

Spatial and Temporal Dynamics at an Actively Silicifying Hydrothermal System

1 **Kalen L. Rasmussen¹, Blake W. Stamps², Gary F. Vanzin¹, Shannon M. Ulrich³, and John R.
2 Spear^{1*}**

3 ¹Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO,
4 United States

5 ² Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB,
6 OH, United States

7 ³ Arcadis North America, Highlands Ranch, CO, United States

8 *** Correspondence:**

9 John R. Spear
10 jspear@mines.edu

11 **Keywords: hydrothermal spring, rock record, microbial ecology, geochemistry, silicification,
12 Yellowstone National Park, microbial mats, Steep Cone Geyser.**

13 Abstract

14 Steep Cone Geyser is a unique geothermal feature in Yellowstone National Park, Wyoming (YNP),
15 actively gushing silicon rich fluids along outflow channels possessing living and actively silicifying
16 microbial biomats. To assess the geomicrobial dynamics occurring temporally and spatially at Steep
17 Cone, samples were collected at discrete locations along one of Steep Cone's outflow channels for
18 both microbial community composition and aqueous geochemistry analysis during field campaigns in
19 2010, 2018, 2019, and 2020. Geochemical analysis characterized Steep Cone as an oligotrophic,
20 surface boiling, silicious, alkaline-chloride thermal feature with consistent dissolved inorganic carbon
21 and total sulfur concentrations down the outflow channel ranging from 4.59 ± 0.11 to 4.26 ± 0.07
22 mM and 189.7 ± 7.2 to 204.7 ± 3.55 μM respectively. Furthermore, geochemistry remained relatively
23 stable temporally with consistently detectable analytes displaying a relative standard deviation <
24 32%. A thermal gradient decrease of $\sim 55^\circ\text{C}$ was observed from the sampled hydrothermal source to
25 the end of the sampled outflow transect ($90.34^\circ\text{C} \pm 3.38$ to $35.06^\circ\text{C} \pm 7.24$). The thermal gradient led
26 to temperature-driven divergence and stratification of the microbial community along the outflow
27 channel. The hyperthermophile *Thermocrinis* dominates the hydrothermal source biofilm
28 community, and the thermophiles *Meiothermus* and *Leptococcus* dominate along the outflow before
29 finally giving way to more diverse and even microbial communities at the end of the transect.
30 Beyond the hydrothermal source, phototrophic taxa such as *Leptococcus*, *Chloroflexus*, and
31 *Chloracidobacterium* act as primary producers for the system supporting heterotrophic growth of
32 taxa such as *Raineyella*, *Tepidimonas*, and *Meiothermus*. Community dynamics illustrate large changes
33 yearly driven by abundance changes of the dominant taxa in the system. Results indicate Steep Cone
34 possesses dynamic outflow microbial communities despite stable geochemistry. These findings
35 improve our understanding of thermal geomicrobial dynamics and inform how we can interpret
36 the silicified rock record.

38 1 Introduction

39 Due to the wealth of nutrients and chemical potential creating a plethora of possible ecological niches
40 (Martin et al., 2008; Shock, 1996; Varnes et al., 2003), one of the most popular theories regarding the
41 origin of life revolves around a hydrothermal ecosystem (Pace, 1997; Reysenbach and Cady, 2001;
42 Woese, 1998). Further supporting this theory, some of the oldest phylogenetic lineages are anaerobic
43 thermophiles and hyperthermophiles (Farmer, 2000; Pace, 1997; Reysenbach and Cady, 2001; Setter
44 et al., 1996; Woese, 1998). As a result, hydrothermal environments have become targets for the study
45 of the origin of life and microbial evolution (Varnes et al., 2003). Furthermore, because of the high
46 concentrations of dissolved minerals in the source waters, hydrothermal environments are excellent at
47 lithifying surrounding microorganisms (Walter and Des Marais, 1993). Lithification in hydrothermal
48 systems has proven to be valuable in the preservation and entrainment of microfossils (Walter and
49 Des Marais, 1993) and evidence of past life (Bradley et al., 2017; Kraus et al., 2018; Lowe and
50 Braunstein, 2003). Therefore, hydrothermal lithification processes allow researchers to use current
51 and extinct hydrothermal systems as windows into Earth's past to inform about ancient life and how
52 life and the surrounding environment have coevolved.

53 One of the most common types of lithification that occurs in hydrothermal systems is silicification.
54 Silicification of microorganisms is the aggregation of silica particles to cells, resulting in their
55 encrustation within an amorphous silica shell. Silicification is an ideal lithification process for high-
56 resolution microbial preservation due to the mineral's temporal fidelity (Horodyski et al., 1985).
57 Silica colloids are small, and can preserve cell features such as cell wall pores and even potentially
58 macromolecules (Benning et al., 2005; Schultze-Lam et al., 1996). Due to the recalcitrant nature of
59 precipitated silica, even limited silicification increases the potential for biosignature preservation in
60 hydrothermal systems (Kraus et al., 2018). Because of the excellent morphological preservation,
61 ancient silicified systems are an ideal proxy to better understand the characteristics of both extant and
62 ancient life (Djokic et al., 2017; Schopf, 2006).

63 The geological interpretations of ancient silicified environments and their entrained microfossils
64 impact how the rock record and the evolution of the geo-biosphere is interpreted, but these geological
65 snapshots may only capture a fraction of their ancient environment. For example, examination of the
66 rock record displays a bias toward the preservation of filamentous and coccoidal morphology
67 (Konhauser et al., 2003; Schopf, 2006), indicating that either other morphologies had not yet evolved
68 or that there exists a preferential preservation bias of certain microorganisms. Additionally, it is
69 known that Mars has deposits of amorphous silica likely from extinct hydrothermal systems (Farmer,
70 1996; Squyres et al., 2008), and that mineral biosignatures on Earth have been putatively linked to
71 silica deposits on Mars (Ruff and Farmer, 2016). This furthers the belief that extraterrestrial silica
72 deposits are prime locations to search for life and increases the need to understand silicifying
73 hydrothermal systems on Earth.

74 Previous studies have examined the microbial dynamics in hot spring systems that encompass a wide
75 range of potential variables, their impact on different microbial communities, and have resulted in
76 variable conclusions regarding how dynamic these systems are. Work that examined seasonal
77 impacts on planktonic microbial hot spring communities linked precipitation as a major driver of
78 community structure (Briggs et al., 2014), while an additional study found that precipitation impacts
79 were variable between springs and potentially dependent on aquifer recharge (Colman et al., 2021).
80 Other work found temperature as the greatest selector for microbial communities in sediments and
81 planktonic communities (Guo et al., 2020; Wang et al., 2013), and that planktonic communities were
82 stable temporally while sediment communities were more diverse and dynamic during the sampling

Dynamics of a Silicifying Hydrothermal System

83 period (Wang et al., 2014). Further work has shown that microbiome composition also appears to
84 impact microbial mat communities. For example, biomat biomass and diversity fluctuated during wet
85 and dry seasons in a tropical hot spring (Lacap et al., 2007), while temperate biomat bacteria
86 communities exhibited minimal changes temporally (Ferris and Ward, 1997). The diversity and
87 dynamics of microbial communities that inhabit hot spring environments can impact the preservation
88 of biomarkers. For example, Bosak et al. (2012) showed that in two years, different taxa of
89 cyanobacteria were responsible for the construction of conical microbialites, structures identifiable in
90 the rock record acting as indicators of past life. These studies highlight the irregularity of hot spring
91 environments and highlight the importance of understanding these dynamics to better interpret the
92 rock record, especially in lithifying systems.

93 One such lithifying system is Steep Cone Geyser (SC; 44.56667 N, 110.8632 W; YNP Research
94 Coordination Network ID: LSMG003), located in the Lower Geyser Basin of Yellowstone National
95 Park (YNP, Figure 1A). Steep Cone has grown vertically from the meadow floor through successive
96 lithification of microbial mats over time and is still rising due to the continued activity of the thermal
97 feature, active silicification, and extensive biomat. The successive lithification at SC has resulted in
98 discrete layers of laminated silicified microbial mats. The lithified structure at SC is amorphous silica
99 in the form of opal-A (Gangidine et al., 2020; Motomura et al., 2003). The various outflow channels
100 at Steep Cone change with time, creating drastic gradients of flourishing microbial communities to
101 fully and recently lithified biomat over a distance of a few meters (Figure 1C, Supplemental Figure
102 S1). Previous research at SC focusing on the silicified sinter deposits found that *Thermus* and
103 *Saccharomonospora* dominated the solid silica deposit at the hydrothermal source, and that microbial
104 cells affected silica deposition and sinter formation (Inagaki et al., 2001). Additional work
105 incorporating SC as one of many thermal features in the study found decreasing sulfide
106 concentrations downstream, which was attributed to microbial sulfide oxidation (Cox et al., 2011).
107 Further research has been conducted that focuses on silica deposition from hydrothermal fluids,
108 particularly the effect of aluminum, and the morphological properties of siliceous deposits at SC
109 (Inagaki et al., 2003; Motomura et al., 2003; Yokoyama et al., 2004). Lastly, potential trace element
110 biosignatures have been assessed in conjunction with fully silicified microbial cells (Gangidine et al.,
111 2020). The goal of this study was to determine the microbial community and geochemical dynamics
112 in the actively silicifying Steep Cone Geyser system to better constrain endpoint conclusions made
113 from examining the ancient, silicified rock record. To address this, geochemistry and biomass
114 samples were collected for simultaneous 16S rRNA and 16S rRNA gene sequencing over multiple
115 years at set locations along an outflow channel of the Steep Cone Geyser.

116 2 Materials and Methods

117 2.1 Site Description and Sample Collection

118 Sample material for this study was collected during seven distinct visits to Steep Cone Geyser in
119 2010, 2017, 2018, 2019, and 2020 (Supplemental Figure S1). In 2010 (4 June), samples were
120 collected approximately every 1 meter, starting 1 meter from the edge of the vent source, along a
121 vertical transect down the main southeast outflow of the spring to 5 meters. On 18 August 2017, the
122 samples were collected only at the vent source. The vertical transect from 2010 was replicated three
123 times in 2018 (30 May, 26 June, and 29 September), once in 2019 (11 August), and once in 2020 (8
124 August) plus samples from the vent source (Figure 1C). Samples included: (1) filtered water from the
125 main spring and outflow waters; (2) solid crust/geyserite; (3) swabs of the microbial biofilm; and (4)
126 solid biofilm samples.

127 Solid surface samples from June 2010 were collected using a sterile spatula, placed in sterile
128 cryovials and stored on ice until they returned to the lab where they were placed in a -20°C freezer
129 until DNA extraction. Before DNA extraction, 2010 samples were homogenized before separation
130 for triplicate DNA extraction. Water filtrate samples collected in 2017, 2018, 2019, and 2020 were
131 filtered through sterilized 0.22 µm hydrophilic polyvinylidene fluoride (PVDF) Durapore®
132 membrane filters using a field washed syringe until clogging occurred (~60 to 1000 ml), and using
133 sterile forceps placed in ZR-96 BashingBead™ lysis tubes containing 750 µl DNA/RNA Shield™
134 (Zymo Research Corp., Irvine, CA, USA). The samples were shaken and placed on ice until they
135 returned to the vehicle, where they were transferred to a liquid nitrogen dewar. When returning to the
136 laboratory, the samples were stored at -80°C until the extraction of nucleic acid. Triplicate swab
137 samples (2018, 2019, and 2020) were taken along the June 4, 2010 transect of the microbial biomat
138 using sterile BBL™ CultureSwab™ (Becton, Dickinson and Company, Franklin Lakes, NJ, USA),
139 cut with field washed scissors, and stored in the same manner as the water filtrate samples. Fluids for
140 geochemical measurements were filtered using 0.22 µm PVDF Durapore® membrane filter into 50
141 mL polypropylene tubes for ion chromatography (IC), inductively coupled plasma optical emission
142 spectroscopy (ICP-OES), and inductively coupled plasma atomic emission spectroscopy (ICP-AES)
143 for measurement of major anions and cations. The samples were kept on ice in the field and placed at
144 4°C upon returning to the laboratory. The samples for ICP-OES and ICP-AES were acidified with
145 0.2 ml of concentrated nitric acid, shaken, and allowed to equilibrate prior to submission. Samples
146 for dissolved organic and dissolved inorganic carbon (DOC/DIC, 2018, 2019, 2020) were filtered and
147 stored in the same manner in 30 mL combusted amber glass bottles, leaving no headspace for gas
148 exchange. No aqueous geochemistry samples were taken in June 2010, but water samples were
149 collected at the vent source in September 2010 and were diluted 1:25 for ICP analysis as described
150 above. Biomat samples were collected in May 2018 and August 2019 and preserved in 2.5%
151 glutaraldehyde in 1X phosphate buffered saline (PBS) for imaging. The fixed samples were washed
152 three times in 1X PBS and imaged on a Hitachi TM-1000 scanning electron microscope (SEM). A
153 summary of the samples collected, sample types, and collection dates is included in the Supplemental
154 Material (Table S1).

155 2.2 Aqueous Geochemistry

156 The fluid pH was measured in the field using a rugged Hach Intellical™ PHC101 probe with a
157 portable Hach HQ40d field meter (Hach Company, Loveland, CO, USA). Temperature
158 measurements were collected on site using a Fisherbrand™ Traceable™ noncontact infrared
159 thermometer (Fisher Scientific International, Inc. Hampton, NH, USA). All IC, ICP, and DIC/DOC
160 samples were analysed at the Colorado School of Mines. For 2010 samples, IC and ICP-OES
161 measurements were performed on a Dionex (Thermo Scientific; Waltham, MA, USA) ICS-90 ion
162 chromatography system running an AS14A (4 × 250 mm) column and a Perkin-Elmer (Waltham,
163 MA, USA) Optima 3000 DV ICP-OES system respectively. For fluid samples collected in 2017,
164 2018, 2019, and 2020, major anions were measured using a Dionex ICS-900 ion chromatography
165 system running an IonPac AS14A-4 µm RFIC (3 × 150 mm) column, while cations were measured
166 using a Perkin Elmer Optima Model 5300 dual view spectrometer ICP-AES. The DOC/DIC
167 measurements were conducted on a Shimadzu total organic carbon analyzer V-TNM-LCSH
168 instrument (Shimadzu Corp. Kyoto, Japan). Geochemical data was analysed in R v4.0.5 (R Core
169 Team, 2022) using the package “Tidyverse” (Wickham et al., 2019) and plots were created using the
170 package “ggplot2” (Wickham, 2016).

171 2.3 DNA/RNA Extractions and 16S rRNA and rRNA Gene Library Sequencing

Dynamics of a Silicifying Hydrothermal System

172 DNA extraction of the 2010 samples was performed using the MoBio PowerSoil DNA Isolation Kit
173 (MO BIO Laboratories, Inc., Carlsbad, CA, USA), and DNA extraction from the 2017 and 2018 (30
174 May and 26 July) samples were performed using the ZymoBIOMICS™ DNA MiniPrep kit (Zymo
175 Research Corp.). Simultaneous DNA and RNA extractions were performed on 29 September 2018,
176 2019, and 2020 samples using the ZymoBIOMICS™ DNA / RNA MiniPrep kit (Zymo Research
177 Corp.). All extractions were performed according to the manufacturer's instructions, with blank
178 negative extraction controls being used for each round of extractions. Before PCR amplification,
179 RNA samples were converted to cDNA using the SuperScript™ IV First-Strand Synthesis System
180 (Thermo Fisher Scientific Corp., Waltham, MA, USA). DNA contamination in RNA fractions was
181 tested by performing PCR, as outlined below, to check for amplifiable amounts of DNA. If DNA
182 amplification was detected, RNA fractions were diluted until no DNA amplification occurred and
183 diluted samples were used as template for cDNA synthesis. cDNA synthesis was carried out
184 according to the kit manufacturer's instructions using 1 μ L 50 ng/ μ L random hexamer primers and 2
185 μ L template RNA with parallel positive and negative reverse transcription controls. Synthesized
186 cDNA was directly used as template inputs for subsequent PCR reaction. Archaeal and Bacterial 16S
187 rRNA and rRNA gene libraries were amplified by PCR using primers that flank the V4 region
188 between the 515 and 926 base pair positions (*E. coli* reference). Primers 515F_Y and 926R were
189 chosen for their ability to amplify the V4 region, as described by Parada et al. (2016). The forward
190 primer (M13-515_Y: 5'- **GTA AAA CGA CGG CCA GTC CGT GYC AGC MGC CGC GGT AA**
191 **3'**) contains the M13 forward primer (bold) ligated to the 16S rRNA gene-specific sequence
192 (underlined) to facilitate barcoding in a later PCR reaction (Stamps et al., 2016). The utility of the
193 reverse primer (926R: 5'-CCG YCA ATT YMT TTR AGT TT-3') was illustrated by Parada et al.
194 (2016).

