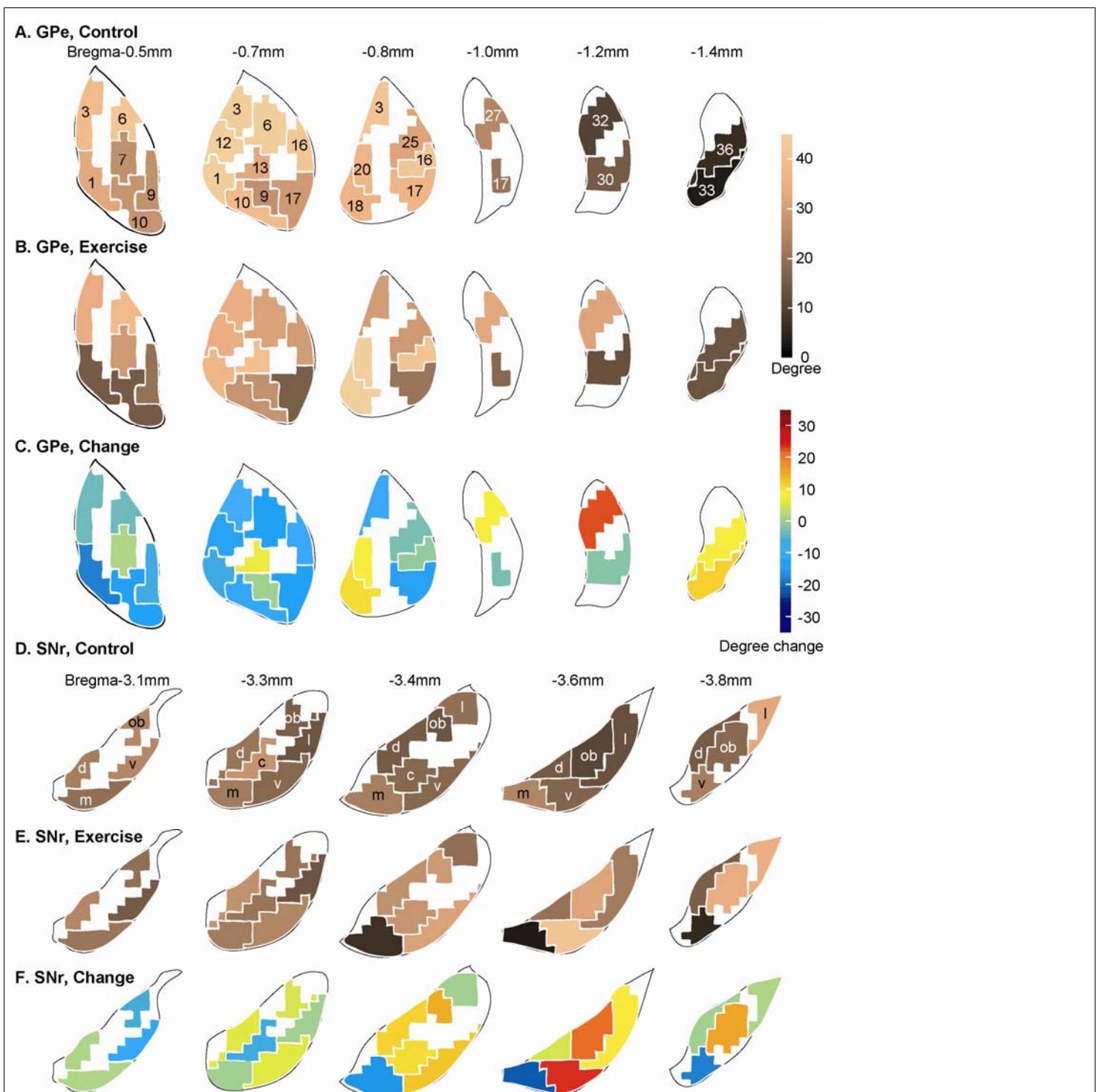


Figure 8. Functional connectivity degree changes in the caudoputamen (CP). (A) Connectivity degree of CP domains in the control group is color-coded. (B) Connectivity degree of CP domains in the exercise group. (C) Connectivity degree changes in the exercise compared to control group. CPr/CPI/CPc, rostral/intermediate/caudal caudoputamen. Domain maps and nomenclature were drawn based on Hintiryan et al. (2016).

53

54 **Fig. 9** summarizes functional connectivity degrees and exercise-associated changes in the GPe and SNr
 55 domains. The domain maps were modified from (Foster et al., 2021). Exercise induced overall decreases in
 56 degree in the GPe domains, except in the caudal area (GPe.32, GPe.33, **Fig. 9A-C**). In the SNr (**Fig. 9D-F**),
 57 exercise induced degree decrease rostrally in the oro-brachial, ventral, and central domains (SNr.ob, SNr.v,
 58 SNr.c) and caudally in the medial and ventral domains (SNr.m, SNr.v); while inducing degree increase in

59 domains at intermediate and caudal levels (SNr.ob at -3.4 to -3.8mm, SNr.v at -3.4 and -3.6mm, SNr.d and
 50 SNr.c at -3.4mm).

Figure 9. Functional connectivity degree changes in the globus pallidus externus (GPe) and substantia nigra pars reticulata (SNr). (A) Connectivity degree of GPe domains in the control group is color-coded. (B) Connectivity degree of GPe domains in the exercise group. (C) GPe connectivity degree changes comparing the exercise and control groups. (D) Connectivity degree of SNr domains in the control group. (E) Connectivity degree of SNr domains in the exercise group. (F) SNr connectivity degree changes comparing the

51 exercise and control groups. Domain maps and domain nomenclature were drawn based on Foster et al. (2021).

