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Abstract

Transcription factors (TFs) are key components of the aberrant transcriptional programs in cancer cells.
In this study, we used TF activity (TFa), inferred from the downstream regulons as a potential biomarker
to identify associated genetic vulnerabilities in cancer cells. Our linear model framework, integrating TFa
and genome-wide CRISPR knockout datasetsidentified 1,770 candidate TFa-target pairs across different
cancer types and assessed their survival impact in patient data. As a proof of concept, through inhibitor
screens and geneticdepletion assays in cell lines, we validated the dependency of cell lines on predicted
targetslinked to TEAD1, the most prominent TF from our analysis. Overall, these candidate pairs represent

an attractive resource for early-stage targets and drug discovery programs in oncology.

Introduction

Transcription factors (TFs) bind regulatory elements such as enhancers or promoters in order to regulate
the expression of genes. The role of TFs has been wellestablished in health and disease, including human
cancers!. TF activities are reprogrammed in many different cancers due to genetic alterations such as
amplifications (e.g., NMYC, CMYC)? and epigenetic mechanisms including the formation of de novo
enhancers (e.g., FOXA1, MITF)3. Certain TFs sustain oncogenictranscriptional programs required for tumor
maintenance that differ from those in neighboring normal cells. In addition, abnormal activities of TFs
modulate hallmark properties of cancers such as the adaptive response of cancer cells to therapy. This is

achieved through the regulation of processes such as epithelial to mesenchymal transition (EMT) and
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acquired resistance to chemotherapy or targeted therapy. For example, RUNX2 drives EMT in breast
cancer and prostate cancers and mediates chemoresistance in melanoma and TEA domain transcription
factors (TEAD) TFs regulate phenotypic plasticity 3°. Given the central role of TFs in tumor biology, their
selective pharmacological inhibition constitutes an attractive therapeutic strategy to treat human
malignancies. Developing small molecule inhibitors for cancer relevant proteins such as TFsis challenging
and often hampered by the absence of binding pockets or structural enablement. While there have been
some recentadvancesin drug developmentforchallenging targets through methods such as PROTACs™,
or leveraging synthetic lethality!!, there is still a need to expand the range of targets in cancer cells.
Identifying additional partner proteins or dependencies associated with TF function in tumor cells could

provide new opportunities for targeted therapies.

Genome-scale loss-of-function (LOF) studies conducted in hundreds of human cancer cell lines using
CRISPR/Cas9 and shRNA-based strategies have successfully identified tissue and context specific genetic
dependencies across tumor types!?, 3755, Integrating genome-wide essentiality data with complementary
multi-omics data enables the identification of potential biomarkers that are predictive of specific gene
dependencies. Theseanalyses, forexample, revealed that micro-satellite unstable tumors are particularly
vulnerable to WRN LOF, as well as, that PRMT5 constitutes a potentialtherapeutictarget in MTAP deleted
cancers.'®"21 In addition, concepts such as syntheticlethality have also been applied within the paralogue
gene space to identify potential biomarkers (e.g.,ageneticalteration) and target gene pairs. Forinstance,
mutationsin STAG2are predictive of sensitivity to STAG1LOF?2-%>, and loss of DDX3Y (through the loss of

chromosome Y) is predictive of sensitivity to DDX3X LOF?6,

Here we provide a framework for the systematicidentification of gene dependencies associated with TF
activities across differenttumortypes. To this end, we integrated three genome-scale LOF studies (Project
Achilles?”?8, Project Sanger?®, Project Drive3°) with transcriptomic data from 859 human cancer cell lines
spanning 27 tumor types, including 757 solid cancers and 102 hematological cancer cell lines. We
extensively annotated candidate TF activity (TFa) - gene dependency associations in terms of their tumor
type specificity and clinical relevance using The Cancer Genome Atlas3!(TCGA) patient dataset. Finally, we
observed TEAD1TFato be associated with alarge number of gene dependencies and further characterized

these associations through inhibitor screens and single gene in vitro CRISPR-Cas9depletion assays. Thus,
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providing proof of the potential benefits ensured by ourapproach in the identification of new surrogate

targets of oncogenic TFs.

Results
Identification of pan-cancer TF activity-associated gene dependencies

We identified associations between a TF activity biomarker (TFa) and gene dependencies (target),
hereaftertermed “TFa-target pair” using expression and dependency datain cell lines. Since TFs regulate
the expression of downstream genes, also termed regulons, we defined the combinatorial expression of
annotated TF regulons as the TF activity for each cell line3? (see methods). We removed all protein coding
genes (including TFs) which are potentially essentialin cancer and normal cells (pan-essential), as well as
genes that are not essential for cell fithess (never essential) based on dependency data. We then
implementedalinear model-based framework on 92 context-essential TFs (Supp Fig 1a, see methods) to
identify their activity associated gene dependencies. Inthe linear model, we used TFa as the independent
variable and gene CRISPR knock-out (KO) dependency score as the dependency variable and the tumor
type of origin of the cell line as the covariate (Fig 1a). The inclusion of cell line tumor type in the model
accounts forthe variability in dependency scoredue to tissue type differences. We applied this framework
across 757 solid cancer cell lines in Project Achilles?”?® and tested over a million linear models. We
performed TF-specific false discovery rate (FDR) adjustment and considered the associations with FDR
<10% and an effect size (TFa coefficient) of greaterthan 3x the standard deviation as significant TFa-target
pairs. To increase the robustness of our results, we repeated the linear modeling framework with two
additional genome-wide dependency datasets: CRISPR KO data with 304 solid cancer cell lines (Project
Sanger?®) and shRNA data with 635 solid cancer cell lines (Project Drive3°, Supp Table 1). The final set of
TFa-target pairs consisted of pairs that were identified as significant in at least two out of three
dependency databases(Project Achilles, Sanger, Project Drive). We performed downstream analysis of on
the final set of pairs to assess their impact on survival using TCGA data®!, and validated three gene

dependencies associated with TEAD1 TFa using CRISPR single gene KO experiments (Fig 1a).

Overall, we identified 525 TFa-target candidate pairs for which TFa was significantly associated with target
gene dependency, comprising 26 TFs as TFa biomarkers and 226 gene dependencies as potential targets

(Supp Table 2). The candidate pairs include both negative and positive associations (Fig 1b) where negative
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associations (n=286) representincreased dependency (i.e., lowerdependencyscore) of agiven gene with
increased TFa and positive associations (n=239) representincreased dependency with decreased TFa (Fig
1b). Amongthe predicted associations, we identified seven self-dependentTFs i.e., increased dependency
of a TF was associated with its own increased activity (e.g., NRF2/NFE2L2, JUN), previously reported
synthetic lethal associations (e.g., GATA3-MDM233) and previously unknown associations (e.g., TEAD1-
RAC1, KLF5-STX4). We also observed TFa-target pairs where the associated dependency target geneis also
a TF (e.g., TEAD1-FOSL1), suggesting that essentiality of a TF can be potentially predicted by the activity
of associated TFs (Supp Table 2). Amongthe TFs with significant associations in our final list of candidate
pairs, we observed TEAD1 to have the largest number of associations (Fig 1c) both as a TFa biomarker as
well as a potential dependency target. Identification of TEAD1 in both negative and positive interactions
is in line with recent studies emphasizing the dual role of the YAP/TEAD axis across solid tumors, with both

anti- and pro-cancer effects®* (Fig 1c).

