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Abstract

Dynamic resting state functional connectivity (RSFC) characterizes time-varying
fluctuations of functional brain network activity. While many studies have investigated
static functional connectivity, it has been unclear whether features of dynamic func-
tional connectivity are associated with neurodegenerative diseases. Popular sliding-
window and clustering methods for extracting dynamic RSFC have various limitations
that prevent extracting reliable features to address this question. Here, we use a novel
and robust time-varying dynamic network (TVDN) approach to extract the dynamic
RSFC features from high resolution magnetoencephalography (MEG) data of partic-
ipants with Alzheimer’s disease (AD) and matched controls. The TVDN algorithm
automatically and adaptively learns the low-dimensional spatiotemporal manifold of
dynamic RSFC and detects dynamic state transitions in data. We show that amongst
all the functional features we investigated, the dynamic manifold features are the most
predictive of AD. These include: the temporal complexity of the brain network, given
by the number of state transitions and their dwell times, and the spatial complexity
of the brain network, given by the number of eigenmodes. These dynamic features
have high sensitivity and specificity in distinguishing AD from healthy subjects. In-
triguingly, we found that AD patients generally have higher spatial complexity but
lower temporal complexity compared with healthy controls. We also show that graph
theoretic metrics of dynamic component of TVDN are significantly different in AD
versus controls, while static graph metrics are not statistically different. These re-
sults indicate that dynamic RSFC features are impacted in neurodegenerative disease
like Alzheimer’s disease, and may be crucial to understanding the pathophysiological
trajectory of these diseases.
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1 Introduction

The human brain can be described as a set of highly dynamic functional networks con-

structed from a fixed structural network whose fluctuations form the basis for complex

cognitive functions and consciousness (Deco and Jirsa, 2012; Shine et al., 2015). Failure of

integration within these functional networks may lead to cognitive dysfunction—the cardi-

nal clinical manifestation of Alzheimer’s disease (AD) (Bokde et al., 2009; Knopman et al.,

2021; Scheltens et al., 2016). Here, we test the hypothesis that time sensitive descriptions

of brain network activity, namely dynamic functional connectivity (FC), are crucial features

of functionally relevant alterations in network structure that may underlie AD pathophysi-

ology (Sperling et al., 2010). Although there is a vast literature on static FC and its graph

theoretic properties in AD brains, a comparable body of work interrogating the dynamic

aspects of FC and its alteration in disease is still lacking. Image data resolution is one ob-

stacle for obtaining convincing evidence that dynamic FC generates strong predictors that

distinct between AD and control samples. To date, most dynamic FC studies in AD have

focused on low temporal resolution resting state functional magnetic resonance imaging

(fMRI) (Schumacher et al., 2019; Sendi et al., 2021; Chumin et al., 2021; Ma et al., 2020;

Dautricourt et al., 2022), restricting them only to detect state transitions that may occur

in the timescale of seconds. However, micro-states with faster dynamics in the timescale of

tens to hundredths of milleseconds are considered the basis for the rapid reorganization and

adaptation of the functional networks of the brain (Van de Ville et al., 2010).

Several technical challenges also prevent current studies from demonstrating the utility of

dynamic FC features in AD studies. Sliding-window techniques have been commonly applied

to extract the dynamic FCs. While the sliding-window method is practically attractive due

to its analytical simplicity and easy implementation, it presents several limitations and

trade-offs. The temporal resolution of the inferred dynamic FC is inherently limited by the

window length and overlap. In practice, this trade-off means that only slow changes in brain

dynamics in the time-scale of the window length can be detected or tracked. Furthermore,

in almost all current implementations, the sliding-window width is typically pre-specified
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and is not adaptable to the signal statistics or noise (Jiang et al., 2022), and hence the

reliability and reproducibility of dynamic FC patterns are still a challenge (Filippi et al.,

2019). Therefore, more comprehensive statistical models are required to extract the dynamic

FCs (Filippi et al., 2019). Last but not least, the sliding window approaches typically use

K-means clustering on time-resolved FCs to determine the discrete states encompassed by

the dynamic FCs. Unfortunately, the performance of K-means clustering suffers from the

curse of dimensionality and can be distorted when clustering high-dimensional FCs (Sun

et al., 2012).

In the current study, we address these challenges by adopting recent advances in model-

based analysis of time-varying FC, and apply them to interrogate the role of dynamic FC in

the AD context. We utilize the time-varying dynamic network approach (TVDN) proposed

by Jiang et al. (2022) to extract these dynamic FCs from magnetoencephalography (MEG)

resting state data in a well characterized cohort of patients with AD and an age-matched

control cohort study. MEG has been shown to have good sensitivity to detect early func-

tional changes associated with AD pathophysiology (López-Sanz et al., 2018; Khan and

Usman, 2015; Mandal et al., 2018; Maestú et al., 2015). From this high resolution MEG

data, TVDN allows us to examine the contributions from temporal and spatial features

separately. This is because the TVDN algorithm was designed to ensure that spatial and

temporal features from TVDN are not confounded with each other, where the spatial struc-

tures arise from the underlying static connectivity, and the temporal parameters describe

the dynamic switching between brain networks over time. This is achieved in the TVDN ap-

proach by imposing an explicit model of piece-wise constant multivariate signal generation

model (see (1) and (2) in Jiang et al. (2022)).

Moreover, TVDN utilizes a data driven dimension reduction and an automated switch

detection procedures to capture the dynamic patterns of the FCs. Since this approach re-

quires no clustering of dynamic FCs, it eases the curse of dimensionality and avoids the

uncertainties induced by the clustering procedures as those adopted under the sliding win-

dow framework. Finally, TVDN selects the model parameters automatically to minimize

the uncertainties of the number of switches across independent samples, which generates

robust and reproducible dynamic FCs across different datasets.

