

1 **Title:** Effects of ploidy and genetic diversity on competitive outcomes.

2

3

4

5

6 **Authors**

7

8

9 Jesús Alberto Pérez-Romero^{1,*}, Ana García Muñoz^{2,*}, Enrica Olivieri², A. Jesús
10 Muñoz-Pajares^{2,3}, Mohamed Abdelaziz², Oscar Godoy¹

11

12

13 ¹Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR),
14 Universidad de Cádiz, 11510 Puerto Real, Spain; ²Department of Genetics,
15 University of Granada, Granada, Spain; ³Research Unit Modeling Nature,
16 Universidad de Granada, Granada, Spain; * These authors contributed equally to
17 this work.

18

19

20

21 **ORCID and emails**

22 Jesús Alberto Pérez-Romero 0000-0003-0648-2605 [jesualberto.perez@uca.es](mailto:jesusalberto.perez@uca.es)

23 Ana García Muñoz 0000-0001-5421-1100 anagarciamu@ugr.es

24 Enrica Olivieri 0000-0002-8194-7751 enricaolivieri96@gmail.com

25 A. Jesús Muñoz-Pajares 0000-0002-2505-8116 ajesusmp@ugr.es

26 Mohamed Abdelaziz 0000-0003-0533-6817 mabdelazizm@ugr.es

27 Oscar Godoy 0000-0003-4988-6626 oscar.godoy@uca.es

28

29 **Summary**

- 30 • Genetic diversity affects evolutionary trajectories but their ultimate effects on
31 ecological interactions and community dynamics remains poorly understood.
32 It has been hypothesized that phenotypic novelties produced by ploidy and
33 heterozygosity modify the ecological interactions between novel genotypes
34 and more ancient locally adapted ones, and therefore, their opportunities to
35 coexist.
- 36 • We performed a greenhouse competition experiment with three taxa of the
37 *Erysimum incanum* species complex differing in ploidy (2x, 4x and 6x) and
38 heterozygosity (high and low). This experiment allows us to parameterize a
39 population model to test the effect of genetic diversity on modulating the
40 ecological forces that determine the outcome of competition, niche and fitness
41 differences.
- 42 • Depending on whether ploidy variation and the level of heterozygosity made
43 interspecific competition greater or smaller than intraspecific competition, we
44 predicted either priority effects or coexistence. Such competitive outcome
45 differences were explained by the phenotypic expression in the number of
46 stalks (plant size surrogate) with genotypes under priority effects showing
47 more stalks.
- 48 • Altogether, our results show that non-polyploid plants can coexist with
49 polyploids contravening theoretical expectations of polyploidy dominance
50 under stable conditions. However, historical contingency such as order of
51 arrival promotes priority effects when adaptive phenotypic optiums strongly
52 compete for space.

53

54

55

56 Keywords: Competition, Coexistence, *Erysimum incanum*, Heterozygosity, Priority
57 effects, Polyploids.

58

59

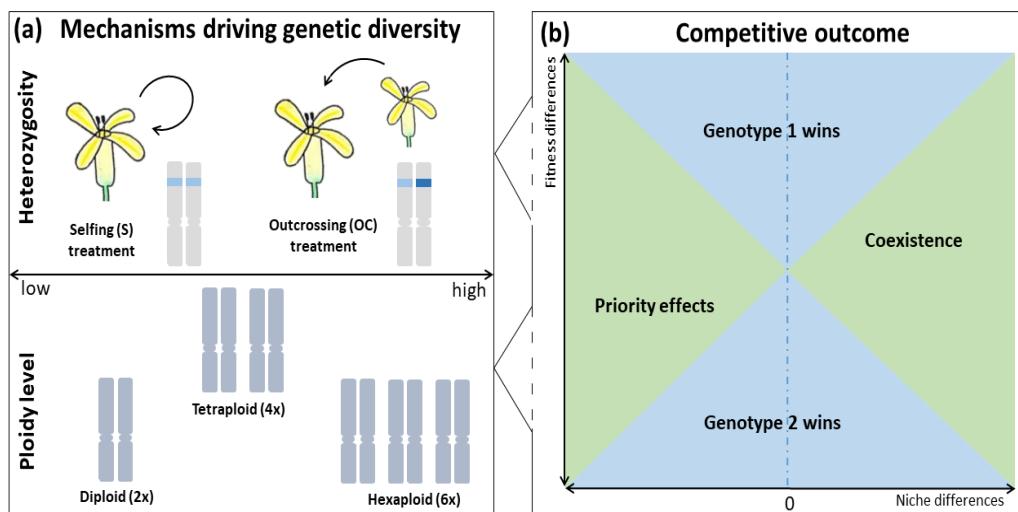
60 **Introduction**

61 Progress in ecological theory during the last decades has substantially rendered a
62 mechanistic understanding of the rules governing the maintenance of species
63 diversity. These advances, formally named as modern coexistence theory (MCT)
64 (Chesson, 2000), posits that there are two species differences that determine the
65 outcome of competitive interactions. On the one hand, niche differences occurring
66 when intraspecific competition exceeds interspecific competition stabilizes the
67 population dynamics of interacting species by limiting their population growth when
68 they are abundant but buffering them from extinction when they are rare (Adler *et al.*,
69 2007). These stabilizing niche differences can arise from a wide variety of ecological
70 factors such as differences in phenology (Godoy & Levine, 2014), differences in
71 natural enemies (Petry *et al.*, 2018), or differences in nutrient requirements (Harpole
72 *et al.*, 2016). On the other hand, fitness differences drive competition dominance and
73 in the absence of niche differences determine the competitive superior. Fitness
74 differences, understood within an ecological context, occur when good light
75 competitors grow at the expense of other species (DeMalach *et al.*, 2017) or when
76 species are able to draw down common resources faster than the competitors
77 (Tilman & Sandhu, 1998), and it is the result of two components. The first component
78 is the species demographic differences, which arise from different ability of species
79 to produce viable offspring, and the second component is the competitive response
80 differences, which arises when species show different responses to competition. At
81 the extremes, a species can be a superior competitor either because it produces a
82 great amount of viable offspring or has a low sensitivity to competition (i.e. offspring
83 production is not reduced when density increases), although a combination of both
84 strategies is also possible.

85 Importantly, theory predicts a variety of outcomes depending on the relationship
86 between niche and fitness differences (Ke & Letten, 2018). Under negative density-
87 dependence (i.e., population growth rates decrease as the density of a population
88 increases), species are predicted to coexist when niche differences overcome fitness
89 differences. On the other hand, if fitness differences are overwhelming, the inferior
90 competitor species are predicted to be excluded. It can also be the case that species
91 are experiencing positive density-dependence (i.e., population growth rates increase
92 as the density of a population also increases). In such cases, priority effects are

93 expected to occur. This means that contingency processes such as order of arrival
94 influence community assembly and the species that arrive first dominates the
95 community and excludes the other (Fragata *et al.*, 2022).

96 Modern coexistence theory was developed within an ecological context and as such
97 most of its application has been done within this domain. This implies that the role of
98 evolution in determining the outcome of ecological interaction is still poorly
99 understood. Empirical work at the macroevolutionary scale has shown that disparate
100 evolutionary processes among species poorly predict the outcome of ecological
101 interactions and they can either determine coexistence or competitive exclusion
102 (Narwani *et al.*, 2013; Godoy *et al.*, 2014; Germain *et al.*, 2016). Moreover, Germain
103 *et al.* (2016) showed that the scaling of niche and fitness differences with
104 phylogenetic relatedness depend on whether species have evolved in sympatry or
105 allopatry, being allopatric species less likely to coexist based on phylogenetic
106 distance. At the microevolutionary scale, some examples have documented that
107 rapid evolution ameliorates the negative effect of competition and ultimately can
108 favor the coexistence of competing species (Lankau *et al.*, 2009; Hart *et al.*, 2019),
109 whereas others have documented the opposite result (Qin *et al.*, 2013). This lack of
110 knowledge and context dependency calls for further studies to better mechanistically
111 understand the effect of evolution on ecological interactions. In that regard,
112 processes affecting genetic diversity have been long thought to be an important
113 driver of ecological interactions, and it has been amply discussed that common
114 processes should control the maintenance of both genetic and species diversity
115 (Dempster, 1955; Ayala & Campbell, 1974; Hughes *et al.*, 2008). However, detailed
116 experiments to these this hypothesis are still lacking.


117 Two evolutionary processes are expected to modulate the degree of genetic
118 diversity. The first and most important one is polyploidization, which is present in
119 nearly 70% of flowering plants (Wood *et al.*, 2009) and is playing an essential role in
120 their evolutionary history (Grant, 1981; Soltis & Soltis, 1999; Soltis *et al.*, 2009) and
121 their diversification (Leebens-Mack *et al.* 2019). Complete genome duplication
122 stimulates the neofunctionalization of duplicated, redundant genes, potentially
123 leading to novel and innovative traits promoted by natural selection (Otto & Whitton,
124 2000; Parisod *et al.*, 2010). Furthermore, it is broadly documented that genome
125 duplications lead to variation in plant phenotype (Jürgens *et al.*, 2002), involving

126 changes in the rest of ecological interactions within a community. For example, an
127 increment in flower size exhibited by higher ploidies might modify pollinator
128 preferences between co-occurring individuals differing in ploidy level (te Beest *et al.*,
129 2012; Moghe & Shiu, 2014). Ultimately, polyploidization events are able to change
130 the resources usage and, thus, how diploids and their polyploid counterparts are
131 spatially located (Levin, 1981; Raabová *et al.*, 2008; Kolář *et al.*, 2013). The overall
132 increasing fitness in polyploid species is suggested as a potential driver for
133 ecological adaptation to colonize novel habitats and face a major diversity of
134 environmental conditions compared to diploids, which would explain the
135 diversification patterns shaped by polyploids, especially in islands (Meudt *et al.*,
136 2021). In sum, these previous findings suggest that ploidy is a driver of both fitness
137 and niche differences but empirical assessments that explicitly explore how these
138 differences determine the outcome of competition are lacking.