Next, we investigated the potentialimpact of the identified TFa-target pairs on patient survival using TCGA
expression and clinical data. We only considered the 286 TFa-target candidate pairs with negative effect
size, since (Fig 1b) increased activity of TFs is potential evidence of involvement in oncogenic
transcriptional programs. To this end, we classified all TCGA tumorsinto subgroups based on TFa and its
associated target gene expression (Supp Fig 1b; see methods). We compared the survival difference
between high and low target gene expression subgroups within high TFa tumors using a Cox proportional
hazards model®> (Supp Fig 1b). We reasoned that low expression of a target gene in the presence of high
TFa (TFa high-low target exp.) would have better prognosis compared to a high expression subgroup (TFa
high-high target exp.), in line with our hypothesis. This analysis was conducted separately foreach cancer
type in the TCGA dataset and pan-cancer, combining all solid tumors. Of the 286 TFa-target candidate
pairs, 251 pairs (~87%) were associated with poor patient survival in at least one clinical context, when
TFaand its associated gene expression were both high (TFa high-target high) (Fig 1d,e). Among these pairs,
as an example, we show TEAD1-RAC1, where TEAD1 TFa is strongly associated with RAC1 dependency
across cell lines (Fig 1f), and the patient subgroup with TEAD1 high TFa and RAC1 high expression (within
solid tumors) showed poor survival compared to high TEAD1 TFa and low RAC1 expression patient

subgroup (Fig 1g, Supp Table 3).
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We independently applied the same analysis framework to 102 hematological cancer cell lines in Project
Achilles. In total we identified 101 TFa-target pairs with negative effect size in hematological cancers (Supp
Fig 1c, Supp Table 4). We observed an association with poor prognosis in 74/101 (~74%) of these pairs
when TFa and its associated gene expression are high in TCGA hematological malignancies (Supp Fig 1c,
d, e, Supp Table 5). We then tested the overlap of TFa-target pairs identified across solid and
hematological cancer cell lines and observed no pairs in common, illustrating the molecular differences of
these cancer categories®® (Supp Fig 1d). We furthertested the overlap between the dependency targets
identified from our framework foreach TF and theirannotated regulons. We observed avery low Jaccard
score (average Jaccard score of 0.005 across all TFs), a metricindicating the extent of overlap ranging from
0 (no) to 1 (fulloverlap) (Supp Fig 1f, Supp Table 6), suggesting the dependency targets identified through

our framework are complementary to the annotated regulon of each TF.

In summary, we identified 286 TFa-target candidate pairs across solid cancer cell lines showing increased
dependency of target gene with increased TFa. We have shown that 87% of these candidate pairs are
associated with poor survival in patients with both high TFa and target expression in at least one tumor
type. While our in-depth analysis is focused on solid tumor types, our proposed framework can be further

applied to other tumor subtypes, potentially leading to the identification of further candidate pairs.

Features of TFa-target pairs

We sought to understand the determinants of TFa-target synthetic lethality relationship, i.e. increased
dependency of target gene association with increased TFa. To this end, we explored 272 candidate TFa-
target pairs (excluding self-dependent TFs and pairs where the TFa and target are both TFs) termed
‘significant pairs’. As a control we prepared a ‘non-significant’ random set of 300 pairs that were not
significant but had a negative effect size from ourinitial linear modeling analysis. For this combined set of
572 pairs, we collected 15 different features that capture at various levels how the gene pairs are
associated e.g., protein-protein interaction (PPIl), expression correlation, geneticdependency correlation

or pathway overlap (TF and target both are in the same molecular pathway; Supp Table 7)*".
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Inorderto assess each feature’s power inidentifying TFa-target significant relationships, we treated each
feature independently as a classifier and computed the area under the receiver operating curve (ROC
AUC) (Fig 2a). The top predictive feature was the direct interactors overlap between TF and associated
target (ROC AUC = 0.73). This feature indicates that “significant pairs” shared more direct interactors in
the protein-protein interaction (PPI) network than the control pairs (Fig 2b). Next, we wanted to
determine if there was a significant overlap of these direct interactors between TF and its associated
target gene. We observed that significant pairs show a stronger p-value for overlap (Fisher’s exact test,
Supp Fig. 2a). Similarly, we observed a higher Jaccard score of overlap for significant pairs, a metric
indicating the extent of overlap (Supp Fig. 2a). A previous analysis on the identification of syntheticlethal
pairs within paralog families revealed that the higher the number of common interactors between two
genes in a protein-protein interaction network, the higher the chance for these two genes to be
functionally redundant and part of a syntheticlethal geneticinteraction®’. Inline with these findings, our
results suggest that a high number of common interactors between a TF and its associated target gene is
a predictor of a putative TFa-target significant association. Similarly, we observed a strong overlap of
pathways (ROC AUCO0.71) and dependency correlations of a TF and its associated target (ROCAUC 0.67)
for significant pairs compared to control non-significant pairs (Fig 2b). The second strongest feature with
an ROC AUC of 0.71, “pathway overlap” indicates the number of common pathways in which TF and
associated target gene are involved (Fig. 2a). Similar to the feature “directinteractors overlap” described
here, the number of common pathways in which TF and associated target gene are involved is significantly
higherfor significant pairs compared to non-significant pairs (Fig 2b). Finally, we observed significant pairs
show astrong positive correlation TF and its associated target gene dependencies (Fig. 2b), suggesting the
co-essentiality of these pairs in cancer cells. A recent study®® employed the correlation of essentialities
from genome wide CRISPR KO screens to identify genes with similar molecular functions. Consistent with
these studies, our results suggested that our candidate TFa-target pairs could be engaging in similar
biological mechanisms. In addition to these features, we also observed statistically significant differences
between significant and non-significant pairs for features such as “TF and its target gene expression

correlation”, “direct interaction evidence” (Supp Fig 2a, b).

Finally, we tested if the combination of the selected features can improve the ROC AUC of “significant
pairs” classification compared to either feature alone. To this end, we trained a random forest classifier

with all 15 features together. A random forest classifier can capture the interaction among different
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features and weigh the contribution of each feature in predicting a TFa-target significant relationship at
an individual pair level. We found that our random forest model trained with an ensemble of features
outperforms the top individual feature classifier (ROC AUC=0.79) with an ROC AUC of 0.88 on training
data, which is 80% of 572 pairs (and ROC AUC of 0.92 on test data) (Fig 2c). From the classifier, we
computed shapely additive explanation3® (SHAP) values for each pairto estimate the contribution of each
feature toindividual pairs (Supp Table 8). The SHAP value is a method for determining the contribution of
each feature tothe overall prediction of a model. This is achieved by evaluating the model's performance
with and without each feature and averaging the results across all possible permutations of feature
ordering to ensure a fair comparison. The average contribution values of each feature across all pairs

suggests that top features were consistent with individual classifier analysis (Supp Fig 2c).

Overall, we collected a set of features that capture the potential underlying biological features of TFa-
target “significant pairs”. Our analysis revealed that the association between the TF and its predicted

target is supported by involvement in shared molecular interactions and biological pathways.

