
 

 

Cardinal v3 - a versatile open source software for mass 

spectrometry imaging analysis 

Kylie Ariel Bemis1§, Melanie Christine Föll1,2,3§, Dan Guo1, Sai Srikanth Lakkimsetty1, Olga 

Vitek1# 

1 Khoury College of Computer Sciences, Northeastern University, Boston, USA  

2 Institute of Surgical Pathology, Medical Center – University of Freiburg, Faculty of 

Medicine, Freiburg, Germany 

3 German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 

Heidelberg, Germany 

§    Equal contribution 

#  Correspondence: o.vitek@northeastern.edu 

 

Abstract  

Cardinal v3 is an open source software for reproducible analysis of mass spectrometry 

imaging experiments. A major update from its previous versions, Cardinal v3 supports most 

mass spectrometry imaging workflows. Its analytical capabilities include advanced data 

processing such as mass re-calibration, advanced statistical analyses such as single-ion 

segmentation and rough annotation-based classification, and memory-efficient analyses of 

large-scale multi-tissue experiments. 

Main 

Mass spectrometry imaging (MSI) provides unique value for life science research. MSI 

analyzes spatial distributions of hundreds of analytes directly from complex biological 

samples such as tissue sections at cellular resolution. Typical analytes include lipids, 

metabolites, drugs, peptides and proteins. The untargeted, label-free and multiplexed 

measurement capabilities make MSI an up-and-coming technology for research applications 

in medicine, biology, pharmacology, toxicology and forensics1. 

The nature of MSI data challenges its analysis. A single MSI file often reaches dozens of 

gigabyte in size. MSI data from a single tissue section comprises several thousand mass 

spectra, each containing thousands of mass-to-charge (m/z) feature – intensity pairs. Each 

spectrum is annotated with x- and y-coordinates that localize it on the tissue section. Further 

spectra annotations such as type of tissue, disease or treatment are often stored in a 

separate file. However, a typical MSI experiment is even more complex, and consists of 

multiple tissue sections and conditions. This data complexity and size requires specialized 

and efficient software tools for data preparation, preprocessing and statistics, which differ 

from classical mass spectrometry experiments.  

Many vendor-independent, free and open source MSI software exist as recently reviewed by 

Weiskirchen and colleagues2. A commonly used MSI software is the commercial SCiLS Lab 

software (Bruker Daltonics, Bremen,Germany). Non-commercial MSI software is either i) 

freeware such as DataCubeExplorer3 and MsIQuant4; ii) open source software build on a 
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proprietary programming language that are based on costly licenses (MATLAB) such as      

MSiReader5 and SpectralAnalysis6; or iii) open source software with permissive-license such 

as rMSI7, BASIS8, M2aia9, HIT-MAP10 and massPix11.  

While permissive-license open source software is a prerequisite for reproducible research, 

the respective MSI software are often specialized towards specific analysis tasks.  A typical 

MSI analysis requires multiple analysis steps: data import, visualization, preparation, 

preprocessing, statistics & artificial intelligence (AI), and data export. These are linearly 

depicted in Fig. 1a, but are rather iterative in practice. Most open-source software target 

particular steps in this analytical pipeline. MassPix focuses on lipid analysis and 

identification, while HIT-MAP is specialized towards peptide analysis and identification. 

BASIS focuses on preprocessing methods. M2aia offers methods for multi-modal imaging 

analysis. rMSI suite consists of several different R packages, which together offer solid 

support for most analysis steps (data import, preparation, preprocessing, visualization and 

identification), but only offers basic capabilities for downstream analyses. Beyond specific 

functionalities, the large-scale nature of the MSI data makes it necessary to deploy these 

tools on specialized hardware, such as cloud computing. The targeted scope of the existing 

open-source tools, and the requirements for a computational infrastructure in most cases, 

limit their usability for many labs.  

Unlike the methods above, Cardinal v3 is a permissive-license family of open source 

R/Bioconductor packages. It has one of the richest portfolios of advanced statistical and 

machine learning methods (Fig. 1), as well as the capability to work with large-scale data in 

a standard desktop computational environment.  

