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Abstract

Dynamic resting state functional connectivity (RSFC) characterizes time-varying
fluctuations of functional brain network activity. While many studies have investigated
static functional connectivity, it has been unclear whether features of dynamic func-
tional connectivity are associated with neurodegenerative diseases. Popular sliding-
window and clustering methods for extracting dynamic RSFC have various limitations
that prevent extracting reliable features to address this question. Here, we use a novel
and robust time-varying dynamic network (TVDN) approach to extract the dynamic
RSFC features from high resolution magnetoencephalography (MEG) data of partic-
ipants with Alzheimer’s disease (AD) and matched controls. The TVDN algorithm
automatically and adaptively learns the low-dimensional spatiotemporal manifold of
dynamic RSFC and detects dynamic state transitions in data. We show that amongst
all the functional features we investigated, the dynamic manifold features are the most
predictive of AD. These include: the temporal complexity of the brain network, given
by the number of state transitions and their dwell times, and the spatial complexity
of the brain network, given by the number of eigenmodes. These dynamic features
have high sensitivity and specificity in distinguishing AD from healthy subjects. In-
triguingly, we found that AD patients generally have higher spatial complexity but
lower temporal complexity compared with healthy controls. We also show that graph
theoretic metrics of dynamic component of TVDN are significantly different in AD
versus controls, while static graph metrics are not statistically different. These re-
sults indicate that dynamic RSFC features are impacted in neurodegenerative disease
like Alzheimer’s disease, and may be crucial to understanding the pathophysiological
trajectory of these diseases.
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1 Introduction

The human brain can be described as a set of highly dynamic functional networks con-
structed from a fixed structural network whose fluctuations form the basis for complex
cognitive functions and consciousness (Deco and Jirsa, [2012; |Shine et al 2015). Failure of
integration within these functional networks may lead to cognitive dysfunction—the cardi-
nal clinical manifestation of Alzheimer’s disease (AD) (Bokde et al.; 2009; Knopman et al.,
2021; Scheltens et al., 2016)). Here, we test the hypothesis that time sensitive descriptions
of brain network activity, namely dynamic functional connectivity (FC), are crucial features
of functionally relevant alterations in network structure that may underlie AD pathophysi-
ology (Sperling et al., |2010]). Although there is a vast literature on static FC and its graph
theoretic properties in AD brains, a comparable body of work interrogating the dynamic
aspects of FC and its alteration in disease is still lacking. Image data resolution is one ob-
stacle for obtaining convincing evidence that dynamic FC generates strong predictors that
distinct between AD and control samples. To date, most dynamic FC studies in AD have
focused on low temporal resolution resting state functional magnetic resonance imaging
(fMRI) (Schumacher et al.| 2019; |Sendi et al.| 2021; Chumin et al.| 2021; Ma et al.l 2020;
Dautricourt et al., 2022), restricting them only to detect state transitions that may occur
in the timescale of seconds. However, micro-states with faster dynamics in the timescale of
tens to hundredths of milleseconds are considered the basis for the rapid reorganization and
adaptation of the functional networks of the brain (Van de Ville et al.|, 2010]).

Several technical challenges also prevent current studies from demonstrating the utility of
dynamic FC features in AD studies. Sliding-window techniques have been commonly applied
to extract the dynamic FCs. While the sliding-window method is practically attractive due
to its analytical simplicity and easy implementation, it presents several limitations and
trade-offs. The temporal resolution of the inferred dynamic FC is inherently limited by the
window length and overlap. In practice, this trade-off means that only slow changes in brain
dynamics in the time-scale of the window length can be detected or tracked. Furthermore,

in almost all current implementations, the sliding-window width is typically pre-specified
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and is not adaptable to the signal statistics or noise (Jiang et al., |2022)), and hence the
reliability and reproducibility of dynamic FC patterns are still a challenge (Filippi et al.,
2019). Therefore, more comprehensive statistical models are required to extract the dynamic
FCs (Filippi et al., 2019). Last but not least, the sliding window approaches typically use
K-means clustering on time-resolved FCs to determine the discrete states encompassed by
the dynamic FCs. Unfortunately, the performance of K-means clustering suffers from the
curse of dimensionality and can be distorted when clustering high-dimensional FCs (Sun
et al., 2012)).

In the current study, we address these challenges by adopting recent advances in model-
based analysis of time-varying FC, and apply them to interrogate the role of dynamic FC in
the AD context. We utilize the time-varying dynamic network approach (TVDN) proposed
by Jiang et al.| (2022) to extract these dynamic FCs from magnetoencephalography (MEG)
resting state data in a well characterized cohort of patients with AD and an age-matched
control cohort study. MEG has been shown to have good sensitivity to detect early func-
tional changes associated with AD pathophysiology (Ldopez-Sanz et al. 2018} Khan and
Usman, 2015; [Mandal et al., 2018} Maestu et al., 2015)). From this high resolution MEG
data, TVDN allows us to examine the contributions from temporal and spatial features
separately. This is because the TVDN algorithm was designed to ensure that spatial and
temporal features from TVDN are not confounded with each other, where the spatial struc-
tures arise from the underlying static connectivity, and the temporal parameters describe
the dynamic switching between brain networks over time. This is achieved in the TVDN ap-
proach by imposing an explicit model of piece-wise constant multivariate signal generation
model (see (1) and (2) in [Jiang et al.| (2022)).

Moreover, TVDN utilizes a data driven dimension reduction and an automated switch
detection procedures to capture the dynamic patterns of the FCs. Since this approach re-
quires no clustering of dynamic FCs, it eases the curse of dimensionality and avoids the
uncertainties induced by the clustering procedures as those adopted under the sliding win-
dow framework. Finally, TVDN selects the model parameters automatically to minimize
the uncertainties of the number of switches across independent samples, which generates
robust and reproducible dynamic FCs across different datasets.