Cancer type specific TFa-target associations

Recent analyses®® focusing on identifying synthetic lethal pairs using mutational and dependency data
emphasized the need to perform pan-cancer and individual cancer type focused analysis to identify
associations that are missed by either analysis alone or to assign associations to specific cancer types. For
example, in our analysis, we found NFE2L2 (also called NRF2) to be a strong self-dependent TF in pan-
cancer analysis. An in-depth look into within cancer-typesrevealed the strongest correlation of NRF2 TF
activity and its dependencyin liver carcinoma (LIHC) and non-small cell lung carcinoma (NSCLC) compared
toany othercancertype (Supp Fig 3a). In addition, certain TFs are known to involve cellidentity of lineages
and tumor specific expression programs to drive tumor maintenance and progression*'#2, Therefore, we
reasoned that besides pan-canceranalysis of gene dependencies associated with TF activities, cancer type
specific analyses are necessary. To this end, we performed similar linear modeling analyses of gene
dependencies and TF activities in a cancer-type specific manner. We considered 26 cancer types with
dependency and expression data for at least 10 cell lines in Project Achilles and prioritized TFs for each

cancer type based on their expression in that cancer type (Supp Table 9, see methods).
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Intotal, we identified 1,466 unique TFa-target pairs with a negative effect size (l.e., increaseddependency
of target with increased TFa) (FDR < 5%) across different cancer typescomprised of 143 TFs and 715 target
gene dependencies, which also included TF dependencies. The number of TFa-target pairs identified
across different cancer types was highly variable, spanning from a single association in neuroblastoma
(PATZ1-PFDN1) to 245 associations in breast cancer (Fig 3a, Supp Table 10). We furtherinvestigated the
variability in the total number of TFa-target pairs identified across different cancer types and observed
that the total number of identified pairs is correlated with the number of cell lines for which data is
available (Supp Fig 3b). This suggests that the low number of cell lines for some cancer types could lead
to an underpowered analysis, thus preventing the identification of statistically significant candidates.
Among the cancer type specific TFa-target pairs, strongest associations include cases such as self-
dependent TFs e.g., NFE2L2 in NSCLC and LIHC, STAT3 in lymphoma, and PAX5 in myeloma (Supp Table
10). Otherstronginteractionsincluded GATA1-ZFPM1*3in leukemia and ZEB1-ITGAVin bladder carcinoma
(Supp Table 10). Next, we compared if any of the TFa-target pairs span two or more cancer types and
found that, on average 95% of the pairs identified in each cancertype are unique (Fig3b). Only ~3% (Supp
Fig 3c) of pairs identified within individual cancers overlapped with TFa-target pairs from the pan-cancer
analysis. This emphasizes the importance of performing cancer type analyses to expand the TFa-target

space and identify context-specific TFa-target pairs.

To test the clinical relevance of cancer type specific pairs, we performed survival analysis using TCGA
clinical and expression data as described in Supp Fig 1b. In total, 82.6% of the pairs are associated with
poor survival in at least one TCGA cancer type when TF activity and its associated target gene expression
both were high (Supp Fig 3d). Interestingly, only a small fraction of TFa-target pairs from cancer type
specific analysis showed poor survival in matching TCGA cancer type (Supp Fig 3e). Among those, JUNB-
FOSL1 pair was identified from lung cancer cell lines and this pair also showed poor prognosis when JUNB
TF activity and FOSL1 expression was high in TCGA lung tumors (TCGA-LUAD). Similarly, ZEB1-ITGAV pair
was identified in pancreatic carcinoma cell lines and showed poor prognosis in TCGA pancreatic
adenocarcinoma (TCGA-PAAD) and MYC-CAD was identified in bladder carcinoma cell lines and showed

poor prognosis in TCGA bladder carcinoma (TCGA-BLCA) (Fig 3c, Supp Table 11).
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In total, the pan-cancer analyses across solid and hematological cancer cell lines and the cancer type
specificanalyses, resulted in 1,770 candidate TFa-target pairs comprising 151 TFs and 786 targets. Among
these, 22 (~1.24%) pairs are self-dependent TFs, 186 (~10.5%) pairs include TFs as targets (i.e., TF activity
is associated with other TF dependencies) and 1,562 (88.24%) pairs include non-TF genes as targets. To
identify targets that could be suitable for pharmacological inhibition, we annotated target genes in our
analysis with their target tractability information based on published literature. Target tractability
indicates the likelihood of identifyinga modulator that interacts with the given protein of interest**. For
each of the 786 target genes, we extracted information about drug modality, inhibitor or antibody and
tractability from literature?®#4. Among the 786 targets from our analysis, currently 57 (~7.2%, Supp Fig 3f)
have inhibitors or antibodies targeting them. These include EGFR (inhibitors such as afatinib, erlotinib),
JAK2 (ruxolitinib) and PIK3CA (taselisib). Next, we tested if our associations, based on genetic depletion
and TFa, were also captured in pharmacological screens. To this end, we collected inhibitor response data
in cell lines from the large-scale PRISM repurposing screen® and correlated inhibitor responses with TF
activities. EGFR inhibitor responsesfrom PRISM database correlated positively with KLF5, FOXA1, GATA3
TF activities showing increased inhibitor sensitivity with increased TFa. This is in line with our TFa and
dependency linear modeling analysis and suggests that the associations identified using genetic
dependency data are recapitulated by pharmacological inhibition data. Similarly, we found PIK3CA to be
associated with FOXA1land TFAP2CTF activities across solid cancercell lines (Supp Table 2). In agreement
with these results, the pharmacological targeting of PIK3CA with taselisib, also showed a positive
correlation with FOXA1 and TFAP2C TF activities (Supp Fig 3g, spearman correlation p.value < 0.05). For
the remaining 729 targets, for which no inhibitor is available, we assigned previously defined target
tractability buckets?°44. These tractability buckets ranged from 1 to 10, with 1 indicating the highestand
10 being the lowest tractability. 202 targets genesthatare in this group have existing evidence to support
their tractability but do not currently have any inhibitors available. The remaining targets (527/729,
~72.3%) were assigned to buckets 8-10 (Supp Fig 3f). Targets in this group have little to no existing
evidence to supporttheirtractability. Across the identified 786 target genes, we estimated that more than
27% presented characteristics for pharmacological molecule development, recommending them for

further investigation.

In summary, we identified a range of TFa-target pairs that are specific to different tumor types by

performing cancer-type focused linear modeling analysis of TF activity and dependency analysis. A small
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fraction of targets associated with different TF activities currently have an existing inhibitor. Using the
large-scale inhibitors response data from PRISM database, we have shown that genetic dependency

associations with TF activities can be translated to inhibitor responses.

TEAD1 activity associated gene dependencies

The TEA domain (TEAD) containing family of TFs is comprised of four paralogues (TEAD1-4) in humans,
which together with their established cofactors YAP and TAZ (WWTR1) are implicated in tumor
progression, metastasis, and therapy resistance in a broad range of cancer types34%¢->°, Consistently, in
our pan-cancer analysis we identified TEAD1 to be associated with a large number of gene dependencies
(Fig 1c). Intotal, we identified 27 targets whose increased dependency is correlated with increased TEAD1
activity (Fig 4a). Among these, TEAD1 itself was identified as a vulnerability, suggesting TEAD1 as a self-
dependent TF. Othertargetsincluded previously established transcriptional coactivators of TEAD such as
the paralogues WWTR1/TAZ, YAP>¢, and genes described in the context of hippo pathway e.g., PTK2 or
ITGAV>’ (Supp Table 12). To understand the relevance of the identified target genes, we performed
pathway enrichment with the 26 genes (excluding TEAD1) and found the terms “Hippo pathway”, “focal
adhesion” and “TGF-betasignaling pathways” as significantly enriched (Supp Fig 4a). These observations

are in line with previous evidence of a cross talk between the TGF-beta and Hippo pathways®®>°.

