

1 **An efficient method for high molecular weight bacterial DNA extraction suitable for shotgun
2 metagenomics from skin swabs**

3

4 Iliana R. Serghiou^{1,2}, Dave Baker¹, Rhiannon Evans¹, Matthew, J. Dalby¹, Raymond Kiu¹, Eleftheria
5 Trampari¹, Sarah Phillips¹, Rachel Watt¹, Thomas Atkinson¹, Barry Murphy³, Lindsay J. Hall^{*1,2},
6 Mark A. Webber^{*1,4}

7

8 ¹ Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, U

9 ² School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich,
10 Norfolk, NR4 7TJ, UK

11 ³ Unilever R&D Port Sunlight, Bebington, Ch63 3JW

12 ⁴ Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk,
13 NR4 7TJ, UK

14

15 **Correspondence:** lindsay.hall@quadram.ac.uk, mark.webber@quadram.ac.uk

16

17 **ORCID:**

18 I.R.S. - 0000-0002-0699-5892

19 R.E. - 0000-0002-8510-0988

20 M.J.D. - 0000-0002-1137-4337

21 R.K. - 0000-0002-4483-1215

22 B.M. - 0000-0003-2305-5875

23 L.J.H. - 0000-0001-8938-5709

24 M.A.W. - 0000-0001-9169-7592

25

26 **Keywords**

27 Skin microbiome, Long and short read sequencing, Microbial abundance

28

29 **Author Notes**

30 All supporting data, protocols and codes are provided within the article, supplementary files, and
31 links. Supplementary files include three figures, four tables and four protocols.

32

33 **Abbreviations**

34 PEARL: Pregnancy and Early Life Study; SMS: Shotgun Metagenomic Sequencing; ONT: Oxford
35 Nanopore Technology; HMW: High Molecular Weight; LMW: Low Molecular Weight; PBS:
36 Phosphate Buffered Saline; LB: Lysogeny Broth; MAGs: Metagenome Assembled Genomes; PIS:

37 Participant Information Sheets; CF: Consent Forms; HS: High Sensitivity; BR: Broad Range; QIB:
38 Quadram Institute of Biosciences.

39

40 **Abstract**

41 The human skin microbiome represents a variety of complex microbial ecosystems that play a key
42 role in host health. Molecular methods to study these communities have been developed but have
43 been largely limited to low-throughput quantification and short amplicon sequencing, providing
44 limited functional information about the communities present. Shotgun metagenomic sequencing has
45 emerged as a preferred method for microbiome studies as it provides more comprehensive
46 information about the species/strains present in a niche and the genes they encode. However, the
47 relatively low bacterial biomass of skin, in comparison to other areas such as the gut microbiome,
48 makes obtaining sufficient DNA for shotgun metagenomic sequencing challenging. Here we describe
49 an optimised high-throughput method for extraction of high molecular weight DNA suitable for
50 shotgun metagenomic sequencing. We validated the performance of the extraction method, and
51 analysis pipeline on skin swabs collected from both adults and babies. The pipeline effectively
52 characterised the bacterial skin microbiota with a cost and throughput suitable for larger longitudinal
53 sets of samples. Application of this method will allow greater insights into community compositions
54 and functional capabilities of the skin microbiome.

55

56 **Impact Statement**

57 Determining the functional capabilities of microbial communities within different human
58 microbiomes is important to understand their impacts on health. Extraction of sufficient DNA is
59 challenging, especially from low biomass samples, such as skin swabs suitable for shotgun
60 metagenomics, which is needed for taxonomic resolution and functional information. Here we
61 describe an optimised DNA extraction method that produces enough DNA from skin swabs, suitable
62 for shotgun metagenomics, and demonstrate it can be used to effectively characterise the skin
63 microbiota. This method will allow future studies to identify taxonomic and functional changes in the
64 skin microbiota which is needed to develop interventions to improve and maintain skin health.

65

66 **Data Summary**

67 All sequence data and codes can be accessed at:

68 NCBI Bio Project ID: PRJNA937622

69 DOI: https://github.com/quadram-institute-bioscience/coronahit_guppy

70 DOI: <https://github.com/ilianaserghiou/Serghiou-et-al.-2023-Codes>

71

72

73 **Introduction**

74 The skin microbiome is a complex ecosystem organised into distinct microbial communities present at
75 different body sites (NASEM, 2018; Costello, et al., 2009). These microbial ecosystems participate in
76 the host's skin physiological functions and immunity (Cho and Blaser, 2012; Human Microbiome
77 Project Consortium, 2012). Perturbations in these communities can negatively impact skin health,
78 particularly early in life (Kong, 2011). Studying the skin microbiota and how it forms and changes
79 over time is therefore important to understand how interventions that alter the microbiota affect skin
80 health.

81

82 Previous skin microbiome studies have commonly used traditional 16S rRNA gene amplicon
83 sequencing (metataxonomics) to taxonomically classify these complex communities (Jo, et al., 2016).
84 This method is typically performed using the Illumina sequencing technology, which results in short
85 reads for taxonomic classification to genus level (Pearman, et al., 2020). 16S rRNA gene amplicon
86 sequencing provides limited taxonomic information on bacteria and archaea however does not tell us
87 anything about strain variations or functional capacities; Alternatively, the use of Shotgun
88 Metagenomic Sequencing (SMS) for taxonomic classification follows sequencing of all genetic
89 material and is not limited to targeted regions (Sfriso, et al., 2020; Kuczynski, et al., 2012; Allaband,
90 et al., 2019). This reduces bias from selective amplification efficiency and can provide taxonomic
91 information at species/strain level as well as being able to provide information about functional
92 capacities present in the microbiome and individual species (Jo, et al., 2016; Liu, et al., 2020; Sfriso,
93 et al., 2020). SMS can be performed using multiple technologies, including the Illumina, Oxford
94 Nanopore (ONT) and PacBio Single Molecule Real-Time (SMRT) platforms (Pearman, et al., 2020;
95 Amarasinghe, et al., 2020). In contrast to the Illumina technology, the ONT and PacBio SMRT
96 technologies produce long sequence reads. Data produced with these platforms will usually
97 reconstruct more complete genomes than from short reads and facilitates the generation of high-
98 quality Metagenome Assembled Genomes (MAGs) (Pearman, et al., 2020), which can be used for
99 higher taxonomic resolution and functional information (Singleton, et al., 2021; Liu, et al., 2020).

100

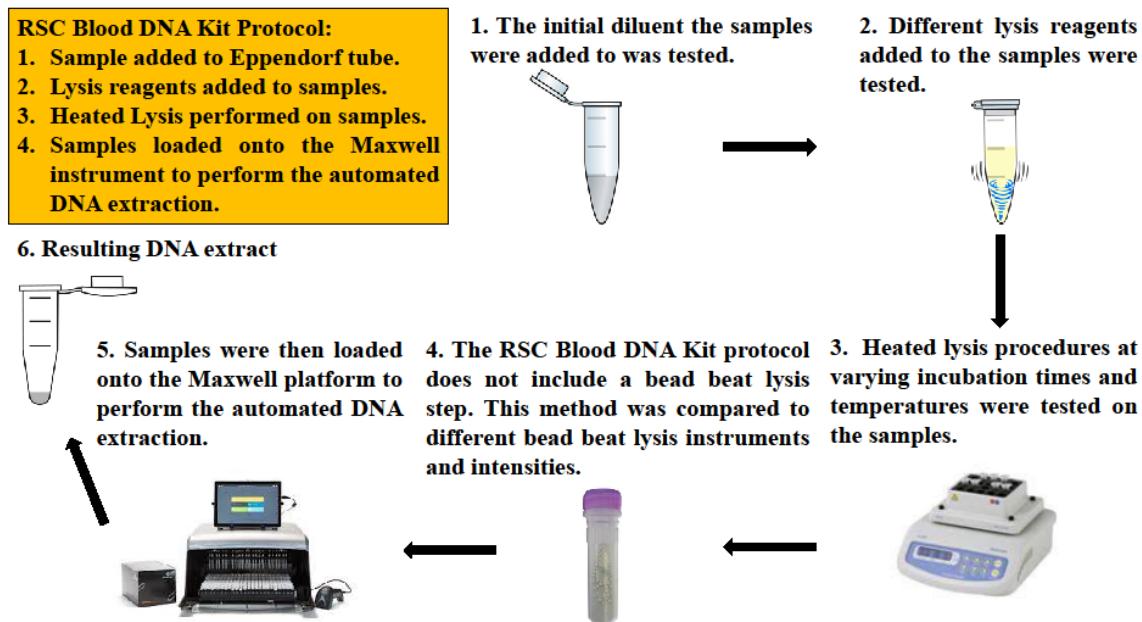
101 The relatively low bacterial biomass of skin complicates the extraction of sufficient DNA quantities
102 for SMS (Bjerre, et al., 2019; de Goffau, et al., 2018). This is particularly true for longer read
103 technologies where more input material is needed (Wang, et al., 2021). There are a limited number of
104 commercialised kit protocols available that can produce high molecular weight (HMW) DNA from
105 skin in sufficient quantities for SMS, although none have been specifically optimised to extract DNA
106 from skin microbiome samples. To address this need we describe here an optimised high-throughput
107 automated DNA extraction method, for recovery of HMW microbial DNA from skin swabs. This was
108 validated using skin swabs from adult volunteers and babies enrolled in the Pregnancy and Early Life

109 (PEARL) study (Phillips, et al., 2021). The method results in DNA with yield and molecular weight
110 suitable for SMS.

111

112 Methods

113


114 DNA extraction method development

115 To optimise extraction of microbial DNA from skin swabs, a Promega Maxwell® RSC 48 Instrument
116 and RSC Blood DNA Kit (see Supplementary file 1 for protocol) were used as a starting point and
117 different diluents and lysis procedures were evaluated for effectiveness. This instrument and kit were
118 chosen as they produce HMW DNA (Mandrekar, et al., 2007, Bey, et al., 2010), with a higher binding
119 capacity and cleaner eluate than traditional silica-based DNA purification systems (Sui, et al., 2020;
120 Moeller, et al., 2014; Dunbar, et al., 2018; Promega, 2020). The platform also permits a high-
121 throughput automated genomic DNA isolation from 48 samples in 40 minutes (Promega, 2020)
122 making this system compatible with larger sample sets.

