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Summary

Genetic diversity affects evolutionary trajectories but their ultimate effects on
ecological interactions and community dynamics remains poorly understood.
It has been hypothesized that phenotypic novelties produced by ploidy and
heterozygosity modify the ecological interactions between novel genotypes
and more ancient locally adapted ones, and therefore, their opportunities to
coexist.

We performed a greenhouse competition experiment with three taxa of the
Erysimum incanum species complex differing in ploidy (2x, 4x and 6x) and
heterozygosity (high and low). This experiment allows us to parameterize a
population model to test the effect of genetic diversity on modulating the
ecological forces that determine the outcome of competition, niche and fitness
differences.

Depending on whether ploidy variation and the level of heterozygosity made
interspecific competition greater or smaller than intraspecific competition, we
predicted either priority effects or coexistence. Such competitive outcome
differences were explained by the phenotypic expression in the number of
stalks (plant size surrogate) with genotypes under priority effects showing
more stalks.

Altogether, our results show that non-polyploid plants can coexist with
polyploids contravening theoretical expectations of polyploidy dominance
under stable conditions. However, historical contingency such as order of
arrival promotes priority effects when adaptive phenotypic optimums strongly

compete for space.

Keywords: Competition, Coexistence, Erysimum incanum, Heterozygosity, Priority

effects, Polyploids.
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Introduction

Progress in ecological theory during the last decades has substantially rendered a
mechanistic understanding of the rules governing the maintenance of species
diversity. These advances, formally named as modern coexistence theory (MCT)
(Chesson, 2000), posits that there are two species differences that determine the
outcome of competitive interactions. On the one hand, niche differences occurring
when intraspecific competition exceeds interspecific competition stabilizes the
population dynamics of interacting species by limiting their population growth when
they are abundant but buffering them from extinction when they are rare (Adler et al.,
2007). These stabilizing niche differences can arise from a wide variety of ecological
factors such as differences in phenology (Godoy & Levine, 2014), differences in
natural enemies (Petry et al., 2018), or differences in nutrient requirements (Harpole
et al., 2016). On the other hand, fitness differences drive competition dominance and
in the absence of niche differences determine the competitive superior. Fitness
differences, understood within an ecological context, occur when good light
competitors grow at the expense of other species (DeMalach et al., 2017) or when
species are able to draw down common resources faster than the competitors
(Tilman & Sandhu, 1998), and it is the result of two components. The first component
is the species demographic differences, which arise from different ability of species
to produce viable offspring, and the second component is the competitive response
differences, which arises when species show different responses to competition. At
the extremes, a species can be a superior competitor either because it produces a
great amount of viable offspring or has a low sensitivity to competition (i.e. offspring
production is not reduced when density increases), although a combination of both

strategies is also possible.

Importantly, theory predicts a variety of outcomes depending on the relationship
between niche and fitness differences (Ke & Letten, 2018). Under negative density-
dependence (i.e., population growth rates decrease as the density of a population
increases), species are predicted to coexist when niche differences overcome fitness
differences. On the other hand, if fitness differences are overwhelming, the inferior
competitor species are predicted to be excluded. It can also be the case that species
are experiencing positive density-dependence (i.e., population growth rates increase

as the density of a population also increases). In such cases, priority effects are
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expected to occur. This means that contingency processes such as order of arrival
influence community assembly and the species that arrive first dominates the

community and excludes the other (Fragata et al., 2022).

Modern coexistence theory was developed within an ecological context and as such
most of its application has been done within this domain. This implies that the role of
evolution in determining the outcome of ecological interaction is still poorly
understood. Empirical work at the macroevolutionary scale has shown that disparate
evolutionary processes among species poorly predict the outcome of ecological
interactions and they can either determine coexistence or competitive exclusion
(Narwani et al., 2013; Godoy et al., 2014; Germain et al., 2016). Moreover, Germain
et al. (2016) showed that the scaling of niche and fitness differences with
phylogenetic relatedness depend on whether species have evolved in sympatry or
allopatry, being allopatric species less likely to coexist based on phylogenetic
distance. At the microevolutionary scale, some examples have documented that
rapid evolution ameliorates the negative effect of competition and ultimately can
favor the coexistence of competing species (Lankau et al., 2009; Hart et al., 2019),
whereas others have documented the opposite result (Qin et al., 2013). This lack of
knowledge and context dependency calls for further studies to better mechanistically
understand the effect of evolution on ecological interactions. In that regard,
processes affecting genetic diversity have been long thought to be an important
driver of ecological interactions, and it has been amply discussed that common
processes should control the maintenance of both genetic and species diversity
(Dempster, 1955; Ayala & Campbell, 1974; Hughes et al., 2008). However, detailed

experiments to these this hypothesis are still lacking.