In Section 4.4 we summarize the TVDN model, its assumptions, and briefly describe how

they lead to the desirable properties stated above. In Section 2.1 and Section 2.2, we examine

the differences between AD and healthy control groups of the features and graph metrics
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inferred from the TVDN model. We study the contribution of TVDN features on classifying

AD and control subjects in Section 2.3. Finally, we evaluate the sensitivity and specificity

of using the TVDN features to predict AD and control classification and compare with

benchmark methods in Section 2.4. Using these analyses we show that certain dynamic FC

features, including the number of brain state switches, the number of resting state networks,

the relative importance of the resting state networks, and a spatial distribution of the resting

state networks, are critical for correctly distinguishing AD patients from healthy controls.

Our results particularly highlight the importance of dynamic graph metrics over their static

counterparts - cementing dynamicity of FC as a key correlate of the disease. We discuss the

results and illustrate possible use cases in Section 3. All the technical details are presented

in Section 4.

2 Results

We implement TVDN on the MEG datasets from 88 AD patients and 88 age-matched

healthy control group. All AD patients met the diagnostic criteria for probable AD or

mild cognitive impairment due to AD (Albert et al., 2011; McKhann et al., 2011; Jack Jr.

et al., 2018). The mean (standard deviation) of the mini-mental state examination score

(MMSE) in the AD cohort is 22.14(5.58) , and that of the clinical dementia rating (CDR)

score is 0.87 (0.49). A schematic of the TVDN is shown in Figure 1, including the set of

static and dynamic features extracted from TVDN that will be used in the rest of the paper

for the purpose distinguishing AD from healthy control. For each MEG dataset, TVDN

automatically detects the brain state switches over given time series, which divides the

time series into multiple stationary time segments. We obtain the eigenmodes from TVDN,

defined as the magnitude of the top r eigenvectors of the implied functional connectivity

matrix extending across all the time segments. TVDN assumes the set of eigenmodes

remains constant across all time segments, and only their relative contributions change over

time. Here r, the number of eigenmodes, can vary from one subject to another, and is

selected so that corresponding magnitude of the eigenvalues comprises 80% of the total

sum of the magnitude of all the eigenvalues. Each eigenmode is a 68 dimensional vector

corresponding to 68 cortical regions based on the Desikan-Killiany parcellations (Desikan

et al., 2006), and may be thought of as a single resting state network (RSN) that is shared

across the time segments. Therefore our RSNs, defined via the TVDN model equation,
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Figure 1: Schematic illustration of TVDN. TVDN extracts spatial features: the number of
eigenmodes; temporal features: number of brain state switches; spatial and temporal mixed
features: weighted resting state networks (WRSN). The weighted resting state network in
each segment is a weighted summation of the eigenmodes with the corresponding eigenvalues
as the weights. These are the features used in predictive models described in the rest of the
paper.

may or may not correspond to the canonical RSNs one observes via independent component

analysis (Yeo et al., 2011). The resulting TVDN scalar features are the number of eigenmodes

and the number of brain state switches. TVDN also provides a spatial feature, the absolute

weighted sum of the eigenmodes (WRSN), in each stationary segment, which carries the

information of both the shared eigenmodes and the segment specific eigenvalues. The WRSN

from each time segment represents the state of the brain during specific time intervals, while

the time between two switch points characterizes the dwell time of the brain in each brain

state, that is the amount of time the brain spent in a state before moving into a new state.

We finally average the WRSN across the segments to obtain the average weighted resting

state network (AWRSN).

2.1 TVDN scalar features in AD and control groups

We use the above described TVDN method to extract static, dynamic and spatial features

from resting state MEG recordings in 88 patients with AD and 88 age-matched-controls

participants.

The results in Figure 2 show that the number of eigenmodes are significantly higher in

AD group than that in the control group with p-value< 0.001 from a student t-test. This is

consistent with increase spatial heterogeneity and complexity of dynamic spatial patterns
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Figure 2: The comparisons between AD and control groups of the static features. Left:
number of eigenmodes; Middle: number of brain state switches; Right: maximal dwell
times. Mean and 95% confidence intervals are shown and the p-values are from the student
t-tests.

in AD. Despite having an increased number of eigenmodes that commonly used to represent

brain states, patients with AD switch less frequently between brain states compared to the

healthy controls do on average with p-value=0.007. This is consistent with the observation

that the maximal dwell time in a stationary time segment is significantly longer in AD

patients than controls with p-value=0.002. These results suggest that AD patients have

greater complexity of brain states as represented by higher number of eigenmodes, although

they are significantly less active in brain state switches.

2.2 Graph metrics of dynamic functional connectivity

We quantify the graph structure of the dynamic FCs using the following graph metrics

computed from the brain networks represented by the TVDN connectivity matrices: path

length L, representing the average shortest length of the path that goes from one region to

the other; and modularity Q, where a brain network with a higher modularity has denser

connections within its subdivisions on average (Stam et al., 2009; Wang et al., 2013; Ban-

iqued et al., 2018). L and Q are two important graph metrics which measure the integration

and segregation of a brain network (Cohen and D’Esposito, 2016), respectively. Specifically,

we compute these graph metrics for all dynamic segments of the data. For each subject, we

first obtain the path length and modularity over time denoted by Lmean and Qmean, respec-

tively. Furthermore, we extract the graph metrics in the segments with the maximal dwell

time denoted by Lmax and Qmax. Moreover, we obtain the variance of the graph metrics

over time denoted by Lvar and Qvar. For a comparison, we summarize the graph metrics of
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the static FC from the network diffusion model (ND) proposed in Abdelnour et al. (2014),

denoted by Lstatic and Qstatic, where the ND model is a reduced form of the TVDN model

when assuming the FC is static. We then compare the properties of these metrics in AD

and control cohorts.