A recent study12 highlighted Cardinal’s versatility by reviewing its deployment for different 

analytes (metabolites, lipids, peptides and proteins), different ionization sources (matrix-

assisted laser desorption/ionization (MALDI), desorption electrospray ionization, secondary-

ion mass spectrometry), and mass analyzers (time-of-flight (TOF), orbitrap). In the same 

study12, Cardinal and the commercial SCiLS Lab software were applied for the analysis of 

Pseudomonas aeruginosa colonies. Both software produced comparable results for 

unsupervised segmentation and finding discriminative m/z features. Thus, Cardinal 

represents not only one of the most comprehensive open-source MSI software but also a 

competitive one. 

Compared to Cardinal v113 (and the unpublished Cardinal v2), Cardinal v3 was improved in 

three different aspects. i) Existing methods for MSI data import and export, preprocessing, 

and visualization were refined, now allowing for example the analysis of high mass 

resolution data, spectral mass alignment and re-calibration; ii) a broad scope of statistical 

and machine learning functionalities was added to find a) analytes with the same distribution 

by co-localization analysis; b) differentially abundant analytes via class comparison14; c) 

analytes with homogeneous and heterogeneous spatial distributions by single-ion 

segmentation15; d) deep learning based methods for weakly supervised classification were 

developed16 in python and implemented as CardinalNN R package to not burden Cardinal 

users to learn another programming language; iii) major restructuring of the underlying code 

infrastructure supports the efficient analysis of large experiments via out-of-memory 

computation and parallel computation. 
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Figure 1 – Common MSI data analysis steps and the corresponding functionalities in Cardinal 

a, MSI data analysis include import, visualization, preparation, preprocessing, statistical analysis & artificial 

intelligence (AI), and export. b, Preprocessing methods in Cardinal allow adjustment of the analysis of various 

types of MSI data. Statistical and AI methods enable class discovery (image segmentation), class comparison 

(detection of changes in abundance) and class prediction (tissue and spectra classification). c, Cardinal supports 

the analysis of large files on traditional hardware via parallel and out-of-memory computing. Time efficient parallel 

CPU computation is enabled for all preprocessing and some statistics functions via the R package BiocParallel. 

Most Cardinal functions directly interact with larger than memory files via the Matter R package, without the need 

for converting data or copying files. Abbreviations: DGMM: Dirichlet Gaussian mixture models; MAD: mean 

absolute deviations; OPLS-DA: orthogonal partial least squares discriminant analysis; PCA: principal component 

analysis; PLS-DA: partial least squares discriminant analysis; ROI: region of interest; TIC: total ion current, mi-

CNN: multiple instance convolutional neural network.  

In the following, we illustrate how Cardinal v3 enables new, and principally different 

research. We highlight four reproducible case studies based on open datasets from the 

PRIDE repository17: 1) Segmentation of a high resolution phospholipid imaging data set18, 2) 

Single ion segmentation and concentration curves of a very large sized peptide imaging data 

set19, 3) Supervised and 4) Semi-supervised classification of a multiple replicate peptide 

imaging data set20. The raw data were transferred to the MassIVE database and the R 

Markdown files containing the R code for the case studies were added as re-analysis via 

MassIVE.quant (MassIVE identifier: MSV000086099, MSV000086102, MSV000089594). 

The first case study demonstrates Cardinal v3 capabilities to accurately and efficiently 

handle high mass resolution datasets, which was not possible with Cardinal v1. We 

preprocessed the mouse bladder phospholipid imaging data and then reproduced figures 

from the original publication (Fig. S1). Furthermore, we applied spatial shrunken centroids 

(SSC), Cardinal’s unique spatially aware unsupervised segmentation method21. 