52 **4. DISCUSSION**

53 We applied the 2DG autoradiographic cerebral metabolic mapping method to investigate exercise-associated
54 functional reorganization in the normal mouse brain. Exercise significantly altered both regional cerebral
55 glucose uptake in broad areas of the brain, as well as inter-regional functional interactions in the CBT network.
56 Compared to the sedentary controls, the exercise group showed increases in positive functional connectivity
57 within and between the CP and motor cortex, newly emerged negative connectivity of the SNr with GPe and
58 CP, as well as diminished negative connectivity of the PFC with the CP. To our best knowledge, this is the first
59 study that systematically analyzed functional connectivity in the CBT network at the mesoscopic level during
60 learning of a new motor task. ROIs were chosen to conform to the subregional parcellation of the CP, SNr, and
61 GPe in the mouse brain structural connectome. Using the structural connectome as a roadmap, the current study
62 started to address network activity underlying the brain's changes in learning capacity of a novel wheel walking
63 task following chronic exercise.

64
65 **4.1. Exercise-effects on regional cerebral glucose uptake**

66 In our study, mice underwent chronic (six weeks), high-intensity exercise on a motorized horizontal treadmill or
67 no exercise. Cerebral metabolic mapping was thereafter undertaken in all animals during a novel wheel
68 walking challenge, with differences in rCGU of the CBT likely reflecting long-lasting cerebral functional
69 reorganization. Exercise resulted in broad changes in rCGU during wheel walking, including decreases in the
70 motor areas (primary motor cortex, dorsolateral aspect of intermediate CP, SNr, zona incerta, and the cerebellar
71 vermis); but increases broadly in the limbic areas (the hippocampus, entorhinal cortex, amygdala,
72 hypothalamus, piriform and insular cortex, dorsal raphe, periaqueductal gray and nucleus accumbens), as well
73 as the visual and association cortices (parietal, temporal), and dorsolateral tegmental nucleus. This general
74 pattern of changes was remarkably similar to what we previously observed in a cerebral blood flow (CBF)
75 mapping study (Holschneider et al., 2007). In this earlier study, rats received 6 weeks of rotarod exercise and
76 were subsequently imaged during a locomotor challenge. Compared to sedentary controls, animals exercised on
77 the rotarod showed decreases in regional CBF in the motor pathway (M1, M2, dorsolateral CP, zona incerta,
78 cerebellar vermis) and primary somatosensory cortex, as well as increases in limbic regions (hippocampus,
79 entorhinal cortex, periaqueductal gray, amygdala). Of note, the above-mentioned patterns observed after
80 chronic exercise were generally opposite to those elicited during acute locomotion, where prior work has shown
81 increases in rCGU (Vissing et al., 1996) and CBF (Nguyen et al., 2004) in motor regions (motor cortex,
82 striatum, substantia nigra, cerebellum) and decreases in rCGU in limbic regions (including amygdala,

93 hippocampus, hypothalamus, dorsal raphe). This converging evidence across species and across brain mapping
94 modalities supports a general pattern of exercise effects on functional cerebral reorganization.

95
96 Similar effects on the motor regions have been reported after motor training in humans when comparing
97 professional musicians and novices during the performance of finger sequences (Munte et al., 2002). The
98 magnitude of fMRI BOLD signals to simple, overpracticed finger tasks in experts was attenuated relative to that
99 seen in novices in the motor cortex, basal ganglia, and cerebellar vermis (Jancke et al., 2000; Kim et al., 2004;
00 Koeneke et al., 2004). In non-musicians, attenuation of activation in somatosensory and motor cortices has
01 been reported as subjects become more practiced on finger tasks (Morgen et al., 2004). When finger sequences
02 are pre-learned, a lesser and more circumscribed activation has been noted in the cerebellum (vermis and
03 hemispheres) (Friston et al., 1992; Jenkins et al., 1994), and striatum (Tracy et al., 2001). These and our
04 findings suggest that extensive motor training results in a functionally more efficient way to control movements.
05 The nature of this increase in functional efficacy needs further investigation, but may involve a shift from
06 anaerobic to aerobic metabolism (McCloskey et al., 2001; Garifoli et al., 2003; Navarro et al., 2004).

07
08 **4.2. Exercise enhances functional connectivity of the caudoputamen and motor cortex**

09 The notion that exercise enhanced the efficiency of the motor circuit received further support from the
10 functional connectivity analysis. There was broadly increased intra- and inter-structural connectivity across the
11 CP and motor cortex in exercised compared to control animals. The findings of increased functional
12 connectivity in the CP and motor cortex in the exercised animals in the context of decreases or no change in
13 rCGU in these regions suggests that the motor regions, rather than being deactivated, were functioning with
14 greater integration at the network level. Such dissociation between regional activity and functional connectivity
15 has been previously reported. Eisenstein et al. (2021) reported that in older adults a physically active lifestyle
16 was associated with lower activity level of the hippocampus, but higher functional connectivity of the
17 hippocampus to hubs of the default mode network during memory encoding. Conversely, Trujillo et al. (2015)
18 reported that Parkinson's patients compared to healthy controls showed increased activity but decreased
19 functional connectivity in the dorsolateral prefrontal cortex during a visuospatial task. These and other findings
20 (Pinho et al., 2014) together suggest that a simultaneous task-related decrease in regional activity and increase
21 in functional connectivity may be a marker for high functionality of the region, while an increase in activity
22 coupled with a decrease in connectivity may represent a marker for dysfunction.