195 PCR was carried out in 25 μ L reactions consisting of 1X 5PRIME HOT MasterMix (Quantabio,
196 Beverly, MA, USA), 0.2 μ M of each primer, molecular grade water and 2 μ L extracted template
197 DNA. Template DNA was diluted to < 10 ng/ μ L prior to PCR amplification. The PCR amplification
198 was conducted as follows; initial denaturation at 94°C for 2 min, 30 cycles of (94°C for 45 sec, 50°C
199 for 45 sec, and 68°C for 1:30 min), a final extension of 68°C for 5 min, and a final 4°C hold. The
200 amplicons were cleaned using KAPA Pure Beads (KAPA Biosystems Inc., Wilmington, MA, USA)
201 at a final concentration of 0.8X v/v to remove the solution of primer dimers. Next, a second six-cycle
202 PCR amplification was conducted to add unique 12 basepair barcodes to each cleaned sample
203 amplicon (Hamady et al., 2008) using the forward primer composed of the barcode plus M13 forward
204 sequence (5'-3') and the 926R primer. The final barcoded PCR amplicons were again cleaned using
205 the KAPA Pure Beads at the above conditions and quantified using the Qubit® dsDNA HS assay
206 (Life Technologies, Carlsbad, CA, USA). Lastly, the amplicons were combined in equimolar
207 amounts, and concentrated using two Amicon® Ultra-0.5 mL 30K Centrifugal Filters (EMD
208 Millipore, Billerica, MA, USA) to a final volume of 80 μ L. The final pooled library was submitted
209 for high throughput sequencing on the Illumina MiSeq platform using the PE250 V2 chemistry
210 method (Illumina, San Diego, CA, USA). For this work, all samples were prepared for DNA
211 sequencing in the Geo-Environmental Microbiology Laboratory at the Colorado School of Mines,
212 while sequencing was conducted at the Duke Center for Genomic and Computational Biology (Duke
213 University, Durham, NC, USA).

214 2.4 Amplicon Sequence Processing and Analysis

215 After sequencing, reads were demultiplexed using AdapterRemoval version 2 (Schubert et al., 2016),
216 and forward and reverse primer sequences were excised using Cutadapt version 3.5 resulting in a

217 final length of 198 bases for the forward reads and 230 bases for the reverse reads (Martin, 2011).
218 DADA2 was used to assess quality (Callahan et al., 2016). All reads possessed a quality score greater
219 than 30 over the length of the trimmed reads for both the forward and reverse sequences and no
220 further trimming was conducted. DADA2 was used to filter samples using standard filter parameters,
221 perform sample inference, merge paired-end Illumina reads, construct an amplicon sequence variant
222 (ASV) table at 100% similarity, remove chimeric sequences, and assign taxonomy using the SILVA
223 database release Version 138 (Pruesse et al., 2007). A phylogenetic tree was constructed using
224 FastTree (Price et al., 2010) for microbial community composition analysis. Contamination reads
225 were identified and removed from samples using Decontam version 1.10 (Davis et al., 2018).
226 Bacteria and Archaea 16S rRNA gene amplicon samples were gene copy number normalized based
227 on the *rrnDB* database version 5.7 as shown previously (Chen et al., 2020; Stoddard et al., 2015).

228 For within-sample alpha diversity calculations, ASV singletons were removed from the dataset. Then
229 sample richness was estimated using Breakaway, and sample evenness was calculated using the R
230 package Microbiome (Willis and Bunge, 2015; Leo Lahti et al., 2017). The Kruskal-Wallis and
231 pairwise Wilcoxon tests were used to determine alpha diversity statistical significances (adjusted *p*-
232 value < 0.05), along with the Wilcoxon effect size. To quantitatively assess between sample
233 diversity, samples were first bootstrap rarefied with replacement (63 trials) to a sequencing depth of
234 1080 as previously performed (Salmon et al., 2022). Bray-Curtis Dissimilarity distance matrices were
235 constructed using the R package Vegan, and beta diversity plots were constructing using ggplot2 and
236 loess regression for line fitting (Bray and Curtis, 1957; Oksanen et al., 2022; Wickham, 2016).
237 Permutational analysis of variance (PERMANOVA) and pairwise comparisons (adjusted *p*-value <
238 0.05) were calculated using Vegan to test statistical significance between beta diversity groupings
239 between dates and locations (10000 permutations). A similarity percentages (SIMPER) analysis was
240 conducted at the genus level while removing any ASVs that contributed less than 0.5% (function
241 simper.pretty in R <https://doi.org/10.5281/zenodo.4270481>) to determine genera responsible for
242 driving differences in microbial communities (Clarke, 1993). Resultant statistically significant ASVs
243 were determined using the Kruskal-Wallis test for multiple comparisons (adjusted *p*-value < 0.05,
244 function kruskal.pretty in R <https://doi.org/10.5281/zenodo.4270481>).

245 ASV ranks where no classification was assigned were fixed using MicroViz to assign distinct
246 identifiers from higher phylogenetic ranks and allow for proper aggregation at lower taxonomic ranks
247 (i.e. genus level) (Barnett et al., 2021). Heatmaps were constructed using Ampvis2 to examine
248 microbial taxa through both time and space, with relative abundances calculated at the genus level
249 (Andersen et al., 2018). ASVs were aggregated at the genus level for differential abundance analysis
250 using the R package Corncob (Martin et al., 2020). Pairwise differential abundance comparisons
251 were made between sequential dates or locations with an adjusted *p*-value < 0.05 cutoff. The most
252 abundant ASVs were compared to other published sequences using the NCBI BLASTN tool to
253 determine their percent similarity to closely related taxa (National Library of Medicine (US), 1988).
254 Commands used to conduct sequence processing, analysis, and figure construction are publicly
255 available at (<https://github.com/kalen-rasmussen/Steep-Cone-Temporal-Spatial-Study>).

256 3 Results

257 3.1 General Field Observations and Biofilm Descriptions

258 The visual transformation of the sampled outflow channel at SC over the sampling period is
259 illustrated in Supplementary Figure 1. Down the outflow channel the biomat microbial communities
260 transitioned from opaque microbial communities to pigmented communities dominated by green,

Dynamics of a Silicifying Hydrothermal System

browns, yellow, and orange. Pigmented communities began as green/brown biomat but transitioned to yellow and orange biomat over the sampling time course. Upon initial sampling in 2010, the sampled outflow channel was visually one of the main outflow channels at SC with high flow; however, over the sampling period the flow rate along the transect gradually decreased. The transient nature of outflow channels at SC is seemingly important for its accretion overtime as attributed to its height off the meadow floor and mostly uniform cone shape (disregarding where rockfalls have occurred). Depth of fluid flow across the sampled transect decreased over the sampling period from ~1 cm to ~2-5 mm. During sampling, high winds were experienced on the top of SC, often from the east in the morning and from the west in the afternoon. These high winds pushed outflow channel waters laterally, saturating neighboring dried and lithified deposits or forming pools on the flat portions at the top of the feature.

SEM analysis of silica sinter samples at the hydrothermal source matched the descriptions of previous studies at SC (Inagaki et al., 2001; Motomura et al., 2003). In brief, sinter deposits were highly cemented by amorphous silica and silica colloids. Thin actively growing microbial biofilms occurred sporadically on the sinter surface, and entombed cells were visible in the cemented sinter. Samples along the outflow channel were characterized as biofilm ranging from ~1 to 3 mm in thickness. Filamentous cell morphologies bound together by extracellular polymeric substances (EPS) comprised the biofilm. Cells appeared predominantly parallel to the feature surface and randomly oriented in lateral directions across the surface. The EPS and random orientation of cells created a distinct and cohesive biofilm layer sitting atop a fully silicified cell matrix. The underlying silicified matrix was composed of fully silicified microbial filaments and amorphous silica colloid deposits. The silicified matrix exhibited a gradient of cementation and infilling from the hydrothermal source to the transect terminus, with samples at 1 m being highly porous to samples at 5 m exhibiting high degrees of amorphous infilling. See Supplementary Figures 2 and 3 for SEM imagery at the different SC locations.

3.2 Geochemical Dynamics

Steep Cone Geyser is generally classified as an oligotrophic, surface boiling, silicious, alkaline-chloride thermal feature. The hydrothermal source waters were sampled seven times throughout the study, and the main parameters are shown in Table 1. The source waters were geochemically stable during the course of the study, especially considering the dynamic nature of YNP and the geothermal features within the park. The mean temperature and pH of the source waters were $90.34^{\circ}\text{C} \pm 3.38$ and 7.98 ± 0.47 respectively, which is roughly surface boiling at YNP altitude (~2440 m). The mean dissolved inorganic carbon was 4.42 ± 0.25 mM while the dissolved organic carbon ranged from below the limit of quantification ($\text{LOQ} = 1.42 \times 10^{-2}$) to 0.7 mM. Nitrate and nitrite concentrations also ranged from below the detection limits ($\text{LOQ} = 1.61 \times 10^{-3}$ and 2.17×10^{-3}) to 0.93 and 7.4×10^{-3} mM, respectively, with the 0.93 mM nitrate measurement being an outlier. Despite its biological importance, phosphorus sources were mostly below the limit of quantification, with a high total phosphorus measurement of 0.9 μM and a single measurement above the limit of quantification of 9 μM for phosphate. At the source, total sulfur and sulfate were in high abundance compared to other potential metabolic analytes possessing means of 0.23 ± 0.08 and 0.16 ± 0.004 mM respectively. As part of a different study, total sulfide in the source waters was 12.63 ± 1.84 μM on August 8, 2021 (Rasmussen, et al., in preparation). Arsenic has been shown as a potentially important electron donor in hot spring systems (Kulp et al., 2008; Oremland and Stolz, 2003), and total arsenic averaged 14.5 ± 1 μM in the source waters during the sampling period. Lastly, the mean dissolved total silicon in the source waters was 5.28 ± 0.28 mM and chloride averaged 7.32 ± 0.31 mM.

306 Hydrothermal environments can exhibit large spatial geochemical gradients. The outflow channel at
307 SC exhibited a steep thermal gradient, with waters near surface boiling at the source and decreasing
308 to a mean of 35.06 ± 7.24 °C after 5 m, a decrease of ~ 55 °C (Figure 2). pH displayed a less drastic
309 gradient increasing from an average of 7.98 ± 0.52 in the source waters to 8.28 ± 0.55 5 m down the
310 outflow. Dissolved inorganic and dissolved organic carbon remained stable along the outflow
311 channel ranging from 4.42 ± 0.25 at the source to 4.14 ± 0.13 mM 5 m downstream and 0.24 ± 0.32
312 to 0.18 ± 0.31 mM, respectively. Similarly, total sulfur concentrations were stable down transect with
313 averages ranging from 190.34 ± 7.34 to 197.43 ± 11.1 µM. Alternatively, mean sulfate
314 concentrations increased from 159 ± 3.76 µM at the thermal source to 191.45 ± 17.43 µM at the
315 transect terminus. Nitrate, nitrite, phosphate, and total phosphorus concentrations remained low along
316 the outflow channel, with most samples occurring below the limit of quantification (Supplemental
317 Figure S4). Mean total arsenic increased from 14.57 ± 1.04 to 16.2 ± 1.43 µM down the sampling
318 transect. Lastly, chloride, a conservative tracer for evaporation, increased from 7.33 ± 3.13 at 0 m to
319 8.5 ± 4.84 mM at 5 m.

320 Although temporal geochemical characterization of the SC source waters indicated a relatively stable
321 influent for the outflow transect, across all locations average geochemical trends were dynamic. The
322 average temperature of all sample locations increased steadily from 49.7 ± 22.05 to 58.5 ± 15.71 °C
323 between May 2018 and August 2020. Mean dissolved organic carbon and total sulfur increased from
324 below the limit of quantification to 0.66 ± 0.06 mM and 189.7 ± 7.2 to 204.7 ± 3.55 µM,
325 respectively. Inversely, mean dissolved inorganic carbon and total arsenic decreased from 4.59 ± 0.11
326 to 4.26 ± 0.07 mM and 16.9 ± 0.8 to 13.5 ± 0.6 µM respectively over the same period. The trend of
327 decreasing dissolved inorganic carbon and total arsenic occurred temporally at all sample locations.
328 Similarly, increasing organic carbon temporally occurred at all sample locations. The average
329 concentrations of sulfate began high at 208.9 ± 64.25 , decreased to 170 ± 8.1 in July 2018, only to
330 rebound back to 208.7 ± 48.6 µM in August 2020. Minimal temporal trends at individual locations
331 were observed for sulfate and total sulfur, while pH measurements were stochastic. Consistently
332 detectable analytes displayed a relative standard deviation $< 22\%$ over time across all locations,
333 excluding sulfate ($< 32\%$).

334 3.3 Microbial Community Spatial and Temporal Dynamics

335 Pielou's evenness is a metric that quantifies microbial community taxa representation, with one being
336 a completely even community and zero being a community composed of a single species (Pielou,
337 1966). At SC, evenness was lowest at the vent source and increased down the outflow channel
338 (Figure 3). Evenness began at ~ 0.5 at the hydrothermal source and plateaued after 2 m between 0.6
339 and 0.8. Both spatial and temporal effects were statistically significant, $p = 0.00253$ and $p = 8.46 \times 10^{-5}$,
340 respectively. Pairwise statistical tests between dates indicated six statistically significant shifts
341 between dates (excluding 2017 due to only sampling at the source). Of note temporally, the decrease
342 in evenness between 2010 and 2020 displayed the greatest effect size ($r = 0.64$, $p = 0.005$) followed
343 by September 2018 to 2020 ($r = 0.58$, $p = 0.007$). Seven spatial pairwise comparisons were
344 statistically significant, with all evenness comparisons to 0 m determined to be significant. The
345 largest effect size was between 0 and 4 m ($r = 0.59$, $p = 0.019$).

346 Estimated richness, a metric estimating the total number of different taxa in the environment from the
347 sample population (Willis and Bunge, 2015), steadily increased down transect, ranging from ~ 35 taxa
348 at the source to ~ 80 taxa at the transect terminus. Spatial and temporal effects proved to be
349 statistically significant, $p = 4.2 \times 10^{-4}$ and $p = 8.7 \times 10^{-7}$, respectively. Pairwise statistical tests found six
350 temporally and four spatially significant changes in richness. The estimated richness in September

Dynamics of a Silicifying Hydrothermal System

351 2018 was significantly lower than all other sampling dates (excluding 2017 due to sampling), with
352 the largest effect size between September 2018 and 2010 ($r = 0.84, p = 5.8 \times 10^{-7}$). July 2018 and 2020
353 richness significantly shifted ($r = 0.54, p = 0.006$), a difference especially evident at locations greater
354 than 3 m. Estimated richness increased from 0 m to both 4 m ($p = 0.035, r = 0.51$) and 5 m ($p =$
355 $0.009, r = 0.59$), and 1 m to 4 m ($p = 0.007, r = 0.54$) and 5 m ($p = 0.004, r = 0.58$). Temporal trends
356 in richness at individual locations appeared stochastic and no statistically significant shifts were
357 determined (Figure 3). Statistical results for pairwise evenness/richness temporal and spatial
358 comparisons are summarized in Table S2.

359 The between sample diversity was examined both temporally and spatially using the Bray-Curtis
360 dissimilarity metric (Figure 4). Permanova analysis determined location ($R^2 = 0.06, p = 0.025$) and
361 time ($R^2 = 0.22, p = 0.0015$) as significant. Temporal-spatial interactions were determined to be the
362 most impactful ($R^2 = 0.28, p = 0.0015$), indicating significant shifts in community composition occur
363 over both time and space. Overall, two distance comparisons and 12 temporal comparisons displayed
364 significant shifts in the microbial community composition (Table S3). The microbial community
365 became significantly less similar from 2 to 3 m ($R^2 = 0.064, p = 0.03$) and 3 to 4 m ($R^2 = 0.066, p =$
366 0.019). All temporal pairwise comparisons with the initial 2010 samples and 2020 samples were
367 determined to be statistically different (Table S3).

368 Figure 4A illustrates the pairwise Bray-Curtis dissimilarity between a sample and the corresponding
369 previous sampling date since the initial 2010 sampling. Initial comparisons indicated high
370 dissimilarity across all locations sampled; however, the microbial communities became more similar
371 over time across the first three time points (excluding 0 m), which corresponds to the 2018 sampling
372 dates and less time between sampling events. After 3040 days since initial sampling (pairwise
373 between July and September 2018 samples) the microbial communities across different locations
374 became more stochastic and exhibited increasing variance. Indicating clear shifts in microbial
375 community composition increased in magnitude with increasing time between samplings. Only 2, 3,
376 and 4 m distances possessed significant temporal-spatial shifts. Figure 4B shows the Bray-Curtis
377 dissimilarity between two samples taken at different distances from the hydrothermal source with
378 increasing distance between sampling locations. Microbial communities at the same location, across
379 sampling dates, were highly similar and ranged from ~ 0.05 to ~ 0.5 , while samples the largest
380 distance apart (5 m) were completely dissimilar (~ 1). The microbial communities became less similar
381 as the distance between samples increased for all sampling dates. Temporal and spatial variance
382 comparisons between different dates or locations displayed similar distributions (Supplemental
383 Figure S5). The median Bray-Curtis temporal-spatial distance was the highest 0.88, which was
384 significantly more than the temporal ($p = 3.3 \times 10^{-23}$) and spatial ($p = 5.9 \times 10^{-12}$) variances, indicating
385 that the covariate of location and distance impacts the diversity of the microbial community more
386 than the corresponding individual variates.