139 Together with polyploidization, a second important characteristic is the degree of
140 heterozygosity. Heterozygosity is key in understanding the ecological consequences
141 of competing genotypes because, just like polyploidy, it also increases raw material
142 in the long term by novel allele combinations for evolution to act upon (Nieto Feliner
143 *et al.*, 2020). The allelic diversity effect is shown through changes in phenotype and
144 even in the individual performance. An example is the classical heterosis event
145 exhibited by the offspring originated by outbreeding (Hayes & Others, 1952;
146 Bombliis & Weigel, 2007). This occurs when the heterozygotic offspring resulting
147 from outbreed crosses exhibit a major performance compared with homozygotic
148 parents. However, heterosis has been well documented in crop plants because
149 heterozygotic phenotypes are commonly accompanied by a higher performance and
150 adaptive ability (Fridman, 2015). Studies in heterosis help to understand the
151 genotype-phenotype relationship due to the presence of different alleles resulting in
152 phenotypes that, ultimately, could be able to drive evolutionary processes. However,
153 both polyploidization and heterozygosity has been also shown to produce an
154 immediate effect on the individual fitness within a single generation (Ramsey &
155 Schemske, 2002). For this reason, comparisons of fitness differences between
156 homozygotes and heterozygotes or diploids and polyploids, are commonly
157 investigated to explain their coexistence or spatial segregation (Sonnleitner *et al.*,
158 2010; te Beest *et al.*, 2012; Ramsey & Ramsey, 2014).

159 If we summarize all these previous findings on the effect of genetic diversity on
160 ecological dynamics, we can posit that they have been mostly focused on
161 understanding what processes drive the fitness differences among genotypes that
162 determine competitive exclusion. (Ramsey & Schemske, 2002). Within this
163 perspective, coexistence has been considered a spatial process in which different
164 genotypes persist under different locations thanks to being locally adapted. However,
165 MCT predicts that the persistence of genetic diversity can be also achieved within
166 the same location by promoting niche differences that stabilize the dynamics of
167 competing genotypes. Yet, information on how genetic diversity promotes these
168 niche differences is currently missing (Rey *et al.*, 2017). Including the axis of niche
169 differences is critical to understand when new variants are able to coexist with their
170 ancestors within the same location when genome duplication occurs, or when the
171 new variant excludes (or it is excluded by) the ancestor. This is well illustrated in the
172 case of many species as the case of strawberry, which have evolved their genome in
173 response to arid or stressful conditions (Liston *et al.*, 2020). We can hypothesize that
174 if genome duplication has served to cope with stressful conditions, then, there is
175 likely to observe niche differences among genotypes with different ploidy due to
176 niche segregation. Likewise, genetic diversity can also promote niche differences by
177 phenotypic changes that allow new variants to explore different resources (Kolář *et*
178 *al.*, 2013); (Hernández-Leal *et al.*, 2019). Overall, we have expectations that genetic
179 diversity promotes both niche and fitness differences and the study of the effect of
180 genetic diversity on the drivers of competitive outcomes can allow us to obtain a
181 better understanding of how microevolutionary processes maintain genetic diversity,
182 or if this does not occur, it allows to identify which genotypes are excluded by
183 deterministic processes because they become inferior competitors after evolutionary
184 processes or by contingency due to the order or arrival (i.e., priority effects) (Fig. 1).
185 Fortunately, there are tools readily available to explore these questions by combining
186 population models with detailed experiments in which it is possible to measure
187 fitness and density dependent processes (Narwani *et al.*, 2013; Godoy & Levine,
188 2014; Germain *et al.*, 2016).
189 Here, we focus on the annual multiploidy species complex *Erysimum incanum*
190 (Brassicaceae) to address how genetic diversity determined by the degree of
191 polyploidization and heterozygosity influences ecological interactions and

192 competitive outcomes between contrasted genotypes. This variation in genetic
193 diversity was obtained by combining different genotypes from diploids to tetraploids
194 and hexaploids with crosses among individuals within the same level of ploidy to
195 increment the degree of heterozygosity (Fig. 1). With this experimental set up, we
196 were able to answer the following questions: 1) Does ploidy determine differences in
197 fitness among genotypes? 2) How does the interaction between ploidy and
198 heterozygosity influence the niche and fitness differences that determine the
199 outcome of competition between genotypes and the maintenance of genetic
200 diversity?, 3) Is a particular character able to summarize variation in competitive
201 outcomes among genotypes?

202
203 **Figure 1.** (a), Mechanisms driving the genetic diversity of the studied individuals, and (b)
204 competitive outcomes expected in our experiments according to niche and fitness
205 differences. The genetic diversity of the study system is mainly affected by the ploidy level
206 (including diploid, tetraploid and hexaploid individuals) and by the heterozygosity level (the
207 studied individuals have been produced after performing selfing and outcrossing manual
208 pollination on parental individuals). Genetic diversity is expected to increase with ploidy level
209 and outcrossing treatments. Such genetic diversity is expected to influence in turn the
210 outcome of competition, depending on how they promote niche and fitness differences.
211 Three different outcomes are expected. Coexistence (green area) in which both genotypes
212 do not exclude each other, competitive exclusion (orange area) in which the genotype with

213 higher fitness excludes the other, and finally, priority effects (blue area) in which the
214 genotype that arrives first exclude the other.

215 **Material and Methods**

216 *Study system and experimental set-up*

217 We focus our study in the genus *Erysimum* L., which is one of the most diverse in
218 the Brassicaceae family, with species inhabiting Eurasia, North Africa and North and
219 Central America (Al-Shehbaz *et al.*, 2006). In particular, we studied the species
220 complex *Erysimum incanum*. This complex includes annual monocarpic species and
221 subspecies inhabiting the Western Mediterranean basin, which is a main
222 diversification center of the genus (Abdelaziz *et al.*, 2011; Nieto Feliner, 2014).

223 Within this complex and using flow cytometry, we found three ploidy levels: diploids
224 ($2x = 16$ chromosomes), tetraploids ($4x = 32$) and hexaploids ($6x = 48$) (Nieto
225 Feliner, 2014; García-Muñoz *et al.*, 2022) with dissimilar geographic distribution.

226 Diploids of *E. incanum* (*Erysimum incanum* subsp. *mairei*), present a vicariant
227 distribution between the Rif and the Pyrenees mountains while tetraploids (*E.*
228 *incanum* subsp. *incanum*) present a similar distribution in southwest Iberian
229 Peninsula and the Middle Atlas Mountains (Fennane & Ibn-Tattou, 1999). In contrast
230 to these ploidies occurring in both continents, hexaploid plants (*Erysimum*
231 *meridionalis* sp. nov.) has been only found in the High Atlas and Anti-Atlas mountains
232 (Abdelaziz *et al.*, *in prep.*). Most species of the *E. incanum* complex exhibit
233 autogamy as the predominant reproductive strategy, showing hermaphroditic flowers
234 with the specific characteristics of the selfing syndrome. This reproductive system
235 results in full-sib individuals within the same family.

236 Using this species complex as a baseline, we removed any local effects before
237 performing experiments by obtaining pure lines from more than five generations in
238 controlled conditions. Once these pure lines were obtained, we further modified their
239 degree of genetic diversity within each ploidy level by crossing individuals in order to
240 maintain or remove the homozygosity exhibited by pure lines. To do so, the first
241 treatment consisted in selfing hand-made crosses that allow obtaining seeds in
242 which the homozygosity level is assumed to be complete within the pure line (S).
243 The second treatment consisted in intra-population allogamous crosses, where some
244 flowers of each plant were emasculated before first opening and pollinated with

245 pollen of individuals from a different family within the same population. This latter
246 treatment resulted in seeds in which homozygosity was replaced by a full degree of
247 heterozygosity (OC), except for these loci where alleles were identical by state.
248 Overall, this procedure led to three “selfing (S)” and three “outcrossing (OC)” plant
249 families according to the low or high degree of heterozygosity, respectively, which
250 were factorially combined with the three ploidy levels. Therefore, a total of 18 plant
251 families, three per combination of 2xS, 2xOC, 4xS, 4xOC and 6xS, 6xOC were used
252 for evaluating experimentally the role of genetic diversity in coexistence outcomes.

253 *Theoretical approach*

254 Our greenhouse experiments were designed to experimentally parameterize a
255 mathematical model describing the population dynamics of interacting species
256 (Levine & HilleRisLambers, 2009), which here was extended to genotypes. With this
257 model, it is possible to quantify stabilizing niche differences and average fitness
258 differences between interacting organisms from plants to animals (Godoy & Levine,
259 2014; Fragata *et al.*, 2022). The model is described as follows:

260
261

$$\frac{N_{i,t+1}}{N_{i,t}} = (1 - g_i)s_i + g_i F_i \quad (1)$$

262
263
264

265 where $\frac{N_{i,t+1}}{N_{i,t}}$ is the per capita population rate, and $N_{i,t}$ is the number of seeds of
266 genotype i in the soil prior to germination in winter of year t . In addition, the
267 germination rate of species i , s_i , can be viewed as a weighting term for an average of
268 two different growth rates: the annual survival of non-germinated seed in the soil (g_i),
269 and the viable seeds produced per germinated individual (F_i). We assume that
270 genotypes affect the performance of one another when germinated individuals limit
271 the fecundity of competitors. Thus, the per-germinant fecundity, F_i , can be expanded
272 into a function including the density of competing individuals in the system.