Two evolutionary processes are expected to modulate the degree of genetic
diversity. The first and most important one is polyploidization, which is present in
nearly 70% of flowering plants (Wood et al., 2009) and is playing an essential role in
their evolutionary history (Grant, 1981; Soltis & Soltis, 1999; Soltis et al., 2009) and
their diversification (Leebens-Mack et al. 2019). Complete genome duplication
stimulates the neofunctionalization of duplicated, redundant genes, potentially
leading to novel and innovative traits promoted by natural selection (Otto & Whitton,
2000; Parisod et al., 2010). Furthermore, it is broadly documented that genome

duplications lead to variation in plant phenotype (Jurgens et al., 2002), involving
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changes in the rest of ecological interactions within a community. For example, an
increment in flower size exhibited by higher ploidies might modify pollinator
preferences between co-occurring individuals differing in ploidy level (te Beest et al.,
2012; Moghe & Shiu, 2014). Ultimately, polyploidization events are able to change
the resources usage and, thus, how diploids and their polyploid counterparts are
spatially located (Levin, 1981; Raabova et al., 2008; KolaF et al., 2013). The overall
increasing fitness in polyploid species is suggested as a potential driver for
ecological adaptation to colonize novel habitats and face a major diversity of
environmental conditions compared to diploids, which would explain the
diversification patterns shaped by polyploids, especially in islands (Meudt et al.,
2021). In sum, these previous findings suggest that ploidy is a driver of both fitness
and niche differences but empirical assessments that explicitly explore how these

differences determine the outcome of competition are lacking.

Together with polyploidization, a second important characteristic is the degree of
heterozygosity. Heterozygosity is key in understanding the ecological consequences
of competing genotypes because, just like polyploidy, it also increases raw material
in the long term by novel allele combinations for evolution to act upon (Nieto Feliner
et al., 2020). The allelic diversity effect is shown through changes in phenotype and
even in the individual performance. An example is the classical heterosis event
exhibited by the offspring originated by outbreeding (Hayes & Others, 1952;
Bomblies & Weigel, 2007). This occurs when the heterozygotic offspring resulting
from outbreed crosses exhibit a major performance compared with homozygotic
parents. However, heterosis has been well documented in crop plants because
heterozygotic phenotypes are commonly accompanied by a higher performance and
adaptive ability (Fridman, 2015). Studies in heterosis help to understand the
genotype-phenotype relationship due to the presence of different alleles resulting in
phenotypes that, ultimately, could be able to drive evolutionary processes. However,
both polyploidization and heterozygosity has been also shown to produce an
immediate effect on the individual fitness within a single generation (Ramsey &
Schemske, 2002). For this reason, comparisons of fithess differences between
homozygotes and heterozygotes or diploids and polyploids, are commonly
investigated to explain their coexistence or spatial segregation (Sonnleitner et al.,
2010; te Beest et al., 2012; Ramsey & Ramsey, 2014).
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If we summarize all these previous findings on the effect of genetic diversity on
ecological dynamics, we can posit that they have been mostly focused on
understanding what processes drive the fitness differences among genotypes that
determine competitive exclusion. (Ramsey & Schemske, 2002). Within this
perspective, coexistence has been considered a spatial process in which different
genotypes persist under different locations thanks to being locally adapted. However,
MCT predicts that the persistence of genetic diversity can be also achieved within
the same location by promoting niche differences that stabilize the dynamics of
competing genotypes. Yet, information on how genetic diversity promotes these
niche differences is currently missing (Rey et al., 2017). Including the axis of niche
differences is critical to understand when new variants are able to coexist with their
ancestors within the same location when genome duplication occurs, or when the
new variant excludes (or it is excluded by) the ancestor. This is well illustrated in the
case of many species as the case of strawberry, which have evolved their genome in
response to arid or stressful conditions (Liston et al., 2020). We can hypothesize that
if genome duplication has served to cope with stressful conditions, then, there is
likely to observe niche differences among genotypes with different ploidy due to
niche segregation. Likewise, genetic diversity can also promote niche differences by
phenotypic changes that allow new variants to explore different resources(Kolar et
al., 2013); (Hernandez-Leal et al., 2019). Overall, we have expectations that genetic
diversity promotes both niche and fitness differences and the study of the effect of
genetic diversity on the drivers of competitive outcomes can allow us to obtain a
better understanding of how microevolutionary processes maintain genetic diversity,
or if this does not occur, it allows to identify which genotypes are excluded by
deterministic processes because they become inferior competitors after evolutionary
processes or by contingency due to the order or arrival (i.e., priority effects)(Fig. 1).
Fortunately, there are tools readily available to explore these questions by combining
population models with detailed experiments in which it is possible to measure
fitness and density dependent processes (Narwani et al., 2013; Godoy & Levine,
2014; Germain et al., 2016).

