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Abstract

The human skin microbiome represents a variety of complex microbial ecosystems that play a key
role in host health. Molecular methods to study these communities have been developed but have
been largely limited to low-throughput quantification and short amplicon sequencing, providing
limited functional information about the communities present. Shotgun metagenomic sequencing has
emerged as a preferred method for microbiome studies as it provides more comprehensive
information about the species/strains present in a niche and the genes they encode. However, the
relatively low bacterial biomass of skin, in comparison to other areas such as the gut microbiome,
makes obtaining sufficient DNA for shotgun metagenomic sequencing challenging. Here we describe
an optimised high-throughput method for extraction of high molecular weight DNA suitable for
shotgun metagenomic sequencing. We validated the performance of the extraction method, and
analysis pipeline on skin swabs collected from both adults and babies. The pipeline effectively
characterised the bacterial skin microbiota with a cost and throughput suitable for larger longitudinal
sets of samples. Application of this method will allow greater insights into community compositions
and functional capabilities of the skin microbiome.

Impact Statement

Determining the functional capabilities of microbial communities within different human
microbiomes is important to understand their impacts on health. Extraction of sufficient DNA is
challenging, especially from low biomass samples, such as skin swabs suitable for shotgun
metagenomics, which is needed for taxonomic resolution and functional information. Here we
describe an optimised DNA extraction method that produces enough DNA from skin swabs, suitable
for shotgun metagenomics, and demonstrate it can be used to effectively characterise the skin
microbiota. This method will allow future studies to identify taxonomic and functional changes in the

skin microbiota which is needed to develop interventions to improve and maintain skin health.

Data Summary

All sequence data and codes can be accessed at:

NCBI Bio Project ID: PRINA937622

DOI: https://github.com/quadram-institute-bioscience/coronahit_guppy
DOI: https://github.com/ilianaserghiou/Serghiou-et-al.-2023-Codes
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Introduction

The skin microbiome is a complex ecosystem organised into distinct microbial communities present at
different body sites (NASEM, 2018; Costello, et al., 2009). These microbial ecosystems participate in
the host’s skin physiological functions and immunity (Cho and Blaser, 2012; Human Microbiome
Project Consortium, 2012). Perturbations in these communities can negatively impact skin health,
particularly early in life (Kong, 2011). Studying the skin microbiota and how it forms and changes
over time is therefore important to understand how interventions that alter the microbiota affect skin
health.

Previous skin microbiome studies have commonly used traditional 16S rRNA gene amplicon
sequencing (metataxonomics) to taxonomically classify these complex communities (Jo, et al., 2016).
This method is typically performed using the Illumina sequencing technology, which results in short
reads for taxonomic classification to genus level (Pearman, et al., 2020). 16S rRNA gene amplicon
sequencing provides limited taxonomic information on bacteria and archaea however does not tell us
anything about strain variations or functional capacities; Alternatively, the use of Shotgun
Metagenomic Sequencing (SMS) for taxonomic classification follows sequencing of all genetic
material and is not limited to targeted regions (Sfriso, et al., 2020; Kuczynski, et al., 2012; Allaband,
et al., 2019). This reduces bias from selective amplification efficiency and can provide taxonomic
information at species/strain level as well as being able to provide information about functional
capacities present in the microbiome and individual species (Jo, et al., 2016; Liu, et al., 2020; Sfriso,
et al., 2020). SMS can be performed using multiple technologies, including the Illumina, Oxford
Nanopore (ONT) and PacBio Single Molecule Real-Time (SMRT) platforms (Pearman, et al., 2020;
Amarasinghe, et al., 2020). In contrast to the Illumina technology, the ONT and PacBio SMRT
technologies produce long sequence reads. Data produced with these platforms will usually
reconstruct more complete genomes than from short reads and facilitates the generation of high-
guality Metagenome Assembled Genomes (MAGS) (Pearman, et al., 2020), which can be used for

higher taxonomic resolution and functional information (Singleton, et al., 2021; Liu, et al., 2020).

The relatively low bacterial biomass of skin complicates the extraction of sufficient DNA quantities
for SMS (Bjerre, et al., 2019; de Goffau, et al., 2018). This is particularly true for longer read
technologies where more input material is needed (Wang, et al., 2021). There are a limited number of
commercialised kit protocols available that can produce high molecular weight (HMW) DNA from
skin in sufficient quantities for SMS, although none have been specifically optimised to extract DNA
from skin microbiome samples. To address this need we describe here an optimised high-throughput
automated DNA extraction method, for recovery of HMW microbial DNA from skin swabs. This was

validated using skin swabs from adult volunteers and babies enrolled in the Pregnancy and Early Life
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(PEARL) study (Phillips, et al., 2021). The method results in DNA with yield and molecular weight
suitable for SMS.