23
24 In the exercise compared to the control group, the rostral level and dorsal aspect of intermediate level CP
25 showed the greatest increase in functional connectivity. The CPr exhibits high integration among cortical

26 afferents, across different cortical subnetworks, suggesting cross modality integration, while CPi.dm receives
27 input from the medial cortical subnetwork (including visual, auditory, anterior cingulate, retrosplenial, and
28 posterior parietal association areas) (Hintiryan et al., 2016). Increased functional connectivity in these CP areas
29 suggests a shift in the CP subregional recruitment that facilitates cross modality integration.
30

31 **4.3. Exercise decreases functional connectivity between prefrontal cortex and the basal ganglia**

32 The prefrontal cortices project to the medial aspect of the CP and are implicated in cognitive functions,
33 including executive function (O'Neill and Brown, 2007; Baker and Ragazzino, 2014; Grospe et al., 2018).
34 While the PFC in the control group was functionally closely integrated with the basal ganglia through negative
35 connectivity and with the motor cortex and thalamus through positive connectivity, it was functionally
36 dissociated from these structures in the exercise group. The connectivity density of PFC with all other
37 structures dropped from 12.6% in controls to 3.7% in the exercise group. It is believed that the PFC is critically
38 involved in the early phase of a motor learning task (Dayan and Cohen, 2011). In fact, we have previously
39 shown greater functional connectivity between the PFC and dorsomedial CP in rats during the early phase of
40 learning a complex wheel walking task (Guo et al., 2017). As learning progresses, the PFC becomes less
41 involved (Dayan and Cohen, 2011). Wheel walking in the current study was a new motor task for the animals.
42 Both groups were habituated to the wheel for two days prior to the 2DG mapping experiments. The finding of
43 high connectivity to outside structures (inter-structural connectivity) in the control group is consistent with the
44 notion that in the early phase of motor skill learning, the PFC is critically involved in cognitive control.
45 Reduced PFC connectivity to outside structures in the exercise group, coupled with an increased functional
46 connectivity of the CP and motor cortex, suggests higher network efficiency that expedites motor skill learning
47 and the transition during initial learning from PFC to motor cortex in terms of cortical recruitment.
48

49 **4.4. Exercise led to strong negative functional connectivity between the SNr and GPe**

50 In the basal ganglia, the CP and GPe were positively connected in both the control and exercise groups. In
51 contrast, exercise induced substantial changes in the functional connectivity of SNr with CP and with GPe. In
52 the control group, SNr-CP and SNr-GPe connectivity were relatively weak and contained both positive and
53 negative connections. In the exercise group, SNr-CP and SNr-GPe turned exclusively negative to -6.3% and -
54 18.5%, respectively. Negative connection (anticorrelation) is believed to reflect inter-regional modulation,
55 possibly involving the suppression of excitability of a network (Gopinath et al., 2015). Though the direction of
56 change related to excitatory-inhibitory inputs remains unresolved, negative correlations have been associated
57 with known inhibitory connections in the rodent (Liang et al., 2012). In the indirect pathway of the basal
58 ganglia, GPe inhibits SNr activity through inhibition of the subthalamic nucleus. The strong negative SNr-GPe

59 connectivity, and decrease in rCGU in part of the SNr are consistent with greater activation of the indirect
50 pathway in the exercise group.

51

52 **4.5. Translational implications**

53 An important clinical implication of our findings is that chronic exercise may prime the brain for accelerated
54 new motor learning, whereby CP to motor cortex networks are heavily recruited compared to CP to PFC
55 networks. Whereas traditional motor learning theories emphasize learning specific to the context and task
56 performed through engagement of the PFC, recent studies suggest that a general, transferable knowledge about
57 skill learning processes that involves the CP and motor cortex, may be acquired through prior motor learning
58 (Seidler, 2004). The extent of generalization may depend on the breadth and duration of experience obtained,
59 the degree of arousal (Loras et al., 2020), context, and intensity (Holman and Staines, 2021). Lehmann et al.
60 (2020) showed that subjects who underwent cardiovascular exercise subsequently learned a dynamic balancing
61 task faster compared to controls undergoing stretching. Exercise also induced increases in cerebral blood flow
62 in frontal brain regions and changes in white matter microstructure in frontotemporal fiber tracts, suggesting a
63 transfer potential of experience-induced brain plasticity. Inoue et al. (2018) showed that long-term exercise
64 increased BDNF expression in the motor cortex and facilitated a transfer of motor learning from aerobic
65 exercise to postural coordination. Aerobic exercise in stroke survivors improved cognitive domains related to
66 motor learning (Quaney et al., 2009). It has been proposed that exercise-mediated improvements in motor
67 learning can be mediated by discrete, experience-driven changes within specific neural representations
68 subserving the performance of the trained task (Karni et al., 1998). However, few studies have examined the
69 underlying functional reorganization of neural circuits. Our study highlights exercise-associated functional
70 reorganization of the CBT circuit in areas implicated in cognitive and motor processing, which may mediate
71 improved motor learning. Such circuit-level understanding may inform therapeutic use of exercise for the
72 rehabilitation of patients with motor and cognitive dysfunctions.

73

74 **4.6. The importance of systematic functional connectivity analysis at the mesoscopic level**

75 Tremendous progress has been made in understanding the structural connectome of the rodent brain (Oh et al.,
76 2014; Zingg et al., 2014; Bota et al., 2015; Hunnicutt et al., 2016; Knox et al., 2019). Understanding of the
77 brain functional connectome remains much less advanced (Frégnac, 2017; Venkadesh and Van Horn, 2021). A
78 large part of the challenge is that brain functional connectivity is dynamic and depends on not only the current
79 behavioral state (task, context), but also past experience (learning and memory). Advances have been made to
80 delineate the whole-brain level functional connectome using resting-state fMRI (rs-fMRI) (Stafford et al., 2014;
81 Mills et al., 2018; Zerbi et al., 2019; Coletta et al., 2020; Yang et al., 2021) and at the system level for a specific
82 behavior, such as conditioned fear recall (Wheeler et al., 2013; Holschneider et al., 2014). Fregnac (2017) has