387 3.4 Microbial Community Composition and Impact

388 The relative abundances of the 15 most abundant microbial taxa were examined to elucidate the
389 compositions of the microbial communities and the temporal-spatial changes (Figure 5). The top 15
390 taxa captured a majority of the total abundance across sampling times and locations ranging from
391 74% to 100%, excluding 2019 samples at 4 m (30.4%) and 5 m (35.7%). The hyperthermophile
392 genus *Thermocrinis* dominated the hydrothermal source microbial biofilm community, comprising
393 greater than 82% across all sampling dates (Huber et al., 2015), with large contributions ($> 12.5\%$)
394 from *Thermus* ASVs in July and September 2018. Overall, *Meiothermus* dominated the biofilm

395 system and was the most abundant genus across sampling dates and locations. When queried using
396 NCBI BLAST, the most abundant *Meiothermus* ASV was 99% identical to *Meiothermus ruber*
397 (heterotypic synonym *Thermus ruber*), a red pigmented obligately thermophilic, obligately aerobic
398 heterotroph isolated from a hot spring environment (Loginova et al., 1984). Relative abundances of
399 *Meiothermus* ranged drastically beyond the hydrothermal source, ranging from 0.2% at 5 m in 2019
400 to 77% at 2 m in September 2018. *Tepidimonas* was the next most abundant putative aerobic
401 heterotrophic microorganism and shared 99% similarity with *Tepidimonas taiwanensis* (Chen et al.,
402 2006). *Tepidimonas* comprised 11.6% of the community at 1 m in 2010 but was mostly absent from
403 locations further down the outflow and July/September 2018 samples. The genera *Raineyella* and
404 *Lewinella* round out the remaining putative aerobic heterotrophs in the top 15 taxa (Albuquerque et
405 al., 2018; Khan et al., 2007).

406 Potential sulfur oxidizers (*Thermocrinis* and *Tepidimonas*), sulfur reducer GBChlB, and variable
407 sulfur cycling *Chloroflexus* were well represented (Blank et al., 2002; Chen et al., 2006; Eder and
408 Huber, 2002; Huber et al., 1998; Stamps et al., 2014; Tang et al., 2011; Thiel et al., 2014). Potential
409 phototrophs represented the most numerous putative metabolism in the top 15 most abundant taxa.
410 Phototrophic genera *Chloracidobacterium*, *Geitlerinema* PCC 8501, *Chloroflexus*, GBChlB,
411 *Roseiflexus*, and *Leptococcus* JA-3-3Ab (formerly classified as *Synechococcus* sp. JA-3-3Ab,
412 currently *Leptococcus yellowstonii* (Walter et al., 2017)) were all highly represented along the SC
413 outflow channel (Bhaya et al., 2007; Liu et al., 2012; Tang et al., 2021; Tank and Bryant, 2015b;
414 Thiel et al., 2014). Overall, *Leptococcus* JA-3-3Ab was the second most abundant genus in the DNA
415 fraction and the most abundant genus in the 16S rRNA (rel. % cDNA abundance) analysis followed
416 by *Meiothermus* and *Geitlerinema* PCC 8501 (Supplemental Figure S6). *Tepidimonas* and *Rivularia*
417 PCC 7116, a cyanobacterium, round out the top five most abundant taxa in the rRNA data.

418 The percent relative abundances of the rRNA (cDNA) and rRNA gene (DNA) sequences of the top
419 eight taxa were compared to assess the activity versus presence of the microbial taxa (Supplemental
420 Figure S7). Although *Meiothermus*, *Leptococcus* and *Geitlerinema* were abundant in both cDNA and
421 DNA, *Meiothermus* was proportionally more abundant in DNA, while *Leptococcus* and *Geitlerinema*
422 were more abundant in cDNA. In this analysis, the proportional representation was interpreted as
423 microbial transcriptional activity versus microbial representation; therefore, *Leptococcus* and
424 *Geitlerinema* were transcriptionally more active than they were represented in the microbial
425 community, while *Meiothermus* was less. *Rivularia* PCC 7116 sequences, a putative phototroph,
426 displayed a similar trend as *Leptococcus* and *Geitlerinema*. These results could be attributed to the
427 fact that samples were collected during the day, inducing higher activity of phototrophs; however,
428 both *Chloracidobacterium* and *Chloroflexus* were less active than represented.

429 3.5 Microbial Taxa Influencing Community Dynamics

430 To investigate the taxonomic shifts of microorganisms occurring spatially and temporally,
431 differential abundance tests were conducted. Pairwise tests were conducted between sequential
432 locations or dates for the 16S rRNA gene and rRNA sequences at the genus level to determine which
433 genera were differentially abundant/active (Supplemental Figures S8-11). Thirty-three different
434 genera were determined to be differentially abundant in the rRNA gene fraction temporally, while 34
435 genera in the rRNA fraction were differentially abundant. Fifty-seven and 48 unique genera were
436 spatially differentially abundant in the rRNA gene and rRNA fractions respectively. Across all tests,
437 20 different genera were found to be differentially abundant in all instances. *Roseiflexus*, A4b family,
438 *Thermus*, and *Lewinella* were the only taxa in the top 15 not to be differentially abundant in all four
439 tests.

Dynamics of a Silicifying Hydrothermal System

440 Beta diversity analysis revealed how variable and dynamic microbial communities at SC can be
441 temporally and spatially. To better understand which taxa were driving these community shifts, a
442 SIMPER analysis was conducted at the genus level (Clarke, 1993). In total, ASVs in 104 instances
443 were determined to significantly contribute to dissimilarity between samples across time, belonging
444 to thirty unique genera. No ASVs significantly contributed to spatial dissimilarity between samples.
445 Of the top 15 most abundant taxa, only *Thermocrinis* and *Thermus* were not identified as significant
446 in the analysis.

447 To determine the temporal and spatial dynamics of key microorganisms at SC, genera determined to
448 be statistically significant in both the differential abundance and SIMPER analysis were subset and
449 examined (Figure 6). These taxa were the most temporal-spatially dynamic and acted as microbial
450 drivers for community shifts at SC. Fifteen genera were determined to be both significant drivers of
451 community change and dynamic temporal-spatially. To better decipher the observed dynamics of
452 these microorganisms, the most abundant ASV for each genus was run through NCBI BLAST where
453 the most similar cultured representatives were researched to determine the probable and optimal
454 putative metabolism associated with the ASV. This work revealed five general metabolisms in the 15
455 dynamic microorganisms: oxygenic and anoxygenic photosynthesis, aerobic anoxygenic
456 photosynthesis, chemoautotrophy, and heterotrophy. *Leptococcus* JA-3-3Ab, *Geitlerinema* PCC-
457 8501, *Leptolyngbya* FYG, and *Pseudanabaenaceae* family representatives predominantly grow as
458 oxygenic phototrophs (OPs, Bhaya et al., 2007; Bohunická et al., 2011; Bosak et al., 2012a; Cordeiro
459 et al., 2020; Momper et al., 2019; Tang et al., 2021), while *Chloroflexus* and *Chloracidobacterium*
460 predominantly grow as anoxygenic phototrophs (APs, Tang et al., 2011; Tank and Bryant, 2015b,
461 2015a; Thiel et al., 2014). Aerobic anoxygenic phototrophs (AAP) were represented by *GBChlB* and
462 *Tabrizicola* (Liu et al., 2012; Tarhriz et al., 2013, 2019). ASVs belonging to the
463 *Methylacidiphilaceae* family, chemoautotrophs, shared 99.47% similarity to the methanotrophs
464 *Methylacidiphilum infernorum* and *Methylacidiphilum kamchatkense* (Hou et al., 2008; Kruse et al.,
465 2019). The remaining taxa *Raineya*, *Meiothermus*, *Tepidimonas*, *Thermoflexibacter*, *Saprosiraceae*
466 Family, and WD2101 soil group family were all identified as heterotrophs (Albuquerque et al., 2009,
467 2018; Chen et al., 2006; Dedysh et al., 2021; Hahnke et al., 2016; Lewin and Lounsberry, 1969;
468 McIlroy and Nielsen, 2014; Tindall et al., 2010; Xia et al., 2008).

469 Comparatively, multiple dynamics were displayed within each putative metabolism both temporally
470 and spatially. Heterotrophs *Raineya*, *Thermoflexibacter*, *Saprosiraceae* family, and WD2101 soil
471 group family increased in abundance down the outflow; however, *Meiothermus* and *Tepidimonas*
472 became abundant (>50% or >10% respectively) at 1 m and persisted until 4 and 5 m, respectively.
473 *Meiothermus* and *Tepidimonas* often coexisted at steady abundances temporally and spatially, with
474 *Meiothermus* often ranging from 20 to 70% and *Tepidimonas* from 2 to 15%. *Raineya*,
475 *Thermoflexibacter*, *Saprosiraceae* family, and WD2101 soil group family exhibited the same trend
476 in the 16S rRNA sequencing data (Supplemental Figures S12), becoming more active with increasing
477 distance from the hydrothermal source. *Meiothermus* was more abundant closer to the source (~50%)
478 and steadily decreased to <10% down the transect in the rRNA fraction, a trend that was not present
479 in the rRNA gene data. Also, *Meiothermus* steadily decreased in rRNA abundance temporally across
480 all distances (except 1 m), while *Tepidimonas* mirrored its 16S rRNA gene trend.

481 Of the four dynamic OPs, all except *Leptococcus* JA-3-3Ab increased in abundance down the
482 transect. *Geitlerinema* PCC-8501 and *Leptococcus* JA-3-3Ab were the two most abundant
483 phototrophs, ~20% and ~40% respectively, and exhibited spatially inverse trends that overlapped
484 between 2 and 5 m. *Leptolyngbya* FYG and *Pseudanabaenaceae* family displayed similar trends

485 spatially; however, *Pseudanabaenaceae* was mostly present in 2019 at 4 and 5 m. AP
486 microorganisms displayed inverse spatial abundances, *Chloracidobacterium* increased from <1% to
487 ~50% abundance after 5 m, while *Chloroflexus* decreased from 30% at 1 m to <5% at 5 m. Unlike the
488 OPs and APs, the two AAPs exhibit the same spatial trend, increasing with increasing distance from
489 the hydrothermal source. *GBChlB* increased from <1% abundance to >30% while *Tabrizicola*
490 increased from 0% to ~4%. *Tabrizicola* displayed pulses of increased abundance in May 2018 and
491 2019 leading to increased abundance closer to the source, while *GBChlB* decreased in overall
492 abundance from 20% in 2010 to ~5% in 2020. Unlike the dynamic heterotrophic taxa, phototrophs
493 displayed similar trends in both the rRNA and rRNA gene sequencing data.

494 **4 Discussion**

495 Actively silicifying hydrothermal systems are the modern analogs of ancient silicified rock deposits
496 and the microfossils preserved therein. To determine the geomicrobiological dynamics of an actively
497 silicifying hydrothermal system we tracked both microbial communities via 16S rRNA/rRNA gene
498 sequencing of biofilms as well as aqueous geochemistry along the geyser outflow channel. Overall,
499 geochemical conditions were steady at individual locations with minimal variation over a decade, but
500 distinct microbial gradients likely tied to temperature existed as the waters moved from the
501 hydrothermal source to the sampled transect terminus. Contrary to geochemical stability, microbial
502 communities exhibited temporal dynamics resulting from fluctuations in the relative abundances of
503 key microorganisms. Furthermore, microbial taxa exhibited genera-specific spatial stratification.
504 Conceptually, the abiotic impactors that influence degassing, cooling, and geochemical oxidation
505 remained constant due to the open nature of the system (Nordstrom et al., 2005). Yet, biotic
506 influences such as biological sulfide or arsenic oxidation could vary as indicated by the dynamic
507 nature of the microbial communities. Therefore, we postulate that temporal geochemical outflow
508 stability is attributed to consistent abiotic forces and microbial community metabolic redundancy.
509 Further investigation is needed to disentangle the extent and magnitude of these effects on outflow
510 waters. By conducting a paired temporal and spatial study, we show that the limits of geological end-
511 point studies may be constrained to silicified microfossils and their proximity to a hydrothermal vent
512 source.

513 In hot springs, differences in geochemistry (e.g., aqueous chemistry, temperature, dissolved oxygen,
514 etc.) play a large role in dictating the possible microbial communities present. Any shifts in
515 geochemistry, particularly temperature, over time could alter the observable microbial communities.
516 The geochemistry was largely stable spatially at SC, which is indicative of the complex interplay
517 between abiotic and potential biotic forces with similar trends observed at other hot spring systems
518 (Figures 2 and S4, Costa et al., 2009; Swingley et al., 2012). The oligotrophic source waters at SC
519 remained steady throughout the ten-year sampling period, showing minimal significant changes in
520 the major analytes (Table 1). The stability of the source is largely attributable to a predominantly
521 hydrothermal hydrological reservoir feeding SC (Nordstrom et al., 2009). Waters that reside deeper
522 in the subsurface receive minimal meteoric water input and therefore have less influence from
523 heterogeneous shallow subsurface geology and precipitation variability (Fournier, 1989). As the
524 hydrothermal waters cool along the SC outflow from 0 to 1 m, a major temperature threshold was
525 crossed (72/73°C, the upper limit of photosynthesis, (Brock, 1978; Kees et al., 2022)) allowing for
526 the proliferation of phototrophs such as *Leptococcus* and *Geitlerinema*. Such a major shift in
527 detectable microbial communities indicates that temperature is critical in the establishment of
528 fundamental niches at SC, a precedent previously established at other biomat locations (Bennett et
529 al., 2020; Wang et al., 2013). Temperature also appears important for the shift in major members of
530 the community as a pulse in increased abundance of mesophilic *Meiothermus*, *Tepidimonas*, *Raineya*,

Dynamics of a Silicifying Hydrothermal System

531 and the WD2102 soil group in May 2018 corresponds with cooler temperatures, especially at 2, 3,
532 and 4 m (Figures 2 and 5). *Meiothermus* and *Tepidimonas taiwanensis* possess optimal growth
533 temperatures of 60 and 55°C respectively (Albuquerque et al., 2009; Chen et al., 2006; Tindall et al.,
534 2010), and are most abundant between 1 and 5 m for *Meiothermus* or 1 and 4 m for *Tepidimonas*
535 (Figures 5 and 6). Our results indicate a narrower temperature range for *Tepidimonas* growth than
536 previous laboratory experiments with abundance plummeting below 40°C (Chen et al., 2006).
537 Furthering thermally induced spatial stratification, *Raineya* ($T_{opt} = 50^{\circ}\text{C}$) and WD2101 soil group
538 (observed range = 47–50°C) taxa became more abundant down transect beginning at 2 and 3 m
539 respectively (Albuquerque et al., 2018; Dedysh et al., 2021).

540 While temperature is critical in the establishment of niches within SC, nutrient limitation likely
541 controls maximum productivity (i.e., biofilm thickness) down channel and may also influence the
542 presence of microorganisms adapted to nutrient limiting conditions. Measured phosphorus and
543 nitrogen species remained consistently low or below our quantification limits along the outflow,
544 suggesting that SC is limited in both phosphorus and nitrogen. While nitrogen could be sourced from
545 atmospheric nitrogen and N_2 fixing phototrophs, it remains unclear how phosphorus is sourced to
546 sustain a thriving microbial biofilm. There is precedence for microbial growth in oligotrophic
547 environments under highly limiting phosphate conditions (Erb et al., 2012). Steep Cone is
548 geographically isolated as an elevated platform in the middle of Sentinel Meadow and
549 hydrothermally sourced high-chloride springs have been shown to receive minimal subsurface
550 phosphorus (Stauffer and Thompson, 1978). Dust and animal inputs (e.g. insects, bison) likely
551 represent the primary inputs of phosphorus into the system as has been shown previously in other
552 phosphorus limited spring systems (Strumness, 2006). Inorganic carbon (DIC) concentrations
553 remained consistently high down the transect, while organic carbon (DOC) concentrations remained
554 consistently low. This is surprising considering the carbon requirement for actively growing
555 phototrophic community members, which due to low initial DOC input would predominantly grow
556 photoautotrophically. Evidence of robust phototrophic microorganisms would inherently introduce
557 more organic carbon into the system down transect, which is not observed. We surmise that
558 phototrophically fixed carbon remains bound in the biofilms and that heterotrophs consume this
559 organic carbon prior to dissolution into the overlying waters. While the steady concentration of DIC
560 along the outflow would indicate minimal autotrophic consumption, chloride concentrations down
561 transect indicate evaporation trends (Swingley et al., 2012), which would in turn continuously act as
562 a concentration mechanism offsetting any metabolic consumption of DIC. The requirement for
563 carbon and nitrogen fixation and minimal input of bioavailable phosphorus likely limit productivity
564 at SC.