Here, we focus on the annual multiploidy species complex Erysimum incanum
(Brassicaceae) to address how genetic diversity determined by the degree of

polyploidization and heterozygosity influences ecological interactions and
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competitive outcomes between contrasted genotypes. This variation in genetic
diversity was obtained by combining different genotypes from diploids to tetraploids
and hexaploids with crosses among individuals within the same level of ploidy to
increment the degree of heterozygosity (Fig. 1). With this experimental set up, we
were able to answer the following questions: 1) Does ploidy determine differences in
fithess among genotypes? 2) How does the interaction between ploidy and
heterozygosity influence the niche and fitness differences that determine the
outcome of competition between genotypes and the maintenance of genetic
diversity?, 3) Is a particular character able to summarize variation in competitive

outcomes among genotypes?

(a) Mechanisms driving genetic diversity (b) Competitive outcome
7 g

o £

g Is Genotype 1 wins

g i

Q - =
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] I

I Selfing(s) Outcrossing (OC) .
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Priority effects
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Diploid (2x) Hexaploid (6x) 0 Niche differences

Figure 1. (a), Mechanisms driving the genetic diversity of the studied individuals, and (b)
competitive outcomes expected in our experiments according to niche and fitness
differences. The genetic diversity of the study system is mainly affected by the ploidy level
(including diploid, tetraploid and hexaploid individuals) and by the heterozygosity level (the
studied individuals have been produced after performing selfing and outcrossing manual
pollination on parental individuals). Genetic diversity is expected to increase with ploidy level
and outcrossing treatments. Such genetic diversity is expected to influence in turn the
outcome of competition, depending on how they promote niche and fitness differences.
Three different outcomes are expected. Coexistence (green area) in which both genotypes

do not exclude each other, competitive exclusion (orange area) in which the genotype with
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higher fithess excludes the other, and finally, priority effects (blue area) in which the

genotype that arrives first exclude the other.
Material and Methods
Study system and experimental set-up

We focus our study in the genus Erysimum L., which is one of the most diverse in
the Brassicaceae family, with species inhabiting Eurasia, North Africa and North and
Central America (Al-Shehbaz et al., 2006). In particular, we studied the species
complex Erysimum incanum. This complex includes annual monocarpic species and
subspecies inhabiting the Western Mediterranean basin, which is a main
diversification center of the genus (Abdelaziz et al., 2011; Nieto Feliner, 2014).
Within this complex and using flow cytometry, we found three ploidy levels: diploids
(2x = 16 chromosomes), tetraploids (4x = 32) and hexaploids (6x = 48) (Nieto
Feliner, 2014; Garcia-Mufioz et al., 2022) with dissimilar geographic distribution.
Diploids of E. incanum (Erysimum incanum subsp. mairei), present a vicariant
distribution between the Rif and the Pyrenees mountains while tetraploids (E.
incanum subsp. incanum) present a similar distribution in southwest Iberian
Peninsula and the Middle Atlas Mountains (Fennane & lbn-Tattou, 1999). In contrast
to these ploidies occurring in both continents, hexaploid plants (Erysimum
meridionalis sp. nov.) has been only found in the High Atlas and Antiatlas mountains
(Abdelaziz et al., in prep.). Most species of the E. incanum complex exhibit
autogamy as the predominant reproductive strategy, showing hermaphroditic flowers
with the specific characteristics of the selfing syndrome. This reproductive system

results in full-sib individuals within the same family.

Using this species complex as a baseline, we removed any local effects before
performing experiments by obtaining pure lines from more than five generations in
controlled conditions. Once these pure lines were obtained, we further modified their
degree of genetic diversity within each ploidy level by crossing individuals in order to
maintain or remove the homozygosity exhibited by pure lines. To do so, the first
treatment consisted in selfing hand-made crosses that allow obtaining seeds in
which the homozygosity level is assumed to be complete within the pure line (S).
The second treatment consisted in intra-population allogamous crosses, where some

flowers of each plant were emasculated before first opening and pollinated with
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pollen of individuals from a different family within the same population. This latter
treatment resulted in seeds in which homozygosity was replaced by a full degree of
heterozygosity (OC), except for these loci where alleles were identical by state.
Overall, this procedure led to three “selfing (S)” and three “outcrossing (OC)” plant
families according to the low or high degree of heterozygosity, respectively, which
were factorially combined with the three ploidy levels. Therefore, a total of 18 plant
families, three per combination of 2xS, 2xOC, 4xS, 4xOC and 6xS, 6xOC were used

for evaluating experimentally the role of genetic diversity in coexistence outcomes.
Theoretical approach