In Section [4.4) we summarize the TVDN model, its assumptions, and briefly describe how
they lead to the desirable properties stated above. In Section[2.T]and Section[2.2] we examine

the differences between AD and healthy control groups of the features and graph metrics
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inferred from the TVDN model. We study the contribution of TVDN features on classifying
AD and control subjects in Section [2.3] Finally, we evaluate the sensitivity and specificity
of using the TVDN features to predict AD and control classification and compare with
benchmark methods in Section [2.4] Using these analyses we show that certain dynamic FC
features, including the number of brain state switches, the number of resting state networks,
the relative importance of the resting state networks, and a spatial distribution of the resting
state networks, are critical for correctly distinguishing AD patients from healthy controls.
Our results particularly highlight the importance of dynamic graph metrics over their static
counterparts - cementing dynamicity of FC as a key correlate of the disease. We discuss the
results and illustrate possible use cases in Section [3] All the technical details are presented

in Section [l

2 Results

We implement TVDN on the MEG datasets from 88 AD patients and 88 age-matched
healthy control group. All AD patients met the diagnostic criteria for probable AD or
mild cognitive impairment due to AD (Albert et al., 2011; McKhann et al. 2011; Jack Jr.
et al., 2018). The mean (standard deviation) of the mini-mental state examination score
(MMSE) in the AD cohort is 22.14(5.58) , and that of the clinical dementia rating (CDR)
score is 0.87 (0.49). A schematic of the TVDN is shown in Figure [I} including the set of
static and dynamic features extracted from TVDN that will be used in the rest of the paper
for the purpose distinguishing AD from healthy control. For each MEG dataset, TVDN
automatically detects the brain state switches over given time series, which divides the
time series into multiple stationary time segments. We obtain the eigenmodes from TVDN,
defined as the magnitude of the top r eigenvectors of the implied functional connectivity
matrix extending across all the time segments. TVDN assumes the set of eigenmodes
remains constant across all time segments, and only their relative contributions change over
time. Here r, the number of eigenmodes, can vary from one subject to another, and is
selected so that corresponding magnitude of the eigenvalues comprises 80% of the total
sum of the magnitude of all the eigenvalues. Each eigenmode is a 68 dimensional vector
corresponding to 68 cortical regions based on the Desikan-Killiany parcellations (Desikan
et al., 2006)), and may be thought of as a single resting state network (RSN) that is shared
across the time segments. Therefore our RSNs, defined via the TVDN model equation,
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Figure 1: Schematic illustration of TVDN. TVDN extracts spatial features: the number of
eigenmodes; temporal features: number of brain state switches; spatial and temporal mixed
features: weighted resting state networks (WRSN). The weighted resting state network in
each segment is a weighted summation of the eigenmodes with the corresponding eigenvalues
as the weights. These are the features used in predictive models described in the rest of the

paper.

MEG data

may or may not correspond to the canonical RSNs one observes via independent component

analysis (Yeo et al.;2011)). The resulting TVDN scalar features are the number of eigenmodes

and the number of brain state switches. TVDN also provides a spatial feature, the absolute
weighted sum of the eigenmodes (WRSN), in each stationary segment, which carries the
information of both the shared eigenmodes and the segment specific eigenvalues. The WRSN
from each time segment represents the state of the brain during specific time intervals, while
the time between two switch points characterizes the dwell time of the brain in each brain
state, that is the amount of time the brain spent in a state before moving into a new state.
We finally average the WRSN across the segments to obtain the average weighted resting
state network (AWRSN).

2.1 TVDN scalar features in AD and control groups

We use the above described TVDN method to extract static, dynamic and spatial features
from resting state MEG recordings in 88 patients with AD and 88 age-matched-controls
participants.

The results in Figure [2f show that the number of eigenmodes are significantly higher in
AD group than that in the control group with p-value< 0.001 from a student t-test. This is

consistent with increase spatial heterogeneity and complexity of dynamic spatial patterns
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Figure 2: The comparisons between AD and control groups of the static features. Left:
number of eigenmodes; Middle: number of brain state switches; Right: maximal dwell
times. Mean and 95% confidence intervals are shown and the p-values are from the student
t-tests.

in AD. Despite having an increased number of eigenmodes that commonly used to represent
brain states, patients with AD switch less frequently between brain states compared to the
healthy controls do on average with p-value=0.007. This is consistent with the observation
that the maximal dwell time in a stationary time segment is significantly longer in AD
patients than controls with p-value=0.002. These results suggest that AD patients have
greater complexity of brain states as represented by higher number of eigenmodes, although

they are significantly less active in brain state switches.

2.2 Graph metrics of dynamic functional connectivity

We quantify the graph structure of the dynamic FCs using the following graph metrics
computed from the brain networks represented by the TVDN connectivity matrices: path
length L, representing the average shortest length of the path that goes from one region to
the other; and modularity @), where a brain network with a higher modularity has denser
connections within its subdivisions on average (Stam et al., 2009; Wang et al., 2013; Ban-
iqued et al., 2018)). L and @) are two important graph metrics which measure the integration
and segregation of a brain network (Cohen and D’Esposito, 2016), respectively. Specifically,
we compute these graph metrics for all dynamic segments of the data. For each subject, we
first obtain the path length and modularity over time denoted by Lycan and Quean, respec-
tively. Furthermore, we extract the graph metrics in the segments with the maximal dwell
time denoted by L. and Qunax. Moreover, we obtain the variance of the graph metrics

over time denoted by Lyvar and Qvar. For a comparison, we summarize the graph metrics of
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the static FC from the network diffusion model (ND) proposed in |Abdelnour et al.| (2014),
denoted by Lgtatic and Qstatic, where the ND model is a reduced form of the TVDN model
when assuming the FC is static. We then compare the properties of these metrics in AD
and control cohorts.

