

***Candida albicans* stimulates the formation of a multi-receptor complex that mediates epithelial cell invasion during oropharyngeal infection**

Quynh T. Phan,¹ Norma V. Solis,¹ Max V. Cravener,² Marc Swidergall,^{1,3} Jianfeng Lin,¹ Manning Y. Huang,⁴ Hong Liu,¹ Shakti Singh,¹ Ashraf S. Ibrahim,^{1,3} Massimiliano Mazzone,^{5,6} Aaron P. Mitchell,² and Scott G. Filler^{1,3*}

¹Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA

²Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA

³Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA

⁴Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA

⁵Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium;

⁶Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium;

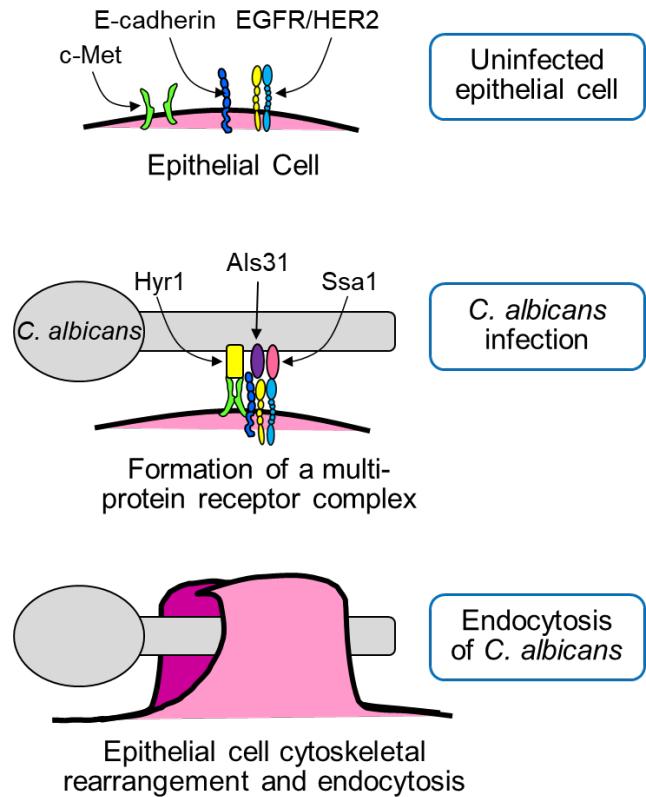
Running head: Multi-protein receptor complex

Key words: *Candida albicans*, endocytosis, invasion, oral epithelium, receptor tyrosine kinase

*Corresponding author. sfiller@ucla.edu

Highlights

- c-Met is an oral epithelial cell receptor for *Candida albicans*
- *C. albicans* infection causes c-Met and the epidermal growth factor receptor (EGFR) to form a complex with E-cadherin, which is required for c-Met and EGFR function
- *C. albicans* Hyr1 and Als3 interact with c-Met and EGFR, inducing oral epithelial cell endocytosis and virulence during oropharyngeal candidiasis
- Dual blockade of c-Met and EGFR ameliorates oropharyngeal candidiasis


Summary

Fungal invasion of the oral epithelium is central to the pathogenesis of oropharyngeal candidiasis (OPC). *Candida albicans* invades the oral epithelium by receptor-induced endocytosis but this process is incompletely understood. We found that *C. albicans* infection of oral epithelial cells induces c-Met to form a multi-protein complex with E-cadherin and the epidermal growth factor receptor (EGFR). E-cadherin is necessary for *C. albicans* to activate both c-Met and EGFR and to induce the endocytosis of *C. albicans*. Proteomics analysis revealed that c-Met interacts with *C. albicans* Hyr1, Als3 and Ssa1. Both Hyr1 and Als3 were required for *C. albicans* stimulation of c-Met and EGFR in oral epithelial cells in vitro and for full virulence during OPC in mice. Treating mice with small molecule inhibitors of c-Met and EGFR ameliorated OPC, demonstrating the potential therapeutic efficacy of blocking these host receptors for *C. albicans*.

Key Words

Candida albicans, fungal pathogenicity, host receptor, c-Met, epidermal growth factor receptor, E-cadherin

Graphical abstract

1 **Introduction**

2 Oropharyngeal candidiasis (OPC), caused predominantly by *Candida albicans*, afflicts
3 patients with HIV/AIDS, Sjogren's syndrome, inhaled corticosteroid use, and cancer of the head
4 and neck (Berberi et al., 2015; Guilbert et al., 2017; Saito et al., 2020; Serrano et al., 2020).
5 Azole antifungal drugs are currently the mainstay of therapy for patients with OPC (Pappas et
6 al., 2016). However, the emergence of azole resistance (Dos Santos Abrantes et al., 2014;
7 Patel et al., 2012) (Mushi et al., 2017) necessitates new strategies to prevent and treat this
8 disease.

9 A key step in the pathogenesis of OPC is fungal invasion of the epithelial cell lining of
10 the oropharynx (Cawson and Rajasingham, 1972; Montes and Wilborn, 1968). This process
11 occurs both when a new focus of infection is initiated and as an established fungal lesion
12 enlarges. *C. albicans* can invade epithelial cells by two mechanisms. One is active penetration,
13 in which a progressively elongating hypha pushes its way into the host cell (Dalle et al., 2010;
14 Wachtler et al., 2011). The other is receptor-induced endocytosis, in which *C. albicans* binds to
15 receptors on the surface of the epithelial cell, triggering the rearrangement of epithelial cell
16 microfilaments and inducing the formation of pseudopods that surround the organism and pull it
17 into the epithelial cell (Park et al., 2005; Solis et al., 2017; Zhu and Filler, 2010). Multiple
18 epithelial cell receptors for *C. albicans* have been identified including the ephrin type-A receptor
19 2 (EphA2), E-cadherin, HER2, and the epidermal growth factor receptor (EGFR). EphA2 binds
20 to β -glucans, while E-cadherin, HER2, and EGFR interact with *C. albicans* Als3 and Ssa1 (Phan
21 et al., 2007; Sun et al., 2010; Swidergall et al., 2018; Zhu et al., 2012). All of these receptors
22 appear to function in the same pathway to mediate the endocytosis of *C. albicans* (Swidergall et
23 al., 2018; Zhu et al., 2012).

24 While analyzing the transcriptional response of oral epithelial cells to *C. albicans*
25 infection, we discovered that the hepatocyte growth factor (HGF) pathway was activated (Liu et
26 al., 2015). HGF is the ligand for the c-Met receptor tyrosine kinase. This finding prompted us to

27 investigate the role of c-Met in the endocytosis of *C. albicans*. Here, we report that c-Met
28 functions as a host cell receptor for *C. albicans*. It interacts not only with *C. albicans* Als3, but
29 also with Hyr1, which we determined is required for maximal epithelial cell invasion. In response
30 to *C. albicans*, c-Met forms a multi-protein complex with EGFR, and E-cadherin that is required
31 for the endocytosis of the organism in vitro and for maximal virulence during OPC.

32

33 **Results**

34 **c-Met functions in conjunction with EGFR to induce endocytosis of *C. albicans***

35 To ascertain whether c-Met functions as an epithelial cell receptor for *C. albicans*, we infected
36 the immortalized OKF6/TERT-2 oral epithelial cell line (Dickson et al., 2000) with *C. albicans*
37 hyphae and then used indirect immunofluorescence to detect the localization of c-Met. We
38 observed that c-Met accumulated around the hyphae in a similar fashion to EGFR and E-
39 cadherin (Fig. 1A and S1A). By immunoblotting of oral epithelial cell lysates with
40 phosphospecific antibodies, we determined that *C. albicans* infection induced c-Met
41 autophosphorylation that was detectable within 5 min and persisted for at least 60 min (Fig. 1B
42 and C). The time course of *C. albicans*-induced phosphorylation of c-Met paralleled that of the
43 phosphorylation of EGFR. Collectively, these results indicate that contact with *C. albicans*
44 hyphae activates c-Met similarly to EGFR.

45 The functional significance of c-Met activation was analyzed by assessing its effect on
46 the endocytosis of *C. albicans*. Both siRNA knockdown of c-Met and blockade of c-Met kinase
47 activity with the specific tyrosine kinase inhibitor SGX523 decreased the endocytosis of *C.*
48 *albicans* by approximately 50% (Fig. 1D and E). These interventions had no effect on the
49 number of cell-associated organisms, a measure of adherence (Fig. S1B and C). Of note,
50 knockdown of c-Met did not affect cellular levels of EGFR or E-cadherin (Fig. S1D). Activating
51 c-Met even further by adding its natural ligand HGF at the same time as the *C. albicans*

52 enhanced endocytosis in a dose-dependent manner, independently of adherence (Fig. 1F and
53 S1E). Therefore, c-Met activity partially governs the endocytosis of *C. albicans*.

54 To analyze the relationship between c-Met and EGFR, we investigated the effects of
55 different inhibitors on *C. albicans*-induced phosphorylation of these receptors. When the
56 epithelial cells were treated with gefitinib, a specific inhibitor of EGFR kinase activity, and then
57 infected with *C. albicans*, EGFR phosphorylation was reduced to basal levels but c-Met
58 phosphorylation remained unchanged (Fig. 2A-B). When the epithelial cells were treated with
59 SGX523, c-Met phosphorylation was inhibited but EGFR phosphorylation was not (Fig. 2A and
60 C). Thus, *C. albicans* induces the phosphorylation of c-Met independently of EGFR.

61 Next, we investigated the combined effects of these inhibitors on the endocytosis of *C.*
62 *albicans* to determine the functional relationship between EGFR and c-Met. Incubating epithelial
63 cells with either SGX523 or gefitinib alone reduced the endocytosis of *C. albicans* by a similar
64 amount (Fig. 2D). Incubating the cells with SGX523 and gefitinib in combination had an additive
65 effect, inhibiting endocytosis significantly more than SGX523 alone. This reduction in epithelial
66 cell uptake was due solely to inhibition of receptor-induced endocytosis because the
67 combination of SGX523 and gefitinib had no effect on the invasion of *C. albicans* into fixed
68 epithelial cells, which occurs by the process of active penetration (Fig. S2A and B). The lack of
69 effect of these inhibitors on active penetration also indicates that they had no effect on *C.*
70 *albicans* germination and hyphal elongation. Also, neither inhibitor consistently reduced *C.*
71 *albicans* adherence to the epithelial cells (Fig. S2B and C). The additive inhibitory effects of
72 gefitinib and SGX523 on the endocytosis of *C. albicans* is consistent with the model that both c-
73 Met and EGFR are required for maximal uptake of this organism.

74 To further investigate the functional interactions between c-Met and EGFR, we used the
75 NIH/3T3 mouse fibroblastoid cell line. When these cells were transfected with human c-Met,
76 they endocytosed *C. albicans* similarly to control cells that had been transfected with GFP
77 (Fig. 2E). By contrast, when NIH/3T3 cells that expressed human EGFR and HER2 were

78 transfected with c-Met, they endocytosed significantly more organisms than the control cells
79 (Fig. 2F). Transfection of either cell line with c-Met had minimal effects on adherence (Fig. S2D
80 and E). Collectively, these results indicate that the presence of EGFR is necessary for c-Met to
81 induce endocytosis.

82

83 **E-cadherin interacts with both c-Met and EGFR**

84 Our previous finding that E-cadherin functions in the same pathway as EGFR to mediate the
85 endocytosis of *C. albicans* (Zhu et al., 2012) prompted us to evaluate the role of E-cadherin in
86 *C. albicans*-induced phosphorylation of c-Met and EGFR. When epithelial cell E-cadherin was
87 knocked down with siRNA prior to *C. albicans* infection, there was reduced phosphorylation of
88 both c-Met and EGFR (Fig. 2G-I). While E-cadherin knockdown also decreased the endocytosis
89 of *C. albicans*, the combination of E-cadherin knockdown with either SGX523 or gefitinib did not
90 inhibit endocytosis further (Fig. 2J and K), and there was no effect on adherence (Fig. S2F and
91 G). Collectively, these results support the model that E-cadherin is a common member of the c-
92 Met and EGFR signaling pathways that mediate the endocytosis of *C. albicans*.