93 emphasized that understanding mesoscale (mesoscopic) organization and full network dynamics may reveal a
94 simpler formalism than the microscale level. Our study selected basal ganglia ROIs based on novel,
95 mesoscopic domain definitions in the mouse brain connectome. In addition, multiple ROIs were defined at
96 different bregma levels for some CP, GPe, and SNr domains. We felt this sampling method, informed by state-
97 of-the-art structural connectomic data, reflects the best effort (an optimal compromise) to delineate *functional*
98 *units* within brain structures. Specifically, a subregional sampling may be needed to avoid losing information
99 when signals are spatially averaged over, for instance, whole CP, globus pallidus, or motor cortex, as many
00 prior 2DG studies have done. At the same time mesoscopic sampling provides sufficient data simplification,
01 while avoiding the risk of losing relevance to the interpretation of behavior through an exhaustive reductionist
02 analysis (Frégnac, 2017). In some cases, differences in functional connectivity were noted in the same domain
03 across different bregma levels, e.g., CPr.l.vm (Fig. 8), suggesting the existence of multiple functional units
04 within a domain. This may in turn inform further analysis of these domains in terms of gene expression,
05 neurochemistry, and local circuitry.

06 07 4.7. Limitations

08 Our study focused on the CBT network, with an emphasis on the basal ganglia. Brain regions outside of the
09 sampled CBT network may also contribute to the learning and performance of the wheel walking task and
10 undergo changes in response to exercise. These regions include the hippocampus, cerebellum, parietal
11 association cortex, somatosensory and visual cortices, and ventral striatum (nucleus accumbens, ventral
12 pallidum), as shown in the activation map (Fig. 3). This limitation is due to the scope and aim of the study.
13 Mesoscopic ROI selection for the hippocampus, cerebellum, and the cortical structures remains challenging due
14 to the large size and incomplete understanding of subregional heterogeneity of these structures, and needs to be
15 addressed in future work.

16
17 It is important to note that correlation is not causation. Interpretation of functional connectivity between two
18 nodes, even with direct structural connectivity, is not trivial due to the existence of indirect pathways through
19 other node(s), possible influence from a common third node, and reciprocal connections and loops common in
20 neural networks. Nevertheless, this mapping method provides insight into exercise-induced functional network
21 reorganization and informs further mechanistic and causal research that focus on specific brain regions or
22 pathways by examining neuroplasticity and manipulation.

23
24 As noted above, the functional connectome represents a dynamic map. The time scales of data sampling matter.
25 Exploring network structure of cerebral cortex on multiple time scales, Honey et al. (2007) reported that at

26 slower time scales (minutes), the aggregate strength of functional connectivity between regions is, on average, a
27 good indicator of the presence of an underlying structural link. At faster time scales, significant fluctuations are
28 observed. Thus, while the aim of anatomic parcellation remains the discovery of discrete functional units, the
29 answers provided may depend in part on the temporal resolution of data sampling.

30

31 **4.8. Conclusion**

32 Overall findings from our study support that exercise induced a significant functional reorganization of the CBT
33 neural network that led to greater connectivity between the CP and motor cortex that may underlie gains in
34 learning of a new motor task. Such findings support that exercise may facilitate motor learning through
35 engagement of key motor networks important for the generalizability of motor performance and may be used to
36 guide future rehabilitation programs.

37

38

39

40

41 **Acknowledgments**

42 This work was supported by grants from the US Department of Defense (Army, CDMRP) grant #
43 W81XWH18-1-0666 (DPH) and grant # W81XWH19-1-0443 (MWJ).

44

45 REFERENCES

46 Baker PM, Ragazzino ME (2014) Contralateral disconnection of the rat prelimbic cortex and dorsomedial
47 striatum impairs cue-guided behavioral switching. *Learn Mem* 21:368-379.
48 DOI:10.1101/lm.034819.114.

49 Bota M, Sporns O, Swanson LW (2015) Architecture of the cerebral cortical association connectome underlying
50 cognition. *Proc Natl Acad Sci U S A* 112:E2093-2101. DOI:10.1073/pnas.1504394112.

51 Buckner RL, Krienen FM, Yeo BT (2013) Opportunities and limitations of intrinsic functional connectivity
52 MRI. *Nat Neurosci* 16:832-837. DOI:10.1038/nn.3423.

53 Coletta L, Pagani M, Whitesell JD, Harris JA, Bernhardt B, Gozzi A (2020) Network structure of the mouse
54 brain connectome with voxel resolution. *Sci Adv* 6. DOI:10.1126/sciadv.abb7187.

55 Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity.
56 *Trends Neurosci* 25:295-301. DOI:10.1016/s0166-2236(02)02143-4.

57 Dauwan M, Begemann MJH, Slot MIE, Lee EHM, Scheltens P, Sommer IEC (2021) Physical exercise
58 improves quality of life, depressive symptoms, and cognition across chronic brain disorders: a
59 transdiagnostic systematic review and meta-analysis of randomized controlled trials. *J Neurol* 268:1222-
60 1246. DOI:10.1007/s00415-019-09493-9.

51 Dayan E, Cohen LG (2011) Neuroplasticity subserving motor skill learning. *Neuron* 72:443-454.
52 DOI:10.1016/j.neuron.2011.10.008.

53 Di X, Biswal BB (2012) Metabolic brain covariant networks as revealed by FDG-PET with reference to resting-
54 state fMRI networks. *Brain Connect* 2:275-283. DOI:10.1089/brain.2012.0086.

55 Dong HW (2008) The Allen reference atlas: A digital color brain atlas of the C57BL/6J male mouse. Hoboken,
56 NJ, USA: John Wiley & Sons.

57 Duchesne C, Gheysen F, Bore A, Albouy G, Nadeau A, Robillard ME, Bobeuf F, Lafontaine AL, Lungu O,
58 Bherer L, Doyon J (2016) Influence of aerobic exercise training on the neural correlates of motor
59 learning in Parkinson's disease individuals. *Neuroimage Clin* 12:559-569.
60 DOI:10.1016/j.nicl.2016.09.011.

