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Abstract

Aim

The climate variability hypothesis proposes that species subjected to wide variation in climatic conditions
will evolve wider niches, resulting in larger distributions. We test this hypothesis in tropical plants across

a broad elevational gradient; specifically, we use a species-level approach to evaluate whether elevational

range sizes are explained by the levels of thermal variability experienced by species.

Location

Central Andes

Time period

Present day

Major taxa studied

Woody plants

Methods

Combining data from 479 forest plots, we determined the elevational distributions of nearly 2300 species
along an elevational gradient (~209 — 3800 m). For each species, we calculated the maximum annual
variation in temperature experienced across its elevational distribution. We used phylogenetic generalized
least square models to evaluate the effect of thermal variability on range size. Our models included
additional covariates that might affect range size: body size, local abundance, mean temperature and total
precipitation. We also considered interactions between thermal variability and mean temperature or
precipitation. To account for geometric constraints, we repeated our analyses with a standardized measure

of range size, calculated by comparing observed range sizes with values obtained from a null model.

Results
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Our results supported the main prediction of the climate variability hypothesis. Thermal variability had a
strong positive effect on the range size, with species exposed to higher thermal variability having broader
elevational distributions. Body size and local abundance also had positive, yet weak effects, on
elevational range size. Furthermore, there was a strong positive interaction between thermal variability

and mean annual temperature.

Main conclusions

Thermal variability had an overriding importance in driving elevational range sizes of woody plants in the
Central Andes. Moreover, the relationship between thermal variability and range size might be even
stronger in warmer regions, underlining the potential vulnerability of tropical montane floras to the effects

of global warming.

Keywords

Andes, Bolivia, Climate variability hypothesis, Elevation, Forest plots, Madidi, Range size, Trees
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1 INTRODUCTION

Assessing the mechanisms shaping the distribution of species is essential to better understand the
assembly of local communities and the potential consequences of environmental drivers on biodiversity
patterns (Bellard et al., 2012; Nadeau et al., 2017). This is particularly urgent for mountain regions, areas
of great importance for biodiversity conservation (Jung et al., 2021). Mountain ranges are characterized
by high environmental heterogeneity across space and time (Rahbek et al., 2019a), and harbor roughly
one third of terrestrial living organisms, including many small-ranged species (Rahbek et al., 2019b).
Understanding the drivers of montane species ranges, particularly in the tropics, is critical given the
threats that climate change and human modifications of the landscape poses to the distribution and

persistence of species in these regions.

Although species distributions are often modeled as a function of average environmental conditions in a
site or a region, temporal variation in these conditions can have profound effects on population and
species adaptations, and consequently on their distribution. The climate variability hypothesis proposes
that species subjected to wider temporal variation in climatic conditions will evolve tolerances to broader
environmental niches, resulting in wider geographic distributions (Stevens, 1989). Correspondingly,
species experiencing stable environments would develop narrow tolerances and small geographic
distributions. The climate variability hypothesis has been proposed as a potential explanation for some
classical patterns in ecology and biogeography. For example, the increases in range size with latitude
(Rapoport, 1982) could be a consequence of increases in seasonal or daily climatic variability toward
temperate regions (Stevens, 1989; Chan et al., 2016). Similarly, Janzen (1967)’ classic proposition that
tropical mountains represent physiologically stronger filters for organisms than temperate mountain could
also be seen as a special case of the climate variability hypothesis. Janzen’s hypothesized that having
evolved in less variable environments, montane tropical species will likely have limited acclimation

responses and, in consequence, smaller elevational ranges than species in temperate mountains.
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83  Within tropical mountains climatic variability can fluctuate significantly across elevation; for example,

84  daily temperature variation can be dramatic at high elevations, but only mild in the lowlands (McCain,

85  2009). If temporal variation in climate influences species distributions within mountains, then species

86  near tropical mountain tops should have more extensive elevational distributions than species in the

87 lowlands. This extension of the climate variability hypothesis to elevation (ECVH; Stevens, 1992) has

88  been tested in many taxa, producing conflicting results (McCain & Knight, 2013; Chan et al., 2016; Shah

89 etal., 2021). Whereas some studies show increases in range size with latitude and elevation (e.g.,

90  Patterson et al., 1996; Pintor et al., 2015), others have refuted these patterns (e.g., (Hawkins & Felizola

91  Diniz-Filho, 2006; Maccagni & Willi, 2022). Contradictory results have fueled a debate regarding

92  whether species responses to climate variation is only a local phenomenon or a consistent pattern (Rohde,

93  1996; McCain & Knight, 2013). Part of the reason for the inconsistent results among studies testing