93 These results suggest that c-Met, EGFR, and E-cadherin might be components of a
94 multi-protein complex. To test this hypothesis, we used a proximity ligation assay, which forms a
95 fluorescent spot when two proteins are within 40 nm of each other (Swidergall et al., 2021;
96 Zatloukal et al., 2014). In uninfected epithelial cells, there was low level association of c-Met,
97 EGFR, and E-cadherin that appeared to be randomly distributed throughout the cells (Fig. 3A
98 and B). When the epithelial cells were infected with *C. albicans*, there was a marked increase in
99 the association of E-cadherin with both c-Met and EGFR, and a modest but still significant
100 increase in the association of c-Met with EGFR. Interestingly, these protein complexes
101 accumulated both in the vicinity of *C. albicans* hyphae and in cells that did not appear to be in
102 contact with the organism. No signals were observed the proximity ligation assay was
103 performed using control mouse and rabbit IgG (Fig. S3A).

104 To verify the association of E-cadherin with c-Met and EGFR, we performed
105 coimmunoprecipitation experiments on lysates of oral epithelial cells. When lysates of
106 uninfected epithelial cells were immunoprecipitated with an anti-c-Met antibody, low levels of
107 both EGFR and E-cadherin were coimmunoprecipitated (Fig. 3C-E). When the epithelial cells
108 were infected with *C. albicans*, there was increased coimmunoprecipitation of both EGFR and
109 E-cadherin with c-Met. This coimmunoprecipitation was significantly reduced in epithelial cells in
110 which E-cadherin was depleted with siRNA. We obtained similar results in reciprocal
111 experiments in which c-Met and E-cadherin were coimmunoprecipitated using an anti-EGFR
112 antibody (Fig. S3B-D). Taken together, these results indicate that *C. albicans* infection
113 enhances the formation of a multi-protein complex that contains c-Met, EGFR, and E-cadherin.
114 They also suggest that E-cadherin is a central component of this complex and is required for *C.*
115 *albicans* to activate both c-Met and EGFR.

116

117 **Hyr1 is a *C. albicans* ligand for c-Met**

118 We set out to identify the *C. albicans* ligands for c-Met. The phosphorylation of c-Met and EGFR
119 was induced by *C. albicans* hyphae, but not by yeast-phase organisms, indicating that the *C.*
120 *albicans* ligand for c-Met must be expressed predominantly by hyphae (Fig. 4A-C). Because
121 Als3 and Ssa1 are surface expressed only on hyphae and are required for *C. albicans* to
122 activate EGFR in oral epithelial cells (Zhu et al., 2012), we tested a *C. albicans* *als3Δ/Δ ssa1Δ/Δ*
123 mutant and found that it induced minimal phosphorylation of both EGFR and c-Met (Fig. 4D-F),
124 suggesting that Als3 and/or Ssa1 are required for the activation of both receptors.

125 Next, we considered the possibility that there may be an additional fungal ligand for c-
126 Met. To identify this ligand, we used a far Western blotting approach in which cell wall proteins
127 were isolated from wild-type and *als3Δ/Δ ssa1Δ/Δ* mutant strains, separated by non-reducing
128 SDS-PAGE, and transferred to nylon membranes that were probed with recombinant c-Met. We
129 found that c-Met bound to a single broad band in lanes containing cell wall proteins from hyphae

130 of the wild-type strain or the *als3Δ/Δ ssa1Δ/Δ* mutant, but not wild-type yeast (Fig. 4G). Using
131 tandem mass spectrometry, we determined the identities of the proteins in the bands from wild-
132 type and *als3Δ/Δ ssa1Δ/Δ* hyphae. As expected, both bands contained multiple proteins (Table
133 S1) so we focused on proteins that are known to be expressed on the fungal cell surface. Both
134 *Als3* and *Ssa1* were detected in the band containing proteins from the wild-type strain, but not
135 the *als3Δ/Δ ssa1Δ/Δ* mutant, thus validating the assay (Table 1). We also found *Als1* in the
136 bands from both *C. albicans* strains. Notably, multiple *Hyr1* peptides were identified in the bands
137 from both strains. This hyphal-specific protein has previously been found to inhibit *C. albicans*
138 killing by neutrophils and contribute to virulence in mouse models of both disseminated
139 candidiasis and OPC, but its host cell receptor was unknown (Dwivedi et al., 2011; Luo et al.,
140 2010).

141 Functional analysis supported the hypothesis that *Hyr1* is a c-Met ligand. An *hyr1Δ/Δ*
142 deletion mutant induced minimal phosphorylation of c-Met (Fig. 4H and I). This mutant also had
143 reduced capacity to stimulate the phosphorylation of EGFR as compared to the wild-type strain
144 (Fig. 4H and J). Although the *hyr1Δ/Δ* mutant had normal adherence, it was endocytosed poorly
145 by oral epithelial cells, (Fig. 4K and S4A). The phosphorylation and endocytosis defects of the
146 *hyr1Δ/Δ* mutant were restored by complementing the mutant with a wild-type copy of *HYR1*.
147 Collectively, these data indicate that *Hyr1* can activate both c-Met and EGFR to induce epithelial
148 cells to endocytose *C. albicans*.

149

150 **Hyr1-mediated invasion is dispensable for epithelial cell damage**

151 Both *Als3* and the candidalysin pore forming toxin are required for *C. albicans* to induce
152 maximal phosphorylation of EGFR in oral epithelial cells and to damage these cells (Ho et al.,
153 2019; Moyes et al., 2016; Swidergall et al., 2021; Zhu et al., 2012). We investigated whether
154 candidalysin is also required for *C. albicans* to induce phosphorylation of c-Met by testing an
155 *ece1Δ/Δ* mutant that does not make this toxin. Although the *ece1Δ/Δ* mutant induced minimal

156 phosphorylation of EGFR, it stimulated the phosphorylation of c-Met similarly to the wild-type
157 strain, indicating that candidalysin is dispensable for c-Met activation (Fig. S4B-D).

158 By mutant analysis, we investigated the functional relationship between Hyr1 and Als3 in
159 activating and damaging oral epithelial cells. Both the *als3Δ/Δ* single mutant and the *hyr1Δ/Δ*
160 *als3Δ/Δ* double mutant induced minimal phosphorylation of c-Met and EGFR, similarly to the
161 *hyr1Δ/Δ* single mutant (Fig. 5A-C). While both the *als3Δ/Δ* and *hyr1Δ/Δ* single mutants were
162 endocytosed poorly by the oral epithelial cells, the invasion defect of the *als3Δ/Δ* mutant was
163 greater than that of the *hyr1Δ/Δ* mutant (Fig. 5D). The *als3Δ/Δ* mutant was endocytosed so
164 poorly that deletion of *HYR1* in this mutant did not further decrease endocytosis. Similar results
165 were seen with the adherence of these strains (Fig. S4E). Thus, we were unable to determine if
166 Als3 and Hyr1 make additive contributions to epithelial cell invasion and adherence in vitro.

167 It has been postulated that Als3 is required for epithelial cell damage because it is
168 necessary for *C. albicans* to invade the host cell, leading to the formation of an invasion pocket
169 into which candidalysin can accumulate to a sufficiently high concentration to form pores in the
170 plasma membrane (Mogavero et al., 2021; Swidergall et al., 2021). Because Hyr1 is required for
171 normal epithelial cell invasion, we compared the capacity of the *hyr1Δ/Δ*, *als3Δ/Δ*, and *hyr1Δ/Δ*
172 *als3Δ/Δ* mutants to damage oral epithelial cells in vitro. Although the *als3Δ/Δ* single mutant and
173 the *hyr1Δ/Δ* *als3Δ/Δ* double mutant caused virtually no epithelial cell damage, the *hyr1Δ/Δ*
174 single mutant induced the same amount of damage as the wild-type strain (Fig. 5E). These
175 results suggest that invasion mediated by Hyr1 is dispensable for inducing epithelial cell
176 damage.

177 A possible explanation for these results is that although the *hyr1Δ/Δ* mutant is defective
178 in invading epithelial cells by induced endocytosis, it may still invade these cells via active
179 penetration. To test this possibility, we assessed the invasion of the *hyr1Δ/Δ* mutant into fixed
180 epithelial cells and found that it was similar to the wild-type strain (Fig. 5F and S4F). Thus, Hyr1
181 is required for induced endocytosis, but not active penetration. This result is in contrast to what

182 has been found for Als3, which is required for both induced endocytosis and active
183 penetration (Wachtler et al., 2012), and provides a likely explanation for why Hyr1 is
184 dispensable for induction of epithelial cell damage.

185

186 **C. albicans stimulates an inflammatory response in oral epithelial cells independently of**
187 **Hyr1**

188 Because invasion mediated by Als3 is required for *C. albicans* to stimulate a pro-inflammatory
189 response by oral epithelial cells (Swidergall et al., 2021), we tested the capacity of the *hyr1Δ/Δ*,
190 *als3Δ/Δ*, and *hyr1Δ/Δ als3Δ/Δ* mutants to induce the production of pro-inflammatory cytokines.
191 As expected, epithelial cells infected with the *als3Δ/Δ* mutant released significantly less IL-1 α ,
192 IL-1 β , IL-8, and GM-CSF than cells infected with the wild-type strain (Fig. 5G-J). However,
193 infection with the *hyr1Δ/Δ* mutant did not reduce cytokine production relative to infection with the
194 wild-type strain. Also, infection with the *hyr1Δ/Δ als3Δ/Δ* double mutant did not decrease
195 cytokine production any more than infection with the *als3Δ/Δ* single mutant. Collectively, these
196 data indicate that Hyr1 is dispensable for *C. albicans* to induce a proinflammatory response by
197 oral epithelial cells in vitro.

198

199 **Hyr1 reduces susceptibility to neutrophil killing independently of c-Met**

200 Previously, it was discovered that Hyr1 enables *C. albicans* to resist killing by neutrophils (Luo
201 et al., 2010). We verified this result with human neutrophils using *hyr1Δ/Δ* mutants constructed
202 in both the SC5314 and SN250 strain backgrounds (Fig. 6A and S5A). Deletion of *HYR1* also
203 rendered *C. albicans* more susceptible to killing by mouse neutrophils (Fig. 6B). Similar to the
204 *hyr1Δ/Δ* mutant, the *als3Δ/Δ* mutant had increased susceptibility to neutrophil killing and the
205 *hyr1Δ/Δ als3Δ/Δ* double mutant was not more susceptible to killing than either single mutant
206 (Fig. 6A). Thus, both Hyr1 and Als3 reduce the susceptibility of *C. albicans* to neutrophil killing,
207 likely by functioning in the same pathway.

208 To determine if Hyr1 influences susceptibility to neutrophil killing by interacting with c-
209 Met, we tested neutrophils from *Mrp8;Met^{f/f}* mice, which have a neutrophil-specific deletion in c-
210 Met (Finisguerra et al., 2015). Although the c-Met deficient neutrophils had reduced capacity to
211 kill *C. albicans*, the *hyr1Δ/Δ* mutant was still more susceptible to killing by these neutrophils than
212 the wild-type strain (Fig. 6B). These results suggest that although c-Met is required for maximal
213 neutrophil fungicidal activity, Hyr1 reduces susceptibility to neutrophil killing by a mechanism
214 that is independent of this receptor.

215

216 **Hyr1 and Als3 are required for maximal virulence during OPC**

217 To verify our in vitro data, we investigated the role of c-Met and Hyr1 in the pathogenesis of
218 OPC in mice. We orally infected immunocompetent mice with the wild-type strain and the
219 various mutants and then analyzed the phosphorylation of c-Met and EGFR in thin sections of
220 the tongue by indirect immunofluorescence using phosphospecific antibodies. We found that
221 there was low c-Met phosphorylation in the oral epithelium of uninfected mice and that this
222 phosphorylation increased after infection with wild-type *C. albicans* (Fig. S6A). The
223 phosphorylation of c-Met was reduced in mice infected with either the *als3Δ/Δ* or *hyr1Δ/Δ* single
224 mutants and was almost undetectable in mice infected with the *hyr1Δ/Δ als3Δ/Δ* double mutant.
225 Similar results were obtained when the tongue sections were stained with a phosphospecific
226 anti-EGFR antibody (Fig. S6B). Thus, Als3 and Hyr1 are required to activate both c-Met and
227 EGFR during OPC in mice.

228 Next, we tested the virulence of the various mutants in immunocompetent mice using
229 oral fungal burden as the endpoint. After 1 d of infection, the oral fungal burden of mice infected
230 with either the *als3Δ/Δ* or *hyr1Δ/Δ* mutants was similar to that of mice infected with the wild-type
231 strain, whereas mice infected with the *hyr1Δ/Δ als3Δ/Δ* double mutant had a significantly lower
232 fungal burden (Fig. 6C). After 2 d of infection, the oral fungal burden of mice infected with all

233 three mutants was lower than the mice infected with the wild-type strain (Fig. 6D). Collectively,
234 these results indicated that both Hyr1 and Als3 mediate virulence during OPC.

