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Abstract

The mRNA-seq data analysis is a powerful technology for inferring information from bi-
ological systems of interest. Specifically, the sequenced RNA fragments are aligned with ge-
nomic reference sequences, and we count the number of sequence fragments corresponding to
each gene for each condition. A gene is identified as differentially expressed (DE) if the dif-
ference in its count numbers between conditions is statistically significant. Several statistical
analysis methods have been developed to detect DE genes based on RNA-seq data. However,
the existing methods could suffer decreasing power to identify DE genes arising from overdis-
persion and limited sample size. We propose a new differential expression analysis procedure:
heterogeneous overdispersion genes testing (DEHOGT) based on heterogeneous overdisper-
sion modeling and a post-hoc inference procedure. DEHOGT integrates sample information
from all conditions and provides a more flexible and adaptive overdispersion modeling for the
RNA-seq read count. DEHOGT adopts a gene-wise estimation scheme to enhance the detec-
tion power of differentially expressed genes. DEHOGT is tested on the synthetic RNA-seq
read count data and outperforms two popular existing methods, DESeq and EdgeR, in de-
tecting DE genes. We apply the proposed method to a test dataset using RNAseq data from
microglial cells. DEHOGT tends to detect more differently expressed genes potentially related
to microglial cells under different stress hormones treatments.
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1 Introduction

High-throughput sequencing of DNA fragments and mRNA-seq techniques are powerful tools

based on next generation sequencing technologies [16] for monitoring RNA abundance to detect

genetic variation. Specifically, for RNAseq, the sequenced RNA fragments are aligned with refer-

ence genome sequences, and the number of sequence fragments assigned to each gene is counted

for each sample. Then we can compare read counts between different biological conditions or be-

tween different genetic variants to infer genetic information based on biological systems of interest

[19]. In the analysis of RNA-seq data, read counts do not have a prior upper bound, thus regression

models based on a binomial distribution with a pre-specified number of trails do not apply [34].

Linear regression is therefore not feasible as count data is always a non-negative integer. More

importantly, RNA-seq data presents high overdispersion, implying that the variance of the count

can be much larger than its mean. Given that the sample sizes are typically small for RNA-seq

analysis due to the cost and other factors, statistical modeling needs to address the large variation

from the data and to improve the power of detecting differential gene expressions.

One fundamental clinical interest of applying RNA-seq analysis is to understand the mecha-

nism of post-traumatic stress disorder (PTSD) formulation. PTSD is a common severe psychiatric

disorder that develops following exposure to a life-threatening or traumatic experience [31]. PTSD

is known to cause negative effect on an individual’s life quality via the PTSD condition itself or

the relevant comorbidities. Previous works [12, 18] show that only a small proportion of individ-

uals experience traumatic events will develop PTSD. Meanwhile, the majority of people exposed

to trauma are resilient even after repeated exposures to trauma [35]. In addition, various risk fac-

tors of PTSD have been identified such as low socio-economic status, social support and gender

[33, 6, 15].

Significant individual heterogeneity of either response to trauma or the PTSD development

originates from the individual epigenetic variability. Specifically, previous studies reveal the con-

nection between PTSD and immune system functioning, and several genes such as FKBP5 in-

volved with the immune system are also found to be differentially expressed among PTSD individ-
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uals [27, 32, 17]. In particular, previous work [13] has identified monocytes as a key cell type in

differentiating male subjects with versus without lifetime PTSD. In addition, rodent studies have

implicated peripheral monocytes in inducing anxiety-like behavior through trafficking of proin-

flammatory monocytes to the brain via activated microglia. Following this line of research, in this

paper, we collect RNA-seq data from the well-designed lab experiments to investigate differential

expression of genes in human microglia cells under different immune characteristic environments.

This is an important step for understanding the role of microglia cells and immune-related genes

in PTSD development.

The main challenge in analyzing microglial RNA-seq datasets lies in the high and heteroge-

neous overdispersion in the read counts. As an illustration, Figure 1 shows the histogram of the

empirical RNA read counts from microglial data, where the read counts are highly spread out and

the variance can be much larger than the mean. Several differential expression analysis methods

have been developed to address the overdispersion issue in RNA-seq read counts. Among these

methods, the DESeq [1] and EdgeR [23] are the most popular and are implemented and available

using the R [8]. Specifically, the DESeq analyzes count data by using a shrinkage estimation for

dispersions as well as fold changes to improve stability and interpretability of estimates. EdgeR is

designed for the analysis of replicated count-based expression data, and is based on the method de-

veloped by Robinson and Smyth [25] using an overdispersed Poisson model to account for the read

count variability. However, most existing methods adopt the shrinkage strategy when estimating

the level of overdispersion by assuming that genes with similar expression strength have homoge-

neous dispersion levels. Although overdispersion regularization helps to increase the robustness of

inference against the uncertainty due to limited sample size, it decreases the discriminative power

in detecting differentially expressed genes with strong overdispersion effects at the population

level.

In this paper, we propose a new differential expression analysis framework based on general-

ized linear modeling. Compared with other popular RNA-seq analysis methods such as DESeq

and EdgeR, the main advantages of the proposed method for differentially expressed heteroge-
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neous overdispersion genes testing (DEHOGT) are as follows. First, our method jointly estimates

the fold change and overdispersion parameters over samples from all treatment conditions, which

increases the effective sample size and leads to more accurate inference. Second, and more im-

portantly, our model adopts a within-sample independent structure among genes without assuming

that genes with similar expression strength have homogeneous dispersion levels. Therefore, our

method can better account for the heterogeneity in count dispersion and select more relevant genes.