94  ECVH could be limitations to analyses or data. Geometric constraints in the distribution of species, for

95 instance, have rarely been accounted for when testing ECVH hypothesis, resulting on strong criticisms on

96 the statistical approaches and assumptions behind these studies (Ribas & Schoereder, 2006; McCain,

97  2009; Macek et al., 2021). Additionally, most studies of ECVH carry out assembly-level analyses, where

98  the average range size for groups of species is used, and analyses focus on how these averages change

99  across space (Rohde, 1992; Stevens, 1992). However, the evolution of climatic tolerances and responses
100 to climatic variability are species-specific and, as such, require species-level analysis. Species-level and
101  high-quality datasets are rare, particularly in diverse tropical regions, preventing species-level tests of

102  ECVH in tropical mountains.

103  Studies testing predictions from the ECVH in vascular plants include only a few examples on the sub-
104  tropical floras of the Himalayas (e.g., Liang et al., 2021; Macek et al., 2021) and the temperate Caucasus
105  mountains (Mumladze et al., 2017), as well as studies focusing on smaller sets of temperate plants that
106  extend ECVH predictions to other species characteristics (e.g., trait plasticity; Molina-Montenegro &

107  Naya, 2012; Maccagni & Willi, 2022). To our knowledge the only study that has directly tested the
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108  climate variability hypothesis on Neotropical plants has focused only on alpine communities in the Andes
109  (>3000 m; Cuesta et al., 2020). This study found that tropical alpine species had narrower thermal niches
110  than temperate species, supporting predictions derived from the classic CVH, but no significant effects of
111  elevation. In consequence, whether temporal climatic variability shapes the distribution of tropical plant
112 species along elevational gradients is yet poorly understood. A thorough analysis of the predictions of
113  ECVH is necessary, particularly in tropical plants, to understand how species respond to climatic

114  variability, and particularly, whether climatic variability can promote the formation of large geographic

115  ranges.

116  Here, we present the most thorough species-level test of the climate variability hypothesis across

117  elevations (ECVH). Specifically, we evaluate whether species with populations experiencing high levels
118  of temperature variation will have larger elevational distributions. For our study, we use data from the
119  Madidi Project (www.madidiproject.weebly.com), a collaborative effort to document and study the plant
120  biodiversity of the Tropical Andes, and possibly the most extensive dataset on tree occurrences in any
121 tropical mountain. Using this data, we evaluate the effect of climate variability while controlling for the
122 effects of geometric constraints and the potential confounding effects of other factors that have been

123 proposed to affect range size, such as species characteristics (e.g., size), species abundance, and local
124  temperature and precipitation. Our dataset and approach provide a unique opportunity to study the forces

125  that drive the distribution of tree species in one of the most species-rich regions of the planet.

126 2 METHODS

127 2.1 Vegetation Data and Elevational Range Sizes

128  Species elevational distributions were determined based on a large network of forest plots distributed
129  along the eastern slopes of the Bolivian Andes (Fig. 1). The network consists of 48 1-ha plots (henceforth
130  large plots) and 458 0.1-ha plots (small plots) ranging in elevation from 209 m (Amazon forests) to 4,347

131 m (tree line). Within plots, all individuals of woody plant species with diameters at breast height (dbh)
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132 equal or above 10 cm (for large plots) or 2.5 cm (for small plots) were measured and identified. Each
133 individual tree was assigned a species or morphospecies name (henceforth simply species), and extensive
134  taxonomic work was conducted to ensure that names were applied consistently throughout all plots. For
135 this study, we used version 5.0 of the Madidi Project plot database

136 (https://doi.org/10.5281/zen0d0.5160379). The species-level data and code necessary to replicate our
137  analyses has been deposited and can be freely accessed in Zenodo ([link will be updated upon

138  submission]).

139  From these data, we removed all cacti (Cactaceae); bamboos (Poaceae), tree ferns (Dicksoniaceae and
140  Cyatheaceae), gymnosperms (Podocarpaceae), and the non-native genera Eucalyptus and Coffea. We also
141 removed plots above 3,800 m in elevation, which were dominated by species of Polylepis and likely

142 managed by local communities. Finally, because we only sampled individuals with a dbh 2.5 cm or larger,
143  species that rarely reach this size might be present in our data but seriously under-represented relative to
144  their true abundances. Thus, we examined the distribution of species-level maximum size values across
145  our dataset and eliminated all species with maximum size below the lowest 5% of the distribution (this is,
146 all  species with maximum size less or equal to 3.24 cm; see Fig. S1). This resulted in the elimination of
147 169 individuals of 126 species. Finally, we eliminated 1,328 individuals that could not be assigned to

148  species or morphospecies (<1% of individuals) and 436 individuals from 16 additional species that could
149  not be placed in the regional phylogeny (see below). After data curation, our dataset contained

150 information on the distribution of 153,084 individuals belonging to 2,292 species across 479 forest plots

151 (48 large plots and 431 small plots).