273

$$F_i = \frac{\lambda_i}{1 + \alpha_{ii}g_iN_i + \alpha_{ij}g_jN_j} \quad (2)$$

274

275 where λ_i is the per-germinant fecundity in the absence of competition. It is reduced
276 by germinated individuals of its own and other species, which are multiplied by
277 interaction coefficients, α_{ij} , that describes the per capita effect of genotype j on
278 genotype i . The model ignores the potential for age-dependent survival of non-
279 germinated seeds, because prior work in annual plants has shown that seed bank
280 survival has negligible influence on the competitive outcomes (Godoy & Levine,
281 2014).

282 With the dynamics of competition among genotypes described by this population
283 model, we followed the approach of (Chesson, 2012)) to determine fitness and niche
284 differences between species pairs. Following (Godoy & Levine, 2014) method, niche
285 overlap between pair of genotypes, ρ , was calculated as:

$$\rho = \sqrt{\frac{\alpha_{ij}}{\alpha_{jj}} \cdot \frac{\alpha_{ji}}{\alpha_{ii}}} \quad (3)$$

286

287 Niche overlap describes the degree to which competition among individuals of the
288 same genotype (α_{ii} , α_{jj}) impact more than competition among individuals of different
289 genotypes (α_{ij} , α_{ji}). Niche overlap span from zero (i.e., no niche overlap) to one (i.e.,
290 complete niche overlap). With (ρ) defining niche overlap between a pair of
291 genotypes, their stabilizing niche difference is expressed as $1-\rho$. As hypothesized,
292 we expect that genetic differences in ploidy and in heterozygosity and their
293 combination will reduce niche overlap among genotypes, and therefore, will increase
294 niche differences.

295 As an opposing force to stabilizing niche differences, average fitness differences
296 drive competitive dominance, and in the absence of niche differences, determine the
297 competitive superiority between a pair of genotypes. Following previous
298 methodologies (Godoy & Levine, 2014), we define average fitness differences
299 between the competitors (ji) as:

$$\frac{\kappa_j}{\kappa_i} = \frac{\eta_{j-1}}{\eta_{i-1}} \cdot \frac{\sqrt{\alpha_{ij}\alpha_{ii}}}{\sqrt{\alpha_{ji}\alpha_{jj}}}$$

300 (4)

301 where η_i and η_j are the annual seed production for both genotypes and α_{ji} and α_{jj} are
302 the per capita effect of a genotype i and genotype j on the seed production of a
303 genotype j , respectively. It is worth noting that we did not explicitly estimate the
304 germination rates (g_i) and soil survival rates (s_i) but we consider them to be equal to
305 one. Therefore, in this particular study η_i and η_j are equal to λ_i and λ_j respectively.
306 According to equation 4, average fitness differences can be decomposed in two
307 different expressions. On the one hand $\frac{\eta_{j-1}}{\eta_{i-1}}$ describes the “demographic difference”
308 (i.e., the extent to which genotype i produces more seeds per germinant than
309 genotype j). On the other hand, $\frac{\sqrt{\alpha_{ij}\alpha_{ii}}}{\sqrt{\alpha_{ji}\alpha_{jj}}}$ describes the “competitive response ratio” (i.e.,
310 the extent to which genotype i is more sensitive to competition than genotype j).
311 From the expression of average fitness difference (equation 4), we can describe the
312 genotype competitive ability (Hart *et al.*, 2018)

$$\kappa_i = \frac{(\lambda_i - 1)}{\sqrt{\alpha_{ij}\alpha_{ii}}}$$

313 (5)

314 The competitive ability (κ_i) describes the ability of a genotype to be a superior
315 competition as a function of two possibilities. Either because it can produce a high
316 amount of viable seeds ($\lambda_i - 1$) or the genotype is not sensitive to competition with
317 other genotypes ($\sqrt{\alpha_{ij}\alpha_{ii}}$), that is the amount of viable seeds produced is not reduced
318 as the density of the competitor increases.
319 Importantly, the greater the ratio between genotypes j and i , the greater the fitness
320 advantage of genotype j over i . If this ratio is one, genotypes are equivalent
321 competitors. Coexistence requires both genotypes to invade when rare (Chesson,
322 2012). Then we established coexistence condition as (Godoy & Levine, 2014):
323

$$\rho < \frac{\kappa_j}{\kappa_i} < \frac{1}{\rho} \quad (6)$$

324

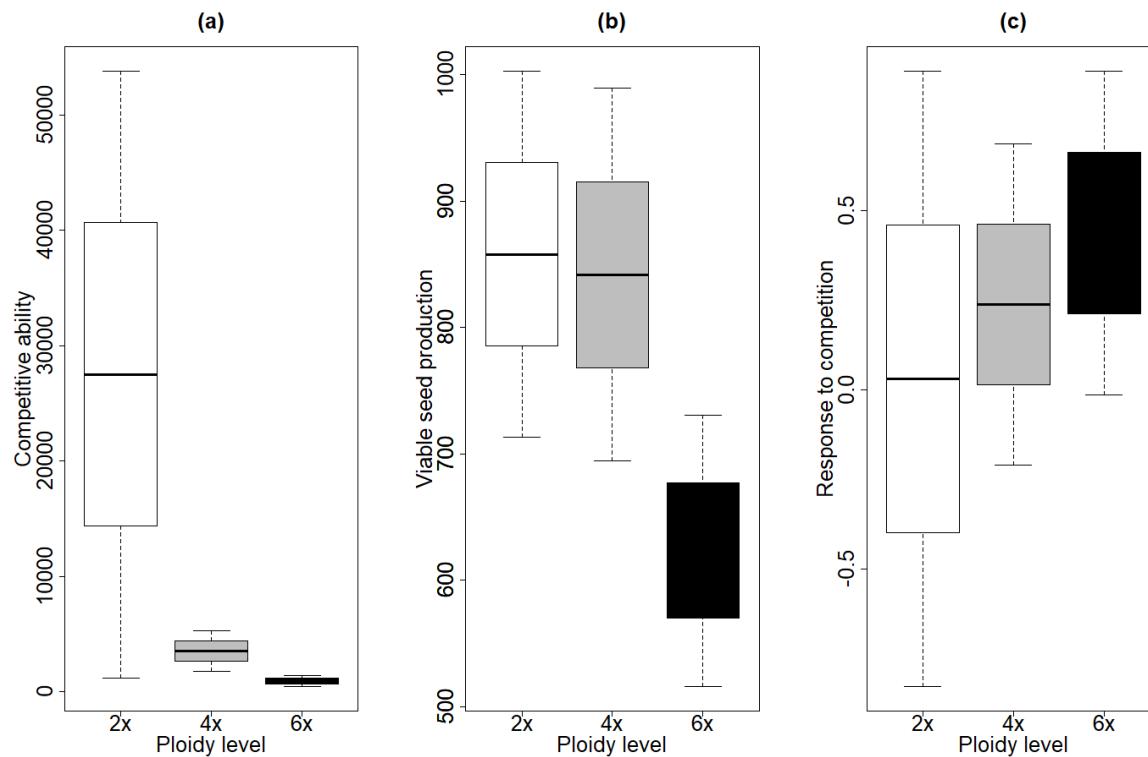
325 This condition allows us to distinguish three coexistence outcomes. The first
326 outcome is *stable coexistence* that occurs when niche differences are larger than
327 fitness differences. The second outcome is *competitive exclusion* that occurs when
328 fitness differences are larger than niche differences. And finally, the third outcome is
329 *priority effects* that occur when niche differences are negative, which indicates that
330 species are experiencing positive density-dependence. In that final outcome it is
331 predicted that the species that arrives first to the community excludes its competitor
332 (Ke & Letten, 2018) (Fig. 1).

333 *Competition experiment and character measurements*

334 To empirically parameterize the population model with which we can determine the
335 competitive outcomes between genotypes, we conducted greenhouse experiments
336 to estimate per germinant fecundities in the absence of neighbors (λ_i), and all
337 pairwise interaction coefficients (α_{ij}). In March 2020, we displayed pots of 4.2 L
338 (0.18x0.18x0.13cm), which were filled with Gramoflor™ potting soil mixture and
339 watered every two days. The overall design involved sowing each genotype as focal
340 individuals into a density gradient of each competitor genotype (including itself). To
341 create this gradient, we followed a spatial explicit design within each pot proposed by
342 (Bartomeus *et al.*, 2021), in which focal genotypes of the same family experienced a
343 density gradient from 1 to 4 individuals of a different genotype family. In order to
344 calculate all pairwise interaction coefficients (α_{ij}), this density gradient was created
345 for each pairwise combination of families. We also grew individuals alone to better
346 estimate the fecundities in the absence of neighbors (λ_i). To estimate such fecundity
347 that we understand in an ecological context is the “demography performance” of the
348 genotype and in the evolutionary context is the “fitness” of an individual, we counted
349 the number of fruits per plant and multiplied it by the mean number of viable seeds
350 estimated from four random fruits in the same plant. This way, we obtained the total
351 viable seed production per individual plant. This value is an unbiased estimate of the
352 individual fitness due to the monocarpic life form of the study system.