Our greenhouse experiments were designed to experimentally parameterize a
mathematical model describing the population dynamics of interacting species
(Levine & HilleRisLambers, 2009), which here was extended to genotypes. With this
model, it is possible to quantify stabilizing niche differences and average fitness
differences between interacting organisms from plants to animals (Godoy & Levine,

2014; Fragata et al., 2022). The model is described as follows:

N.
- (1- gi)si + giF;
Ni¢

(1)

it+1

where S s the per capita population rate, and N;; is the number of seeds of

it
genotype i in the soil prior to germination in winter of year t. In addition, the
germination rate of species i, s;, can be viewed as a weighting term for an average of
two different growth rates: the annual survival of non-germinated seed in the soil (gi),
and the viable seeds produced per germinated individual (F;). We assume that
genotypes affect the performance of one another when germinated individuals limit
the fecundity of competitors. Thus, the per-germinant fecundity, F;, can be expanded

into a function including the density of competing individuals in the system.
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1+ ociigiN]- + al]g]N]

i

(2)

where }; is the per-germinant fecundity in the absence of competition. It is reduced
by germinated individuals of its own and other species, which are multiplied by
interaction coefficients, ay;, that describes the per capita effect of genotype j on
genotype i. The model ignores the potential for age-dependent survival of non-
germinated seeds, because prior work in annual plants has shown that seed bank
survival has negligible influence on the competitive outcomes (Godoy & Levine,
2014).

With the dynamics of competition among genotypes described by this population
model, we followed the approach of (Chesson, 2012)) to determine fithess and niche
differences between species pairs. Following (Godoy & Levine, 2014) method, niche

overlap between pair of genotypes, p, was calculated as:

3)

Niche overlap describes the degree to which competition among individuals of the
same genotype (a;;, o) impact more than competition among individuals of different
genotypes (a;;, a;;). Niche overlap span from zero (i.e., no niche overlap) to one (i.e.,
complete niche overlap). With (p) defining niche overlap between a pair of
genotypes, their stabilizing niche difference is expressed as 1-p. As hypothesized,
we expect that genetic differences in ploidy and in heterozygosity and their
combination will reduce niche overlap among genotypes, and therefore, will increase

niche differences.

As an opposing force to stabilizing niche differences, average fitness differences
drive competitive dominance, and in the absence of niche differences, determine the
competitive superiority between a pair of genotypes. Following previous
methodologies (Godoy & Levine, 2014), we define average fitness differences

between the competitors (ji) as:
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(4)

where n; and n; are the annual seed production for both genotypes and a; and a; are
the per capita effect of a genotype i and genotype | on the seed production of a
genotype j, respectively. It is worth noting that we did not explicitly estimate the
germination rates (g;) and soil survival rates (s;) but we consider them to be equal to
one. Therefore, in this particular study n; and n; are equal to A; and A; respectively.
According to equation 4, average fitness differences can be decomposed in two

MNj-1

different expressions. On the one hand describes the “demographic difference”

Ni-1

(i.e., the extent to which genotype i produces more seeds per germinant than

genotype j). On the other hand, ~— describes the “competitive response ratio” (i.e,

the extent to which genotype i is more sensitive to competition than genotype ).

From the expression of average fitness difference (equation 4), we can describe the

genotype competitive ability (Hart et al., 2018)

-1

K; = \/m
5)

The competitive ability (k;) describes the ability of a genotype to be a superior
competition as a function of two possibilities. Either because it can produce a high
amount of viable seeds (1; — 1) or the genotype is not sensitive to competition with

other genotypes (,/a;a;), that is the amount of viable seeds produced is not reduced

as the density of the competitor increases.

Importantly, the greater the ratio between genotypes j and i, the greater the fitness
advantage of genotype j over i. If this ratio is one, genotypes are equivalent
competitors. Coexistence requires both genotypes to invade when rare (Chesson,

2012). Then we established coexistence condition as (Godoy & Levine, 2014):
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324 (6)

325  This condition allows us to distinguish three coexistence outcomes. The first

326 outcome is stable coexistence that occurs when niche differences are larger than
327 fitness differences. The second outcome is competitive exclusion that occurs when
328 fitness differences are larger than niche differences. And finally, the third outcome is
329  priority effects that occur when niche differences are negative, which indicates that
330 species are experiencing positive density-dependence. In that final outcome it is

331 predicted that the species that arrives first to the community excludes its competitor
332 (Ke & Letten, 2018) (Fig. 1).