123

124 To obtain enough DNA from skin swabs, suitable for SMS, we optimised the RSC protocol by testing
125 different variables including the initial diluent and various lysis procedures. After dilution and lysis,
126 samples were heated, following the RSC Blood DNA Kit protocol, and loaded to the Maxwell
127 instrument for the automated extraction (Figure 1).

128

129

130 Figure 1 - The RSC Blood DNA Kit protocol (yellow box) and alterations to test different initial
131 diluents and lysis procedures.

132

133 **Testing initial diluents: Measuring extracted bacterial DNA quantity and cellular viability**
134 To allow for a protocol where a swab could be processed allowing both DNA extraction and, in
135 parallel, culture of organisms, it was desirable to remove material from the swab into a diluent. To
136 determine if diluents impacted bacterial viability and ability to extract DNA, 1x Phosphate Buffered
137 Saline (PBS) and Milli-Q water, for collecting skin bacteria, were compared by measuring extracted
138 bacterial DNA quantity recovered from swabs inoculated with bacteria. 44 sterile charcoal cotton
139 swabs (M40-A2, Technical Service Consultants Ltd.) were used to collect a single colony from an
140 agar plate inoculated with *Staphylococcus aureus* NCTC 8532 to act as a target for DNA extraction.
141 These ‘spiked’ swab heads were snapped into 1.5ml Eppendorf tubes containing 1ml of either 1x PBS
142 or Milli-Q water. These were then extracted following the Promega Maxwell® RSC 48 Instrument
143 and RSC Blood DNA Kit protocol in Supplementary file 1, with the following modification. The swabs
144 were vortexed at full speed for 2 minutes and then centrifuged at 14,000 x g for 15 minutes to pellet
145 the cells before the supernatant was removed, and cells were resuspended in 300µl of 1x PBS or
146 Milli-Q water. Steps 4 and 6-8 of the RSC protocol were then followed. A bead beating step was then
147 performed using a ‘FastPrep’ instrument for 3 minutes at setting 6.0. The samples were centrifuged
148 again at 14,000 x g for 15 minutes to pellet the cells before sample supernatants were loaded onto the
149 Maxwell instrument and the extraction started following steps 9-21 of the RSC protocol.
150

151 The effectiveness of 1x PBS and Milli-Q water, as initial diluents for collecting skin bacteria, was
152 further compared by measuring bacterial cell viability through the recovery of bacteria from liquid
153 cultures. Cell viability is an important factor as we wanted an initial dilution step which maintained
154 bacterial viability and was therefore compatible with both culture of bacteria from samples and
155 efficient DNA extraction. Overnight liquid cultures (10 ml) were grown from isolates of three species
156 (*S. aureus* NCTC 8532, *Pseudomonas aeruginosa* PA14 and *Escherichia coli* EC18PR-0166-1, a food
157 isolate of ST10), with three replicates for each. For each replicate, 1ml was transferred into a 15 ml
158 falcon tube and pelleted by centrifugation at 14,000 x g for 15 minutes. Samples were then
159 resuspended in 200µl of LB, 1x PBS or Milli-Q water and left for 1 hour at ambient temperature.
160 Serial dilutions of the resuspended samples were made and plated onto drug-free agar and incubated,
161 which were then used to count viable numbers of cells in each sample. A total of nine independent
162 samples were tested for each species in each diluent.
163

164 **Testing lysis methods: Six extraction method procedures**
165 Six lysis methods were compared to identify the best method for high yields of high molecular weight
166 DNA from both Gram-negative and Gram-positive bacteria. Each method varied factors from
167 common lysis methods used in commercial kits for research – heat, chemical, enzymatic, and
168 mechanical (Gill, et al., 2016; Martzy, et al., 2019). Table 1 lists the differences between the six

169 methods. Methods were tested using both overnight liquid cultures and sterile swab heads inoculated
170 with harvested bacteria from overnight plate cultures.

171

172 Table 1 – Comparison of extraction methods

	<i>Method 1</i>	<i>Method 2</i>	<i>Method 3</i>	<i>Method 4</i>	<i>Method 5</i>	<i>Method 6</i>
<i>Heated lysis Step</i>	Yes	Yes	Yes	Yes	Yes	Yes
<i>Time</i>	20 mins	20 mins	18h	18h	18h	18h
<i>Temperature</i>	56°C	56°C	37°C	37°C	37°C	37°C
<i>Reagents</i>	Proteinase K, lysis buffer	Proteinase K, lysis buffer	Epicentre ready-lyse lysozyme	Epicentre ready-lyse lysozyme	Thermo Fischer lysozyme	Thermo Fischer lysozyme
<i>Agitation</i>	No	No	300rpm	300rpm	300rpm	300rpm
<i>Bead beat step</i>	Yes	Yes	Yes	Yes	Yes	Yes
<i>Instrument</i>	FastPrep	Tissue Lyser	FastPrep	Tissue Lyser	FastPrep	Tissue Lyser
<i>Settings</i>	3 mins at 6.0 FastPrep Hz	3 mins at 20	3 mins at 6.0 FastPrep Hz	3 mins at 20	3 mins at 6.0 FastPrep Hz	3 mins at 20
<i>Heated Offboard Lysis Step</i>	No	No	Yes	Yes	Yes	Yes
<i>Temperature</i>	N/A	N/A	68 °C	68 °C	68 °C	68 °C
<i>Time</i>	N/A	N/A	15 mins	15 mins	15 mins	15 mins
<i>Reagents</i>	N/A	N/A	Proteinase K, buffer ATL, carrier RNA, buffer ACL	Proteinase K, buffer ATL, carrier RNA, buffer ACL	Proteinase K, buffer ATL, carrier RNA, buffer ACL	Proteinase K, buffer ATL, carrier RNA, buffer ACL
<i>Agitation</i>	N/A	N/A	300rpm	300rpm	300rpm	300rpm

173

174 Duplicate 10 ml overnight liquid cultures were grown for each species (*S. aureus*, *P. aeruginosa* and
175 *E. coli*), from each, 300µl was added into two 1.5ml Eppendorf tubes resulting in 6 tubes which were
176 tested for method 1 and 2. A further 400µl of each liquid culture was added into four tubes resulting
177 in 6 tubes tested for each remaining method. All samples were then extracted following the Promega
178 Maxwell® RSC 48 Instrument and RSC Blood DNA Kit protocol (detailed in supplementary file 1)
179 with changes to the lysis procedure for each of the six methods tested. All Eppendorf tubes were then
180 vortexed at full speed for 2 minutes and centrifuged at 14,000 x g for 15 minutes to pellet the cells;
181 the supernatants were removed, and pellets resuspended in 300µl (methods 1 or 2) or 400µl (methods
182 3-6) of 1x PBS.

183

184 For method 1 and 2 samples, 30 μ l of Proteinase K and 300 μ l of Lysis Buffer were added to the 300 μ l
185 sample suspensions. These were then incubated in a heating block at 56°C for 20 minutes. For
186 methods 3 and 4 samples, 3 μ l of Ready-Lyse lysozyme (Epicentre, 250U/ μ l in TES buffer) was added
187 to the 400 μ l sample suspensions. For methods 5 and 6 samples, 3 μ l of Thermo Fischer lysozyme
188 (250U/ μ l in TES buffer) was added to the 400 μ l sample suspensions. Samples from methods 3-6 were
189 then incubated with agitation at 300rpm, 37°C for 18 hours. A bead beating step was performed on all
190 samples. Method 1, 3 and 5 samples used the FastPrep instrument for 3 minutes at setting 6.0 and
191 method 2, 4 and 6 samples used a Tissue Lyser instrument for 3 minutes at 20Hz to compare the
192 impact of a less intense bead beating step. An off-board lysis was performed on method 3-6 samples,
193 which included addition of 40 μ l proteinase K, 165 μ l Buffer ATL, 120 μ l Carrier RNA (lyophilised
194 Carrier RNA was resuscitated with Buffer AVE to make a 1 μ g/ μ l solution), and 315 μ l Buffer ACL
195 into the 400 μ l sample suspensions. These samples were then incubated at 68 °C for 15 minutes.
196 Samples from all methods were centrifuged at 14,000 x g for 15 minutes to pellet cells and the
197 supernatants were loaded onto the Maxwell instrument and the extraction started following steps 9-21
198 of the initial RSC protocol.

199

200 After evaluation of the performance of the different methods from cultured cells, method 6 performed
201 the best (see results) and was chosen for validation using swab samples. For validation, sterile
202 charcoal cotton swabs (M40-A2, Technical Service Consultants Ltd.) were spiked with one colony
203 from overnight plate cultures of each of the three species and eight independent swabs were processed
204 per species. Swab heads were snapped off into 1.5ml Eppendorf tubes containing 1ml of 1x PBS and
205 samples were vortexed for 2 minutes before being centrifuged at 14,000 x g for 15 minutes to pellet
206 the cells. The supernatants were removed, and the pellets were resuspended with 400 μ l 1x PBS. The
207 method 6 procedure was then followed as described above.

208

209 **Validation of DNA extraction method using volunteer and PEARL study skin swabs**

210 The optimised DNA extraction method was tested on skin swabs from adults and babies to validate
211 the selected method ability to obtain appropriate bacterial DNA for SMS and confirm data was
212 suitable for analysing the taxonomic profiles of bacterial communities present on skin. Samples were
213 cultured in parallel to DNA sequencing; this allowed us to identify organisms which should be
214 represented in the SMS data whilst also enabling the creation of a skin microbiota culture collection
215 for future functional work with strains of interest. Swabs were cultured aerobically and anaerobically
216 on Columbia blood agar plates as in previous studies (Ogai, et al., 2018). For each swab, cells grown
217 on the aerobic and anaerobic plates were harvested into one glycerol stock, a sample of which was
218 then used for DNA extraction and SMS to compare to results direct from swabs.

219

220 ***Study design for adult volunteer and PEARL study baby skin swab collection***

221 The Norwich Research Park Biorepository recruited and consented 12 adult volunteers between the
222 age of 23-65. There was no contact between the researcher and participants to ensure anonymity.
223 Eligible volunteer participants had no current skin conditions or had been prescribed antibiotics over
224 the last 3 months. The volunteer participants were provided with Participant Information Sheets (PIS)
225 and were consented with Consent Forms (CF) and provided samples using a self-swabbing protocol
226 under observation and following instruction from Biorepository staff (Supplementary file 2). The
227 volunteers collected two swabs, one from the right arm and one from the left arm, to produce 24
228 samples in total. Samples were stored in a 4°C fridge and anonymised with a unique barcode before
229 being collected and tested on the same day swabbing was performed. In addition to the adult
230 volunteers, swabs from the skin of ten babies collected at four months as part of the PEARL study
231 were also included (see Phillips, et al., (2021) for study design and inclusion criteria, and Table S1 for
232 baby participant metadata).