152  We estimated the elevational distribution of each species in our dataset by recording their highest and

153  lowest elevation of occurrence (Fig. 2A). Elevational range size was calculated as the difference in meters
154  Dbetween these two points. Elevational position was characterized by the species' elevational mid-point
155  (the mean between the maximum and minimum elevation of occurrence). For the estimation of

156 elevational distributions, we merged the data from large and small plots with the objective of using all the
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157  available information for each species. After this process, we further excluded 461 species that were

158  found in only one plot and thus could not be assigned to a reliable value of elevational range. Elevational
159  range size had a strongly skewed frequency distribution (Fig. 2B). Most species had very small ranges
160  and very few had broad elevational distributions. The mean and median of elevational range size were

161 702 and 607 m respectively; the maximum was 2,812 m.

162  To account for heterogeneity among species in range size estimation and ensure that our conclusions did
163  not depend on the precise collection of species used, we repeated all analyses using two alternative

164  subsets of species (Fig. S2). In the second set of species, we included only species that were present in 3
165  or more sites or that had 5 or more individuals (1,713 species); in the third set, we subsampled forest plots
166  to reduce heterogeneity in sampling effort across elevations. We divided the elevational gradient (209 to
167 3,717 m) into 20 equal-sized bands; in each band, we randomly selected 12 forest plots. This procedure
168  reduced the data to 220 forest plots and 71,165 individuals, resulting in 1,280 species included in the third
169  dataset. Despite considerable differences among these datasets, all analyses support the same conclusions,
170  thus we present results for our complete dataset in the main text and provide results for the two subsets of

171  data in the supplementary materials.

172 2.2 Temperature and Precipitation Data and Species-Level Predictors

173 Using the coordinates of each forest plot, we extracted temperature data from WorldClim 2.0 (at ~1km
174  resolution; Fick & Hijmans, 2017). We considered other alternative climate datasets (e.g., Chelsa 1.2;
175 Karger et al., 2017), but we found that WorldClim 2 was the closest match to field measurements of
176  temperature (Fig. S3). We extracted precipitation data from TRMM 2b31-Based Rainfall Climatology
177  Version 1.0 at ~1km resolution; Mulligan, 2006). For each plot, we obtained data on mean annual

178  temperature (MAT), total annual precipitation (TAP), annual temperature range (ATR) and diurnal
179  temperature range (DTR). Across the plot network, mean annual temperature decreases dramatically
180  across elevations from 25.4 to 9 °C (Fig. S4A). Similarly, estimates of total precipitation range from

181 3,819 to 197 mm per year. Although temperature variability generally increased with elevation (Fig.
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182  S4B), the pattern was non-linear: annual temperature range showed a small initial dip towards

183  intermediate elevations (with a minimum around 1,250 m), before a steep increase towards the highlands.
184  Finally, diurnal temperature range is closely correlated with annual temperature range (Fig. S4D). For this
185  reason, the effect of annual and diurnal variability could not be disentangled. All analyses use only data
186  on annual temperature range, but similar models were produced when diurnal temperature range was used
187  instead (Table S1). These gradients in climate suggest that populations of species in the highlands

188  experience a higher degree of temperature fluctuations than in the lowlands. The distribution of plots

189  across environmental gradients is depicted in Fig. S5 and S6.

190  For each species, we estimated the degree of temperature variation that individuals experience by using
191  the maximum value of annual temperature range at a site across all occupied plots (Max. ATR).

192  Additionally, we calculated other species-specific predictors that could be important determinants of
193  elevational range size, which were used as co-variables in our analyses. We calculated abundance-

194  weighted mean annual temperature (w-MAT) and total annual precipitation (w-TAP). For these

195  calculations, plot-level values of MAT or TAP contribute to the species mean as a function of the

196  abundance of the species in each plot. These variables represent the most typical environmental

197  conditions occupied by each species. Finally, we calculated species-level maximum size as the 90 %
198  quantile of the distribution of diameters at breast height (DBH) for each species, and species abundance

199  as the maximum value of relative abundances of each species across all occupied plots.