Unsupervised SSC resulted in five spatial segments corresponding to the three different 

bladder tissue types and two background segments (Fig. 2a). SSC performs feature 

regularization to report segment specific m/z features. These contained not only m/z 

features, which were described in the original publication as tissue specific, but also many 

additional ones (Fig. 2b).  
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Figure 2 - Re-analysis of three public datasets with Cardinal 

Three MSI experiments were chosen as case studies: 1) a high-resolution segmentation dataset (a-b), 2) a large-

scale single ion dataset (c-e) and 3) a multiple replicates classification study (f-h). a, Case study 1: spatially 

aware unsupervised segmentation of mouse bladder tissue produced five spatial segments, corresponding to 

muscle layer (blue), adventitial layer (yellow), urothelium (magenta), background (green) and an unknown cluster 

(orange). b, Each tissue segment shows a distinct statistical contribution profile of its m/z features. c, Case study 

2: experimental design. Fresh-frozen porcine tissues from five different organs were covered with substance P as 

a protease substrate tracer. Substance P was either applied before or after incubation (digested vs. non-digested 

condition) for five different durations. Four spots with protease inhibitors were added to each tissue section to 

prevent digestion in these areas. d, Ion image of substance P (m/z 1347.5) and segmentation of substance P at 

five different incubation times. Single ion segmentation with two segments finds segments corresponding to the 

areas with (orange) and without (blue) protease inhibitor mix. e, For both segments, the log intensity ratio for 

mean substance P in digested and inhibitor region at all five incubation times was plotted to show the tissue 

protease activity with different incubation times. f, Case study 3 and 4: experimental setup. Two tissue micro 

arrays (TMA) contained 39 patient’s bladder tissue cores with tumor and stroma annotations. g, Cross validation 

reveals the best parameters for partial least squares(PLS). The contribution of the different m/z features to the 

two classification categories, tumor and stroma, are plotted below. h Best parameters and contribution of m/z 

features to classification for spatial shrunken centroids (SSC).  i, Class annotation annotated by a pathologist in 

the stained tissues next to spectra-wise class prediction by PLS, SSC, multiple instance convolutional neural 

network with (micnn_sup) and without detailed spectra annotations (micnn) for four exemplary tissue cores. 

Classification accuracy (Acc.) for each method on the complete test dataset is stated. 

 

The second case study showcases Cardinal v3's ability to analyze large datasets with highly 

customized and flexible analysis steps including the new and unique single-ion segmentation 

method. The analyzed 55 GB dataset is one of the largest public MSI datasets and 

represents 78 fresh-frozen porcine tissue sections from five organs, and contains regions 

with different protease activity due to different digestion times (Fig. 2c). Calculating the mean 

of all 281,395 spectra took ~ 1,200 seconds and ~ 9 GB memory on a personal computer. 

Parallel computing with two cores reduced calculation times to ~ 700 seconds. Further 

preprocessing took ~ 1000 seconds and ~ 10 GB memory. Thus, compared to Cardinal v1 

and most non-commercial MSI software, Cardinal v3 enables the analysis of larger than 
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memory datasets in reasonable times without the need to invest too much into computational 

infrastructure. Cardinal v3’s unique single-ion segmentation method revealed the spectra 

with and without protease activity (Fig. 2d), which were not publicly available. Basic R 

functionalities enabled calculating and plotting the protease activities in different segments 

and at different time points (Fig. 2e). This highlights the sheer unlimited options of the R 

environment, which goes far beyond the customization options that stand-alone MSI 

software can provide.     

The third case study benefits from Cardinal v3’s new preprocessing and highlights the 

performance of Cardinal’s unique SSC method for tissue classification and m/z feature 

selection for complex experimental designs. The dataset contains two files with 39 patient 

bladder tumor tissue cores and is accompanied by spectra annotation such as tissue type 

(Fig. 2f). In Cardinal, we directly attached these spectral metadata to the raw data to 

minimize mistakes. We applied the new mass alignment and mass re-calibration 

preprocessing methods, which successfully reduced mass shifts and improved mass 

accuracy, which is key for correct analyte matching and identification (Fig. S2 a,b). One file 

was used for training and cross validation to find optimal parameters for classification, either 

with the spatial shrunken centroids or the partial least squares method. Both methods are 

tailored towards classification of spatially dependent data and their optimal parameters were 

found by cross validation (Fig. 2g). Spatial shrunken centroids includes only the most 

discriminating m/z features into the classifier, which facilitates m/z feature extraction and 

interpretation of the classifier (Fig. 2g). Both classifiers showed an accuracy above 90% to 

distinguish tumor and stroma spectra on the second file, which served as independent test 

set (Fig. 2h). This shows that Cardinal even enables the reproducible and successful 

analysis of lower quality datasets from experiments with multiple tissues and conditions.  