233

234 ***Volunteer and baby skin swab processing and finalised DNA extraction procedure:***

235 The skin swabs were processed as described above with the optimised method, a cell-free, diluent-
236 only sample was included as a negative control on each extraction run and an established commercial
237 mock community (the ATCC skin microbiome whole cell mix) was included as a positive control
238 (ATCC, 2022). Dilutions of the positive control microbiome mix were also prepared to validate
239 extraction efficiency and identify a cut-off point of starting material needed for SMS. For full details
240 on the sample processing, DNA extraction protocol and the ATCC positive control protocol, see
241 supplementary file 3.

242

243 **DNA quantification and quality assessment**

244 A High Sensitivity (HS) assay using the Qubit 2.0 fluorometer instrument and HS Qubit Invitrogen
245 kit, was used to quantify all samples. If a concentration was out of range, i.e., too high, the Broad
246 Range (BR) Qubit assay was used instead, using the Qubit 2.0 fluorometer instrument and BR Qubit
247 Invitrogen kit. Tapestation assays were used to determine DNA molecular weight. A D5000 or HS
248 D5000 Tapesation assay were used with an Agilent 2200 instrument and Agilent D5000 or HS D5000
249 kits.

250

251 ***Shotgun Metagenomic Sequencing using Illumina and Oxford Nanopore***

252 Preparation of libraries for SMS for both Illumina (Illumina DNA Prep Kit: 20018704) and ONT
253 (Illumina® DNA Prep: 20018704, Tagmentation: 20060059) platforms included DNA normalisation,
254 tagmentation, PCR barcoding, quantification, pooling, and quality control. Samples were then loaded
255 onto the Illumina NextSeq500 Instrument using a Mid-output 300 cycle kit (Illumina Catalogue FC-
256 404-2003) or the MinION flow cell ONT instrument (R9.4.1). The QIB Bioinformatics team
257 converted the Illumina raw data to 8 FASTQ files for each sample, and the ONT raw data was

258 converted into FASTQ files using the customised guppy method. All FASTQ files were then run
259 through FastP (V.0.19.5+galaxy1) (Chen, et al., 2018), which is a pre-processing tool for FASTQ files
260 that removes adaptors. For full details on the SMS protocol for Illumina and ONT, view
261 Supplementary File 4.

262

263 ***Generating taxonomic profiles***

264 All SMS data was automatically deposited in a local instance of IRIDA (irida-19.09.2) (Matthews, et
265 al., 2018) and uploaded to the QIB Galaxy platform (V.19.05) (Afgan, et al., 2018). Here, data was
266 cleaned by removing adaptors and trimming reads, and filtered for quality using Fastp (V.0.20.0) (-q
267 20) (Chen, et al., 2018), before reads mapping against a human reference database (human_20200311)
268 were removed using Kraken2 (V.2.1.1+galaxy0) (Wood, et al., 2019). Remaining reads were then
269 analysed to obtain microbiota taxonomic profiles using Kraken2 (V.2.1.1+galaxy0) (Wood, et al.,
270 2019) and Bracken (V.2.2) (Lu, et al., 2017).

271

272 ***MAG extraction***

273 Using the trimmed and filtered reads, host-associated sequences were removed via Kneaddata
274 (V.0.10.0) (The Huttenhower Lab) with human genome (GRCh38.p13) to generate clean fastq reads.
275 Shotgun metagenome raw reads were co-assembled with MEGAHIT (V.1.2.9) (Li, et al., 2015) prior
276 to extraction of MAGs. The MetaWRAP (V.1.3.2) pipeline (Uritskiy, et al., 2018) was used to extract
277 MAGs based upon metagenome assemblies generated and metagenome clean reads via binning
278 software ‘metaBAT’ (V.2.12.1) (Kang, et al., 2015), ‘MAXBIN2’ (V.2.2.6) (Wu, et al., 2016) and
279 ‘CONCOCT’ (V.1.1.0) (Alneberg, et al., 2013) using the sub-module ‘binning’. MAGs were then
280 refined using sub-module ‘bin_refinement’ to select the high-quality bins from each sample with
281 completeness >80% and contamination <10% according to CheckM (V.1.1.3) (Parks, et al., 2015). All
282 MAGs were taxonomically ranked using gtdb-tk (V.1.5.1) (Chaumeil, et al., 2020) via module gtdbtk
283 classify_wf.

284

285 ***Data visualisation***

286 R (V.4.1.2) (RStudio Team, 2021) and the package ggplot2 (Wickham, 2009) were used to plot
287 taxonomic profiles and alluvial and box plots. GraphPad Prism (V.5.04) (GraphPad Software, 2010)
288 was used to generate scatter plots.

289

290 ***Statistical Analysis***

291 Statistical analysis was performed using Unpaired T-tests in GraphPad Prism (V.5.04) (GraphPad
292 Software, 2010). A significance level of 0.05 was used to identify results likely to be different.

293

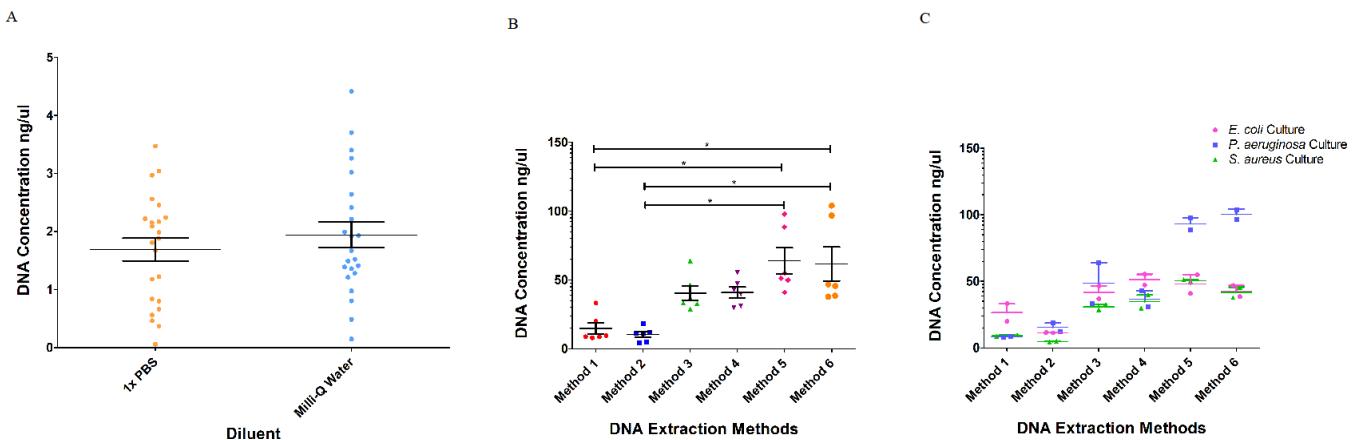
294 **Results**

295

296 **Optimisation of DNA extraction method**

297 ***Impact of initial diluents on extracted bacterial DNA quantity and cell viability***

298 There was no significant difference between amounts of bacterial DNA extracted from the 44 sterile


299 charcoal cotton swabs spiked with *S. aureus* and processed in either PBS or water (Figure 2A).

300 Recovery of *S. aureus*, *P. aeruginosa* and *E. coli*, also showed no significant differences in viable

301 numbers recovered after suspension in either diluent ($P > 0.05$; Figure S1). As there was no

302 significant difference in both DNA extraction and bacterial recovery between PBS and water, future

303 experiments used PBS.

304

305 Figure 2 – Results of the variables tested. A: Total DNA yield (ng/μl) from spiked swabs processed in
306 1xPBS and Milli-Q water during a DNA extraction. B: Total DNA yield (ng/μl) obtained from each
307 DNA extraction method. C: Total DNA yield (ng/μl) per species for each method. Horizontal bars on
308 each plot show averages, vertical bars show the standard error of the mean (SEM) and lines with an
309 asterisk (*) indicate significant ($p < 0.05$) differences.

310

311 **Testing lysis methods: Six extraction method procedures**

312 DNA extracted from liquid cultures of *S. aureus*, *P. aeruginosa* and *E. coli* using the six methods
313 (Table 1), showed that methods 5 and 6 yielded the most DNA, (40.9-97.7ng/μl and 37-104ng/μl
314 respectively), and there was a significant difference in DNA concentrations between methods 5 and 6
315 and other methods (Table S2; Figure 2B and 2C). There was no significant difference in extraction
316 efficiency between each bacterial species. DNA extraction methods 2, 4 and 6 produced higher
317 molecular weights than the others, ranging from 20232-31786 bp (Table 2). Together, these results
318 demonstrated that method 6 produced the most DNA of highest molecular weight. This method was
319 also the most cost effective due to the cheaper lysozyme used and was chosen for further validation.
320 This method included overnight lysis with lysozyme, a further heated offboard lysis step and a bead
321 beating lysis using a Tissue Lyser.

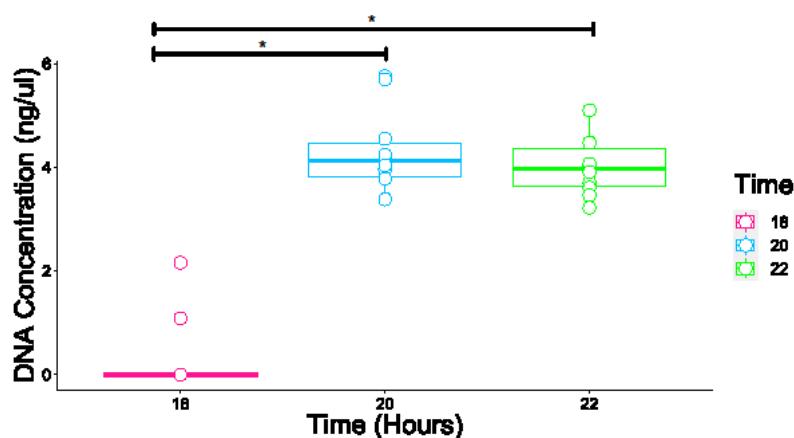
322

323 Table 2 – Average molecular weight (bp) of DNA extracted

Sample	Method 1	Method 2	Method 3	Method 4	Method 5	Method 6
<i>E. coli</i>	0	25321	1735	21693	1909	24219
<i>E. coli</i>	0	25697	2057	20232	1877	22730
<i>P. aeruginosa</i>	0	23771	1763	23163	1678	29459
<i>P. aeruginosa</i>	0	23826	1631	23742	1538	31786
<i>S. aureus</i>	0	25085	1831	23954	1668	22118
<i>S. aureus</i>	0	22011	1762	24084	1711	22904

324

325 DNA extractions from sterile charcoal cotton swabs spiked with independent cultures were successful,
326 with DNA concentrations averaged at 22.1ng/μl.