333 Competition experiment and character measurements

334  To empirically parameterize the population model with which we can determine the
335 competitive outcomes between genotypes, we conducted greenhouse experiments
336 to estimate per germinant fecundities in the absence of neighbors (A), and all

337  pairwise interaction coefficients (a;). In March 2020, we displayed pots of 4.2 L

338 (0.18x0.18x0.13cm), which were filled with Gramoflor™ potting soil mixture and

339  watered every two days. The overall design involved sowing each genotype as focal
340 individuals into a density gradient of each competitor genotype (including itself). To
341 create this gradient, we followed a spatial explicit design within each pot proposed by
342  (Bartomeus et al., 2021), in which focal genotypes of the same family experienced a
343 density gradient from 1 to 4 individuals of a different genotype family. In order to

344  calculate all pairwise interaction coefficients (a;), this density gradient was created
345 for each pairwise combination of families. We also grew individuals alone to better
346  estimate the fecundities in the absence of neighbors (A). To estimate such fecundity
347 that we understand in an ecological context is the “demography performance” of the
348 genotype and in the evolutionary context is the “fithess” of an individual, we counted
349 the number of fruits per plant and multiplied it by the mean number of viable seeds
350 estimated from four random fruits in the same plant. This way, we obtained the total
351 viable seed production per individual plant. This value is an unbiased estimate of the
352 individual fitness due to the monocarpic life form of the study system.
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Together with the competition experiment, we measured a series of characters for
each family at the peak of individual biomass. These characters were related to the
vegetative body plant overall related to vegetative body plants. Specifically, for every
focal individual that produced seeds we measured its plant height, the number of
flowering stalks and the diameter of the main stalk. This was done for a total of 210

individuals with 35 individuals per family.
Statistical analyses

We used maximum likelihood techniques to parameterize the population model
following a nested approach. That is, we first created a single model for which we
estimate the intrinsic growth rate in absence of competitors (A;), and then we used
this information as prior for subsequent more complex models that include an overall
term of competition in the second step and intra and interspecific competitive
interactions (the a’s) in the third final step (Matias et al., 2018). A; were considered
fixed per genotype family species but competition varied across genotype pairs.
Finally, we used a one-way ANOVA in order to test whether coexistence outcomes
between genotype pairs could be explained by a particular plant character. All
analyses were done using R (R Core Team, 2021). To predict coexistence
outcomes, we used the package ‘cxr’ (Garcia- Callejas et al., 2020). Plots were done

using ‘ggplot2’ (Wickham, 2016) and ‘cowplot’ (Wilke, 2019) packages.
Results

Our results show that the genetic diversity of the different genotypes contribute to
promote differences in viable seed production as well as competitive interactions.
When we decomposed average fitness differences into its demographic and
competitive response components, we found that diploids (2x) were the most
competitive genotypes followed by tetraploids (4x), and finally hexaploids (6x) under
the experimental conditions we imposed with no drought treatment (Fig. 2A). This
competitive superiority of the diploids was due to a higher viable seed production in
the absence of competition as well as lower sensitivity to reduce viable seed
production in the presence of neighbors (Fig. 2B and 2C). Conversely, the low
competitive ability of the hexaploids were due to a combination of lower viable seed
production and higher sensitivity to competition. The amount of niche differences

between the diploids and the other ploidy levels was not enough to overcome their
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385 observed differences in average fitness. These results overall indicate that diploid
386 genomes are the superior competitor. However, they were not able to competitively
387 exclude the other ploidy families (Fig. 3A). This outcome is driven by the low

388 differences in fithess and response to competition (Fig. 2), which lead diploids to

389  share the scenario of strong priority effects with the two other ploidies

390
(a) (b) (c)
o
[ o | R [ —_
o
o = —
Q !
(=1 |
=1 ‘
Yo -
8 o |
(e ) 4
S o ]
S | o
(=]
<
c 5
=} =
= = £
= So Q '
€S o8] £ |
=% 2 T g :
g 8 o i » o |
£ 2 | | £3- I
[} 1 ! o :
g @ ! | I g !
2 ] — ! ! :
o3 =3 : | 3 i
@) =8 o= — I .
~ > L
x
1= [Te]
o 4
QA 3 Q
o «©
=
ol — —— ° L i
T T T O 7 T T T T T T
2x 4x Bx 0 2x 4x 6x 2x 4x 6x
Ploidy level Ploidy level Ploidy level
391

392  Figure 2. Competitive ability (A), viable seed production (B) and response to competition (C)

393 for each one of the three ploidy levels tested in E. incanum system.