565 With a limited pool of nutrients, the biofilms at SC are thin and adhere to the mineral crust at the
566 surface. The sampled biofilm at SC was 1 to 3 mm thick, much thinner than the classically studied
567 stratified biomats such as Mushroom Spring (YNP), which are multiple cm thick (Thiel et al., 2017;
568 Wörmer et al., 2020). Despite how thin the sampled biomat was, microbial abundance data and
569 putative metabolisms points towards a depth stratified biofilm (Figure 6), especially further down the
570 transect. In accordance with previous studies of stratified biofilms and biomats, OPs and APs occupy
571 the top and bottom layers of the mat respectively (Boomer et al., 2009; Thiel et al., 2017; Wörmer et
572 al., 2020). We propose AAPs occupy the interface between OPs and APs in the biofilm at SC, and
573 potentially fluctuate higher or lower in the biofilm based upon metabolic needs. AAPs have been
574 shown to be aerobic, possess bacteriochlorophyll *a*, and the versatility to thrive in oligotrophic
575 environments (Kolber et al., 2001; Suyama et al., 2002). *Tabrizicola aquatica*, an AAP, was shown
576 to be metabolically capable of chemotrophic and phototrophic growth via bacteriochlorophyll *a*, yet

577 it requires oxygen and cannot grow under anaerobic phototrophic conditions (Tarhriz et al., 2019),
578 which would spatially place *Tabrizicola* found at SC between the OPs and APs based upon growth
579 requirements.

580 With the fundamental niches of SC established by temperature gradients and nutrient limitation we
581 also observed microorganisms that were putatively linked to three general metabolic categories:
582 phototrophy, heterotrophy, and sulfur cycling microorganisms. Due to the oligotrophic source waters,
583 phototrophs such as *Leptococcus*, *Geitlerinema*, and *Chloroflexus* act as the primary producers in the
584 system after 1 m, while *Thermocrinis* and *Thermus*, the only inhabitants at the source, are likely
585 thriving via lithotrophic metabolisms under the extreme temperatures, low DOC/high DIC waters at
586 the source (Caldwell et al., 2010; Zhou et al., 2020). Additionally, the presence of heterotrophs
587 corresponds to locations exhibiting the proliferation of phototrophs, linking heterotroph reliance on
588 phototrophs as the primary producers of reduced carbon substrates at SC. Heterotroph and phototroph
589 abundances combined with DIC/DOC data further support the above hypothesis regarding carbon
590 consumption (Figures 2 and 6).

591 The dynamics between phototrophic microorganisms at SC are more complex than the heterotrophic
592 component. The temporal trends and drivers of phototrophic shifts are separated by the potential type
593 of photosynthesis carried out by different microorganisms that drive community shifts (Figure 6). For
594 example, the cyanobacteria *Leptococcus* and *Geitlerinema* display an inverse spatial distribution, and
595 both are present in high abundances across time from 2 to 4 m, indicating potential niche
596 competition. Yet, *Leptococcus* genera have been shown to be capable of photoautotrophy,
597 photoheterotrophy, and chemoorganotrophy (Bhaya et al., 2007), while *Geitlerinema* have the
598 potential to perform both oxygenic photosynthesis or anoxygenic photosynthesis using H₂S as an
599 electron donor (Hamilton et al., 2018; Momper et al., 2019; Tang et al., 2021). *Leptolybya* mimic
600 the metabolic capabilities of *Geitlerinema* (Bosak et al., 2012b; Hamilton et al., 2018). Similarly,
601 AAPs display location and temporal overlap at SC. AAPs have been shown to be metabolically
602 diverse and highly adaptive, capable of compensating for low DOC concentrations by increasing
603 bacteriochlorophyll *a* and photosynthetic production (Beatty et al., 2002; Suyama et al., 2002;
604 Tarhriz et al., 2019). APs *Chloroflexus* and *Chloracidobacterium* display temporal and spatial
605 overlap in the middle reaches of the transect (2-4 m) and earlier sampling dates (Figure 6, 2010 and
606 2018s). While *Chloracidobacterium* display minimal metabolic flexibility, primarily growing only
607 anoxygenic photoheterotrophically (Tank and Bryant, 2015b, 2015a), *Chloroflexus* have been shown
608 to be metabolically robust, capable of anoxygenic photoautotrophy, photoheterotrophy, aerobic
609 chemoorganotrophy, and capable of utilizing various sulfur species (Nübel et al., 2001; Tang et al.,
610 2011; Thiel et al., 2014). Therefore, metabolic flexibility may allow the identified OPs, AAPs, and
611 APs to thrive at the same locations and times at SC. This flexibility does appear to have its limits as
612 we observed ebb and flow of the 15 genera responsible for community shifts over the sampling
613 period.

614 Upon inspection of the distribution and abundances of various phototrophs at SC, both growth down
615 transect and biofilm stratification relationships emerge (Figure 6). In agreement with heterotrophic
616 spatial stratification, phototrophs expectedly distribute along their optimal growth temperature
617 ranges. For example, *Chloroflexus* and *Chloracidobacterium*, both potential anoxygenic phototrophs
618 (AP), were shown to have optimal growth ranges of 52-60 and 44-58°C respectively (Pierson and
619 Castenholz, 1974; Tank and Bryant, 2015b), and abundance data illustrates an inverse relationship
620 with *Chloroflexus* decreasing (>30% to <10%) while *Chloracidobacterium* increases (<5% to ~ 50%)
621 from 1 to 5 m (Figure 5). The spatial abundance patterns of the oxygenic phototrophic (OP)
622 cyanobacteria *Leptococcus* and *Geitlerinema* mirror the APs inverse relationship with their closest

Dynamics of a Silicifying Hydrothermal System

623 representatives via BLAST exhibiting optimal growth temperature of 62 and 40°C respectively
624 (Allewalt et al., 2006; Tang et al., 2021). In all dynamic genera, taxa shown to have higher growth
625 temperatures were found to have greater abundance than similar taxa with lower growth
626 temperatures, despite the measured outflow temperatures being complementary to the latter's
627 optimum. These results further support that spatial growth is being driven by the temperature
628 gradient along the outflow at SC.

629 While no microbial taxa were determined to be significant drivers spatially, numerous genera shifted
630 community diversity temporally. Here, we contend that a combination of niche competition, potential
631 metabolic flexibility, and geochemistry contributes to the proliferation and fall of significant taxa that
632 drive community change. *Meiothermus*, *Tepidimonas*, and *Raineyea* were shown to occupy similar
633 locations spatially, possess similar putative metabolisms, but often coexist at the same times in
634 abundances greater than 10% (Figures 5 and 6, 2010, May 2018, 2019, 2020). Their similar lifestyles
635 suggest niche competition in the oligotrophic waters at SC. *Meiothermus* and *Raineyea* species have
636 been shown to be aerobic chemoorganotrophs, while *Tepidimonas* are aerobic
637 chemolithoheterotrophs capable of oxidizing reduced sulfur compounds to sulfate (Albuquerque et
638 al., 2018; Moreira et al., 2000; Tindall et al., 2010). We observed sulfur oxidation along the outflow
639 to predominately SO_4^{2-} after 5 m (Figure 2). This potential metabolic flexibility may allow
640 *Tepidimonas* to thrive concurrently with other abundant mesophilic heterotrophs. While previous
641 work at a similar hot spring system attributed a majority of sulfur oxidation to abiotic forces
642 (Nordstrom et al., 2005), sulfur oxidizing microorganisms are present along the outflow transect and
643 likely contribute to the observed sulfate concentrations.

644 One final, possibly cryptic metabolic niche at SC is arsenic cycling. Arsenic concentration increased
645 down the transect; the driver for the observed increase is supported by evaporative concentration not
646 arsenic dissolution, which has been shown not to be present at the SC deposit (Gangidine et al., 2020;
647 Yokoyama et al., 2004). Of the taxa present at SC, only *Thermocrinis* and *Thermus* have been linked
648 to metabolic arsenic cycling (Caldwell et al., 2010; Hartig et al., 2014; Zhou et al., 2020) and were
649 observed at the hydrothermal vent but not further down the transect. The lack of metabolically active
650 nutrients within the SC source waters and comparatively high arsenic concentrations indicates a
651 potential unexplored (and undetected) metabolic niche for arsenic cycling microorganisms at SC,
652 especially anoxygenic photosynthesis coupled to arsenic oxidation (Kulp et al., 2008; Oremland and
653 Stolz, 2003).

654 While specific microbial taxa are important at SC, the richness and distribution of microbial
655 communities present throughout the geyser system over time are critical to understanding how the
656 system evolves. Richness analysis illustrated the proliferation of microbial taxa (*i.e.*, increased
657 number of observed taxa) down the outflow, indicating the importance of cooling waters in the
658 amount of diversity at any given location (Figure 3). In essence, as the hydrothermal waters cool, less
659 selective pressure is placed upon the microbial communities allowing for a greater number of unique
660 taxa to find a foothold and live. Similarly, evenness increased from source to terminus plateauing at 2
661 m and ~50°C (Figure 3). These results indicate that the ceiling on evenness is the selective
662 temperature gradient and oligotrophic system acting upon the microbial communities. The
663 oligotrophic water of the spring indicates that while more unique taxa can live as the temperature
664 regime cools, they are competing for the same limited resources (*e.g.*, organic carbon, nitrogen, and
665 phosphorus), resulting in only a few metabolically viable niches for new taxa. Sulfate concentrations
666 similarly stagnate after 2 m indicating an oxidized environment (Figure 2, Nordstrom et al., 2005),
667 causing marginalization of sulfate oxidative metabolisms. Therefore, after 2 m and limiting

668 resources, there is a dominant taxon that occupies any given niche (i.e., *Leptococcus* or *Meiothermus*
669 for 2 – 4 m, Figure 6) that is the most fit given the environmental conditions, while other less fit taxa
670 and less abundant taxa compete over remaining nutrients, a dynamic that leads to increased richness
671 and reduced evenness. We posit that after 2 m at SC, there are four generalized niches for most
672 microorganisms to thrive: OP, AAP, AP, and heterotrophy.

673 Increasing richness and the observed plateau of evenness at SC elucidated the unique interplay
674 between selective pressures and limitations in oligotrophic environments, while beta diversity metrics
675 provide similar insights between entire microbial communities (Figure 4). The microbial
676 communities at SC not only became more taxonomically rich along the exit, but also became less
677 similar (Figure 4B). As microbial communities increased in distance from one another, geochemical
678 parameters and temperature were likewise drastically different (e.g., significantly cooler water
679 temperatures from source to terminus). It is therefore no surprise that the microbial communities at
680 the boiling hydrothermal source were 100% different via Bray-Curtis comparison from the microbial
681 communities 5 m away from the source and ~55°C cooler. At intermediate distances from the source,
682 Bray-Curtis dissimilarity also decreased (communities became more similar) with increasing distance
683 between samples from 1 to 5 m. We attribute this to the presence of many taxa shared across the
684 intermediate sample distances, while the end-member distances illustrate the extremes of the sampled
685 thermal gradient. No ASVs were determined to significantly shift the microbial communities along
686 the outflow channel; thus, the distinct decrease in similarity along the outflow further supports
687 temperature driven spatial stratification of microbial communities. Analyzing beta diversity variance
688 trends at SC also exhibited how taking only single timepoint (i.e., endpoint) measurements may miss
689 the sporadic observed temporal dynamics of a hot spring (Figure 4A). Variance across all locations
690 increased as the number of days after initial sampling increased, illustrating diverging similarities
691 locationally. Specifically, SIMPER analysis for 2019 and 2020 sampling events implicate abundance
692 shifts in *Meiothermus*, *Geitlerinema* PCC-8501, and *Tuwongella* (a potential heterotroph, Seeger et
693 al., 2017) as the main contributors to community change. *Meiothermus* was highly abundant across
694 most locations in September 2018 and 2020 samples, but only present at 2 and 3 m in 2019.
695 *Geitlerinema* similarly disappears and reappears over the same period. Therefore, significant changes
696 in temporal microbial diversity are driven by abundance shifts of the top 15 most abundant taxa over
697 yearly time scales, potentially influencing the findings of studies that may only come upon a
698 silicifying hydrothermal system after it has lithified.

699 Further research regarding silification of microorganisms is ongoing; however, the dynamic nature
700 of the microbial communities and dominant taxa comprising these communities is undeniable and
701 should give pause to any research attempting to draw firm microbiological conclusions from
702 entombed microorganisms. Microbial communities differentiate along outflow channels and
703 temporally, causing end point conclusions of the silicified rock record to become constrained. One
704 common method to identify lithified or ancient microbial communities is by scanning electron
705 microscopy (SEM) and making inferences based on cell type (e.g., filaments, rods, etc.) In agreement
706 with previous work that identified filaments as the predominant morphology in silicified
707 environments, our taxonomic and SEM work shows similar trends (Figures S2 and S3). Genera such
708 as *Geitlerinema*, *Leptolyngbya*, and *Leptococcus* are highly abundant and potentially filamentous
709 (Bhaya et al., 2007; Bohunická et al., 2011; Hamilton et al., 2018). Similarly, the biofilms observed
710 with SEM imaging were dominated by filamentous structures amidst a thick coat of EPS. Taxa
711 associated with rod-shaped morphologies are also present and abundant such as *Meiothermus*,
712 *Thermocrinis*, and *Tabrizicola*. These taxa have also been shown to form filaments under certain
713 conditions (Albuquerque et al., 2009; Eder and Huber, 2002; Nobre et al., 1996; Tarhriz et al., 2019)
714 potentially confounding any results that may only draw from SEM to establish ancient microbial

Dynamics of a Silicifying Hydrothermal System

715 community composition. Fluid flow induced filament/trichome formation by rod or coccoid cells
716 along the outflow channel may also explain the relative dearth of nonfilamentous morphologies
717 visible in the biofilm or silicified microfossils, a phenomenon previously documented in
718 *Staphylococcus aureus* (Kevin Kim et al., 2014). 16S rRNA and rRNA gene analysis indicate that the
719 mere presence of microbial taxa may not be indicative of their impact on the ecosystem (Figures S7
720 and S12). For example, *Meiothermus* is more abundant in the rRNA gene fraction than the rRNA,
721 while *Leptococcus* is more abundant in the rRNA fraction, indicating *Leptococcus* is
722 disproportionately more active in the system than it is represented. We show that while geochemical
723 stability exists over large periods of time, the microbial communities in silicifying hot spring systems
724 can be highly dynamic over yearly periods. As a result, we emphasize that caution should be taken
725 when extrapolating end-point findings of the silicified rock record to predict ancient ecosystems.

726 5 Conclusion

727 This study employed 16S rRNA and rRNA gene sequencing in combination with geochemical
728 analysis to characterize both the temporal and spatial dynamics of microbial communities along the
729 outflow of an actively silicifying hydrothermal system. We determined the distinct drivers of
730 microbial community change temporally and spatially, especially how microorganisms arise and fall
731 through both time and space. Our results indicate that community stratification is primarily due to
732 temperature gradients along the outflow channel. Hyperthermophiles such as *Thermocrinis* dominate
733 the source biofilm communities while thermotolerant microorganisms proliferate with *Leptococcus*
734 and *Meiothermus* being major constituents at the middle outflow locations and finally giving way to
735 mesophilic taxa at the end of the sampled transect. Phototrophy likely contributes the majority of
736 observed organic carbon and places fundamental limits upon the total possible productivity of the
737 biofilms. The results further indicate that the microbial communities undergo large changes yearly,
738 driven by the ebb and flow of dominant taxa along the outflow. Geochemical and taxonomic analysis
739 indicate that limited metabolic niches are present along the oligotrophic outflow. Furthermore,
740 distinct phototrophic community members such as *Leptococcus*, *Tabrizicola*, and
741 *Chloracidobacterium* are dominant representatives of distinct phototrophs acting as the primary
742 producers for the outflow system which support growth of thermotolerant heterotrophs such as
743 *Tepidimonas*. Critically we caution that the dynamic nature of microbial communities within a
744 hydrothermal ecosystem could influence our ability to interpret the silicified rock record.

745 6 Data availability statement

746 The datasets and R code for data processing may be found in online repositories. Sequencing raw
747 read are available through NCBI sequencing read archive, accession number PRJNA931285.

748 7 Author Contributions

749 KR led the study design and focus. SU conducted field sampling in 2010, while KR led all
750 subsequent field campaigns with aid from BS and JS. Laboratory work and results processing was
751 conducted by KR. KR analysed results. GV aided in data processing. KR wrote the manuscript and
752 all authors reviewed, edited, and approved the submitted article.

753 8 Funding

754 This research was funded by a grant from The Edna Bailey Sussman Fund and The Geological
755 Society of America awarded to KR. Additional funds were provided by a NASA Exobiology grant
756 (80NSSC19K0479) awarded to JS.