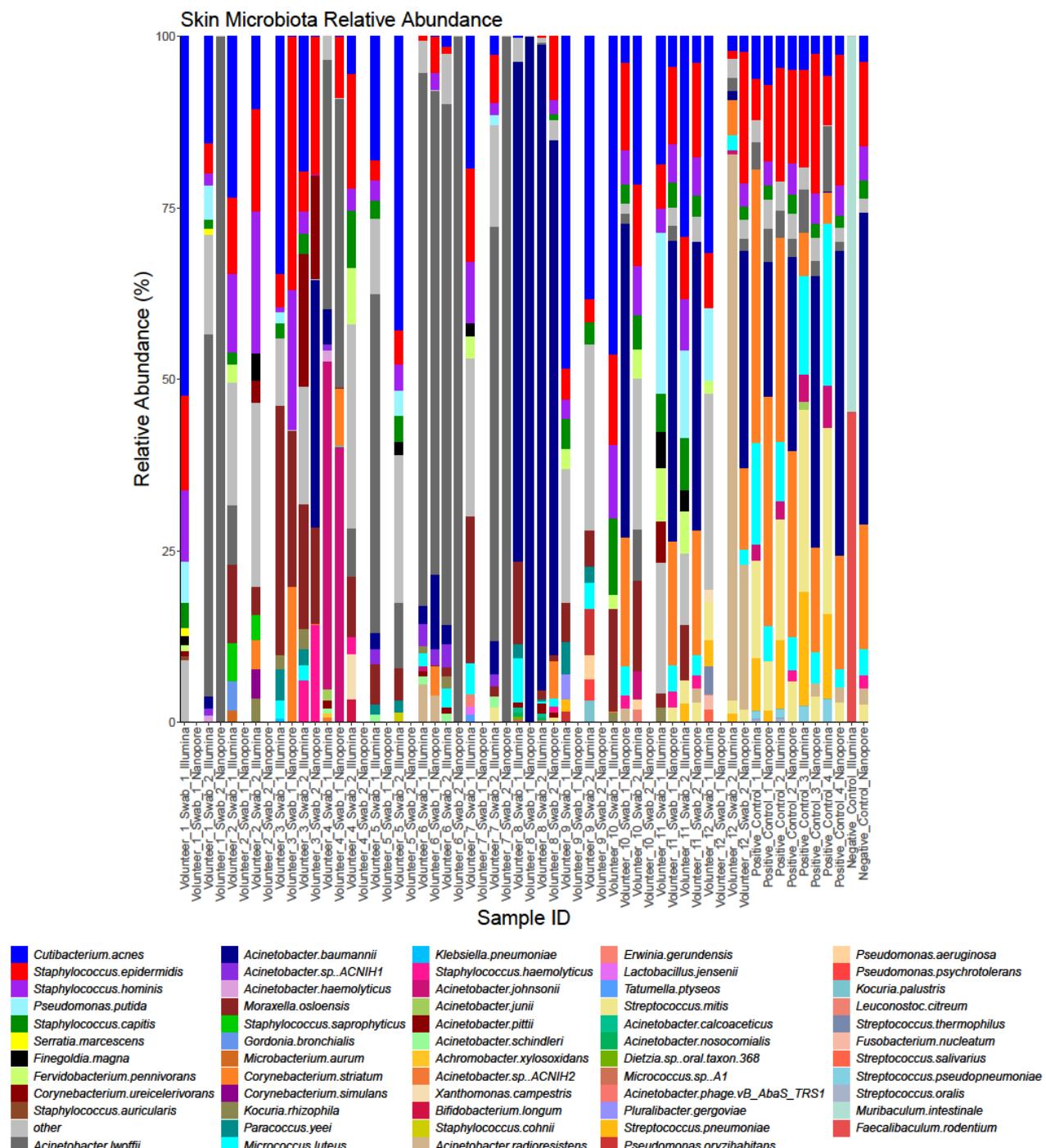

327

328 **DNA extraction method validation using swabs from volunteers or babies**

329 DNA concentrations from adult and baby skin swabs, that were extracted using method 6, ranged
330 from < 0.50 (no detected DNA) – 10.5 ng/μl (Table S3) with DNA successfully extracted from all the
331 baby samples but only 15/24 adult volunteer samples. Cultured plates recovered bacteria from all
332 adult skin swabs although recovery of cultures from the baby samples was only successful for 4/10
333 swabs. Concentrations of DNA extracted from cultured bacteria averaged at 79.9ng/μl.

334

335 As some swabs did not yield DNA using method 6, we compared DNA yield from the extracted
336 swabs after different overnight lysis incubation times. Samples were randomly incubated for either 18,
337 20 or 22 hours (Figure 3). A significant difference between 18 and 20 hours and 18 and 22 hours (P <
338 0.05) was observed, but no significant difference between 20 and 22 hours (P > 0.05). Samples that
339 did not yield detectable amounts of DNA were those incubated for 18 hours therefore, future samples
340 were incubated between 20-22 hours to obtain higher DNA yield.

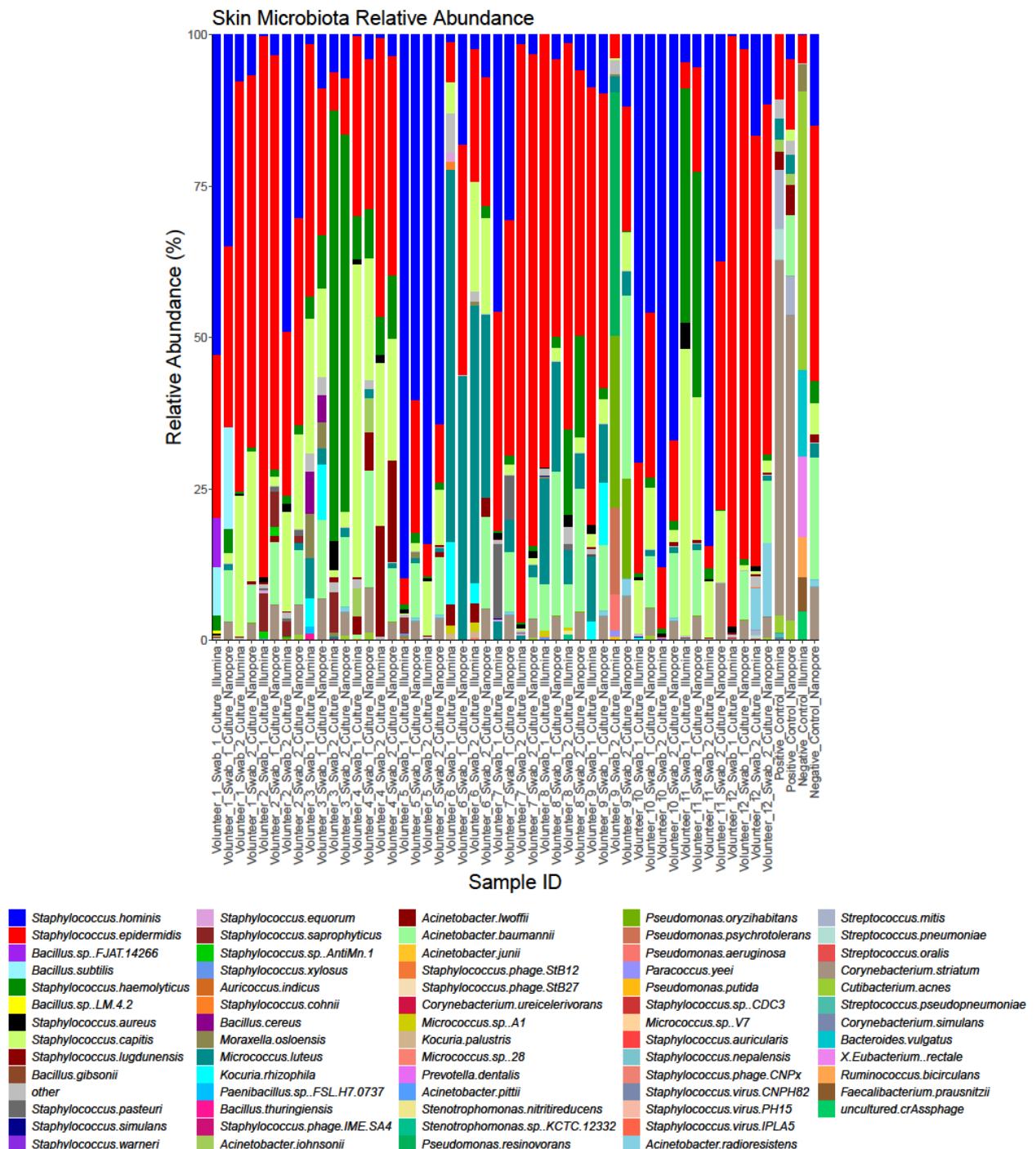


341

342 Figure 3 - Comparison of DNA yield (ng/μl) from samples incubated for different periods. The box
343 plots show the average DNA concentrations (ng/μl) for each incubation time. Horizontal bars on each
344 plot show averages, vertical bars show the standard error of the mean (SEM) and lines with an
345 asterisk (*) indicate significant ($p < 0.05$) differences.