Distributions of the variances of the graph metrics over time are shown in Figure 3 (a),

which indicates that the path length and modularity from the control cohort have signifi-

cantly higher variability than those from the AD cohort do after adjusting for the multiple

comparison with p-value<= 0.025 (0.05/2). Therefore, the variations of the graph metrics

contain dynamic information that distinguishes AD and control samples. Distributions of

the average graph metrics over time are shown in Figure 3 (b), which suggests that the

mean of the average modularity is significantly different in the AD and control groups with

p-value<= 0.047. However, after adjusting for the multiple comparison, none of the average

graph metrics is significantly different in the two groups. Distributions of the graph metrics

from the segments with the maximal dwell time are shown in Figure 3 (c), which suggests

that none of those graph metrics is differentiable in the AD and control groups. Consistent

with the results from the segments with the maximal dwell time, the static graph metrics

in Figure 3 (d) also do not show between group difference.

2.3 TVDN features are highly associated with AD and control
classification.

We study the effect of TVDN features and graph metrics to classify AD (group 1) and

control (group 0) groups through a logistic regression model. The TVDN features include

the number of eigenmodes, the number of brain state switches, and the AWRSN, a 68

dimensional vector, representing the weighted resting state networks over 68 brain regions

of interest (ROIs). The graph metrics of interest are the static metrics: Lmean, Qmean,

and dynamic metrics: Lvar, Qvar. Here we do not include Lmax, Qmax because they are

highly correlated with Lmean, Qmean, and none of them is associated with the AD and

control classification as shown in Figure 3. Since some predictors are highly correlated and

the number of predictors is large, we add a ridge regularization to the model to ease the

collinearity among the predictors. Moreover, we utilize the bootstrap method (Efron, 1979)

to construct the 95% confidence interval (CI) and the p-values of the effects from the TVDN

features. We use p-values=0.05 as the cutoff to determine significant difference between AD

and control groups (Table 1).
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Figure 3: The distributions of the graph metrics extracted from the TVDN dynamic func-
tional connectivity in AD and control groups. (a) The variance of the graph metrics across
different segments. (b) The mean graph metrics over the segments. (c) The graph metrics
in the segments with the maximal dwell time. (d) The graph metrics from the static FC
in the network diffusion model. p-value<= 0.05 is used as a significance cutoff. Only the
significant p-values are shown in the plots. The error bars represent the 95% confidence
interval of the means.
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Table 1: TVDN results from a ridge regularized logistic regression: the effects from the
predictors of interest on the AD and control classifications (outcome). The predictors include
the number of eigenmodes, number of brain state switches, the dynamic and static graph
metrics and the AWRSN over 68 regions (the labels of the ROIs are presented in the table)
of interest are presented along with the corresponding 95% CI and p-value. All predictors
are all standardized by their sample means and standard deviations. Only the significant
spatial features are shown. p-value<= 0.05 is used as a significance cutoff.

TVDN scalar features

Features Effect 95% CI P-value

Number of eigenmodes 1.093 ( 0.572, 1.613) < 0.001
Number of brain state switches -0.369 (-0.731, -0.007) 0.046

TVDN graph metrics

Metrics Effect 95% CI P-value

Lvar -0.161 (-0.645, 0.323) 0.513
Qvar -0.153 (-0.478, 0.173) 0.358
Lmean 0.196 (-0.234, 0.626) 0.372
Qmean -0.273 (-0.620, 0.073) 0.122

TVDN spatial features (p-value<= 0.05)

Features Absolute effect 95% CI P-value

Left rostral anterior cingulate 0.665 (0.319, 1.010) < 0.001
Left fusiform 0.619 (0.293, 0.944) < 0.001
Left lingual 0.492 (0.188, 0.797) 0.002
Left inferior parietal 0.611 (0.228, 0.993) 0.002
Right inferior temporal 0.463 (0.153, 0.774) 0.003
Left parahippocampal 0.383 (0.122, 0.645) 0.004
Left temporal pole 0.370 (0.077, 0.664) 0.013
Right pericalcarine 0.432 (0.068, 0.796) 0.020
Left superior temporal 0.332 (0.052, 0.612) 0.020
Left lateral occipital 0.446 (0.065, 0.827) 0.022
Left inferior temporal 0.392 (0.049, 0.734) 0.025
Left superior parietal 0.414 (0.041, 0.786) 0.029
Right cuneus 0.361 (0.016, 0.707) 0.040
Right inferior parietal 0.380 (0.006, 0.754) 0.046

Consistent with the previous group comparison, the logistic regression showed that AD

patients have a greater number of eigenmodes (Table 1, positive estimators), and lesser

number of brain state switches (Table 1, negative estimator), compared to controls. Next,
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we examine the regional patterns of the estimated absolute effects from AWRSN (Figure 4

(a)), which shows the AWRSNs at twelve ROIs are significantly different in AD and control

groups when adjusting for other predictors in the model. It is worth mentioning that the

six graph metrics do not significantly affect the AD and control classification after adjusting

for the other predictors.

Figure 4: The results from regularized logistic regressions: (a) The estimated absolute effects
from AWRSN projected to [0, 1] interval. Only the regions with p-values less than 0.05 are
shown in the figure. (b) The ROCs of the leave-one-out prediction results from different
models.

2.4 Prediction and benchmark comparisons

We perform a leave-one-out (LOO) procedure to examine the accuracy of using significant

TVDN features identified in Table 1 to classify AD and control samples. We first use 175

samples to train a ridge regression model and predict the classification of the remaining

one sample. We iterate the procedure to predict the classification for all samples and to

depict the receiver operating characteristic (ROC) curve in Figure 4 (b). The area under

the ROC curve (AUC) of using the features from TVDN is close to 84%, suggesting that

the significant TVDN features have good sensitivity and specificity to distinguish AD with

control subjects, and hence can be used to improve application considering other more

conventional features in future applications (Metz, 1978; Obuchowski, 2003).

We compare the prediction performance of using features from TVDN model to the pre-

diction performances of using the features from two static FC models: dynamic mode decom-

position model (DMD) (Brunton et al., 2016) and network diffusion model (ND)(Abdelnour
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et al., 2014) and from one dynamic FC model: time-varying dynamic mode decomposition

model (TVDMD) (Kunert-Graf et al., 2019). DMD assumes that the observed signal fol-

lows a multivariate autoregression model, ND links two signals at consecutive times through

a differential equation model, while TVDMD is a sliding window based extension of DMD.