353 Together with the competition experiment, we measured a series of characters for
354 each family at the peak of individual biomass. These characters were related to the
355 vegetative body plant overall related to vegetative body plants. Specifically, for every
356 focal individual that produced seeds we measured its plant height, the number of
357 flowering stalks and the diameter of the main stalk. This was done for a total of 210
358 individuals with 35 individuals per family.

359 *Statistical analyses*

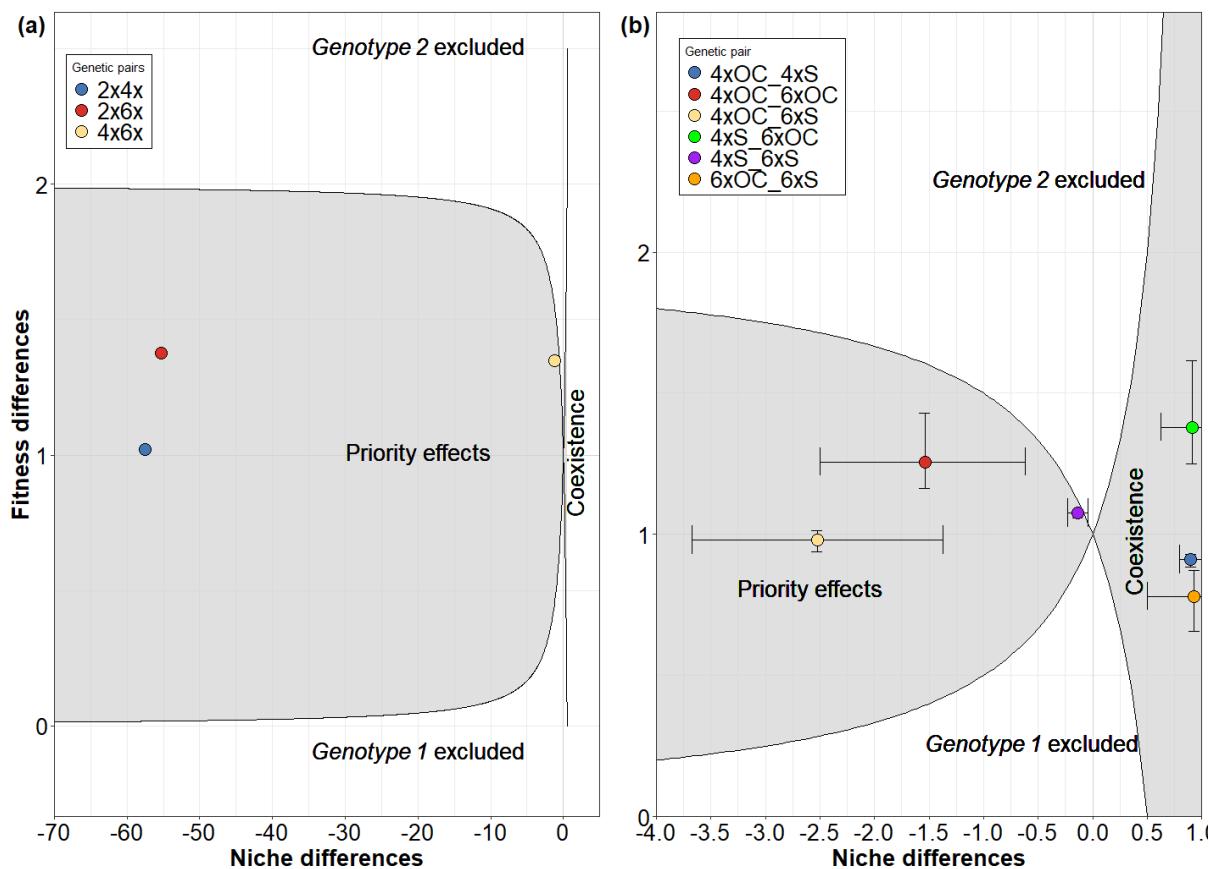

360 We used maximum likelihood techniques to parameterize the population model
361 following a nested approach. That is, we first created a single model for which we
362 estimate the intrinsic growth rate in absence of competitors (λ_i), and then we used
363 this information as prior for subsequent more complex models that include an overall
364 term of competition in the second step and intra and interspecific competitive
365 interactions (the α 's) in the third final step (Matías et al., 2018). λ_i were considered
366 fixed per genotype family species but competition varied across genotype pairs.
367 Finally, we used a one-way ANOVA in order to test whether coexistence outcomes
368 between genotype pairs could be explained by a particular plant character. All
369 analyses were done using R (R Core Team, 2021). To predict coexistence
370 outcomes, we used the package 'cxr' (García- Callejas et al., 2020). Plots were done
371 using 'ggplot2' (Wickham, 2016) and 'cowplot' (Wilke, 2019) packages.

372 **Results**

373 Our results show that the genetic diversity of the different genotypes contribute to
374 promote differences in viable seed production as well as competitive interactions.
375 When we decomposed average fitness differences into its demographic and
376 competitive response components, we found that diploids (2x) were the most
377 competitive genotypes followed by tetraploids (4x), and finally hexaploids (6x) under
378 the experimental conditions we imposed with no drought treatment (Fig. 2A). This
379 competitive superiority of the diploids was due to a higher viable seed production in
380 the absence of competition as well as lower sensitivity to reduce viable seed
381 production in the presence of neighbors (Fig. 2B and 2C). Conversely, the low
382 competitive ability of the hexaploids were due to a combination of lower viable seed
383 production and higher sensitivity to competition. The amount of niche differences
384 between the diploids and the other ploidy levels was not enough to overcome their

385 observed differences in average fitness. These results overall indicate that diploid
386 genomes are the superior competitor. However, they were not able to competitively
387 exclude the other ploidy families (Fig. 3A). This outcome is driven by the low
388 differences in fitness and response to competition (Fig. 2), which lead diploids to
389 share the scenario of strong priority effects with the two other ploidies

390


391

392 **Figure 2.** Competitive ability (A), viable seed production (B) and response to competition (C)
393 for each one of the three ploidy levels tested in *E. incanum* system.