235 To determine whether the virulence defect of the *hyr1Δ/Δ als3Δ/Δ* double mutant was
236 due to reduced epithelial cell invasion or increased susceptibility to neutrophil killing, we tested
237 the virulence of this mutant in mice in which neutrophils and monocytes were depleted with an
238 anti-GR-1 antibody. At day 1 post-infection, the oral fungal burden of mice infected with the
239 *hyr1Δ/Δ als3Δ/Δ* double mutant was similar to mice infected with the wild-type strain (Fig. 6E).
240 These results indicate that in phagocyte-replete mice, the reduced virulence of the double
241 mutant at this time point is due mainly to its increased susceptibility to phagocyte killing. At day
242 2 post-infection, the oral fungal burden of the phagocyte-depleted mice infected with the
243 *hyr1Δ/Δ als3Δ/Δ* double mutant was significantly lower than that of mice infected with the wild-
244 type strain (Fig. 6F). Thus, the attenuated virulence of the *hyr1Δ/Δ als3Δ/Δ* double mutant at
245 this later time point is due to a phagocyte-independent mechanisms, probably reduced epithelial
246 cell invasion.

247 To examine the therapeutic potential of inhibiting EGFR and c-Met, we tested the effects
248 of gefitinib and/or SGX523 in mice that had been treated with cortisone acetate to mimic the
249 immunosuppression that is typically seen in patients with OPC. We found that the oral fungal
250 burden of mice treated with either gefitinib or SGX523 was similar to that of the untreated
251 control mice, whereas the oral fungal burden of mice treated with both gefitinib and SGX523
252 was significantly lower (Fig. 6G). These results were confirmed by histopathology (Fig. 6H).
253 Large fungal lesions were observed in the tongues of the control mice and those that received
254 gefitinib or SGX523 alone, but only small lesions containing few fungal cells were visible in the
255 mice that received combination therapy. Thus, dual inhibition of EGFR and c-Met ameliorates
256 OPC.

257

258

259 **Discussion**

260 The data presented here indicate that *C. albicans* interacts with c-Met on oral epithelial cells and
261 that this interaction is required for the normal endocytosis of the fungus. This conclusion is
262 supported by our findings that infection with *C. albicans* hyphae induced c-Met
263 autophosphorylation and that inhibition of c-Met by either siRNA or the c-Met specific kinase
264 inhibitor SGX523 significantly reduced the endocytosis of *C. albicans*. c-Met is also known to
265 function as a receptor for *L. monocytogenes* internalin B (InlB) and mediates the endocytosis of
266 this organism (Shen et al., 2000). *Helicobacter pylori* activates c-Met by injecting cytotoxin-
267 associated gene A (CagA) into gastric epithelial cells via the type IV secretion system. CagA
268 binds to and activates c-Met, stimulating epithelial cell motility and invasiveness, processes that
269 are precursors to carcinogenesis (Churin et al., 2003). Thus, three different epithelial cell
270 pathogens have evolved independent strategies that target c-Met.

271 A key finding was that the combination of SGX523 and gefitinib inhibited the endocytosis
272 of *C. albicans* more than either inhibitor alone, indicating that c-Met and EGFR/HER2 have
273 additive effects on the endocytosis of *C. albicans*. An additive or synergistic interaction between
274 c-Met and EGFR has been found in multiple types of cancer cells, including breast cancer,
275 hepatomas, and glioblastomas (Jo et al., 2000; Mueller et al., 2010; Velpula et al., 2012). In
276 most of these cancer cells, the activation of c-Met requires EGFR and vice versa. By contrast,
277 we found that inhibition of c-Met with SGX523 did not block *C. albicans*-induced phosphorylation
278 of EGFR, and that inhibition of EGFR with gefitinib did not reduce phosphorylation of c-Met.
279 These results suggest that in response to *C. albicans* infection, each of these receptors is
280 activated independently of the other.

281 The current data indicate that E-cadherin is a central component of both the c-Met and
282 EGFR endocytosis pathways. The proximity ligation and co-immunoprecipitation data showed
283 that *C. albicans* infection cause c-Met and EGFR to form a complex with E-cadherin.
284 Importantly, siRNA knockdown of E-cadherin inhibited *C. albicans*-induced autophosphorylation

285 of both receptors and inhibited the endocytosis of *C. albicans* similarly to inhibition of c-Met and
286 EGFR. While both c-Met and EGFR are known to form complexes with E-cadherin in cancer
287 cells, the formation of such complexes is usually associated with inhibition of c-Met or EGFR
288 phosphorylation (Hiscox and Jiang, 1999; Mateus et al., 2007; Qian et al., 2004). For example,
289 in gastric cancer cells, *H. pylori* CagA activates c-Met and causes it to form a complex with E-
290 cadherin, which inhibits c-Met phosphorylation (Oliveira et al., 2009). By contrast, in the non-
291 tumorigenic HaKat keratinocyte cell line, assembly of E-cadherin-containing adherens junctions
292 activates EGFR in a ligand-independent manner (Pece and Gutkind, 2000). We speculate that
293 the interactions of *C. albicans* with E-cadherin may activate both c-Met and EGFR by a similar
294 process.

295 Previously, we identified two *C. albicans* invasins, Als3 and Ssa1 that mediate invasion
296 of oral epithelial cells by interacting with E-cadherin and EGFR (Phan et al., 2007; Sun et al.,
297 2010; Zhu et al., 2012). In the current work, we discovered that Hyr1 also functions as an
298 invasin that is required for *C. albicans* to activate both EGFR and c-Met in vitro and in the
299 mouse model of OPC. Although Hyr1 and Als3 interacted with the same epithelial cell receptors,
300 deletion of *HYR1* and *ALS3* had different effects on the interactions of *C. albicans* with epithelial
301 cells. The *hyr1Δ/Δ* mutant stimulated less epithelial cell endocytosis but induced wild-type levels
302 of damage and cytokine release. By contrast, the *als3Δ/Δ* mutant induced very little
303 endocytosis, damage, or cytokine release. One potential explanation for these results is that
304 although the *hyr1Δ/Δ* mutant has reduced receptor mediated endocytosis, it can still invade
305 epithelial cells by active penetration, whereas the *als3Δ/Δ* mutant is defective in both modes of
306 epithelial cell invasion. In contrast to the *als3Δ/Δ* mutant, it is likely that the *hyr1Δ/Δ* mutant can
307 still form an invasion pocket via active penetration into which candidalysin can accumulate to
308 sufficient levels to stimulate and damage oral epithelial cells.

309 Hyr1 has been found to contribute to virulence by enabling *C. albicans* to resist being
310 killed by neutrophils (Luo et al., 2010). Our data support this finding and also suggest that Als3

311 induces resistance to neutrophil killing by functioning in the same pathway as Hyr1. Previously,
312 we found that *C. glabrata* cells that were engineered to express *C. albicans* Als3 had enhanced
313 resistance to neutrophil killing, thus supporting this novel function of Als3 (Fu et al., 2013). How
314 Hyr1 and Als3 mediate resistance to killing is currently unknown. Although our data with c-Met
315 deficient neutrophils indicate that c-Met is required for maximal killing of *C. albicans*, they also
316 show that Hyr1 mediates resistance to neutrophil killing independently of c-Met. We speculate
317 that Hyr1 and Als3 may interact with receptors other than c-Met on the surface of neutrophils to
318 down-regulate their fungicidal activities.

319 The results of the current studies indicate that Hyr1 is required for maximal virulence in
320 during OPC in immunocompetent mice. It has previously been found that Hyr1 also required for
321 maximal virulence in an immunosuppressed mouse model of OPC (Dwivedi et al., 2011). As
322 predicted by our in vitro results, we found that Hyr1 and Als3 mediate virulence during OPC in
323 mice by functioning in the same pathway. The results with phagocyte-depleted mice also
324 suggest that after 1 day of infection, Hyr1 and Als3 contribute to virulence by reducing
325 susceptibility to phagocyte killing, whereas after 2 days of infection, these surface proteins
326 contribute to virulence by a process that is independent of phagocytes, likely by enhancing
327 epithelial cell invasion. We also found that in immunosuppressed mice, the combined inhibition
328 of EGFR and c-Met ameliorated the severity of OPC, suggesting that strategies to block these
329 host cell receptors hold promise to prevent or treat this infection.

330 In summary, this work identifies c-Met as a novel oral epithelial cell receptor that forms a
331 complex with EGFR and E-cadherin to mediate the endocytosis of *C. albicans*. In addition to
332 interacting with Als3, this complex interacts with Hyr1 and induces epithelial cell endocytosis,
333 thus demonstrating that Hyr1 functions as an invasin. Previous studies by our group indicate
334 that Hyr1 is a promising vaccine target for prevention of both *C. albicans* and *Acinetobacter*
335 *baumanii* infections (Luo et al., 2011; Singh et al., 2022; Uppuluri et al., 2018). The current data

336 suggest that the host cell targets of Hyr1, EGFR and c-Met are also potential therapeutic
337 targets.

338

339 **Materials and Methods**

340 **Ethics statement.** All animal work was approved by the Institutional Animal Care and Use
341 Committee at the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center.
342 Blood was drawn from normal volunteers after informed consent as approved by the IRB of the
343 Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center.

344

345 **Host cells.** The OKF6/TERT-2 oral epithelial cell line was provided by J. Rheinwald (Dana-
346 Farber/ Harvard Cancer Center, Boston, MA) (Dickson et al., 2000), and cultured as described
347 previously (Zhu et al., 2012). The NIH/3T3 cell line expressing human EGFR and HER2
348 (Gaborit et al., 2011) was provided by Nadege Gaborit (Institut de Recherche en Cancérologie
349 de Montpellier, France) and grown as described (Zhu et al., 2012).

350

351 **Fungal cells.** The various *C. albicans* strains (Table S2) were grown in YPD broth at 30°C in a
352 shaking incubator for 18 h, after which the cells were pelleted by centrifugation and washed
353 twice in PBS. Yeast cells were suspended in PBS and counted with a hemacytometer. Germ
354 tubes were produced by adding the yeast to RPMI 1640 broth at a final concentration of 2x10⁶
355 organisms per ml and incubating them for 90 min at 37°C. The resulting germ tubes were
356 removed from the petri dish with a cell scraper, resuspended in PBS, sonicated briefly, and then
357 enumerated with a hemacytometer.

358

359 **Mice.** C57Bl/6 mice were purchased from Jackson Laboratories. Mrp8;Met^{f/f} mice were a
360 generous gift from Massimiliano Mazzone (Finisguerra et al., 2015) and bred at the Lundquist
361 Institute. Before the experiments, the wild-type and Mrp8;Met^{f/f} mice were co-housed for 2

362 weeks, and then used at age 10-12 weeks. Both male and female mice were used in the
363 experiments.

364

365 **Strain construction.** Strains MC355, MC374, and MC502 were generated from strain SC5314
366 utilizing the transient CRISPR-Cas9 system (Min et al., 2016) with recyclable markers (Huang
367 and Mitchell, 2017). In brief, the SC5314 wild-type strain was made to be auxotrophic for
368 histidine production via homozygous deletion of *HIS1* via integration of the recyclable
369 nourseothricin resistance marker, *NAT1* (Huang et al., 2019). The *his1Δ::r3NAT1r3* strain was
370 again transformed in this study to delete the *HYR1* coding sequence using sgRNAs targeting
371 *HYR1* and the recyclable *NAT1* marker in addition to a recyclable *Candida dubliniensis* (C.d.)
372 *HIS1* marker flanked with 80-300bp homology to the 5` and 3` *HYR1* regions. The resulting
373 strain (MC355) with genotype *hyr1Δ::r1C.d.HIS1r1, his1Δ::r3* was transformed again to
374 ectopically complement *HYR1* by homozygous integration of a WT copy of the *HYR1* coding
375 region at the *MDR1* locus. PCR-amplified *HYR1* with 1553bp 5` and 661bp 3` flanking
376 sequence concatenated with a selectable *NAT1* marker were inserted at the *MDR1* locus (Do et
377 al., 2022; Huang et al., 2018). The resulting complemented strain (MC502) had the genotype:
378 *hyr1Δ::r1C.d.HIS1r1, his1Δ::r3, mdr1Δ::NAT1-HYR1*. MC355 was then used to additionally
379 delete *ALS3* by a recyclable *NAT1* marker flanked by 80-300bp homology to the *ALS3* up and
380 downstream regions and a sgRNA targeting the *ALS3* coding sequence. The resulting strain
381 (MC374) had the genotype: *hyr1Δ::r1C.d.HIS1r1, his1Δ::r3, als3Δ::r3NAT1r3*. Transformations
382 using the *NAT1* or *HIS1* markers were plated on either YPD + nourseothricin or complete
383 synthetic medium (CSM) lacking histidine respectively. All strain genotypes were verified by
384 PCR amplification of the desired marker from the target locus. The PCR primers are listed in
385 Table S3.