346

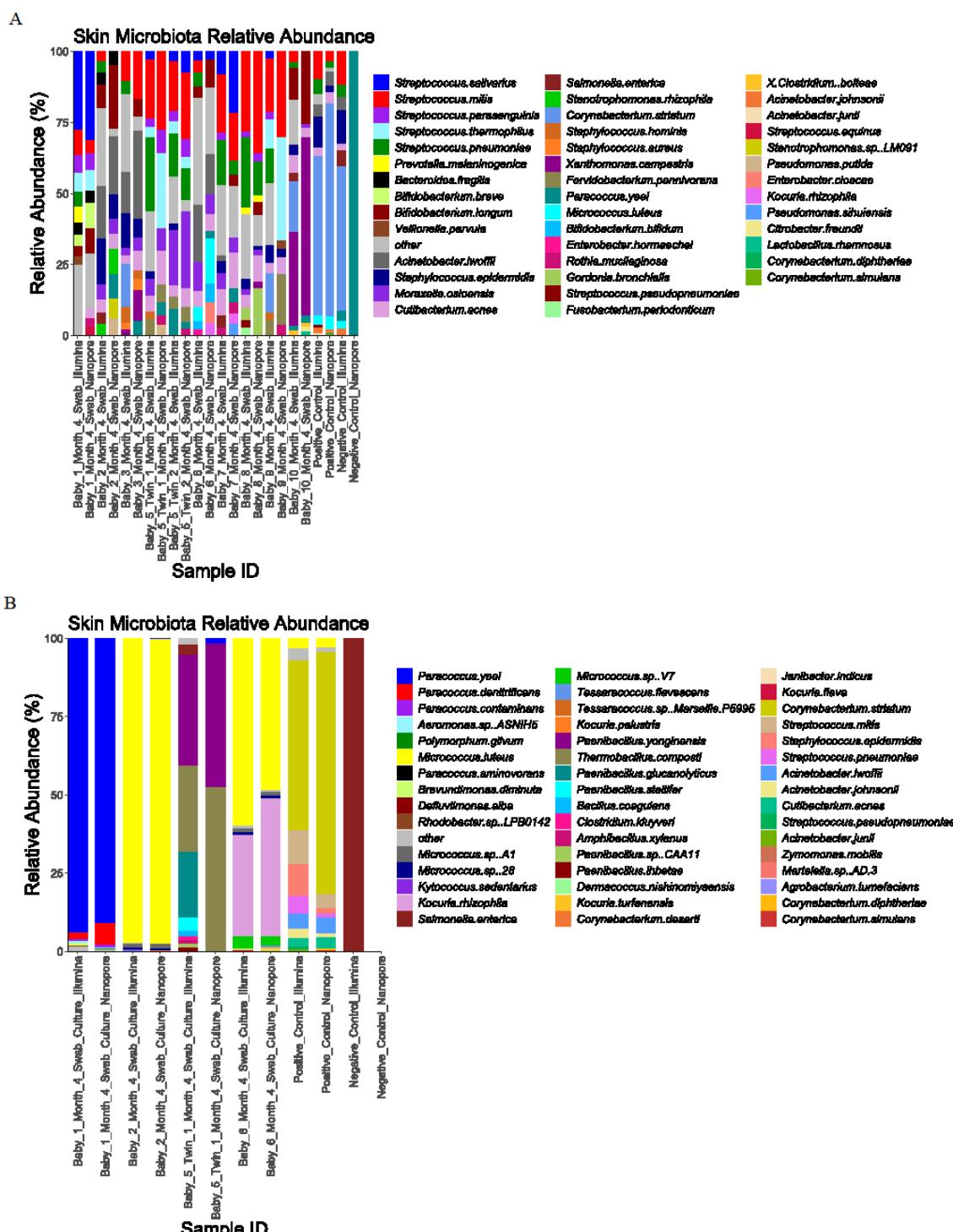
347 After removal of human reads, microbial taxonomic profiles were generated using both Illumina and
348 ONT sequence data using Kraken2 and Bracken (Figures 4-6; swabs and cultures).



349

350 Figure 4 - Taxonomic profiles of skin swab microbiota from 12 adult volunteers (two swabs collected
 351 from both forearms from each volunteer) generated using Illumina and Nanopore data. Profiles show
 352 the relative abundance (%) of the 10 most abundant species that occur within each sample.

353


354

355

356 Figure 5 - Taxonomic profiles of skin swab culture microbiota from 12 adult volunteers (two swabs
 357 collected from both forearms from each volunteer) generated using Illumina and Nanopore data.
 358 Profiles show the relative abundance (%) of the 10 most abundant species that occur within each
 359 sample.

360

361

362 Figure 6 - Taxonomic profiles of the skin swab and culture microbiota from ten PEARL babies (one
 363 swab collected off one forearm from each baby) generated using Illumina and Nanopore data. Profiles
 364 show the relative abundance (%) of the 10 most abundant species that occur within each sample. A:
 365 Illumina and Nanopore skin swab data. B: Illumina and Nanopore skin culture data.
 366 The positive controls displayed the expected microbiota from the ATCC skin microbiome whole cell
 367 mix - *Acinetobacter johnsonii*, *Corynebacterium striatum*, *Micrococcus luteus*, *Cutibacterium acnes*,
 368 *Staphylococcus epidermidis*, *Streptococcus mitis*. There was also a clear reduction in reads from these

369 samples across the dilution series. This demonstrated that the DNA extraction method was able to
370 effectively extract DNA from the diverse range of species present in the ATCC skin microbiome mix.
371 Some background contamination was detected in negative controls, although the number of reads was
372 always much lower than in samples and most DNA fragments identified in the negative controls
373 mapped against organisms not seen in the test samples.

374 Both Illumina and ONT data indicated a typical skin microbiota from both adult and baby skin swabs
375 and generated enough reads for downstream taxonomic analysis at the species level. The adult swabs
376 identified bacteria, viruses, and phages, whereas the baby swabs only displayed bacterial diversity.
377 Baby skin swabs contained more *Streptococcus* and fewer *Staphylococcus* species when compared to
378 adult skin swabs. The baby skin swabs also indicated the presence of *Bifidobacterium longum*,
379 *Bifidobacterium breve* and *Bifidobacterium bifidum*, which are not typical skin residents, but common
380 residents of the infant gut, which likely demonstrates transient skin contamination on the babies
381 (Toscano, et al., 2017; Yan, et al., 2021). Importantly, data was generated for skin swabs that had very
382 low DNA concentrations. Illumina and ONT platforms identified very similar microbiota profiles for
383 both skin swabs and cultures, with comparable percentage total counts of the most abundant species
384 (those representing more than 0.5% of each sample) (Figure S2). Analysis of the taxonomic profile
385 from cultured samples exhibited less microbial diversity than the skin swabs as expected but
386 confirmed the presence of species identified in the SMS. As in the SMS data, adult cultures exhibited
387 more *Staphylococcus* species than *Streptococcus*.

388
389 Once a successful DNA extraction method was established, the depth of sequence data required to
390 provide optimal phylogenetic resolution and to construct MAGs were both assessed. This was done by
391 comparing outcomes using 5Gbp per sample and subsamples thereof down to 1Gbp of data. For
392 species identification a rarefaction curve was produced, which showed more species identified as
393 more data was used; though statistical analysis showed there was not a significant difference in
394 species recovery between 2.5 and 5Gbp of data (Figure S3A). Recovery of MAGS was also higher
395 from samples where 5Gbp of data were used than 1Gbp, although this difference was not found to be
396 statistically significant (Figure S3B; Table S4). Based on this analysis, 5Gbp of data appears to be
397 adequate for phylogenetic analysis of the skin microbiota using this method, whilst also providing
398 useful functional information.

399

400 **Discussion**

401 We aimed to develop an efficient protocol for DNA extraction suitable for use from both skin swabs
402 and cultured bacterial cells. Initial testing showed both water and PBS were suitable diluents to
403 maintain viability and for DNA extraction in agreement with previous studies (Banning, et al., 2002;
404 Liao and Shollenberger, 2003; Downey, et al., 2012) and PBS was then used throughout. Comparison

405 of a variety of lysis procedures identified the effectiveness of a combined approach using both
406 overnight heated enzymatic (lysozyme) and mechanical (bead beat) lysis methods to result in
407 sufficient DNA yield of a high molecular weight from both Gram-positive and Gram-negative
408 bacteria. Previous work has indicated that the type of enzyme and mechanical intensity is also
409 important for lysis of different bacterial species (Schindler and Schuhardt, 1964; Yuan, et al., 2012;
410 Albertesen, et al., 2015); however, our combined use of a mechanical and enzymatic lysis approach
411 resulted in an unbiased extraction of Gram-positive and Gram-negative bacteria, which was validated
412 by the production of expected profiles from the positive control mock community (Maghini, et al.,
413 2021).

414

415 Given the low biomass of skin microbiota, some of the adult skin swabs produced very low/absent
416 DNA concentrations and paired cultures also indicated low bacterial burden. Individual variations
417 when swabbing (pressure, direction, frequency) can affect the yield of DNA and viable bacteria, and
418 are difficult to control (Van Horn, et al., 2008) and may be responsible for this variation. A swabbing
419 method was used as it is commonly used to collect skin microbiome samples (Van Horn, et al., 2008)
420 and was already used by our local PEARL study to collect samples due to its non-invasive nature,
421 which is suitable for neonates, who have an underdeveloped skin structure (Narendran, et al., 2010;
422 Chiou and Blume-Peytavi, 2004). We also found a difference in sensitivity between platforms for
423 samples with low amounts of DNA, some adult swabs did not produce data using the ONT platform
424 although these same samples generated bacterial cultures. As the ONT platform requires more input
425 DNA to generate data than Illumina platforms (Wang, et al., 2021), the inability to generate data for
426 some samples was not surprising as skin swabs can be low biomass (Bjerre, et al., 2019; de Goffau, et
427 al., 2018). However, increasing the overnight incubation time did improve DNA yield, and the
428 Illumina sequencing resulted in generated data for all samples.