Third, our method allows for fully independent gene-wise inference and hence can achieve compu-

tational scalability to handle large gene datasets by implementing parallel computing. Finally, the

proposed method enjoys the flexibility of adapting different overdispersion patterns by allowing

different count generating distributions in the inference procedure.

Read count from Microglia RNAseq Data
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Figure 1: The overdispersion in the real RNA-seq count data

2 Methodology

We develop a new differentially expressed gene testing procedure to account for the heterogeneity

in gene-wise overdispersion levels. Traditionally, Poisson and multinomial distributions are used

to model count data with large variance. However, the variance of RNA sequence counts tends to
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be much larger than that of the Poisson or multinominal distribution [30]. Overlooking the overdis-

persion could result in biased and misleading inference about gene association to the response of

interest. To overcome this limitation, we first introduce adaptive distribution modeling in this pa-

per to analyze the overdispersed RNA-seq count data. We utilize a quasi-Poisson distribution and

a negative binominal distribution as the read count, thus generating a distribution similar to the

overdispersion pattern which is based on empirical data. Specifically, we denote Y as the random

count response, and the quasi-Poisson distribution satisfies:

E(Y ) = µ, ; Var(Y ) = θµ, (1)

where µ > 0 is the mean of Y , θ ≥ 1 denotes the overdispersion parameter, and larger θ indicates

higher overdispersion level. Although µ is larger than 0, Y can be any nonnegative integer. Note

that Poisson model assumes that the variance is equal to the mean, e.g., θ = 1. In contrast, a

quasi-Poisson distribution provides more flexibility to allow variance increases as a linear function

of the mean. Accordingly, the quasi-Poisson regression generalizes the Poisson regression and is

adopted to model an overdispersed count variable. The quasi-Poisson model is characterized by

the first two moments, i.e., mean and variance. Besides the quasi-Poisson distribution, the negative

binominal distribution can also be used to model overdispersed count data satisfying:

E(Y ) = µ, ; Var(Y ) = µ+ µ2/θ, (2)

where θ > 0 is the overdispersion parameter, and smaller θ indicates higher overdispersion level.

Similar to the quasi-Poisson distribution, the negative binominal distribution is characterized by the

mean and variance while modeling the variance as a quadratic function of the mean. In the follow-

ing, we denote the quasi-Poisson distribution and negative distribution as quasi-Poisson(µ, θQP )

and negative-binomial(µ, θNB), respectively. In addition, we use NB and QP as the abbrevia-

tion of negative binomial and quasi-Poisson distribution. In Figure 1, we illustrate the distribution

density functions by fitting the empirical read counts in our empirical data from microglia cells
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(see Methods) with 1) Poisson distribution, 2) negative binomial distribution, and 3) quasi-Poisson

distribution, respectively. Compared with the Poisson distribution, both the negative binomial and

quasi-Poisson distributions provide better approximation by capturing the overdispersion in read

counts.

In addition, the read counts of a gene can be affected by other factors in an experiment other

than its expression level in the RNA-seq. Therefore, instead of directly modeling the raw count data

Y , we first perform count normalization, which makes the expression levels of genes more com-

parable and accurate between samples. We utilize the Trimmed Mean of M-values normalization

(TMM) [24] adopted by EdgeR to compute the normalization factors that correct sample-specific

biases. TMM is recommended for most RNA-Seq data where most genes are not differentially

expressed across any pairs of the samples. Specifically, we first calculate the normalization factors

as the median ratio of gene counts relative to the geometric mean per gene within a specific sample.

The normalization factors account for two main non-expression factors; e.g., sequencing depth and

RNA composition before between-sample comparison [24]. Consequently, we divide raw counts

by sample-specific size factors to yield the effective read count for cross-sample comparisons.

The proposed DEHOGT workflow combines the above ingredients to identify differentially

expressed genes. Compared with the two popular RNA-seq analysis methods DESeq and EdgeR,

the main difference of the proposed method is at the model fitting step of the above algorithm,

where the overdispersion parameters {θi} are estimated for each gene individually. The DESeq

and EdgeR estimate the overdispersion parameters by pooling the samples from different genes

under the assumption that genes with similar expression strength also share similar overdispersion

levels. In contrast, the proposed method does not rely on the homogeneous dispersion assump-

tion and can capture the heterogeneity in different genes’ expression levels, especially when the

overdispersion of gene is high. In addition, the proposed method allows one to choose different

working distributions in Step 3 to model the RNA-seq count data to accommodate different asso-

ciations between mean and variance presented in the empirical read count data. This provides us

additional flexibility in modeling the overdispersion patterns to achieve more accurate read count
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fitting. Consequently, correctly specified read count overdispersion patterns can lead to higher

statistical power of post-hoc testing to detect differentially expressed genes.

We summarize the proposed method (DEHOGT) for the RNAseq read count for detecting

differentially expressed (DE) genes as follows. Assume that there exists a total of R different

treatments and S samples where each treatment has multiple samples as replicated measurements.