386

387 **Inhibitors and stimuli.** Gefitinib (#S1025, Selleck Chem) was dissolved in DMSO at
388 concentration of 100 mM, and diluted further to 1 μ M in KSF medium (#17005042, Thermo
389 Fisher Scientific) without supplements for final use. SGX-523 (#S1112, Selleck Chem) was
390 dissolved in DMSO and diluted to 200 nM in KSF medium without supplements for final use.
391 DMSO was used as control and diluted in the same manner. The anti-EGFR antibody (Erbtitux,
392 Bristol-Myers Squibb) was diluted to 10 μ g/ml in KSF medium without supplements for use.
393 EGF (#10450-013, Thermo Fisher Scientific) was diluted in PBS containing 0.1% BSA at a
394 concentration of 2 μ g/ml, and diluted to a final concentration of 20 or 40 ng/ml in KSF medium
395 without supplements.

396

397 **Immunofluorescence.** The immunofluorescence studies and proximity ligation assays were
398 performed using minor modifications of our previously described methods (Phan et al., 2013;
399 Phan et al., 2021). OKF6/TERT cells were seeded onto fibronectin coated circular glass
400 coverslips in 24-well tissue culture plates and incubated at 37⁰C in 5% CO₂ overnight. The cells
401 were infected with 3 x 10⁵ *C. albicans* germ tubes in KSF medium without supplements for 20
402 min. After aspirating the medium, the cells were fixed with 4% paraformaldehyde, rinsed with
403 PBS, and permeabilized with 0.1% Triton X-100 (Sigma-Aldrich) in PBS. The cells were blocked
404 with 5% goat serum in PBS, and then stained with mouse anti-c-Met (#370100, Invitrogen),
405 rabbit anti-EGFR (#GTX121919, Genetex), or anti-E-cadherin antibodies (#GTX100443,
406 Genetex). Control slides were stained with rabbit IgG antibodies (#02-6102, Life Technologies)
407 and mouse IgG antibodies (#MAB002, R&D systems) followed by the appropriate fluorescent
408 labeled secondary antibodies. *Candida albicans* were stained with anti *candida* Alexa Fluor 488.
409 The coverslips were mounted inverted using antifade mounting medium and imaged by confocal
410 microscopy. Multiple images were obtained along the z-axis and stacked using LAS X software
411 (Leica Microsystems).

412 For the proximity ligation assay, the cells were processed similarly except that they were
413 infected with germ tubes of a GFP-expressing strain of *C. albicans* for 20 min. The following
414 pairs of primary antibodies were used: mouse anti-c-Met (#370100, Invitrogen) and rabbit anti-
415 E-cadherin antibodies (#GTX100443, Genetex), mouse anti-EGFR (#SC-101, Santa Cruz
416 Biotechnology) and rabbit anti-E-cadherin (#GTX100443, Santa Cruz Biotechnology), mouse
417 anti-c-Met and rabbit anti-EGFR (#GTX121919, Genetex). The control slides were incubated
418 with anti rabbit IgG (#02-6102, Life Technologies), and anti mouse IgG (#MAB002, R&D
419 systems). The interactions between the two labeled proteins were detected using the Duolink in
420 Situ Red Starter Kit Mouse/Rabbit (#DUO92101-1kit, Sigma-Aldrich) according to the
421 manufacturer's instructions.

422

423 **Protein phosphorylation.** The capacity of the various *C. albicans* strains to induce
424 phosphorylation of EGFR and c-Met in the presence and absence of inhibitors was determined
425 as described previously (Swidergall et al., 2018). Briefly OKF6/TERT cells were seeded onto 24
426 well plates and incubated overnight in KSF medium without supplements. The next morning, the
427 medium was aspirated and replaced with either fresh medium alone or containing gefitinib
428 and/or SGX-523. When inhibitors were used, control cells were incubated with KSF medium
429 containing a similar volume of the DMSO diluent. After 1 h, the cells were infected with 1×10^6 *C.*
430 *albicans* germ tubes in the presence of the inhibitors and incubated for 20 min. Next, the
431 medium was aspirated and the epithelial cells were lysed with 2X SDS loading buffer (#BP-
432 111R, Boston Bioproducts, Inc.) containing phosphatase/protease inhibitors (# A32959, Thermo
433 Fisher Scientific), and PMSF (#P7626, Sigma-Aldrich). After denaturing the samples at 90°C for
434 2 minutes, the lysates were clarified by centrifugation. The proteins were separated by SDS-
435 PAGE and transferred to PVDF membranes. The phosphorylated proteins were detected by
436 probing the membranes with an anti-phospho-c-Met antibody (Tyr1234/1235, #3077, Cell
437 Signaling Technology) or an anti-phospho-EGFR antibody (Tyr1068, #2234, Cell Signaling

438 Technology). Next the blots were stripped and total c-Met was detected with an anti-met
439 antibody (# 8198, Cell Signaling Technology) and total EGFR was detected with an anti-EGFR
440 antibody (#4267, Cell Signaling Technology). The blots were developed using enhanced
441 chemiluminescence, imaged with a digital imager, and quantified using Image Studio Lite
442 software. Each experiment was repeated at least four times.

443

444 **siRNA.** As previously described (Phan et al., 2021), OKF6/TERT2 cells were grown in 6 well
445 plates to 80% confluence and transfected with 40 pmole of c-Met siRNA (#SC-29397, Santa
446 Cruz Biotechnology) or E-cadherin siRNA (#SC-35242, Santa Cruz Biotechnology) using
447 Lipofectamine 2000 (#11668027, ThermoFisher Scientific) following the manufacturer's
448 instructions. After 24 h, the cells were trypsinized, seeded onto fibronectin coated glass
449 coverslips, and incubated for another 24 h before use. The extent of protein knockdown was
450 determined by immunoblotting with an anti-c-Met antibody (#8198, Cell Signaling Technology),
451 anti-E-cadherin antibody (#3195, Cell Signaling Technology), anti-EGFR antibody (#4267, Cell
452 Signaling technology), and anti- β -actin antibody (#A5441, Sigma-Aldrich).

453

454 **Adherence and endocytosis assay.** The number of fungal cells that were endocytosed by and
455 cell-associated with the host cells was determined using our differential fluorescence assay as
456 described (Phan et al., 2007). For OKF6/TERT2 cells, the inoculum was 1×10^5 *C. albicans* germ
457 tubes and the incubation period was 1 h. For NIH/3T3 cells, the inoculum was 1×10^5 *C. albicans*
458 yeast and the incubation period was 1.5 h. To measure active penetration, the OKF6/TERT2
459 cells were fixed with 4% paraformaldehyde for 15 min, rinsed extensively with HBSS and then
460 infected with 1×10^5 *C. albicans* germ tubes for 2.5 h. In all experiments, at least 100
461 organisms were scored per coverslip. The experiments were repeated three times in triplicate.

462

463 **Lentivirus production and transduction.** NIH/3T3 cells were engineered to express human c-
464 Met by lentivirus transduction. To construct the pLenti-EF1A-EGFP-Blast and pLenti-EF1A-
465 hcMet-BLAST transfer vectors, GFP or human c-MET cDNA were PCR amplified from plasmid
466 pLenti-MetGFP (Addgene #37560) and seamlessly cloned into the BamHI/XbaI sites of vector
467 pLenti-spCas9-Blast (Addgene #52962). The lentiviruses were packaged by transfecting
468 HEK293T cells with plasmids psPAX2 (#12260, Addgene), pCMV-VSVG (#8454, Addgene),
469 and each transfer vector using the X-tremeGENE 9 DNA transfection reagent (#6365787001,
470 Sigma-Aldrich) according to the manufacturer's instructions. The viruses were collected 60 h
471 after transfection. NIH/3T3 cells were transduced with each lentivirus in the presence of
472 polybrene (#SC134220, Santa Cruz Biotechnology) and the transduced cells were selected by
473 adding blasticidin (#A1113903, Gibco-BRL) to the medium 2 d later. To verify that the
474 transduced cells expressed human c-Met, immunoblots of cell lysates were probed with
475 antibodies against c-Met (#8198, Cell Signaling Technology) and GAPDH (#5174, Cell Signaling
476 Technology).

477

478 **Immunoprecipitation.** The immunoprecipitation experiments were performed using a minor
479 modification our previously described method (Phan et al., 2021). Briefly, oral epithelial cells
480 were infected with *C. albicans* germ tubes for 20 min and then lysed with n-octyl- β -
481 glucopyranoside (#97061-760, Sigma-Aldrich). After preclearing the cell lysates with protein A/G
482 beads (#SC 2003, Santa Cruz Biotechnolgy), the lysates were incubated with an anti-EGFR
483 (SC-101, Santa Cruz Biotechnology) or anti-c-Met (#370100, Invitrogen) antibodies for 1 h at
484 4°C, and precipitated with protein A/G beads for 2 h at 4°C. The beads were collected by
485 centrifugation and washed 3 times with 1.5% octyl- β -glucopyranoside in the present of
486 proteinase inhibitors. The proteins were eluted with 2X SDS PAGE loading buffer, denatured at
487 90°C for 2 min, and then separated by SDS PAGE. Specific epithelial cell proteins were
488 detected by immunoblotting with anti-c-Met (#370100, Invitrogen), anti-EGFR (#2234, Cell

489 Signaling technologies), and anti-E-cadherin (#3195, Cell Signaling Technologies). All
490 experiments were repeated at least 4 times.

491

492 **Far western blotting.** Protoplasts of yeast-phase and germinated *C. albicans* strains were
493 prepared by suspending the organisms in pretreatment buffer containing 10mM tris-HCl, pH9.0,
494 5mM EDTA, and 1% β -mercaptoethanol to a density of 1-2 $\times 10^8$ cells/ml and incubating them at
495 28°C for 30 min with gentle shaking. The cells were collected by centrifugation, washed with 1M
496 sorbitol and then resuspended in 1M sorbitol containing 30 μ l glusulase per ml (# EE154001EA,
497 Perkin Elmer) to a density of 5 $\times 10^8$ cells/ml. The cells were incubated at 28°C with gentle
498 shaking for approximately 1 h until 90% of cells had converted to protoplasts. After harvesting
499 the protoplasts by centrifugation, they were washed 3 times with 1M sorbitol and resuspended
500 in RPMI 1640 broth containing protease inhibitor cocktail (Sigma-Aldrich) to final concentration
501 of 3 $\times 10^8$ cells/ml. The protoplasts were allowed to regenerate by incubation at 37°C with gentle
502 shaking for 90 minutes, after which the cells were pelleted by centrifugation and the
503 supernatants were collected. The concentration of the proteins in the supernatants was
504 measured using the Bradford assay. For far Western blotting, 15 μ g of protein separated by
505 non-denaturing SDS-PAGE and transferred to a PVDF membrane. After blocking with 5%
506 milk/TBST for 1 hr, the membrane was incubated with recombinant c-Met (# MET-H5227,
507 ACROBiosystems) followed by an anti human c-Met antibody (# AF276, R&D systems). The
508 bands were visualized by enhanced chemiluminescence. In parallel 10 μ g of protein was
509 separated by non-denaturing SDS-PAGE and the gel was stained with coomassie blue. The
510 bands of interest were excised and the proteins in them were sequenced by mass spectrometry.

511

512 **Epithelial cell damage.** The extent of damage to the oral epithelial cells caused by different *C.*
513 *albicans* strains was measured by a ^{51}Cr release assay in 96-well plates as described previously

514 (Phan et al., 2007; Swidergall et al., 2021). The inoculum was 2.5×10^5 cells per well and the
515 incubated period was 8 h. Each experiment was repeated three times in triplicate.

516

517 **Cytokine assay.** Oral epithelial cells in 24 well tissue culture plates were incubated overnight
518 in KSF medium without supplements. The next morning, the cells were infected with 1.5×10^6 *C.*
519 *albicans* yeast in the same medium. After 8 h, the medium above the cells was collected,
520 centrifuged to remove cell debris, and stored at -80°C . The concentration of IL-1 α , IL-1 β , IL-8,
521 and GM-CSF in the samples was measured using the Luminex Multiplex panel (# LXSAHM-04,
522 R&D systems) according to the manufacturer's instructions. The experiments were repeated
523 three times in triplicate.