Methods

DNA extraction method development

To optimise extraction of microbial DNA from skin swabs, a Promega Maxwell® RSC 48 Instrument
and RSC Blood DNA Kit (see Supplementary file 1 for protocol) were used as a starting point and
different diluents and lysis procedures were evaluated for effectiveness. This instrument and kit were
chosen as they produce HMW DNA (Mandrekar, et al., 2007, Bey, et al., 2010), with a higher binding
capacity and cleaner eluate than traditional silica-based DNA purification systems (Sui, et al., 2020;
Moeller, et al., 2014; Dunbar, et al., 2018; Promega, 2020). The platform also permits a high-
throughput automated genomic DNA isolation from 48 samples in 40 minutes (Promega, 2020)

making this system compatible with larger sample sets.

To obtain enough DNA from skin swabs, suitable for SMS, we optimised the RSC protocol by testing
different variables including the initial diluent and various lysis procedures. After dilution and lysis,
samples were heated, following the RSC Blood DNA Kit protocol, and loaded to the Maxwell
instrument for the automated extraction (Figure 1).

RSC Blood DNA Kit Protocol: 1. The initial diluent the samples 2. Different lysis reagents
1. Sample added to Eppendorf tube. were added to was tested. added to the samples were
2. Lysis reagents added to samples. % tested.
3. Heated Lysis performed on samples. =
4. Samples loaded onto the Maxwell —

instrument to perform the automated | '..'ll.q i

DNA extraction. \j \T:f

6. Resulting DNA extract l

T 5. Samples were then loaded 4. The RSC Blood DNA Kit protocol 3. Heated lysis procedures at

onto the Maxwell platform to does not include a bead beat lysis varying incubation times and
UI perform the automated DNA step. This method was compared to temperatures were tested on
extraction. different bead beat lysis instruments the samples.

and intensities.
= O 4

-
r -

C— I A— [-i-\?

Figure 1 - The RSC Blood DNA Kit protocol (yellow box) and alterations to test different initial

sy

diluents and lysis procedures.
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Testing initial diluents: Measuring extracted bacterial DNA quantity and cellular viability

To allow for a protocol where a swab could be processed allowing both DNA extraction and, in
parallel, culture of organisms, it was desirable to remove material from the swab into a diluent. To
determine if diluents impacted bacterial viability and ability to extract DNA, 1x Phosphate Buffered
Saline (PBS) and Milli-Q water, for collecting skin bacteria, were compared by measuring extracted
bacterial DNA quantity recovered from swabs inoculated with bacteria. 44 sterile charcoal cotton
swabs (M40-A2, Technical Service Consultants Ltd.) were used to collect a single colony from an
agar plate inoculated with Staphylococcus aureus NCTC 8532 to act as a target for DNA extraction.
These ‘spiked” swab heads were snapped into 1.5ml Eppendorf tubes containing 1ml of either 1x PBS
or Milli-Q water. These were then extracted following the Promega Maxwell® RSC 48 Instrument
and RSC Blood DNA Kit protocol in Supplementary file 1,wih the following modification. The swabs
were vortexed at full speed for 2 minutes and then centrifuged at 14,000 x g for 15 minutes to pellet
the cells before the supernatant was removed, and cells were resuspended in 300ul of 1x PBS or
Milli-Q water. Steps 4 and 6-8 of the RSC protocol were then followed. A bead beating step was then
performed using a ‘FastPrep’ instrument for 3 minutes at setting 6.0. The samples were centrifuged
again at 14,000 x g for 15 minutes to pellet the cells before sample supernatants were loaded onto the
Maxwell instrument and the extraction started following steps 9-21 of the RSC protocol.

The effectiveness of 1x PBS and Milli-Q water, as initial diluents for collecting skin bacteria, was
further compared by measuring bacterial cell viability through the recovery of bacteria from liquid
cultures. Cell viability is an important factor as we wanted an initial dilution step which maintained
bacterial viability and was therefore compatible with both culture of bacteria from samples and
efficient DNA extraction. Overnight liquid cultures (10 ml) were grown from isolates of three species
(S. aureus NCTC 8532, Pseudomonas aeruginosa PA14 and Escherichia coli EC18PR-0166-1, a food
isolate of ST10), with three replicates for each. For each replicate, 1ml was transferred into a 15 ml
falcon tube and pelleted by centrifugation at 14,000 x g for 15 minutes. Samples were then
resuspended in 200ul of LB, 1x PBS or Milli-Q water and left for 1 hour at ambient temperature.
Serial dilutions of the resuspended samples were made and plated onto drug-free agar and incubated,
which were then used to count viable numbers of cells in each sample. A total of nine independent

samples were tested for each species in each diluent.

