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Abstract 25 

Aim 26 

The climate variability hypothesis proposes that species subjected to wide variation in climatic conditions 27 

will evolve wider niches, resulting in larger distributions. We test this hypothesis in tropical plants across 28 

a broad elevational gradient; specifically, we use a species-level approach to evaluate whether elevational 29 

range sizes are explained by the levels of thermal variability experienced by species. 30 

Location 31 

Central Andes 32 

Time period 33 

Present day 34 

Major taxa studied 35 

Woody plants 36 

Methods 37 

Combining data from 479 forest plots, we determined the elevational distributions of nearly 2300 species 38 

along an elevational gradient (~209 – 3800 m). For each species, we calculated the maximum annual 39 

variation in temperature experienced across its elevational distribution. We used phylogenetic generalized 40 

least square models to evaluate the effect of thermal variability on range size. Our models included 41 

additional covariates that might affect range size: body size, local abundance, mean temperature and total 42 

precipitation. We also considered interactions between thermal variability and mean temperature or 43 

precipitation. To account for geometric constraints, we repeated our analyses with a standardized measure 44 

of range size, calculated by comparing observed range sizes with values obtained from a null model.   45 

Results  46 
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Our results supported the main prediction of the climate variability hypothesis. Thermal variability had a 47 

strong positive effect on the range size, with species exposed to higher thermal variability having broader 48 

elevational distributions. Body size and local abundance also had positive, yet weak effects, on 49 

elevational range size. Furthermore, there was a strong positive interaction between thermal variability 50 

and mean annual temperature. 51 

Main conclusions 52 

Thermal variability had an overriding importance in driving elevational range sizes of woody plants in the 53 

Central Andes. Moreover, the relationship between thermal variability and range size might be even 54 

stronger in warmer regions, underlining the potential vulnerability of tropical montane floras to the effects 55 

of global warming. 56 

Keywords  57 

Andes, Bolivia, Climate variability hypothesis, Elevation, Forest plots, Madidi, Range size, Trees  58 
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1 INTRODUCTION 59 

Assessing the mechanisms shaping the distribution of species is essential to better understand the 60 

assembly of local communities and the potential consequences of environmental drivers on biodiversity 61 

patterns (Bellard et al., 2012; Nadeau et al., 2017). This is particularly urgent for mountain regions, areas 62 

of great importance for biodiversity conservation (Jung et al., 2021). Mountain ranges are characterized 63 

by high environmental heterogeneity across space and time (Rahbek et al., 2019a), and harbor roughly 64 

one third of terrestrial living organisms, including many small-ranged species (Rahbek et al., 2019b). 65 

Understanding the drivers of montane species ranges, particularly in the tropics, is critical given the 66 

threats that climate change and human modifications of the landscape poses to the distribution and 67 

persistence of species in these regions. 68 

Although species distributions are often modeled as a function of average environmental conditions in a 69 

site or a region, temporal variation in these conditions can have profound effects on population and 70 

species adaptations, and consequently on their distribution. The climate variability hypothesis proposes 71 

that species subjected to wider temporal variation in climatic conditions will evolve tolerances to broader 72 

environmental niches, resulting in wider geographic distributions (Stevens, 1989). Correspondingly, 73 

species experiencing stable environments would develop narrow tolerances and small geographic 74 

distributions. The climate variability hypothesis has been proposed as a potential explanation for some 75 

classical patterns in ecology and biogeography. For example, the increases in range size with latitude 76 

(Rapoport, 1982) could be a consequence of increases in seasonal or daily climatic variability toward 77 

temperate regions (Stevens, 1989; Chan et al., 2016). Similarly, Janzen (1967)’ classic proposition that 78 

tropical mountains represent physiologically stronger filters for organisms than temperate mountain could 79 

also be seen as a special case of the climate variability hypothesis. Janzen’s hypothesized that having 80 

evolved in less variable environments, montane tropical species will likely have limited acclimation 81 

responses and, in consequence, smaller elevational ranges than species in temperate mountains. 82 
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Within tropical mountains climatic variability can fluctuate significantly across elevation; for example, 83 

daily temperature variation can be dramatic at high elevations, but only mild in the lowlands (McCain, 84 

2009). If temporal variation in climate influences species distributions within mountains, then species 85 

near tropical mountain tops should have more extensive elevational distributions than species in the 86 

lowlands. This extension of the climate variability hypothesis to elevation (ECVH; Stevens, 1992) has 87 

been tested in many taxa, producing conflicting results (McCain & Knight, 2013; Chan et al., 2016; Shah 88 

et al., 2021). Whereas some studies show increases in range size with latitude and elevation (e.g., 89 

Patterson et al., 1996; Pintor et al., 2015), others have refuted these patterns (e.g., (Hawkins & Felizola 90 