We index the gene and sample measurements as g and s such that g = 1, 2, · · · , N and s =

1, 2, · · · , S. First, the read count data is modeled via one of the following generating distributions:

Ygs/Ks ∼ quasi-Poisson(µgs, θ
QP
g ), Ygs/Ks ∼ negative-binomial(µgs, θNBg ),

where Ks denotes the normalization factor for the sth sample obtained by the TMM method. To

determine the generating distribution, we check the overdispersion pattern between Es(Ygs/Ks)

and Vars(Ygs/Ks) from the empirical data. A better quadratic function fitting leads to the choice of

a negative binomial distribution and a better linear relation fitting leads to the quasi-Poisson. Here

we assume that the gene-wise dispersion level is constant across all samples to estimate the quasi-

Poisson distribution θQP , or the negative binominal distribution θNB, by utilizing information from

samples under different treatments.

To differentiate genes’ read counts under different treatments, we model the genewise read

count mean via the following generalized linear model:

log µgs = β(1)xg + β(2)
g T>

s ,

where β
(2)
g = (β

(2)
g1 , β

(2)
g2 , · · · , β

(2)
gR) represents the fold change of the gth gene under R different

treatments, and Ts ∈ {0, 1}R is the dummy coding for the treatment membership of the sth sample

such that Tsr = 1 when the sth sample belongs to treatment r, r = 1, · · · , R. In addition, xg ∈ Rp

are the gene-wise covariates, so that our method can further adjust other non-expression factors to

reduce the bias in inferring the genes’ expression level, where R denotes a real number.

Given that {β(2)
g } represents the gene-wise expression level under different treatments, we can
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infer whether the gth gene is differentially expressed under the two treatments r1 and r2 based on

the linear hypothesis testing H0 : β
(2)
gr1 − β

(2)
gr2 = 0. Then we can identify the DE genes under the

treatment comparison pair (r1, r2) when the corresponding p-value is smaller than a specific cutoff.

To control the type-I error of simultaneously testing on multiple genes, we adopt the Benjamini-

Hochberg procedure [3] to adjust the gene-wise p-value, and control the false discovery rate. In

addition to the adjusted p-value, the magnitude of the logfold change is also suggested as another

criterion for choosing DE genes with a logfold change of log2 |β
(2)
gr1−β

(2)
gr2| larger than 1.5 [20, 21].

Therefore, we combine these two criteria, and select the DE genes with an adjusted p-value smaller

than 0.05 and an absolute logfold change larger than 1.5.

Our proposed DEHOGT algorithm is summarized as follows:

Algorithm: DEHOGT

1. (Input): For the ith gene i = 1, · · · , N , input read counts {Yis}Ss=1 from S samples, the

covariates xi associated with the ith gene, and the treatment assignment for each sample Ts ∈

{0, 1}R from each gene, (s = 1, · · · , S where R is the number of treatments). Specifying

the working distribution indicator I:

I =


1, choose the quasi-Poisson,

2, choose the negative binominal.

2. (Read count normalization): Obtain normalization factor for the ith gene: Ki = TMM({Yis}Ss=1)

(i = 1, · · · , N ) where TMM denotes the Trimmed Mean of M-values normalization.

3. (Fitting the generalized linear model): For the ith gene, estimate the fold change parameter

β
(2)
i and the overdispersion parameters θi:

(β̂
(2)
i , θ̂i) = argmax

β,θ

S∏
s=1

fI(Yis/Ks, µi(β), θi), (3)

log µi(β) = β(1)xi + β
(2)
i T>

s , (4)
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where fI denotes the probability density function of the chosen working distribution.

4. (Post-hoc testing): For the ith gene and a specific interesting treatment pair (r1, r2), perform

H0 : β̂(2)
gr1
− β̂(2)

gr2
= 0,

and obtain p-value pi.

5. (DE gene filtering): For the treatment pair (r1, r2), obtain gene-wise adjusted p value, using

Benjamini-Hochberg [3] adjusting for false positive discovery:

{padji }Ni=1 = Benjamini-Hochberg({pi}Ni=1).

Select the ith gene if padji > 0.05 and log2 |β
(2)
ir1
− β

(2)
ir2
| > 1.5.

6. (Output): Set of differentially expressed genes and the corresponding fold change estimation

β̂(2).

3 Simulation Studies

We compare the proposed DEHOGT method with two popular RNA-seq analysis methods DESeq

[1] and EdgeR [23] in detecting differentially expressed genes on the simulated read count data

and microglia cell RNA-seq data. In the first simulation setting, the discrepancy in expression level

between the treatment and control group is weak for DE genes, while the average expression levels

for both groups are high. In the second simulation setting, the expression discrepancy between the

treatment and control group is strong for DE genes, while the average expression levels for both

groups are low.
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3.1 Read count with low discrepancy of expression level

In the first setting, we simulate the read count data following the negative binomial and the quasi-

Poisson distribution:

Ygs ∼ QP
(

mean = µgs, var = µgsθ
QP
g

)
, g = 1, · · · , N, s = 1, · · · , |S|,

Ygs ∼ NB
(

mean = µgs, var = µgs
(
1 + µgs/θ

NB
g

))
, g = 1, · · · , N, s = 1, · · · , |S|,

where g ∈ {1, · · · , N} denotes gene indexes and the total number of genes N = 12, 500. We

use GDE ⊂ {1, · · · , N} to denote the set of differentially expressed genes with |GDE| = 2500. In

addition, s ∈ S and |S| = 12 denote the sample index with S = S1 ∪ S2, |S1| = |S2| = 6, where