Testing lysis methods: Six extraction method procedures

Six lysis methods were compared to identify the best method for high yields of high molecular weight
DNA from both Gram-negative and Gram-positive bacteria. Each method varied factors from
common lysis methods used in commercial Kits for research — heat, chemical, enzymatic, and

mechanical (Gill, et al., 2016; Martzy, et al., 2019). Table 1 lists the differences between the six
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methods. Methods were tested using both overnight liquid cultures and sterile swab heads inoculated

with harvested bacteria from overnight plate cultures.

Table 1 — Comparison of extraction methods

Method 1 Method 2 Method 3 Method 4 Method 5 Method 6
Heated lysis Yes Yes Yes Yes Yes Yes
Step
Time 20 mins 20 mins 18h 18h 18h 18h
Temperature 56°C 56°C 37°C 37°C 37°C 37°C
Reagents Proteinase K, Proteinase K, Epicentre Epicentre Thermo Thermo
lysis buffer lysis buffer ready-lyse ready-lyse Fischer Fischer
lysozyme lysozyme lysozyme lysozyme
Agitation No No 300rpm 300rpm 300rpm 300rpm
Bead beat step | Yes Yes Yes Yes Yes Yes
Instrument FastPrep Tissue Lyser FastPrep Tissue Lyser  FastPrep Tissue Lyser
Settings 3 mins at 6.0 3 mins at 20 3minsat6.0 3 minsat20 3minsat6.0 3 minsat20
FastPrep Hz FastPrep Hz FastPrep Hz
Heated No No Yes Yes Yes Yes
Offboard
Lysis Step
Temperature N/A N/A 68 °C 68 °C 68 °C 68 °C
Time N/A N/A 15 mins 15 mins 15 mins 15 mins
Reagents N/A N/A Proteinase K,  Proteinase K,  Proteinase Proteinase
buffer ATL, buffer ATL, K, buffer K, buffer
carrier RNA, carrier RNA,  ATL, carrier ~ ATL, carrier
buffer ACL buffer ACL RNA, buffer  RNA, buffer
ACL ACL
Agitation N/A N/A 300rpm 300rpm 300rpm 300rpm

Duplicate 10 ml overnight liquid cultures were grown for each species (S. aureus, P. aeruginosa and

E. coli), from each, 300ul was added into two 1.5ml Eppendorf tubes resulting in 6 tubes which were

tested for method 1 and 2. A further 400ul of each liquid culture was added into four tubes resulting

in 6 tubes tested for each remaining method. All samples were then extracted following the Promega
Maxwell® RSC 48 Instrument and RSC Blood DNA Kit protocol (detailed in supplementary file 1)

with changes to the lysis procedure for each of the six methods tested. All Eppendorf tubes were then

vortexed at full speed for 2 minutes and centrifuged at 14,000 x g for 15 minutes to pellet the cells;

the supernatants were removed, and pellets resuspended in 300pl (methods 1 or 2) or 400l (methods

3-6) of 1x PBS.
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For method 1 and 2 samples, 30ul of Proteinase K and 300ul of Lysis Buffer were added to the 300yl
sample suspensions. These were then incubated in a heating block at 56°C for 20 minutes. For
methods 3 and 4 samples, 3l of Ready-Lyse lysozyme (Epicentre, 250U/ul in TES buffer) was added
to the 400l sample suspensions. For methods 5 and 6 samples, 3ul of Thermo Fischer lysozyme
(250U/ul in TES buffer) was added to the 400l sample suspensions. Samples from methods 3-6 were
then incubated with agitation at 300rpm, 37°C for 18 hours. A bead beating step was performed on all
samples. Method 1, 3 and 5 samples used the FastPrep instrument for 3 minutes at setting 6.0 and
method 2, 4 and 6 samples used a Tissue Lyser instrument for 3 minutes at 20Hz to compare the
impact of a less intense bead beating step. An off-board lysis was performed on method 3-6 samples,
which included addition of 40ul proteinase K, 165ul Buffer ATL, 120ul Carrier RNA (lyophilised
Carrier RNA was resuscitated with Buffer AVE to make a 1pg/pl solution), and 315ul Buffer ACL
into the 400ul sample suspensions. These samples were then incubated at 68 °C for 15 minutes.
Samples from all methods were centrifuged at 14,000 x g for 15 minutes to pellet cells and the
supernatants were loaded onto the Maxwell instrument and the extraction started following steps 9-21

of the initial RSC protocol.