We extract the predictors including the number of eigenmodes, AWRSN and static graph

metrics from the static FC models. We also extract the predictors including the number of

eigenmodes, the number of brain state switches, AWRSN, static and dynamic graph metrics

from the dynamic FC models. The detailed derivations of the predictors are presented in

Appendix 4.5 and 4.6. Similar to those used in TVDN evaluation, we first perform a ridge

regression to select important predictors based on their confidence intervals and then utilize

an independent ridge regression model on the selected predictors to classify AD and control

samples. We depict the prediction algorithms in Section 4.7. In addition to the LOO we

performed a five-fold cross-prediction, where we used 80% of samples to train the model and

predicted the classifications of the rest 20% samples. All the tuning parameters were tuned

based on the training data to ensure no information leaking in the prediction procedure. We

show the average AUC and their standard deviations from 10000 five-fold cross prediction

experiments in Table 2. The corresponding ROC curves under different models are depicted

in Figure 4 (b). The results show that TVDN performs the best among all the methods in

classifying AD and control samples. The dynamic FC models perform generally better than

the static models in the predictions.

Table 2: The features and graph metrics selected and the corresponding AUCs of TVDN,
TVDMD, ND and DMD models. Static graph metrics include Lmean, Qmean and the
dynamic metrics include Lvar, Qvar. TVDN model performs better than other models
with 84% AUC. LOO: leave-one-out; five-fold: five-fold cross validation; SD: the standard
deviation of the AUCs over 10000 cross validations.

Models
(Features)

Number of
brain state switches

Number of
eigenmodes

AWRSN
Static graph

metrics
Dynamic graph

metrics
LOO five-fold (SD)

Dynamic models

TVDN 0.842 0.843 (0.064)
TVDMD 0.770 0.774 (0.071)
Static models

ND 0.754 0.765 (0.074)
DMD 0.756 0.762 (0.074)

Finally, we study the effects of features and graph metrics from the benchmark TVDMD,
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ND and DMD models in distinguishing AD and control samples through a ridge regularized

logistic regression. The predictors of interest are summarized in Table 2 and the results are

summarized in Table 3. As shown in Table 3, the numbers of eigenmodes from all models

have a significant positive effect in distinguishing AD and control subjects. However, the

effect size of the number of eigenmodes from the TVDMD model is much smaller than those

from the TVDN, ND, DMD models. Furthermore, the effect size of the number of brain

state switches from the TVDMD model is much smaller than those from the TVDN model.

Moreover, consistent with the finding in Section 2.2, none of the graph metrics from the

static models has significant effect on AD and control classification.

Table 3: TVDMD, ND, DMD results from a ridge regularized logistic regression: the effects
from the predictors of interest on the AD and control classifications. The predictors include
the number of eigenmodes, number of brain state switches, the dynamic and static graph
metrics and the AWRSN over 68 regions of interest. Only the effects of the scalar predictors
are presented. All predictors are all standardized by their sample means and standard
deviations.

Features and graph metrics Effect 95% CI P-value

TVDMD scalar features and graph metrics

Number of eigenmodes 0.008 ( 0.002,0.014) 0.005
Number of brain state switches 0.010 ( 0.004,0.015) 0.001
Lvar 0.010 ( 0.004,0.015) 0.001
Qvar 0.008 ( 0.003,0.014) 0.004
Lmean -0.005 (-0.010,0.001) 0.115
Qmean -0.000 (-0.006,0.006) 0.980

ND scalar features

Number of eigenmodes 0.104 ( 0.042, 0.167) 0.001
Lstatic -0.011 (-0.087, 0.065) 0.775
Qstatic 0.040 (-0.035, 0.115) 0.293

DMD scalar features

Number of eigenmodes 0.131 ( 0.072, 0.189) < 0.001
Qstatic -0.063 (-0.132, 0.006) 0.074
Lstatic -0.022 (-0.097, 0.052) 0.554
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2.5 The relationship between TVDN features and the graph met-
rics.

We further study the effects of TVDN scalar features on the brain network connection

through examining their correlation with the graph metrics. This analysis aims to facilitate

the interpretation of the TVDN features and reveal the graph information that explained

by the TVDN features. We study the Pearson’s correlation between each of the two TVDN

scale features and each of the eight graph metrics. Here all 16 variables are standardized

through dividing by their sample standard deviations. We use p-value< 0.003 (0.05/16) as

a significance cutoff after adjusting for multiple testing. It is expected that all the dynamic

graph metrics in Table 4 are positively correlated with the frequency of brain state switching,

because a larger number of brain state switches implies higher dynamicity in the FC which

leads to more variable graph metrics. Furthermore, Qmean and Qmax also are significantly

correlated with the number of eigenmodes suggesting that a smaller number of eigenmodes

implies denser connections within the subdivisions of the brain network from the dynamic

FC. Moreover, the number of eigenmodes is negatively correlated with Lvar, suggesting that

a greater number of eigenmodes implies less variations of path length over time. Finally,

since the static model does not contain dynamic information, the TVDN scalar features are

not associated with the graph metrics from the static model.

3 Discussion

We demonstrate, for the first time, that the number of brain state switches, representing the

temporal complexity of the brain network, in high-temporal resolution resting state MEG

extracted by the time-varying dynamic network (TVDN) algorithm is an important feature

that predicts AD. Specifically, AD subjects have fewer brain state transitions and in turn

longer dwell periods in any given brain state than the control subjects. The number of

eigenmodes, representing the spatial complexity of the brain network, is also an important

predictor for AD, where AD subjects have greater number of eigenmodes, and hence a more

heterogenous and complex functional brain network structure. We also demonstrate that

the variability of graph metrics such as path length and modularity of dynamic functional

connectivity periods are reduced in AD subjects. Interestingly, the static graph metrics cor-

responding to the brain state with the maximal dwell time or the mean of all brain states

are not distinguishable between AD and control groups, while the dynamic graph metrics
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Table 4: Pearson’s correlation between TVDN features and graph metrics. Lvar, Qvar are
the variances of the standardized path length, and modality over time; Lmean, Qmean are the
means of corresponding graph metrics over time; Lmax, Qmax are the graph metrics in the
segments with the maximal dwell time; and Lstatic, Qstatic are the graph metrics from the
static FC model. p-value< 0.003 is used as the significance cutoff to account for multiple
testing.