200 2.3 Statistical test of hypotheses

201  The climate variability hypothesis across elevations (ECVH) predicts that species with populations

202  experiencing high levels of temperature variation will have larger elevational distributions. To evaluate
203 this prediction, while accounting for shared evolutionary history among species, we used a phylogenetic
204  generalized least squares (PGLS) regression model, where species elevational range size was the

205  dependent variable and maximum annual temperature range (max. ATR) was the main predictor of

206 interest. In this analysis, errors were modeled using a Pagel correlation structure, which is more flexible
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207  than a Brownian correlation. Phylogenetic relationships among our species are based on Smith and

208  Brown’s (2018) mega-phylogeny, accessed using the R package V.PhyloMaker (Jin & Qian, 2019).

209  Species that were not found in the base phylogeny were added using taxonomic information at base of the
210  branch of the corresponding genus or family using the “S1” option in V.PhyloMaker. While this

211 phylogeny is a coarse description of evolutionary relationships, it allows us to construct phylogenetic

212 regressions that would otherwise be impossible. We used Ives’ proposed R2resid metric to characterize
213 the amount of variance in the data explained within a phylogenetic regression model (lves, 2019); rr2 R
214 package: (Ives & Li, 2018). PGLS models were performed with function gls in R package nlme (Pinheiro

215  etal., 2020).

216  Toaccount for the effects of other potentially important covariates, the PGLS model also included

217  maximum size (i.e., 90th percentile of dbh distribution per species), species abundance, mean annual

218  temperature (Ww-MAT) and total annual precipitation (w-TAP). To meet model assumptions, elevational
219  range size was square-root transformed, while maximum size and species abundance were log-

220  transformed. Other variables remained untransformed. All predictors were centered to a mean of zero and
221  standardized to a standard deviation to 1 before analyses. In this way, regression coefficients are

222 comparable and measure the relative importance of each predictor in the model. Finally, the model also
223 included the interactions of temperature variability with mean temperature (max. ATR x w-MAT) and
224 annual precipitation (max. ATR x w-TAP). We evaluated collinearity among predictors in our PGLS

225  model using variance inflation factors (VIF) using function vif in the R package car (Fox et al., 2022).

226 Most variables had VIFs less than 5 indicating that collinearity is low in our models (Table 1).

227 2.4 Accounting for Geometric Constraints and Sampling Effects on Elevational Range Sizes

228  Geographic ranges are subject to geometric constraints given by the limits of the domain over which
229  species are distributed. In our study, the domain is the elevational gradient ranging from Amazon forests
230  at 209 min elevation and the timberline at 3,717 m. Species in our study are constrained to be distributed

231  Dbetween these elevations (Fig. 2C). The effect of this constrained domain is expressed in the relationship
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232 between elevational position and elevational range size. Species with distributions centered in the

233 lowlands (low elevational mid-points) or in the highlands (high elevational mid-points) cannot have large
234 elevational ranges. Species with distributions centered at intermediate elevations, on the other hand, are
235  free to have small or large elevational distributions. This constraint is potentially problematic for our

236  analysis and could mask the effects of environmental or biological variables on the extent of the

237  geographic distribution of species.

238  To account for this potential effect, we calculated an alternative metric of range size that is less affected
239 by these geometric constraints. First, for a focal species, we calculated the distance d between its

240  elevational mid-point to the closest edge of the elevational domain (i.e., to 209 m or 3,717 m whichever is
241  closest; Fig. 3A). This distance determines the strength of the geometric constraint on a species’

242  distribution; as this distance decreases, the range of possible elevational range sizes decreases (Fig. 3A).
243 Then, we found a pool of other species under similar geometric constraints. This pool was defined as all
244 species with d values equal to that of the focal species £ 50 m (Fig. 3A and B). Species close to both ends
245  of the domain of distribution can contribute to this pool of species with similar constraints (Fig. 3A). We
246  calculated a standardized effect size (SES) that compares the elevational range size of the focal species to
247  those of the other species in its pool (Fig. 3B). SES is simply the difference between the elevational range
248  size of the focal species and the mean range size of all other species in its pool divided by the standard
249  deviation of the range sizes in the pool. A positive SES value indicates that the focal species has a

250  distribution that is larger than other species under similar constraints, while a negative value means the
251  species has a smaller distribution. SES values were calculated in this way for all species. The statistical

252 analyses described above for elevational range size were repeated using SES of range size.

253  Finally, it is possible that relationship between range size and climate variability could be spuriously
254 produced by a sampling effect; species with large elevational ranges might also occupy many sites (high
255  occupancy). In turn, species present in many sites are able to sample the environmental space better and -

256 by chance - find higher values of climatic variability (e.g., max. ATR). To account for this potential
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257  effect, we (1) examined the relationships between species occupancy (number of plots with presence of
258  the species) and elevational range size and max. ATR, and (2) repeated our PGLS regressions including
259  occupancy as a covariate. We found no evidence of this potential sampling bias in our analyses; while
260  high occupancy does lead to larger ranges (Fig. S7A), high occupancy does not necessarily imply larger
261  values of temperature variability (Fig. S7B). Moreover, the main conclusions of our analyses did not vary

262 when including occupancy as a covariate in our PGLS models (Table S2).