Next, we investigated the Shapley additive explanation (SHAP) values that were annotated based on the
random forest classifier described above to assess the 15 features contributing to these 26 target gene
dependencies associated with TEAD1 activity. For the majority of the target genes, the highest ranking
feature was the strong positive correlation between the cell lines’ dependency on the target as well as
the dependency on TEAD1 (Fig 4b). This observation suggests that tumors that are dependenton TEAD1
are also likely dependent on either one or a combination of these target genes. Next, we calculated the
correlation of TEAD1 dependency with dependenciesof all genes across the 757 cell lines. Amongthe top
50 genes with positive correlation, we observed 12 of our TEAD1 activity associated target genes were
overlapping (Supp Fig 4b), suggesting that additional vulnerabilities were revealed from our analysis based

on TEAD1 activity.
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Next, we tested the impact of the 26 target genes and TEAD1 activity in TCGA patienttumors. Of the 26
TEAD1 target genes, 24 showed poor prognosis in at least one cancertype when expressed together with
high TEAD1 TFa (Fig 4c, Supp Fig 4c, Supp Table 3). In addition to the analysis of the individual expression
of the 26 target genes, we combined their expression using single sample gene set enrichment analysis to
compute ascore foreach tumorsample in TCGA. We tested the correlation between the expression-score
of the targets and the activity scores of three of the TEAD members with high confidence regulon
annotation across the patient samples. We found that the expression score of the 26 genes is positively
correlated specifically with TEAD1 activity as opposed to TEAD2 or TEAD4 activity, suggesting the
specificity of regulonsin defining TEAD1 activity and its association with predicted target genes (Supp Fig
4d). We furthertested the specificity of the 26 target-associations across the TEAD family members in cell
line data. We computed expression-score similarly for all cell lines for which dependency datais available
and divided cell lines into three equalsized subgroups (low, medium, high) and compared TEAD paralog
dependencies across thesethree subgroups of celllines. This analysis revealed that cell line subgroup with
high expression-score also showed strong TEAD1 dependency compared to other TEAD paralog
dependencies (Supp Fig 4e), confirming the specificity of these target genes to TEAD1. These results
confirmed thatthe associations of the TEAD1 activity and the 26 predicted target genes are recapitulated
across multiple data domains and highlighted a TEAD1-specific association among the different TEAD

paralog family members.

TEAD family members are among the few TFs for which pre-clinical inhibitors are currently available. We
hypothesized that pharmaceutical targeting of the TF itself will recapitulate the results of our analysis and
that increased responses (i.e., anti-proliferative effect) of these inhibitors will not only correlate with
TEAD1 activity but also correlate with increased target gene dependency. To this end, we profiled the
pharmacological impact of three inhibitors in 757 solid cancer cell lines using PRISM inhibitor screening
approach**°, For this experiment, we used VT103 (a TEAD1 specific inhibitor), VT107 (a pan-TEAD
inhibitor) and K-975 (YAP/TAZ interaction inhibitor)®62 (Supp Table 13). Although the anti-proliferative
effect (measured as activity area, i.e., the area above the fitted dose response curve) elicited by these
inhibitors was not very strong across cell lines, we still identified a positive correlation of inhibitor
response and TEAD1 activity (i.e., increased inhibitor response with increased TEAD1 activity). Similarly, a
negative correlation of inhibitor response and target gene dependency was observed (i.e., increased

inhibitor response with increased target gene dependency) (Fig 4d). Taken together, the target gene
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dependencies that are associated with TEAD1 activity show similar correlation with pharmacological

inhibition of TEAD.

Finally, through CRISPR-Cas9depletion assays, we experimentally tested two of our TEAD1 associations,
ITGAV and PTK2. To this end, we selected six cell lines and classified them as sensitive (Cal120, Hs852T,
NCI-H2030, SNU761) and resistant (LNCap and T-47D) based on TEAD1 activity and ITGAV, PTK2
dependency (Fig4e). We transduced the celllines with Cas9 and gRNAs targeting ITGAV, PTK2and TEAD1
plus a GFPreporter. The gRNAsinduced a clear loss of target gene expression atday 7 after transduction
(Supp Fig 5a). The relative proliferation of GFP positive cells within total cell population was monitored
from day 3 until day 24 by flow cytometry. For both target genes ITGAV and PTK2, both sgRNAs we tested
caused a strong reduction cell proliferationin cell lines classified as sensitive, while in resistant cell lines
this effect was not observed (Fig 4f, Supp Fig 5b, Supp Table 14). In addition, we also observed a similar
reduction in cell proliferation with sgRNAs targeting TEAD1, thus also validating the self-dependency of
TEAD1 in celllines classified as sensitive (Supp Fig 5b). Theseresults confirm that the celllines we classified
based on TEAD1 activity as a biomarkerare sensitive to loss of PTK2 or ITGAV, two of our predicted target
genesassociated with TEAD1 activity (Fig 4f). Finally, we tested if the results obtained via geneticloss-of-
function mediated by CRISPR deletion can be recapitulated by pharmacological inhibition of TEAD. To this
end, we treated the sensitive cell lines with the pan-TEAD inhibitor VT-107°! (Tang et al.) and the ITGAV
antibody Intetumumab and quantified the changes in the expression level of the canonical TEAD
downstream target CTGF by RT-gPCR. As expected, we observed a dose dependent reduction of CTGF
expression with the inhibitor and antibody in most cell lines (Supp Fig 5c). These results validate the cell
lines selection based on their TEAD activity and recapitulate the genetic inhibition observations with

pharmacological inhibition of ITGAV and TEAD (Supp Fig 5d).

In summary, we identified a set of 26 target gene dependency associations for TEAD1 activity, two of
which we validated experimentally through CRISPR-Cas9 depletion assaysand pharmacological inhibition.
Further, we confirmed that target gene dependencies associated with TEAD1 activity are also similarly

associated with TEAD inhibitor responses.
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Discussion

Efficient therapies in oncology rely on the identification of specific and robust biomarkers and targets.
Several computational methods have used pan-cancer genetic perturbation and matched genomic
alterations data (e.g., mutations, copy number alterations, microsatellite instability) to establish potential
biomarker-target pairs in the past?’.293040 Recently, we and others have shown the power of quantitative
omics data (e.g., gene expression) combined with genome-wide perturbation data or exclusively gene
expression datatogether with patient survival datain identifying potential gene -geneinteractions leading
to syntheticlethality (SL)37/3. SLinteractions indicate cell death through the co-inactivation of both genes
in a pair whereas the inactivation of either gene alone does not affect viability®*-¢. However, a focused
analysis of TF activities (TFa), key componentsin regulating tumor-specifictranscriptional programs, and
their associated genetic vulnerabilities is lacking. In the case of TFs, in addition to genomic alterations,
their activity is impacted by complex regulatory mechanisms involving multiple proteins and genesas well
as epigenetic and post-translational modifications. In this work, we derived TF activities using their
annotated regulons expression® and used them as potential biomarkers in our linear model framework
to identify associated genetic dependencies (targets). Our approach, using TFa complements previous
biomarker assessments through discrete genomic alterations. Our analysis expands beyond classical SL,
by identifying targets whose inhibition will lead to a lethal phenotype inthe presence of a hyperactive TF,
previously described as synthetic dosage lethality®4%7-58, We propose that these interactions are highly
relevant in the current medical context, where direct pharmacological targeting of oncogenic TFs is still

highly challenging, and identification of novel TF vulnerabilities can lead to a strong therapeutic impact.

We identified a total of 1,770 unique TFa-target candidate pairs, for which increased target dependency
is associated with increased TFa. We hypothesize that these candidate pairs representa broaderimpact
for furthervalidations. For example, ZEB1-ITGAV pairwas identified in bladder carcinoma, non-small cell
lung carcinoma (NSCLC) and pancreatic carcinoma (PAAD) cell lines. Though direct interaction of these
two proteins was not previously reported, both are involved in epithelial-to-mesenchymal transition
(EMT), with ZEB1 as a key TF in EMT initiation®%7°, while ITGAV is EMT associated cell surface marker.
Another candidate pair RUNX2-JUN was exclusively identified in glioblastoma cell lines. However, we
observed survival impact of this pair not only in glioblastoma but also in low-grade glioma and bladder
carcinoma (Supp Table 11). The proteins encoded by thesetwo genes were reported to physically interact

and regulate the expression of downstreamgenes and pathways’%72 Though the candidate pairs reported
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in our study require additional experimental validations, as exemplified they hold great promise as

potential biomarker-target pairs.