394

395

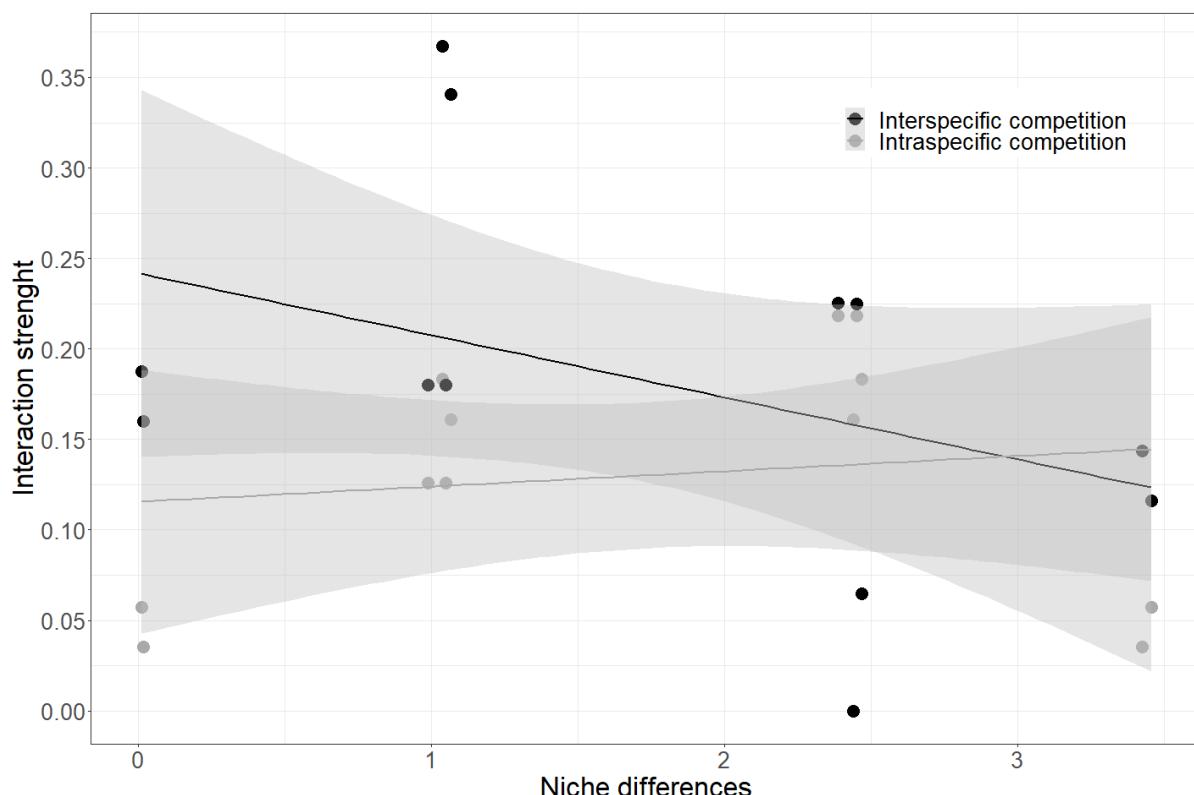
396

397

398

399

400

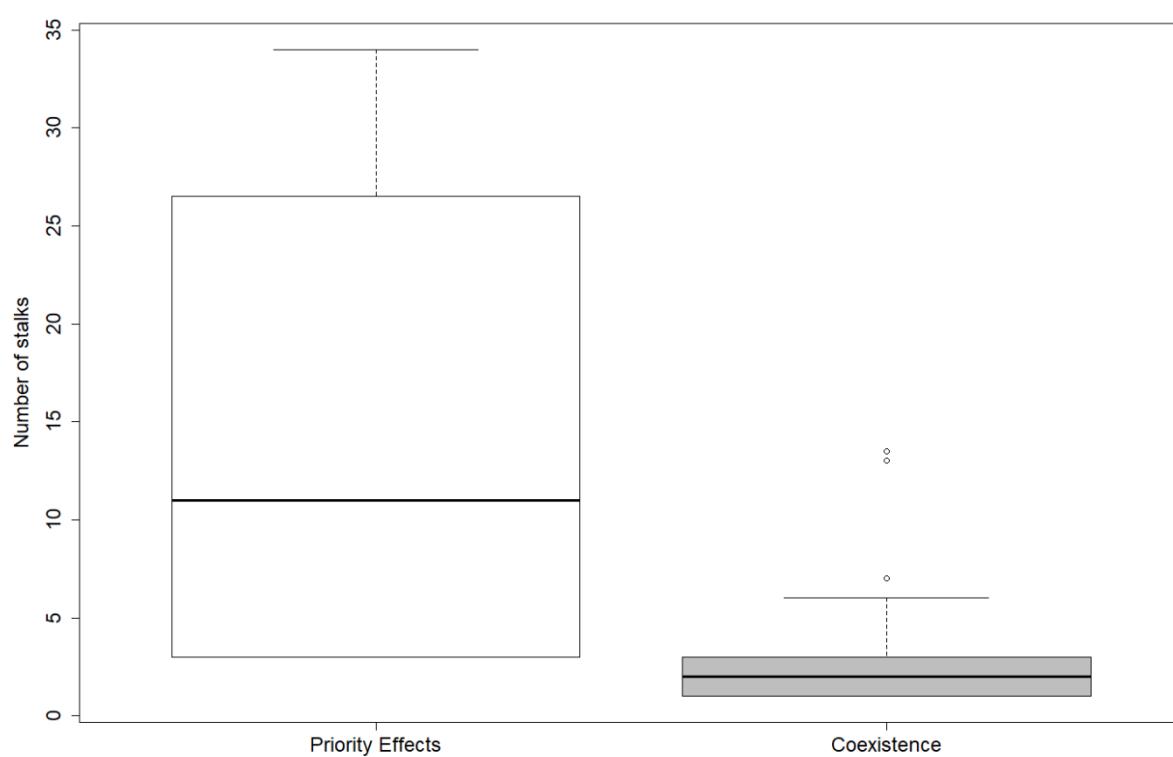

401 **Figure 3.** Relationship between fitness difference and niche difference for different
402 combinations of ploidy (2x, 4x and 6x) in *E. incanum* system (A) and relationship between
403 fitness difference and niche difference for different combinations of ploidy (4x and 6x) and
404 levels of heterozygosity (low, S and high, OC) in *E. incanum* system (B). The two solid black
405 lines represent the coexistence condition and its symmetrical for each ploidy level tested and
406 defined the space in which genotypes could coexist and in which there were priority effects.
407 Error bars show coexistence outcomes at the 95% confidence interval.

408

409 Such strong priority effects were not predicted when considering tetraploid and
410 hexaploid genotypes in combination with their degree of heterozygosity. For these
411 two levels of ploidy, we found two contrasted clusters of outcomes when we added
412 more resolution by explicitly accounting for the degree of heterozygosity. One cluster
413 in which priority effects among the pairs of genotypes were predicted to occur, and
414 another cluster in which coexistence was predicted between three other different

415 pairs of genotypes (Fig. 3B). This result was not predicted by theoretical
416 expectations and suggests that genetic diversity produces a wider variation of
417 ecological outcomes than previously expected.
418 Priority effects occur under positive density dependence when interspecific
419 competition is stronger than intraspecific competition, whereas, coexistence occurs
420 under negative density dependence when intraspecific competition is stronger than
421 interspecific competition. Therefore, the change from one location of the coexistence
422 map to another can be due to a change in intraspecific competition, interspecific
423 competition or a combination of both. In our experiment, detailed analysis revealed
424 that changes in the strength of interspecific interactions rather than intraspecific
425 interactions were the main driver of switches from priority effects to coexistence
426 regions (Fig. 4).

427
428


429
430 **Figure 4.** The effect of intra and interspecific interactions in driving variation in niche
431 differences between genotype pairs.

432

433 We did not observe that differences between these two clusters were attributable to
434 a particular genotypic difference. For both tetraploid and hexaploid groups, we
435 observed pairs of genotypes that differed in the ploidy level as well as their degree of
436 heterozygosity (e.g. see interaction between 4xOC and 6xS in priority effect group
437 and 6xOC with 4xS in coexistence group) and others that did only differ in one
438 aspect (e.g. see interaction between 4xOC and 4xS in coexistence group and 4xS
439 and 6xS in priority effects group) (Fig. 3). Despite this variability, we found that a
440 particular vegetative character allows differentiating these two groups of pairs of
441 genotypes. Specifically, the number of stalks, which is a character related to the size
442 of the plant, predicted differences observed in competitive outcomes between
443 coexistence and priority effects (Multiple Analysis of Covariances $F = 39.91$, $p <$
444 0.01). Genotypes with larger numbers of stalks also showed priority effects (Fig 5),
445 suggesting that space is a critical resource for which these genotypes compete.

446

447

448

449 **Figure 5.** Boxplot represents median and quartiles of number of stalks for both coexistence
450 outcomes we predicted when combining ploidy level and the degree of heterozygosity.
451 Priority effects correspond to the combination of the three following genetic pairs: 4xS with
452 6xS, 4xOC with 6xOC and 4xOC with 6xS, while Coexistence groups the other three genetic
453 pairs: 4xS with 6xOC, 4xOC with 4xS and 6xOC and 6xS.

454

455 **Discussion**

456 Understanding the ecological consequences of genetic diversity is key to explain
457 observed patterns of sympatric and allopatric genetic populations in nature.
458 However, this understanding has been seldom explored because there is a lack of
459 connection between ecological theory that describes the dynamics of interacting
460 organisms and genetic material that can be manipulated to assess competitive
461 interactions. In this study, we show how genetic diversity mechanisms provide a
462 wide range of ecological outcomes based on the strength of competitive interactions
463 between genotypes. Contrary to our expectations, low ploidy level, showed higher
464 competitive ability, compared with tetraploid and hexaploid plants of *E. incanum*,
465 mainly due to a lower response to competition and to a higher seed production to a
466 lesser extent. That is, the intrinsic ability of diploids to produce seeds was little
467 affected by increases in the density of individuals of the same and different
468 genotypes within the community. Although theory commonly predicts that an
469 increase in ploidy should confer an increase in fitness, these competitive advantages
470 tend to occur under changing or extreme environments due to aridity or cold (López-
471 Jurado et al. 2016; Liu et al. 2021). Instead, in our experiment, conditions were
472 stable and non-stressful (i.e. no drought treatment). Under such conditions recent
473 computational work simulating biological evolution suggested that non-polyploid
474 perform better than polyploids (Yao et al., 2019; Carretero-Paulet & Van de Peer,
475 2020). This phenomenon can be explained by the amplification of the effect of
476 random mutations on their gene regulatory networks because of the rise of
477 complexity linked to whole genome duplication (multiplying the number of nodes and
478 interaction in the gene regulatory network). Random mutation, often maladaptive or
479 detrimental, under stable environments will propagate widely. In contrast, a stressful
480 or unstable environment may provide substantive variation for survival (Yao et al.
481 2019; Carretero-Paulet and Van de Peer 2020; Van de Peer et al. 2021).

482 The reason for why polyploids were more sensitive to reduce their fitness in terms of
483 seed production in the presence of neighbors can be due to the fact that they incur in
484 a trade-off between being adapted to stressful conditions and tolerating competition
485 from neighbors (López-Jurado *et al.* 2019; López-Jurado *et al.* 2016). In fact, it has
486 been found under natural conditions that polyploids adapted to arid conditions
487 present in general low densities (Manzaneda *et al.*, 2012; Penner *et al.*, 2020).
488 Nevertheless, the higher competitive ability we observed in non-polyploids was not
489 translated to predict competitive exclusion between diploids and the rest of
490 genotypes (tetraploids and hexaploids). The structure of intra and interspecific
491 interactions between genetic pairs modulate this expectation to produce strong
492 priority effects instead, meaning that the historical contingency such as the genotype
493 that arrives first to the community excludes the other.