71 Eisenstein T, Giladi N, Handler T, Havakuk O, Lerner Y (2021) Physically Active Lifestyle Is Associated With
72 Attenuation of Hippocampal Dysfunction in Cognitively Intact Older Adults. *Front Aging Neurosci*
73 13:720990. DOI:10.3389/fnagi.2021.720990.

74 Fidalgo C, Conejo NM, Gonzalez-Pardo H, Arias JL (2011) Cortico-limbic-striatal contribution after response
75 and reversal learning: a metabolic mapping study. *Brain Res* 1368:143-150.
76 DOI:10.1016/j.brainres.2010.10.066.

77 Foster NN, Barry J, Korobkova L, Garcia L, Gao L, Becerra M, Sherafat Y, Peng B, Li X, Choi JH, Gou L,
78 Zingg B, Azam S, Lo D, Khanjani N, Zhang B, Stanis J, Bowman I, Cotter K, Cao C, Yamashita S,
79 Tugangui A, Li A, Jiang T, Jia X, Feng Z, Aquino S, Mun HS, Zhu M, Santarelli A, Benavidez NL,
80 Song M, Dan G, Fayzullina M, Ustrell S, Boesen T, Johnson DL, Xu H, Bienkowski MS, Yang XW,
81 Gong H, Levine MS, Wickersham I, Luo Q, Hahn JD, Lim BK, Zhang LI, Cepeda C, Hintiryan H, Dong
82 HW (2021) The mouse cortico-basal ganglia-thalamic network. *Nature* 598:188-194.
83 DOI:10.1038/s41586-021-03993-3.

84 Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd Edition. New York, NY, USA:
85 Elsevier Academic Press.

86 Frégnac Y (2017) Big data and the industrialization of neuroscience: A safe roadmap for understanding the
87 brain? *Science* 358:470-477. DOI:10.1126/science.aan8866.

88 Friston KJ, Frith CD, Passingham RE, Liddle PF, Frackowiak RS (1992) Motor practice and neurophysiological
89 adaptation in the cerebellum: a positron tomography study. *Proc Biol Sci* 248:223-228.
90 DOI:10.1098/rspb.1992.0065.

91 Garifoli A, Cardile V, Maci T, Perciavalle V (2003) Exercise increases cytochrome oxidase activity in specific
92 cerebellar areas of the rat. *Arch Ital Biol* 141:181-187.

93 Gomes-Osman J, Cabral DF, Morris TP, McInerney K, Cahalin LP, Rundek T, Oliveira A, Pascual-Leone A
94 (2018) Exercise for cognitive brain health in aging: A systematic review for an evaluation of dose.
95 *Neurol Clin Pract* 8:257-265. DOI:10.1212/CPJ.000000000000460.

96 Gopinath K, Krishnamurthy V, Cabanban R, Crosson BA (2015) Hubs of Anticorrelation in High-Resolution
97 Resting-State Functional Connectivity Network Architecture. *Brain Connect* 5:267-275.
98 DOI:10.1089/brain.2014.0323.

99 Grospe GM, Baker PM, Ragozzino ME (2018) Cognitive Flexibility Deficits Following 6-OHDA Lesions of
100 the Rat Dorsomedial Striatum. *Neuroscience* 374:80-90. DOI:10.1016/j.neuroscience.2018.01.032.

101 Guo Y, Wang Z, Prathap S, Holschneider DP (2017) Recruitment of prefrontal-striatal circuit in response to
102 skilled motor challenge. *Neuroreport* 28:1187-1194. DOI:10.1097/WNR.0000000000000881.

103 Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and
104 cognition. *Nat Rev Neurosci* 9:58-65. DOI:10.1038/nrn2298.

105 Hintiryan H, Foster NN, Bowman I, Bay M, Song MY, Gou L, Yamashita S, Bienkowski MS, Zingg B, Zhu M,
106 Yang XW, Shih JC, Toga AW, Dong HW (2016) The mouse cortico-striatal projectome. *Nat Neurosci*
107 19:1100-1114. DOI:10.1038/nn.4332.

108 Holman SR, Staines WR (2021) The effect of acute aerobic exercise on the consolidation of motor memories.
109 *Exp Brain Res* 239:2461-2475. DOI:10.1007/s00221-021-06148-y.

10 Holschneider DP, Wang Z, Pang RD (2014) Functional connectivity-based parcellation and connectome of
11 cortical midline structures in the mouse: a perfusion autoradiography study. *Front Neuroinform* 8:61.
12 DOI:10.3389/fninf.2014.00061.

13 Holschneider DP, Yang J, Guo Y, Maarek JM (2007) Reorganization of functional brain maps after exercise
14 training: Importance of cerebellar-thalamic-cortical pathway. *Brain Res* 1184:96-107.
15 DOI:10.1016/j.brainres.2007.09.081.

16 Holschneider DP, Guo Y, Wang Z, Vidal M, Scremin OU (2019) Positive Allosteric Modulation of Cholinergic
17 Receptors Improves Spatial Learning after Cortical Contusion Injury in Mice. *J Neurotrauma* 36:2233-
18 2245. DOI:10.1089/neu.2018.6036.

19 Honey CJ, Kotter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional
20 connectivity on multiple time scales. *Proc Natl Acad Sci U S A*, 2007. 104(24):10240-5. doi:
21 10.1073/pnas.0701519104.

22 Hunnicutt BJ, Jongbloets BC, Birdsong WT, Gertz KJ, Zhong H, Mao T (2016) A comprehensive excitatory
23 input map of the striatum reveals novel functional organization. *Elife* 5. DOI:10.7554/eLife.19103.