The fourth case study illustrates Cardinal’s new deep learning extension for semi-supervised 

classifications. The new method performs sub-tissue classifications with only tissue-level 

annotations using multiple instance learning and captures m/z dependencies using 

convolutional neural networks. The same multiple replicate dataset as in the third case study 

was used. The results show that this classifier achieved comparable accuracy on the test file 

compared to the classifier trained with sub-tissue level annotations (Figure 2h). 

The distribution of the Cardinal software family as open-source R/Bioconductor packages 

provides an ecosystem that ensures software quality and maintenance through semi-annual 

releases, version control, detailed documentation and open development22. Additionally, 

Cardinal may be installed via Github, Bioconda23, and BioContainers24, or used on public 

clouds via the graphical user interface of Galaxy25 (Table 1). Cardinal’s open source license 

and its imzML export function facilitate data sharing, reproducibility, interoperability, and 

flexibility. Complete analyses done in Cardinal and shared via simple R scripts or markdown 

embedded code lay the foundation of reproducible research. In three published studies, 

Cardinal users adjusted and expanded functionalities to their specific needs and 

redistributed their new code or software for the benefit of the whole community10,12,26.  

Table 1: Cardinal is available via different resources 

Resource Description Link 

Bioconductor Cardinal installation via 
Bioconductor 

https://www.bioconductor.org/packages/relea
se/bioc/html/Cardinal.html 
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Bioconda Cardinal installation via 
Bioconda 

https://anaconda.org/bioconda/bioconductor-
cardinal 

BioContainers Cardinal installation via 
BioContainers 

https://biocontainers.pro/tools/bioconductor-
cardinal 

Github Cardinal code 
repository 

https://github.com/kuwisdelu/Cardinal 

Github  CardinalNN code 
repository 

https://github.com/DanGuo1223/CardinalNN 

Galaxy Cardinal functionalities 
usable in the Galaxy 
framework 

https://usegalaxy.eu 

To maximize its usability, Cardinal provides extensive training and help infrastructure 

(Supplementary Table 1) including user guides, vignettes describing case studies and 

documentation of algorithms. Overall, the updated infrastructure and methods strengthen 

Cardinal v3 portfolio as a computationally efficient MSI software with a huge methods 

portfolio that supports the analysis of a diverse range of MSI experiments. 

Methods 

Case study 1: High resolution segmentation dataset 

Römpp et al. imaged phospholipids in a mouse urinary bladder tissue section with an AP-

SMALDI-LTQ Orbitrap mass spectrometer that allowed a mass resolving power of 30000 at 

m/z 400 and 10 µm spatial resolution18. The processed imzML file was downloaded from 

PRIDE (PXD001283) and imported into Cardinal using 10 ppm to obtain regular m/z bins. 

The average mass spectrum between m/z 770.4 and 770.7 was plotted to visualize two 

close peaks. Peak detection was performed on the mean spectrum with MAD noise 

estimation and a signal to noise ratio of six. Peaks were aligned to the mean spectrum using 

15 ppm and only kept if their mean intensity was above zero. For each m/z in the generated 

peak list, the original peak area was integrated with the peakBin function in each total ion 

current normalized spectrum. After preprocessing, the overlaid ion image was plotted for the 

two close m/z features 770.51 and 770.56 using adaptive image smoothing, linear image 

normalization and contrast enhancement via suppression. The spatial distributions of three 

m/z features (741.5307, 798.5410, and 743.5482) were overlaid into one ion image plot 

using adaptive image smoothing, linear image normalization and contrast enhancement via 

suppression. Next, the preprocessed data was segmented using unsupervised spatial 

shrunken centroids21 using Gaussian weights with a radius (r) of two, maximum of ten 

clusters (k) and smoothing values (s) of 0, 6, 12, 18, 24 and 30. Overlaid and separated 

segment images as well as the statistics showing the contribution of each m/z feature were 

plotted for the segmentation with s = 24. A co-localization analysis was performed to find m/z 

features that correlate with m/z 743.5448, which is located in the lamina propria.  