S1 and S2 indicate the samples in the control group and the treatment group, respectively. Here

the mean parameters µgs are similar to setting [29] in the RNA-seq data analysis. Specifically, the

formulations are:

µgs = E [Ygs] =


Mgs + ηg, g ∈ GDE, s ∈ S2

Mgs, o.w

,

where we sample Mgs from Unif[0, Us], and Us ∼ Unif[600, 800] is the sample-wise sequencing

depth. Furthermore, we sample ηg from exp(1/100) as the up-regulated signal of the differentially

expressed genes. We consider three different overdispersion levels for the read counts from the

quasi-Poisson distribution as

θQP
g ∼ Unif(1, 5), θQP

g ∼ Unif(5, 10), θQP
g ∼ Unif(10, 20),

where a larger θQP
g indicates a greater overdispersion level. Similarly, we consider three overdis-

persion levels under the negative binomial read counts as

θNB
g ∼ Unif(0.1, 0.2), θNB

g ∼ Unif(0.2, 0.5), θNB
g ∼ Unif(0.5, 1),

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.21.529455doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529455
http://creativecommons.org/licenses/by-nc-nd/4.0/


where a smaller θNB
g indicates a greater level of overdispersion.

We compare the performance of DESeq [1], EdgeR [23], and the proposed DEHOGT in identi-

fying differentially expressed genes using an adjusted p value less than 0.05 and an absolute value

of logfold change larger than 1.5. We first investigate the false negative rates from the compar-

ison methods. The results under different data generations (quasi-Poisson or negative binomial)

and different overdispersion levels are shown in Figures 2 and 3. Figures 2 and 3 suggest that the

proposed DEHOGT method reaches the lowest false negative rate over competing methods under

different overdispersion levels, indicating that most of the genes selected by the proposed method

are differentially expressed. Note that the DEHOGT (NB) under the true negative binominal set-

ting always achieves the lowest false negative rate when the cutoff of the adjusted p-value is set as

0.05. This is because the p-values from DEHOGT under NB tend to be smaller than for DEHOGT

under QP. The better performance of DEHOGT under QP for the ROC and AUC (area under the

ROC curve) implies that we can select a p-value cutoff larger than 0.05, under which the false

negative rate of DEHOGT under QP can be smaller than the false negative rate of DEHOGT under

NB.

We also investigate the overall DE gene discriminative power of different methods when the

cutoff point of the adjusted p-value changes over the range from 0 to 1, as measured by the AUC

(area under the ROC curve). Note that the AUC value is between 0 and 1, and a larger AUC value

indicates that the algorithm can achieve an overall lower false positive rate and lower false negative

rate simultaneously. The comparisons are shown in Figures 4 and 5, illustrating the AUC values

for competing methods under different generating distributions and overdispersion levels.

The above results indicate that the proposed DEHOGT method outperforms both the DESeq

and edgeR methods, and the proposed method can achieve the optimal AUC if the model is cor-

rectly specified. Specifically, DEHOGT under QP attains a higher AUC than DEHOGT under

NB under varying θQP
g when the read counts are generated from the quasi-Poisson distribution.

Similarly, DEHOGT (NB) attains higher AUC then DEHOGT (QP) under varying θNB
g if the read

counts are generated from negative binomial distributions.
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Figure 2: The false negative rate from different methods when the read counts follow the quasi-
Poisson distribution with different overdispersion levels θQP

g in simulation setting 1. The bars
represents the standard deviation of the false negative rate over repeated experiments.

3.2 Read count with high discrepancy of expression level

In the second simulation setting, we simulate the read count data of the moderate overdispersion

level in RNAseq read counts. Following the notations in simulation 1, we simulate the read count

data from both the quasi-Poisson distribution and the negative binomial distribution as

Ygs ∼ QP
(

mean = µgs, var = µgsθ
QP
g

)
, g = 1, · · · , N, s = 1, · · · , |S|,

Ygs ∼ NB
(

mean = µgs, var = µgs
(
1 + µgs/θ

NB
g

))
, g = 1, · · · , N, s = 1, · · · , |S|,

where we choose N = 10, 000 and S = S1 ∪ S2, |S1| = |S2| = 6. The GE genes are randomly

selected and |GDE| = 2, 000. We consider three different overdispersion levels for the read counts

from the quasi-Poisson distribution as

θQPg ∼ Unif(50, 100), θQPg ∼ Unif(20, 50), θQPg ∼ Unif(10, 20).

Similarly, we also consider three overdispersion levels under negative binomial read counts as

θNBg ∼ Unif(0.1, 0.2), θNBg ∼ Unif(0.2, 1), θNBg ∼ Unif(1, 2).
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Figure 3: The false negative rate from different methods when the read counts follow the negative
binomial distribution with different overdispersion levels θNB

g in simulation setting 1. The bars
represents the standard deviation of the false negative rate over repeated experiments.

We differentiate DE genes and non-DE genes with different sample means such that

µgs ∼ Unif(1, 500), s ∈ S, g /∈ GDE,

µgs ∼


Unif(1, 500), s ∈ S1, g ∈ GDE

Unif(1, 500) + d3.5× µ̄gS1e, s ∈ S2, g ∈ GDE

where d·e is the ceiling function, and µ̄gS1 = 1
|S1|
∑

s∈S1
µgs.