263 3 RESULTS

264  Our results provide strong evidence that elevational range sizes are shaped by temporal variation in

265  climate, particularly temperature. We found that maximum annual temperature range was the strongest
266  predictor included in our models (Table 1) and had a clear positive effect on elevational range size (Fig.
267  4). Species exposed to higher temperature variability have broader geographic distributions. This effect
268  was highly consistent across our different analyses; maximum annual temperature range had a strong

269  positive effect whether elevational range size or standardized effect sizes were used as response variables
270  (Fig. 4; Fig. S8). Similarly, maximum annual temperature range had a consistent positive effect when

271  elevational distributions were characterized using species with at least 2 occurrences (Fig. 4, Table S1), or
272 when using species with at least 3 occurrences or 5 individuals (Fig. S9, Table S3), or with a dataset that

273 has been reduced to homogenize effort across elevations (Fig. S10, Table S4).

274 We found evidence that temperature variability interacts with mean annual temperature, but not with total
275  annual precipitation (Fig. 4 A and B). While the effect of temperature variability is always positive, the
276  strength of this effect is greater for species with distributions in warmer climates (Fig. 5A and B). On the
277  other hand, the effect of annual temperature range is consistent regardless of levels of precipitation (Fig.
278  5C and D). Finally, several other species characteristics had a significant effect on elevational range size,
279  Dbut the effect sizes were small (Fig. 4; Fig. S8). Range size increased for larger species (maximum size),

280  and species that were more locally common (maximum abundance). Furthermore, species had larger
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281  elevational ranges in warmer and more humid places. These results were also robust when using

282 alternative datasets.

283 4 DISCUSSION

284 4.1 Thermal variability and mean temperature interact to determine elevational range size

285  Using species-specific responses for ~2300 plant species to climate variability across an extensive

286  elevational gradient in the Central Tropical Andes, we found strong support for the climate variability
287  hypothesis across elevations (ECVH; (Janzen, 1967; Stevens, 1992). Our findings show a strong positive
288  relationship between local climate variability, particularly in temperature, and the elevational range size
289  of woody plants (Table 1). In fact, the effect of variability in temperature is stronger than that of any other
290  factor considered in our models. Importantly, our results were robust to all variations in analyses to

291  account for potential biases related with species rarity and range size variability, uneven sampling across
292  elevations and geometric constraints. The overall trend for elevational restricted species to occupy less
293  climatically variable environments, regardless of their elevation of occurrence (i.e., not limited to lower
294  elevations), suggests that elevational range restriction in Andean trees is likely related to narrow thermal
295  tolerances rather than to biotic interactions or habitat specificity, two processes hypothesized to be more

296  prevalent at lower elevations (MacArthur, 1984; Brown et al., 1996; Paquette & Hargreaves, 2021).

297  Previous studies have tested for the relationship between thermal variability and elevational range size,
298  independent of the elevation of occurrence. Like ours, these studies found this relationship to be posited,
299  despite using different methods of assessing climatic variability and focusing on different taxa (Pintor et
300 al., 2015; Beck et al., 2016; Maccagni & Willi, 2022). Only a few studies have, however, tested

301  predictions from the ECVH in vascular plants and their conclusions have been limited by their data or
302  analyses. For instance, using a large empirical dataset on plant elevational distributions in the Western
303 Himalaya, (Macek et al., 2021) found no support for the ECVH. As recognized by the authors, the lack of

304 relationship between climate variability and elevational ranges in their study might result from the fact
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305 that the lowest elevation in their study is ~2650 m a.s.l, and thus their dataset lacks information of

306  lowland species and lower elevation climatic variability. A similar reason might have caused the lack of
307  relationship between thermal niche breadth (maximum — minimum temperature a species experienced)
308  and elevation in alpine plants (> 3000 m a.s.l.) of the Andes in the study by Cuesta et al. (2019). Here, we
309 take advantage of a naturally extreme elevational gradient (~ 200 - ~3750 m a.s.l.) in the Central Tropical
310  Andes and can extend our hypothesis testing to the whole set of woody plants. To our knowledge, no

311  other comparable dataset exists for tropical plants where sampling of species has been as intensive and
312 systematic over a large elevational gradient, and empirical data was obtained with standardized and

313  homogeneous taxonomic information across species and sites. When including a full gradient of climatic
314  variability, we found a strong positive relationship between thermal variability and the elevational range

315 sizes.