Case study 2: Large scale single ion segmentation dataset 
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Erich et al. cut consecutive sections from five different porcine tissues (kidney, spleen, 

pancreas, liver and muscle) and spotted four times 1 µl protease inhibitor mix onto each 

tissue section19. For each organ, five tissue sections were spray-covered with substance P 

before incubation to allow its digestion in the areas without protease inhibitor mix (‘digested 

samples’) and the other six sections were spray-covered after incubation to prevent 

digestion (‘not digested samples’). Incubation times were set to 15, 30, 60, 120 and 360 min 

to measure the endogenous protease activity over time. Afterwards, imaging with a MALDI-

TOF device in the m/z range 500 to 2500 at 200 µm spatial resolution was performed. The 

55 GB imzML ‘time-curve-dataset’ was downloaded from PRIDE (PXD011104) and imported 

into Cardinal. Peak detection was performed on the mean spectrum with the MAD noise 

estimation and a signal to noise ratio of 2.5. Peaks were aligned to the mean spectrum and 

only m/z features with non-zero mean intensities were kept. The peak area was integrated in 

the total ion current normalized data at the m/z peak positions ± 100 ppm. Time and memory 

consumption for these calculations were recorded once while using a single core and once 

with two cores via the BiocParallel function. Next, the ion image of substance P (m/z 1347.7) 

was plotted on the preprocessed file with the following parameters: contrast enhancement 

via histogram and adaptive image smoothing. All tissue specimens were annotated for their 

condition (digest/no digest) and time points (15, 30, 45, 60, 120, 360 min) via their position in 

the x-y coordinate grid. The five different tissue types were manually annotated according to 

the annotation provided in the original manuscript. These spectra annotations were 

integrated with the MSI data and filtered for ‘digest’ and ‘no digest’ spleen spectra. 

Substance P (m/z 1347.7) was plotted in the ‘digest’ spleen tissues with contrast 

enhancement via suppression and Gaussian image smoothing. Single ion segmentation15 of 

substance P in the digested spleen was performed to obtain the spectra with and without 

inhibitor mix. This was performed by applying spatially-aware Dirichlet Gaussian mixture 

model (DGMM) with a radius (r) of one, two clusters (k) and without annealing during 

parameter optimization. The obtained spatial clusters were plotted. For both clusters, 

substance P mean intensity was calculated for the digested (no inhibitor mix) and not 

digestion (inhibitor mix) spectra of both datasets at all digestion times. The obtained mean 

intensities were normalized to the mean intensity of substance P in the undigested spleen 

tissues at the same time points, log transformed and plotted as a time curve. 

 

Case study 3: Multiple replicates classification dataset 

Tryptic peptides were imaged in urothelial tissues with a MALDI-TOF device at 150 µm spatial 

resolution20. The study cohort consisted of two tissue microarrays (TMAs) containing 39 

patient’s urothelial tissue specimens with different types of urothelial cancer or benign 

diagnoses and annotations for tumor and stroma tissue regions. Both Analyze 7.5 files as well 

as the metadata containing spectra annotations were downloaded from PRIDE (PXD026459) 

and imported into Cardinal. This metadata was attached to the raw data in Cardinal and the 

data was filtered to keep only spectra with tumor or stroma annotations. The preprocessing 

was done separately for TMA1 and TMA2 to borrow as little information as possible between 

the two datasets that serve as test and training dataset in the classification. Gaussian signal 

smoothing with a window of 8 and kernel standard deviation of 2 was performed. Next, the 

baseline was removed with a median function that was applied to 750 blocks. The m/z values 

of all spectra were aligned to their mean spectrum with 200 ppm tolerance. Zoomed in mass 
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spectra for six random spectra before and after m/z alignment were plotted for visual control. 