Distributions of the variances of the graph metrics over time are shown in Figure (3| (a),
which indicates that the path length and modularity from the control cohort have signifi-
cantly higher variability than those from the AD cohort do after adjusting for the multiple
comparison with p-value<= 0.025 (0.05/2). Therefore, the variations of the graph metrics
contain dynamic information that distinguishes AD and control samples. Distributions of
the average graph metrics over time are shown in Figure (3| (b), which suggests that the
mean of the average modularity is significantly different in the AD and control groups with
p-value<= 0.047. However, after adjusting for the multiple comparison, none of the average
graph metrics is significantly different in the two groups. Distributions of the graph metrics
from the segments with the maximal dwell time are shown in Figure [3| (¢), which suggests
that none of those graph metrics is differentiable in the AD and control groups. Consistent
with the results from the segments with the maximal dwell time, the static graph metrics

in Figure 3| (d) also do not show between group difference.

2.3 TVDN features are highly associated with AD and control
classification.

We study the effect of TVDN features and graph metrics to classify AD (group 1) and
control (group 0) groups through a logistic regression model. The TVDN features include
the number of eigenmodes, the number of brain state switches, and the AWRSN, a 68
dimensional vector, representing the weighted resting state networks over 68 brain regions
of interest (ROIs). The graph metrics of interest are the static metrics: Lmean, @mean,
and dynamic metrics: Lvar, Qvar. Here we do not include L.y, Qmax because they are
highly correlated with Lmean, @mean, and none of them is associated with the AD and
control classification as shown in Figure [3] Since some predictors are highly correlated and
the number of predictors is large, we add a ridge regularization to the model to ease the
collinearity among the predictors. Moreover, we utilize the bootstrap method (Efron| |1979))
to construct the 95% confidence interval (CI) and the p-values of the effects from the TVDN
features. We use p-values=0.05 as the cutoff to determine significant difference between AD

and control groups (Table [1).
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Figure 3: The distributions of the graph metrics extracted from the TVDN dynamic func-
tional connectivity in AD and control groups. (a) The variance of the graph metrics across
different segments. (b) The mean graph metrics over the segments. (c¢) The graph metrics
in the segments with the maximal dwell time. (d) The graph metrics from the static FC
in the network diffusion model. p-value<= 0.05 is used as a significance cutoff. Only the
significant p-values are shown in the plots. The error bars represent the 95% confidence
interval of the means.
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Table 1:  TVDN results from a ridge regularized logistic regression: the effects from the
predictors of interest on the AD and control classifications (outcome). The predictors include
the number of eigenmodes, number of brain state switches, the dynamic and static graph
metrics and the AWRSN over 68 regions (the labels of the ROIs are presented in the table)
of interest are presented along with the corresponding 95% CI and p-value. All predictors
are all standardized by their sample means and standard deviations. Only the significant
spatial features are shown. p-value<= 0.05 is used as a significance cutoff.

TVDN scalar features

Features Effect 95% CI P-value
Number of eigenmodes 1.093 (0.572, 1.613) < 0.001
Number of brain state switches -0.369 (-0.731, -0.007)  0.046
TVDN graph metrics
Metrics Effect 95% CI P-value
Lvar -0.161 (-0.645, 0.323)  0.513
Qvar -0.153 (-0.478, 0.173) 0.358
Lmean 0.196 (-0.234, 0.626) 0.372
@mean -0.273 (-0.620, 0.073)  0.122
TVDN spatial features (p-value<= 0.05)
Features Absolute effect 95% CI P-value
Left rostral anterior cingulate 0.665 (0.319, 1.010) < 0.001
Left fusiform 0.619 (0.293, 0.944) < 0.001
Left lingual 0.492 (0.188, 0.797)  0.002
Left inferior parietal 0.611 (0.228, 0.993) 0.002
Right inferior temporal 0.463 (0.153, 0.774) 0.003
Left parahippocampal 0.383 (0.122, 0.645) 0.004
Left temporal pole 0.370 (0.077, 0.664)  0.013
Right pericalcarine 0.432 (0.068, 0.796)  0.020
Left superior temporal 0.332 (0.052, 0.612) 0.020
Left lateral occipital 0.446 (0.065, 0.827)  0.022
Left inferior temporal 0.392 (0.049, 0.734)  0.025
Left superior parietal 0.414 (0.041, 0.786) 0.029
Right cuneus 0.361 (0.016, 0.707)  0.040
Right inferior parietal 0.380 (0.006, 0.754)  0.046

Consistent with the previous group comparison, the logistic regression showed that AD
patients have a greater number of eigenmodes (Table [l positive estimators), and lesser

number of brain state switches (Table [I] negative estimator), compared to controls. Next,
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we examine the regional patterns of the estimated absolute effects from AWRSN (Figure [4]
(a)), which shows the AWRSNSs at twelve ROIs are significantly different in AD and control
groups when adjusting for other predictors in the model. It is worth mentioning that the
six graph metrics do not significantly affect the AD and control classification after adjusting

for the other predictors.

ROC for the Logistic regression
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Figure 4: The results from regularized logistic regressions: (a) The estimated absolute effects
from AWRSN projected to [0, 1] interval. Only the regions with p-values less than 0.05 are
shown in the figure. (b) The ROCs of the leave-one-out prediction results from different
models.

2.4 Prediction and benchmark comparisons

We perform a leave-one-out (LOO) procedure to examine the accuracy of using significant
TVDN features identified in Table [I] to classify AD and control samples. We first use 175
samples to train a ridge regression model and predict the classification of the remaining
one sample. We iterate the procedure to predict the classification for all samples and to
depict the receiver operating characteristic (ROC) curve in Figure [4] (b). The area under
the ROC curve (AUC) of using the features from TVDN is close to 84%, suggesting that
the significant TVDN features have good sensitivity and specificity to distinguish AD with

control subjects, and hence can be used to improve application considering other more

conventional features in future applications (Metz, 1978; |Obuchowski, 2003).