524

525 **Neutrophil killing assay.** To test the susceptibility of *C. albicans* strains to killing by human
526 neutrophils, blood was collected from healthy volunteers by venipuncture and mixed with
527 K₃EDTA (#E-0270, Sigma-Aldrich). The donors were two females and one male. The
528 neutrophils were isolated using Lympholyte-Poly Cell Separation Media (#CL5070, Cedarlane)
529 following the manufacturer's instructions. They were washed once with HBSS without Ca⁺/Mg⁺
530 (#21-022-CV, Corning), suspended in RPMI 1640 medium with L-glutamine (#9161, Irvine
531 Scientific) containing 10% pooled human serum (#100-110, Gemini Bioproducts, Inc.) and
532 enumerated using a hemacytometer. For the killing assay, the neutrophils were incubated with
533 *C. albicans* yeast at the ratio of 1:1 in polypropylene tubes at 37°C . As a control, an equal
534 number *C. albicans* cells was incubated without neutrophils in parallel. After 3 h, the neutrophils
535 were lysed by adding sterile water to the tube, followed by sonication. The number of viable
536 organisms was determined by quantitative culture.

537 The susceptibility of the *C. albicans* strains to killing by mouse neutrophils was
538 determined similarly. Neutrophils were purified from bone marrow cells using negative magnetic
539 bead selection (MojoSort, BioLegend) as we have done before (Swidergall et al., 2019). In brief,

540 bone marrow cells from a male and a female mouse were flushed from femurs and tibias using
541 sterile RPMI 1640 medium supplemented with 10% FBS and 2 mM EDTA. After washing the
542 cells with 1X MojoSort buffer (1X PBS, 0.5% BSA, 2mM EDTA), the neutrophils were isolated
543 according to the manufacturer's instructions. These neutrophils had > 95% purity and > 90%
544 viability as determined by flow cytometry. For the killing assay, the mouse neutrophils were
545 incubated with *C. albicans* yeast at the ratio of 1:20 in RPMI 1640 medium containing 2% heat-
546 inactivated mouse serum (#S3509, Sigma-Aldrich) at 37°C for 3 h.

547

548 **Virulence studies.** The virulence of the various *C. albicans* strains and the effects of gefitinib
549 and SGX523 were determined using our standard mouse model of oropharyngeal
550 candidiasis(Solis and Filler, 2012; Swidergall et al., 2021; Zhu et al., 2012). All studies were
551 performed using male Balb/c mice that were randomly assigned to the different experimental
552 groups. For studies with immunocompetent or phagocyte-depleted mice, the animals were
553 inoculated with calcium alginate swabs that had been soaked in HBSS containing 2×10^7
554 organisms/ml and for experiments with mice that had been immunosuppressed with cortisone
555 acetate, the animals were inoculated with calcium alginate swabs that had been soaked in
556 HBSS containing 1×10^6 organisms/ml. These mice were administered gefitinib and/or SGX523
557 by adding it to powdered mouse chow at final concentrations of 200 ppm and 120 ppm,
558 respectively, starting at day -1 relative to infection. To deplete the mice of phagocytes, they
559 were administered 80 µg of an anti-GR-1 antibody (#BE0075; clone RB6-8C5, Bio X Cell)
560 intraperitoneally on day -1 relative to infection. Control mice were injected with a similar dose of
561 an isotype control antibody (#BE0090, Clone LTF-2, Bio X Cell). The mice were sacrificed after
562 1, 2 or 5 days of infection, depending on the experiment, after which the tongues were excised,
563 weighed, and quantitatively cultured.

564

565 **Immunohistochemistry.** To assess the phosphorylation of c-Met and EGFR in vivo,
566 immunocompetent mice were infected with the various *C. albicans* strains as described above.
567 After 1-d of infection, the mice were sacrificed, and the tongues were excised, snap frozen, and
568 embedded into OTC. Thin sections were prepared and transferred to glass slides. The samples
569 were air dried, fixed in 100% methanol, rinsed, and then blocked with 5% goat serum in PBS.
570 The slides were incubated with a rabbit anti-phospho-c-MET antibody (Tyr1003, #MBS9600900,
571 My Biosource Inc.) or control rabbit IgG (#026102, Invitrogen) followed an Alexa Fluor 568-
572 conjugated goat anti-rabbit antibody. The *C. albicans* cells were labeled with an anti-*Candida*
573 antibody conjugated with Alexa Fluor 488 and the nuclei were labeled with DAPI.
574 Phosphorylated EGFR was detected similarly, except that the slides were incubated with an
575 anti-rabbit phosho-EGFR conjugated with phycoerythrin (Tyr1068, #14565, Cell Signaling
576 Technologies) and control slides were stained with rabbit IgG conjugated with phycoerthrin
577 (#5742, Cell Signaling Technologies). The slides were imaged by confocal microscopy, and z-
578 stacks were combined using LAS X software.

579

580 **Acknowledgements**

581 We thank Adam Diab for his assistance with tissue culture. This work was supported in part by
582 grant R01DE026600 to SGF and APM from the National Institutes of Health, USA.

References

Berberi, A., Noujeim, Z., and Aoun, G. (2015). Epidemiology of oropharyngeal candidiasis in human immunodeficiency virus/acquired immune deficiency syndrome patients and CD4+ counts. *J Int Oral Health* 7, 20-23.

Cawson, R.A., and Rajasingham, K.C. (1972). Ultrastructural features of the invasive phase of *Candida albicans*. *Br J Dermatol* 87, 435-443.

Churin, Y., Al-Ghoul, L., Kepp, O., Meyer, T.F., Birchmeier, W., and Naumann, M. (2003). *Helicobacter pylori* CagA protein targets the c-Met receptor and enhances the motogenic response. *J Cell Biol* 161, 249-255.

Dalle, F., Wachtler, B., Coralie, L., Holland, G., Bannert, N., Wilson, D., Labruere, C., Bonnin, A., and Hube, B. (2010). Cellular interactions of *Candida albicans* with human oral epithelial cells and enterocytes. *Cell Microbiol* 12, 248-271.

Dickson, M.A., Hahn, W.C., Ino, Y., Ronfard, V., Wu, J.Y., Weinberg, R.A., Louis, D.N., Li, F.P., and Rheinwald, J.G. (2000). Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. *Mol Cell Biol* 20, 1436-1447.

Do, E., Cravener, M.V., Huang, M.Y., May, G., McManus, C.J., and Mitchell, A.P. (2022). Collaboration between antagonistic cell type regulators governs natural variation in the *Candida albicans* biofilm and hyphal gene expression network. *MBio* 13, e0193722.

Dos Santos Abrantes, P.M., McArthur, C.P., and Africa, C.W. (2014). Multi-drug resistant oral *Candida* species isolated from HIV-positive patients in South Africa and Cameroon. *Diagn Microbiol Infect Dis* 79, 222-227.

Dwivedi, P., Thompson, A., Xie, Z., Kashleva, H., Ganguly, S., Mitchell, A.P., and Dongari-Bagtzoglou, A. (2011). Role of Bcr1-activated genes Hwp1 and Hyr1 in *Candida albicans* oral mucosal biofilms and neutrophil evasion. *PLoS ONE* 6, e16218.

Finisguerra, V., Di Conza, G., Di Matteo, M., Serneels, J., Costa, S., Thompson, A.A., Wauters, E., Walmsley, S., Prenen, H., Granot, Z., et al. (2015). MET is required for the recruitment of anti-tumoural neutrophils. *Nature* 522, 349-353.

Fu, Y., Phan, Q.T., Luo, G., Solis, N.V., Liu, Y., Cormack, B.P., Edwards, J.E., Jr., Ibrahim, A.S., and Filler, S.G. (2013). Investigation of the function of *Candida albicans* Als3 by heterologous expression in *Candida glabrata*. *Infect Immun* 81, 2528-2535.

Gaborit, N., Larbouret, C., Vallaghe, J., Peyrusson, F., Bascoul-Mollevi, C., Crapez, E., Azria, D., Chardes, T., Poul, M.A., Mathis, G., et al. (2011). Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies. *J Biol Chem* 286, 11337-11345.

Guilbert, T.W., Colice, G., Grigg, J., van Aalderen, W., Martin, R.J., Israel, E., Postma, D.S., Roche, N., Phipatanakul, W., Hillyer, E.V., et al. (2017). Real-life outcomes for patients with asthma prescribed spacers for use with either extrafine- or fine-particle inhaled corticosteroids. *J Allergy Clin Immunol Pract* 5, 1040-1049.

Hiscox, S., and Jiang, W.G. (1999). Association of the HGF/SF receptor, c-met, with the cell-surface adhesion molecule, E-cadherin, and catenins in human tumor cells. *Biochem Biophys Res Commun* 261, 406-411.

Ho, J., Yang, X., Nikou, S.A., Kichik, N., Donkin, A., Ponde, N.O., Richardson, J.P., Gratacap, R.L., Archambault, L.S., Zwirner, C.P., *et al.* (2019). Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. *Nat Commun* 10, 2297.

Huang, M.Y., and Mitchell, A.P. (2017). Marker Recycling in *Candida albicans* through CRISPR-Cas9-Induced Marker Excision. *MSphere* 2.

Huang, M.Y., Woolford, C.A., May, G., McManus, C.J., and Mitchell, A.P. (2019). Circuit diversification in a biofilm regulatory network. *PLoS Pathog* 15, e1007787.

Huang, M.Y., Woolford, C.A., and Mitchell, A.P. (2018). Rapid gene concatenation for genetic rescue of multigene mutants in *Candida albicans*. *MSphere* 3.

Jo, M., Stoltz, D.B., Esplen, J.E., Dorko, K., Michalopoulos, G.K., and Strom, S.C. (2000). Cross-talk between epidermal growth factor receptor and c-Met signal pathways in transformed cells. *J Biol Chem* 275, 8806-8811.

Liu, Y., Shetty, A.C., Schwartz, J.A., Bradford, L.L., Xu, W., Phan, Q.T., Kumari, P., Mahurkar, A., Mitchell, A.P., Ravel, J., *et al.* (2015). New signaling pathways govern the host response to *C. albicans* infection in various niches. *Genome Res* 25, 679-689.

Luo, G., Ibrahim, A.S., French, S.W., Edwards, J.E., Jr., and Fu, Y. (2011). Active and passive immunization with rHyr1p-N protects mice against hematogenously disseminated candidiasis. *PLoS ONE* 6, 10.

Luo, G., Ibrahim, A.S., Spellberg, B., Nobile, C.J., Mitchell, A.P., and Fu, Y. (2010). *Candida albicans* Hyr1p confers resistance to neutrophil killing and is a potential vaccine target. *J Infect Dis* 201, 1718-1728.

Mateus, A.R., Seruca, R., Machado, J.C., Keller, G., Oliveira, M.J., Suriano, G., and Luber, B. (2007). EGFR regulates RhoA-GTP dependent cell motility in E-cadherin mutant cells. *Hum Mol Genet* 16, 1639-1647.

Min, K., Ichikawa, Y., Woolford, C.A., and Mitchell, A.P. (2016). *Candida albicans* gene deletion with a transient CRISPR-Cas9 system. *MSphere* 1, 00130-00116.

Mogavero, S., Sauer, F.M., Brunke, S., Allert, S., Schulz, D., Wisgott, S., Jablonowski, N., Elshafee, O., Kruger, T., Kniemeyer, O., *et al.* (2021). Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by *Candida albicans*. *Cell Microbiol* 23, e13378.

Montes, L.F., and Wilborn, W.H. (1968). Ultrastructural features of host-parasite relationship in oral candidiasis. *J Bacteriol* 96, 1349-1356.

Moyes, D.L., Wilson, D., Richardson, J.P., Mogavero, S., Tang, S.X., Wernecke, J., Hofs, S., Gratacap, R.L., Robbins, J., Runglall, M., *et al.* (2016). Candidalysin is a fungal peptide toxin critical for mucosal infection. *Nature* 532, 64-68.

Mueller, K.L., Yang, Z.Q., Haddad, R., Ethier, S.P., and Boerner, J.L. (2010). EGFR/Met association regulates EGFR TKI resistance in breast cancer. *J Mol Signal* 5, 1750-2187.