After evaluation of the performance of the different methods from cultured cells, method 6 performed
the best (see results) and was chosen for validation using swab samples. For validation, sterile
charcoal cotton swabs (M40-A2, Technical Service Consultants Ltd.) were spiked with one colony
from overnight plate cultures of each of the three species and eight independent swabs were processed
per species. Swab heads were snapped off into 1.5ml Eppendorf tubes containing 1ml of 1x PBS and
samples were vortexed for 2 minutes before being centrifuged at 14,000 x g for 15 minutes to pellet
the cells. The supernatants were removed, and the pellets were resuspended with 400pl 1x PBS. The

method 6 procedure was then followed as described above.

Validation of DNA extraction method using volunteer and PEARL study skin swabs

The optimised DNA extraction method was tested on skin swabs from adults and babies to validate
the selected method ability to obtain appropriate bacterial DNA for SMS and confirm data was
suitable for analysing the taxonomic profiles of bacterial communities present on skin. Samples were
cultured in parallel to DNA sequencing; this allowed us to identify organisms which should be
represented in the SMS data whilst also enabling the creation of a skin microbiota culture collection
for future functional work with strains of interest. Swabs were cultured aerobically and anaerobically
on Columbia blood agar plates as in previous studies (Ogai, et al., 2018). For each swab, cells grown
on the aerobic and anaerobic plates were harvested into one glycerol stock, a sample of which was

then used for DNA extraction and SMS to compare to results direct from swabs.

Study design for adult volunteer and PEARL study baby skin swab collection

7
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The Norwich Research Park Biorepository recruited and consented 12 adult volunteers between the
age of 23-65. There was no contact between the researcher and participants to ensure anonymity.
Eligible volunteer participants had no current skin conditions or had been prescribed antibiotics over
the last 3 months. The volunteer participants were provided with Participant Information Sheets (PIS)
and were consented with Consent Forms (CF) and provided samples using a self-swabbing protocol
under observation and following instruction from Biorepository staff (Supplementary file 2). The
volunteers collected two swabs, one from the right arm and one from the left arm, to produce 24
samples in total. Samples were stored in a 4°C fridge and anonymised with a unique barcode before
being collected and tested on the same day swabbing was performed. In addition to the adult
volunteers, swabs from the skin of ten babies collected at four months as part of the PEARL study
were also included (see Phillips, et al., (2021) for study design and inclusion criteria, and Table S1 for

baby participant metadata).

Volunteer and baby skin swab processing and finalised DNA extraction procedure:

The skin swabs were processed as described above with the optimised method, a cell-free, diluent-
only sample was included as a negative control on each extraction run and an established commercial
mock community (the ATCC skin microbiome whole cell mix) was included as a positive control
(ATCC, 2022). Dilutions of the positive control microbiome mix were also prepared to validate
extraction efficiency and identify a cut-off point of starting material needed for SMS. For full details
on the sample processing, DNA extraction protocol and the ATCC positive control protocol, see
supplementary file 3.

DNA quantification and quality assessment

A High Sensitivity (HS) assay using the Qubit 2.0 fluorometer instrument and HS Qubit Invitrogen
kit, was used to quantify all samples. If a concentration was out of range, i.e., too high, the Broad
Range (BR) Qubit assay was used instead, using the Qubit 2.0 fluorometer instrument and BR Qubit
Invitrogen kit. Tapestation assays were used to determine DNA molecular weight. A D5000 or HS
D5000 Tapesation assay were used with an Agilent 2200 instrument and Agilent D5000 or HS D5000
kits.