Diniz-Filho, 2006; Maccagni & Willi, 2022). Contradictory results have fueled a debate regarding 91 

whether species responses to climate variation is only a local phenomenon or a consistent pattern (Rohde, 92 

1996; McCain & Knight, 2013). Part of the reason for the inconsistent results among studies testing 93 

ECVH could be limitations to analyses or data. Geometric constraints in the distribution of species, for 94 

instance, have rarely been accounted for when testing ECVH hypothesis, resulting on strong criticisms on 95 

the statistical approaches and assumptions behind these studies (Ribas & Schoereder, 2006; McCain, 96 

2009; Macek et al., 2021). Additionally, most studies of ECVH carry out assembly-level analyses, where 97 

the average range size for groups of species is used, and analyses focus on how these averages change 98 

across space (Rohde, 1992; Stevens, 1992). However, the evolution of climatic tolerances and responses 99 

to climatic variability are species-specific and, as such, require species-level analysis. Species-level and 100 

high-quality datasets are rare, particularly in diverse tropical regions, preventing species-level tests of 101 

ECVH in tropical mountains. 102 

Studies testing predictions from the ECVH in vascular plants include only a few examples on the sub-103 

tropical floras of the Himalayas (e.g., Liang et al., 2021; Macek et al., 2021) and the temperate Caucasus 104 

mountains (Mumladze et al., 2017), as well as studies focusing on smaller sets of temperate plants that 105 

extend ECVH predictions to other species characteristics (e.g., trait plasticity; Molina-Montenegro & 106 

Naya, 2012; Maccagni & Willi, 2022). To our knowledge the only study that has directly tested the 107 
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climate variability hypothesis on Neotropical plants has focused only on alpine communities in the Andes 108 

(>3000 m; Cuesta et al., 2020). This study found that tropical alpine species had narrower thermal niches 109 

than temperate species, supporting predictions derived from the classic CVH, but no significant effects of 110 

elevation. In consequence, whether temporal climatic variability shapes the distribution of tropical plant 111 

species along elevational gradients is yet poorly understood. A thorough analysis of the predictions of 112 

ECVH is necessary, particularly in tropical plants, to understand how species respond to climatic 113 

variability, and particularly, whether climatic variability can promote the formation of large geographic 114 

ranges. 115 

Here, we present the most thorough species-level test of the climate variability hypothesis across 116 

elevations (ECVH). Specifically, we evaluate whether species with populations experiencing high levels 117 

of temperature variation will have larger elevational distributions. For our study, we use data from the 118 

Madidi Project (www.madidiproject.weebly.com), a collaborative effort to document and study the plant 119 

biodiversity of the Tropical Andes, and possibly the most extensive dataset on tree occurrences in any 120 

tropical mountain. Using this data, we evaluate the effect of climate variability while controlling for the 121 

effects of geometric constraints and the potential confounding effects of other factors that have been 122 

proposed to affect range size, such as species characteristics (e.g., size), species abundance, and local 123 

temperature and precipitation. Our dataset and approach provide a unique opportunity to study the forces 124 

that drive the distribution of tree species in one of the most species-rich regions of the planet. 125 

2 METHODS 126 

2.1 Vegetation Data and Elevational Range Sizes 127 

Species elevational distributions were determined based on a large network of forest plots distributed 128 

along the eastern slopes of the Bolivian Andes (Fig. 1). The network consists of 48 1-ha plots (henceforth 129 

large plots) and 458 0.1-ha plots (small plots) ranging in elevation from 209 m (Amazon forests) to 4,347 130 

m (tree line). Within plots, all individuals of woody plant species with diameters at breast height (dbh) 131 
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equal or above 10 cm (for large plots) or 2.5 cm (for small plots) were measured and identified. Each 132 

individual tree was assigned a species or morphospecies name (henceforth simply species), and extensive 133 

taxonomic work was conducted to ensure that names were applied consistently throughout all plots. For 134 

this study, we used version 5.0 of the Madidi Project plot database      135 

(https://doi.org/10.5281/zenodo.5160379). The species-level data and code necessary to replicate our 136 

analyses has been deposited and can be freely accessed in Zenodo ([link will be updated upon 137 

submission]).  138 

From these data, we removed all cacti (Cactaceae); bamboos (Poaceae), tree ferns (Dicksoniaceae and 139 

Cyatheaceae), gymnosperms (Podocarpaceae), and the non-native genera Eucalyptus and Coffea. We also 140 

removed plots above 3,800 m in elevation, which were dominated by species of Polylepis and likely 141 

managed by local communities. Finally, because we only sampled individuals with a dbh 2.5 cm or larger, 142 

species that rarely reach this size might be present in our data but seriously under-represented relative to 143 

their true abundances. Thus, we examined the distribution of species-level maximum size values across 144 

our dataset and eliminated all species with maximum size below the lowest 5% of the distribution (this is, 145 

all      species with maximum size less or equal to 3.24 cm; see Fig. S1). This resulted in the elimination of 146 