We compare the prediction performance of using features from TVDN model to the pre-
diction performances of using the features from two static FC models: dynamic mode decom-

position model (DMD) (Brunton et al.,[2016) and network diffusion model (ND)(Abdelnou

I 10 |
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et al) 2014) and from one dynamic FC model: time-varying dynamic mode decomposition
model (TVDMD) (Kunert-Graf et al., 2019). DMD assumes that the observed signal fol-
lows a multivariate autoregression model, ND links two signals at consecutive times through
a differential equation model, while TVDMD is a sliding window based extension of DMD.
We extract the predictors including the number of eigenmodes, AWRSN and static graph
metrics from the static FC models. We also extract the predictors including the number of
eigenmodes, the number of brain state switches, AWRSN, static and dynamic graph metrics
from the dynamic FC models. The detailed derivations of the predictors are presented in
Appendix and [4.6] Similar to those used in TVDN evaluation, we first perform a ridge
regression to select important predictors based on their confidence intervals and then utilize
an independent ridge regression model on the selected predictors to classify AD and control
samples. We depict the prediction algorithms in Section 1.7 In addition to the LOO we
performed a five-fold cross-prediction, where we used 80% of samples to train the model and
predicted the classifications of the rest 20% samples. All the tuning parameters were tuned
based on the training data to ensure no information leaking in the prediction procedure. We
show the average AUC and their standard deviations from 10000 five-fold cross prediction
experiments in Table[2] The corresponding ROC curves under different models are depicted
in Figure [4] (b). The results show that TVDN performs the best among all the methods in
classifying AD and control samples. The dynamic FC models perform generally better than

the static models in the predictions.

Table 2: The features and graph metrics selected and the corresponding AUCs of TVDN,
TVDMD, ND and DMD models. Static graph metrics include Lmean, @mean and the
dynamic metrics include Lvar, @var- TVDN model performs better than other models
with 84% AUC. LOO: leave-one-out; five-fold: five-fold cross validation; SD: the standard
deviation of the AUCs over 10000 cross validations.

Models Number of Number of AWRSN Static graph | Dynamic graph

(Features) | brain state switches | eigenmodes metrics metrics

LOO | five-fold (SD)

Dynamic models ‘ ‘ ‘ ‘

TVDN v v v v v 0.842 | 0.843 (0.064)
TVDMD v v v v v 0.770 | 0.774 (0.071)
Static models

ND v v v’ 0.754 | 0.765 (0.074)

DMD v v v’ 0.756 | 0.762 (0.074)

Finally, we study the effects of features and graph metrics from the benchmark TVDMD,

11
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ND and DMD models in distinguishing AD and control samples through a ridge regularized
logistic regression. The predictors of interest are summarized in Table [2| and the results are
summarized in Table [3] As shown in Table [3| the numbers of eigenmodes from all models
have a significant positive effect in distinguishing AD and control subjects. However, the
effect size of the number of eigenmodes from the TVDMD model is much smaller than those
from the TVDN, ND, DMD models. Furthermore, the effect size of the number of brain
state switches from the TVDMD model is much smaller than those from the TVDN model.
Moreover, consistent with the finding in Section [2.2) none of the graph metrics from the

static models has significant effect on AD and control classification.

Table 3: TVDMD, ND, DMD results from a ridge regularized logistic regression: the effects
from the predictors of interest on the AD and control classifications. The predictors include
the number of eigenmodes, number of brain state switches, the dynamic and static graph
metrics and the AWRSN over 68 regions of interest. Only the effects of the scalar predictors
are presented. All predictors are all standardized by their sample means and standard

deviations.
Features and graph metrics Effect 95% CI P-value
TVDMD scalar features and graph metrics
Number of eigenmodes 0.008 ( 0.002,0.014)  0.005
Number of brain state switches 0.010 ( 0.004,0.015)  0.001
Lvar 0.010 ( 0.004,0.015)  0.001
Qvar 0.008 (1 0.003,0.014)  0.004
Lmean -0.005 (-0.010,0.001)  0.115
mean -0.000  (-0.006,0.006)  0.980
ND scalar features
Number of eigenmodes 0.104 ( 0.042, 0.167)  0.001
Lstatic -0.011 (-0.087, 0.065)  0.775
Qstatic 0.040 (-0.035, 0.115)  0.293
DMD scalar features
Number of eigenmodes 0.131 (0.072,0.189) < 0.001
static -0.063 (-0.132, 0.006)  0.074
Lstatic -0.022 (-0.097, 0.052)  0.554
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2.5 The relationship between TVDN features and the graph met-
rics.

We further study the effects of TVDN scalar features on the brain network connection
through examining their correlation with the graph metrics. This analysis aims to facilitate
the interpretation of the TVDN features and reveal the graph information that explained
by the TVDN features. We study the Pearson’s correlation between each of the two TVDN
scale features and each of the eight graph metrics. Here all 16 variables are standardized
through dividing by their sample standard deviations. We use p-value< 0.003 (0.05/16) as
a significance cutoff after adjusting for multiple testing. It is expected that all the dynamic
graph metrics in Table[d]are positively correlated with the frequency of brain state switching,
because a larger number of brain state switches implies higher dynamicity in the FC which
leads to more variable graph metrics. Furthermore, @ can and Q.. also are significantly
correlated with the number of eigenmodes suggesting that a smaller number of eigenmodes
implies denser connections within the subdivisions of the brain network from the dynamic
FC. Moreover, the number of eigenmodes is negatively correlated with Lyvar, suggesting that
a greater number of eigenmodes implies less variations of path length over time. Finally,
since the static model does not contain dynamic information, the TVDN scalar features are

not associated with the graph metrics from the static model.