429

430 Most samples did generate data from both Illumina and ONT platforms which presented similar
431 microbiota profiles from skin swabs and cultures. Typical adult skin microbiota (Phyla;
432 *Pseudomonadota*, *Actinomycetota*, and *Bacillota*) (Grice, et al., 2009; Costello, et al., 2009; Byrd, et
433 al., 2018) and infant skin microbiota (Phyla; *Bacillota*, *Actinomycetota*, *Pseudomonadota*, and
434 *Bacteroidota*) (Capone, et al., 2011) were detected. We focused on bacterial species identified, but the
435 protocol did identify other skin microbiota (viruses, phages and fungi), although only from adult
436 volunteers (Byrd, et al., 2018). Other researchers can use this protocol as a starting point to be adapted
437 if these organisms are their focus. Baby profiles only contained bacteria, and demonstrated less
438 microbial diversity than adults, which has been shown in previous studies (Zhu, et al., 2019). Baby
439 skin did exhibit more *Streptococcus* species than adult skin, which agrees with previous work
440 demonstrating a predominance of *Streptococcus* species in early age, which decreases with age
441 (Capone et al., 2011; Zhu, et al., 2019). Interestingly, sequencing of swabs from infant skin identified

442 *Bifidobacterium* species, which are not typical skin residents, but rather maternal and infant gut
443 residents and they can also be found in breast milk (Yan, et al., 2021) (Toscano, et al., 2017). Given
444 the paired cultures did not result in any *Bifidobacterium* isolates, this is likely to indicate transient
445 transfer to the babies' skin through breast feeding. The babies with available metadata that showed
446 *Bifidobacterium* presence on the skin were all breast fed at some point between birth and month 4.
447

448 Whilst skin is a relatively low biomass environment, we did not need to include any methods to
449 mechanically deplete human DNA or selectively enrich microbial DNA before SMS (Marquet, et al.,
450 2022), which have been needed in some other studies on low biomass samples. These enrichment
451 approaches do not reliably target all species (Marquet, et al., 2022), can skew the resulting genomic
452 profiles (Hammond, et al., 2016) and depletion can result in some loss of bacteria (Marquet, et al.,
453 2022), thus further steps are required for downstream analysis. In our described method, we generated
454 enough data, and depleted human DNA computationally, therefore precluding the need for any
455 additional steps that may introduce biases and skew skin microbiota profiles.
456

457 Both Illumina and ONT sequence data allowed identification of all ATCC positive control species,
458 with a clear reduction in read number across the dilution series. These results further demonstrate the
459 effectiveness of the extraction method and utility of both sequencing platforms. Inclusion of a
460 commercially available mixed community positive control, with a known cell concentration, is
461 important for standardising the extraction process, and serial diluting the positive control can
462 determine the limit of detection (Eisenhofer, et al., 2019). This is also helpful when comparing
463 different sequencing runs and sample sets, allowing more robust comparisons to be made. Although,
464 we tried to define a limit of detection for DNA concentration and read number required for effective
465 SMS, we had several swab samples that did not obtain a DNA concentration reading, but usable reads
466 were produced for taxonomic profiling. Therefore, no obvious cut-off for a limit of detection was
467 determined, and indeed there is also no 'defined' limit identified in the literature for low biomass
468 samples, such as skin swabs.
469

470 We did identify some background contamination in the negative controls, contamination commonly
471 occurs in metagenomic studies, especially those with low biomass samples (Lou, et al., 2022). Several
472 studies have identified contamination sources occurring from neighbouring samples and the 'kitome'
473 (Lou, et al., 2022; Olomu, et al., 2020). Contamination within a dataset can be identified and removed
474 using bioinformatic techniques (Zhou, et al., 2014; Davis, et al., 2018) although low biomass samples
475 have a higher risk of true microbial microbiota members being removed (Diaz, et al., 2021). Given the
476 background contaminants in the controls were at a very low level and mostly represented species not
477 seen in the test samples we did not remove them as they had a negligible impact on the profiles
478 produced.

479

480 We determined that the generation of 5Gbp of Illumina data from a skin swab was suitable for
481 microbial species profiling but produced a limited number of MAGs. MAGs are important for in-
482 depth functional information (Singleton, et al., 2021) and indicate genome quality (Bowers, et al.,
483 2017; Parks, et al., 2015; Sczyrba, et al., 2017), and they can be used to identify novel taxa and allow
484 further comparison with whole genome sequence data from isolates. Our method is compatible with
485 both Illumina and ONT platforms and combining a higher sequencing depth with ONT data has
486 potential to improve the number and quality of MAGs to be recovered (DeMaere and Darling, 2019;
487 Gweon, et al., 2019; Singleton, et al., 2021).

488

489 **Conclusion**

490 An optimised medium-throughput DNA extraction, SMS, and analysis approach can effectively
491 characterise the skin microbiota from adults and babies. This method can be applied for in-depth
492 analysis of cohort studies allowing identification of taxonomic and functional changes of mothers and
493 infants over time and should allow comparison to other body sites (e.g., the gut). Robust microbiota
494 profiling, particularly in less well studied niches such as the skin, is important for the development of
495 methods to alter microbiome compositions for health.

496

497 **Ethics**

498 Ethical approval was obtained for the adult volunteer recruitment, skin swab sampling and processing
499 from the University of East Anglia (UEA) Faculty of Medicine and Health Sciences (FHM); The
500 recruitment, sampling and processing was performed under the Norfolk and Norwich University
501 Hospital (NNUH) Biorepository ethics - FMH ethical approval reference: 2020/21-065.

502

503 The PEARL study was approved by The Quadram Institute Biosciences (QIB) Human Research
504 Governance Committee (HRGC), local Research Ethics Committee (REC), and Health Research
505 Authority (HRA). This study was conducted in accordance with the principles of the Declaration of
506 Helsinki. The proposed research was conducted in accordance with the conditions and principles of
507 the International Conference on Harmonisation Good Clinical Practice (ICH GCP), and in compliance
508 with the UK national law. The research meets the requirements of the EU General Data Protection
509 Regulation (GDPR), UK Data Protection Act 2018 and relevant sponsor's policies - IRAS number:
510 241880.

511

512 **Funding Information**

513 This research was supported in part by the NBI Computing infrastructure for Science (CiS) group
514 through the provision of a High-Performance Computing (HPC) Cluster. I.R.S. is funded by a
515 Biotechnology and Biological Sciences Research Council (BBSRC) CTP studentship with Unilever

516 (BB/T508974/1). L.J.H. is supported by Wellcome Trust Investigator Awards 100974/C/13/Z and
517 220876/Z/20/Z; and a BBSRC Institute Strategic Programme, Gut Microbes and Health
518 BB/R012490/1, and its constituent projects BBS/E/F/000PR10353 and BBS/E/F/000PR10356.
519 M.A.W. is supported by project grant (BB/T014644/1) from the Biotechnology and Biological
520 Sciences Research Council and BBSRC Institute Strategic Programmes Microbes in the Food Chain
521 BB/R012504/1 and its constituent project BBS/E/F/000PR10349.

522

523 **Author contributions**

524 Conceptualisation, I.R.S., B.M., M.A.W., L.J.H.; Data curation, I.R.S., B.M., M.A.W., L.J.H., M.D.,
525 R.K., D.B., R.E., S.P., R.W. and T.A.; Formal analysis, I.R.S., B.M., M.A.W., L.J.H., M.D. and R.K.;
526 Funding acquisition, B.M., M.A.W. and L.J.H.; Investigation, I.R.S., B.M., M.A.W., L.J.H., D.B.,
527 R.E., S.P., R.W. and T.A.; Methodology, I.R.S., B.M., M.W., L.J.H., D.B. and R.E.; Project
528 administration, I.R.S., B.M., M.A.W., L.J.H., S.P., R.W. and T.A.; Resources, I.R.S., B.M., M.A.W.,
529 L.J.H., D.B., R.E., M.D., R.K., S.P., R.W., T.A.; Supervision, I.R.S., B.M., M.A.W. and L.J.H.;
530 Validation, I.R.S., D.B., R.E., M.D. and R.K.; Visualisation, I.R.S., M.D. and R.K.; Writing – original
531 draft, I.R.S., B.M., M.A.W., L.J.H., D.B., R.E., S.P., R.W., T.A., M.D., and R.K.; Writing – review
532 and editing, I.R.S., E.T., B.M., M.A.W. and L.J.H.

533

534 **Competing interests**

535 The authors declare no competing interests.

536

537 **References**

- 538 1. Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Cech, M., Chilton, J.,
539 Clements, D., Coraor, N., Grüning, B. A., Guerler, A., Hillman-Jackson, J., Hiltemann, S.,
540 Jalili, V., Rasche, H., Soranzo, N., Goecks, J., Taylor, J., Nekrutenko, A., & Blankenberg, D.
541 (2018). The Galaxy platform for accessible, reproducible and collaborative biomedical
542 analyses: 2018 update. Nucleic acids research, Vol. 46(W1), W537–W544.
543 <https://doi.org/10.1093/nar/gky379>
- 544 2. Albertsen M, Karst SM, Ziegler AS, Kirkegaard RH, Nielsen PH (2015). Back to Basics –
545 The Influence of DNA Extraction and Primer Choice on Phylogenetic Analysis of Activated
546 Sludge Communities. PLoS ONE, Vol. 10(7): e0132783.
547 <https://doi.org/10.1371/journal.pone.0132783>
- 548 3. Allaband C, McDonald D., Vázquez-Baeza Y., Minich J.J., Tripathi A., Brenner D.A.,
549 Loomba R., Smarr L., Sandborn W.J. and Schnabl B., Dorresteijn, P., Zarrinpar, A. and
550 Knight, R., (2019). Microbiome 101: Studying, analyzing, and interpreting gut microbiome
551 data for clinicians. Clinical Gastroenterology Hepatology, Vol. 17, pp. 218–230.
552 <https://doi.org/10.1016/j.cgh.2018.09.017>

553 4. Alneberg, J., Bjarnason, B.S., de Bruijn, I., Schirmer, M., Quick, J., Ijaz, U.Z., Loman, N.J.,
554 Andersson, A.F., Quince, C., (2013). CONCOCT: Clustering cONTigs on COverage and
555 ComposiTion. arXiv:1312.4038. <https://doi.org/10.48550/arXiv.1312.4038>

556 5. Amarasinghe S.L., Su S., Dong X., Zappia L., Ritchie M.E. and Gouil Q., (2020).
557 Opportunities and challenges in long-read sequencing data analysis. Genome Biology, Vol.
558 Vol. 21(30). <https://doi.org/10.1186/s13059-020-1935-5>

559 6. ATCC Skin Microbiome Whole Cell Mix. <https://www.atcc.org/products/msa-2005> Accessed
560 December 2022.