494 Our results, therefore, suggest that certain evolutionary theories conveying a
495 competitive advantage to more diverse genotypes should be revisited. In that sense,
496 current theory puts a major role in the effect of environments on driving an increase
497 of ploidy and associated competitive advantages and the ability to colonize and
498 dominate novel stressful environments. However, these increases in ploidy does not
499 always occur as exemplifies diploids of *Erysimum mediohispanicum* (another
500 species belonging to *Erysimum*), which have been associated with hard conditions at
501 high altitudes (Muñoz-Pajares *et al.*, 2018). Even if they occur, such advantages
502 seem to be related to species vital rates such as seed production or survival but it
503 comes at the trade-off to tolerate heterospecific competition. This lack of ability to
504 tolerate competition might compromise the successful colonization of new habitats to
505 contingency events as we observed in the priority effects case, or it might be also the
506 case of being excluded from communities that are well established with high local
507 abundances. Further experiments across environmental gradients are needed to
508 reveal the consequences of increases in ploidy for determining trade-off between
509 seed production and tolerance to competition, and therefore, to tease apart the role
510 of the abiotic component (stress conditions) from the biotic component (competition)
511 in driving polyploids advantages to colonize novel environments.

512 Although most of the work on evolutionary biology has studied the role of variation in
513 ploidy in promoting differences in fitness between species, much less has been
514 explored its effect in promoting niche differences between genotypes (Alonso-

515 Marcos et al. 2019; Hülber et al. 2018; Balao et al. 2011). Our results strongly
516 suggest that ploidy variation promotes the demographic consequences of niche
517 differences which stabilize the population dynamics of competing genotypes and
518 further indicate that this effect is in turn strongly influenced by the degree of
519 heterozygosity. Specifically, we found that both levels of heterozygosity can coexist
520 within the same level of ploidy (this is true for tetraploids and hexaploids) as well as
521 between levels of ploidy. This result, which goes against predictions that
522 heterozygote should exclude homozygous genotypes as well as higher ploidy should
523 exclude lower ploidy genotypes, is very important because it suggests that both
524 sources, ploidy and heterozygosity, are critical to maintain genetic diversity within
525 and across genotypes. Moreover, with our ability to link the strength of genotype
526 interactions with their likelihood to coexist, we found that genotypes were not weakly
527 differentiated, as we might expect from closely related evolutionary units within the
528 *E. incanum* system. That is, in those genetic pairs predicted to coexist, we did not
529 observe that weak niche differences overcome small fitness differences. Instead,
530 they presented strong niche differentiation. Such high niche differences indicate that
531 genotypes experience greater intraspecific than interspecific competition. Although
532 with our experiment it is not possible to know the ultimate sources of these axes
533 promoting niche differences, we were not expecting these results considering that
534 the greenhouse experiment was settled in relatively small pots where there were few
535 environmental axes compared with natural conditions.

536 Besides coexistence, we also predicted that several of these tetra and hexaploids
537 genotypes would incur in priority effects according to our experiment conditions.
538 These priority effects mean that genotypes experienced positive rather than negative
539 density dependence. That is, genotypes favor themselves rather than limit their
540 competitors and the genotype exclusion is not due to deterministic processes but
541 rather due to historical contingency such as order of arrival. At a single location, this
542 contingency promotes the dominance of the genotype that arrives first, but at larger
543 scales coexistence can occur if both genotypes arrive first to different locations. If we
544 take a closer look at these genotypes incurring in priority effects, we observed that
545 tetraploids with high levels of heterozygosity (4xOC see Fig. 3) are able to exclude
546 any hexaploid plant if they arrive first. This result is very interesting as these species
547 belong to a selfing clade (Abdelaziz et al., 2019) and the mating system transition

548 theories predict that once selfing populations have purged its genetic load, no
549 advantage of high heterozygous plants is expected (Goodwillie *et al.*, 2005).
550 However, the overdominance genetic model predicts that heterozygotes would be
551 superior to homozygotes at loci affecting fitness (Khotyleva *et al.*, 2017).
552 Based on independent information of either the level of ploidy or the degree of
553 heterozygosity, we could not differentiate those genetic pairs predicted to coexist
554 from those incurring in priority effects. However, we found that the phenotypic
555 expression of these genotypes, measured as the number of stalks, differentiated
556 these contrasted coexistence outcomes. Presenting a high number of stalks is an
557 important feature that equally favors competitive ability by promoting low response to
558 competition, and high plant performance in terms of seed production. Therefore,
559 genotypes with greater number of stalks can incur in priority effects for the following
560 reasons. On the one hand, the production of more flowering stalks or developing
561 them faster allows genotypes to occupy more space, and compete better by
562 monopolizing more resources and by shadowing other surrounding neighbors
563 (Craine & Dybzinski, 2013). On the other hand, plants, as modular organisms, the
564 bigger they are, the more reproductive organs they develop. Thus, the number of
565 flowering stalks has a direct effect on plant fitness by its effect on the number of
566 flowers produced. This is the case of different species which use the size of plants to
567 attract pollen vectors (Klinkhamer *et al.*, 1989; Klinkhamer & de Jong, 1990)),
568 including species in the *Erysimum* genus (Gómez *et al.*, 2009; Alonso-Marcos *et al.*,
569 2019)). But the production of more flowers also means higher fitness values when
570 the plant has the ability to self-pollinate (Gerber, 1985). However, why genotypes
571 with high number of stalks incur in positive density dependence (priority effects) and
572 why those with low number of stalks do the opposite (coexistence) is unclear.
573 Unfortunately, there is no prior study in the literature that has found a single trait
574 driving the strong variation in niche differences from negative to positive as we found
575 in our experiment. It might be the case that the number of stalks correlate with other
576 traits promoting niche differences such as differences in phenology (Navas and
577 Viole 2009; Godoy and Levine 2014), of the ability to make photosynthesis at
578 different light irradiances (Pérez-Ramos *et al.*, 2019). Further studies need to explore
579 more in depth the multiple and correlated phenotypic expression and associated
580 mechanisms that underlie these switches between positive and negative density-

581 dependence processes, but our results are the first to highlight that variation in the
582 number of stalks, as a surrogate of plant size, is critical to predict opposed
583 coexistence outcomes by varying niche differences among taxa.

584 Our study provides strong evidence that genetic diversity plays a critical role in
585 determining ecological outcomes between closely related genotypes. Contrary to
586 expectations, diploids showed greater competitive ability than tetra and hexaploids.
587 However, this competitive advantage did not translate to competitive dominance and
588 the exclusion of the inferior competitors, rather, we predicted that the winner of
589 competition depends on contingency such as the genotype that arrives first to a
590 location. This is an interesting result that needs further consideration in future work
591 because priority effects are not an ecological outcome considered by current
592 theories in evolution describing the advantage of polyploids and the consequences
593 of polyploidization for describing allopatric and sympatric populations. Moreover, we
594 found that ploidy interacts with the degree of heterozygosity to reverse the
595 competitive outcomes from priority effects to coexistence, which highlights the
596 importance of keeping a diverse genetic background within genotypes to maintain in
597 turn genetic diversity across genotypes. Although linking genetic diversity with
598 competition outcomes can be difficult for logistical and methodological limitations,
599 our results strongly suggest that the phenotypic expression of an easy-to-measure
600 trait, the number of stalks, can predict such variation in ecological outcomes. In
601 particular, pairs of genotypes that show on average more stalks incur in priority
602 effects, whereas those with low stalks number are predicted to coexist. This study
603 does not explore why the number of stalks, considered a surrogate of competition
604 for space, can change competition from positive to negative density dependence
605 (negative versus positive niche differences). Yet, our results highlight the importance
606 of exploring the effects of genetic diversity on the interactions among genotypes
607 because they can strongly modify their ecological dynamics compared to
608 expectations from only responses to the environment.

609

610 **Acknowledgements**

611 The authors thank to Modesto Berbel, Celia Vaca-Benito, Andrea Martín-Salas,
612 María de la Paz Solís for their help to set up and conduct the greenhouse

613 experiment. It was not an easy task during the COVID-19 pandemic. This work was
614 funded by grants *OUTevolution* from the Spanish Ministry of Science and Innovation
615 (PID2019-111294GB-I00/SRA/10.13039/501100011033), *globalHybrids* from the
616 *Organismo Autónomo de Parques Nacionales* (Ref: 2415/2017). AG-M was
617 supported by *OUTevolution* project (PID2019-111294GB-
618 I00/SRA/10.13039/501100011033). OG acknowledges the postdoctoral financial
619 support provided by the Spanish Ministry of Economy and Competitiveness
620 (MINECO) and by the European Social Fund through the Ramon y Cajal Programme
621 (RYC-2017-23666). J.A. Pérez-Romero thanks the Ministerio de Ciencia y
622 Educación for his personal financial support (FJC2020-043865-I).

623

624 **Authors contribution**

625 O.G and M.A conceptualized the experiment. A.G-M and M.A contributed to conduct
626 the experiment and data collection. J.A.P-R led modeling and statistical analyses.
627 J.A.P-R and O.G wrote the first draft of the manuscript and all authors provided
628 substantial revisions to the manuscript.

629

630 **Data availability**

631 Data and code is storage in
632 https://drive.google.com/drive/folders/1dCU49U7GOHEd3xdO6xGeUFND-Tki5pZq?usp=share_link for review purposes, and will make it available in a public
633 repository upon acceptance.

635

636 **Competing interests**

637 The authors disclose any conflicting competing interests.

638

639 **References**

640 **Abdelaziz M, Bakkali M, Gómez JM, Olivieri E, Perfectti F. 2019.** Anther Rubbing,
641 a New Mechanism That Actively Promotes Selfing in Plants. *The American naturalist*
642 **193:** 140–147.

643 **Abdelaziz M, Lorite J, Muñoz-Pajares AJ, Herrador MB, Perfectti F, Gómez JM.**
644 **2011.** Using complementary techniques to distinguish cryptic species: a new
645 Erysimum (Brassicaceae) species from North Africa. *American journal of botany* **98:**
646 1049–1060.