394
395
396

14


https://doi.org/10.1101/2023.02.23.529645
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.23.529645; this version posted February 23, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

(a) (b)
Genotype 2 excluded Genetic pair
Genetic pairs . 4XOC_4XS
® 2x4x ® 4xOC_6x0C
® 2x6x O 4x0OC 6xS
O 4xX6X @ 4xS_6x0C
® 4xS 6xS
2 @ 6xOC_6xS Genotype 2 excluded
2
(7]
@
Q
c ®
s
& 2
o 1 Priority effects 5 o
S 8 e
i © g
1 0
5 o
Priority effects O }_%
0
Genotype 1 excluded
;70 60 -50 -40 -30 -20 -10 0 E)4_0 -35 -30 -25 -20 -15 -10 -05 00 05 1.1
397 Niche differences Niche differences
398
399
400

401  Figure 3. Relationship between fitness difference and niche difference for different

402  combinations of ploidy (2%, 4x and 6x) in E. incanum system (A) and relationship between
403 fitness difference and niche difference for different combinations of ploidy (4x and 6x) and
404 levels of heterozygosity (low, S and high, OC) in E. incanum system (B). The two solid black
405 lines represent the coexistence condition and its symmetrical for each ploidy level tested and
406  defined the space in which genotypes could coexist and in which there were priority effects.

407 Error bars show coexistence outcomes at the 95% confidence interval.

408

409  Such strong priority effects were not predicted when considering tetraploid and

410 hexaploid genotypes in combination with their degree of heterozygosity. For these
411  two levels of ploidy, we found two contrasted clusters of outcomes when we added
412  more resolution by explicitly accounting for the degree of heterozygosity. One cluster
413  in which priority effects among the pairs of genotypes were predicted to occur, and

414  another cluster in which coexistence was predicted between three other different
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415  pairs of genotypes (Fig. 3B). This result was not predicted by theoretical
416  expectations and suggests that genetic diversity produces a wider variation of

417  ecological outcomes than previously expected.

418  Priority effects occur under positive density dependence when interspecific

419  competition is stronger than intraspecific competition, whereas, coexistence occurs
420 under negative density dependence when intraspecific competition is stronger than
421 interspecific competition. Therefore, the change from one location of the coexistence
422  map to another can be due to a change in intraspecific competition, interspecific

423  competition or a combination of both. In our experiment, detailed analysis revealed
424  that changes in the strength of interspecific interactions rather than intraspecific

425 interactions were the main driver of switches from priority effects to coexistence

426  regions (Fig. 4).
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430 Figure 4. The effect of intra and interspecific interactions in driving variation in niche

431  differences between genotype pairs.
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We did not observe that differences between these two clusters were attributable to
a particular genotypic difference. For both tetraploid and hexaploid groups, we
observed pairs of genotypes that differed in the ploidy level as well as their degree of
heterozygosity (e.g. see interaction between 4xOC and 6xS in priority effect group
and 6xOC with 4xS in coexistence group) and others that did only differ in one
aspect (e.g. see interaction between 4xOC and 4xS in coexistence group and 4xS
and 6xS in priority effects group) (Fig. 3). Despite this variability, we found that a
particular vegetative character allows differentiating these two groups of pairs of
genotypes. Specifically, the number of stalks, which is a character related to the size
of the plant, predicted differences observed in competitive outcomes between
coexistence and priority effects (Multiple Analysis of Covariances F = 39.91, p <
0.01). Genotypes with larger numbers of stalks also showed priority effects (Fig 5),

suggesting that space is a critical resource for which these genotypes compete.
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Figure 5. Boxplot represents median and quartiles of number of stalks for both coexistence
outcomes we predicted when combining ploidy level and the degree of heterozygosity.
Priority effects correspond to the combination of the three following genetic pairs: 4xS with
6xS, 4xOC with 6xOC and 4xOC with 6xS, while Coexistence groups the other three genetic
pairs: 4xS with 6xOC, 4xOC with 4xS and 6xOC and 6xS.