561 7. Banning, N., Toze, S. and Mee, B.J., (2002). Escherichia coli survival in groundwater and
562 effluent measured using a combination of propidium iodide and the green fluorescent protein.
563 Journal of Applied Microbiology, Vol. 93(1), pp. 69–76. <https://doi.org/10.1046/j.1365-2672.2002.01670.x>

564 8. Bey S.B., Fichot E.B., Dayama G., Decho A.W. and Norman R.S., (2010). Extraction of High
565 Molecular Weight DNA from Microbial Mats. BioTechniques, Vol. 49(3): pp. 631-640.
566 <https://doi.org/10.2144/000113486>

567 9. Bjerre R.D., Hugerth L.W., Boulund F., Seifert M., Johansen J.D. and Engstrand L., (2019).
568 Effects of sampling strategy and DNA extraction on human skin microbiome investigations.
569 Sci. Rep., Vol. 9, pp. 1–11. <https://doi.org/10.1038/s41598-019-53599-z>

570 10. Bowers, R., Kyrpides, N., Stepanauskas, R., et al., (2017). Minimum information about a
571 single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of
572 bacteria and archaea. Nature Biotechnology, Vol. 35, pp. 725–731.
573 <https://doi.org/10.1038/nbt.3893>

574 11. Byrd A.L., Belkaid Y. and Segre J.A., (2018). The human skin microbiome. Nature Reviews
575 Microbiology, Vol. 16, 143-55. <https://doi.org/10.1038/nrmicro.2017.157>

576 12. Capone K.A., Dowd S.E., Stamatas G.N. and Nikolovski J., (2011). Diversity of the human
577 skin microbiome early in life. Journal of Investigative Dermatology, Vol. 131(10), pp. 2026–
578 <https://doi.org/10.1038/jid.2011.168>

579 13. Chaumeil, P-A., Mussig, A.J., Hugenholtz, P., Parks, D.H., (2020). GTDB-Tk: a toolkit to
580 classify genomes with the Genome Taxonomy Database, Bioinformatics, Vol. 36(6), pp.
581 1925–1927. <https://doi.org/10.1093/bioinformatics/btz848>

582 14. Chen. S., Zhou, Y., Chen, Y. and Gu, J., (2018). Fastp: an ultra-fast all-in-one FASTQ
583 preprocessor. Bioinformatics, Vol. 34(17), pp. i884-i890.
584 <https://doi.org/10.1093/bioinformatics/bty560>

585 15. Chiou Y.B. and Blume-Peytavi U., (2004). Stratum corneum maturation. A review of
586 neonatal skin function. Skin Pharmacology Physiology, Vol. 17(2), pp. 57-66.
587 <https://doi.org/10.1159/000076015>

589 16. Cho I. and Blaser M.J., (2012). The human microbiome: At the interface of health and
590 disease. *Nature Reviews Genetics*, Vol. 13, 260. <https://doi.org/10.1038/nrg3182>

591 17. Costello E.K., Lauber C.L., Hamady M., Fierer N., Gordon J.I. and Knight R., (2009).
592 Bacterial community variation in human body habitats across space and time. *Science*, Vol.
593 326(5960), pp. 1694-1697. <https://doi.org/10.1126/science.1177486>

594 18. Davis, N.M., Proctor, D.M., Holmes, S.P., Relman, D.A. and Callahan, B.J., (2018). Simple
595 statistical identification and removal of contaminant sequences in marker-gene and
596 metagenomics data. *Microbiome*, Vol. 6(226). <https://doi.org/10.1186/s40168-018-0605-2>

597 19. de Goffau, M.C., Lager, S., Salter, S.J., Wagner, J., Kronbichler, A., Charnock-Jones, D.S.,
598 Peacock, S.J., Smith, G.C.S. and Parkhill, J., (2018). Recognizing the reagent microbiome.
599 *Nature Microbiology*, Vol. 3, pp. 851-853. <https://doi.org/10.1038/s41564-018-0202-y>

600 20. DeMaere, M.Z. and Darling, A.E., (2019). bin3C: exploiting Hi-C sequencing data to
601 accurately resolve metagenome-assembled genomes. *Genome Biology*, Vol. 20(46).
602 <https://doi.org/10.1186/s13059-019-1643-1>

603 21. Díaz, S., Escobar, J.S. and Avilaa, F.W., (2021). Identification and Removal of Potential
604 Contaminants in 16S rRNA Gene Sequence Data Sets from Low-Microbial-Biomass
605 Samples: an Example from Mosquito Tissues. *American Society for Microbiology*, Vol. 6(3),
606 pp. e00506-21. <https://doi.org/10.1128/mSphere.00506-21>

607 22. Downey, A.S., Da Silva, S.M., Olson N.D., Filliben, J.J., Morrowa, J.B., (2012). Impact of
608 Processing Method on Recovery of Bacteria from Wipes Used in Biological Surface
609 Sampling. *Applied and Environmental Microbiology*, Vol. 78(16), pp. 5872–5881.
610 <https://doi.org/10.1128/AEM.00873-12>

611 23. Dunbar J., Gallegos-Gravesa LV., Gansa J., Morseb S.A., Pillaic S., Andersond K. and
612 Hodged D.R., (2018). Evaluation of DNA Extraction Methods to Detect Bacterial Targets in
613 Aerosol Samples. *Journal of Microbiological Methods*, Vol. 153, pp. 48–53.
614 <https://doi.org/10.1016/j.mimet.2018.09.006>

615 24. Eisenhofer, R., Minich, J.J., Marotz, C., Cooper, A., Knight, R. and Weyrich, L.s., (2019).
616 Contamination in Low Microbial Biomass Microbiome Studies: Issues and
617 Recommendations. *Trends in Microbiology*, Vol. 27(2), pp. 105-117.
618 <https://doi.org/10.1016/j.tim.2018.11.003>

619 25. Gill, C., van de Wijgert, J.H.H.M., Blow, F. and Darby, A.C., (2016). Evaluation of Lysis
620 Methods for the Extraction of Bacterial DNA for Analysis of the Vaginal Microbiota. *PLoS
621 ONE*, Vol. 11(9): e0163148. <https://doi.org/10.1371/journal.pone.0163148>

622 26. GraphPad Software, (2010). GraphPad Prism 5.04. San Diego California.
623 <https://www.graphpad.com/company> Accessed January 2023

624 27. Grice E.A., Kong H.H., Conlan S., Deming C.B., Davis J., Young A.C., Bouffard G.G.,
625 Blakesley R.W., Murray P.R. and Green E.D., (2009). Topographical and temporal diversity
626 of the human skin microbiome. *Science*, Vol. 324(5931), pp. 1190–1192.
627 <https://doi.org/10.1126/science.1171700>

628 28. Gweon, H.,S., Shaw, L.P., Swann, J., De Maio, N., AbuOun, M., Niehus, R., Hubbard,
629 A.T.M., Bowes, M.J., Bailey, M.J., Peto, T.E.A., Hoosdally, S.J., Walker, A.S., P. Sebra,
630 R.P., Crook, D.W., Anjum. M.F., Read, D.S., Stoesser, N., (2019). The impact of sequencing
631 depth on the inferred taxonomic composition and AMR gene content of metagenomic
632 samples. *Environmental Microbiome*, Vol.14(7). <https://doi.org/10.1186/s40793-019-0347-1>

633 29. Hammond, M., Homa, F., Andersson-Svahn, H., Ettema, T.J.G. and Joensson, H.N., (2016).
634 Picodroplet partitioned whole genome amplification of low biomass samples preserves
635 genomic diversity for metagenomic analysis. *Microbiome*, Vol. 4(52).
636 <https://doi.org/10.1186/s40168-016-0197-7>

637 30. Jo, J.H., Kennedy, E.A. and Kong, H.H., (2016). Research techniques made simple: bacterial
638 16s ribosomal RNA gene sequencing in cutaneous research. *Journal of Investigative
639 Dermatology*, Vol. 136(3), pp. e23–e27. <https://doi.org/10.1016/j.jid.2016.01.005>

640 31. Kang, D,D, Froula, J., Egan, R. and Wang, Z., (2015). MetaBAT, an efficient tool for
641 accurately reconstructing single genomes from complex microbial communities. *PeerJ*,
642 3:e1165. <https://doi.org/10.7717/peerj.1165>

643 32. Kong H.H., (2011). Skin microbiome: genomics-based insights into the diversity and role of
644 skin microbes. *Trends in Molecular Medicine*, Vol. 17(6), pp. 320-328.
645 <https://doi.org/10.1016/j.molmed.2011.01.013>

646 33. Kuczynski J., Lauber C.L., Walters W.A., Parfrey L.W., Clemente J.C., Gevers D. and Knight
647 R., (2012). Experimental and analytical tools for studying the human microbiome. *Nature
648 Reviews Genetics*, Vol. 13, pp.47-58. <https://doi.org/10.1038/nrg3129>

649 34. Li, D., Liu, C-M., Luo, R., Sadakane, K. and Lam, T-W., (2015). MEGAHIT: an ultra-fast
650 single-node solution for large and complex metagenomics assembly via succinct de Bruijn
651 graph. *Bioinformatics*, Vol. 31(10), pp. 1674–1676.
652 <https://doi.org/10.1093/bioinformatics/btv033>

653 35. Liao, C-H and Shollenberger, L.M, (2003). Survivability and long-term preservation of
654 bacteria in water and in phosphate-buffered saline. *Letters in Applied Microbiology*, Vol.
655 37(1), pp. 45-<https://doi.org/10.1046/j.1472-765X.2003.01345.x>

656 36. Liu Y-X., Qin Y., Chen T., Lu M., Qian X., Guo X. and Bai Y., (2020). Review: A practical
657 guide to amplicon and metagenomic analysis of microbiome data. *Protein Cell*, Vol. 12(5),
658 pp. 315-330. <https://doi.org/10.1007/s13238-020-00724-8>

659 37. Lou, Y.C., Hoff, J., Olm, M.R., West-Roberts, J., Diamond, S., Firek, B.A., Morowitz, M.J.
660 and Banfield, J.F., (2022). Using strain-resolved analysis to identify contamination in
661 metagenomics data. BioRxiv preprint. <https://doi.org/10.1101/2022.01.16.476537>

662 38. Lu J., Breitwieser, F.P., Thielen, P. and Salzberg, S.L., (2017). Bracken: estimating species
663 abundance in metagenomics data. PeerJ Computer Science, 3:e104.
664 <https://doi.org/10.7717/peerj-cs.104>

665 39. Maghini, D.G., Moss, E.L., Vance, S.E. and Bhatt, A.S., (2021). Improved high-molecular-
666 weight DNA extraction, nanopore sequencing and metagenomic assembly from the human
667 gut microbiome. Nature Protocols, Vol. 16(1), pp. 458-471. <https://doi.org/10.1038/s41596-020-00424-x>

669 40. Mandrekar P. V., Ma Z., Krueger S. and Cowan C., (2007). High-Concentration (>100ng/µl)
670 Genomic DNA From Whole Blood Using the Maxwell® 16 Low Elution Volume Instrument.
671 American Medical Association, Manual of Style, 10th edition. Promega Corporation Web
672 site.
673 <https://www.promega.co.uk/resources/pubhub/high-concentration-genomic-dna-from-whole-blood-using-the-maxwell-16-low-elution-volume-instrument> Updated 2010. Accessed
674 November 2020.