169 individuals of 126 species. Finally, we eliminated 1,328 individuals that could not be assigned to 147 

species or morphospecies (<1% of individuals) and 436 individuals from 16 additional species that could 148 

not be placed in the regional phylogeny (see below). After data curation, our dataset contained 149 

information on the distribution of 153,084 individuals belonging to 2,292 species across 479 forest plots 150 

(48 large plots and 431 small plots).      151 

We estimated the elevational distribution of each species in our dataset by recording their highest and 152 

lowest elevation of occurrence (Fig. 2A). Elevational range size was calculated as the difference in meters 153 

between these two points. Elevational position was characterized by the species' elevational mid-point 154 

(the mean between the maximum and minimum elevation of occurrence). For the estimation of 155 

elevational distributions, we merged the data from large and small plots with the objective of using all the 156 
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available information for each species. After this process, we further excluded 461 species that were 157 

found in only one plot and thus could not be assigned to a reliable value of elevational range. Elevational 158 

range size had a strongly skewed frequency distribution (Fig. 2B). Most species had very small ranges 159 

and very few had broad elevational distributions. The mean and median of elevational range size were 160 

702 and 607 m respectively; the maximum was 2,812 m. 161 

To account for heterogeneity among species in range size estimation and ensure that our conclusions did 162 

not depend on the precise collection of species used, we repeated all analyses using two alternative 163 

subsets of species (Fig. S2). In the second set of species, we included only species that were present in 3 164 

or more sites or that had 5 or more individuals (1,713 species); in the third set, we subsampled forest plots 165 

to reduce heterogeneity in sampling effort across elevations. We divided the elevational gradient (209 to 166 

3,717 m) into 20 equal-sized bands; in each band, we randomly selected 12 forest plots. This procedure 167 

reduced the data to 220 forest plots and 71,165 individuals, resulting in 1,280 species included in the third 168 

dataset. Despite considerable differences among these datasets, all analyses support the same conclusions, 169 

thus we present results for our complete dataset in the main text and provide results for the two subsets of 170 

data in the supplementary materials. 171 

2.2 Temperature and Precipitation Data and Species-Level Predictors 172 

Using the coordinates of each forest plot, we extracted temperature data from WorldClim 2.0 (at ~1km 173 

resolution; Fick & Hijmans, 2017). We considered other alternative climate datasets (e.g., Chelsa 1.2; 174 

Karger et al., 2017), but we found that WorldClim 2 was the closest match to field measurements of 175 

temperature (Fig. S3). We extracted precipitation data from TRMM 2b31-Based Rainfall Climatology 176 

Version 1.0 at ~1km resolution; Mulligan, 2006). For each plot, we obtained data on mean annual 177 

temperature (MAT), total annual precipitation (TAP), annual temperature range (ATR) and diurnal 178 

temperature range (DTR). Across the plot network, mean annual temperature decreases dramatically      179 

across elevations from 25.4 to 9 °C (Fig. S4A). Similarly, estimates of total precipitation range from 180 

3,819 to 197 mm per year. Although temperature variability generally increased with elevation (Fig. 181 
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S4B), the pattern was non-linear: annual temperature range showed a small initial dip towards 182 

intermediate elevations (with a minimum around 1,250 m), before a steep increase towards the highlands. 183 

Finally, diurnal temperature range is closely correlated with annual temperature range (Fig. S4D). For this 184 

reason, the effect of annual and diurnal variability could not be disentangled. All analyses use only data 185 

on annual temperature range, but similar models were produced when diurnal temperature range was used 186 

instead (Table S1). These gradients in climate suggest that populations of species in the highlands 187 

experience a higher degree of temperature fluctuations than in the lowlands. The distribution of plots 188 

across environmental gradients is depicted in Fig. S5 and S6. 189 

For each species, we estimated the degree of temperature variation that individuals experience by using 190 

the maximum value of annual temperature range at a site across all occupied plots (Max. ATR). 191 

Additionally, we calculated other species-specific predictors that could be important determinants of 192 

elevational range size, which were used as co-variables in our analyses. We calculated abundance-193 

weighted mean annual temperature (w-MAT) and total annual precipitation (w-TAP). For these 194 

calculations, plot-level values of MAT or TAP contribute to the species mean as a function of the 195 

abundance of the species in each plot. These variables represent the most typical environmental 196 

conditions occupied by each species. Finally, we calculated species-level maximum size as the 90 % 197 

quantile of the distribution of diameters at breast height (DBH) for each species, and species abundance 198 

as the maximum value of relative abundances of each species across all occupied plots. 199 