Notice that the expression discrepancy between the treatment and control group is strong for

DE genes, while the average expression levels for both groups are low. To select the DE genes, we

follow the selection criterion in the previous simulation such that the absolute value of log2fold

change is larger than 1.5 and the adjusted p value is smaller than 0.05. We first investigate the false

negative rates from different methods, and the results are illustrated in Figure 6 and 7.

The numerical results illustrates that the proposed method DEHOGT has a lower false nega-

tive rates than DESeq and EdgeR under different read count generation distributions and different

overdispersion levels. Specifically, when the read count distribution is correctly specified, our

method consistently achieves lower false negative rate than the EdgeR and DESeq. More impor-

tantly, the improvement from the DEHOGT increases as the degree of overdispersion in the read
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Figure 4: The area under the ROC curve from different methods when the read counts follow the
quasi-Poisson distribution with different overdispersion levels θQP

g in simulation setting 1.

count increases for both quasi-Poisson and negative binominal distributions.

We also investigated the overall discriminative power of the DE gene using different meth-

ods when the adjusted p-value cutoff varies between 0 and 1 instead of using 0.05. The overall

classification performance is measured by the AUC. The Figures 9 and 8 illustrate the AUC from

competing methods under different settings of read counts.

The above results show that the proposed DEHOGT method achieves a higher AUC in detect-

ing the DE genes than the DESeq and EdgeR, indicating that our method offers a better balance

between decreasing false positive rate and false negative rate. In addition, the improvement from

our method is more significant as the overdispersion level increases, which is consistent with the

aforementioned false negative rate comparison. A higher AUC from the DEHOGT method also

implies that it can be more robust against the selection of different cutoff of p-value for DE genes.

We also illustrate the ROC curves in Figure 10 for two representative cases where read counts

follow the negative binomial distribution with θNB ∈ (1, 2), and the quasi-Poisson distribution

with θNB ∈ (50, 100), respectively.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.21.529455doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529455
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: The area under the ROC curve from different methods when the read counts follow the
negative binomial distribution with different overdispersion levels θNB

g in simulation setting 1.

4 Application on Microglia RNA-seq read count data

In this section, we apply the proposed DEHOGT method, DESeq, and EdgeR in the study of post-

traumatic stress disorder described in the Introduction section. Specifically, we aim to identify

differentially expressed genes from microglia cells that are relevant to the PTSD progress. The

RNA-seq data were collected by Uddin research team and Wildman lab at the University of the

South Florida. The research performed in-vitro experiments on microglial cells which utilized

stress hormones to imitate immune environments similar to PTSD. The function of stress hor-

mones is to adjust the human interior environment, provide energy, and increase heart rate when

experience stress [22]. The experiments exposed microglial cells to dexamethasone (dex) and hy-

drocortisone (cort) serving as stress hormones. The alcohol is also utilized as an additional control

treatment to validate if changes in gene expressions are due to the exposure to stress hormones or

just a random treatment (alcohol). Specifically, the experiments grew microglial cells under one of

the four treatments: hydrocortisone, dexamethasone, alcohol (vehicle), or control. After exposure

of three days, RNA-seq data was extracted from the cells on the third day and on the final day of

the washout period (day 6), respectively. The goal of study is to identify the genes that are differ-

entially expressed in microglia cells when exposed to different hormones and to determine if the

dose of the hormone affects gene expression levels.
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Figure 6: The false negative rate from different methods when the read count follow the quasi-
Poisson distribution with different overdispersion levels θQP . The variance of FNR obtained from
repeated experiments is illustrated using the bars.

More specifically, there are a total of 20,052 expressed genes after quality control preprocess-

ing. There is a total of 9 different treatments with the combination of media (dex, cort, vehicle, and

control) and dosage (low and high): dex high, dex low, cort high, cort low, dex vehicle high, dex

vehicle low, cort vehicle high, cort vehicle low, and control. On day 3 (time point 3), three repeated

samples are collected under each treatment. On day 6 (time point 6), three repeated samples are

collected under treatments dex high, dex low, cort high, and cort low, and one sample under dex

vehicle high, dex vehicle low, cort vehicle high, and cort vehicle low.

We first investigated the level of empirical dispersion in the microglia RNA-seq read counts.

Specifically, we examine the relation between sample count mean and sample count variance across

all genes. Figure 11 illustrates a quadratic growth of count variance over count mean. In addition,

we fit a quadratic regression on count variance over count mean, where an adjusted R2 coefficient

reaches 0.66. Therefore, we choose to use a negative binomial distribution as the read counts

generating process in the proposed DEHOGT method.

We utilize DEHOGT, DESeq, and EdgeR to select DE genes under the following 7 treatment

comparison pairs: dex high at time point 3 and control (dexh3 vs control), dex high at time point 6

and control (dexh6 vs control), cort high at time point 3 and control (corth3 vs control), cort high at
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Figure 7: The false negative rate from different methods when the read count follows a negative
binomial distribution with different overdispersion levels θNB.

time point 6 and control (corth6 vs control), dex vehicle high and dex high at time point 3 (dexvh3

vs dexh3), dex vehicle low and dex low at time point 3 (dexvl3 vs dexl3), cort vehicle high and cort

high at time point 3 (cortvh3 vs corth3). In selecting DE genes between the two treatments, we

follow the criterion in Section 2 in that the adjusted p value is smaller than 0.05, and the log2fold

change is larger than 1.5.