757 **9 Acknowledgements**

758 We would like to thank Annie Carlson at the Yellowstone Center for Resources for help and
759 guidance regarding sampling and permitting for Yellowstone National Park. All samples were
760 collected under Yellowstone permit number YELL-5664 to JS. Field work was supported by Eilish
761 Spear, Alex Honeyman, Michael Vega, Kevin Chan, Chris Trivedi, Aiyana Spear, and Emma
762 Harrison.

763 **10 Conflict of interest**

764 The authors declare that the research was conducted in the absence of any commercial or financial
765 relationships that could be construed as a potential conflict of interest.

766 **11 Supplementary material**

767 The Supplementary Material for this article can be found online at: (link)

768 **12 Abbreviations**

769 SC: Steep Cone Geyser, DIC: dissolved inorganic carbon, DOC: dissolved organic carbon, ASV:
770 amplicon sequence variant, EPS: extracellular polymeric substances, LOQ: limit of quantification,
771 SIMPER: similarity percentages, OP: oxygenic phototroph, AP: anoxygenic phototroph, AAP:
772 aerobic anoxygenic phototroph, SEM: scanning electron microscope

773 **13 References**

774 Albuquerque, L., Ferreira, C., Tomaz, D., Tiago, I., Veríssimo, A., da Costa, M. S., et al. (2009).
775 *Meiothermus rufus* sp. nov., a new slightly thermophilic red-pigmented species and emended
776 description of the genus *Meiothermus*. *Syst. Appl. Microbiol.* 32, 306–313.
777 doi:10.1016/J.SYAPM.2009.05.002.

778 Albuquerque, L., Polónia, A. R. M., Barroso, C., Froufe, H. J. C., Lage, O., Lobo-Da-Cunha, A., et
779 al. (2018). *Raineya orbicola* gen. nov., sp. nov. a slightly thermophilic bacterium of the phylum
780 bacteroidetes and the description of *raineyaceae* fam. nov. *Int. J. Syst. Evol. Microbiol.* 68, 982–
781 989. doi:10.1099/IJSEM.0.002556/CITE/REFWORKS.

782 Allewalt, J. P., Bateson, M. M., Revsbech, N. P., Slack, K., and Ward, D. M. (2006). Effect of
783 Temperature and Light on Growth of and Photosynthesis by *Synechococcus* Isolates Typical of
784 Those Predominating in the Octopus Spring Microbial Mat Community of Yellowstone
785 National Park. *Appl. Environ. Microbiol.* 72, 544–550. doi:10.1128/AEM.72.1.544-550.2006.

786 Andersen, K. S., Kirkegaard, R. H., Karst, S. M., and Albertsen, M. (2018). *ampvis2*: an R package
787 to analyse and visualise 16S rRNA amplicon data. doi:10.1101/299537.

788 Barnett, D. J. m., Arts, I. C. w., and Penders, J. (2021). *microViz*: an R package for microbiome data
789 visualization and statistics. *J. Open Source Softw.* 6, 3201. doi:10.21105/JOSS.03201.

Dynamics of a Silicifying Hydrothermal System

790 Beatty, J. T., Shiba, T., Shimada, K., Suyama, T., Verméglia, A., Yurkov, V., et al. (2002). On the
791 natural selection and evolution of the aerobic phototrophic bacteria. *Photosynth. Res.* 2002 731
792 73, 109–114. doi:10.1023/A:1020493518379.

793 Bennett, A. C., Murugapiran, S. K., and Hamilton, T. L. (2020). Temperature impacts community
794 structure and function of phototrophic Chloroflexi and Cyanobacteria in two alkaline hot springs
795 in Yellowstone National Park. *Environ. Microbiol. Rep.* 12, 503–513. doi:10.1111/1758-
796 2229.12863.

797 Benning, L. G., Phoenix, V. R., and Mountain, B. W. (2005). “Biosilicification: The role of
798 cyanobacteria in silica sinter deposition,” in *Micro-Organisms and Earth Systems - Advances in
799 Geomicrobiology: Published for the Society for General Microbiology*, 131–150.
800 doi:10.1017/CBO9780511754852.008.

801 Bhaya, D., Grossman, A. R., Steunou, A. S., Khuri, N., Cohan, F. M., Hamamura, N., et al. (2007).
802 Population level functional diversity in a microbial community revealed by comparative
803 genomic and metagenomic analyses. *ISME J.* 1, 703–713. doi:10.1038/ismej.2007.46.

804 Blank, C. E., Cady, S. L., and Pace, N. R. (2002). Microbial composition of near-boiling silica-
805 depositing thermal springs throughout Yellowstone National Park. *Appl. Environ. Microbiol.* 68,
806 5123–5135. doi:10.1128/AEM.68.10.5123-5135.2002.

807 Bohunická, M., Johansen, J. R., and Fučíková, K. (2011). *Tapinothrix clintonii* sp. nov.
808 (Pseudanabaenaceae, Cyanobacteria), a new species at the nexus of five genera. *Fottea* 11, 127–
809 140. doi:10.5507/fot.2011.013.

810 Boomer, S. M., Noll, K. L., Geesey, G. G., and Dutton, B. E. (2009). Formation of multilayered
811 photosynthetic biofilms in an alkaline thermal spring in Yellowstone national Park, Wyoming.
812 *Appl. Environ. Microbiol.* 75, 2464–2475. doi:10.1128/AEM.01802-08.

813 Bosak, T., Liang, B., Wu, T.-D., Templer, S. P., Evans, A., Vali, H., et al. (2012a). Cyanobacterial
814 diversity and activity in modern conical microbialites. *Geobiology* 10, 384–401.
815 doi:10.1111/j.1472-4669.2012.00334.x.

816 Bosak, T., Liang, B., Wu, T. D., Templer, S. P., Evans, A., Vali, H., et al. (2012b). Cyanobacterial
817 diversity and activity in modern conical microbialites. *Geobiology* 10, 384–401.
818 doi:10.1111/j.1472-4669.2012.00334.x.

819 Bradley, J. A., Daille, L. K., Trivedi, C. B., Bojanowski, C. L., Stamps, B. W., Stevenson, B. S., et al.
820 (2017). Carbonate-rich dendrolitic cones: Insights into a modern analog for incipient
821 microbialite formation, Little Hot Creek, Long Valley Caldera, California. *npj Biofilms
822 Microbiomes* 3. doi:10.1038/s41522-017-0041-2.

823 Bray, J. R., and Curtis, J. T. (1957). An Ordination of the Upland Forest Communities of Southern
824 Wisconsin. *Ecol. Monogr.* 27, 325–349. doi:10.2307/1942268.

825 Briggs, B. R., Brodie, E. L., Tom, L. M., Dong, H., Jiang, H., Huang, Q., et al. (2014). Seasonal
826 patterns in microbial communities inhabiting the hot springs of Tengchong, Yunnan Province,
827 China. *Environ. Microbiol.* 16, 1579–1591. doi:10.1111/1462-2920.12311.

828 Brock, T. D. (1978). *Thermophilic Microorganisms and Life at High Temperatures*. 1st ed. , ed. M.
829 P. Starr New York, Heidelberg, Berlin: Springer-Verlag.

830 Caldwell, S. L., Liu, Y., Ferrera, I., Beveridge, T., and Reysenbach, A. L. (2010). Thermocrinis
831 minervae sp. nov., a hydrogen- and sulfur-oxidizing, thermophilic member of the Aquificales
832 from a Costa Rican terrestrial hot spring. *Int. J. Syst. Evol. Microbiol.* 60, 338–343.
833 doi:10.1099/ijss.0.010496-0.

834 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P.
835 (2016). DADA2: High-resolution sample inference from Illumina amplicon data. *Nat. Methods*
836 13, 581–583. doi:10.1038/nmeth.3869.

837 Chen, M. Y., Chen, J. W., Wu, L. W., Huang, K. C., Chen, J. Y., Wu, W. S., et al. (2020).
838 Carcinogenesis of Male Oral Submucous Fibrosis Alters Salivary Microbiomes.
839 <https://doi.org/10.1177/0022034520968750> 100, 397–405. doi:10.1177/0022034520968750.

840 Chen, T. L., Chou, Y. J., Chen, W. M., Arun, B., and Young, C. C. (2006). Tepidimonas taiwanensis
841 sp. nov., a novel alkaline-protease-producing bacterium isolated from a hot spring.
842 *Extremophiles* 10, 35–40. doi:10.1007/s00792-005-0469-9.

843 Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. *Aust.*
844 *J. Ecol.* 18, 117–143. doi:10.1111/j.1442-9993.1993.tb00438.x.

845 Colman, D. R., Lindsay, M. R., Harnish, A., Bilbrey, E. M., Amenabar, M. J., Selensky, M. J., et al.
846 (2021). Seasonal hydrologic and geologic forcing drive hot spring geochemistry and microbial
847 biodiversity. *Environ. Microbiol.* 23, 4034–4053. doi:10.1111/1462-2920.15617.

848 Cordeiro, R., Luz, R., Vasconcelos, V., Gonçalves, V., and Fonseca, A. (2020). Cyanobacteria
849 Phylogenetic Studies Reveal Evidence for Polyphyletic Genera from Thermal and Freshwater
850 Habitats. *Divers. 2020, Vol. 12, Page 298* 12, 298. doi:10.3390/D12080298.

851 Costa, K. C., Navarro, J. B., Shock, E. L., Zhang, C. L., Soukup, D., and Hedlund, B. P. (2009).
852 Microbiology and geochemistry of great boiling and mud hot springs in the United States Great
853 Basin. *Extremophiles* 13, 447–459. doi:10.1007/S00792-009-0230-X/FIGURES/5.

854 Cox, A., Shock, E. L., and Havig, J. R. (2011). The transition to microbial photosynthesis in hot
855 spring ecosystems. *Chem. Geol.* 280, 344–351. doi:10.1016/j.chemgeo.2010.11.022.

856 Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., and Callahan, B. J. (2018). Simple
857 statistical identification and removal of contaminant sequences in marker-gene and
858 metagenomics data. *Microbiome* 6, 1–14. doi:10.1186/s40168-018-0605-2.

859 Dedysh, S. N., Beletsky, A. V., Ivanova, A. A., Kulichevskaya, I. S., Suzina, N. E., Philippov, D. A.,
860 et al. (2021). Wide distribution of Phycisphaera-like planctomycetes from WD2101 soil group
861 in peatlands and genome analysis of the first cultivated representative. *Environ. Microbiol.* 23,
862 1510–1526. doi:10.1111/1462-2920.15360.

863 Djokic, T., VanKranendonk, M. J., Campbell, K. A., Walter, M. R., and Ward, C. R. (2017). Earliest
864 signs of life on land preserved in ca. 3.5 Ga hot spring deposits. *Nat. Commun.* 8.
865 doi:10.1038/ncomms15263.

Dynamics of a Silicifying Hydrothermal System

866 Eder, W., and Huber, R. (2002). New isolates and physiological properties of the Aquificales and
867 description of *Thermocrinis albus* sp. nov. *Extremophiles* 6, 309–318. doi:10.1007/s00792-001-
868 0259-y.

869 Erb, T. J., Kiefer, P., Hattendorf, B., Guenther, D., and Vorholt, J. A. (2012). GFAJ-1 is an arsenate-
870 resistant, phosphate-dependent organism. *Science* (80-). 337, 467–470.
871 doi:10.1126/science.1218455.

872 Farmer, J. D. (1996). “Hydrothermal systems on Mars: an assessment of present evidence,” in
873 *Evolution of hydrothermal ecosystems on Earth (and Mars?)*, ed. Chichester (Wiley).

874 Farmer, J. D. (2000). Hydrothermal Systems: Doorways to Early Biosphere Evolution GSA TODAY.
875 *GSA Today* 10. Available at: <http://www.adobe.com/acrobat/readstep.html>. [Accessed
876 December 2, 2022].

877 Ferris, M. J., and Ward, D. M. (1997). Seasonal distributions of dominant 16S rRNA-defined
878 populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis.
879 *Appl. Environ. Microbiol.* 63, 1375–1381. doi:10.1128/aem.63.4.1375-1381.1997.

880 Fournier, R. O. (1989). Geochemistry and dynamics of the Yellowstone National Park hydrothermal
881 system. *Annu. Rev. earth Planet. Sci.* Vol. 17, 13–53.
882 doi:10.1146/annurev.ea.17.050189.000305.

883 Gangidine, A., Havig, J. R., Fike, D. A., Jones, C., Hamilton, T. L., and Czaja, A. D. (2020). Trace
884 Element Concentrations in Hydrothermal Silica Deposits as a Potential Biosignature.
885 *Astrobiology* 20, 1–12. doi:10.1089/ast.2018.1994.

886 Guo, L., Wang, G., Sheng, Y., Sun, X., Shi, Z., Xu, Q., et al. (2020). Temperature governs the
887 distribution of hot spring microbial community in three hydrothermal fields, Eastern Tibetan
888 Plateau Geothermal Belt, Western China. *Sci. Total Environ.* 720, 137574.
889 doi:10.1016/J.SCITOTENV.2020.137574.

890 Hahnke, R. L., Meier-Kolthoff, J. P., García-López, M., Mukherjee, S., Huntemann, M., Ivanova, N.
891 N., et al. (2016). Genome-based taxonomic classification of Bacteroidetes. *Front. Microbiol.* 7,
892 2003. doi:10.3389/fmicb.2016.02003.

893 Hamilton, T. L., Klatt, J. M., De Beer, D., and Macalady, J. L. (2018). Cyanobacterial photosynthesis
894 under sulfidic conditions: Insights from the isolate *Leptolyngbya* sp. strain hensonii. *ISME J.* 12,
895 568–584. doi:10.1038/ismej.2017.193.

896 Hartig, C., Lohmayer, R., Kolb, S., Horn, M. A., Inskeep, W. P., and Planer-Friedrich, B. (2014).
897 Chemolithotrophic growth of the aerobic hyperthermophilic bacterium *Thermocrinis ruber* OC
898 14/7/2 on monothioarsenate and arsenite. *FEMS Microbiol. Ecol.* 90, 747–760.
899 doi:10.1111/1574-6941.12431.

900 Horodyski, R. J., Dudek, K. B., Ross, G. M., and Donaldson, J. A. (1985). Microfossils from early
901 Proterozoic Hornby Bay Group, District of Mackenzie, Northwest Territories, Canada. *Can. J.
902 Earth Sci.* 22, 758–767. doi:10.1139/e85-080.

903 Hou, S., Makarova, K. S., Saw, J. H. W., Senin, P., Ly, B. V., Zhou, Z., et al. (2008). Complete
904 genome sequence of the extremely acidophilic methanotroph isolate V4, *Methylacidiphilum*
905 *infernorum*, a representative of the bacterial phylum Verrucomicrobia. *Biol. Direct* 3, 26.
906 doi:10.1186/1745-6150-3-26.

907 Huber, R., Eder, W., Heldwein, S., Wanner, G., Huber, H., Rachel, R., et al. (1998). *Thermocrinis*
908 *ruber* gen. nov., sp. nov., A pink-filament-forming hyperthermophilic bacterium isolated from
909 yellowstone national park. *Appl. Environ. Microbiol.* 64, 3576–35783. Available at:
910 <http://aem.asm.org/> [Accessed January 22, 2019].

911 Huber, R., Eder, W., and Stetter, K. O. (2015). “*Thermocrinis*,” in *Bergey’s Manual of Systematics of*
912 *Archaea and Bacteria*, ed. W. B. Whitman (Hoboken, New Jersey: John Wiley & Sons, Ltd), 1–
913 3. doi:10.1002/9781118960608.GBM00232.

914 Inagaki, F., Motomura, Y., Doi, K., Taguchi, S., Izawa, E., Lowe, D. R., et al. (2001). Silicified
915 Microbial Community at Steep Cone Hot Spring, Yellowstone National Park. *Microbes*
916 *Environ.* 16, 125–130. doi:10.1264/jsme2.2001.125.

917 Inagaki, F., Motomura, Y., and Ogata, S. (2003). Microbial silica deposition in geothermal hot
918 waters. *Appl. Microbiol. Biotechnol.* 60, 605–611. doi:10.1007/s00253-002-1100-y.

919 Kees, E. D., Murugapiran, S. K., Bennett, A. C., and Hamilton, T. L. (2022). Distribution and
920 Genomic Variation of Thermophilic Cyanobacteria in Diverse Microbial Mats at the Upper
921 Temperature Limits of Photosynthesis. *mSystems* 7. doi:10.1128/MSYSTEMS.00317-
922 22/SUPPL_FILE/MSYSTEMS.00317-22-S0007.TIF.

923 Kevin Kim, M., Drescher, K., Shun Pak, O., Bassler, B. L., and Stone, H. A. (2014). Filaments in
924 curved streamlines: Rapid formation of *Staphylococcus aureus* biofilm streamers. *New J. Phys.*
925 16, 065024. doi:10.1088/1367-2630/16/6/065024.