24 Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, Della Penna S, Duyn JH,
25 Glover GH, Gonzalez-Castillo J, Handwerker DA, Keilholz S, Kiviniemi V, Leopold DA, de Pasquale
26 F, Sporns O, Walter M, Chang C (2013) Dynamic functional connectivity: promise, issues, and
27 interpretations. *Neuroimage* 80:360-378. DOI:10.1016/j.neuroimage.2013.05.079.

28 Inoue T, Ninuma S, Hayashi M, Okuda A, Asaka T, Maejima H (2018) Effects of long-term exercise and low-
29 level inhibition of GABAergic synapses on motor control and the expression of BDNF in the motor
30 related cortex. *Neurol Res* 40:18-25. DOI:10.1080/01616412.2017.1382801.

31 Jancke L, Shah NJ, Peters M (2000) Cortical activations in primary and secondary motor areas for complex
32 bimanual movements in professional pianists. *Brain Res Cogn Brain Res* 10:177-183.
33 DOI:10.1016/s0926-6410(00)00028-8.

34 Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RS, Passingham RE (1994) Motor sequence learning: a study
35 with positron emission tomography. *J Neurosci* 14:3775-3790. DOI:10.1523/JNEUROSCI.14-06-
36 03775.1994.

37 Ji L, Zhang H, Potter GG, Zang YF, Steffens DC, Guo H, Wang L (2017) Multiple Neuroimaging Measures for
38 Examining Exercise-induced Neuroplasticity in Older Adults: A Quasi-experimental Study. *Front Aging
39 Neurosci* 9:102. DOI:10.3389/fnagi.2017.00102.

40 Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, Ungerleider LG (1998) The acquisition
41 of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. *Proc
42 Natl Acad Sci U S A* 95:861-868. DOI:10.1073/pnas.95.3.861.

43 Kim DE, Shin MJ, Lee KM, Chu K, Woo SH, Kim YR, Song EC, Lee JW, Park SH, Roh JK (2004) Musical
44 training-induced functional reorganization of the adult brain: functional magnetic resonance imaging
45 and transcranial magnetic stimulation study on amateur string players. *Hum Brain Mapp* 23:188-199.
46 DOI:10.1002/hbm.20058.

47 Knox JE, Harris KD, Graddis N, Whitesell JD, Zeng H, Harris JA, Shea-Brown E, Mihalas S (2019) High-
48 resolution data-driven model of the mouse connectome. *Netw Neurosci* 3:217-236.
49 DOI:10.1162/netn_a_00066.

50 Koeneke S, Lutz K, Wustenberg T, Jancke L (2004) Long-term training affects cerebellar processing in skilled
51 keyboard players. *Neuroreport* 15:1279-1282. DOI:10.1097/01.wnr.0000127463.10147.e7.

52 Lehmann N, Villringer A, Taubert M (2020) Colocalized White Matter Plasticity and Increased Cerebral Blood
53 Flow Mediate the Beneficial Effect of Cardiovascular Exercise on Long-Term Motor Learning. *J
54 Neurosci* 40:2416-2429. DOI:10.1523/JNEUROSCI.2310-19.2020.

55 Li HQ, Spitzer NC (2020) Exercise enhances motor skill learning by neurotransmitter switching in the adult
56 midbrain. *Nat Commun* 11:2195. DOI:10.1038/s41467-020-16053-7.

57 Liang Z, King J, Zhang N (2012) Anticorrelated resting-state functional connectivity in awake rat brain.
58 *Neuroimage* 59:1190-1199. DOI:10.1016/j.neuroimage.2011.08.009.

59 Loras H, Haga M, Sigmundsson H (2020) Effect of a Single Bout of Acute Aerobic Exercise at Moderate-to-
60 Vigorous Intensities on Motor Learning, Retention and Transfer. *Sports* (Basel) 8.
61 DOI:10.3390/sports8020015.

62 Ludyga S, Gerber M, Puhse U, Loosser VN, Kamijo K (2020) Systematic review and meta-analysis investigating
63 moderators of long-term effects of exercise on cognition in healthy individuals. *Nat Hum Behav* 4:603-
64 612. DOI:10.1038/s41562-020-0851-8.

65 Lundquist AJ, Parizher J, Petzinger GM, Jakowec MW (2019) Exercise induces region-specific remodeling of
66 astrocyte morphology and reactive astrocyte gene expression patterns in male mice. *J Neurosci Res*
67 97:1081-1094. DOI:10.1002/jnr.24430.

68 Ma L, Wang B, Narayana S, Hazeltine E, Chen X, Robin DA, Fox PT, Xiong J (2010) Changes in regional
69 activity are accompanied with changes in inter-regional connectivity during 4 weeks motor learning.
70 *Brain Res* 1318:64-76. DOI:10.1016/j.brainres.2009.12.073.

71 Magon S, Donath L, Gaetano L, Thoeni A, Radue EW, Faude O, Sprenger T (2016) Striatal functional
72 connectivity changes following specific balance training in elderly people: MRI results of a randomized
73 controlled pilot study. *Gait Posture* 49:334-339. DOI:10.1016/j.gaitpost.2016.07.016.

74 McCloskey DP, Adamo DS, Anderson BJ (2001) Exercise increases metabolic capacity in the motor cortex and
75 striatum, but not in the hippocampus. *Brain Res* 891:168-175. DOI:10.1016/s0006-8993(00)03200-5.

76 McNamara A, Tegenthoff M, Dinse H, Buchel C, Binkofski F, Ragert P (2007) Increased functional
77 connectivity is crucial for learning novel muscle synergies. *Neuroimage* 35:1211-1218.
78 DOI:10.1016/j.neuroimage.2007.01.009.

79 Mills BD, Grayson DS, Shunmugavel A, Miranda-Dominguez O, Feczko E, Earl E, Neve KA, Fair DA (2018)
30 Correlated Gene Expression and Anatomical Communication Support Synchronized Brain Activity in
31 the Mouse Functional Connectome. *J Neurosci* 38:5774-5787. DOI:10.1523/JNEUROSCI.2910-
32 17.2018.