316  While we found that climate variability has a strong positive effect on elevational range size, we also
317  found that the magnitude of this effect depends on whether species are distributed in warmer or colder
318  regions (i.e., a significant interaction between maximum annual temperature range and abundance-

319  weighted mean annual temperature). Specifically, the positive effect of climate variability was stronger
320  for species in warmer regions (e.g., lower elevations) than for species in colder regions (e.g., higher

321  elevations). This finding is consistent with previous studies that found that both mean climatic conditions
322  and climate variability are important drivers of species’ range sizes in different taxa (e.g., (Luo et al.,
323 2011, Chan et al., 2016; Liang et al., 2021). Although studies in terrestrial vertebrates have considered
324  the interaction between average environmental conditions and climate variability (Chan et al., 2016), to
325  our knowledge our study is the first one on woody plants to include these effects when testing the ECVH.
326  For example, Liang et al. (2021) considered mean environmental variables besides thermal variability in
327  their study of plant elevational ranges. They found that both mean annual temperature and mean annual
328  precipitation had a significant relationship with plant elevational ranges; they did not, however, consider

329 interactions among these and climate variability in their analyses. Similarly, Mumladze et al. (2017),
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330 examined the correlations between the thermal range size of plant species (and not directly its elevational
331 range) and the maximum temperature seasonality in two elevational gradients of the Caucasus. In their
332 paper, Mumladze et al. (2017) separately tested the correlation with precipitation ranges and precipitation
333  seasonality but did not test for interactions nor examined the relative importance of different

334  environmental variables on species ranges. Our study, therefore, is the first one to show how

335  environmental conditions modulate the effect of climate variability on the climatic tolerances and range

336  size of plant species.

337  Although we argue that the most direct way to test predictions of the ECVH is to study the response of
338 individual species to different levels of climate variability, most studies use the average range size of co-
339  occurring species as response variable (e.g., Mumladze et al. 2017; Liang et al. 2021; Macek et al. 2021).
340  These studies average the range sizes of all species occurring at a given site or elevational band (i.e., the
341  “Steven’s method”) or average the range size of species whose distributional middle point falls within a
342  given elevational band (i.e., the “midpoint method”). Because species relationships with climate variables
343 s idiosyncratic (McCain & Knight, 2013), this aggregation of species responses could be a confounding
344  factor, resulting in inconsistent results. Assemblage-level averages hide important variation among

345  species. In a study with mayflies, for example Gill et al., (2016) found great variability in elevation range
346  sizes even among closely related species that was likely related with variation in species physiological
347  and dispersal traits. Species-specific differences in traits may result in large variation in elevational ranges
348  across plant clades that co-occur at any given elevation, variability that could be dismissed when using
349  assemblage-level metrics. Thus, conclusions reached with assemblage-level analyses should be taken

350  cautiously.

351 4.2 Limitations of our study and recommendations for future analyses

352 A potential caveat of our study is the use of climate information from global databases. The coarse
353  resolution of global databases might result in inaccurate information in mountain regions (e.g., (Browoski

354 & Schickhoff, 2017). The complex landscape of the Andes likely adds to thermal variability; adjacent
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355  areas with different topographic exposures may differ notoriously in temperature and thermal variability,
356  creating contrasting micro-habitat variation (Jackson & Forster, 2010). This small-scale spatial variability
357  might be better captured with local climatic information obtained, for example, from data-loggers

358 installed across elevations. We partially address this concern by comparing the climatic patterns in global
359  datasets with a few data-loggers located in the study region (Fig. S3). We found WorldClim v.2

360  matched most closely the climate patterns we detected in situ with data-loggers. Furthermore, the use of
361  highly localized climate data collected by data-loggers has its own limitations. With a forest canopy that
362  might surpass 30 m of height, environmental information obtained from sensors located below 3 m

363  (where most data loggers are set due to logistical constraints; (Bach et al., 2003) might represent poorly
364  the thermal environment that most trees experience. Indeed, it has been shown that climatic conditions
365  experienced by understory vs. canopy species can vary substantially (Frey et al., 2016), with canopies
366  potentially experiencing greater temperature variability (De Frenne et al., 2019). Future studies might
367  explore the differences in climate variability experienced by understory and canopy species and how these

368  further affects species’ distribution across environmental gradients.