926 Khan, S. T., Fukunaga, Y., Nakagawa, Y., and Harayama, S. (2007). Emended descriptions of the
927 genus *Lewinella* and of *Lewinella cohaerens*, *Lewinella nigricans* and *Lewinella persica*, and
928 description of *Lewinella lutea* sp. nov. and *Lewinella marina* sp. nov. *Int. J. Syst. Evol.*
929 *Microbiol.* 57, 2946–2951. doi:10.1099/IJS.0.65308-0/CITE/REFWORKS.

930 Kolber, Z. S., Plumley, F. G., Lang, A. S., Beatty, J. T., Blankenship, R. E., VanDover, C. L., et al.
931 (2001). Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean.
932 *Science* (80-.). 292, 2492–2495. doi:10.1126/science.1059707.

933 Konhauser, K. O., Jones, B., Reysenbach, A.-L., and Renaut, R. W. (2003). Hot spring sinters: keys
934 to understanding Earth’s earliest life forms. *Can. J. Earth Sci.* 40, 1713–1724. doi:10.1139/e03-
935 059.

936 Kraus, E. A., Beeler, S. R., Mors, R. A., Floyd, J. G., Stamps, B. W., Nunn, H. S., et al. (2018).
937 Microscale biosignatures and abiotic mineral authigenesis in Little Hot Creek, California. *Front.*
938 *Microbiol.* 9, 1–13. doi:10.3389/fmicb.2018.00997.

939 Kruse, T., Ratnadevi, C. M., Erikstad, H. A., and Birkeland, N. K. (2019). Complete genome
940 sequence analysis of the thermoacidophilic verrucomicrobial methanotroph “*candidatus*
941 *Methylacidiphilum kamchatkense*” strain Kam1 and comparison with its closest relatives. *BMC*

Dynamics of a Silicifying Hydrothermal System

942 *Genomics* 20, 1–15. doi:10.1186/S12864-019-5995-4/FIGURES/5.

943 Kulp, T. R., Hoeft, S. E., Asao, M., Madigan, M. T., Hollibaugh, J. T., Fisher, J. C., et al. (2008).
944 Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake,
945 California. *Science* (80-). 321, 967–970. doi:10.1126/science.1160799.

946 Lacap, D. C., Barraquio, W., and Pointing, S. B. (2007). Thermophilic microbial mats in a tropical
947 geothermal location display pronounced seasonal changes but appear resilient to stochastic
948 disturbance. *Environ. Microbiol.* 9, 3065–3076. doi:10.1111/J.1462-2920.2007.01417.X.

949 Lahti, L., and Shetty, S. (2017). Tools for microbiome analysis in R. Microbiome package version
950 1.15.1. *Bioconductor*, <https://github.com/microbiome/microbiome>. Available at:
951 <http://microbiome.github.com/microbiome> [Accessed March 10, 2022].

952 Lewin, R. A., and Lounsbury, D. M. (1969). Isolation, Cultivation and Characterization of
953 Flexibacteria. *J. Gen. Microbiol.* 58, 145–170. doi:10.1099/00221287-58-2-145.

954 Liu, Z., Klatt, C. G., Ludwig, M., Rusch, D. B., Jensen, S. I., Kühl, M., et al. (2012). *Candidatus*
955 *Thermochlorobacter aerophilum*: An aerobic chlorophototrophic member of the phylum
956 Chlorobi defined by metagenomics and metatranscriptomics. *ISME J.* 6, 1869–1882.
957 doi:10.1038/ismej.2012.24.

958 Loginova, L. G., Egorova, L. A., Golovacheva, R. S., and Seregina, L. M. (1984). *Thermus ruber* sp.
959 nov., nom. rev. *Int. J. Syst. Evol. Microbiol.* 34, 498–499. doi:10.1099/00207713-34-4-498.

960 Lowe, D. R., and Braunstein, D. (2003). Microstructure of high-temperature (>73 °C) siliceous
961 sinter deposited around hot springs and geysers, Yellowstone National Park: the role of
962 biological and abiological processes in sedimentation. *Can. J. Earth Sci.* 40, 1611–1642.
963 doi:10.1139/e03-066.

964 Martin, B. D., Witten, D., and Willis, A. D. (2020). Modeling microbial abundances and dysbiosis
965 with beta-binomial regression. *Ann. Appl. Stat.* 14, 94–115. doi:10.1214/19-AOAS1283.

966 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads.
967 *EMBnet.journal* 17, 10–12. Available at:
968 <https://journal.embnet.org/index.php/embnetjournal/article/view/200/479> [Accessed November
969 30, 2022].

970 Martin, W., Baross, J., Kelley, D., and Russell, M. J. (2008). Hydrothermal vents and the origin of
971 life. *Nat. Rev. Microbiol.* 6, 805–814. doi:10.1038/nrmicro1991.

972 McIlroy, S. J., and Nielsen, P. H. (2014). The Family Saprospiraceae. *Prokaryotes Other Major*
973 *Lineages Bact. Archaea* 9783642389, 863–889. doi:10.1007/978-3-642-38954-2_138.

974 Momper, L., Hu, E., Moore, K. R., Skoog, E. J., Tyler, M., Evans, A. J., et al. (2019). Metabolic
975 versatility in a modern lineage of cyanobacteria from terrestrial hot springs. *Free Radic. Biol.*
976 *Med.* 140, 224–232. doi:10.1016/J.FREERADBIOMED.2019.05.036.

977 Moreira, C., Rainey, F. A., Nobre, M. F., Da Silva, M. T., and Da Costa, M. S. (2000). *Tepidimonas*

978 ignava gen. nov., sp. nov., a new chemolithoheterotrophic and slightly thermophilic member of
979 the beta-Proteobacteria. *Int. J. Syst. Evol. Microbiol.* 50 Pt 2, 735–742. doi:10.1099/00207713-
980 50-2-735.

981 Motomura, Y., Nakagaki, Y., Izawa, E., and Watanabe, K. (2003). Morphological and Chemical
982 Properties of Siliceous Deposits At Steep Cone Spring, Yellowstone National Park. *Proc.*
983 *Geotherm. Work.* Available at: [https://www.geothermal-](https://www.geothermal-energy.org/pdf/IGAstandard/NZGW/2003/Motomura.pdf)
984 [energy.org/pdf/IGAstandard/NZGW/2003/Motomura.pdf](https://www.geothermal-energy.org/pdf/IGAstandard/NZGW/2003/Motomura.pdf) [Accessed June 29, 2018].

985 National Library of Medicine (US) (1988). *National Center for Biotechnology Information (NCBI) [Internet]*. Bethesda, MD: National Center for Biotechnology Information Available at:
986 <https://www.ncbi.nlm.nih.gov/>.

987 Nobre, M. F., Trüper, H. G., and Da Costa, M. S. (1996). Transfer of *Thermus ruber* (Loginova et al.
988 1984), *Thermus silvanus* (Tenreiro et al. 1995), and *Thermus chliarophilus* (Tenreiro et al.
989 1995) to *Meiothermus* gen. nov. as *Meiothermus ruber* comb. nov., *Meiothermus silvanus* comb.
990 nov., and *Meiothermus chliarop*. *Int. J. Syst. Bacteriol.* 46, 604–606. doi:10.1099/00207713-46-
991 2-604.

992 Nordstrom, D. K., Ball, J. W., and McCleskey, R. B. (2005). “Ground water to surface Water:
993 Chemistry of thermal outflows in Yellowstone National Park,” in *Geothermal Biology and*
994 *Geochemistry in Yellowstone National Park*, eds. W. P. Inskeep and T. R. McDermott
995 (Bozeman, MT: Montana State University), 73–94.

996 Nordstrom, K. D., McCleskey, B. R., and Ball, J. W. (2009). Sulfur geochemistry of hydrothermal
997 waters in Yellowstone National Park: IV Acid-sulfate waters. *Appl. Geochemistry* 24, 191–207.
998 doi:10.1016/j.apgeochem.2008.11.019.

1000 Nübel, U., Bateson, M. M., Madigan, M. T., Kühl, M., and Ward, D. M. (2001). Diversity and
1001 Distribution in Hypersaline Microbial Mats of Bacteria Related to *Chloroflexus* spp. *Appl.*
1002 *Environ. Microbiol.* 67, 4365. doi:10.1128/AEM.67.9.4365-4371.2001.

1003 Oksanen, J., Blanchet, F., Kindt, R., Legendre, P., and O’Hara, R. (2022). Vegan: Community
1004 Ecology Package. R Packag. 2.6-4. Available at: [https://cran.r-](https://cran.r-project.org/web/packages/vegan/index.html)
1005 [project.org/web/packages/vegan/index.html](https://cran.r-project.org/web/packages/vegan/index.html).

1006 Oremland, R. S., and Stoltz, J. F. (2003). The ecology of Arsenic. *Science* (80-). 300, 63–68.
1007 doi:10.1126/science.1081903.

1008 Pace, N. R. (1997). A molecular view of microbial diversity and the biosphere. *Science* 276, 734–40.
1009 doi:10.1126/SCIENCE.276.5313.734.

1010 Parada, A. E., Needham, D. M., and Fuhrman, J. A. (2016). Every base matters: Assessing small
1011 subunit rRNA primers for marine microbiomes with mock communities, time series and global
1012 field samples. *Environ. Microbiol.* 18, 1403–1414. doi:10.1111/1462-2920.13023.

1013 Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. *J.*
1014 *Theor. Biol.* 13, 131–144. doi:10.1016/0022-5193(66)90013-0.

1015 Pierson, B. K., and Castenholz, R. W. (1974). A phototrophic gliding filamentous bacterium of hot

Dynamics of a Silicifying Hydrothermal System

1016 springs, *Chloroflexus aurantiacus*, gen. and sp. nov. *Arch. Microbiol.* 1974 100 100, 5–24.
1017 doi:10.1007/BF00446302.

1018 R Core Team (2022). R: A Language and Environment for Statistical Computing. Vienna: R
1019 Foundation for Statistical Computing. Available at: <https://www.r-project.org/>.

1020 Reysenbach, A.-L., and Cady, S. L. (2001). Microbiology of ancient and modern hydrothermal
1021 systems. *Trends Microbiol.* 9, 79–86. doi:10.1016/S0966-842X(00)01921-1.

1022 Ruff, S. W., and Farmer, J. D. (2016). Silica deposits on Mars with features resembling hot spring
1023 biosignatures at El Tatio in Chile. *Nat. Commun.* 7, 13554. doi:10.1038/ncomms13554.

1024 Salmon, O., Rasmussen, K., Aurelius, S., Vanzin, G., Munakata-Marr, J., and Fujita, Y. (2022).
1025 Impacts of Gadolinium and Yttrium on the Performance and Microbial Community
1026 Composition of a Bench-Scale-Activated Sludge System. *ACS ES T Water* 2, 1370–1379.
1027 doi:10.1021/ACSESTWATER.2C00098/ASSET/IMAGES/LARGE/EW2C00098_0004.JPG.

1028 Schopf, J. W. (2006). Fossil evidence of Archaean life. *Philos. Trans. R. Soc. B Biol. Sci.* 361, 869–
1029 885. doi:10.1098/rstb.2006.1834.

1030 Schultze-Lam, S., Fortin, D., Davis, B. S., and Beveridge, T. J. (1996). Mineralization of bacterial
1031 surfaces. *Chem. Geol.* 132, 171–181. doi:10.1016/S0009-2541(96)00053-8.

1032 Seeger, C., Butler, M. K., Yee, B., Mahajan, M., Fuerst, J. A., and Andersson, S. G. E. (2017).
1033 *Tuwongella immobilis* gen. nov., sp. nov., a novel non-motile bacterium within the phylum
1034 Planctomycetes. *Int. J. Syst. Evol. Microbiol.* 67, 4923. doi:10.1099/IJSEM.0.002271.

1035 Setter, K. O., Brock, G., and Goode, J. (1996). “Hyperthermophiles in the history of life,” in
1036 *Evolution of hydrothermal ecosystems on Earth (and Mars?)* (New York: John Wiley & Sons,
1037 Ltd), 1–18.

1038 Shock, E. L. (1996). “Hydrothermal systems as environments for the emergence of life,” in *Evolution*
1039 *of hydrothermal ecosystems on Earth (and Mars?)*, ed. Chichester (Wiley).

1040 Squyres, S. W., Arvidson, R. E., Ruff, S., Gellert, R., Morris, R. V, Ming, D. W., et al. (2008).
1041 Detection of silica-rich deposits on mars. *Science* (80-.). 320, 1063–1067.
1042 doi:10.1126/science.1155429.

1043 Stamps, B. W., Corsetti, F. A., Spear, J. R., and Stevenson, B. S. (2014). Draft genome of a novel
1044 Chlorobi member assembled by tetranucleotide binning of a hot spring metagenome. *Genome*
1045 *Announc.* 2, 897–911. doi:10.1128/genomeA.00897-14.

1046 Stamps, B. W., Lyles, C. N., Suflita, J. M., Masoner, J. R., Cozzarelli, I. M., Kolpin, D. W., et al.
1047 (2016). Municipal solid waste landfills harbor distinct microbiomes. *Front. Microbiol.* 7.
1048 doi:10.3389/fmicb.2016.00534.

1049 Stauffer, R. E., and Thompson, J. M. (1978). Phosphorus in hydrothermal waters of Yellowstone
1050 National Park, Wyoming. *J. Res. U.S. Geol. Surv.* 6, 755–763.

1051 Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K., and Schmidt, T. M. (2015). rrnDB: improved
1052 tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for
1053 future development. *Nucleic Acids Res.* 43, D593–D598. doi:10.1093/NAR/GKU1201.

1054 Strumness, L. A. (2006). Phosphorus cycling in Octopus Spring Yellowstone National Park
1055 Wyoming U.S.A. *Grad. Student Theses, Diss. Prof. Pap.* 6694. Available at:
1056 <https://scholarworks.umt.edu/etd> [Accessed January 30, 2023].

1057 Suyama, T., Shigematsu, T., Suzuki, T., Tokiwa, Y., Kanagawa, T., Nagashima, K. V. P., et al.
1058 (2002). Photosynthetic apparatus in Roseateles depolymerans 61A is transcriptionally induced
1059 by carbon limitation. *Appl. Environ. Microbiol.* 68, 1665–1673. doi:10.1128/AEM.68.4.1665-
1060 1673.2002.

1061 Swingley, W. D., Meyer-Dombard, D. R., Shock, E. L., Alsop, E. B., Falenski, H. D., Havig, J. R., et
1062 al. (2012). Coordinating environmental genomics and geochemistry reveals metabolic
1063 transitions in a hot spring ecosystem. *PLoS One* 7, e38108. doi:10.1371/journal.pone.0038108.

1064 Tang, J., Li, L., Li, M., Du, L., Shah, M. M. R., Waleron, M. M., et al. (2021). Description,
1065 Taxonomy, and Comparative Genomics of a Novel species, *Thermoleptolyngbya sichuanensis*
1066 sp. nov., Isolated From Hot Springs of Ganzi, Sichuan, China. *Front. Microbiol.* 12.
1067 doi:10.3389/FMICB.2021.696102/FULL.

1068 Tang, K. H., Barry, K., Chertkov, O., Dalin, E., Han, C. S., Hauser, L. J., et al. (2011). Complete
1069 genome sequence of the filamentous anoxygenic phototrophic bacterium *Chloroflexus*
1070 *aurantiacus*. *BMC Genomics* 12. doi:10.1186/1471-2164-12-334.

1071 Tank, M., and Bryant, D. A. (2015a). *Chloracidobacterium thermophilum* gen. nov., sp. nov.: An
1072 anoxygenic microaerophilic chlorophototrophic acidobacterium. *Int. J. Syst. Evol.*
1073 *Microbiol.* 65, 1426–1430. doi:10.1099/ijst.0.000113.

1074 Tank, M., and Bryant, D. A. (2015b). Nutrient requirements and growth physiology of the
1075 photoheterotrophic Acidobacterium, *Chloracidobacterium thermophilum*. *Front. Microbiol.* 6.
1076 doi:10.3389/FMICB.2015.00226.

1077 Tarhriz, V., Hirose, S., Fukushima, S. ichi, Hejazi, M. A., Imhoff, J. F., Thiel, V., et al. (2019).
1078 Emended description of the genus *Tabrizicola* and the species *Tabrizicola aquatica* as aerobic
1079 anoxygenic phototrophic bacteria. *Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol.* 112,
1080 1169–1175. doi:10.1007/S10482-019-01249-9/FIGURES/3.

1081 Tarhriz, V., Thiel, V., Nematzadeh, G., Hejazi, M. A., Imhoff, J. F., and Hejazi, M. S. (2013).
1082 *Tabrizicola aquatica* gen. nov. sp. nov., a novel alphaproteobacterium isolated from Qurugöl
1083 Lake nearby Tabriz city, Iran. *Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol.* 104,
1084 1205–1215. doi:10.1007/s10482-013-0042-y.