To shift the m/z to the correct positions, m/z re-calibration with four internal calibrants and 200 

ppm was performed. Again, six mass spectra before and after re-calibration were plotted, 

zooming onto the m/z axis for the internal calibrant angiotensin. Afterwards, peaks were 

detected in TMA2 with the ‘simple method’, signal to noise ratio of 5, window of 10 and 500 

blocks to estimate the noise. Picked peaks were aligned with 200 ppm to the mean spectrum 

and filtered to keep only peaks that occur in at least 1% of all spectra and had a mean intensity 

above zero. The obtained peak list was used to integrate the corresponding peak intensity 

areas from the smoothed and baseline removed data in a 200 ppm window with the peakBin 

function in TMA1 and TMA2 separately. Lastly, intensities were normalized to the total ion 

current of each spectrum. Classification using spatial shrunken centroids algorithm21 was 

performed. First, to find the optimal classification parameters, 5-fold cross validation was 

performed on the training dataset (TMA2), while peak binning to the peak list was done 

separately for each fold. Next, the preprocessed TMA2 file was classified using spatial 

shrunken centroids classification with the optimal parameters (r = 1, s = 25). Then the classifier 

was used to predict the test dataset (TMA1). Classification (cross validation, classification and 

prediction) was repeated with the partial least squares (PLS) method.  

Case study 4: Multiple replicate semi-supervised classification 

The processed dataset generated in case study 3 from the 39 urothelial tissue cores was used 

in this case study. The split of training and test set was according to the two TMAs in which 

the tissue cores were assembled. To mimic a scenario where spectra annotations are not 

available but only the annotation for the complete tissue are available, the tissue annotations 

were assigned as tumor if any spectrum in the tissue was tumor and as stroma if none of the 

spectra in the tissue was tumor. The training dataset with tissue annotations was used to train 

the semi-supervised classification model on one TMA. Note that the spectra annotations were 

not used during training. The classifier used was a convolutional neural network (CNN) with 

three convolutional layers and one fully connected layer16. Then, the trained CNN was used 

to predict spectra annotations on the testing dataset, the other TMA, and the metrics, such as 

accuracy, sensitivity, and specificity, were calculated based on the ground-truth spectra 

annotations. To compare with standard supervised training that uses the detailed spectra 

annotations, the CNN with the same architecture was trained using ground-truth spectra 

annotations and evaluated on the same test dataset. 

General methods 

For all case studies, we uploaded the raw data together with the analysis R code as a re-

analysis into the MassIVE.quant repository27 (MassIVE & MassIVE.quant identifier: case 

study 1: MSV000086099 & RMSV000000684; case study 2: MSV000086102 & 

RMSV000000664; case study 3 and 4: MSV000089594 & RMSV000000686) and in addition 

deposited the R code in GitHub (https://github.com/Vitek-Lab/Cardinal3-vignettes). 

All analyses were performed with Cardinal (version 3.1.0) in R. Figures were exported from 

R as pdf file and figure as well as text size were adjusted in Adobe Illustrator. 
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Supplementary Figures 

 

Supplementary Figure S1 - Cardinal 2 supports visualization and preprocessing of 

high mass resolution data 

a, Reproducing the overlay ion image of three m/z features with different spatial abundances 

(Figure 1A in original publication). b, Zoomed in average mass spectra show two peaks that 

are only 0.05 m/z apart (Figure 2C in original publication) and could be detected as separate 

peaks. The red dotted lines indicate that both peaks will be picked separately during peak 

detection. c, Visualizing the spatial distribution of both peaks shows that they are present in 

different tissue regions (Figure 2B in original publication). The peaks in the original 

publication were likely mislabeled as suggested by Fig. S5 of the same publication and the 

inverse image we obtained here. 
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Supplementary Figure S2 - Cardinal 2 enables more accurate m/z values in the 

multiple replicates classification dataset 

a, Zoomed in mass spectra for six random spectra of the first dataset show m/z shifts 

between the spectra before m/z alignment. Applying Cardinal’s new mass alignment step 

increases the alignment of the peaks substantially. 

b, Zoomed in mass spectra for six random spectra of the first dataset before and after mass 

re-calibration show how Cardinal’s new mass re-calibration method shifts the monoisotopic 

angiotensin peak towards its theoretical m/z position (m/z 1296.7, dashed vertical line). 

 

 

Supplementary information 

Supplementary table 1: Cardinal documentation, training, support 
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