2.3 Statistical test of hypotheses 200 

The climate variability hypothesis across elevations (ECVH) predicts that species with populations 201 

experiencing high levels of temperature variation will have larger elevational distributions. To evaluate 202 

this prediction, while accounting for shared evolutionary history among species, we used a phylogenetic 203 

generalized least squares (PGLS) regression model, where species elevational range size was the 204 

dependent variable and maximum annual temperature range (max. ATR) was the main predictor of 205 

interest. In this analysis, errors were modeled using a Pagel correlation structure, which is more flexible 206 
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than a Brownian correlation. Phylogenetic relationships among our species are based on Smith and 207 

Brown’s (2018) mega-phylogeny, accessed using the R package V.PhyloMaker (Jin & Qian, 2019). 208 

Species that were not found in the base phylogeny were added using taxonomic information at base of the 209 

branch of the corresponding genus or family using the “S1” option in V.PhyloMaker. While this 210 

phylogeny is a coarse description of evolutionary relationships, it allows us to construct phylogenetic 211 

regressions that would otherwise be impossible. We used Ives’ proposed R2resid metric to characterize 212 

the amount of variance in the data explained within a phylogenetic regression model (Ives, 2019); rr2 R 213 

package: (Ives & Li, 2018). PGLS models were performed with function gls in R package nlme (Pinheiro 214 

et al., 2020). 215 

To account for the effects of other potentially important covariates, the PGLS model also included 216 

maximum size (i.e., 90th percentile of dbh distribution per species), species abundance, mean annual 217 

temperature (w-MAT) and total annual precipitation (w-TAP). To meet model assumptions, elevational 218 

range size was square-root transformed, while maximum size and species abundance were log-219 

transformed. Other variables remained untransformed. All predictors were centered to a mean of zero and 220 

standardized to a standard deviation to 1 before analyses. In this way, regression coefficients are 221 

comparable and measure the relative importance of each predictor in the model. Finally, the model also 222 

included the interactions of temperature variability with mean temperature (max. ATR × w-MAT) and 223 

annual precipitation (max. ATR × w-TAP). We evaluated collinearity among predictors in our PGLS 224 

model using variance inflation factors (VIF) using function vif in the R package car (Fox et al., 2022). 225 

Most variables had VIFs less than 5 indicating that collinearity is low in our models (Table 1). 226 

2.4 Accounting for Geometric Constraints and Sampling Effects on Elevational Range Sizes 227 

Geographic ranges are subject to geometric constraints given by the limits of the domain over which 228 

species are distributed. In our study, the domain is the elevational gradient ranging from Amazon forests 229 

at 209 m in elevation and the timberline at 3,717 m. Species in our study are constrained to be distributed 230 

between these elevations (Fig. 2C). The effect of this constrained domain is expressed in the relationship 231 
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between elevational position and elevational range size. Species with distributions centered in the 232 

lowlands (low elevational mid-points) or in the highlands (high elevational mid-points) cannot have large 233 

elevational ranges. Species with distributions centered at intermediate elevations, on the other hand, are 234 

free to have small or large elevational distributions. This constraint is potentially problematic for our 235 

analysis and could mask the effects of environmental or biological variables on the extent of the 236 

geographic distribution of species.  237 

To account for this potential effect, we calculated an alternative metric of range size that is less affected 238 

by these geometric constraints. First, for a focal species, we calculated the distance d between its 239 

elevational mid-point to the closest edge of the elevational domain (i.e., to 209 m or 3,717 m whichever is 240 

closest; Fig. 3A). This distance determines the strength of the geometric constraint on a species’ 241 

distribution; as this distance decreases, the range of possible elevational range sizes decreases (Fig. 3A). 242 

Then, we found a pool of other species under similar geometric constraints. This pool was defined as all 243 

species with d values equal to that of the focal species ± 50 m (Fig. 3A and B). Species close to both ends 244 

of the domain of distribution can contribute to this pool of species with similar constraints (Fig. 3A). We 245 

calculated a standardized effect size (SES) that compares the elevational range size of the focal species to 246 

those of the other species in its pool (Fig. 3B). SES is simply the difference between the elevational range 247 

size of the focal species and the mean range size of all other species in its pool divided by the standard 248 

deviation of the range sizes in the pool. A positive SES value indicates that the focal species has a 249 

distribution that is larger than other species under similar constraints, while a negative value means the 250 

species has a smaller distribution. SES values were calculated in this way for all species. The statistical 251 

analyses described above for elevational range size were repeated using SES of range size. 252 