We first illustrate the number of DE genes selected by competing methods. Table 1 shows that

the proposed method tends to select more genes than the other two methods, especially compared

to the DESeq. In the exploratory stage, it is critical to include as many relevant genes as possible

for the downstream analysis. The DEHOGT method is more effective in reducing the false negative

rate in detecting PTSD-related genes by identifying a larger candidate pool of DE genes.

We conduct detailed analysis for the DE genes based on three methods for each treatment pair.

In general, we investigate the overlapping in DE genes from three methods, where the findings are

illustrated via the Venn diagram in Figure 12 to Figure 18. Notice that the proposed DEHOGT

method selects more DE genes than DESeq and EdgeR for all pairwise comparisons between

treatments except dexvh 3 vs dexh 3 and dexvl 3 vs dexl 3, demonstrating that the proposed method

can identify more DE genes to reduce the potential risk of missing underlying relevant genes.

In the following, we provide an interpretation for the treatment pair dexh6 versus control. The
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Figure 8: The AUC from different methods when the read count follows the quasi-Poisson dis-
tribution with different overdispersion levels θQP . The variance of FNR obtained from repeated
experiments is illustrated using the bars.

interpretation of other treatment pairs can be conducted similarly. The Venn diagram in Figure 13

shows that all the DE genes selected by the DESeq are also selected by EdgeR, and 86.7% of the

DE genes selected by DESeq are also selected by DEHOGT. In addition, 61.7% of the DE genes

selected by EdgeR are detected by DEHOGT.

The proposed method identifies three genes CRISPLD2, TSC22D3, and PSG1 which are differ-

entially expressed under the three treatment comparisons: dexvh 3 versus dexh 3, dexvl 3 versus

dexl 3, and cortvh3 versus corth3. Specifically, the glucocorticoid-responsive gene CRISPLD2 is

found to be differentially expressed in read counts from an RNA-seq experiment with muscle cells

exposed to dexamethasone [10]. The another glucocorticoid-responsive gene TSC22D3 (GILZ) is

found to be differentially expressed under gonorrhea or chlamydia exposure based on many animal

and human gene studies that examine different cell types [7, 9]. These evidences support the fact

that TSC22D3 serves as a mediator for the anti-inflammatory activity of gonorrhea or chlamydia

summarized in [26]. The gene PSG1 is found to activate the underlying beta 1 (TGF-β1) known as

transforming growth factor, which is an essential cytokine process in suppression and immunoreg-

ulation of inflammatory T cells [28, 5].

We also list the significant DE genes uniquely selected by the three methods in Table 2, which
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Figure 9: The AUC from different methods when the read counts follow the negative binomial
distribution with different overdispersion levels θNB.

demonstrates that most of the DE genes identified by DESeq are also selected by DEHOGT and

EdgeR. Specifically, the gene FKBP5 is identified by the proposed method but not identified by the

other methods under the comparison dexh3 versus dexvh3. The gene FKBP5 is a co-chaperone ad-

just the activity of glucocorticoid receptor. FKBP5 is known as an important modulator of respond-

ing stress. In many studies using different cell types, the dysregulation phenomenon of FKPB5 is

found in many stress-related psychopathologies via investigating single nucleotide polymorphisms

[4, 2], gene expression [11], and DNA methylation profiles [14].

In addition, we examine the most significant DE genes among the overlaps of the three meth-

ods in Figure 19 to Figure 24. For treatment pair dexh6 versus control, Figure 20 lists the 30 most

significant DE genes which are overlapping for all three methods, and the bar charts with different

colors represent the rank of p-values from the three methods. A shorter bar indicates a smaller

p-value and therefore a more significantly differentially expressed genes under dex high and con-

trol comparison. The DEHOGT method selects genes ROR1, FAT3, TLR4, CERNA2, ADPRHL1,

NID2, CRISPLD2, and ABCA8 as the top 8 significant DE genes, and these genes are also among

the top significant DE genes selected by EdgeR and DESeq. In general, our method provides a list

of the top significant DE genes which is consistent with the DESeq and EdgeR in comparing dexh6

versus control. This cross-validation on DE genes via the three methods confirms the association
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Figure 10: The ROC curve from different methods when the read counts follow the negative bino-
mial distribution with θNBg ∈ (1, 2) and quasi-Poisson distribution with θQPg ∈ (50, 100).

between PTSD and the top DE genes which are identified by the DEHOGT. In particular, the pre-

viously mentioned genes TSC22D3 and PSG1 are identified by all three methods for the vehicle

treatment comparisons: dexvh 3 versus dexh 3, dexvl 3 versus dexl 3, and cortvh3 versus corth3.

These results provide evidence of further need to explore their roles in the formulation of PTSD.

Treatment Pairs
Methods dexh3 vs control dexh6 vs control corth3 vs control corth6 vs control dexvh3 vs dexh3 dexvl3 vs dexl3 cortvh3 vs corth3
DESeq 221 45 166 1 255 118 112
EdgeR 419 115 308 3 469 180 216

DEHOGT 981 237 355 582 383 148 256

Table 1: The number of selected DE genes from microglia RNA-seq data under different treatment
comparisons.