Mushi, M.F., Bader, O., Taverne-Ghadwal, L., Bii, C., Gross, U., and Mshana, S.E. (2017). Oral candidiasis among African human immunodeficiency virus-infected individuals: 10 years of systematic review and meta-analysis from sub-Saharan Africa. *J Oral Microbiol* 9, 1317579.

Oliveira, M.J., Costa, A.M., Costa, A.C., Ferreira, R.M., Sampaio, P., Machado, J.C., Seruca, R., Mareel, M., and Figueiredo, C. (2009). CagA associates with c-Met, E-cadherin, and p120-catenin in a multiproteic complex that suppresses *Helicobacter pylori*-induced cell-invasive phenotype. *J Infect Dis* 200, 745-755.

Pappas, P.G., Kauffman, C.A., Andes, D.R., Clancy, C.J., Marr, K.A., Ostrosky-Zeichner, L., Reboli, A.C., Schuster, M.G., Vazquez, J.A., Walsh, T.J., *et al.* (2016). Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. *Clin Infect Dis* 62, 16.

Park, H., Myers, C.L., Sheppard, D.C., Phan, Q.T., Sanchez, A.A., Edwards, J.E., Jr., and Filler, S.G. (2005). Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. *Cell Microbiol* 7, 499-510.

Patel, P.K., Erlandsen, J.E., Kirkpatrick, W.R., Berg, D.K., Westbrook, S.D., Louden, C., Cornell, J.E., Thompson, G.R., Vallor, A.C., Wickes, B.L., *et al.* (2012). The changing epidemiology of oropharyngeal candidiasis in patients with HIV/AIDS in the era of antiretroviral therapy. *AIDS Res Treat* 2012, 262471.

Pece, S., and Gutkind, J.S. (2000). Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. *J Biol Chem* 275, 41227-41233.

Phan, Q.T., Eng, D.K., Mostowy, S., Park, H., Cossart, P., and Filler, S.G. (2013). Role of endothelial cell septin 7 in the endocytosis of *Candida albicans*. *MBio* 4, 00542-00513.

Phan, Q.T., Lin, J., Solis, N.V., Eng, M., Swidergall, M., Wang, F., Li, S., Gaffen, S.L., Chou, T.F., and Filler, S.G. (2021). The globular C1q receptor is required for epidermal growth factor receptor signaling during *Candida albicans* infection. *MBio* 12, e0271621.

Phan, Q.T., Myers, C.L., Fu, Y., Sheppard, D.C., Yeaman, M.R., Welch, W.H., Ibrahim, A.S., Edwards, J.E., and Filler, S.G. (2007). Als3 is a *Candida albicans* invasin that binds to cadherins and induces endocytosis by host cells. *PLoS Biol* 5, e64.

Qian, X., Karpova, T., Sheppard, A.M., McNally, J., and Lowy, D.R. (2004). E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. *Embo J* 23, 1739-1748.

Saito, H., Shodo, R., Yamazaki, K., Katsura, K., Ueki, Y., Nakano, T., Oshikane, T., Yamana, N., Tanabe, S., Utsunomiya, S., *et al.* (2020). The association between oral candidiasis and severity of chemoradiotherapy-induced dysphagia in head and neck cancer patients: A retrospective cohort study. *Clin Transl Radiat Oncol* 20, 13-18.

Serrano, J., Lopez-Pintor, R.M., Ramirez, L., Fernandez-Castro, M., Sanz, M., Melchor, S., Peiteado, D., and Hernandez, G. (2020). Risk factors related to oral candidiasis in patients with primary Sjogren's syndrome. *Med Oral Patol Oral Cir Bucal* 25, e700-e705.

Shen, Y., Naujokas, M., Park, M., and Ireton, K. (2000). InIB-dependent internalization of *Listeria* is mediated by the Met receptor tyrosine kinase. *Cell* 103, 501-510.

Singh, S., Nabeela, S., Barbarino, A., Ibrahim, A.S., and Uppuluri, P. (2022). Antibodies targeting *Candida albicans* Als3 and Hyr1 antigens protect neonatal mice from candidiasis. *Front Immunol* 13, 925821.

Solis, N.V., and Filler, S.G. (2012). Mouse model of oropharyngeal candidiasis. *Nat Protoc* 7, 637-642.

Solis, N.V., Swidergall, M., Bruno, V.M., Gaffen, S.L., and Filler, S.G. (2017). The aryl hydrocarbon receptor governs epithelial cell invasion during oropharyngeal candidiasis. *MBio* 8, pii: e00025-00017.

Sun, J.N., Solis, N.V., Phan, Q.T., Bajwa, J.S., Kashleva, H., Thompson, A., Liu, Y., Dongari-Bagtzoglou, A., Edgerton, M., and Filler, S.G. (2010). Host cell invasion and virulence mediated by *Candida albicans* Ssa1. *PLoS Pathog* 6, e1001181.

Swidergall, M., Solis, N.V., Lionakis, M.S., and Filler, S.G. (2018). EphA2 is an epithelial cell pattern recognition receptor for fungal b-glucans. *Nat Microbiol* 3, 53-61.

Swidergall, M., Solis, N.V., Millet, N., Huang, M.Y., Lin, J., Phan, Q.T., Lazarus, M.D., Wang, Z., Yeaman, M.R., Mitchell, A.P., et al. (2021). Activation of EphA2-EGFR signaling in oral epithelial cells by *Candida albicans* virulence factors. *PLoS Pathog* 17, e1009221.

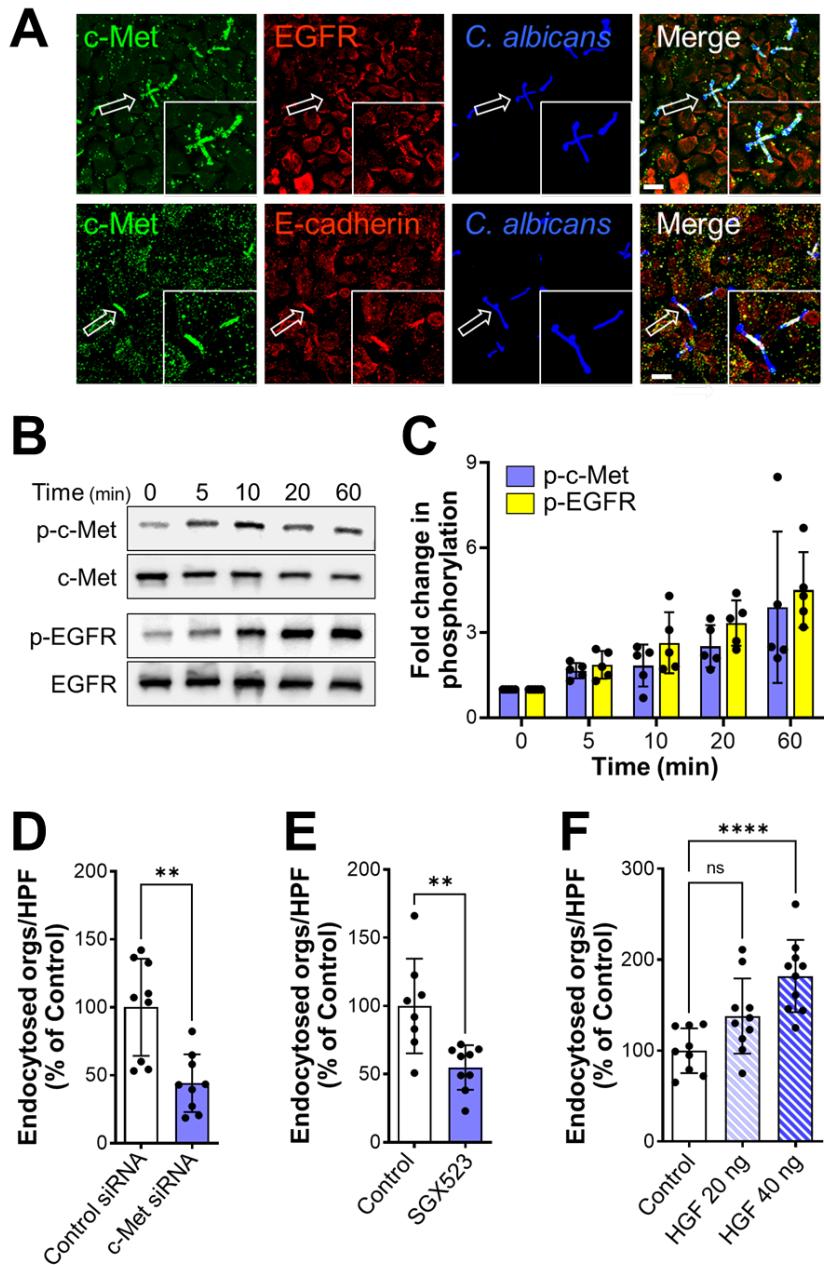
Swidergall, M., Solis, N.V., Wang, Z., Phan, Q.T., Marshall, M.E., Lionakis, M.S., Pearlman, E., and Filler, S.G. (2019). EphA2 Is a neutrophil receptor for *Candida albicans* that stimulates antifungal activity during oropharyngeal infection. *Cell Rep* 28, 423-433 e425.

Uppuluri, P., Lin, L., Alqarihi, A., Luo, G., Youssef, E.G., Alkhazraji, S., Yount, N.Y., Ibrahim, B.A., Bolaris, M.A., Edwards, J.E., Jr., et al. (2018). The Hyr1 protein from the fungus *Candida albicans* is a cross kingdom immunotherapeutic target for *Acinetobacter* bacterial infection. *PLoS Pathog* 14, e1007056.

Velpula, K.K., Dasari, V.R., Asuthkar, S., Gorantla, B., and Tsung, A.J. (2012). EGFR and c-Met cross talk in glioblastoma and its regulation by human cord blood stem cells. *Transl Oncol* 5, 379-392.

Wachtler, B., Citiulo, F., Jablonowski, N., Forster, S., Dalle, F., Schaller, M., Wilson, D., and Hube, B. (2012). *Candida albicans*-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. *PLoS ONE* 7, 14.

Wachtler, B., Wilson, D., Haedicke, K., Dalle, F., and Hube, B. (2011). From attachment to damage: defined genes of *Candida albicans* mediate adhesion, invasion and damage during interaction with oral epithelial cells. *PLoS ONE* 6, 0017046.


Zatloukal, B., Kufferath, I., Thueringer, A., Landegren, U., Zatloukal, K., and Haybaeck, J. (2014). Sensitivity and specificity of in situ proximity ligation for protein interaction analysis in a model of steatohepatitis with Mallory-Denk bodies. *PLoS One* 9, e96690.

Zhu, W., and Filler, S.G. (2010). Interactions of *Candida albicans* with epithelial cells. *Cell Microbiol* 12, 273-282.