Across our different candidate pairs, TEAD1 emerged at the center of multiple interactions. TEAD1 and its
paralog family members (TEAD1-4), and their co-factors YAP and TAZ mediate the transcriptional output
downstream of the Hippo signaling pathway, which is involved in regulating cell proliferation and
migration. With a focus on TEAD1 activity as a biomarkerand its set of 26 predicted targets, we designed
additional experimentsto understand the observed interactions. TEADs are among the small number of
TFs for which pharmacological inhibitors are available, both specifically targeting TEAD1 (VT103), pan-
TEAD (VT107) and YAP/TAZ interaction inhibitor (K975)5%%2, Previous studies integrating perturbation and
drug sensitivity measurements across cell lines identified drug mechanism of action and drug’s secondary
targets’®74. Similar to these observations, our results showthat TEAD1 target dependencies are correlated
with TEAD inhibitor sensitivity, indicating the effect of direct pharmacological targeting of the TEAD TFs.
In addition, with single gene depletion assays, we showed that cell lines with high TEAD1 activity are
vulnerable to ITGAV or PTK2 genetic inhibition. This is in accordance with recently published literature
showinga feedback regulatory loop between TAZ/ITGAV and YAP/TAZ in Hippo pathway activation®” and
focal adhesion kinases (PTK2) modulating YAP/TAZ activity’®. With growing evidence on the role of Hippo
signaling pathway in cancers, our TEAD1-specific analysis provides an example of relevant new clinical

targets and drug-repurposing strategies for further therapeutic exploration.

While we made efforts to increase the robustness of our predictions based on integration across
independent genetic depletion screens, stringent statistical approaches, and assessment of clinical
relevance across patient cohorts, our approach s subject to severallimitations. First, while cell lines have
provento be a usefultoolin cancer research, they do have limitations related to their representation of
primary tumors and the translation of results to the in vivo context. While we systematically use TCGA
patient cohorts for a first assessment of the predicted interaction in a clinically relevant context, the
specificity of each one of our selected pairs in defining patient populations would need validation across
independent cohorts that are currently not covered in this study. Second, the power of our analysis is
impacted by the number of cell lines. In our cancer-type focused analyses, the number of celllines varies
between 13 (mesothelioma) to 84 (NSCLC). Specifically, we expect cancer types represented by a small
number of cell lines to fall short of providing the expected statistical power for the comprehensive
identification of candidate TFa-target pairs. Third, the underlying molecular mechanisms of the predicted

associations need in-depth experimental work beyond the purpose of this study. Further improvements
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of our methodology could integrate protein abundance quantification in addition to gene expression, as
well as expand the current one TF to one target pairs to interactions between multiple TFs and their

respective targets.

Ongoing developments in experimental approaches such as combinatorial screens’® or drug anchored
screens are providing the required tools to map complex genetic interactions in cells. The method and
validations we provided in this work is a step toward understanding such interactions and potentially
identifying new targets and biomarkers involving TFs. The targets we identified for each TF can serve as
the basis for designing targeted libraries for above mentioned experimental strategies and highlight the
power of TFa to stratify the tumors and harness their underlying vulnerabilities for future targeted

therapeutics.

Methods
Transcription factor activity (TFa) estimation in cell lines and TCGA tumors

We estimated a given transcription factor activity (TFa) using the combined expression of its annotated
target genes, called regulons. Regulons for each TF were extracted from the dorothea R/Bioconductor
package?®?, which includes a collection of annotated TF targets from different sources32. We then
computed the activity score for each TF using the Viper R/Bioconductor package. The TF activity is defined

as the normalized enrichment score (NES) calcuated by the Viper algorithm””.

Pan-cancer identification of TFa associated gene dependencies (TFa-target pairs)

We downloaded a list of human transcription factors from reference’® and selected transcription factors
(TFs) that have regulon annotations in Dorothea R/Bioconductor package. We removed TFs which do not
show the dependency (dependency score <=-0.8) in at least three celllines in two out of three dependency
databases (Project Achilles?’, Project Sanger??, Project Drive3°) and TFs which show dependency in >=95%

of cell lines included in Project Achilles (Supp Fig 1a). We selected TFs in this way to remove “never

I” I”

essential” and “pan-essential” TFs from our analysis and keep those TFs that show a potential context
dependency. We used the resulting 92 TFs to identify their activity-associated gene dependencies (Supp
Fig 1a). Toidentify the gene dependencies associated with TFa, we implemented a linear regression model

using the formula “gene dependency ~ TFa + Cancer type”. Cancer type of each cell line was included in
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order to account for the variation in dependency scores due to different tissue types. We implemented
this linear modelfor each TF with all genes (including all TFs) as potential target genes. We then adjusted
nominal p-values for multiple testing using the Benjamini-Hochberg method after excluding “pan and
never essential” genes, keeping 11,665 dependencies as potential targets. This procedure has been
repeated with three cancer dependency datasets Project Achilles, Sanger and Project Drive. We called
TFa-target pair significant if the adjusted p.value was < 0.1 (FDR < 10%) and the TFa coefficient (effect
size) was above or below 3 standard deviations. TFa-target pairs with negative effect size indicate
increased dependency on a target gene with increased TFa and positive effect size indicates increased
dependency on a target gene with decreased TFa. We considered TFa-target pairs with negative effect

size for the remaining downstream analysis.

Cancer type specific TFa-target pairs identification

To identify cancer-type specific TFa-target pairs, we selectedthose cancer types for which expression and
dependency data are available for at least 10 cell lines in Project Achilles.?” We chose this CRISPR KO
dataset due to the inclusion of alarge number of cell lines. For each cancertype, to remove ‘pan-essential
and ‘neveressential’ TFs, we removed TFs which showed dependency (chronos score <=-0.8) in >95% of
cell lines or did not show dependencyin at least one cell line. Amongthe remaining TFs, we selected the
TFs based on their expression. We computed the mean for each TF across all cell lines for a given cancer
type and divided the expression of all TFs into three equal sized bins (tertiles). We then considered TFs
falling into the second and third tertiles as the expressed TFs for that cancer type (Supp Table 9) and
computed their activities. Similar to TF dependency, we removed gene dependencies that did not show
dependencyin at least one cell line and showed dependency in >95% of cell lines and keptthe remaining

gene dependencies as the potential target pool.

We implemented a linear modelto identify TFa-target pairs in the same way as described above for the
pan-cancer analysis, except in this analysis we did not use cancer type as a covariate. We then adjusted
nominal p-values for multiple testing using Benjamini-Hochberg method and considered TFa-target pairs
with FDR < %5 and TFa coefficient (effect size) above or below two standard deviation values to reduce
the number of false positives. TFa-target pairs with negative effect size indicate increased dependency on

a targetgene with increased TFa and positive effect size indicates increased dependency on atarget gene
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with decreased TFa. We considered TFa-target pairs with negative effect size for the remaining

downstream analysis.