3 Discussion

We demonstrate, for the first time, that the number of brain state switches, representing the
temporal complexity of the brain network, in high-temporal resolution resting state MEG
extracted by the time-varying dynamic network (TVDN) algorithm is an important feature
that predicts AD. Specifically, AD subjects have fewer brain state transitions and in turn
longer dwell periods in any given brain state than the control subjects. The number of
eigenmodes, representing the spatial complexity of the brain network, is also an important
predictor for AD, where AD subjects have greater number of eigenmodes, and hence a more
heterogenous and complex functional brain network structure. We also demonstrate that
the variability of graph metrics such as path length and modularity of dynamic functional
connectivity periods are reduced in AD subjects. Interestingly, the static graph metrics cor-
responding to the brain state with the maximal dwell time or the mean of all brain states

are not distinguishable between AD and control groups, while the dynamic graph metrics
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Table 4: Pearson’s correlation between TVDN features and graph metrics. Lyar, Qvar are
the variances of the standardized path length, and modality over time; Lean, Qmean are the
means of corresponding graph metrics over time; L.y, Qmax are the graph metrics in the
segments with the maximal dwell time; and Lggagic, Qstatic are the graph metrics from the
static FC model. p-value< 0.003 is used as the significance cutoff to account for multiple

testing.

TVDN features

Number of eigenmodes

Number of brain
state switches

Graph metrics ‘ Correlation  p-value ‘ Correlation  p-value
TVDN dynamic graph metrics
Lvar -0.268 < 0.001 0.234 0.002
Qvar -0.120 0.114 0.284 < 0.001
TVDN static graph metrics
Liean -0.170 0.024 -0.014 0.853
@mean -0.371 < 0.001 0.032 0.670
Lyax -0.111 0.143 -0.018 0.811
Qmax -0.254 0.001 -0.034 0.656
Graph metrics from the static model
Litatic -0.160 0.034 0.225 0.003
static -0.200 0.008 0.011 0.880

that correlated with the brain state switching are significantly different in the two groups.
Using a data driven approach, TVDN identifies AD associated spatial features, that are
different between AD and controls, in the brain regions that reflect high tau accumulation.
When compared with predictions using features from other dynamic and static FC bench-
marks, we show that features from TVDN leads to the best sensitivity and specificity for
distinguishing AD and control samples. These results highlight the importance of dynamic
functional connectivity in resting-state data for understanding the neural pathophysiology

of AD.

High resolution MEG data provide convincing evidence that the brain state
switching patterns are altered in AD. Although static FC features extracted from
MEG activity have proven to be reliable across different MEG laboratories (Geisseler et al.)
2016) and have demonstrated to be an early biomarker of AD burden (Bajo et al., 2012;

Fernandez et al., 2006), literature is still scarce in studying the dynamic features from MEG
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data for neurodegeneration. Our study utilizes the novel TVDN method to extract the
dynamic functional connectivity and brain state transitions from MEG data. We find that
the minimal dwell time in the brain states is around 2 seconds, and half of the dwell times
are less than 5 seconds. Such fast brain state transitions are difficult to capture by using low
time resolution image modalities such as fMRI, because the samples within each stationary
time segment are too limited to provide accurate estimates of the high dimensional whole
brain functional connectivity. On the contrary, high resolution MEG data provide sufficient
samples in each time segment to estimate functional connectivity, and hence can be used to

capture fast brain state transitions that distinguish the AD and control samples.

TVDN graph metrics are highly associated with AD and control classification.
The application of graph theory to static resting state functional connectivity in AD has
provided conflicting results. Based on the resting state fMRI data, [Supekar et al.| (2008)
show no difference in the average path length between the AD and control samples in their
study, while Sanz-Arigita et al. (2010) show a decreased average path length in the AD
patients compared to the healthy control. In a MEG study, Stam et al.| (2009) show that
the similarities of the graph metrics between AD and control samples varies across different
frequency bands. Our results show that the graph metrics from the static models cannot
effectively distinguish AD and control samples, while Figure [3| shows that the variations of
the graph metrics provide important information to distinguish AD and control subjects,
which can only be obtained from dynamic FCs. Furthermore, the graph metrics in the
control group generally have higher variability than those in the AD group and the variability
patterns of the path length and modularity in AD and control groups are significantly
different. These results highlight the importance of considering dynamic FC in AD studies.

TVDN features sufficiently capture the information in the graph metrics. A
comprehensive study on the TVDN features and graph metrics in Section finds that
the TVDN features are strongly associated with the graph metrics that differentiate AD
and control groups (Lvar, Qvar). For example, the number of eigenmodes negatively affects
Lyar, suggesting that a greater number of eigenmodes implies less variations of path length
over time. In addition, the number of brain state switches are positively associated with
the dynamic graph metrics. Finally, when adjusting for the TVDN features, graph metrics
do not contribute to the AD and control classification (Table [1)), which indicates that the
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information in the graph metrics regarding the AD and control distinction is sufficiently

captured by the TVDN features.

AD patients have larger number of eigenmodes implying higher spatial com-
plexity of the brain network. Figure [2]shows that the AD patients have a significantly
larger number of eigenmodes, which implies a higher spatial complexity on average when
comparing with the healthy controls. This is because the additional eigenmodes in the AD
subjects introduce new bases in the lower dimensional manifold, which results in a more
heterogenous and complex network structure. This is also supported by the fact that a
higher number of eigenmodes is negatively associated with a lower modularity (Table ,
which leads to higher structural complexity (Baldwin and Clark, [2000; |Sinha et al., |2018)).
These additional eigenmodes can form up AD specific pathological networks that do not ex-
ist in healthy subjects. Consistent with this idea, increase prevalence of pathophysiological
epileptiform activity network structures have indeed been reported in AD when compared

to healthy controls (Ranasinghe et al., 2022a; Vossel et al., 2016).

Spatial patterns of dynamic connectivity changes overlap with the regional
anatomy of AD pathophysiology.  Figure {4| (a) shows the regional patterns of the
estimated effects from AWRSN that distinguish AD from healthy elderly individuals. These
regions include inferior and posterior temporal cortices and posterior parietal-occipital cor-
tices, which reflects the same regional distribution of high tau accumulations, earliest hy-
pometabolism and go onto develop greatest neuronal loss in patients with AD (Jagust, |[2018)).
Distributions of tau accumulation both in space and time have been linked to network con-
nectivity measures using various static network features, where functional connectivity based
models could reliably predict individual variability of tau accumulation in AD (Franzmeier
et al., 2020bla). The proximity of spatial patterns between abnormal dynamic functional
connectivity indices and AD pathophysiology relevant regional anatomy suggests that dy-
namic functional connectivity features, in addition to static features may also be worthwhile
indices to explore as additional, complimentary predictors of AD pathophysiology. It is also
noteworthy that the spatial distribution of dynamic connectivity differences is more left
predominant in our findings. Although the biological significance of this lateralization of
dynamic functional changes is yet to be explored, such asymmetry has been observed in

previous resting state functional connectivity studies as well (Medvedev, [2014; Di et al.)
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2014)). These results encourage further exploration of brain transitions within and between

the two brain hemispheres.