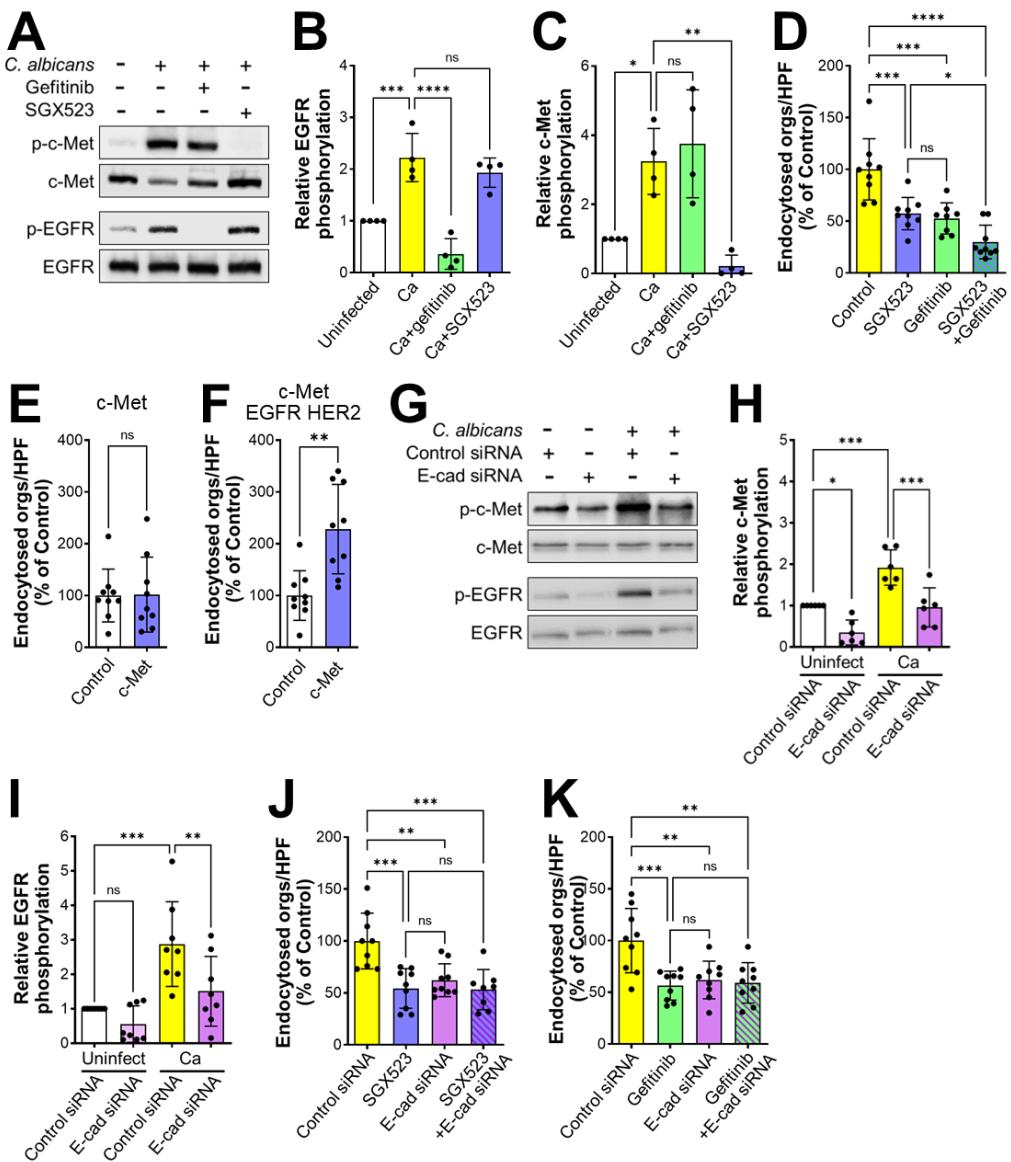
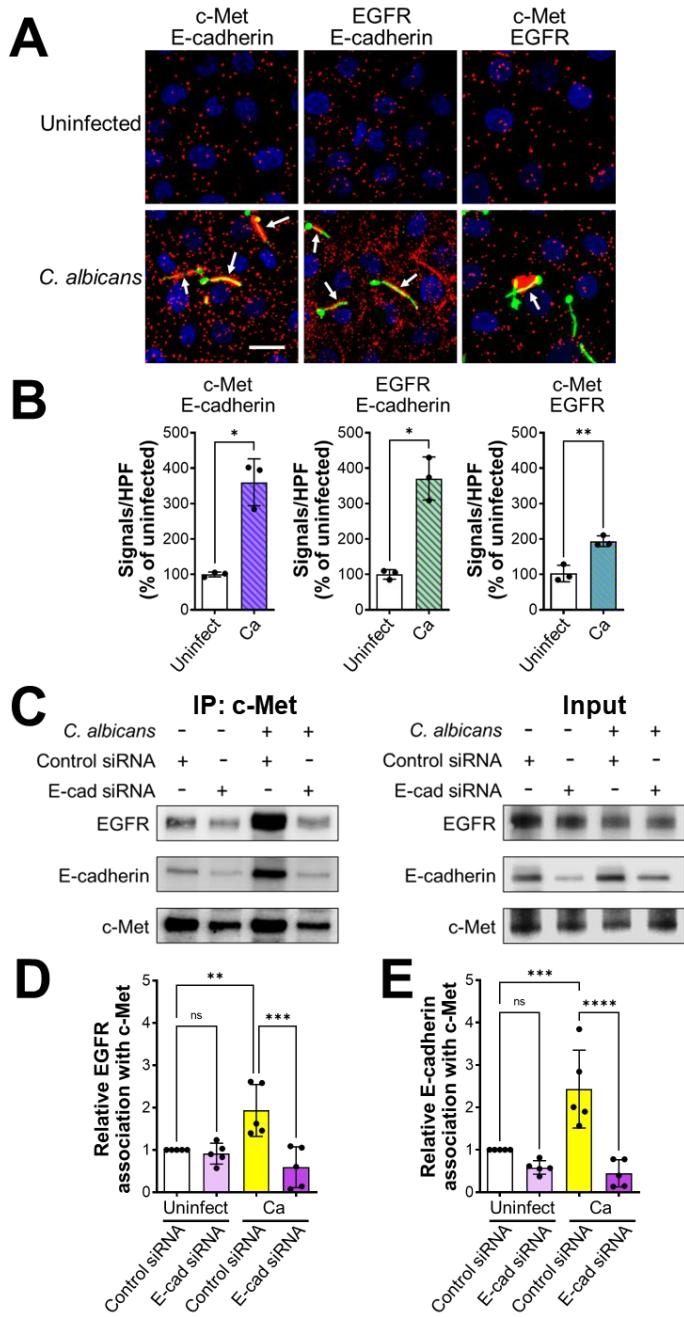
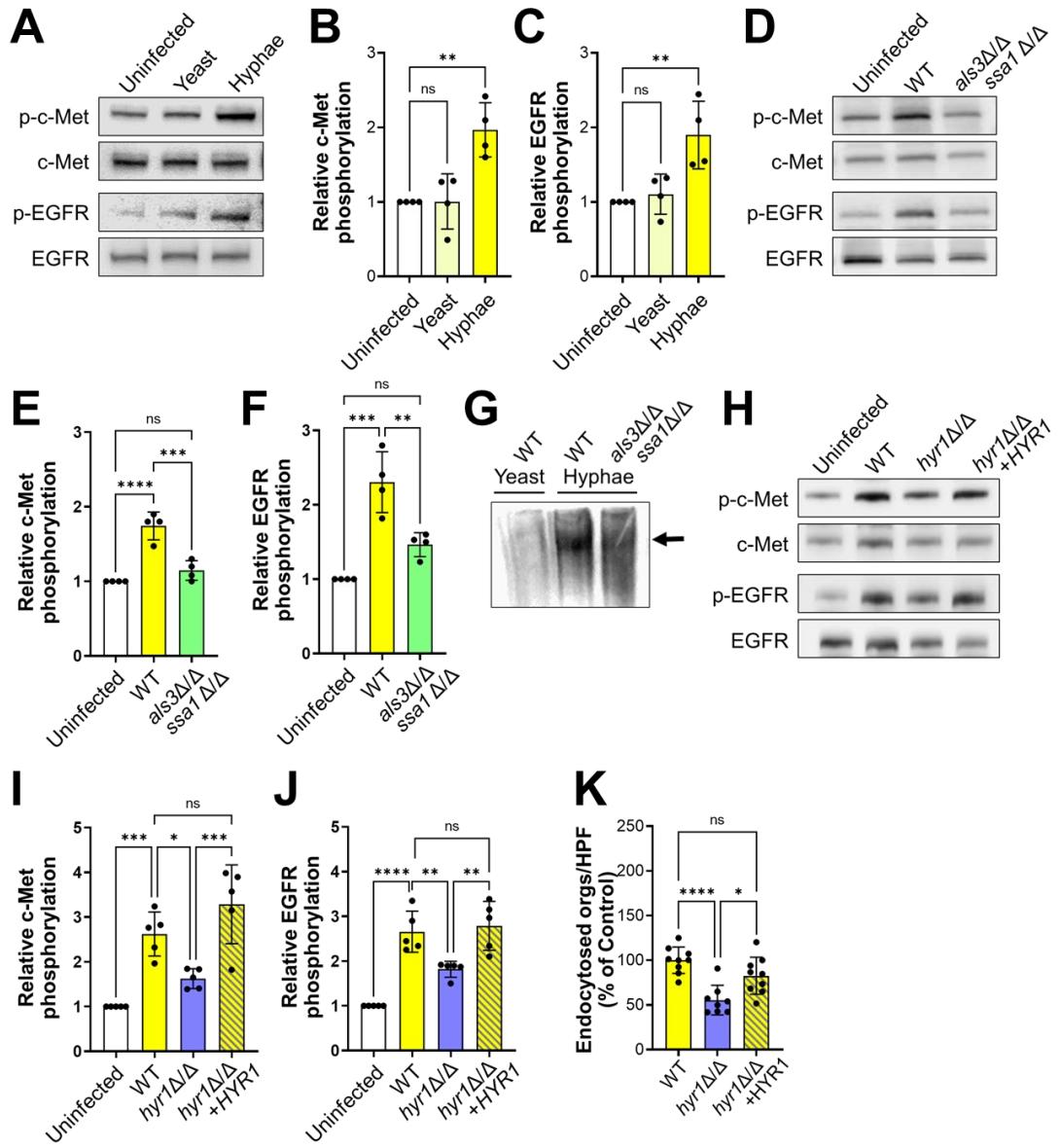
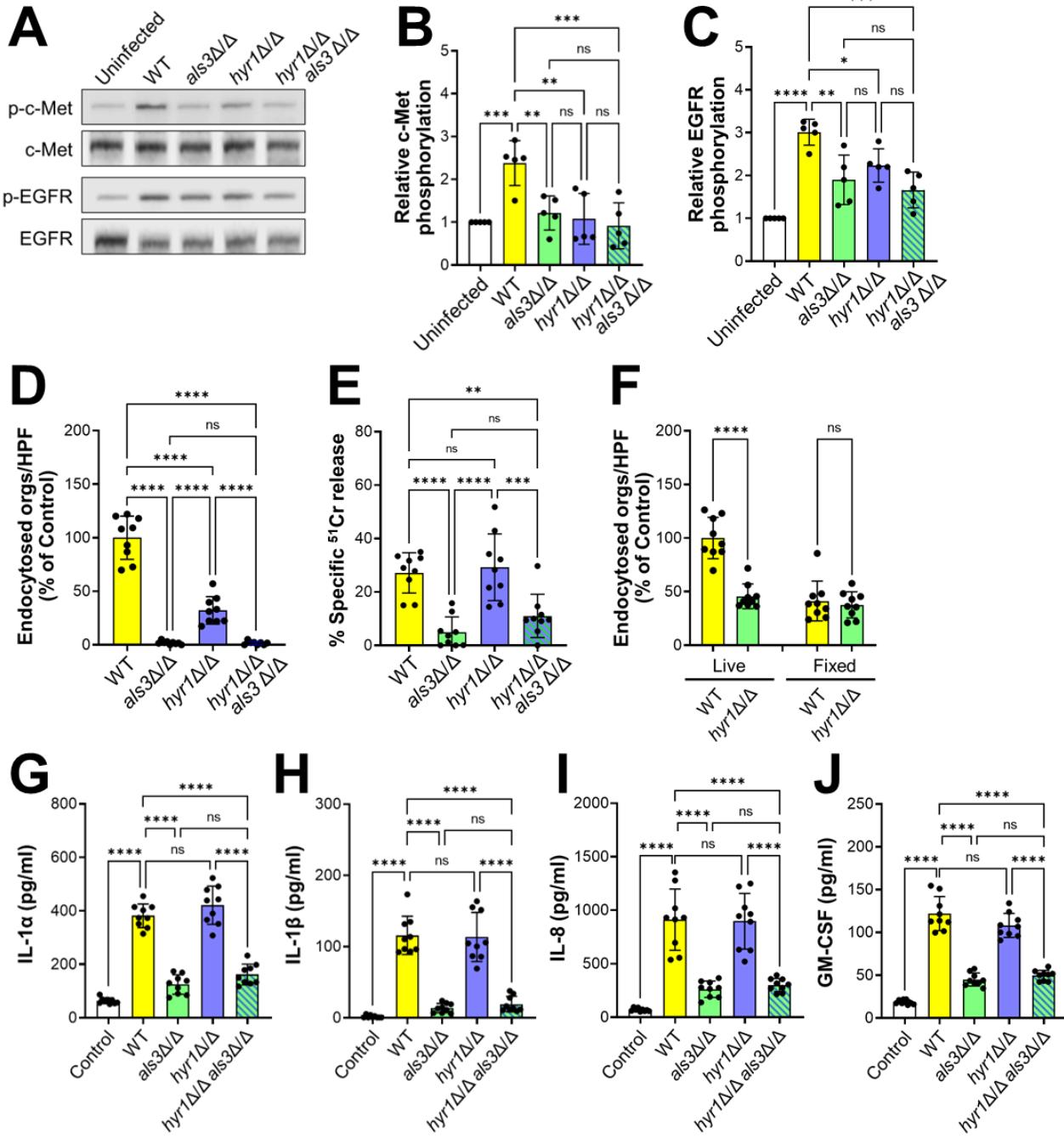

Zhu, W., Phan, Q.T., Boontheung, P., Solis, N.V., Loo, J.A., and Filler, S.G. (2012). EGFR and HER2 receptor kinase signaling mediate epithelial cell invasion by *Candida albicans* during oropharyngeal infection. *Proc Natl Acad Sci USA* 109, 14194-14199.