Shotgun Metagenomic Sequencing using Illumina and Oxford Nanopore

Preparation of libraries for SMS for both Illumina (Illumina DNA Prep Kit: 20018704) and ONT
(IMumina® DNA Prep: 20018704, Tagmentation: 20060059) platforms included DNA normalisation,
tagmentation, PCR barcoding, quantification, pooling, and quality control. Samples were then loaded
onto the Hlumina NextSeq500 Instrument using a Mid-output 300 cycle kit (Ilumina Catalogue FC-
404-2003) or the MinlON flow cell ONT instrument (R9.4.1). The QIB Bioinformatics team

converted the Illumina raw data to 8 FASTQ files for each sample, and the ONT raw data was

8
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converted into FASTQ files using the customised guppy method. All FASTQ files were then run
through FastP (V.0.19.5+galaxy1) (Chen, et al., 2018), which is a pre-processing tool for FASTQ files
that removes adaptors. For full details on the SMS protocol for Illumina and ONT, view
Supplementary File 4.

Generating taxonomic profiles

All SMS data was automatically deposited in a local instance of IRIDA (irida-19.09.2) (Matthews, et
al., 2018) and uploaded to the QIB Galaxy platform (V.19.05) (Afgan, et al., 2018). Here, data was
cleaned by removing adaptors and trimming reads, and filtered for quality using Fastp (V.0.20.0) (-q
20) (Chen, et al., 2018), before reads mapping against a human reference database (human_20200311)
were removed using Kraken2 (V.2.1.1+galaxy0) (Wood, et al., 2019). Remaining reads were then
analysed to obtain microbiota taxonomic profiles using Kraken2 (V.2.1.1+galaxy0) (Wood, et al.,
2019) and Bracken (V.2.2) (Lu, et al., 2017).

MAG extraction

Using the trimmed and filtered reads, host-associated sequences were removed via Kneaddata
(V.0.10.0) (The Huttenhower Lab) with human genome (GRCh38.p13) to generate clean fastq reads.
Shotgun metagenome raw reads were co-assembled with MEGAHIT (V.1.2.9) (Li, et al., 2015) prior
to extraction of MAGs. The MetaWRAP (V.1.3.2) pipeline (Uritskiy, et al., 2018) was used to extract
MAGs based upon metagenome assemblies generated and metagenome clean reads via binning
software ‘metaBAT’ (V.2.12.1) (Kang, et al., 2015), ‘MAXBIN2’ (V.2.2.6) (Wu, et al., 2016) and
‘CONCOCT’ (V.1.1.0) (Alneberg, et al., 2013) using the sub-module ‘binning’. MAGSs were then
refined using sub-module ‘bin_refinement’ to select the high-quality bins from each sample with
completeness >80% and contamination <10% according to CheckM (V.1.1.3) (Parks, et al., 2015). Al
MAGs were taxonomically ranked using gtdb-tk (V.1.5.1) (Chaumeil, et al., 2020) via module gtdbtk
classify wf.

Data visualisation
R (V.4.1.2) (RStudio Team, 2021) and the package ggplot2 (Wickham, 2009) were used to plot
taxonomic profiles and alluvial and box plots. GraphPad Prism (V.5.04) (GraphPad Software, 2010)

was used to generate scatter plots.

Statistical Analysis
Statistical analysis was performed using Unpaired T-tests in GraphPad Prism (V.5.04) (GraphPad
Software, 2010). A significance level of 0.05 was used to identify results likely to be different.
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Results

Optimisation of DNA extraction method

Impact of initial diluents on extracted bacterial DNA quantity and cell viability

There was no significant difference between amounts of bacterial DNA extracted from the 44 sterile
charcoal cotton swabs spiked with S. aureus and processed in either PBS or water (Figure 2A).
Recovery of S. aureus, P aeruginosa and E. coli, also showed no significant differences in viable
numbers recovered after suspension in either diluent (P > 0.05; Figure S1). As there was no
significant difference in both DNA extraction and bacterial recovery between PBS and water, future

experiments used PBS.
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Figure 2 — Results of the variables tested. A: Total DNA yield (ng/ul) from spiked swabs processed in
1xPBS and Milli-Q water during a DNA extraction. B: Total DNA vyield (ng/ul) obtained from each
DNA extraction method. C: Total DNA yield (ng/ul) per species for each method. Horizontal bars on
each plot show averages, vertical bars show the standard error of the mean (SEM) and lines with an

asterisk (*) indicate significant (p <0.05) differences.