5 Discussion

In this paper, we propose a revised differential expression analysis procedure DEHOGT for identi-

fying differentially expressed genes based on overdispersed RNA-seq read count data. DEHOGT

adopts a joint estimation of logfold changes that incorporates samples from all treatments simulta-

neously to utilize cross-treatment information. In addition, the proposed method takes advantage

of within-treatment independence structures among genes to increase the effective sample size,
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Figure 11: The dispersion of genewise RNA read counts. Each dot corresponds to a sample count
from a specific gene.

which leads to stronger power in detecting DE genes. Furthermore, our method enjoys flexibil-

ity in utilizing different read count generating distributions instead of fixing only one negative

binominal distribution as in the popular methods such as EdgeR and DESeq. This allows us to

choose a generating distribution adopted to the empirical dispersion level. Therefore, DEHOGT

has the potential to be applied for other genetic datasets with similar challenges of heterogeneous

overdispersion levels.

In our simulation study, we demonstrate that the proposed method achieves better performance

in detecting DE genes compared with the EdgeR and DESeq methods, especially when the per-

treatment sample size is relatively small. The numerical experiments suggests that DEHOGT is

less conservative in selecting DE genes due to adopting the individual fitting procedure. This

property enables our method to have improved performance in controlling the false negative rate

which is more critical for downstream analysis.

We further apply our method and compare it with EdgeR and DESeq on a real application

in a microglia RNA-seq dataset collected by our team. Specifically, our method identifies more

potential genes which may be potentially more relevant to PTSD than either EdgeR and DESeq.
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Methods
Treatments DEHOGT EdgeR DESeq

dexh3 vs control
BACE1, H19, LOC102724852, VSIR, SLC4A4 PSG11, WNT7B,KLF15, SNORA74A, IGFN1

ITGB3, LTBP2, ELF1, EPS8, DUBR TNFRSF11B, EPB41L3, LCT-AS1, MYO5B, MMP1

dexh6 vs control
SLC16A12, GCNT1, SLC7A2, FGD4, AOX1 AMIG02, SRPX2, PADI1, STAMBPL1, SHC3

DUBR, DGKI, NFKBIA, EMILIN3, KCNIP3 KCNJ8, CYP24A1, KRT18P29, FAP, SOX3

MARCHF1, TXNIP, IGFBP7, EPSTI1, PLXNA2 LTBR, SLC28A3, TRHDE, LINC00402, MY05B

corth3 vs control
PRKACB, ABCB1, KLF9, SLC16A12, LTBP1 RGMB, CTSC, FGF1, PSG4, ST6GAL2

UGT2B7, MARCHF1, LAMA5, H19, LOC102724852 FOSL1, SERPINE2, TRPC4, CREB5, NPPB

KCNIP3, COL5A1, NFKBIA, MEGF6, FGD4 ADAMTS1, ADAMTSL1, NLRP10, EVA1A, AGTR1

corth6 vs control
ROR1, NID2, H3-2, ACTBL2, CHST2 NHS

EMILIN3, INAVA, RPEL1, PTGER2, MROH6

BBS12, CAMSAP3, TYSND1, TMEM116, MRPL38

dexh3 vs dexvh3
GCNT1, ABCB1, SLC26A2, ITGB3, LTBP2 MAP3K7CL, QSOX1, SMURF2, SLC8A1, CLDN11

IGFBP7, COL5A1, DUBR, FKBP5, ADAMTS7 KHDRBS3, CREB5, GPRC5A, NR2F2, KRT17

EFEMP1, PLXNA2, CPM, LPIN3, BIRC3 ADAMTSS,NR2F2-AS1,HIF1A-AS3,SRPX2,KCNMA1

dexl3 vs dexvl3
AGTR1, SCN9A, ABCB1, ELOVL6, SPSB1 PLAUR, KRT17, AJAP1, MARCH, COL13A1 TGFBI, CPA4, CHST2, DGKI, KRT18P11

DEPTOR, SPOCK1, NCAM2, CLDN1, KRT18P29 ITGB3, EPSTI1, COL4A4, DNER, TGFB3 SNORA74A, LOC102724434, HNRNPA1P33, KRTAP4-8, RHEX

ITGA7, USP44, SRP14-DT, DPYD, STARD8 HAS3, ANGPTL4, HCN3, ALPP, DNAH8 SENCR, F8, PALMD, CCL26, KRTAP2-4

corth3 vs cortvh3
SLC26A2, MARCHF1, DOCK4, EIF1B-AS1, CREB5 EFHD1, SLC1A3, SAA1, WFDC21P, ITGA1

EVA1A, PDZK1, COL13A1, FRMD6-AS1, FBXW4 CEBPD, GJD2, EGR2, KDR, GSX2

CYP24A1, AJAP1, NUPR1, ATP6V1G2, MGST2 CCDC30, ASAH1-AS1, GGTLC3, LINC00886, LOC100506207

Table 2: Top 15 unique DE genes unique selected by DEHOGT, EdgeR, and DESeq.

In addition, the cross-validation among EdgeR, DESeq and the proposed method provides a rich

and robust candidate pool for genes relevant to PTSD. These results were obtained in the microglia

dataset despite having issues of overdispersion and small sample size.