Discussion

Understanding the ecological consequences of genetic diversity is key to explain
observed patterns of sympatric and allopatric genetic populations in nature.
However, this understanding has been seldom explored because there is a lack of
connection between ecological theory that describes the dynamics of interacting
organisms and genetic material that can be manipulated to assess competitive
interactions. In this study, we show how genetic diversity mechanisms provide a
wide range of ecological outcomes based on the strength of competitive interactions
between genotypes. Contrary to our expectations, low ploidy level, showed higher
competitive ability, compared with tetraploid and hexaploid plants of E. incanum,
mainly due to a lower response to competition and to a higher seed production to a
lesser extent. That is, the intrinsic ability of diploids to produce seeds was little
affected by increases in the density of individuals of the same and different
genotypes within the community. Although theory commonly predicts that an
increase in ploidy should confer an increase in fitness, these competitive advantages
tend to occur under changing or extreme environments due to aridity or cold (Lopez-
Jurado et al. 2016; Liu et al. 2021). Instead, in our experiment, conditions were
stable and non-stressful (i.e. no drought treatment). Under such conditions recent
computational work simulating biological evolution suggested that non-polyploid
perform better than polyploids (Yao et al., 2019; Carretero-Paulet & Van de Peer,
2020). This phenomenon can be explained by the amplification of the effect of
random mutations on their gene regulatory networks because of the rise of
complexity linked to whole genome duplication (multiplying the number of nodes and
interaction in the gene regulatory network). Random mutation, often maladaptive or
detrimental, under stable environments will propagate widely. In contrast, a stressful
or unstable environment may provide substantive variation for survival (Yao et al.
2019; Carretero-Paulet and Van de Peer 2020; Van de Peer et al. 2021).
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The reason for why polyploids were more sensitive to reduce their fitness in terms of
seed production in the presence of neighbors can be due to the fact that they incur in
a trade-off between being adapted to stressful conditions and tolerating competition
from neighbors (L6pez-Jurado et al. 2019; Lopez-Jurado et al. 2016). In fact, it has
been found under natural conditions that polyploids adapted to arid conditions
present in general low densities (Manzaneda et al., 2012; Penner et al., 2020).
Nevertheless, the higher competitive ability we observed in non-polyploids was not
translated to predict competitive exclusion between diploids and the rest of
genotypes (tetraploids and hexaploids). The structure of intra and interspecific
interactions between genetic pairs modulate this expectation to produce strong
priority effects instead, meaning that the historical contingency such as the genotype
that arrives first to the community excludes the other.

Our results, therefore, suggest that certain evolutionary theories conveying a
competitive advantage to more diverse genotypes should be revisited. In that sense,
current theory puts a major role in the effect of environments on driving an increase
of ploidy and associated competitive advantages and the ability to colonize and
dominate novel stressful environments. However, these increases in ploidy does not
always occur as exemplifies diploids of Erysimum mediohispanicum (another
species belonging to Erysimum), which have been associated with hard conditions at
high altitudes (Mufioz-Pajares et al., 2018). Even if they occur, such advantages
seem to be related to species vital rates such as seed production or survival but it
comes at the trade-off to tolerate heterospecific competition. This lack of ability to
tolerate competition might compromise the successful colonization of new habitats to
contingency events as we observed in the priority effects case, or it might be also the
case of being excluded from communities that are well established with high local
abundances. Further experiments across environmental gradients are needed to
reveal the consequences of increases in ploidy for determining trade-off between
seed production and tolerance to competition, and therefore, to tease apart the role
of the abiotic component (stress conditions) from the biotic component (competition)

in driving polyploids advantages to colonize novel environments.

Although most of the work on evolutionary biology has studied the role of variation in
ploidy in promoting differences in fithess between species, much less has been

explored its effect in promoting niche differences between genotypes (Alonso-
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Marcos et al. 2019; Hulber et al. 2018; Balao et al. 2011). Our results strongly
suggest that ploidy variation promotes the demographic consequences of niche
differences which stabilize the population dynamics of competing genotypes and
further indicate that this effect is in turn strongly influenced by the degree of
heterozygosity. Specifically, we found that both levels of heterozygosity can coexist
within the same level of ploidy (this is true for tetraploids and hexaploids) as well as
between levels of ploidy. This result, which goes against predictions that
heterozygote should exclude homozygous genotypes as well as higher ploidy should
exclude lower ploidy genotypes, is very important because it suggests that both
sources, ploidy and heterozygosity, are critical to maintain genetic diversity within
and across genotypes. Moreover, with our ability to link the strength of genotype
interactions with their likelihood to coexist, we found that genotypes were not weakly
differentiated, as we might expect from closely related evolutionary units within the
E. incanum system. That is, in those genetic pairs predicted to coexist, we did not
observe that weak niche differences overcome small fitness differences. Instead,
they presented strong niche differentiation. Such high niche differences indicate that
genotypes experience greater intraspecific than interspecific competition. Although
with our experiment it is not possible to know the ultimate sources of these axes
promoting niche differences, we were not expecting these results considering that
the greenhouse experiment was settled in relatively small pots where there were few

environmental axes compared with natural conditions.