676 41. Marquet, M., Zöllkau, J., Pastuschek, J., Viehweger, A., Schleußner, E., Makarewicz, O.,
677 Pletz, M.W., Ehricht, R. and Brandt, C., (2022). Evaluation of microbiome enrichment and
678 host DNA depletion in human vaginal samples using Oxford Nanopore's adaptive
679 sequencing. Scientific Reports, Vol. 12(4000). <https://doi.org/10.1038/s41598-022-08003-8>

680 42. Martzy, R., Bica-Schröder, K., Pálvölgyi, A.M., Kolm, C., Jakwerth, S., Kirschner, A.K.T.,
681 Sommer, R., Krska, R., Mach, R.L., Farnleitner, A.H. and Reischer, G.H., (2019). Simple
682 lysis of bacterial cells for DNA-based diagnostics using hydrophilic ionic liquids. Scientific
683 Reports, Vol. 9(13994). <https://doi.org/10.1038/s41598-019-50246-5>

684 43. Matthews TC, Bristow FR, Griffiths EJ, Petkau A, Adam J, Dooley D, Kruczakiewicz P,
685 Curatcha J, Cabral J, Fornika D, Winsor GL, Courtot M, Bertelli C, Roudgar A, Feijao P,
686 Mabon P, Enns E, Thiessen J, Keddy A, Isaac-Renton J, Gardy JL, Tang P, Consortium TI,
687 Carrico JA, Chindelevitch L, Chauve C, Graham MR, McArthur AG, Taboada EN, Beiko
688 RG, Brinkman FS, Hsiao WW, Domselaar GV. (2018). The Integrated Rapid Infectious
689 Disease Analysis (IRIDA) Platform. bioRxiv preprint. <https://doi.org/10.1101/381830>

690 44. Moeller J.R., Moehn N.R., Waller D.M. and Givnish T.J., (2014). Paramagnetic Cellulose
691 DNA Isolation Improves DNA Yield and Quality Among Diverse Plant Taxa. Applications in
692 Plant Sciences, Vol. 2(10): pp. 1400048. <https://doi.org/10.3732/apps.1400048>

693 45. Narendran V., Visscher M.O., Abril I., Hendrix S.W. and Hoath S.B., (2010). Biomarkers of
694 epidermal innate immunity in premature and fullterm infants. Pediatric Research, Vol. 67(4),
695 pp. 382-386. <https://doi.org/10.1203/PDR.0b013e3181d00b73>

46. National Academies of Sciences, Engineering and Medicine (NASEM), (2018). Environmental Chemicals, the Human Microbiome, and Health Risk: A Research Strategy; National Academies Press: Washington, DC, USA. <https://doi.org/10.17226/24960>

47. Ogai K., Nagase S., Mukai K., Iuchi T., Mori Y., Matsue M., Sugitani K., Sugama J. and Okamoto S., (2018). A Comparison of Techniques for Collecting Skin Microbiome Samples: Swabbing Versus Tape-Stripping. *Frontiers in Microbiology*, Vol. 9(2362). <https://doi.org/10.3389/fmicb.2018.02362>

48. Olomu, I.N., Pena-Cortes, L.C., Long, R.A, Vyas, A., Krichevskiy, O., Luellwitz, R., Singh, P. and Mulks, M.H., (2020). Elimination of “kitome” and “splashome” contamination results in lack of detection of a unique placental microbiome. *BMC Microbiology*, Vol. 20(157). <https://doi.org/10.1186/s12866-020-01839-y>

49. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. and Tyson, G. W, (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Research*, Vol.25(7), pp. 1043–1055. <https://doi.org/10.1101/gr.186072.114>

50. Pearman W.S., Freed N.E. and Silander O.K., (2020). Testing the advantages and disadvantages of short- and long- read eukaryotic metagenomics using simulated reads. *BMC Bioinformatics*, Vol. 21(220). <https://doi.org/10.1186/s12859-020-3528-4>

51. Phillips, S., Watt, R., Atkinson, T., Savva, G.M., Hayhoe, A. and Hall, L.J., (2021). The Pregnancy and EARly Life study (PEARL) - a longitudinal study to understand how gut microbes contribute to maintaining health during pregnancy and early life. *BMC Pediatrics*, Vol. 21(357). <https://doi.org/10.1186/s12887-021-02835-5>

52. Promega Maxwell® RSC Blood DNA Kit. <https://www.promega.com/-/media/files/resources/protocols/technical-manuals/101/maxwell-rsc-blood-dna-kit-protocol.pdf?la=en> Accessed November 2020.

53. RStudio Team (2021). RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA. <http://www.rstudio.com/> Accessed January 2023

54. Schindler, C.A. and Schuhardt, V.T., (1964). Lysostaphin: A New Bacteriolytic Agent for the *Staphylococcus*. *Proceedings of the National Academy of Sciences of the United States of America*, Vol. 51(3), pp. 414-421. <https://doi.org/10.1073/pnas.51.3.414>

55. Sczyrba, A., Hofmann, P., Belmann, P., et al., (2017). Critical assessment of metagenome interpretation—a benchmark of metagenomics software. *Nature Methods*, Vol. 14(11), pp. 1063–1071. <https://doi.org/10.1038/nmeth.4458>

56. Sfriso R., Egert M., Gempeler M., Voegeli R. and Campiche R., (2020). Revealing the secret life of skin - with the microbiome you never walk alone. *International Journal of Cosmetic Science*, Vol. 42(2), pp. 116–126. <https://doi.org/10.1111/ics.12594>

732 57. Singleton, C.M., Petrigliari, F., Kristensen, J.M., Kirkegaard, R.H., Michaelsen, T.Y.,
733 Andersen, M.H., Kondrotaite, Z., Karst, S.M., Dueholm, M.S., Nielsen, P.H. and Albertsen,
734 M., (2021). Connecting structure to function with the recovery of over 1000 high-quality
735 metagenome-assembled genomes from activated sludge using long-read sequencing. *Nature
736 Communications*, Vol. 12(2009). <https://doi.org/10.1038/s41467-021-22203-2>

737 58. Sui H., Weil A.A., Nuwagira E., Qadri F., Ryan E.T., Mezzari M.P., Phipatanakul W. and Lai
738 P.S., (2020). Impact of DNA Extraction Method on Variation in Human and Built
739 Environment Microbial Community and Functional Profiles Assessed by Shotgun
740 Metagenomics Sequencing. *Frontiers in Microbiology*, Vol. 11(953).
741 <https://doi.org/10.3389/fmicb.2020.00953>

742 59. The Human Microbiome Project Consortium, (2012). Structure, function and diversity of the
743 healthy human microbiome. *Nature*, Vol. 486, pp. 207-214.
744 <https://doi.org/10.1038/nature11234>

745 60. The Huttenhower Lab. Kneaddata. <https://huttenhower.sph.harvard.edu/kneaddata/> Accessed
746 January 2023

747 61. Toscano, M., De Grandi, R., Grossi, E. and Drago, L., (2017). Role of the Breast Milk-
748 Associated Microbiota on the Newborns' Immune System: A Mini Review. *Frontiers in
749 Microbiology*, Vol. 8(2100). <https://doi.org/10.3389/fmicb.2017.02100>

750 62. Uritskiy, G.V., DiRuggiero, J. and Taylor, J., (2018). MetaWRAP - a flexible pipeline for
751 genome-resolved metagenomic data analysis. *Microbiome*, Vol. 6(158).
752 <https://doi.org/10.1186/s40168-018-0541-1>

753 63. Van Horn, K.G., Audette, C.D., Tucker, K.A. and Sebeck, D., (2008). Comparison of 3 swab
754 transport systems for direct release and recovery of aerobic and anaerobic bacteria. *Diagnostic
755 Microbiology and Infectious Disease*, Vol. 62(4), pp. 471–473.
756 <https://doi.org/10.1016/j.diagmicrobio.2008.08.004>

757 64. Wang, Y., Zhao, Y., Bollas, A., Wang, Y. and Au, K.F., (2021). Nanopore sequencing
758 technology, bioinformatics and applications. *Nature Biotechnology*, Vol. 39, pp. 1348–1365.
759 <https://doi.org/10.1038/s41587-021-01108-x>

760 65. Wickham, H. 2009. *ggplot2: Elegant Graphics for Data Analysis*, Springer-Verlag New York,
761 1st Edition. <https://doi.org/10.1007/978-0-387-98141-3>

762 66. Wood, D.E., Lu, J. and Langmead, B., (2019). Improved metagenomic analysis with Kraken
763 2. *Genome Biology*, Vol.20(257). <https://doi.org/10.1186/s13059-019-1891-0>

764 67. Wu, Y-W., Simmons, B.A., Singer, S.W., (2016). MaxBin 2.0: an automated binning
765 algorithm to recover genomes from multiple metagenomic datasets. *Bioinformatics*, Vol.
766 32(4), pp. 605–607. <https://doi.org/10.1093/bioinformatics/btv638>

767 68. Yan, W., Luo, B., Zhang, X., Ni, Y. and Tian, F., (2021). Association and Occurrence of
768 Bifidobacterial Phylotypes Between Breast Milk and Fecal Microbiomes in Mother-Infant

769 Dyads During the First 2 Years of Life. *Frontiers in Microbiology*, Vol. 12(669442).

770 <https://doi.org/10.3389/fmicb.2021.669442>

771 69. Yuan, S., Cohen, D.B., Ravel, J., Abdo, Z., Forney, L.J., (2012). Evaluation of Methods for
772 the Extraction and Purification of DNA from the Human Microbiome. *PLoS ONE*, Vol. 7(3),
773 pp. e33865. <https://doi.org/10.1371/journal.pone.0033865>

774 70. Zhou, Q., Su, X. and Ning, K., (2014). Assessment of quality control approaches for
775 metagenomic data analysis. *Scientific Reports*, Vol. 4(6957).
776 <https://doi.org/10.1038/srep06957>

777 71. Zhu, T., Liu, X., Kong, F-Q., Duan, Y-Y., Yee, A.L, Kim, M., Galzote, C., Gilbert, J.A. and
778 Quan, Z-X., (2019). Age and Mothers: Potent Influences of Children's Skin Microbiota.
779 *Journal of Investigative Dermatology*, 139(12), pp. 2497–505.e6.
780 <https://doi.org/10.1016/j.jid.2019.05.018>