TVDN features Number of eigenmodes
Number of brain
state switches

Graph metrics Correlation p-value Correlation p-value

TVDN dynamic graph metrics

Lvar -0.268 < 0.001 0.234 0.002
Qvar -0.120 0.114 0.284 < 0.001

TVDN static graph metrics

Lmean -0.170 0.024 -0.014 0.853
Qmean -0.371 < 0.001 0.032 0.670
Lmax -0.111 0.143 -0.018 0.811
Qmax -0.254 0.001 -0.034 0.656

Graph metrics from the static model

Lstatic -0.160 0.034 0.225 0.003
Qstatic -0.200 0.008 0.011 0.880

that correlated with the brain state switching are significantly different in the two groups.

Using a data driven approach, TVDN identifies AD associated spatial features, that are

different between AD and controls, in the brain regions that reflect high tau accumulation.

When compared with predictions using features from other dynamic and static FC bench-

marks, we show that features from TVDN leads to the best sensitivity and specificity for

distinguishing AD and control samples. These results highlight the importance of dynamic

functional connectivity in resting-state data for understanding the neural pathophysiology

of AD.

High resolution MEG data provide convincing evidence that the brain state

switching patterns are altered in AD. Although static FC features extracted from

MEG activity have proven to be reliable across different MEG laboratories (Geisseler et al.,

2016) and have demonstrated to be an early biomarker of AD burden (Bajo et al., 2012;

Fernández et al., 2006), literature is still scarce in studying the dynamic features from MEG
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data for neurodegeneration. Our study utilizes the novel TVDN method to extract the

dynamic functional connectivity and brain state transitions from MEG data. We find that

the minimal dwell time in the brain states is around 2 seconds, and half of the dwell times

are less than 5 seconds. Such fast brain state transitions are difficult to capture by using low

time resolution image modalities such as fMRI, because the samples within each stationary

time segment are too limited to provide accurate estimates of the high dimensional whole

brain functional connectivity. On the contrary, high resolution MEG data provide sufficient

samples in each time segment to estimate functional connectivity, and hence can be used to

capture fast brain state transitions that distinguish the AD and control samples.

TVDN graph metrics are highly associated with AD and control classification.

The application of graph theory to static resting state functional connectivity in AD has

provided conflicting results. Based on the resting state fMRI data, Supekar et al. (2008)

show no difference in the average path length between the AD and control samples in their

study, while Sanz-Arigita et al. (2010) show a decreased average path length in the AD

patients compared to the healthy control. In a MEG study, Stam et al. (2009) show that

the similarities of the graph metrics between AD and control samples varies across different

frequency bands. Our results show that the graph metrics from the static models cannot

effectively distinguish AD and control samples, while Figure 3 shows that the variations of

the graph metrics provide important information to distinguish AD and control subjects,

which can only be obtained from dynamic FCs. Furthermore, the graph metrics in the

control group generally have higher variability than those in the AD group and the variability

patterns of the path length and modularity in AD and control groups are significantly

different. These results highlight the importance of considering dynamic FC in AD studies.

TVDN features sufficiently capture the information in the graph metrics. A

comprehensive study on the TVDN features and graph metrics in Section 2.5 finds that

the TVDN features are strongly associated with the graph metrics that differentiate AD

and control groups (Lvar, Qvar). For example, the number of eigenmodes negatively affects

Lvar, suggesting that a greater number of eigenmodes implies less variations of path length

over time. In addition, the number of brain state switches are positively associated with

the dynamic graph metrics. Finally, when adjusting for the TVDN features, graph metrics

do not contribute to the AD and control classification (Table 1), which indicates that the
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information in the graph metrics regarding the AD and control distinction is sufficiently

captured by the TVDN features.

AD patients have larger number of eigenmodes implying higher spatial com-

plexity of the brain network. Figure 2 shows that the AD patients have a significantly

larger number of eigenmodes, which implies a higher spatial complexity on average when

comparing with the healthy controls. This is because the additional eigenmodes in the AD

subjects introduce new bases in the lower dimensional manifold, which results in a more

heterogenous and complex network structure. This is also supported by the fact that a

higher number of eigenmodes is negatively associated with a lower modularity (Table 4),

which leads to higher structural complexity (Baldwin and Clark, 2000; Sinha et al., 2018).

These additional eigenmodes can form up AD specific pathological networks that do not ex-

ist in healthy subjects. Consistent with this idea, increase prevalence of pathophysiological

epileptiform activity network structures have indeed been reported in AD when compared

to healthy controls (Ranasinghe et al., 2022a; Vossel et al., 2016).

Spatial patterns of dynamic connectivity changes overlap with the regional

anatomy of AD pathophysiology. Figure 4 (a) shows the regional patterns of the

estimated effects from AWRSN that distinguish AD from healthy elderly individuals. These

regions include inferior and posterior temporal cortices and posterior parietal-occipital cor-

tices, which reflects the same regional distribution of high tau accumulations, earliest hy-

pometabolism and go onto develop greatest neuronal loss in patients with AD (Jagust, 2018).

Distributions of tau accumulation both in space and time have been linked to network con-

nectivity measures using various static network features, where functional connectivity based

models could reliably predict individual variability of tau accumulation in AD (Franzmeier

et al., 2020b,a). The proximity of spatial patterns between abnormal dynamic functional

connectivity indices and AD pathophysiology relevant regional anatomy suggests that dy-

namic functional connectivity features, in addition to static features may also be worthwhile

indices to explore as additional, complimentary predictors of AD pathophysiology. It is also

noteworthy that the spatial distribution of dynamic connectivity differences is more left

predominant in our findings. Although the biological significance of this lateralization of

dynamic functional changes is yet to be explored, such asymmetry has been observed in

previous resting state functional connectivity studies as well (Medvedev, 2014; Di et al.,
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2014). These results encourage further exploration of brain transitions within and between

the two brain hemispheres.