1085 Thiel, V., Hamilton, T. L., Tomsho, L. P., Burhans, R., Gay, S. E., Schuster, S. C., et al. (2014).
1086 Draft Genome Sequence of a Sulfide-Oxidizing, Autotrophic Filamentous Anoxygenic
1087 Phototrophic Bacterium, *Chloroflexus* sp. Strain MS-G (Chloroflexi). *Genome Announc.* 2.
1088 doi:10.1128/GENOMEA.00872-14.

1089 Thiel, V., Hügler, M., Ward, D. M., and Bryant, D. A. (2017). The dark side of the Mushroom Spring

Dynamics of a Silicifying Hydrothermal System

1090 microbial mat: Life in the shadow of chlorophototrophs. II. metabolic functions of abundant
1091 community members predicted from metagenomic analyses. *Front. Microbiol.* 8, 943.
1092 doi:10.3389/fmicb.2017.00943.

1093 Tindall, B. J., Sikorski, J., Lucas, S., Goltsman, E., Copeland, A., del Rio, T. G., et al. (2010).
1094 Complete genome sequence of *Meiothermus ruber* type strain (21 T). *Stand. Genomic Sci.* 3,
1095 26–36. doi:10.4056/SIGS.1032748/TABLES/4.

1096 Varnes, E. S., Jakosky, B. M., and McCollom, T. M. (2003). Biological Potential of Martian
1097 Hydrothermal Systems. *Astrobiology* 3, 407–414. doi:10.1089/153110703769016479.

1098 Walter, J. M., Coutinho, F. H., Dutilh, B. E., Swings, J., Thompson, F. L., and Thompson, C. C.
1099 (2017). Ecogenomics and taxonomy of Cyanobacteria phylum. *Front. Microbiol.* 8, 2132.
1100 doi:10.3389/fmicb.2017.02132.

1101 Walter, M. R., and Des Marais, D. J. (1993). Preservation of Biological Information in Thermal
1102 Spring Deposits: Developing a Strategy for the Search for Fossil Life on Mars. *Icarus* 101, 129–
1103 143. Available at: http://lasp.colorado.edu/home/wp-content/uploads/2011/07/Walter_DesMarais_1993.pdf [Accessed January 22, 2019].

1104 Wang, S., Dong, H., Hou, W., Jiang, H., Huang, Q., Briggs, B. R., et al. (2014). Greater temporal
1105 changes of sediment microbial community than its waterborne counterpart in Tengchong hot
1106 springs, Yunnan Province, China. *Sci. Rep.* 4, 1–11. doi:10.1038/srep07479.

1107 Wang, S., Hou, W., Dong, H., Jiang, H., Huang, L., Wu, G., et al. (2013). Control of Temperature on
1108 Microbial Community Structure in Hot Springs of the Tibetan Plateau. *PLoS One* 8, e62901.
1109 doi:10.1371/JOURNAL.PONE.0062901.

1110 Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*. 2nd ed. New York: Springer-
1111 Verlag Available at: <https://ggplot2-book.org/> [Accessed March 10, 2022].

1112 Wickham, H., Averick, M., Bryan, J., Chang, W., D', L., McGowan, A., et al. (2019). Welcome to the
1113 Tidyverse. *J. Open Source Softw.* 4, 1686. doi:10.21105/JOSS.01686.

1114 Willis, A., and Bunge, J. (2015). Estimating diversity via frequency ratios. *Biometrics* 71, 1042–
1115 1049. doi:10.1111/BIOM.12332.

1116 Woese, C. (1998). The universal ancestor. *Proc. Natl. Acad. Sci.* 95, 6854–6859.
1117 doi:10.1073/pnas.95.12.6854.

1118 Wörmer, L., Gajendra, N., Schubotz, F., Matys, E. D., Evans, T. W., Summons, R. E., et al. (2020).
1119 A micrometer-scale snapshot on phototroph spatial distributions: mass spectrometry imaging of
1120 microbial mats in Octopus Spring, Yellowstone National Park. *Geobiology* 18, 742–759.
1121 doi:10.1111/gbi.12411.

1122 Xia, Y., Kong, Y., Thomsen, R., and Nielsen, P. H. (2008). Identification and Ecophysiological
1123 Characterization of Epiphytic Protein-Hydrolyzing Saprospiraceae (“Candidatus Epiflobacter”
1124 spp.) in Activated Sludge. *Appl. Environ. Microbiol.* 74, 2229–2238. doi:10.1128/AEM.02502-
1125 07.

1127 Yokoyama, T., Taguchi, S., Motomura, Y., Watanabe, K., Nakanishi, T., Aramaki, Y., et al. (2004).
1128 The effect of aluminum on the biodeposition of silica in hot spring water: Chemical state of
1129 aluminum in siliceous deposits collected along the hot spring water stream of Steep Cone hot
1130 spring in Yellowstone National Park, USA. *Chem. Geol.* 212, 329–337.
1131 doi:10.1016/J.CHEMGEOL.2004.08.022.

1132 Zhou, E. M., Adegboruwa, A. L., Mefferd, C. C., Bhute, S. S., Murugapiran, S. K., Dodsworth, J. A.,
1133 et al. (2020). Diverse respiratory capacity among *Thermus* strains from US Great Basin hot
1134 springs. *Extremophiles* 24, 71–80. doi:10.1007/s00792-019-01131-6.

1135

Dynamics of a Silicifying Hydrothermal System

1136 14 Tables

1137 Table 1. Aqueous geochemistry values (in mM or °C) from the vent source fluids of Steep Cone
1138 Geyser. Entries presented as (BDL) were below the detection limit of the instrument. Entries
1139 presented as (NM) were not measured for that geochemical analyte. The LOQ column indicates the
1140 limit of quantification for each parameter and methodology (in mM). Subscript (T) indicated total
1141 concentration of the given analyte.

1142

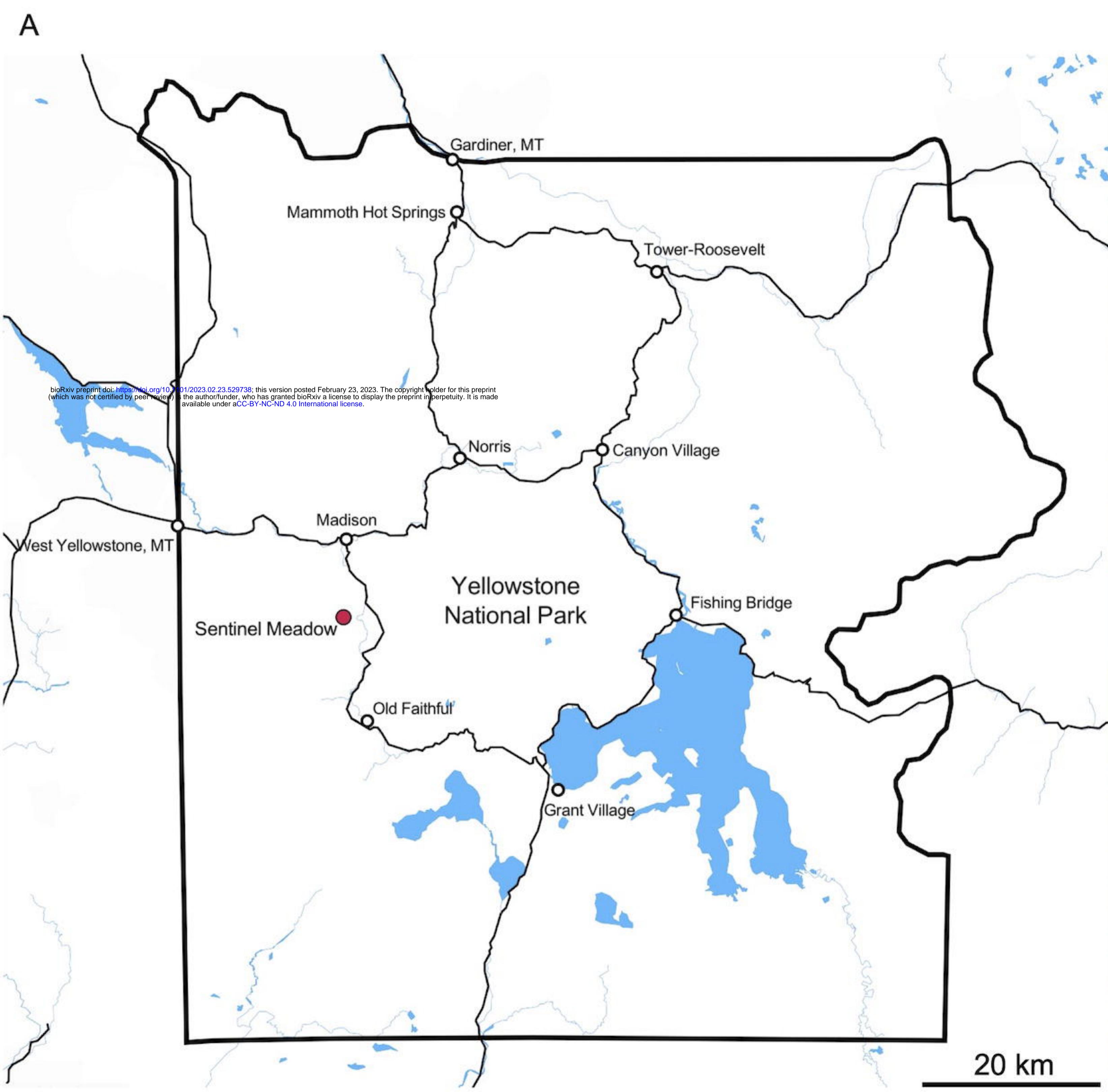
Analyte	2010-9-23	2017-8-18	2018-5-30	2018-7-26	2018-9-29	2019-8-11	2020-8-21	LOQ
Al _T	0.0102	0.0111	0.0106	0.0108	0.0112	0.0106	0.0107	1.56E-04
As _T	0.0138	0.0149	0.0154	0.0151	0.0151	0.0145	0.0126	1.07E-04
Br ⁻	0.3005	0.2789	0.2912	0.3063	0.3035	0.2905	0.3105	2.87E-04
Ca _T	NM	0.0104	0.0082	0.0096	0.0101	0.0140	0.0090	1.25E-03
Cl ⁻	0.0088	0.0053	0.0047	0.0045	0.0055	0.0096	0.0103	1.22E-04
DIC	NM	NM	NM	4.7316	4.4818	4.1297	4.3661	1.42E-02
DOC	NM	NM	NM	BDL	BDL	0.2600	0.6969	1.42E-02
F ⁻	NM	1.5501	1.4799	1.4413	1.5543	1.7496	1.2738	5.26E-03
Fe _T	1.75E-04	1.06E-04	2.11E-04	5.03E-05	BDL	BDL	1.95E-04	5.37E-06
Li _T	0.2450	0.2175	0.2410	0.2218	0.2090	0.1984	0.2197	4.75E-04
Mg _T	0.0002	BDL	BDL	BDL	BDL	0.0011	0.0018	1.15E-04
Mn _T	2.24E-05	1.34E-05	1.04E-05	1.14E-05	BDL	1.28E-05	3.28E-05	1.82E-06
NO ₃ ⁻	NM	BDL	0.9308	BDL	BDL	BDL	BDL	1.61E-03
NO ₂ ⁻	NM	0.0074	BDL	0.0039	BDL	BDL	BDL	2.17E-03
pH	7.94	8.1	8.07	8.41	8.4	7	7.91	0
PO ₄ ³⁻	NM	BDL	0.0090	BDL	BDL	BDL	BDL	1.05E-03
P _T	BDL	BDL	0.0009	BDL	BDL	BDL	4.16E-04	6.46E-05
K _T	0.2570	0.2493	0.2635	0.2607	0.2569	0.2403	0.2397	4.22E-03
Si _T	5.5246	4.9959	5.3816	5.3106	5.7156	5.1154	4.9700	1.25E-04
Na _T	11.8216	9.9967	11.3394	11.2225	11.4372	10.7263	11.1503	1.25E-03
SO ₄ ²⁻	NM	0.1664	0.1566	0.1566	0.1591	0.1570	0.1582	1.04E-03
S _T	0.4066	0.1737	0.1790	0.1899	0.2119	0.2125	0.2086	6.17E-04
Temp.	93.6	87.78	90.5	91.1	88.4	93	88	-