Finally, it is possible that relationship between range size and climate variability could be spuriously 253 

produced by a sampling effect; species with large elevational ranges might also occupy many sites (high 254 

occupancy). In turn, species present in many sites are able to sample the environmental space better and - 255 

by chance - find higher values of climatic variability (e.g., max. ATR). To account for this potential 256 
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effect, we (1) examined the relationships between species occupancy (number of plots with presence of 257 

the species) and elevational range size and max. ATR, and (2) repeated our PGLS regressions including 258 

occupancy as a covariate. We found no evidence of this potential sampling bias in our analyses; while 259 

high occupancy does lead to larger ranges (Fig. S7A), high occupancy does not necessarily imply larger 260 

values of temperature variability (Fig. S7B). Moreover, the main conclusions of our analyses did not vary 261 

when including occupancy as a covariate in our PGLS models (Table S2). 262 

3 RESULTS 263 

Our results provide strong evidence that elevational range sizes are shaped by temporal variation in 264 

climate, particularly temperature. We found that maximum annual temperature range was the strongest 265 

predictor included in our models (Table 1) and had a clear positive effect on elevational range size (Fig. 266 

4). Species exposed to higher temperature variability have broader geographic distributions. This effect 267 

was highly consistent across our different analyses; maximum annual temperature range had a strong 268 

positive effect whether elevational range size or standardized effect sizes were used as response variables 269 

(Fig. 4; Fig. S8). Similarly, maximum annual temperature range had a consistent positive effect when 270 

elevational distributions were characterized using species with at least 2 occurrences (Fig. 4, Table S1), or 271 

when using species with at least 3 occurrences or 5 individuals (Fig. S9, Table S3), or with a dataset that 272 

has been reduced to homogenize effort across elevations (Fig. S10, Table S4).  273 

We found evidence that temperature variability interacts with mean annual temperature, but not with total 274 

annual precipitation (Fig. 4 A and B). While the effect of temperature variability is always positive, the 275 

strength of this effect is greater for species with distributions in warmer climates (Fig. 5A and B). On the 276 

other hand, the effect of annual temperature range is consistent regardless of levels of precipitation (Fig. 277 

5C and D). Finally, several other species characteristics had a significant effect on elevational range size, 278 

but the effect sizes were small (Fig. 4; Fig. S8). Range size increased for larger species (maximum size), 279 

and species that were more locally common (maximum abundance). Furthermore, species had larger 280 
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elevational ranges in warmer and more humid places. These results were also robust when using 281 

alternative datasets. 282 

4 DISCUSSION 283 

4.1 Thermal variability and mean temperature interact to determine elevational range size 284 

Using species-specific responses for ~2300 plant species to climate variability across an extensive 285 

elevational gradient in the Central Tropical Andes, we found strong support for the climate variability 286 

hypothesis across elevations (ECVH; (Janzen, 1967; Stevens, 1992). Our findings show a strong positive 287 

relationship between local climate variability, particularly in temperature, and the elevational range size 288 

of woody plants (Table 1). In fact, the effect of variability in temperature is stronger than that of any other 289 

factor considered in our models. Importantly, our results were robust to all variations in analyses to 290 

account for potential biases related with species rarity and range size variability, uneven sampling across 291 

elevations and geometric constraints. The overall trend for elevational restricted species to occupy less 292 

climatically variable environments, regardless of their elevation of occurrence (i.e., not limited to lower 293 

elevations), suggests that elevational range restriction in Andean trees is likely related to narrow thermal 294 

tolerances rather than to biotic interactions or habitat specificity, two processes hypothesized to be more 295 

prevalent at lower elevations (MacArthur, 1984; Brown et al., 1996; Paquette & Hargreaves, 2021). 296 

Previous studies have tested for the relationship between thermal variability and elevational range size, 297 

independent of the elevation of occurrence. Like ours, these studies found this relationship to be posited, 298 

despite using different methods of assessing climatic variability and focusing on different taxa (Pintor et 299 

al., 2015; Beck et al., 2016; Maccagni & Willi, 2022). Only a few studies have, however, tested 300 

predictions from the ECVH in vascular plants and their conclusions have been limited by their data or 301 

analyses. For instance, using a large empirical dataset on plant elevational distributions in the Western 302 

Himalaya, (Macek et al., 2021) found no support for the ECVH. As recognized by the authors, the lack of 303 

relationship between climate variability and elevational ranges in their study might result from the fact 304 
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that the lowest elevation in their study is ~2650 m a.s.l, and thus their dataset lacks information of 305 

lowland species and lower elevation climatic variability. A similar reason might have caused the lack of 306 

relationship between thermal niche breadth (maximum – minimum temperature a species experienced) 307 

and elevation in alpine plants (> 3000 m a.s.l.) of the Andes in the study by Cuesta et al. (2019). Here, we 308 

take advantage of a naturally extreme elevational gradient (~ 200 - ~3750 m a.s.l.) in the Central Tropical 309 