647 **Adler PB, Hillerislambers J, Levine JM. 2007.** A niche for neutrality. *Ecology*
648 *letters* **10:** 95–104.

649 **Alonso-Marcos H, Nardi FD, Scheffknecht S, Tribsch A, Hülber K, Dobeš C.**
650 **2019.** Difference in reproductive mode rather than ploidy explains niche
651 differentiation in sympatric sexual and apomictic populations of. *Ecology and*
652 *evolution* **9:** 3588–3598.

653 **Al-Shehbaz IA, Beilstein MA, Kellogg EA. 2006.** Systematics and phylogeny of the
654 Brassicaceae (Cruciferae): an overview. *Plant systematics and evolution =*
655 *Entwicklungsgeschichte und Systematik der Pflanzen* **259:** 89–120.

656 **Ayala FJ, Campbell CA. 1974.** Frequency-Dependent Selection. *Annual Review of*
657 *Ecology and Systematics* **5:** 115–138.

658 **Balao F, Herrera J, Talavera S. 2011.** Phenotypic consequences of polyploidy and
659 genome size at the microevolutionary scale: a multivariate morphological approach.
660 *The New phytologist* **192:** 256–265.

661 **Bartomeus I, Saavedra S, Rohr RP, Godoy O. 2021.** Experimental evidence of the
662 importance of multitrophic structure for species persistence. *Proceedings of the*
663 *National Academy of Sciences of the United States of America* **118:**

664 **te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubesová M,**
665 **Pysek P. 2012.** The more the better? The role of polyploidy in facilitating plant
666 invasions. *Annals of botany* **109:** 19–45.

667 **Bichet C, Vedder O, Sauer-Gürth H, Becker PH, Wink M, Bouwhuis S. 2019.**
668 Contrasting heterozygosity-fitness correlations across life in a long-lived seabird.
669 *Molecular ecology* **28:** 671–685.

670 **Bird KA, VanBuren R, Puzey JR, Edger PP. 2018.** The causes and consequences
671 of subgenome dominance in hybrids and recent polyploids. *The New phytologist*
672 **220:** 87–93.

673 **Bomblies K, Weigel D. 2007.** Hybrid necrosis: autoimmunity as a potential gene-
674 flow barrier in plant species. *Nature reviews. Genetics* **8:** 382–393.

675 **Carretero-Paulet L, Van de Peer Y. 2020.** The evolutionary conundrum of whole-
676 genome duplication. *American journal of botany* **107:** 1101–1105.

677 **Charlesworth B, Charlesworth D. 1999.** The genetic basis of inbreeding
678 depression. *Genetical Research* **74:** 329–340.

679 **Chen ZJ, Ni Z. 2006.** Mechanisms of genomic rearrangements and gene expression
680 changes in plant polyploids. *BioEssays: news and reviews in molecular, cellular and*
681 *developmental biology* **28:** 240–252.

682 **Chesson P. 2000.** Mechanisms of maintenance of species diversity. *Annual review*
683 *of ecology and systematics* **31:** 343–366.

684 **Chesson P. 2012.** Species Competition and Predation. *Encyclopedia of*
685 *Sustainability Science and Technology:* 10061–10085.

686 **Comai L. 2005.** The advantages and disadvantages of being polyploid. *Nature*
687 *reviews. Genetics* **6:** 836–846.

688 **Conover JL, Wendel JF. 2022.** Deleterious Mutations Accumulate Faster in
689 Allopolyploid Than Diploid Cotton (*Gossypium*) and Unequally between
690 Subgenomes. *Molecular biology and evolution* **39.**

691 **DeMalach N, Zaady E, Kadmon R. 2017.** Light asymmetry explains the effect of
692 nutrient enrichment on grassland diversity. *Ecology letters* **20:** 60–69.

693 **Dempster ER. 1955.** MAINTENANCE OF GENETIC HETEROGENEITY. *Cold*
694 *Spring Harbor Symposia on Quantitative Biology* **20:** 25–32.

695 **Ellegren H, Sheldon BC. 2008.** Genetic basis of fitness differences in natural
696 populations. *Nature* **452:** 169–175.

697 **Fennane M, Ibn-Tattou M. 1999.** *Flore pratique du Maroc. Vol. 1. Pteridophyta,*
698 *Gymnospermae, Angiospermae (Lauraceae-Neuradaceae).* Inst. Scientifique.

699 **Fragata I, Costa-Pereira R, Kozak M, Majer A, Godoy O, Magalhães S. 2022.**
700 Specific sequence of arrival promotes coexistence via spatial niche pre-emption by
701 the weak competitor. *Ecology letters* **25**: 1629–1639.

702 **Fridman E. 2015.** Consequences of hybridization and heterozygosity on plant vigor
703 and phenotypic stability. *Plant science: an international journal of experimental plant*
704 *biology* **232**: 35–40.

705 **García- Callejas D, Godoy O, Bartomeus I. 2020.** *cxr* : A toolbox for modelling
706 species coexistence in R. *Methods in Ecology and Evolution* **11**: 1221–1226.

707 **García-Muñoz A, Ferrón C, Vaca-Benito C, Loureiro J, Castro S, Jesús Muñoz-**
708 **Pajares A, Abdelaziz M.** Ploidy effects on the relationship between floral phenotype,
709 reproductive investment and fitness exhibited by an autogamous species complex.

710 **Gerber MA. 1985.** The Relationship of Plant Size to Self-Pollination in Mertensia
711 Ciliata. *Ecology* **66**: 762–772.

712 **Germain RM, Weir JT, Gilbert B. 2016.** Species coexistence: macroevolutionary
713 relationships and the contingency of historical interactions. *Proceedings. Biological*
714 *sciences / The Royal Society* **283**: 20160047.

715 **Gibson DJ, Connolly J, Hartnett DC, Weidenhamer JD. 1999.** Designs for
716 greenhouse studies of interactions between plants. *Journal of Ecology* **87**: 1–16.

717 **Godoy O, Kraft NJB, Levine JM. 2014.** Phylogenetic relatedness and the
718 determinants of competitive outcomes. *Ecology letters* **17**: 836–844.

719 **Godoy O, Levine JM. 2014.** Phenology effects on invasion success: insights from
720 coupling field experiments to coexistence theory. *Ecology* **95**: 726–736.

721 **Gómez JM, Perfectti F, Bosch J, Camacho JPM. 2009.** A geographic selection
722 mosaic in a generalized plant–pollinator–herbivore system. *Ecological Monographs*
723 **79**: 245–263.

724 **Goodwillie C, Kalisz S, Eckert CG. 2005.** The Evolutionary Enigma of Mixed
725 Mating Systems in Plants: Occurrence, Theoretical Explanations, and Empirical
726 Evidence. *Annual review of ecology, evolution, and systematics* **36**: 47–79.

727 **Grant V. 1981.** *Plant Speciation*. Columbia University Press.

728 **Harpole WS, Sullivan LL, Lind EM, Firn J, Adler PB, Borer ET, Chase J, Fay PA,**
729 **Hautier Y, Hillebrand H, et al.** 2016. Addition of multiple limiting resources reduces
730 grassland diversity. *Nature* **537**: 93–96.

731 **Hart SP, Freckleton RP, Levine JM.** 2018. How to quantify competitive ability.
732 *Journal of Ecology* **106**: 1902–1909.

733 **Hart SP, Turcotte MM, Levine JM.** 2019. Effects of rapid evolution on species
734 coexistence. *Proceedings of the National Academy of Sciences of the United States
735 of America* **116**: 2112–2117.

736 **Hayes HK, Others.** 1952. Development of the heterosis concept. *Heterosis*: 49–65.

737 **Hernández-Leal MS, Suárez-Atilano M, Piñero D, González-Rodríguez A.** 2019.
738 Regional patterns of genetic structure and environmental differentiation in willow
739 populations (*Salix humboldtiana* Willd.) from Central Mexico. *Ecology and evolution*
740 **9**: 9564–9579.

741 **Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M.** 2008.
742 Ecological consequences of genetic diversity. *Ecology letters* **11**: 609–623.

743 **Hülber K, Sonnleitner M, Haider J, Schwentenwein M, Winkler M, Schneeweiss
744 GM, Schönswetter P.** 2018. Reciprocal transplantations reveal strong niche
745 differentiation among ploidy-differentiated species of the *Senecio carniolicus*
746 aggregate (Asteraceae) in the easternmost Alps. *Alpine Botany* **128**: 107–119.

747 **Jürgens A, Witt T, Gottsberger G.** 2002. Pollen grain numbers, ovule numbers and
748 pollen-ovule ratios in Caryophylloideae: correlation with breeding system, pollination,
749 life form, style number, and sexual system. *Sexual plant reproduction* **14**: 279–289.

750 **Ke P-J, Letten AD.** 2018. Coexistence theory and the frequency-dependence of
751 priority effects. *Nature ecology & evolution* **2**: 1691–1695.

752 **Klinkhamer PGL, de Jong TJ.** 1990. Effects of Plant Size, Plant Density and Sex
753 Differential Nectar Reward on Pollinator Visitation in the Protandrous *Echium vulgare*
754 (Boraginaceae). *Oikos* **57**: 399.

755 **Klinkhamer PGL, de Jong TJ, de Bruyn G-J.** 1989. Plant Size and Pollinator
756 Visitation in *Cynoglossum Officinale*. *Oikos* **54**: 201.