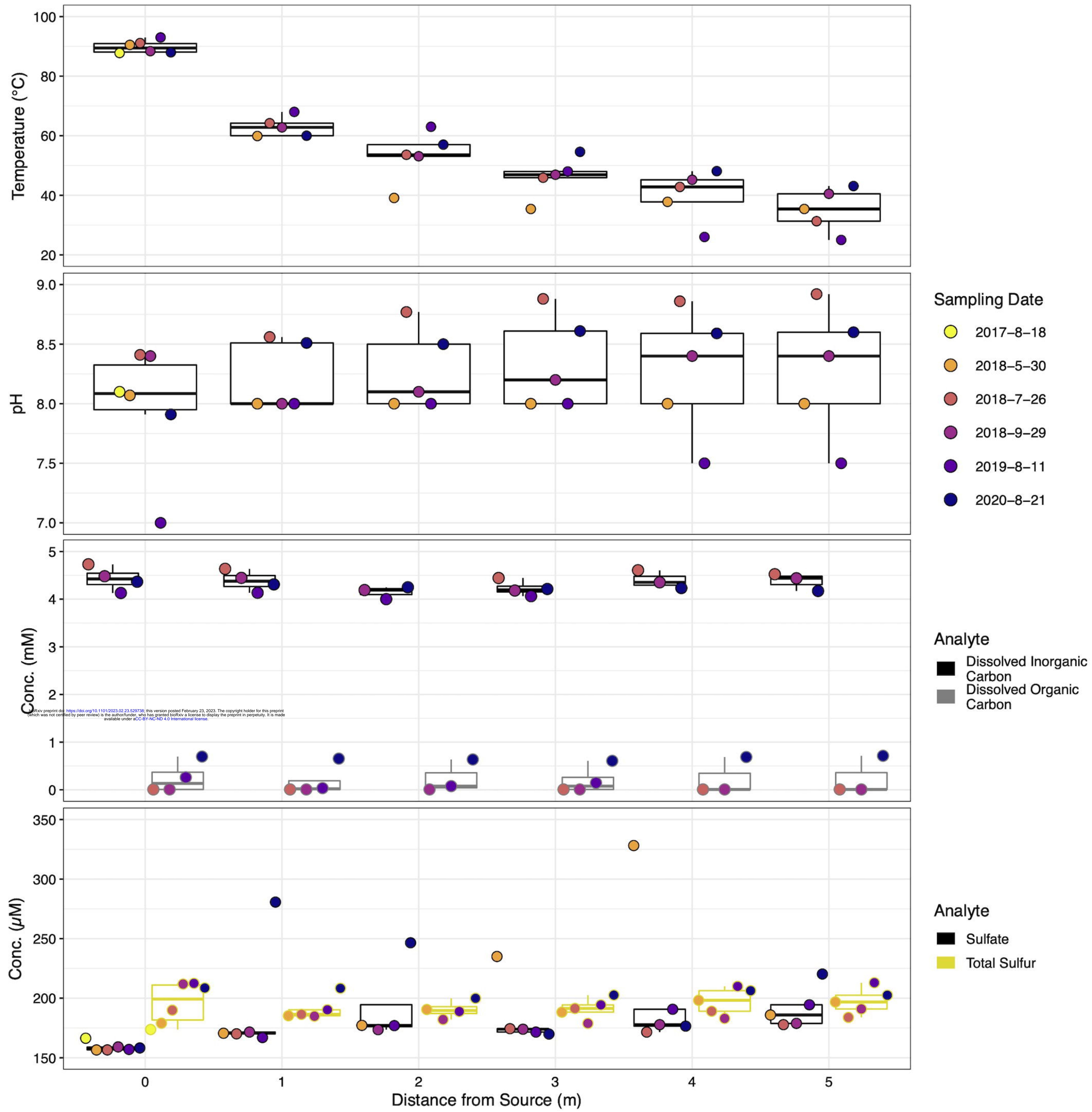
1143

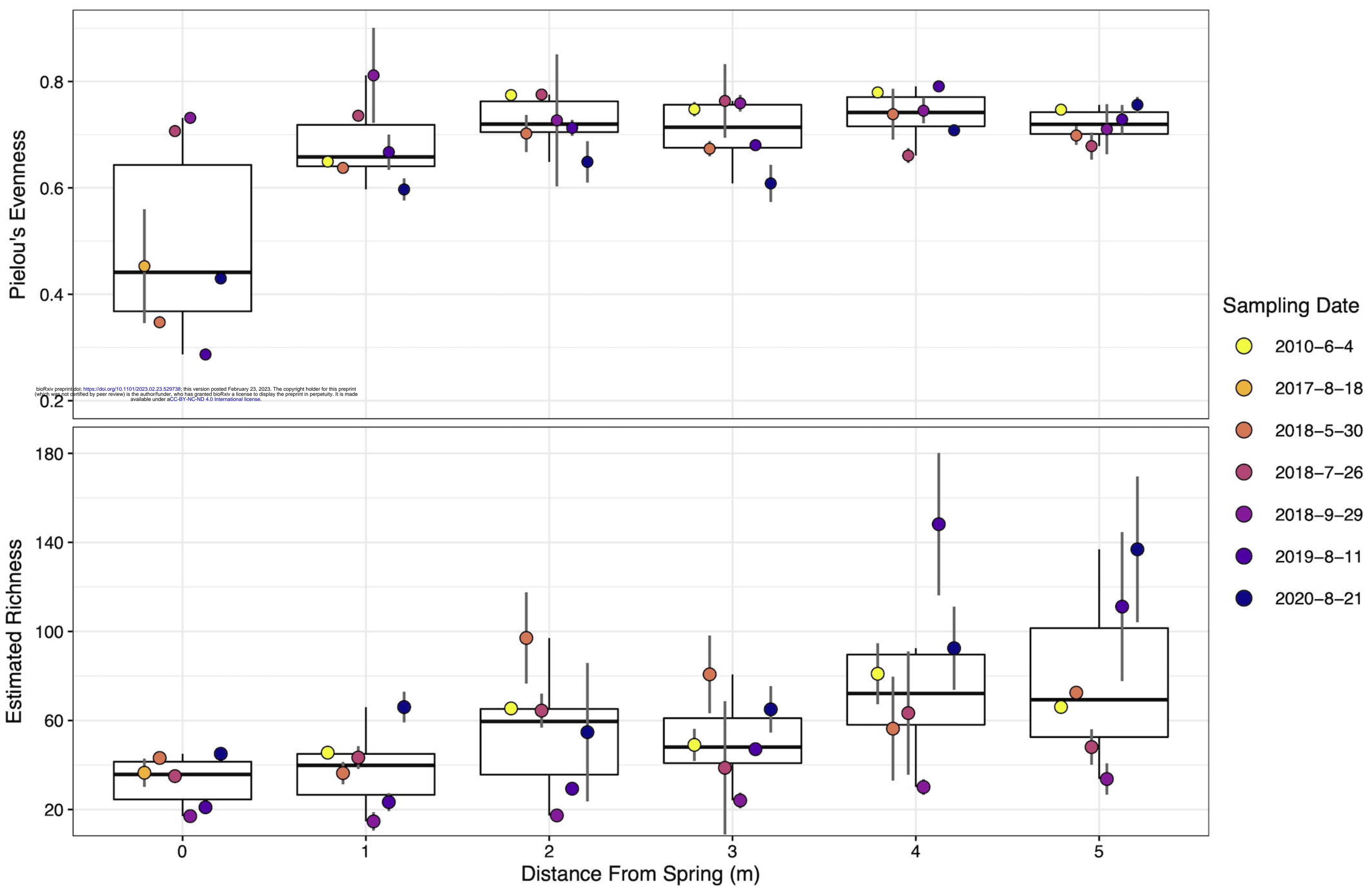
1144 15 Figure Captions

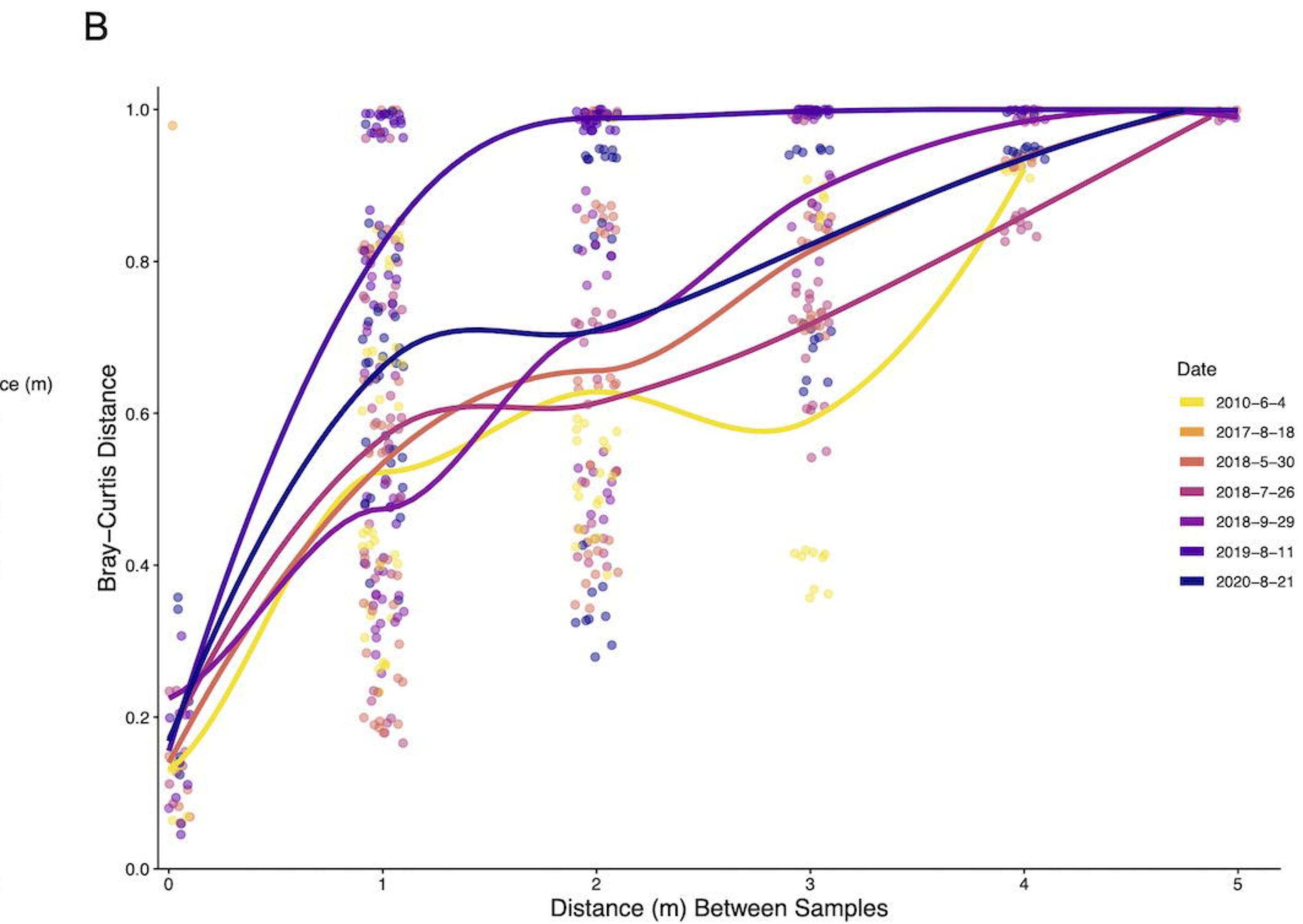
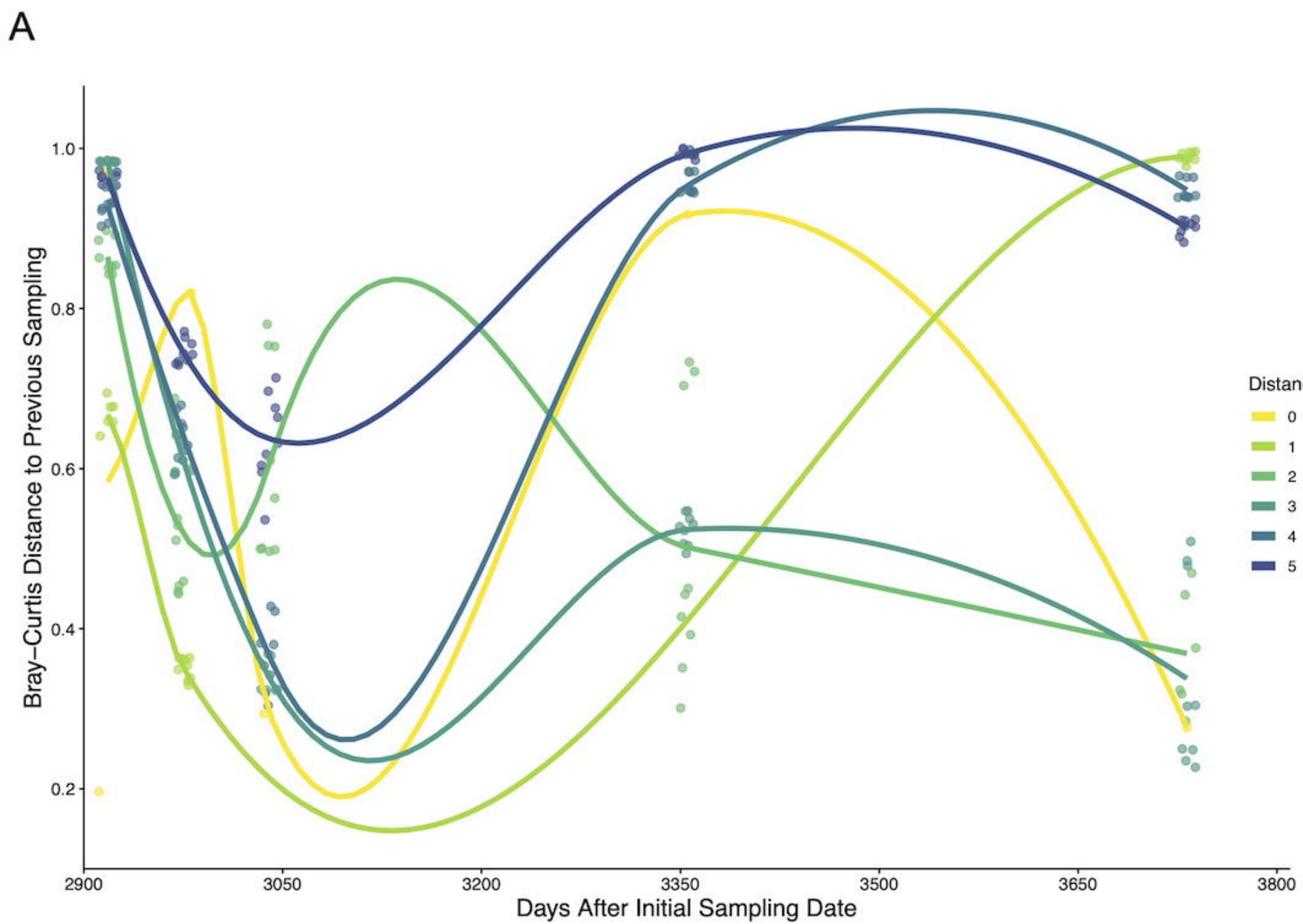
1145 Figure 1. (A) Overview of Yellowstone National Park, with Sentinel Meadow marked by the red
1146 dot. Steep Cone Geyser is located within the Sentinel Meadow Hot Springs Group. Map was created
1147 in Mapbox (OpenStreetMap contributors, 2022). (B) Satellite image of the Sentinel Meadow Hot
1148 Springs Group with Steep Cone Geyser indicated by white arrow. (C) Image of Steep Cone Geyser
1149 from the South taken in August 2021. Black arrow indicates location of sampled outflow channel.

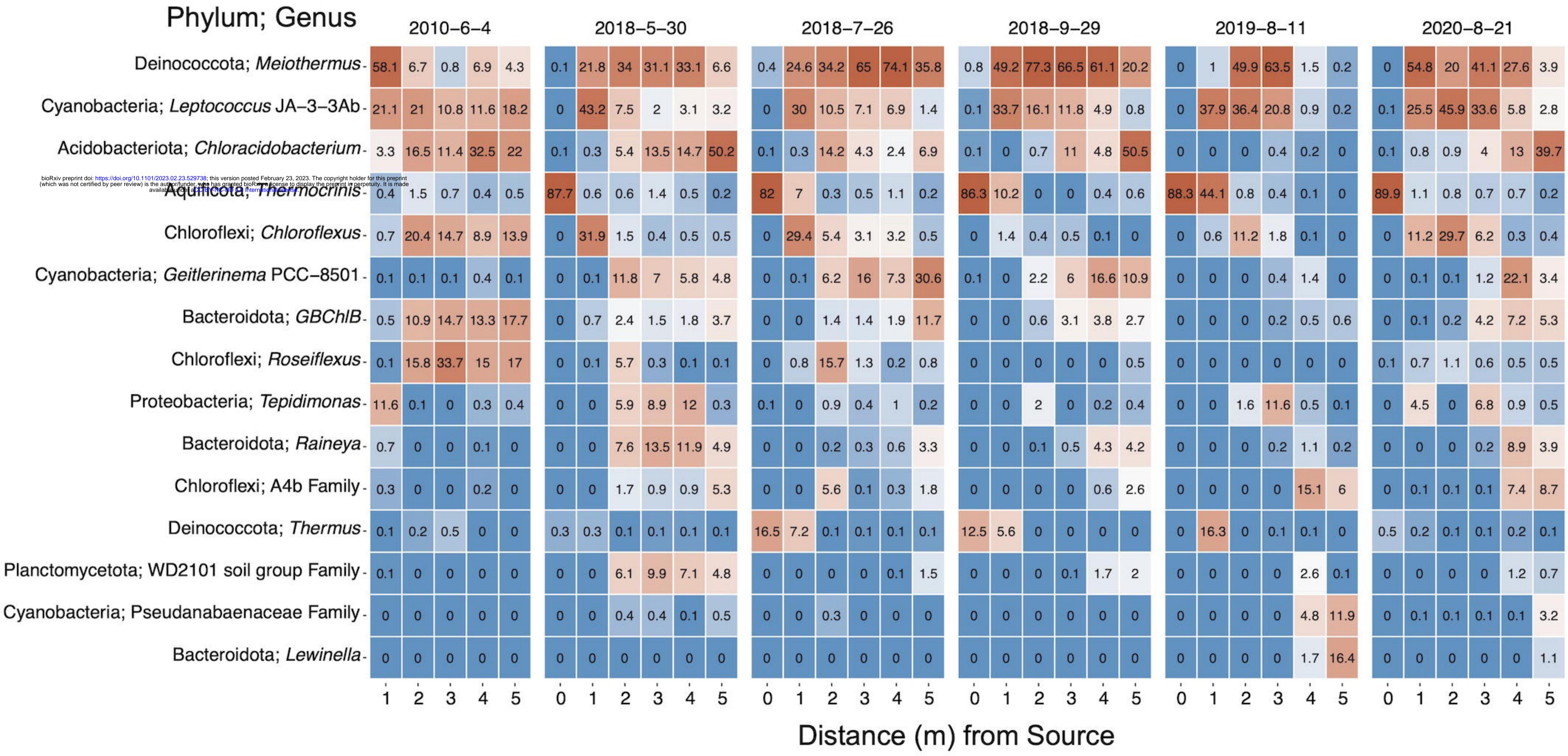
1150 Figure 2. Dot and box plot illustrating geochemical stability down the sampled transect across
1151 sampling dates of parameters of interest. Filled dot colors indicate sampling date while box colors
1152 indicate measured parameter. Dots are arranged from left to right, oldest to most recent samples for



1153 each distance, respectively. Dates are shown as year-month-day.


1154 Figure 3. Dot and box plot of alpha diversity metrics down the sampled transect across the different
1155 sampling dates. Filled dot colors indicate sampling date. Dots are arranged from left to right, oldest
1156 to most recent samples for each distance respectively. Top – Pielou's evenness. Bottom – Estimated
1157 Richness using Breakaway. Error bars indicate the standard deviation calculated from biological
1158 replicates (n = 3). Dates are shown as year-month-day.


1159 Figure 4. **(A)** Time-lag of Bray-Curtis distances of bacterial and archaeal communities of biofilm
1160 samples sampled at Steep Cone Geyser. Dots represent pairwise comparisons between a sample and
1161 the previous sampling date. **(B)** Distance-lag plot of Bray-Curtis distances of bacterial and archaeal
1162 communities of biofilm samples sampled at Steep Cone Geyser. Dots represent pairwise comparisons
1163 between two samples at different distances. Trend lines were determined using Geom_smooth in the
1164 R package stats::loess, with trends being fit using loess regression. Dates are shown as year-month-
1165 day.



1166 Figure 5. Heat map of the top 15 ASVs within the bacterial and archaeal communities from 16S
1167 rRNA gene sequencing. ASVs are named by phyla and most likely genera. Values indicate the mean
1168 percent relative abundance. Data is faceted by sampling date and ordered down the sampling transect.
1169 Phylum; Genus or lowest classification ID. Dates are shown as year-month-day.


1170 Figure 6. 16S rRNA gene mean percent relative abundances of genera (or best classification)
1171 determined to be statistically significant by SIMPER, DNA differential abundance analysis, and
1172 cDNA differential abundance analysis. Panels are faceted by distance (m) from the hydrothermal
1173 source. Circle sizes indicate mean percent relative abundance. Colors indicate general putative
1174 metabolisms associated with the most abundant ASVs in each genus according to NCBI BLAST
1175 searches and literature review. Dates are shown as year-month-day.