Dynamic features from TVDN with MEG imaging enhances the sensitivity and
specificity of AD and control classifications. We compare prediction accuracies of
using TVDN features, the features from TVDMD, a sliding window based method, and
the features from static FC models. As shown in Table [2[ and Figure {4| (b), TVDN has
much higher prediction accuracy than the other models do, which shows the superiority of
TVDN on extracting robust features that are highly differential in AD and control samples.
Furthermore, the prediction accuracies are improved by introducing the temporal features
from TVDN, the number of brain state switches, into the prediction model. This can
be seen from Table [2| and Figure [4] (b) that using the TVDN features yields the highest
sensitivity and specificity in classifying AD versus control subjects. Moreover, the results
in Table [1] and Table |3| show that the effect size of the number of eigenmodes and the
number of brain state switches from TVDN are much larger than those from the TVDMD
model. Furthermore, using the features from the TVDN model gives the best prediction
accuracy among all the comparative methods. The lower prediction accuracy and smaller
effect sizes from the TVDMD method could attribute to its deficiencies inherited from the
sliding window based method, such as the arbitrariness of the window length selection and
the curse of dimensionality. Collectively, these results indicate that TVDN is a more reliable

method to detect brain state switches than TVDMD.

fMRI studies of dynamic FC in AD. The present study uses MEG imaging to demon-
strate that dynamic functional connectivity features are abnormal and have predictive value
in AD. Here, we review a larger fMRI literature on dynamic functional studies in AD. Con-
sistent with our dwell time findings, Jones et al.| (2012)) suggest that the dwell time in the
default mode network are distinctive between AD dementia patients and healthy controls.
Brenner et al.| (2018)) also show that amnestic MCI patients spend more time in a single
dominant state. Also consistent with our observation of increased number of switches in
AD, Cérdova-Palomera et al.| (2017) show decreased global metastability between functional
states when comparing the patients with mild cognitive impairment (MCI) and healthy
controls. Similar to our findings on the predictablity of dynamic spatial features, Fu et al.

(2019) examine the shared and specific dynamic functional connectivity in subcortical is-
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chemic vascular disease and AD. [Dautricourt et al.| (2022) show that dynamic FC states are
differentially associated with dementia risk. However, the above mentioned studies have not
clearly demonstrated that dynamic FC features can distinguish AD patients from healthy
controls (Jones et al., 2012; Cérdova-Palomera et al} 2017; Brenner et al.,2018)). In contrast,
a recent study by [de Vos et al| (2018) reveals higher accuracy to distinguish AD dementia
from healthy controls using the variability of FC across time as a feature than static FC
features, perhaps the first clear evidence that the dynamic FC can be a strong predictor of
AD. However, their prediction model included a large number of features and did not fully
address which dynamic FC features were important to distinguish AD and healthy subjects
(de Vos et all, 2018). Therefore, whether dynamic FC features have predictive power to
distinguish AD patients, and if so which features are important to drive these predictions
remain unknown from these prior fMRI studies. Extending TVDN to fMRI data is impor-
tant to address these questions. Collecting resting state fMRI data and further research

along these lines are ongoing in our laboratory.

Dynamic FC features have predictive value in AD. [t must be borne in mind that
the present classifier results by themselves do not argue for the exclusive use of dynamic FC
features as predictors of AD, whether for diagnostic or prognostic purposes. Indeed, under
the AUC metric of classifier performance, we have reported close to 84% accuracy, which is
good but not accurate enough for diagnostic purposes. Therefore, the current results must
be interpreted as supportive of a valuable role for dynamic FC features in a diagnostic appli-
cation, perhaps in combination with static FC features, as well as other imaging biomarkers
like regional atrophy and molecular PET imaging. Such applications will not only be able
to correctly predict AD diagnosis, but the addition of dynamic FC will have imbued the
application with a hitherto unfeasible ability to differentiate between various AD subtypes.
Our contribution is to show that a model-based TVDN approach provides far more predic-
tive power in the use of dynamic FC compared to alternate means of obtaining dynamic FC
features, and that TVDN-derived dynamic features uncover important processes of the AD
pathophysiology that are currently being unreported by conventional static FC methods.
Arguably, a far more clinically important use case for proposed approach will be as a
means to understand how AD affects the dynamicity of the brain, and in future work, to
explain how these dynamic changes may be caused by underlying pathology (tau, amyloid

and hypometabolism) and the resulting network disconnection. For instance, what specifi-
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cally about the deposition of tau and amyloid in and around neurons could cause an increase
in dwell times in the AD brain, indicative of its brain states being ”stickier” than normal
brains with no pathology? Although out of scope of current work, such studies would require
new models that relate pathology to functional dynamics, and would provide valuable new

insights into AD pathophysiology that is currently lacking.
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4 Methods

4.1 Data and preprocessing

Each participant in our study underwent a complete clinical history, physical examination,
neuropsychological evaluation, brain magnetic resonance imaging (MRI), and a 10-min ses-
sion of resting MEG. All the acquisition and processing pipelines are the same as that
for a previous study (Ranasinghe et al., 2022b). All participants were recruited from re-
search cohorts at the University of California San Francisco-Alzheimer’s Disease Research
Center(UCSF-ADRC). Informed consent was obtained from all participants and the study
was approved by the Institutional Review Board (IRB) at UCSF (UCSF-IRB 10-02245).