Testing lysis methods: Six extraction method procedures

DNA extracted from liquid cultures of S. aureus, P. aeruginosa and E. coli using the six methods
(Table 1), showed that methods 5 and 6 yielded the most DNA, (40.9-97.7ng/ul and 37-104ng/ul
respectively), and there was a significant difference in DNA concentrations between methods 5 and 6
and other methods (Table S2; Figure 2B and 2C). There was no significant difference in extraction
efficiency between each bacterial species. DNA extraction methods 2, 4 and 6 produced higher
molecular weights than the others, ranging from 20232-31786 bp (Table 2). Together, these results
demonstrated that method 6 produced the most DNA of highest molecular weight. This method was
also the most cost effective due to the cheaper lysozyme used and was chosen for further validation.
This method included overnight lysis with lysozyme, a further heated offboard lysis step and a bead

beating lysis using a Tissue Lyser.
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322
323  Table 2 — Average molecular weight (bp) of DNA extracted
Sample Method 1 Method 2 Method 3 Method 4 Method 5 Method 6
E. coli 0 25321 1735 21693 1909 24219
E. coli 0 25697 2057 20232 1877 22730
P. aeruginosa 0 23771 1763 23163 1678 29459
P. aeruginosa 0 23826 1631 23742 1538 31786
S. aureus 0 25085 1831 23954 1668 22118
S. aureus 0 22011 1762 24084 1711 22904
324

325  DNA extractions from sterile charcoal cotton swabs spiked with independent cultures were successful,
326  with DNA concentrations averaged at 22.1ng/ul.

327

328  DNA extraction method validation using swabs from volunteers or babies

329  DNA concentrations from adult and baby skin swabs, that were extracted using method 6, ranged

330 from < 0.50 (no detected DNA) — 10.5 ng/ul (Table S3) with DNA successfully extracted from all the
331  baby samples but only 15/24 adult volunteer samples. Cultured plates recovered bacteria from all

332 adult skin swabs although recovery of cultures from the baby samples was only successful for 4/10
333  swabs. Concentrations of DNA extracted from cultured bacteria averaged at 79.9ng/ul.

334

335  Assome swabs did not yield DNA using method 6, we compared DNA vyield from the extracted

336  swabs after different overnight lysis incubation times. Samples were randomly incubated for either 18,
337 20 or 22 hours (Figure 3). A significant difference between 18 and 20 hours and 18 and 22 hours (P <
338  0.05) was observed, but no significant difference between 20 and 22 hours (P > 0.05). Samples that
339  did not yield detectable amounts of DNA were those incubated for 18 hours therefore, future samples

340  were incubated between 20-22 hours to obtain higher DNA yield.
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Figure 3 - Comparison of DNA vyield (ng/ul) from samples incubated for different periods. The box
plots show the average DNA concentrations (ng/ul) for each incubation time. Horizontal bars on each
plot show averages, vertical bars show the standard error of the mean (SEM) and lines with an

asterisk (*) indicate significant (p <0.05) differences.

After removal of human reads, microbial taxonomic profiles were generated using both Illumina and
ONT sequence data using Kraken2 and Bracken (Figures 4-6; swabs and cultures).
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Figure 4 - Taxonomic profiles of skin swab microbiota from 12 adult volunteers (two swabs collected

from both forearms from each volunteer) generated using lllumina and Nanopore data. Profiles show

the relative abundance (%) of the 10 most abundant species that occur within each sample.
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355
356  Figure 5 - Taxonomic profiles of skin swab culture microbiota from 12 adult volunteers (two swabs

357  collected from both forearms from each volunteer) generated using Illumina and Nanopore data.
358  Profiles show the relative abundance (%) of the 10 most abundant species that occur within each

359  sample.

360
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361 Sample ID

362  Figure 6 - Taxonomic profiles of the skin swab and culture microbiota from ten PEARL babies (one
363  swab collected off one forearm from each baby) generated using Illumina and Nanopore data. Profiles
364  show the relative abundance (%) of the 10 most abundant species that occur within each sample. A:

365  Illumina and Nanopore skin swab data. B: lllumina and Nanopore skin culture data.

366  The positive controls displayed the expected microbiota from the ATCC skin microbiome whole cell
367  mix - Acinetobacter johnsonii, Corynebacterium striatum, Micrococcus luteus, Cutibacterium acnes,

368  Staphylococcus epidermidis, Streptococcus mitis. There was also a clear reduction in reads from these
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samples across the dilution series. This demonstrated that the DNA extraction method was able to
effectively extract DNA from the diverse range of species present in the ATCC skin microbiome mix.
Some background contamination was detected in negative controls, although the number of reads was
always much lower than in samples and most DNA fragments identified in the negative controls
mapped against organisms not seen in the test samples.