Andes and can extend our hypothesis testing to the whole set of woody plants. To our knowledge, no 310 

other comparable dataset exists for tropical plants where sampling of species has been as intensive and 311 

systematic over a large elevational gradient, and empirical data was obtained with standardized and 312 

homogeneous taxonomic information across species and sites. When including a full gradient of climatic 313 

variability, we found a strong positive relationship between thermal variability and the elevational range 314 

sizes.  315 

While we found that climate variability has a strong positive effect on elevational range size, we also 316 

found that the magnitude of this effect depends on whether species are distributed in warmer or colder 317 

regions (i.e., a significant interaction between maximum annual temperature range and abundance-318 

weighted mean annual temperature). Specifically, the positive effect of climate variability was stronger 319 

for species in warmer regions (e.g., lower elevations) than for species in colder regions (e.g., higher 320 

elevations). This finding is consistent with previous studies that found that both mean climatic conditions 321 

and climate variability are important drivers of species’ range sizes in different taxa (e.g., (Luo et al., 322 

2011; Chan et al., 2016; Liang et al., 2021). Although studies in terrestrial vertebrates have considered 323 

the interaction between average environmental conditions and climate variability (Chan et al., 2016), to 324 

our knowledge our study is the first one on woody plants to include these effects when testing the ECVH. 325 

For example, Liang et al. (2021) considered mean environmental variables besides thermal variability in 326 

their study of plant elevational ranges. They found that both mean annual temperature and mean annual 327 

precipitation had a significant relationship with plant elevational ranges; they did not, however, consider 328 

interactions among these and climate variability in their analyses. Similarly, Mumladze et al. (2017), 329 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.21.529430doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529430
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

examined the correlations between the thermal range size of plant species (and not directly its elevational 330 

range) and the maximum temperature seasonality in two elevational gradients of the Caucasus. In their 331 

paper, Mumladze et al. (2017) separately tested the correlation with precipitation ranges and precipitation 332 

seasonality but did not test for interactions nor examined the relative importance of different 333 

environmental variables on species ranges. Our study, therefore, is the first one to show how 334 

environmental conditions modulate the effect of climate variability on the climatic tolerances and range 335 

size of plant species. 336 

Although we argue that the most direct way to test predictions of the ECVH is to study the response of 337 

individual species to different levels of climate variability, most studies use the average range size of co-338 

occurring species as response variable (e.g., Mumladze et al. 2017; Liang et al. 2021; Macek et al. 2021). 339 

These studies average the range sizes of all species occurring at a given site or elevational band (i.e., the 340 

“Steven’s method”) or average the range size of species whose distributional middle point falls within a 341 

given elevational band (i.e., the “midpoint method”). Because species relationships with climate variables 342 

is idiosyncratic (McCain & Knight, 2013), this aggregation of species responses could be a confounding 343 

factor, resulting in inconsistent results. Assemblage-level averages hide important variation among 344 

species. In a study with mayflies, for example Gill et al., (2016) found great variability in elevation range 345 

sizes even among closely related species that was likely related with variation in species physiological 346 

and dispersal traits. Species-specific differences in traits may result in large variation in elevational ranges 347 

across plant clades that co-occur at any given elevation, variability that could be dismissed when using 348 

assemblage-level metrics. Thus, conclusions reached with assemblage-level analyses should be taken 349 

cautiously. 350 

4.2 Limitations of our study and recommendations for future analyses 351 

A potential caveat of our study is the use of climate information from global databases. The coarse 352 

resolution of global databases might result in inaccurate information in mountain regions (e.g., (Browoski 353 

& Schickhoff, 2017). The complex landscape of the Andes likely adds to thermal variability; adjacent 354 
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areas with different topographic exposures may differ notoriously in temperature and thermal variability, 355 

creating contrasting micro-habitat variation (Jackson & Forster, 2010). This small-scale spatial variability 356 

might be better captured with local climatic information obtained, for example, from data-loggers 357 

installed across elevations. We partially address this concern by comparing the climatic patterns in global 358 

datasets with a few data-loggers located in the study region (Fig. S3). We found WorldClim v.2      359 

matched most closely the climate patterns we detected in situ with data-loggers. Furthermore, the use of 360 

highly localized climate data collected by data-loggers has its own limitations. With a forest canopy that 361 

might surpass 30 m of height, environmental information obtained from sensors located below 3 m 362 

(where most data loggers are set due to logistical constraints; (Bach et al., 2003) might represent poorly 363 

the thermal environment that most trees experience. Indeed, it has been shown that climatic conditions 364 

experienced by understory vs. canopy species can vary substantially (Frey et al., 2016), with canopies 365 

potentially experiencing greater temperature variability (De Frenne et al., 2019). Future studies might 366 

explore the differences in climate variability experienced by understory and canopy species and how these 367 

further affects species’ distribution across environmental gradients. 368 

Finally, it is important to consider that although we found range sizes to be strongly associated with 369 

climate variability, other mechanisms might also act as determinants of Andean plant species’ ranges. We 370 

found a significant effect of tree size and local abundance, both of which had a positive effect on range 371 

size. These results are consistent with other studies on the ecological factors shaping the size of species 372 

distributions (Stahl et al., 2014). Moreover, other processes that we did not consider in our analyses could 373 

also be important. Biotic interactions such as specialized mutualisms or competitive interactions have 374 

been found to shape species ranges across latitudes and elevation (Brooker et al., 2007; Jankowski et al., 375 