Dynamic features from TVDN with MEG imaging enhances the sensitivity and

specificity of AD and control classifications. We compare prediction accuracies of

using TVDN features, the features from TVDMD, a sliding window based method, and

the features from static FC models. As shown in Table 2 and Figure 4 (b), TVDN has

much higher prediction accuracy than the other models do, which shows the superiority of

TVDN on extracting robust features that are highly differential in AD and control samples.

Furthermore, the prediction accuracies are improved by introducing the temporal features

from TVDN, the number of brain state switches, into the prediction model. This can

be seen from Table 2 and Figure 4 (b) that using the TVDN features yields the highest

sensitivity and specificity in classifying AD versus control subjects. Moreover, the results

in Table 1 and Table 3 show that the effect size of the number of eigenmodes and the

number of brain state switches from TVDN are much larger than those from the TVDMD

model. Furthermore, using the features from the TVDN model gives the best prediction

accuracy among all the comparative methods. The lower prediction accuracy and smaller

effect sizes from the TVDMD method could attribute to its deficiencies inherited from the

sliding window based method, such as the arbitrariness of the window length selection and

the curse of dimensionality. Collectively, these results indicate that TVDN is a more reliable

method to detect brain state switches than TVDMD.

fMRI studies of dynamic FC in AD. The present study uses MEG imaging to demon-

strate that dynamic functional connectivity features are abnormal and have predictive value

in AD. Here, we review a larger fMRI literature on dynamic functional studies in AD. Con-

sistent with our dwell time findings, Jones et al. (2012) suggest that the dwell time in the

default mode network are distinctive between AD dementia patients and healthy controls.

Brenner et al. (2018) also show that amnestic MCI patients spend more time in a single

dominant state. Also consistent with our observation of increased number of switches in

AD, Córdova-Palomera et al. (2017) show decreased global metastability between functional

states when comparing the patients with mild cognitive impairment (MCI) and healthy

controls. Similar to our findings on the predictablity of dynamic spatial features, Fu et al.

(2019) examine the shared and specific dynamic functional connectivity in subcortical is-
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chemic vascular disease and AD. Dautricourt et al. (2022) show that dynamic FC states are

differentially associated with dementia risk. However, the above mentioned studies have not

clearly demonstrated that dynamic FC features can distinguish AD patients from healthy

controls (Jones et al., 2012; Córdova-Palomera et al., 2017; Brenner et al., 2018). In contrast,

a recent study by de Vos et al. (2018) reveals higher accuracy to distinguish AD dementia

from healthy controls using the variability of FC across time as a feature than static FC

features, perhaps the first clear evidence that the dynamic FC can be a strong predictor of

AD. However, their prediction model included a large number of features and did not fully

address which dynamic FC features were important to distinguish AD and healthy subjects

(de Vos et al., 2018). Therefore, whether dynamic FC features have predictive power to

distinguish AD patients, and if so which features are important to drive these predictions

remain unknown from these prior fMRI studies. Extending TVDN to fMRI data is impor-

tant to address these questions. Collecting resting state fMRI data and further research

along these lines are ongoing in our laboratory.

Dynamic FC features have predictive value in AD. It must be borne in mind that

the present classifier results by themselves do not argue for the exclusive use of dynamic FC

features as predictors of AD, whether for diagnostic or prognostic purposes. Indeed, under

the AUC metric of classifier performance, we have reported close to 84% accuracy, which is

good but not accurate enough for diagnostic purposes. Therefore, the current results must

be interpreted as supportive of a valuable role for dynamic FC features in a diagnostic appli-

cation, perhaps in combination with static FC features, as well as other imaging biomarkers

like regional atrophy and molecular PET imaging. Such applications will not only be able

to correctly predict AD diagnosis, but the addition of dynamic FC will have imbued the

application with a hitherto unfeasible ability to differentiate between various AD subtypes.

Our contribution is to show that a model-based TVDN approach provides far more predic-

tive power in the use of dynamic FC compared to alternate means of obtaining dynamic FC

features, and that TVDN-derived dynamic features uncover important processes of the AD

pathophysiology that are currently being unreported by conventional static FC methods.

Arguably, a far more clinically important use case for proposed approach will be as a

means to understand how AD affects the dynamicity of the brain, and in future work, to

explain how these dynamic changes may be caused by underlying pathology (tau, amyloid

and hypometabolism) and the resulting network disconnection. For instance, what specifi-
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cally about the deposition of tau and amyloid in and around neurons could cause an increase

in dwell times in the AD brain, indicative of its brain states being ”stickier” than normal

brains with no pathology? Although out of scope of current work, such studies would require

new models that relate pathology to functional dynamics, and would provide valuable new

insights into AD pathophysiology that is currently lacking.
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4 Methods

4.1 Data and preprocessing

Each participant in our study underwent a complete clinical history, physical examination,

neuropsychological evaluation, brain magnetic resonance imaging (MRI), and a 10-min ses-

sion of resting MEG. All the acquisition and processing pipelines are the same as that

for a previous study (Ranasinghe et al., 2022b). All participants were recruited from re-

search cohorts at the University of California San Francisco-Alzheimer’s Disease Research

Center(UCSF-ADRC). Informed consent was obtained from all participants and the study

was approved by the Institutional Review Board (IRB) at UCSF (UCSF-IRB 10-02245).

Demographics of cohorts are summarized in Table 5.