Both lllumina and ONT data indicated a typical skin microbiota from both adult and baby skin swabs
and generated enough reads for downstream taxonomic analysis at the species level. The adult swabs
identified bacteria, viruses, and phages, whereas the baby swabs only displayed bacterial diversity.
Baby skin swabs contained more Streptococcus and fewer Staphylococcus species when compared to
adult skin swabs. The baby skin swabs also indicated the presence of Bifidobacterium longum,
Bifidobacterium breve and Bifidobacterium bifidum, which are not typical skin residents, but common
residents of the infant gut, which likely demonstrates transient skin contamination on the babies
(Toscano, et al., 2017; Yan, et al., 2021). Importantly, data was generated for skin swabs that had very
low DNA concentrations. Illumina and ONT platforms identified very similar microbiota profiles for
both skin swabs and cultures, with comparable percentage total counts of the most abundant species
(those representing more than 0.5% of each sample) (Figure S2). Analysis of the taxonomic profile
from cultured samples exhibited less microbial diversity than the skin swabs as expected but
confirmed the presence of species identified in the SMS. As in the SMS data, adult cultures exhibited

more Staphylococcus species than Streptococcus.

Once a successful DNA extraction method was established, the depth of sequence data required to
provide optimal phylogenetic resolution and to construct MAGs were both assessed. This was done by
comparing outcomes using 5Gbp per sample and subsamples thereof down to 1Gbp of data. For
species identification a rarefaction curve was produced, which showed more species identified as
more data was used; though statistical analysis showed there was not a significant difference in
species recovery between 2.5 and 5Gbp of data (Figure S3A). Recovery of MAGS was also higher
from samples where 5Gbp of data were used than 1Gbp, although this difference was not found to be
statistically significant (Figure S3B; Table S4). Based on this analysis, 5Gbp of data appears to be
adequate for phylogenetic analysis of the skin microbiota using this method, whilst also providing

useful functional information.

Discussion

We aimed to develop an efficient protocol for DNA extraction suitable for use from both skin swabs
and cultured bacterial cells. Initial testing showed both water and PBS were suitable diluents to
maintain viability and for DNA extraction in agreement with previous studies (Banning, et al., 2002;

Liao and Shollenberger, 2003; Downey, et al., 2012) and PBS was then used throughout. Comparison
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of a variety of lysis procedures identified the effectiveness of a combined approach using both
overnight heated enzymatic (lysozyme) and mechanical (bead beat) lysis methods to result in
sufficient DNA yield of a high molecular weight from both Gram-positive and Gram-negative
bacteria. Previous work has indicated that the type of enzyme and mechanical intensity is also
important for lysis of different bacterial species (Schindler and Schuhardt, 1964; Yuan, et al., 2012;
Albertesen, et al., 2015); however, our combined use of a mechanical and enzymatic lysis approach
resulted in an unbiased extraction of Gram-positive and Gram-negative bacteria, which was validated
by the production of expected profiles from the positive control mock community (Maghini, et al.,
2021).

Given the low biomass of skin microbiota, some of the adult skin swabs produced very low/absent
DNA concentrations and paired cultures also indicated low bacterial burden. Individual variations
when swabbing (pressure, direction, frequency) can affect the yield of DNA and viable bacteria, and
are difficult to control (Van Horn, et al., 2008) and may be responsible for this variation. A swabbing
method was used as it is commonly used to collect skin microbiome samples (Van Horn, et al., 2008)
and was already used by our local PEARL study to collect samples due to its non-invasive nature,
which is suitable for neonates, who have an underdeveloped skin structure (Narendran, et al., 2010;
Chiou and Blume-Peytavi, 2004). We also found a difference in sensitivity between platforms for
samples with low amounts of DNA, some adult swabs did not produce data using the ONT platform
although these same samples generated bacterial cultures. As the ONT platform requires more input
DNA to generate data than lllumina platforms (Wang, et al., 2021), the inability to generate data for
some samples was not surprising as skin swabs can be low biomass (Bjerre, et al., 2019; de Goffau, et
al., 2018). However, increasing the overnight incubation time did improve DNA yield, and the

Illumina sequencing resulted in generated data for all samples.