Besides coexistence, we also predicted that several of these tetra and hexaploids
genotypes would incur in priority effects according to our experiment conditions.
These priority effects mean that genotypes experienced positive rather than negative
density dependence. That is, genotypes favor themselves rather than limit their
competitors and the genotype exclusion is not due to deterministic processes but
rather due to historical contingency such as order of arrival. At a single location, this
contingency promotes the dominance of the genotype that arrives first, but at larger
scales coexistence can occur if both genotypes arrive first to different locations. If we
take a closer look at these genotypes incurring in priority effects, we observed that
tetraploids with high levels of heterozygosity (4xOC see Fig. 3) are able to exclude
any hexaploid plant if they arrive first. This result is very interesting as these species

belong to a selfing clade (Abdelaziz et al., 2019) and the mating system transition
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theories predict that once selfing populations have purged its genetic load, no
advantage of high heterozygous plants is expected (Goodwillie et al., 2005).
However, the overdominance genetic model predicts that heterozygotes would be
superior to homozygotes at loci affecting fitness (Khotyleva et al., 2017).

Based on independent information of either the level of ploidy or the degree of
heterozygosity, we could not differentiate those genetic pairs predicted to coexist
from those incurring in priority effects. However, we found that the phenotypic
expression of these genotypes, measured as the number of stalks, differentiated
these contrasted coexistence outcomes. Presenting a high number of stalks is an
important feature that equally favors competitive ability by promoting low response to
competition, and high plant performance in terms of seed production. Therefore,
genotypes with greater number of stalks can incur in priority effects for the following
reasons. On the one hand, the production of more flowering stalks or developing
them faster allows genotypes to occupy more space, and compete better by
monopolizing more resources and by shadowing other surrounding neighbors
(Craine & Dybzinski, 2013). On the other hand, plants, as modular organisms, the
bigger they are, the more reproductive organs they develop. Thus, the number of
flowering stalks has a direct effect on plant fitness by its effect on the number of
flowers produced. This is the case of different species which use the size of plants to
attract pollen vectors (Klinkhamer et al., 1989; Klinkhamer & de Jong, 1990)),
including species in the Erysimum genus (Gémez et al., 2009; Alonso-Marcos et al.,
2019)). But the production of more flowers also means higher fitness values when
the plant has the ability to self-pollinate (Gerber, 1985). However, why genotypes
with high number of stalks incur in positive density dependence (priority effects) and
why those with low number of stalks do the opposite (coexistence) is unclear.
Unfortunately, there is no prior study in the literature that has found a single trait
driving the strong variation in niche differences from negative to positive as we found
in our experiment. It might be the case that the number of stalks correlate with other
traits promoting niche differences such as differences in phenology (Navas and
Violle 2009; Godoy and Levine 2014), of the ability to make photosynthesis at
different light irradiances (Pérez-Ramos et al., 2019). Further studies need to explore
more in depth the multiple and correlated phenotypic expression and associated

mechanisms that underlie these switches between positive and negative density-
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dependence processes, but our results are the first to highlight that variation in the
number of stalks, as a subrogate of plant size, is critical to predict opposed

coexistence outcomes by varying niche differences among taxa.

Our study provides strong evidence that genetic diversity plays a critical role in
determining ecological outcomes between closely related genotypes. Contrary to
expectations, diploids showed greater competitive ability than tetra and hexaploids.
However, this competitive advantage did not translate to competitive dominance and
the exclusion of the inferior competitors, rather, we predicted that the winner of
competition depends on contingency such as the genotype that arrives first to a
location. This is an interesting result that needs further consideration in future work
because priority effects are not an ecological outcome considered by current
theories in evolution describing the advantage of polyploids and the consequences
of polyploidization for describing allopatric and sympatric populations. Moreover, we
found that ploidy interacts with the degree of heterozygosity to reverse the
competitive outcomes from priority effects to coexistence, which highlights the
importance of keeping a diverse genetic background within genotypes to maintain in
turn genetic diversity across genotypes. Although linking genetic diversity with
competition outcomes can be difficult for logistical and methodological limitations,
our results strongly suggest that the phenotypic expression of an easy-to-measure
trait, the number of stalks, can predict such variation in ecological outcomes. In
particular, pairs of genotypes that show on average more stalks incur in priority
effects, whereas those with low stalks number are predicted to coexist. This study
does not explore why the number of stalks, considered a subrogate of competition
for space, can change competition from positive to negative density dependence
(negative versus positive niche differences). Yet, our results highlight the importance
of exploring the effects of genetic diversity on the interactions among genotypes
because they can strongly modify their ecological dynamics compared to

expectations from only responses to the environment.
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