TCGA cohort definitions and survival analysis

To assess the clinical relevance of identified TFa-target pairs with negative effect size from both pan-
cancer and cancer type specific analysis, we used TCGA expression and clinical data to perform survival
analysis as illustrated in Supp Fig 1b. For each TCGA cancer type, we computed the TF activity with the
dorotheaand viper R/bioconductor packages as described above. For a TFa-target pair, we divided each
cohort into three equally sized subgroups (low, medium, high) based on TFa and target gene expression
independently. We removedthe tumorsin the ‘low’ TFasubgroupand defined the tumors in the ‘medium’
and ‘high’ tertiles as the ‘high’ TFa subgroup. We then overlapped these high TFa subgroups of tumors
with tumors in ‘low’ and ‘high’ target expression subgroups. Finally, we defined TFa high and low target
expression (TFa high — low target expression) and TFa high and high target expression (TFa high — high
target expression) subgroups and compared the survival difference between these two with a cox
proportional hazards model. We performed this analysis on each TCGA cancer type and in a pan-cancer
setting by combining all solid TCGA cancers together. For the pan-canceranalysis, we used cancertype as
the covariate in the cox proportional hazards model. We used coxph function from survival
R/biocondcutor package and survival curves shown in the figures were plotted with ggsurvplot from
survminer R/bioconductor package. We considered a survival difference between compared subgroups
significant, if both subgroups contain at least 10 tumors, the p-value was < 0.05 and the hazards ratio was
> 1 for “TFa-high — high target expression” subgroup compared to “TFa-high — low target expression”

subgroup.

Ranking of TFa-target pairs features and random forest classifier implementation

To identify the potential features underlying TFa-target pairs with negative effect size, we defined a set
of 15 features that potentially capture the relationship of two genes at different levels. All features and
their sources are listed in Supp Table 7. These features contain different layers of information such as
protein-protein interactions, expression level association (correlation of expression), evolutionary
relatedness (meaning belonging to the same paralog families), and shared pathway membership. We

prepared the dataset of TFa-target pairs that were significant and non-significant with negative effect size
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from solid pan-cancer analysis and labeled them as “significant pairs” or “non-significant pairs”. We
removed self-dependent TFs (where TFaand target are same) and TFa-target pairs where target is also a
TF. For this combined set of 572 pairs (272 significant pairs and 300 randomly selected non-significant
pairs), we first computed the ROC AUC of each feature with the roc function from pROC R package to
identify the features with top ranking. To identify the contribution of each feature to each significant pair,
we trained a random forest modelwith an ensemble of 15 features and all 572 TFa-target significant and
non-significant pairs. The random forest classifier model was trained using the randomForest R package
using 80% of the whole dataset as training data and 3 repeatcross fold validation. We further computed
the contribution of each feature to each pair as Shapley additive explanations (SHAP) values using the

treeshap R package (Supp Table 8).

GSEA/enrichment analysis

Gene set enrichment analysis (GSEA) analysis’ has been performed with the clusterProfiler
R/Bioconductor package®® using gene sets from the molecular signatures database®' (MSigDB). The
nominal p-values were adjusted using the Benjamini-Hochberg methodand significant enrichments were

defined as having an adjusted p.value < 0.05.

Expression-score for TCGA tumors with 26 genes whose dependency is associated TEAD1

We used the gene set variation analysis (GSVA) R/bioconductor package to compute expression -score for
all TCGA tumors using target genes associated with TEAD1 as a gene set. We first removed WWTR1/TAZ
and YAP1 genesfrom 26 target genes of TEAD1 before computing expression-score forall TCGA tumors,
since these two genes were also annotated as regulons of TEAD1 to avoid bias in the expression-score.

This expression-score was correlated with TEAD1 activity across different TCGA cancer types.

PRISM inhibitor screen

We performed a PRISM inhibitor screen usingthe TEAD1specificinhibitor (VT103), the pan-TEAD inhibitor
(VT107) and the YAP/TAZ interaction inhibitor (K-975) as described previously**, ¢°. These assays were

performed at the Broad Institute; inhibitors were synthesized and analyzed for quality as described in
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literature®62, Celllines were grown in RPMI 10% FBS without phenolred foradherentlinesand RPMI 20%
FBS without phenol red for suspension lines. Parental cell lines were stably infected with a unique 24-
nucleotide DNA barcode via lentiviral transduction and blasticidin selection. Afterselection, barcoded cell
lines were expanded and QCed (mycoplasma contamination test, a SNP test for confirming cell line
identity, and barcode ID confirmation). Passing barcoded lines were then pooled(20-25celllines per pool)

based on doubling time and frozen in assay-ready vials.

Test compounds were added to 384-well plates and run at 8 pt. dose with 3-fold dilutions in triplicate with
atop dose of 10uM. These assay-ready plates were thenseededwith the thawed cellline pools. Adherent
cell pools were plated at 1250 cells per well, while suspension and mixed adherent/suspension pools were
plated at 2000 cells per well. Treated cells were incubated for 5 days, then lysed. Lysate plates were

collapsed together prior to barcode amplification and detection.

Each cell line’s unique barcode is located at the end of the blasticidin resistance gene and gets expressed
as mMRNA. These mRNAswere captured using magnetic particles that recognize polyA sequences. Captured
mMRNA was reverse transcribed into cDNA and then the sequence containing the unique PRISM barcode
was amplified using PCR. Finally, Luminex beads that recognize the specificbarcode sequencesinthe cell
set were hybridized to the PCR products and detected usinga Luminex scanner which reports signal as a

median fluorescent intensity (MFI).

PRISM inhibitor screen data processing

For each plate, we first normalized the logMFI (log2 mean fluorescence intensity) of the DMSO wells to
their median logMFI. Each detection well contained 10 control barcodes in increasing abundances as
spike-in controls. A monotonic smooth p-spline was fit for each control barcode detection well to
normalize the abundance of each barcode to the corresponding value in the plate-wise median DMSO
profiles. Next, all the logMFI valuesin the well were transformed through the inferred spline function to
correct for amplification and detection artifacts. Next, the separability between negative and positive
control treatments was assessed. In particular, we used the error rate of the optimum simple threshold
classifier between the controlsamples foreach cell line and plate combination. Error rate is a measure of
overlap of the two control setsandis defined as “Error=(FP+FN)/n” where FP is false positives, FN is false
negatives, and nis the total number of controls. Athreshold was set betweenthe distributions of positive

and negative control logMFI values (with everything below the threshold said to be positive and above
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said to be negative) such that this value is minimized. Additionally, we also filtered based on the dynamic
range of each cell line. Dynamic range was defined as “DR= . - u,” where p+/- stood for the median of
the normalized logMFI values in positive/negative control samples. We filtered out cell lines with error
rate above 0.05 and a dynamic range less than 1.74 from the downstream analysis. Additionally, any cell
line that has less than 2 passing replicates was also omitted for the sake of reproducibility. Finally, we
computed viability by normalizing with respect to the median negative control for each plate. Log-fold-
change viabilities were computed as “log-viability = log2(x)-log2(u.)” where log2(x)is the corrected logMFI
value in the treatment and log2(u-) is the median corrected logMFI in the negative control wells in the
same plate. Log-viability scores were corrected for batch effects coming from pools and culture conditions
using the ComBat algorithm as described previously®?. We fit arobust four-parameter logistic curve to the
response of each cell line to the compound: f(x) = b+((a-b)/1+e°9*£c50) with the following restrictions 1)
We require that the upper asymptote of the curve be between 0.99 and 2) We require that the lower
asymptote of the curve be between 0and 1.01 3) We no longer enforce decreasing curves 4) We initialize
the curve fitting algorithm to guess an upper asymptote of 1 and a lower asymptote of 0.55) When the
standard curve fit fails, we now report the robust fits provided by the dr4pl R-package and computed AUC
(areaunderthe curve)andIC50values for each dose-response curve.Finally, the replicates were collapsed
to a treatment level profile by computing the median score for each cell line. Finally, the activity area for
each inhibitor across cell lines was correlated with target gene dependency and TEAD paralogue activities

using corr function in R.