4.2 Resting state MEG data acquisition and preprocessing

MEG scans were acquired on a whole-head biomagnetometer system (275 axial gradiome-

ters; MISL, Coquitlam, British Columbia, Canada), following the same protocols described

previously (Ranasinghe et al., 2020, 2022b). Each subject underwent MEG recordings at

rest, eys-closed and supine for 5–10 min. Three fiducial coils including nasion, left and right

preauricular points were placed to localize the position of head relative to sensor array, and

later coregistered to each individual’s respective MRI to generate an individualized head

shape. Data collection was optimized to minimize within-session head movements and to

keep it below 0.5 cm. 5–10 min of continuous recording was collected from each subject

while lying supine and awake with eyes closed (sampling rate: 600 Hz). We selected a 60s

(1 min) continuous segment with minimal artifacts (minimal excessive scatter at signal am-

plitude <10 pT), for each subject, for analysis. The study protocol required the participant

to be interactive with the investigator and be awake at the beginning of the data collection.

Spectral analysis of each MEG recording and whenever available simultaneously collected

scalp EEG recordings were examined to confirm that the 60-second data epoch represented

awake, eyes closed resting state for each participant. Artifact detection was confirmed by

visual inspection of sensor data and channels with excessive noise within individual subjects

were removed prior to analysis.
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4.3 Source space reconstruction of MEG data and spectral power
estimation

Tomographic reconstructions of the MEG data were generated using a head model based on

each participant’s structural MRI. Spatiotemporal estimates of neural sources were gener-

ated using a time–frequency optimized adaptive spatial filtering technique implemented in

the Neurodynamic Utility Toolbox for MEG (NUTMEG; https://nutmeg.berkeley.edu/).

To prepare for source localization, all MEG sensor locations were coregistered to each

subject’s anatomical MRI scans. The lead field (forward model) for each subject was calcu-

lated in NUTMEG using a multiple local-spheres head model (three-orientation lead field)

and an 8-mm voxel grid which generated more than 5000 dipole sources, all sources were

normalized to have a norm of 1 (Dalal et al., 2008, 2011). The source space reconstruction

approach provided amplitude estimations at each voxel derived through the linear com-

bination of spatial weighting matrix with the sensor data matrix (Dalal et al., 2008). A

high-resolution anatomical MRI was obtained for each subject (see below) and was spatially

normalized to the Montreal Neurological Institute (MNI) template brain using the SPM

software (http://www.fil.ion.ucl.ac.uk/spm), with the resulting parameters being applied to

each individual subject’s source space reconstruction within the NUTMEG pipeline (Dalal

et al., 2011). We then derived regional power spectra based on Desikan–Killiany atlas par-

cellations for the 68 cortical regions depicting neocortex and allocortex, the latter including

the entorhinal cortex. Regional power spectra were obtained by averaging the spectra of

vowels within each region and then converted to dB scale.

Table 5: Baseline characteristics: The number of samples (percentiles) for gender and the
mean (standard deviation) for age are presented

AD group Control group P-value
(n=88) (n=88)

Gender Male 35 (40%) 37 (42%) 0.878
Female 53 (60%) 51 (58%)

Age at MEG (Years) 62.7 (8.7) 65.1 (10.0) 0.098
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4.4 Time-varying dynamic network model

The time-varying dynamic network (TVDN) model is a robust method to extract dynamic

FCs from the neuroimaging data (Jiang et al., 2022), which assumes the brain states experi-

ence discrete and discontinuous changes over time. The dynamic FC features contain static

spatial feature (RSNs) and dynamic temporal feature (the dynamic weights of the RSNs).

Let X(t) be a d dimensional vector, denoting the brain activity at time t at d numbers

of ROIs, and let X′(t) be its derivative. The TVDN model assumes

X′(t) = A(t)X(t),

where A(t) is a d × d connectivity matrix. The connectivity matrix A(t) can be further

decomposed as A(t) = UΛ(t)U−1, where the columns of U represent the static RSNs, and

the eigen-value matrix Λ(t), varying across the time, represents the importance of each RSN.

The real and imaginary parts of Λ(t) represent the growth constant and signal frequency,

respectively. Since only a small number of RSNs are operational in the brain, typically

ranges from 7-20 (Yeo et al., 2011), A(t) is assumed to be a low-rank matrix, where the

rank of the A(t) represents the number of distinct static RSNs that are active in the resting

state.

To extract the dynamic FC features, we first perform a B-spline smoothing step to ob-

tain noise free versions of X′(t) and X(t). Then, we implement a kernel regression step

to obtain the Nadaraya–Watson estimator (Nadaraya, 1964; Watson, 1964) of A(t), de-

noted by Â(t). The static spatial feature U is then extracted as the top r eigen-vectors of∑
t Â(t), where we choose rank r so that the magnitude of the top r eigen-values of

∑
t Â(t)

comprises 80% of the total sum of the magnitude of them. Next, the brain state switches

are detected by minimizing a modified Bayesian information criteria (MBIC) through the

dynamic programming algorithm (Jackson et al., 2005) based on a low dimensional trans-

formation Û−1
r X(t), where Ûr is the first r columns of the estimated U, and Û−1

r is the

r × d dimensional generalized inverse of Ûr. The brain activities are separated to different

segments after the detection procedure. Then we refit TVDN model in each segment, while

assuming A(t) is a constant. Furthermore, the temporal dynamic weighted are obtained as

the eigen-values of estimated A(t) in each stationary segment, denoted by Λ̂r×r(t), which is

a r× r dimensional matrix. We obtain the WRSN feature as the column sum of ÛrΛ̂r×r(t).

Finally, we first obtain W̃(t) ≡ {W̃ij(t), i, j = 1, . . . , d} = Â(t)Â(t)T and construct the

functional connectivity matrix through the following two steps:
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1. let Ŵij(t) = W̃ij(t)/

√
W̃ii(t)W̃jj(t)

2. perform fisher transform and obtain the functional connectivity matrix W(t) with the

i, jth entry to be Wij(t) = 0.5ln{1 + Ŵij(t)}/{1− Ŵij(t)}

All the tuning parameters in the TVDN procedure are tuned based on the control samples.

The TVDN analysis is performed using the Python code from https://github.com/

feigroup/TVDN, which contains detailed documentation of the code usage.

4.5 Dynamic mode decomposition model and network diffusion
model

We implement the dynamic mode decomposition model (DMD) and the network diffusion

model (ND) for comparison.