Table 1. Selected *C. albicans* surface proteins identified in the far Western blotting experiment.


Protein	Description	No. of Peptides Wild-type	No. of Peptides <i>als3Δ/Δ ssa1Δ/Δ</i>
Hyr1	GPI-anchored hyphal cell wall protein	8	6
Ssa1	HSP 70 family chaperone, role in host cell entry	8	0
Plb3	GPI-anchored cell surface phospholipase B	4	4
Eno1	Enolase, major cell surface antigen	4	3
Pra1	Cell surface protein that sequesters zinc from host tissue	4	0
Pga31	GPI anchored cell wall protein	3	3
Als1	Agglutinin-like protein 1, cell surface adhesin	2	3
Als3	Agglutinin-like protein 3, cell surface adhesin/invasin	2	0
Phr1	Cell-surface glycosidase	0	2


Fig. 1. *C. albicans* activates c-Met in oral epithelial cells. (A) Confocal microscopic images of OKF6/TERT-2 oral epithelial cells infected with *C. albicans* SC5314 for 20 min. c-Met, the epidermal growth factor receptor (EGFR), and E-cadherin were detected by indirect immunofluorescence using specific antibodies. Arrows point to the organisms in the magnified insets. Scale bar 10 μ m. (B and C) Immunoblot analysis showing the time course of the phosphorylation of c-Met and EGFR in oral epithelial cells induced by *C. albicans* germ tubes (B). Densitometric analysis of 4 immunoblots (C). Data are mean \pm SD. (D and E) Knockdown of c-Met with siRNA (D) or inhibition of c-Met signaling with SG523 (E) in oral epithelial cells inhibits the endocytosis of *C. albicans*. (F) Stimulation of oral epithelial cells with recombinant hepatocyte growth factor (HGF) enhances the endocytosis of *C. albicans*. Data in (D-F) are the mean \pm SD of three experiments, each performed in triplicate. ** p < 0.01, **** p < 0.0001, ns; not significant (two-tailed Student's t test [D and E] or one-way ANOVA with Sidak's multiple comparisons test [F]).


Fig. 2. Functional interactions among c-Met, EGFR, and E-cadherin during the endocytosis of *C. albicans*. (A-C) Immunoblot analysis showing the effects of the EGFR inhibitor gefitinib and the c-Met inhibitor SGX523 on *C. albicans*-induced phosphorylation of c-Met and EGFR in oral epithelial cells after 20 min of infection. Representative immunoblot (A), densitometric analysis of 4 immunoblots showing the phosphorylation of EGFR (B) and c-Met (C). Data are mean \pm SD. (D) Effects of SGX523 and gefitinib on the endocytosis of *C. albicans* by oral epithelial cells. (E and F) Endocytosis of *C. albicans* by NIH/3T3 cells that expressed human c-Met (E) or human c-Met, human EGFR, and human Her2 (F). (G-I) Knockdown of E-cadherin by siRNA inhibits the phosphorylation of c-Met and EGFR in oral epithelial cells infected with *C. albicans*. Representative immunoblot (G). Densitometric analysis of 5 immunoblots showing the phosphorylation of c-Met (H) and EGFR (I). Results are mean \pm SD. J and K) Effects of inhibiting c-Met (J) and EGFR (K) in combination with siRNA knockdown of E-cadherin on the endocytosis of *C. albicans* by oral epithelial cells. Results in (D-F, J, and K) are the mean \pm SD of three experiments, each performed in triplicate. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns; not significant (one-way ANOVA with Sidak's multiple comparisons test [B-D, H-K] or two-tailed Student's t test [E and F]).

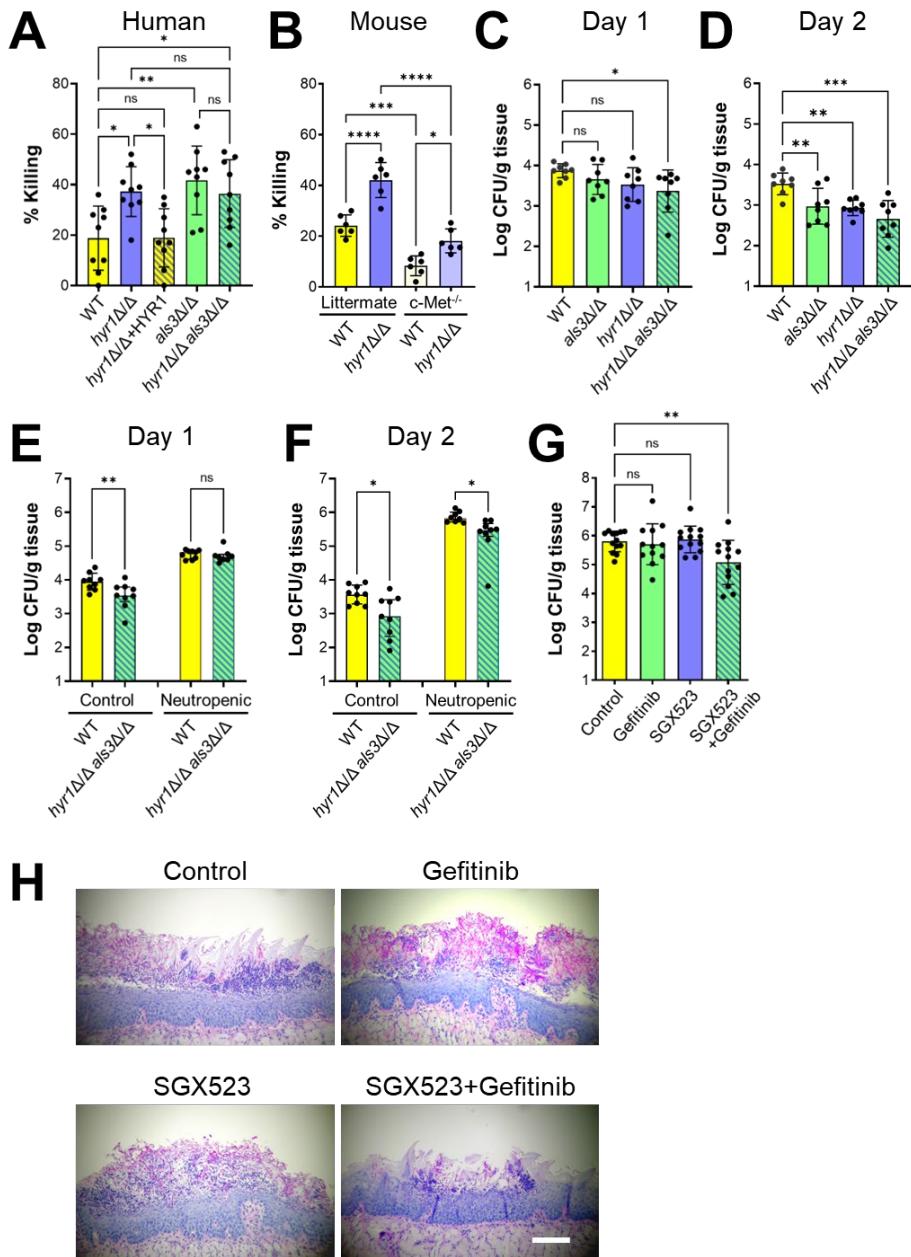

Fig. 3. *C. albicans* induces c-Met, EGFR, and E-cadherin to form a multiprotein complex.
 (A-C) Proximity ligation assay showing the interaction of c-Met with E-cadherin, EGFR with E-cadherin, and c-Met with EGFR in oral epithelial cells with and without 20-min infection with *C. albicans*. Confocal microscopic images (A). Scale bar 10 μm. Signal counts (B). Proximity ligation assay showing the interaction of c-Met with E-cadherin, EGFR with E-cadherin, and c-Met with EGFR in oral epithelial cells with and without 20-min infection with *C. albicans*. (A) Confocal microscopic images. Scale bar 10 μm. (B) Signal counts. (C-E) Co-immunoprecipitation experiments in oral epithelial cells transfected with control or E-cadherin siRNA and then infected with *C. albicans* for 20 min. (C) Representative immunoblots of proteins obtained by immunoprecipitation with an anti-c-Met antibody. (D and E) Densitometric analysis of 5 immunoblots. Results are mean ± SD. ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$, ns; not significant (two-tailed Student's t test [B] or one-way ANOVA with Sidak's multiple comparisons test [D and E]).

Fig. 4. Hyr1 interacts with c-Met and EGFR. (A-C). *C. albicans* germ tubes stimulate phosphorylation of c-Met and EGFR after 20 min of infection. Representative immunoblots (A). Densitometric analysis of 4 immunoblots showing the phosphorylation of c-Met (B) and EGFR (C) induced by *C. albicans* yeast and hyphae. (D-F) An *als3ΔΔ ssa1ΔΔ* mutant does not induce phosphorylation of c-Met and EGFR. Representative immunoblots (D). Densitometric analysis of 4 immunoblots showing the phosphorylation of c-Met (E) and EGFR (F) induced by the indicated strains of *C. albicans*. (G) Far Western blot showing proteins from the indicated *C. albicans* morphotypes and strains that were recognized by recombinant c-Met. Arrow indicates the protein band. (H-J) Hyr1 is required for maximal phosphorylation of c-Met and EGFR. Representative immunoblots (H). Densitometric analysis of 4 immunoblots showing the phosphorylation of c-Met (I) and EGFR (J) induced by the indicated strains of *C. albicans*. (K) Hyr1 is required for maximal endocytosis of *C. albicans*. Results in (B, C, E, F, I-K) are mean \pm SD. WT, wild type; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns; not significant (one-way ANOVA with Sidak's multiple comparisons test).

Fig. 5. Interactions of c-Met with Als3. (A-C) Both Hyr1 and Als3 are required for phosphorylation of c-Met and EGFR. Representative immunoblots from oral epithelial cells infected with the indicated strains of *C. albicans* (A). Densitometric analysis of 5 immunoblots showing the phosphorylation of c-Met (B) and EGFR (C). (D) Epithelial cell endocytosis of the indicated strains of *C. albicans*. (E) Damage to oral epithelial cells caused by the indicated strains of *C. albicans*. (F) Invasion of live and fixed epithelial cells by the wild-type (WT) *hyr1* Δ/Δ mutant strains. (G-J) Induction of epithelial cell secretion of IL-1 α (G), IL-1 β (H), IL-8 (I) and GM-CSF (J) by the indicated strains of *C. albicans*. Results are mean \pm SD. WT, wild type; ns, not significant; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 (one-way ANOVA with Sidak's multiple comparisons test).

Fig. 6. Hyr1 and Als3 mediate virulence during OPC. (A) Hyr1 and Als3 are required for *C. albicans* to resist killing by human neutrophils. Neutrophils were infected with the indicated *C. albicans* strains constructed in the SC5314 strain background. Results are mean \pm SD of neutrophils from 3 donors, tested in triplicate. (B) The *hyr1 Δ/Δ* mutant is resistant to neutrophil killing, even in the absence of c-Met. Killing of wild-type and *hyr1 Δ/Δ* mutant strains in the SN250 strain background by neutrophils from *Mrp8;Met^{fl/fl}* mice, which have a neutrophil-specific deletion in c-Met, and their littermates. Results are mean \pm SD of neutrophils from 2 experiments performed in triplicate. (C and D) Oral fungal burden of immunocompetent mice infected with the indicated *C. albicans* strains for 1 (C) and 2 (D) days. (E and F) Effects of phagocyte depletion on susceptibility to OPC, as determined by oral fungal burden after 1 (E) and 2 (F) days of infection. (G-H) Oral fungal burden after 5 d of infection of mice that had been immunosuppressed with cortisone acetate and treated with gefitinib and/or SGX523 (G). Histopathology of the tongues (H). Scale bar 200 μ m. Data are the mean \pm SD combined results

from 2 independent experiments, each using 4 mice per *C. albicans* strain (C-F) or 8 mice per condition in one experiment and 5 mice per condition in the other (G). ns, not significant; $*p < 0.05$, $**p < 0.01$, $***p < 0.001$, $****p < 0.0001$ (one-way ANOVA with Sidak's multiple comparisons test)