Demographics of cohorts are summarized in Table [5]

4.2 Resting state MEG data acquisition and preprocessing

MEG scans were acquired on a whole-head biomagnetometer system (275 axial gradiome-
ters; MISL, Coquitlam, British Columbia, Canada), following the same protocols described
previously (Ranasinghe et al. [2020] |2022b). Each subject underwent MEG recordings at
rest, eys-closed and supine for 5-10 min. Three fiducial coils including nasion, left and right
preauricular points were placed to localize the position of head relative to sensor array, and
later coregistered to each individual’s respective MRI to generate an individualized head
shape. Data collection was optimized to minimize within-session head movements and to
keep it below 0.5 cm. 5-10 min of continuous recording was collected from each subject
while lying supine and awake with eyes closed (sampling rate: 600 Hz). We selected a 60s
(1 min) continuous segment with minimal artifacts (minimal excessive scatter at signal am-
plitude <10 pT), for each subject, for analysis. The study protocol required the participant
to be interactive with the investigator and be awake at the beginning of the data collection.
Spectral analysis of each MEG recording and whenever available simultaneously collected
scalp EEG recordings were examined to confirm that the 60-second data epoch represented
awake, eyes closed resting state for each participant. Artifact detection was confirmed by
visual inspection of sensor data and channels with excessive noise within individual subjects

were removed prior to analysis.
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4.3 Source space reconstruction of MEG data and spectral power
estimation

Tomographic reconstructions of the MEG data were generated using a head model based on
each participant’s structural MRI. Spatiotemporal estimates of neural sources were gener-
ated using a time—frequency optimized adaptive spatial filtering technique implemented in
the Neurodynamic Utility Toolbox for MEG (NUTMEG; https://nutmeg.berkeley.edu/).
To prepare for source localization, all MEG sensor locations were coregistered to each
subject’s anatomical MRI scans. The lead field (forward model) for each subject was calcu-
lated in NUTMEG using a multiple local-spheres head model (three-orientation lead field)
and an 8-mm voxel grid which generated more than 5000 dipole sources, all sources were
normalized to have a norm of 1 (Dalal et al., [2008| 2011)). The source space reconstruction
approach provided amplitude estimations at each voxel derived through the linear com-
bination of spatial weighting matrix with the sensor data matrix (Dalal et al) 2008). A
high-resolution anatomical MRI was obtained for each subject (see below) and was spatially
normalized to the Montreal Neurological Institute (MNI) template brain using the SPM
software (http://www.fil.ion.ucl.ac.uk/spm), with the resulting parameters being applied to
each individual subject’s source space reconstruction within the NUTMEG pipeline (Dalal
et al., 2011). We then derived regional power spectra based on Desikan—Killiany atlas par-
cellations for the 68 cortical regions depicting neocortex and allocortex, the latter including
the entorhinal cortex. Regional power spectra were obtained by averaging the spectra of

vowels within each region and then converted to dB scale.

Table 5: Baseline characteristics: The number of samples (percentiles) for gender and the
mean (standard deviation) for age are presented

AD group Control group P-value
(n=88) (n=88)

Gender Male 35 (40%) 37 (42%) 0.878
Female 53 (60%) 51 (58%)
Age at MEG  (Years) 62.7 (8.7)  65.1 (10.0) 0.098
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4.4 Time-varying dynamic network model

The time-varying dynamic network (TVDN) model is a robust method to extract dynamic
FCs from the neuroimaging data (Jiang et al.,|2022), which assumes the brain states experi-
ence discrete and discontinuous changes over time. The dynamic FC features contain static
spatial feature (RSNs) and dynamic temporal feature (the dynamic weights of the RSNs).

Let X(t) be a d dimensional vector, denoting the brain activity at time ¢ at d numbers

of ROIs, and let X'(t) be its derivative. The TVDN model assumes

where A(t) is a d X d connectivity matrix. The connectivity matrix A(t) can be further
decomposed as A(t) = UA(t)U~!, where the columns of U represent the static RSNs, and
the eigen-value matrix A(t), varying across the time, represents the importance of each RSN.
The real and imaginary parts of A(t) represent the growth constant and signal frequency,
respectively. Since only a small number of RSNs are operational in the brain, typically
ranges from 7-20 (Yeo et al., 2011), A(t) is assumed to be a low-rank matrix, where the
rank of the A(t) represents the number of distinct static RSNs that are active in the resting
state.

To extract the dynamic FC features, we first perform a B-spline smoothing step to ob-
tain noise free versions of X'(t) and X(¢). Then, we implement a kernel regression step
to obtain the Nadaraya—Watson estimator (Nadaraya, |1964; Watson, 1964) of A(t), de-
noted by ;&(t) The static spatial feature U is then extracted as the top r eigen-vectors of
> A\(t), where we choose rank r so that the magnitude of the top r eigen-values of ), K(t)
comprises 80% of the total sum of the magnitude of them. Next, the brain state switches
are detected by minimizing a modified Bayesian information criteria (MBIC) through the
dynamic programming algorithm (Jackson et al., 2005) based on a low dimensional trans-
formation I/_\I; 1X(t), where U, is the first 7 columns of the estimated U, and ﬁ; lis the
r X d dimensional generalized inverse of ﬁr. The brain activities are separated to different
segments after the detection procedure. Then we refit TVDN model in each segment, while
assuming A(t) is a constant. Furthermore, the temporal dynamic weighted are obtained as
the eigen-values of estimated A(t) in each stationary segment, denoted by err(t), which is
a r X r dimensional matrix. We obtain the WRSN feature as the column sum of GTKTXT(t).
Finally, we first obtain W(t) = {Wij(t),i,j =1,...,d} = K(t)@(t)T and construct the

functional connectivity matrix through the following two steps:
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L et Wiy (1) = Wiy (6)// Wi ()W (1)
2. perform fisher transform and obtain the functional connectivity matrix W (¢) with the

i, jth entry to be Wi;(t) = 0.5In{1 + Wi;(t)} /{1 — Wi, (t)}

All the tuning parameters in the TVDN procedure are tuned based on the control samples.
The TVDN analysis is performed using the Python code from https://github.com/

feigroup/TVDN, which contains detailed documentation of the code usage.