2010; Wisz et al., 2013). Dispersal abilities might also play a role in the realized range size of plants; with 376 

climate stability potentially having a stronger effect on groups with lower dispersal capacities (Xu et al., 377 

2018). Finally, phenotypic plasticity or local adaptation can both contribute to shaping elevational range 378 

sizes(Bradshaw, 1965)(Van Nuland et al., 2017; Buckley et al., 2019). Future studies should focus on 379 
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disentangling which and how these mechanisms might further restrict or extend species’ elevation 380 

distributions in tropical mountains. 381 

4.3 Implications for environmental change 382 

Understanding how climate shapes species distributions along environmental gradients is becoming 383 

increasingly urgent in a rapidly changing world, particularly because many tropical species are 384 

responding to global warming through range shifts (Nadeau et al., 2017; Fadrique et al., 2018; Freeman et 385 

al., 2018). Our study points to the overriding importance of thermal variability in driving elevational 386 

range sizes in woody plants in the Central Tropical Andes. Moreover, we found evidence suggesting that 387 

in warmer mountains the relationship between thermal variability and range size might be even stronger. 388 

Our results have implications not only to understand drivers of range size, but to predict how 389 

environmental change might impact biodiversity (Nadeau et al., 2017). 390 

Combined, our findings highlight the great vulnerability of tropical floras to the enhanced effects of 391 

climate change in mountain ranges (Sentinella et al., 2020). Under a climate warming scenario, species 392 

with smaller thermal tolerances (often in warm, tropical regions) might be more vulnerable as their 393 

distributions seem to be strongly related with their climatic stability. Furthermore, species at low 394 

elevations not only have narrower climatic tolerances and small ranges, but they often also experience 395 

temperatures closer to their upper tolerance limits (Colwell et al., 2008). This could mean that species 396 

inhabiting tropical lowlands will likely face greater impacts of warming temperatures. Species might 397 

respond to such changes in local conditions either by tracking suitable climates and moving upslope to 398 

match their historical niches (e.g., Feeley et al., 2011), by persisting in situ in thermally buffered micro-399 

habitats created by topography and other physiographic features (e.g., Suggitt et al., 2018), potentially 400 

resulting in fragmented populations, or by decreasing in abundance and potentially going extinct. By the 401 

same logic, species that are adapted to more variable environments and have broader distributions might 402 

be best able to cope with significant environmental change. On the other hand, as thermal variability 403 

along elevation is mostly determined by variation in minimum rather than maximum temperatures (lower 404 
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temperatures decrease at a faster rate), species adapted to highly variable climates may struggle surviving 405 

in habitats with temperatures closer to their maximum tolerances. Having no place to “escape” from 406 

higher temperatures, high elevation floras in the tropics might be particularly vulnerable to rising 407 

temperatures. Climate variability, its effect on species climate tolerance and spatial distribution, can 408 

provide important clues into how species, communities and ecosystems will change in response to 409 

environmental shifts.       410 
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Table 1. Testing for the effect of temperature variability and other predictors on size of elevational 564 

distributions. Phylogenetic generalized least-square regressions (PGLS) were used. Elevational range 565 

size (ERS) or a standardized effect size for range size (SES) were modeled as the response variable in 566 

separate models. Regardless of the response used, we found that maximum annual temperature range 567 

(max. ATR) was a strong predictor and had a significant interaction with abundance-weighted mean 568 

annual temperature (w-MAT). Additional predictors included species maximum size, maximum 569 

abundance among occupied plots, and abundance-weighted total annual precipitation (w-TAP). For each 570 

predictor, we report standardized coefficients, p-values and variation inflation factors (VIF). Model fit is 571 

characterized by Ives’ residual R2 value for phylogenetic modes, as well as Pearson’s correlation between 572 

observed and model-predicted values of the response variable. Finally, we used a likelihood ratio test 573 

(LRT) to obtain a model-wide p-value by contrasting each PGLS against a null model. The null model 574 

had only an intercept and the same phylogenetic structure estimated for the main PGLS model. Details on 575 

univariate models and other competing models are detailed in Table S1. 576 

Response Predictor Coeff. P-value VIF 
Obs.-Pred. 