33 Moore D, Jung M, Hillman CH, Kang M, Loprinzi PD (2022) Interrelationships between exercise, functional
34 connectivity, and cognition among healthy adults: A systematic review. *Psychophysiology* 59:e14014.
35 DOI:10.1111/psyp.14014.

36 Morgen K, Kadom N, Sawaki L, Tessitore A, Ohayon J, Frank J, McFarland H, Martin R, Cohen LG (2004)
37 Kinematic specificity of cortical reorganization associated with motor training. *Neuroimage* 21:1182-
38 1187. DOI:10.1016/j.neuroimage.2003.11.006.

39 Munte TF, Altenmuller E, Jancke L (2002) The musician's brain as a model of neuroplasticity. *Nat Rev
40 Neurosci* 3:473-478. DOI:10.1038/nrn843.

41 Nair HP, Gonzalez-Lima F (1999) Extinction of behavior in infant rats: development of functional coupling
42 between septal, hippocampal, and ventral tegmental regions. *J Neurosci* 19:8646-8655.
43 DOI:10.1523/JNEUROSCI.19-19-08646.1999.

44 Navarro A, Gomez C, Lopez-Cepero JM, Boveris A (2004) Beneficial effects of moderate exercise on mice
45 aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. *Am J Physiol Regul
46 Integr Comp Physiol* 286:R505-511. DOI:10.1152/ajpregu.00208.2003.

47 Needham BD, Funabashi M, Adame MD, Wang Z, Boktor JC, Haney J, Wu WL, Rabut C, Ladinsky MS,
48 Hwang SJ, Guo Y, Zhu Q, Griffiths JA, Knight R, Bjorkman PJ, Shapiro MG, Geschwind DH,
49 Holschneider DP, Fischbach MA, Mazmanian SK (2022) A gut-derived metabolite alters brain activity
50 and anxiety behaviour in mice. *Nature* 602:647-653. DOI:10.1038/s41586-022-04396-8.

51 Nguyen PT, Holschneider DP, Maarek JM, Yang J, Mandelkern MA (2004) Statistical parametric mapping
52 applied to an autoradiographic study of cerebral activation during treadmill walking in rats. *Neuroimage*
53 23:252-259. DOI:10.1016/j.neuroimage.2004.05.014.

54 Nicolini C, Fahnstock M, Gibala MJ, Nelson AJ (2021) Understanding the Neurophysiological and Molecular
55 Mechanisms of Exercise-Induced Neuroplasticity in Cortical and Descending Motor Pathways: Where
56 Do We Stand? *Neuroscience* 457:259-282. DOI:10.1016/j.neuroscience.2020.12.013.

57 O'Neill M, Brown VJ (2007) The effect of striatal dopamine depletion and the adenosine A2A antagonist KW-
58 6002 on reversal learning in rats. *Neurobiol Learn Mem* 88:75-81. DOI:10.1016/j.nlm.2007.03.003.

19 Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT,
20 Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas
21 E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohynoutka
22 P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the
23 mouse brain. *Nature* 508:207-214. DOI:10.1038/nature13186.

24

25 Peng YH, Heintz R, Wang Z, Guo Y, Myers KG, Scrimin OU, Maarek JM, Holschneider DP (2014) Exercise
26 training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning:
27 development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the
28 rat brain. *Front Phys* 2. DOI:10.3389/fphy.2014.00072.

29 Petzinger GM, Fisher BE, McEwen S, Beeler JA, Walsh JP, Jakowec MW (2013) Exercise-enhanced
30 neuroplasticity targeting motor and cognitive circuitry in Parkinson's disease. *Lancet Neurol* 12:716-
31 726. DOI:10.1016/S1474-4422(13)70123-6.

32 Pinho AL, de Manzano O, Fransson P, Eriksson H, Ullen F (2014) Connecting to create: expertise in musical
33 improvisation is associated with increased functional connectivity between premotor and prefrontal
34 areas. *J Neurosci* 34:6156-6163. DOI:10.1523/JNEUROSCI.4769-13.2014.

35 Puga F, Barrett DW, Bastida CC, Gonzalez-Lima F (2007) Functional networks underlying latent inhibition
36 learning in the mouse brain. *Neuroimage* 38:171-183. DOI:10.1016/j.neuroimage.2007.06.031.

37 Quaney BM, Boyd LA, McDowd JM, Zahner LH, He J, Mayo MS, Macko RF (2009) Aerobic exercise
38 improves cognition and motor function poststroke. *Neurorehabil Neural Repair* 23:879-885.
39 DOI:10.1177/1545968309338193.

40 Schwarz AJ, Gozzi A, Reese T, Heidbreder CA, Bifone A (2007) Pharmacological modulation of functional
41 connectivity: the correlation structure underlying the phMRI response to d-amphetamine modified by
42 selective dopamine D3 receptor antagonist SB277011A. *Magn Reson Imaging* 25:811-820.
43 DOI:10.1016/j.mri.2007.02.017.

44 Seidler RD (2004) Multiple motor learning experiences enhance motor adaptability. *J Cogn Neurosci* 16:65-73.
45 DOI:10.1162/089892904322755566.

46 Shumake J, Conejo-Jimenez N, Gonzalez-Pardo H, Gonzalez-Lima F (2004) Brain differences in newborn rats
47 predisposed to helpless and depressive behavior. *Brain Res* 1030:267-276.
48 DOI:10.1016/j.brainres.2004.10.015.

49 Sokoloff L (1991) Measurement of local cerebral glucose utilization and its relation to local functional activity
50 in the brain. *Adv Exp Med Biol* 291:21-42. DOI:10.1007/978-1-4684-5931-9_4.