The popular existing methods DESeq and EdgeR identify differentially expressed genes by

adopting an aggregate estimation strategy for read count overdispersion levels, which relies on the

key assumption that genes with similar expression levels have similar overdispersion levels. The

numerical results in this paper indicate that this assumption might be questionable under the sce-

nario when heterogeneity of gene expression level is high. The violation of this assumption can

undermine the detection power of methods based on aggregate estimators of overdispersion, espe-

cially when the overdispersion level is high. In contrast, estimating overdispersion levels for each

gene separately can be more robust under high heterogeneity in gene expressions. On the other

hand, the proposed independent estimation scheme integrates samples from different treatments

instead from different genes, which might lose a certain amount of statistical testing power espe-

cially when the sample size is small. One direction worth of further exploration is to incorporate

neighborhood similarity structures among genes such that the overdispersion estimation of a spe-
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cific gene can borrow the information of samples from correlated genes, therefore we can increase

the effective sample size for estimating overdispersion levels. A potential strategy could utilize

gene-wise covariate variables or develop an adaptive fused-type penalty on gene overdispersion

levels.

6 Appendix: Microglia cell experiment design

The microglial cell line HMC3 (ATCC CRL-3304, Manassas, Virginia) was used for in vitro ex-

perimentation following successful cell line authentication and Mycoplasma testing (Genetica,

Burlington, NC). HMC3 cells (passage eight) were seeded in T-25 flasks with 2 x 105 viable cells

and incubated at 37°C and 5% CO2. After 24 hours, the growth medium in each T-25 was replaced

with one of the following treatments: dexamethasone (1 or 0.01 µM), hydrocortisone (10 or 0.01

µM), vehicle (ethanol alcohol) or control (untreated media). Cells were incubated in treatment

media for three days at 37°C and 5% CO2 and imaged daily using the Axio Vert.A1 inverted mi-

croscope (Zeiss Oberkochen, Germany). At three days post-exposure (D3), cells were collected

from each flask individually, quantified on the Countess II cell counter (Invitrogen Waltham, MA),

seeded at 2 x 105 viable cells/flask in new T-25 flasks with normal growth medium, and incubated

for three additional days (i.e., washout period). The remaining D3 cell suspension for each flask

was divided equally between two microcentrifuge tubes, pelleted and washed with PBS. One cell

pellet per flask was placed in -80°C storage for future DNA extraction; the remaining cell pel-

let underwent RNA extraction using the RNeasy Mini Kit (QIAGEN, Hilden, Germany) protocol

adapted for the QIAcube automated system (QIAGEN). On the final day of the washout period

(D6), cells from each flask were imaged, collected in suspension and then quantified on the Count-

ess II. Cell suspensions were split equally into two aliquots and then prepped for nucleic acid

extraction as described for D3.

RNA samples from D3 and D6 were DNase treated (Dnase I kit; Sigma), quantified on the

Qubit (RNA BR Assay Kit; Invitrogen) and scored for RNA integrity on the TapeStation (High
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Sensitivity RNA ScreenTape; Agilent). Library preparation was performed following the Illumina

TruSeq Stranded Total RNA Library Prep Kit protocol (Illumina, San Diego, CA) with TruSeq

RNA Single Indexes (Set A and B; Illumina). Library quantity and quality were assessed using the

Qubit 1X dsDNA HS Assay (Invitrogen), TapeStation High Sensitivity D1000 ScreenTape (Agi-

lent), and using the KAPA Library Quantification Kit (Roche Basel, Switzerland) for the LightCy-

cler 96 (Roche). RNA sequencing was conducted on the NextSeq 550 (Illumina) using the High

Output Kit with 76 paired-end cycles (Illumina).
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8 Availability of data and materials

The datasets analysed during the current study are available in the NCBI’s Gene Expression Om-

nibus (GEO) repository and are accessible through GEO Series accession number GSE219208 and

link https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE219208.

The experiment description and algorithm implementation are available via the following we-

blinks: https://github.com/xiaobai0518/DEHOGT. Operating systems: Windows, Linux, MacOS

Programming language: R. Other requirements: RStudio. License: GPL-3.0.
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Figure 12: The selected DE genes from DEHOGT, DESeq, EdgeR under treatment comparison
dexh3 versus control.

Figure 13: The selected DE genes from DEHOGT, DESeq, EdgeR under treatment comparison
dexh6 versus control.
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Figure 14: The selected DE genes from DEHOGT, DESeq, EdgeR under treatment comparison
corth3 versus control.

Figure 15: The selected DE genes from DEHOGT, DESeq, EdgeR under treatment comparison
corth6 versus control.
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Figure 16: The selected DE genes from DEHOGT, DESeq, EdgeR under treatment comparison
dexvh3 versus dexh3.

Figure 17: The selected DE genes from DEHOGT, DESeq, EdgeR under treatment comparison
dexvl3 vs dexl3.
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Figure 18: The selected DE genes from DEHOGT, DESeq, EdgeR under treatment comparison
cortvh3 vs corth3.

Figure 19: The rank of p-value of selected genes under treatment comparison dexh3 versus control,
a shorter bar indicates a smaller p-value (more significantly differently expressed).
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Figure 20: The rank of p-value of selected genes under treatment comparison dexh6 versus control,
and shorter bar indicates a smaller p-value.

Figure 21: The rank of p-value of selected genes under treatment comparison corth3 versus control,
and shorter bar indicates a smaller p-value.
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Figure 22: The rank of p-value of selected genes under treatment comparison dexvh versus dexh,
and shorter bar indicates a smaller p-value.

Figure 23: The rank of p-value of selected genes under treatment comparison dexvl versus dexl,
and shorter bar indicates a smaller p-value.
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Figure 24: The rank of p-value of selected genes under treatment comparison cortvh versus corth,
and shorter bar indicates a smaller p-value.
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