Corr. 
R2

resid LR 
LRT:  

P-value 

ERS 

Intercept 27.011 < 0.001   

0.618 0.389 890.6 < 0.001 

log(Max. Size) 1.688 < 0.001 1.054 

log(Max. Abund.) 3.033 < 0.001 1.156 

w-MAT 1.730 < 0.001 2.069 

w-TAP 2.602 < 0.001 1.952 

Max. ATR 9.592 < 0.001 4.071 

w-MAT × Max. ATR 3.735 < 0.001 5.877 

w-TAP × Max. ATR 0.309 0.310 3.591 

SES 

Intercept 0.237 < 0.001   

0.647 0.419 994.5 < 0.001 

log(Max. Size) 0.136 < 0.001 1.055 

log(Max. Abund.) 0.252 < 0.001 1.157 

w-MAT 0.474 < 0.001 2.035 

w-TAP 0.257 < 0.001 1.946 

Max. ATR 0.968 < 0.001 4.014 

w-MAT × Max. ATR 0.280 < 0.001 5.806 

w-TAP ×Max. ATR 0.018 0.494 3.550 

577 
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Figure 1. Map of the study region and network of forest plots. (A & B) Location of the study region 

within and around Madidi National Park in Bolivia. (C) The forests’ plots dataset used in our analyses 

include 48 large plots (1-ha in area) and 458 small plots (0.1-ha).  
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Figure 2. Elevational ranges for woody plant species in the Andes of northwestern Bolivia. (A) Vertical lines connect the lowest and highest 

elevations recorded for each species used in our analyses. In this way, the lines describe the elevational extent of species’ distributions (i.e., their 

elevational ranges). Species are ranked in the x-axis by their elevational mid-point of distribution. (B) Frequency distribution of elevational range 

sizes showing that most species have small ranges. (C) Relationship between elevational range size and elevational mid-point. The range size of 

each species is constrained geometrically by its position with respect to the upper and lower limits of the gradient. Species that have an elevational 

mid-point in the lowlands or highlands are constrained to having small ranges, while species that have a mid-point at intermediate elevations are 

free to have either small or large range sizes. The grey area shows the possible distribution of points; the black edges mark the geometric limits to 

this relationship. (D) Relationship between the standardized effect size of range size and elevational mid-point. Standardized effect size for a 

species was calculated by comparing its empirical range size to a subset of ranges of similar geometric constraints (see Methods for details & 

Figure 3). SES values greater than zero indicate ranges that are larger than expected by their constraints.   
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Figure 3. Calculation of standardized effect sizes of range size. To account for geometric constraints 

on elevational distributions, we compared the range size of each species to the range sizes of all other 

species that suffer from a similar constraint. In the example shown here, the range size and midpoint of a 

focal species is indicated by the orange circle in (A) and the vertical orange line in (B). All species that 

suffer a similar constraint to the focal species are indicated by dark gray circles in (A) and gray bars in 

(B). All other species are shown in white. Species with a similar constraint to the focal species are those 

that (1) have a midpoint in a region 50 m above or below the midpoint of the focal species, or (2) have a 

midpoint 50 m above or below an elevation that is equidistant from the opposite edge of the gradient 

(distance d). The range sizes of all species in these elevational bands represent a pool of potential values 

that the focal species could take given its midpoint. Thus, to calculate a standardized effect size, we (1) 

sampled 1,000 values of range size from the pool of similar species, and then (2) subtracted the mean of 

the random values from the empirical range size and divided this by the standard deviation of the random 

distribution. In this way, a standardized effect size measures the breadth of elevational distribution while 

accounting for geometric constraints. A positive value indicates a range size that is larger than other 

ranges with similar constraints; a negative value indicates a range size that is smaller than other similar 

ranges.  
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Figure 4. Effects of climate variability and other predictors on the breadth of elevational 

distributions. (A) Standardized coefficients showing the effect of each predictor on elevational range 

size. The height of each bar indicates the coefficient estimate, while the lines show the 95% confidence 

interval. Ives’ R2
resid is also shown. (B) Same as (A), but where the response variable was the standardized 

effect sizes of range size (i.e., range size after accounting for geometric constraints). (C) Empirical values 

of range size plotted against predictions made by the regression model in (A). The 1:1 correspondence is 

indicated by the solid blue line. (D) Same as (C), but where the response variable was the standardized 

effect sizes of range size (regression model in B). Size: maximum size (90th percentile of diameter at 

breast height); Abund.: maximum local relative abundance; w-MAT: abundance-weighted mean annual 

temperature; w-TAP: abundance-weighted total annual precipitation; ATR: maximum annual temperature 

range.   
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Figure 5. Interactions between temperature variability and mean temperature or total 

precipitation. Each panel shows the effect of temperature variability (maximum annual temperature 

range; max. ATR) on elevational range size (left column) and standardized effect sizes (right column) for 

different values of mean annual temperature (top row) and total annual precipitation (bottom row). In 

each case, the gray line depicts the effect of max. ATR for the mean value of the interacting variable. The 

colored lines depict the effects of max. ATR for values one standard deviation above and below the mean 

of the interacting variable. These results demonstrate that increases in mean temperature significantly 

amplify the effect of temperature variability (A & B). On the other hand, increases in total precipitation 

do not modify the effects of temporal variability (C & D).  
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