The DMD model assumes X(t+ 1) = AX(t) (Brunton et al., 2016), where A is a d× d

constant matrix. We obtain the estimated A by minimizing the sum of the squared distance

between X(t + 1) and AX(t) over time. Then we obtained the estimated RSNs, denoted

by Û, as the first r eigen-vectors corresponding to the top eigen-values, whose summation

comprises 80% of the total sum of the eigen-values. Furthermore, we construct the WRSN

feature as the column sum of ÛrΛ̂r×r, where Ûr is a d× r dimensional eigen-vector matrix,

and Λ̂r×r is a r×r dimensional eigen-value matrix. Since there is only one segment resulted

from the DMD model, AWRSN feature is the same as the WRSN feature. Finally, we

obtained the W̃ = ÂÂT and use steps 1, 2 in Section 4.4 to generate the final connectivity

matrix W.

The ND model assumes X′(t) = AX(t). We obtain the estimated A by minimizing the

sum of the squared distance between X′(t+ 1) and AX(t) over time. The remaining steps

for extracting spatial features from the ND model are the same to the DMD model.

We implement TVDMD as follows where we construct windows with 192 frames sliding

by 24 frames in each step. In each sliding-window, TVDMD extracts the dynamic modes

(Brunton et al., 2016; Kunert-Graf et al., 2019) from the brain signals, and obtains the

WRSN in each sliding windows using the same procedures as those described in DMD

model above. The selection of the window size and step size leads to 292 number of sliding

windows, which is similar as those used in Kunert-Graf et al. (2019). We then use Kmeans

algorithm to cluster the WRSNs to 3 clusters, which is the average number of switches from

the control group with the TVDN method. We define a switch point as the time where there
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is a cluster membership change before and after the time. These switch points divide the

MEG data into multiple segments, and in each segment we reestimate the WRSN and the

number of eigenmodes, whose corresponding magnitude of the eigenvalues comprises 80%

of the total sum of the magnitude of the eigenvalues. We then average the WRSN as the

AWRSN and calculate the maximal number of RSNs across the multiple segments as the

number of RSNs.

The DMD and ND analysis were conducted using the Python code (https://github.

com/feigroup/TVDN-AD).

4.6 Graph metrics

The brain networks extracted from functional connectivity models can be represented by

graphs, which are the combination of ROIs, the nodes in the graph, and the edges (Boccaletti

et al., 2006), the region-wise connections in the graph. The strength of the connections

among the ROIs, namely the edge weights, are mathematically captured by the entries of

the functional connectivity matrix W.

The path length L of the graph is defined as

L =
d(d− 1)∑d

i=1

∑d
j=1,j ̸=i L

−1
ij

,

where Lij is the shortest length of the path that goes from regions i to j, where the length

of a path is the summation of the inverse of edge weights on the path (Wang et al., 2013).

The modularity Qmax is a statistic that quantifies the degree to which the network can

be subdivided into different groups (Newman, 2006), where the optimal group structure

is obtained by maximizing the number of within-group connections, and minimizing the

number of between-group connections.

LetWij be the i, jth entry of the functional connectivity matrix, representing the strength

of connection between ROI i and ROI j. If Wij ̸= 0 (Wij = 0), region i and j are connected

(disconnected). For a given partition p of the graph, the modularity index Q̃(p) is defined

as

Q̃(p) =

Np∑
g=1

[
Wg

W
−
(

Sg

2W

)2
]
,

where Np is the number of groups in the partition, W =
∑

i,j Wij and Wg is sum of all

the edge weights between the regions in the group g. Here let Sgk =
∑d

j=1,j ̸=k Wkj, Sg =
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∑d
k=1 Sgk is the sum of the nodal strength in group g. Finally Q = maxp{Q̃(p)}, which is

obtained by using the spectral algorithm described in (Newman, 2006).

To eliminate this dependence of the graphic features on the size of the graph, we nor-

malize the three features through dividing them by an ensemble of 100 random networks,

which is described as follows. We randomly permute the values in W, and create 100 sets

of pseudo graph features. We them divide the each of the two graphic features by the

corresponding means of the pseudo graph features over the 100 permutations.

To extract the graph characteristics, we adopted the bctpy package in python (https://

pypi.org/project/bctpy/), which contains the detailed documentation of the code usage.

4.7 Logistic regression with ridge regularization

In our manuscript, we adopted the logistic regression with the ridge penalty as the classifier

for the AD and control groups. The ridge regularization was utilized due to the high-

dimension feature in our regression (Hoerl and Kennard, 1970).

With the ridge penalty, the loss function to optimize becomes

min
β,β0

ρ

2
βTβ + ℓ(Y, β0 + βTX),

where X are the FC features, which can be different from TVDN, DMD, ND models,

Y = (Y1, . . . , YN)
T is a vector a binary indicator with Yi = 1 or Yi = 0 if the ith subject is a

AD patient or a healthy control, respectively. The function ℓ(·) is the negative log likelihood

of the logistic regression and ρ > 0 is the penalty parameter. The penalty parameter is tuned

by the leave-one-out evaluation within the training set to ensure no testing data information

is used during the training procedure.

For each model, we implemented the two ridge regularized logistic regressions. We

use first ridge regression to select significant predictors as the ones whose estimated 95%

confidence intervals do not cover zero. We then utilized the selected important predictors

in the second ridge regression model to evaluate the sensitivity and specificity of classifying

AD and control samples through leave-one-out (LOO) and five-fold cross prediction over

10000 repetitions. The penalty parameters are tuned based on the training data to avoid

information leaking in the prediction.

We implemented the logistic regression with the ridge penalty by the LogisticRegres-

sion function in sklearn package in Python. The detailed documentation of the pack-

age is accessible at https://scikit-learn.org/stable/modules/generated/sklearn.
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linear_model.LogisticRegression.html.
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Maestú, F., Peña, J.-M., Garcés, P., González, S., Bajo, R., Bagic, A., Cuesta, P., Funke, M.,
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