757 **Kolář F, Lučanová M, Vít P, Urfus T, Chrtek J. 2013.** Diversity and endemism in
758 deglaciated areas: ploidy, relative genome size and niche differentiation in the
759 *Galium pusillum* complex (Rubiaceae) in Northern and *Annals of*.

760 **Lankau RA, Nuzzo V, Spyreas G, Davis AS. 2009.** Evolutionary limits ameliorate
761 the negative impact of an invasive plant. *Proceedings of the National Academy of*
762 *Sciences of the United States of America* **106**: 15362–15367.

763 **Lavorel S, Garnier E. 2002.** Predicting changes in community composition and
764 ecosystem functioning from plant traits: revisiting the Holy Grail. *Functional ecology*
765 **16**: 545–556.

766 **Leebens-Mack JH , Barker MS , Carpenter EJ , Deyholos MK , Gitzendanner MA**
767 , **Graham SW , Grosse I , Li Z , Melkonian M , Mirarab S , et al. 2019.** One
768 thousand plant transcriptomes and the phylogenomics of green plants. *Nature* **574**:
769 679–685

770 **Levin DA. 1981.** Dispersal Versus Gene Flow in Plants. *Annals of the Missouri*
771 *Botanical Garden. Missouri Botanical Garden* **68**: 233–253.

772 **Levine JM, HilleRisLambers J. 2009.** The importance of niches for the
773 maintenance of species diversity. *Nature* **461**: 254–257.

774 **Levin DA, Levin of IBD. 2002.** *The Role of Chromosomal Change in Plant*
775 *Evolution*. Oxford University Press.

776 **Liston A, Wei N, Tennessen JA, Li J, Dong M, Ashman T-L. 2020.** Revisiting the
777 origin of octoploid strawberry. *Nature genetics* **52**: 2–4.

778 **Liu J, Li J, Fu C. 2021.** Comparative physiology and transcriptome analysis reveals
779 the regulatory mechanism of genome duplication enhancing cold resistance in
780 *Fragaria nilgerrensis*. *Environmental and Experimental Botany* **188**: 104509.

781 **López-Jurado J, Balao F, Mateos-Naranjo E. 2016.** Deciphering the
782 ecophysiological traits involved during water stress acclimation and recovery of the
783 threatened wild carnation, *Dianthus inoxianus*. *Plant physiology and biochemistry*:
784 *PPB / Societe francaise de physiologie vegetale* **109**: 397–405.

785 **López-Jurado J, Mateos-Naranjo E, Balao F. 2019.** Niche divergence and limits to
786 expansion in the high polyploid *Dianthus broteri* complex. *The New phytologist* **222**:
787 1076–1087.

788 **Manzaneda AJ, Rey PJ, Bastida JM, Weiss-Lehman C, Raskin E, Mitchell-Olds**
789 **T. 2012.** Environmental aridity is associated with cytotype segregation and polyploidy
790 occurrence in *Brachypodium distachyon* (Poaceae). *The New phytologist* **193**: 797–
791 805.

792 **Meudt HM, Albach DC, Tanentzap AJ, Igea J, Newmarch SC, Brandt AJ, Lee**
793 **WG, Tate JA. 2021.** Polyploidy on Islands: Its Emergence and Importance for
794 Diversification. *Frontiers in plant science* **12**: 637214.

795 **Moghe GD, Shiu S-H. 2014.** The causes and molecular consequences of polyploidy
796 in flowering plants. *Annals of the New York Academy of Sciences* **1320**: 16–34.

797 **Narwani A, Alexandrou MA, Oakley TH, Carroll IT, Cardinale BJ. 2013.**
798 Experimental evidence that evolutionary relatedness does not affect the ecological
799 mechanisms of coexistence in freshwater green algae. *Ecology letters* **16**: 1373–
800 1381.

801 **Navas ML, Violle C. 2009.** Plant traits related to competition: how do they shape the
802 functional diversity of communities? *Community Ecology* **10**: 131–137.

803 **Nieto Feliner G. 2014.** Patterns and processes in plant phylogeography in the
804 Mediterranean Basin. A review. *Perspectives in plant ecology, evolution and*
805 *systematics* **16**: 265–278.

806 **Nieto Feliner G, Casacuberta J, Wendel JF. 2020.** Genomics of Evolutionary
807 Novelty in Hybrids and Polyploids. *Frontiers in genetics* **11**: 792.

808 **Otto SP, Whitton J. 2000.** Polyploid incidence and evolution. *Annual review of*
809 *genetics* **34**: 401–437.

810 **Parisod C, Holderegger R, Brochmann C. 2010.** Evolutionary consequences of
811 autoploidy. *The New phytologist* **186**: 5–17.

812 **Paterson AH. 2005.** Polyploidy, evolutionary opportunity, and crop adaptation.
813 *Genetica* **123**: 191–196.

814 **Penner S, Dror B, Aviezer I, Bar-Lev Y, Salman-Minkov A, Mandakova T,**
815 **Šmarda P, Mayrose I, Sapir Y. 2020.** Phenology and polyploidy in annual
816 Brachypodium species (Poaceae) along the aridity gradient in Israel. *Journal of*
817 *systematics and evolution* **58**: 189–199.

818 **Pérez-Ramos IM, Matías L, Gómez-Aparicio L, Godoy Ó. 2019.** Functional traits
819 and phenotypic plasticity modulate species coexistence across contrasting climatic
820 conditions. *Nature communications* **10**: 2555.

821 **Petry WK, Kandlikar GS, Kraft NJB, Godoy O, Levine JM. 2018.** A competition–
822 defence trade- off both promotes and weakens coexistence in an annual plant
823 community. *Journal of Ecology* **106**: 1806–1818.

824 **R Core Team, R., & R Core Team. 2021.** R: a language and environment for
825 statistical computing. R Foundation for Statistical Computing; 2020.

826 **Raabová J, Fischer M, Münzbergová Z. 2008.** Niche differentiation between diploid
827 and hexaploid *Aster amellus*. *Oecologia* **158**: 463–472.

828 **Ramsey J, Ramsey TS. 2014.** Ecological studies of polyploidy in the 100 years
829 following its discovery. *Philosophical transactions of the Royal Society of London.*
830 *Series B, Biological sciences* **369**.

831 **Ramsey J, Schemske DW. 2002.** Neopolyploidy in Flowering Plants. *Annual*
832 *Review of Ecology and Systematics* **33**: 589–639.

833 **Rey PJ, Manzaneda AJ, Alcántara JM. 2017.** The interplay between aridity and
834 competition determines colonization ability, exclusion and ecological segregation in
835 the heteroploid *Brachypodium distachyon* species complex. *The New phytologist*
836 **215**: 85–96.

837 **Salmon A, Ainouche ML, Wendel JF. 2005.** Genetic and epigenetic consequences
838 of recent hybridization and polyploidy in *Spartina* (Poaceae). *Molecular ecology* **14**:
839 1163–1175.

840 **Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff**
841 **D, Depamphilis CW, Wall PK, Soltis PS. 2009.** Polyploidy and angiosperm
842 diversification. *American journal of botany* **96**: 336–348.

843 **Soltis DE, Soltis PS. 1999.** Polyploidy: recurrent formation and genome evolution.
844 *Trends in ecology & evolution* **14**: 348–352.

845 **Sonnleitner M, Flatscher R, Escobar García P, Rauchová J, Suda J,**
846 **Schneeweiss GM, Hülber K, Schönswitter P. 2010.** Distribution and habitat
847 segregation on different spatial scales among diploid, tetraploid and hexaploid
848 cytotypes of *Senecio carniolicus* (Asteraceae) in the Eastern Alps. *Annals of botany*
849 **106**: 967–977.

850 **Tilman C, Sandhu R. 1998.** A model recycling program for Alabama. *Resources,*
851 *Conservation and Recycling* **24**: 183–190.

852 **Van de Peer Y, Ashman T-L, Soltis PS, Soltis DE. 2021.** Polyploidy: an
853 evolutionary and ecological force in stressful times. *The Plant cell* **33**: 11–26.

854 **Violle C, Garnier E, Lecoeur J, Roumet C, Podeur C, Blanchard A, Navas M-L.**
855 **2009.** Competition, traits and resource depletion in plant communities. *Oecologia*
856 **160**: 747–755.

857 **Wang X, Shi X, Hao B, Ge S, Luo J. 2005.** Duplication and DNA segmental loss in
858 the rice genome: implications for diploidization. *The New phytologist* **165**: 937–946.

859 **Wickham H. 2016.** *ggplot2: Elegant Graphics for Data Analysis*. Springer.

860 **Wilke, C. O. 2019.** cowplot: Streamlined Plot Theme and Plot Annotations for
861 'ggplot2'; 2020. R package version, 1(1).

862 **Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg**
863 **LH. 2009.** The frequency of polyploid speciation in vascular plants. *Proceedings of*
864 *the National Academy of Sciences of the United States of America* **106**: 13875–
865 13879.

866 **Yaakov B, Kashkush K. 2011.** Methylation, transcription, and rearrangements of
867 transposable elements in synthetic allopolyploids. *International journal of plant*
868 *genomics* **2011**: 569826.

869 **Yao Y, Carretero-Paulet L, Van de Peer Y. 2019.** Using digital organisms to study
870 the evolutionary consequences of whole genome duplication and polyploidy. *PloS*
871 *one* **14**: e0220257.