369  Finally, it is important to consider that although we found range sizes to be strongly associated with

370  climate variability, other mechanisms might also act as determinants of Andean plant species’ ranges. We
371  found a significant effect of tree size and local abundance, both of which had a positive effect on range
372  size. These results are consistent with other studies on the ecological factors shaping the size of species
373  distributions (Stahl et al., 2014). Moreover, other processes that we did not consider in our analyses could
374  also be important. Biotic interactions such as specialized mutualisms or competitive interactions have

375  Dbeen found to shape species ranges across latitudes and elevation (Brooker et al., 2007; Jankowski et al.,
376  2010; Wisz et al., 2013). Dispersal abilities might also play a role in the realized range size of plants; with
377  climate stability potentially having a stronger effect on groups with lower dispersal capacities (Xu et al.,
378  2018). Finally, phenotypic plasticity or local adaptation can both contribute to shaping elevational range

379  sizes(Bradshaw, 1965)(Van Nuland et al., 2017; Buckley et al., 2019). Future studies should focus on
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380  disentangling which and how these mechanisms might further restrict or extend species’ elevation

381  distributions in tropical mountains.

382 4.3 Implications for environmental change

383  Understanding how climate shapes species distributions along environmental gradients is becoming

384  increasingly urgent in a rapidly changing world, particularly because many tropical species are

385  responding to global warming through range shifts (Nadeau et al., 2017; Fadrique et al., 2018; Freeman et
386 al., 2018). Our study points to the overriding importance of thermal variability in driving elevational

387  range sizes in woody plants in the Central Tropical Andes. Moreover, we found evidence suggesting that
388 in warmer mountains the relationship between thermal variability and range size might be even stronger.
389  Our results have implications not only to understand drivers of range size, but to predict how

390 environmental change might impact biodiversity (Nadeau et al., 2017).

391  Combined, our findings highlight the great vulnerability of tropical floras to the enhanced effects of

392  climate change in mountain ranges (Sentinella et al., 2020). Under a climate warming scenario, species
393  with smaller thermal tolerances (often in warm, tropical regions) might be more vulnerable as their

394  distributions seem to be strongly related with their climatic stability. Furthermore, species at low

395 elevations not only have narrower climatic tolerances and small ranges, but they often also experience
396  temperatures closer to their upper tolerance limits (Colwell et al., 2008). This could mean that species
397 inhabiting tropical lowlands will likely face greater impacts of warming temperatures. Species might
398  respond to such changes in local conditions either by tracking suitable climates and moving upslope to
399  match their historical niches (e.g., Feeley et al., 2011), by persisting in situ in thermally buffered micro-
400 habitats created by topography and other physiographic features (e.g., Suggitt et al., 2018), potentially
401  resulting in fragmented populations, or by decreasing in abundance and potentially going extinct. By the
402  same logic, species that are adapted to more variable environments and have broader distributions might
403  be best able to cope with significant environmental change. On the other hand, as thermal variability

404  along elevation is mostly determined by variation in minimum rather than maximum temperatures (lower
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405  temperatures decrease at a faster rate), species adapted to highly variable climates may struggle surviving
406  in habitats with temperatures closer to their maximum tolerances. Having no place to “escape” from

407  higher temperatures, high elevation floras in the tropics might be particularly vulnerable to rising

408  temperatures. Climate variability, its effect on species climate tolerance and spatial distribution, can

409  provide important clues into how species, communities and ecosystems will change in response to

410 environmental shifts.
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564  Table 1. Testing for the effect of temperature variability and other predictors on size of elevational
565  distributions. Phylogenetic generalized least-square regressions (PGLS) were used. Elevational range
566  size (ERS) or a standardized effect size for range size (SES) were modeled as the response variable in
567  separate models. Regardless of the response used, we found that maximum annual temperature range
568  (max. ATR) was a strong predictor and had a significant interaction with abundance-weighted mean

569  annual temperature (w-MAT). Additional predictors included species maximum size, maximum

570  abundance among occupied plots, and abundance-weighted total annual precipitation (w-TAP). For each
571  predictor, we report standardized coefficients, p-values and variation inflation factors (VIF). Model fit is
572  characterized by Ives’ residual R: value for phylogenetic modes, as well as Pearson’s correlation between
573  observed and model-predicted values of the response variable. Finally, we used a likelihood ratio test
574  (LRT) to obtain a model-wide p-value by contrasting each PGLS against a null model. The null model
575  had only an intercept and the same phylogenetic structure estimated for the main PGLS model. Details on

576  univariate models and other competing models are detailed in Table S1.