Cell lines

Cell lines were obtained from cell banks as indicated in the resource table. NCI-H2030, SNU761,
LNCap.FGCand T47D were cultured in RPMI 1640 ATCC formulation supplemented with 10% FCS. The
media of T47D was additionally supplemented with 0.2 U/ml bovine insulin. Hs852.T and Cal-120 were
cultured in DMEM supplemented with 10% FCS. LentiX were propagated in DMEM supplemented with
Tet-approved 10% FCS. All cell lines were cultivated at 37°C in a humidified atmosphere with 5% CO,.

Generation of Cas9 expressing cell lines
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The codon-optimized cDNA sequence of Cas9 was synthesized and cloned into backbones by GenScript
Biotech Corporation 2. The Cas9 plasmid was packed into lentiviral particles using the LentiX cell line and
LentiX VSV-G single shots according to manufacturer’s protocol. After 48h the lentiviral particle -containing
supernatants were harvested, filtered through a 0.45 um SFCA filter and stored at -80°C until further
usage. NCI-H2030, SNU761, LNCap.FGC, T47D, Hs852.T, and Cal-120 were transduced with Cas9-

containing lentivirus and selected 3 days later with puromycin.

CRISPR/Cas9 depletion assays

All CRISPR/Cas9 depletion assays were conducted as previously described previously®*. Briefly, gRNAs
were cloned into the lentiviral vector Lenti_gRNA GFP(LRG)_2.1T by GenScript Biotech. Then lentiviral
particles were produced in LentiX cells using LentiX VSV-G shots to package the guide containing lentiviral
vectors, according to manufacturer’s protocol. Viral supernatants were harvested after 48h, filtered
through a 0.45 um SFCA filter, aliquoted and stored at -80°C until further usage. For depletion assays,
relevant cell lines stably expressing Cas9 were seeded at approximately 50—-60% in a 12-well plate and
transduced with viral particles to achieve atransduction efficiency of 10-90%. Cells were then cultured for
24 days and were analyzed for GFP positive cells onthe BD FACSCanto Il flow cytometer on aweekly basis

starting at day 3 after transduction.

Fluorescence activated cell sorting (FACS)

NCI-H2030 cells were seeded in a 6-well plate and transduced with guide-containing lentiviral particles
targeting TEAD1 and PTK2 with a transduction efficiency of 50-90%. Seven days upon transfection and
expansion to T75 tissue-culture flask, cells were detached with Accumax and sorted with SONY Sorter
SH800Z to gain 0,5-2* 1075 cells of a > 95% pure GFP+ cell population for respective guides. Cells were
pelleted by centrifugation at 300x g for 5 min, washed once with PBS and lysed in RIPA lysis buffer plus

complete and 0.5% dodecyl-B-D-maltoside.
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Inhibitors titrations and CTGF expression by gPCR

For the treatment with inhibitors, 10000 cells/wellwere seededin a96 well plate (96 well, white, clear F-
Bottom, Lid, tissue-culture treated plates, sterile, PerkinElImer PNr.: 6005181). The day after seedingthe
cells, compounds were added using a digital dispenser (D300 Digital Dispenser, HP) in the case of the small
molecule inhibitors, or added manually in the case of Intetumumab and respective IgG control. 48h after
the beginning of inhibitors treatment, cells were harvested and processed using the FastLane Cell RT-
PCR_QuantiTect Multiplex RT-PCR Kit (Qiagen #216513). For the amplification of CTGF and b2-
Microglobulin we used TagMan probes (B2M VIC, Cat. Nr. Hs00187842_m1, and CTGF FAM, Cat. Nr.
Hs00170014_m1).

Protein quantification by WES

Protein content of lysates was quantified with BCA assay according to manufacturer’s recommendations.
Individual protein KO was determined using the automated Western Blot System WES from Proteintech.
Therefore, 0.2 - 0.4 ug/ul lysate was loaded ontoa 12-230 kDa 25-Capillary Cartridge and was incubated
for 60 min with primary antibodies against TEAD-1 (1:50), PTK2 (1:200), ITGAV (1:200) and GAPDH
(1:2000). After 30 minutes incubation with the anti-rabbit secondary reagent, signals were developed

using chemiluminescence.

Data availability

The list of human transcription factors (v1.0.2) were downloaded from

http://humantfs.ccbr.utoronto.ca/download.php in August2021. Annotated transcription factor regulons

were used from dorothea R/bioconductor package3? (v1.0.1). The dependency data of Project Achilles,
Project Sanger, Project Drive and expression data of CCLE cell lines was downloaded from

https://depmap.org/ fromrelease 2021 Q4. The cancer genome atlas (TCGA) data was collected from GDC

portal https://portal.gdc.cancer.gov/ and the expression data was processed as previously described®.

Pathway gene sets were downloaded from molecular signatures database®!' (https://www.gsea-

msigdb.org/gsea/msigdb/) (v7.5.1). Protein-protein interactions were downloaded from the biogrid

database (https://thebiogrid.org/) (v4.4.204). Target tractability data is collected from publication
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(https://www.nature.com/articles/s41586-019-1103-9). PRISM inhibitor screen performed as part of this

study are provided for public accessin Supp Table 13. All reagentsources used in CRISPR-Cas9depletion

assays are provided in Supp Table 15.

Code availability
All analyses were performed in R statistical programming language (v4.0.2)

e Tidyverse (v1.3.0) - https://github.com/tidyverse/tidyverse

e Dorothea (1.0.1) - https://bioconductor.org/packages/release/data/experiment/html/dorothea.html

e  Survival (v3.2-3) - https://cran.r-project.org/web/packages/survival/index.html

e Survminer (v0.4.8) - https://cran.r-project.org/web/packages/survminer/index.html

e pROC (v1.16.2) - https://cran.r-project.org/web/packages/pROC/index.html

e randomForest (v4.6-14) - https://cran.r-project.org/web/packages/randomForest/index.html

e Treeshap (v0.1.1) - https://github.com/ModelOriented/treeshap

e  GSVA (v1.36.2) - https://bioconductor.org/packages/release/bioc/html/GSVA.html

e ComplexHeatmap (v2.4.3) - https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html

e Code written for analysis in this paper — Code will be made open source upon the publication

Figure Legends
Figure — 1: Framework and overview of the TFa-gene dependency associations

a) Linear model based framework to identify target gene dependencies associated with transcription
factor activities (TFa). Further downstream analysis of the significant TFa-target pairs performed in this
study are indicated. b) Volcano plot of TFa-target pairs identified from our pipeline using 757 solid cancer
cell lines. Top associations are labeled. Negative effect size indicates increased dependency associated
withincreased TFa and positive effect size indicates increased dependency associated with d ecreased TFa.
c) Top panel: TFs with the highest number of total associations as TFa biomarker, bottom panel:
dependency targets with the highest number of significant associations as dependency feature. d)
Heatmap illustrating the impact of a TFa-target pair on survival of different TCGA cancertypes when both
TFa activity and associated target expression are high. Analysis details are illustrated in Supp Fig 1a. Dark
orange representsnegative pairs with poor prognosis in TCGA. Light orange represents negative pairs with
better prognosis in TCGA. Dark grey and light grey are negative pairs without a TCGA statistically
significant survival impact ortoo few patient samples, respectively. e) Distribution of fraction of TFa-target
pairs and their association with survival. f) Scatter plot showing the correlation of TEAD1 TF activity and
RAC1 dependency. g) Kaplan-Meier plot showing the survival difference between RAC1 high vs low
expression subgroups within TEAD1 TFa activity high tumors.


https://doi.org/10.1101/2023.02.23.529701
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.23.529701; this version posted February 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure — 2: Features of TFa-target pairs

a) ROC AUCvalues of 15different features in classifying TFa-target significant vs non-significant pairs. ROC
AUCVvalues were calculated by treating each feature as an independent classifier. b) Box plots illustrating
the difference of top features from (a) between significant and non-significant pairs. “# of overlapping
direct interactors”: overlap between the proteins that are directly connectedto TF and its targetgene in
a protein-protein interaction network, “# overlapping pathways”: overlap of pathways in which TF and its
target are involved, “TF & target gene dependency correlation”: dependency correlation of TF and its
associated target gene across cell lines. c) AUC of a random forest classifier trained on 15 features from
(a), compared to the top feature as the individual classifier.