Most samples did generate data from both Illumina and ONT platforms which presented similar
microbiota profiles from skin swabs and cultures. Typical adult skin microbiota (Phyla;
Pseudomonadota, Actinomycetota, and Bacillota) (Grice, et al., 2009; Costello, et al., 2009; Byrd, et
al., 2018) and infant skin microbiota (Phyla; Bacillota, Actinomycetota, Pseudomonadota, and
Bacteroidota) (Capone, et al., 2011) were detected. We focused on bacterial species identified, but the
protocol did identify other skin microbiota (viruses, phages and fungi), although only from adult
volunteers (Byrd, et al., 2018). Other researchers can use this protocol as a starting point to be adapted
if these organisms are their focus. Baby profiles only contained bacteria, and demonstrated less
microbial diversity than adults, which has been shown in previous studies (Zhu, et al., 2019). Baby
skin did exhibit more Streptococcus species than adult skin, which agrees with previous work
demonstrating a predominance of Streptococcus species in early age, which decreases with age

(Capone et al., 2011; Zhu, et al., 2019). Interestingly, sequencing of swabs from infant skin identified
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442  Bifidobacterium species, which are not typical skin residents, but rather maternal and infant gut

443  residents and they can also be found in breast milk (Yan, et al., 2021) (Toscano, et al., 2017). Given
444  the paired cultures did not result in any Bifidobacterium isolates, this is likely to indicate transient
445  transfer to the babies’ skin through breast feeding. The babies with available metadata that showed
446  Bifidobacterium presence on the skin were all breast fed at some point between birth and month 4.
447

448  Whilst skin is a relatively low biomass environment, we did not need to include any methods to

449  mechanically deplete human DNA or selectively enrich microbial DNA before SMS (Marquet, et al.,
450  2022), which have been needed in some other studies on low biomass samples. These enrichment
451  approaches do not reliably target all species (Marquet, et al., 2022), can skew the resulting genomic
452  profiles (Hammond, et al., 2016) and depletion can result in some loss of bacteria (Marquet, et al.,
453  2022), thus further steps are required for downstream analysis. In our described method, we generated
454  enough data, and depleted human DNA computationally, therefore precluding the need for any

455  additional steps that may introduce biases and skew skin microbiota profiles.

456

457  Both Illumina and ONT sequence data allowed identification of all ATCC positive control species,
458  with a clear reduction in read number across the dilution series. These results further demonstrate the
459  effectiveness of the extraction method and utility of both sequencing platforms. Inclusion of a

460  commercially available mixed community positive control, with a known cell concentration, is

461  important for standardising the extraction process, and serial diluting the positive control can

462  determine the limit of detection (Eisenhofer, et al., 2019). This is also helpful when comparing

463  different sequencing runs and sample sets, allowing more robust comparisons to be made. Although,
464  we tried to define a limit of detection for DNA concentration and read number required for effective
465  SMS, we had several swab samples that did not obtain a DNA concentration reading, but usable reads
466  were produced for taxonomic profiling. Therefore, no obvious cut-off for a limit of detection was

467  determined, and indeed there is also no ‘defined’ limit identified in the literature for low biomass

468  samples, such as skin swabs.

469

470  We did identify some background contamination in the negative controls, contamination commonly
471  occurs in metagenomic studies, especially those with low biomass samples (Lou, et al., 2022). Several
472  studies have identified contamination sources occurring from neighbouring samples and the ‘kitome’
473 (Lou, et al., 2022; Olomu, et al., 2020). Contamination within a dataset can be identified and removed
474  using bioinformatic techniques (Zhou, et al., 2014; Davis, et al., 2018) although low biomass samples
475  have a higher risk of true microbial microbiota members being removed (Diaz, et al., 2021). Given the
476  background contaminants in the controls were at a very low level and mostly represented species not
477  seen in the test samples we did not remove them as they had a negligible impact on the profiles

478  produced.
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We determined that the generation of 5Gbp of Illumina data from a skin swab was suitable for
microbial species profiling but produced a limited number of MAGs. MAGs are important for in-
depth functional information (Singleton, et al., 2021) and indicate genome quality (Bowers, et al.,
2017; Parks, et al., 2015; Sczyrba, et al., 2017), and they can be used to identify novel taxa and allow
further comparison with whole genome sequence data from isolates. Our method is compatible with
both lllumina and ONT platforms and combining a higher sequencing depth with ONT data has
potential to improve the number and quality of MAGs to be recovered (DeMaere and Darling, 2019;
Gweon, et al., 2019; Singleton, et al., 2021).

Conclusion

An optimised medium-throughput DNA extraction, SMS, and analysis approach can effectively
characterise the skin microbiota from adults and babies. This method can be applied for in-depth
analysis of cohort studies allowing identification of taxonomic and functional changes of mothers and
infants over time and should allow comparison to other body sites (e.g., the gut). Robust microbiota
profiling, particularly in less well studied niches such as the skin, is important for the development of
methods to alter microbiome compositions for health.

Ethics
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