4.5 Dynamic mode decomposition model and network diffusion
model

We implement the dynamic mode decomposition model (DMD) and the network diffusion
model (ND) for comparison.

The DMD model assumes X(t 4+ 1) = AX(t) (Brunton et al., [2016), where A is a d x d
constant matrix. We obtain the estimated A by minimizing the sum of the squared distance
between X(t + 1) and AX(t) over time. Then we obtained the estimated RSNs, denoted
by IAJ, as the first r eigen-vectors corresponding to the top eigen-values, whose summation
comprises 80% of the total sum of the eigen-values. Furthermore, we construct the WRSN
feature as the column sum of GTKTXT, where IAJT is a d x r dimensional eigen-vector matrix,
and jAXTXT is a r X r dimensional eigen-value matrix. Since there is only one segment resulted
from the DMD model, AWRSN feature is the same as the WRSN feature. Finally, we
obtained the W = AAT and use steps 1, 2 in Section to generate the final connectivity
matrix W.

The ND model assumes X'(t) = AX(¢). We obtain the estimated A by minimizing the
sum of the squared distance between X'(t + 1) and AX(t) over time. The remaining steps
for extracting spatial features from the ND model are the same to the DMD model.

We implement TVDMD as follows where we construct windows with 192 frames sliding
by 24 frames in each step. In each sliding-window, TVDMD extracts the dynamic modes
(Brunton et al., [2016; [Kunert-Graf et al. 2019) from the brain signals, and obtains the
WRSN in each sliding windows using the same procedures as those described in DMD
model above. The selection of the window size and step size leads to 292 number of sliding
windows, which is similar as those used in |[Kunert-Graf et al.| (2019). We then use Kmeans
algorithm to cluster the WRSNs to 3 clusters, which is the average number of switches from

the control group with the TVDN method. We define a switch point as the time where there
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is a cluster membership change before and after the time. These switch points divide the
MEG data into multiple segments, and in each segment we reestimate the WRSN and the
number of eigenmodes, whose corresponding magnitude of the eigenvalues comprises 80%
of the total sum of the magnitude of the eigenvalues. We then average the WRSN as the
AWRSN and calculate the maximal number of RSNs across the multiple segments as the
number of RSNs.

The DMD and ND analysis were conducted using the Python code (https://github.
com/feigroup/TVDN-AD).

4.6 Graph metrics

The brain networks extracted from functional connectivity models can be represented by
graphs, which are the combination of ROIs, the nodes in the graph, and the edges (Boccaletti
et al., [2006), the region-wise connections in the graph. The strength of the connections
among the ROIs, namely the edge weights, are mathematically captured by the entries of
the functional connectivity matrix W.
The path length L of the graph is defined as
B d(d—1)
N Zgﬂ Z?:l,j;éi Lz‘_jl7

where L;; is the shortest length of the path that goes from regions i to j, where the length

of a path is the summation of the inverse of edge weights on the path (Wang et al., [2013)).

The modularity Qna.x is a statistic that quantifies the degree to which the network can
be subdivided into different groups (Newman, 2006), where the optimal group structure
is obtained by maximizing the number of within-group connections, and minimizing the
number of between-group connections.

Let W;; be the 4, jth entry of the functional connectivity matrix, representing the strength
of connection between ROI ¢ and ROI j. If W;; # 0 (W;; = 0), region i and j are connected
(disconnected). For a given partition p of the graph, the modularity index @(p) is defined
as

Np 2
o =3 l%— (57) ] ,
where N, is the number of groups in the partition, W = Z” Wi; and W, is sum of all

the edge weights between the regions in the group g. Here let Sy = E;l:L itk Wi, Sg =
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S ¢ Syi is the sum of the nodal strength in group g. Finally Q = max,{Q(p)}, which is
obtained by using the spectral algorithm described in (Newman, 2006)).

To eliminate this dependence of the graphic features on the size of the graph, we nor-
malize the three features through dividing them by an ensemble of 100 random networks,
which is described as follows. We randomly permute the values in W, and create 100 sets
of pseudo graph features. We them divide the each of the two graphic features by the
corresponding means of the pseudo graph features over the 100 permutations.

To extract the graph characteristics, we adopted the betpy package in python (https://
pypi.org/project/bectpy/), which contains the detailed documentation of the code usage.

4.7 Logistic regression with ridge regularization

In our manuscript, we adopted the logistic regression with the ridge penalty as the classifier
for the AD and control groups. The ridge regularization was utilized due to the high-
dimension feature in our regression (Hoerl and Kennard, |1970).

With the ridge penalty, the loss function to optimize becomes
min £878 + (Y, By + B7X),
B.Bo 2

where X are the FC features, which can be different from TVDN, DMD, ND models,
Y = (Vi,...,Yn)T is a vector a binary indicator with ¥; = 1 or Y; = 0 if the ith subject is a
AD patient or a healthy control, respectively. The function £(-) is the negative log likelihood
of the logistic regression and p > 0 is the penalty parameter. The penalty parameter is tuned
by the leave-one-out evaluation within the training set to ensure no testing data information
is used during the training procedure.

For each model, we implemented the two ridge regularized logistic regressions. We
use first ridge regression to select significant predictors as the ones whose estimated 95%
confidence intervals do not cover zero. We then utilized the selected important predictors
in the second ridge regression model to evaluate the sensitivity and specificity of classifying
AD and control samples through leave-one-out (LOO) and five-fold cross prediction over
10000 repetitions. The penalty parameters are tuned based on the training data to avoid
information leaking in the prediction.

We implemented the logistic regression with the ridge penalty by the LogisticRegres-
sion function in sklearn package in Python. The detailed documentation of the pack-

age is accessible at https://scikit-learn.org/stable/modules/generated/sklearn.
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