Figure — 3: TFa-target pairs identified in individual cancer types

a) Manhattan plot showing the number of significant TFa-target pairs with negative effect size identified
from each individual cancer type with the linear model-based framework (FDR < 5%). Top pairs from
different cancertypes are labeled. b) Bar plot showing the number of specific (dark color) and non-specific
(light color) associations within each cancertype. c) Specificexamples TFa-target pairs (JUNB-FOSL1, ZEB1-
ITGAV, MYC-CAD) identified from different cancer types and their associated Kaplan-Meier plots of the
same cancer type from TCGA.

Figure — 4: TEAD1 TFa associated gene dependencies & validation

a) Heatmap showing the correlation of 27 target gene dependencies with TEAD1 TFa (spearman
correlation, 95% confidence intervals). b) Heatmap of Shapley Additive Explanation (SHAP) values of all
features of TEAD1 TFa associated targets extracted from random forest classifier explained in Fig 3c. X-
axis shows all 26 genes (excluding TEAD1 dependency). c) Example Kaplan-Meier plots showing the
survival difference between low vs high WWTR1 or FOSL1 expressing subgroups with high TEAD1 TFa.
Subgroups were defined same as Fig 1g. d) Heatmap showing the correlation of TEAD1 TFa target gene
dependencies with inhibitor responses and TEAD paralogue activities (spearman correlation, 95%
confidence intervals). VT103 — TEAD1 specific inhibitor, VT107 — pan-TEAD inhibitor, K-975 — YAP/TAZ
interaction inhibitor. e) Predicted sensitive and resistant cell lines selected for CRISPR/Cas9 depletion
assays. TEAD1 activity and PTK2, ITGAV and TEAD1 dependency scores are shown. f) CRISPR/Cas9
depletion time course showing relative growth defects introduced by sgRNAs against PTK2 (purple), ITGAV
(blue), the negative control AAVSI (red), or the positive control sgRNA POLRA (green). Guide containing
GFP+ cell numbers of weekly measurements over 24 days were normalized to the GFP+ cell numbers of
day 3 upon transduction with the guides. Mean and standard deviation of three biological replicates are
shown. For T-47D resistant cell line, two biological replicates were presented and with one measurement
on day 10.

Supp Figure -1
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a) Flow chart illustrating the prioritization of transcription factors for linear modelbased analysis of 757
solid cancer cell lines. b) lllustration showing the approach employed for TCGA survival analysis for each
TFa-target pair. This analysis was performed on all TCGA solid tumors together as pan-cancer setting and
on each individual TCGA cancer type. c) Volcano plot showing the total number of TFa-target pairs
identified from linear model based framework in hematological cancer cell lines. d) Pie chart indicating
the fraction of TFa-target pairs from (c) and their association with survival of TCGA cancertypes (same as
Fig 1e). e) Scatter plot showingthe correlation of TFa and dependency of the top TFa-target pair, STAT5B-
STAT3, from hematological cell lines (spearman correlation, 95% confidence interval). d) Overlap of TFa-
target pairs from solid, hematological cell lines identified in a pan-canceranalysis. e) Overlap of TFa-target
genesandthe TF regulons used to estimate TF activity. Plots showing the distribution of Jaccard score of
overlap between regulons and identified target genes across different types of analysis performed in this
study.

Supp Figure — 2

a) Box plots showing the difference of quantitative features between TFa-target significant vs non-
significant pairs. b) P-values estimated by Fishers’ exact test for binary features. FET: Fisher’s exact test.
¢) SHAP values estimated for all features from random forest model are averaged across all pairs and
ranked.

Supp Figure -3

a) Scatter plot showingthe correlation of NRF2 (also called NFE2L2) TFavs its dependency across different
cancer types. b) Scatter plot showing the correlation between the number of TFa-target pairs identified
and the total number of cell lines available foreach cancer type. c) Venn diagram showing the overlap of
TFa-target pairs from pan-cancer analysis of solid cancer cell lines and pairs identified from cancer type
specific analysis. d) Pie chart showing the distribution of TFa-target pairs identified by individual cancer
type analysis and their association with survival in TCGA cancertypes. e) Distribution of individual cancer
type TFa-target pairs and their survival impact in matched TCGA cohorts. f) Pie chartindicates the number
of target genes from analysis that currently have inhibitors and antibodies. The bar chart indicates the
tractability buckets of the remaining 729 target genes. Lowerthe number for tractability bucket indicates
the high tractability g Heatmap showingthe correlation of inhibitor responses from PRISM database and
TFa (spearman correlation, 95% confidence interval).

Supp Figure -4

a) GSEA plots of enriched pathways with 26 target genes associated with TEAD1 TFa. b) Overlap of top 50
geneswhose dependency is correlated with TEAD1 dependency and TEAD1 activity associated 26 targets
genes. ¢) Heatmap showing the survival effect 26 target genes in TEAD1 activity high subgroup. TEAD1
activity high — low target expression subgroup is compared with TEAD1 activity high — high target
expression subgroup. Both ‘poor-prognosis’ and ‘better-prognosis’ indicates p.value < 0.05 significance
from cox proportional hazards model. d) Heatmapshowing the correlation of expression-score of 26 genes
asa gene set with different TEAD paralog activities in TCGA. Expression-score is estimated for each sample
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in TCGA using 26 target genes expression with single sample gene set enrichment analysis (spearman
correlation, 95% confidence interval). e) Boxplotsillustrating the dependency of TEAD paralogues in three
subgroups defined based on 26 genes expression-score. 757 solid cancer cell lines were divided into three
subgroups based on the expression-score of each cell line.

Supp Figure — 5

a) Automated Western blot (WES) showing reduced ITGAV protein levels in NCI-H2030 at d7 upon
transduction with ITGAV-targeting guides. Reduced protein levels of PTK2and TEAD1in NCI-H2030 sorted
for >95% purity at day 7 upon transduction with respective guides. b) CRISPR/Cas9depletion time course
showingrelative growth defects introduced by sgRNAsagainst PTK2 (purple), ITGAV (blue), TEAD1 (black),
the negative control AAVSI (red), orthe positive control guide POLRA (green). Guide containing GFP+ cell
numbers of weekly measurementsover 24 days were normalized to the GFP+cellnumbers of day 3. Mean
and standard deviation of three biological replicates are shown. For T-47D resistant cellline, two biological
replicates were presented and with one measurementon day 10. c) TEAD1 downstream biomarker gene
CTGF expression measured with gPCR after treatment with inhibitor VT107 (pan-TEAD inhibitor) and
antibody Intetumumab (ITGAV antibody).
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