Response  Predictor Coeff. P-value VIF Ob(s:.(;I::.ed. R esia LR Plj\?aITu:e
Intercept 27.011 <0.001
log(Max. Size) 1.688 <0.001 1.054
log(Max. Abund.) 3.033 <0.001 1.156
w-MAT 1.730 <0.001 2.069
ERS 0.618 0.389 890.6 <0.001
w-TAP 2.602 <0.001 1.952
Max. ATR 9.592 <0.001 4.071
w-MAT x Max. ATR 3.735 <0.001 5.877
w-TAP x Max. ATR 0.309 0.310 3.501
Intercept 0.237 <0.001
log(Max. Size) 0.136 <0.001 1.055
log(Max. Abund.) 0.252 <0.001 1.157
w-MAT 0.474 <0.001 2.035
SES 0.647 0.419 994.5 <0.001
w-TAP 0.257 <0.001 1.946
Max. ATR 0.968 <0.001 4.014
w-MAT x Max. ATR 0.280 <0.001 5.806
W-TAP xMax. ATR 0.018 0.494 3.550

577
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Figure 1. Map of the study region and network of forest plots. (A & B) Location of the study region
within and around Madidi National Park in Bolivia. (C) The forests’ plots dataset used in our analyses

include 48 large plots (1-ha in area) and 458 small plots (0.1-ha).
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Figure 2. Elevational ranges for woody plant species in the Andes of northwestern Bolivia. (A) Vertical lines connect the lowest and highest
elevations recorded for each species used in our analyses. In this way, the lines describe the elevational extent of species’ distributions (i.e., their
elevational ranges). Species are ranked in the x-axis by their elevational mid-point of distribution. (B) Frequency distribution of elevational range
sizes showing that most species have small ranges. (C) Relationship between elevational range size and elevational mid-point. The range size of
each species is constrained geometrically by its position with respect to the upper and lower limits of the gradient. Species that have an elevational
mid-point in the lowlands or highlands are constrained to having small ranges, while species that have a mid-point at intermediate elevations are
free to have either small or large range sizes. The grey area shows the possible distribution of points; the black edges mark the geometric limits to
this relationship. (D) Relationship between the standardized effect size of range size and elevational mid-point. Standardized effect size for a
species was calculated by comparing its empirical range size to a subset of ranges of similar geometric constraints (see Methods for details &

Figure 3). SES values greater than zero indicate ranges that are larger than expected by their constraints.
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Figure 3. Calculation of standardized effect sizes of range size. To account for geometric constraints
on elevational distributions, we compared the range size of each species to the range sizes of all other
species that suffer from a similar constraint. In the example shown here, the range size and midpoint of a
focal species is indicated by the orange circle in (A) and the vertical orange line in (B). All species that
suffer a similar constraint to the focal species are indicated by dark gray circles in (A) and gray bars in
(B). All other species are shown in white. Species with a similar constraint to the focal species are those
that (1) have a midpoint in a region 50 m above or below the midpoint of the focal species, or (2) have a
midpoint 50 m above or below an elevation that is equidistant from the opposite edge of the gradient
(distance d). The range sizes of all species in these elevational bands represent a pool of potential values
that the focal species could take given its midpoint. Thus, to calculate a standardized effect size, we (1)
sampled 1,000 values of range size from the pool of similar species, and then (2) subtracted the mean of
the random values from the empirical range size and divided this by the standard deviation of the random
distribution. In this way, a standardized effect size measures the breadth of elevational distribution while
accounting for geometric constraints. A positive value indicates a range size that is larger than other

ranges with similar constraints; a negative value indicates a range size that is smaller than other similar

ranges.
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Figure 4. Effects of climate variability and other predictors on the breadth of elevational
distributions. (A) Standardized coefficients showing the effect of each predictor on elevational range
size. The height of each bar indicates the coefficient estimate, while the lines show the 95% confidence
interval. Ives’ R?esiq is also shown. (B) Same as (A), but where the response variable was the standardized
effect sizes of range size (i.e., range size after accounting for geometric constraints). (C) Empirical values
of range size plotted against predictions made by the regression model in (A). The 1:1 correspondence is
indicated by the solid blue line. (D) Same as (C), but where the response variable was the standardized
effect sizes of range size (regression model in B). Size: maximum size (90™ percentile of diameter at
breast height); Abund.: maximum local relative abundance; w-MAT: abundance-weighted mean annual

temperature; w-TAP: abundance-weighted total annual precipitation; ATR: maximum annual temperature

range.
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Figure 5. Interactions between temperature variability and mean temperature or total
precipitation. Each panel shows the effect of temperature variability (maximum annual temperature
range; max. ATR) on elevational range size (left column) and standardized effect sizes (right column) for
different values of mean annual temperature (top row) and total annual precipitation (bottom row). In
each case, the gray line depicts the effect of max. ATR for the mean value of the interacting variable. The
colored lines depict the effects of max. ATR for values one standard deviation above and below the mean
of the interacting variable. These results demonstrate that increases in mean temperature significantly
amplify the effect of temperature variability (A & B). On the other hand, increases in total precipitation

do not modify the effects of temporal variability (C & D).
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