41 Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M
42 (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory,
43 procedure, and normal values in the conscious and anesthetized albino rat. *J Neurochem* 28:897-916.
44 DOI:10.1111/j.1471-4159.1977.tb10649.x.

45 Soncrant TT, Horwitz B, Holloway HW, Rapoport SI (1986) The pattern of functional coupling of brain regions
46 in the awake rat. *Brain Res* 369:1-11. DOI:10.1016/0006-8993(86)90507-x.

47 Stafford JM, Jarrett BR, Miranda-Dominguez O, Mills BD, Cain N, Mihalas S, Lahvis GP, Lattal KM, Mitchell
48 SH, David SV, Fryer JD, Nigg JT, Fair DA (2014) Large-scale topology and the default mode network
49 in the mouse connectome. *Proc Natl Acad Sci U S A* 111:18745-18750. DOI:10.1073/pnas.1404346111.

50 Sun FT, Miller LM, Rao AA, D'Esposito M (2007) Functional connectivity of cortical networks involved in
51 bimanual motor sequence learning. *Cereb Cortex* 17:1227-1234. DOI:10.1093/cercor/bhl033.

52 Tao J, Chen X, Egorova N, Liu J, Xue X, Wang Q, Zheng G, Li M, Hong W, Sun S, Chen L, Kong J (2017) Tai
53 Chi Chuan and Baduanjin practice modulates functional connectivity of the cognitive control network in
54 older adults. *Sci Rep* 7:41581. DOI:10.1038/srep41581.

55 Tracy JI, Faro SS, Mohammed F, Pinus A, Christensen H, Burkland D (2001) A comparison of 'Early' and 'Late'
56 stage brain activation during brief practice of a simple motor task. *Brain Res Cogn Brain Res* 10:303-
57 316. DOI:10.1016/s0926-6410(00)00045-8.

58 Trujillo JP, Gerrits NJ, Veltman DJ, Berendse HW, van der Werf YD, van den Heuvel OA (2015) Reduced
59 neural connectivity but increased task-related activity during working memory in de novo Parkinson
60 patients. *Hum Brain Mapp* 36:1554-1566. DOI:10.1002/hbm.22723.

61 Venkadesh S, Van Horn JD (2021) Integrative Models of Brain Structure and Dynamics: Concepts, Challenges,
62 and Methods. *Front Neurosci* 15:752332. DOI:10.3389/fnins.2021.752332.

63 Vissing J, Andersen M, Diemer NH (1996) Exercise-induced changes in local cerebral glucose utilization in the
64 rat. *J Cereb Blood Flow Metab* 16:729-736. DOI:10.1097/00004647-199607000-00025.

65 Wang Z, Pang RD, Hernandez M, Ocampo MA, Holschneider DP (2012) Anxiolytic-like effect of pregabalin
66 on unconditioned fear in the rat: an autoradiographic brain perfusion mapping and functional
67 connectivity study. *Neuroimage* 59:4168-4188. DOI:10.1016/j.neuroimage.2011.11.047.

68 Wang Z, Bradesi S, Charles JR, Pang RD, Maarek JI, Mayer EA, Holschneider DP (2011) Functional brain
69 activation during retrieval of visceral pain-conditioned passive avoidance in the rat. *Pain* 152:2746-
70 2756. DOI:10.1016/j.pain.2011.08.022.

71 Wang Z, Guo Y, Myers KG, Heintz R, Peng YH, Maarek JM, Holschneider DP (2015) Exercise alters resting-
72 state functional connectivity of motor circuits in parkinsonian rats. *Neurobiol Aging* 36:536-544.
73 DOI:10.1016/j.neurobiolaging.2014.08.016.

74 Wehrl HF, Hossain M, Lankes K, Liu CC, Bezrukov I, Martirosian P, Schick F, Reischl G, Pichler BJ (2013)
75 Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic
76 and multiple temporal scales. *Nat Med* 19:1184-1189. DOI:10.1038/nm.3290.

77 Wheeler AL, Teixeira CM, Wang AH, Xiong X, Kovacevic N, Lerch JP, McIntosh AR, Parkinson J, Frankland
78 PW (2013) Identification of a functional connectome for long-term fear memory in mice. *PLoS Comput
79 Biol* 9:e1002853. DOI:10.1371/journal.pcbi.1002853.

30 Won J, Callow DD, Pena GS, Gogniat MA, Kommula Y, Arnold-Nedimala NA, Jordan LS, Smith JC (2021)
31 Evidence for exercise-related plasticity in functional and structural neural network connectivity.
32 *Neurosci Biobehav Rev* 131:923-940. DOI:10.1016/j.neubiorev.2021.10.013.

33 Yang Z, Zhu T, Pompilus M, Fu Y, Zhu J, Arjona K, Arja RD, Grudny MM, Plant HD, Bose P, Wang KK,
34 Febo M (2021) Compensatory functional connectome changes in a rat model of traumatic brain injury.
35 *Brain Commun* 3:fcab244. DOI:10.1093/braincomms/fcab244.

36 Zerbi V, Floriou-Servou A, Markicevic M, Vermeiren Y, Sturman O, Privitera M, von Ziegler L, Ferrari KD,
37 Weber B, De Deyn PP, Wenderoth N, Bohacek J (2019) Rapid Reconfiguration of the Functional
38 Connectome after Chemogenetic Locus Coeruleus Activation. *Neuron* 103:702-718 e705.
39 DOI:10.1016/j.neuron.2019.05.034.

40 Zingg B, Hintiryan H, Gou L, Song MY, Bay M, Bienkowski MS, Foster NN, Yamashita S, Bowman I, Toga
41 AW, Dong HW (2014) Neural networks of the mouse neocortex. *Cell* 156:1096-1111.
42 DOI:10.1016/j.cell.2014.02.023.