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Abstract

Cardinal v3 is an open source software for reproducible analysis of mass spectrometry
imaging experiments. A major update from its previous versions, Cardinal v3 supports most
mass spectrometry imaging workflows. Its analytical capabilities include advanced data
processing such as mass re-calibration, advanced statistical analyses such as single-ion
segmentation and rough annotation-based classification, and memory-efficient analyses of
large-scale multi-tissue experiments.

Main

Mass spectrometry imaging (MSI) provides unique value for life science research. MSI
analyzes spatial distributions of hundreds of analytes directly from complex biological
samples such as tissue sections at cellular resolution. Typical analytes include lipids,
metabolites, drugs, peptides and proteins. The untargeted, label-free and multiplexed
measurement capabilities make MSI an up-and-coming technology for research applications
in medicine, biology, pharmacology, toxicology and forensics'.

The nature of MSI data challenges its analysis. A single MSI file often reaches dozens of
gigabyte in size. MSI data from a single tissue section comprises several thousand mass
spectra, each containing thousands of mass-to-charge (m/z) feature — intensity pairs. Each
spectrum is annotated with x- and y-coordinates that localize it on the tissue section. Further
spectra annotations such as type of tissue, disease or treatment are often stored in a
separate file. However, a typical MS| experiment is even more complex, and consists of
multiple tissue sections and conditions. This data complexity and size requires specialized
and efficient software tools for data preparation, preprocessing and statistics, which differ
from classical mass spectrometry experiments.

Many vendor-independent, free and open source MSI software exist as recently reviewed by
Weiskirchen and colleagues?. A commonly used MSI software is the commercial SCiLS Lab
software (Bruker Daltonics, Bremen,Germany). Non-commercial MSI software is either i)
freeware such as DataCubeExplorer® and MslQuant*; ii) open source software build on a
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proprietary programming language that are based on costly licenses (MATLAB) such as
MSiReader® and SpectralAnalysis®; or iii) open source software with permissive-license such
as rMSI”, BASIS8, M2aia®, HIT-MAP'® and massPix"".

While permissive-license open source software is a prerequisite for reproducible research,
the respective MSI software are often specialized towards specific analysis tasks. A typical
MSI analysis requires multiple analysis steps: data import, visualization, preparation,
preprocessing, statistics & artificial intelligence (Al), and data export. These are linearly
depicted in Fig. 1a, but are rather iterative in practice. Most open-source software target
particular steps in this analytical pipeline. MassPix focuses on lipid analysis and
identification, while HIT-MAP is specialized towards peptide analysis and identification.
BASIS focuses on preprocessing methods. M2aia offers methods for multi-modal imaging
analysis. rMSI suite consists of several different R packages, which together offer solid
support for most analysis steps (data import, preparation, preprocessing, visualization and
identification), but only offers basic capabilities for downstream analyses. Beyond specific
functionalities, the large-scale nature of the MSI data makes it necessary to deploy these
tools on specialized hardware, such as cloud computing. The targeted scope of the existing
open-source tools, and the requirements for a computational infrastructure in most cases,
limit their usability for many labs.

Unlike the methods above, Cardinal v3 is a permissive-license family of open source
R/Bioconductor packages. It has one of the richest portfolios of advanced statistical and
machine learning methods (Fig. 1), as well as the capability to work with large-scale data in
a standard desktop computational environment.

A recent study'? highlighted Cardinal’s versatility by reviewing its deployment for different
analytes (metabolites, lipids, peptides and proteins), different ionization sources (matrix-
assisted laser desorption/ionization (MALDI), desorption electrospray ionization, secondary-
ion mass spectrometry), and mass analyzers (time-of-flight (TOF), orbitrap). In the same
study'?, Cardinal and the commercial SCiLS Lab software were applied for the analysis of
Pseudomonas aeruginosa colonies. Both software produced comparable results for
unsupervised segmentation and finding discriminative m/z features. Thus, Cardinal
represents not only one of the most comprehensive open-source MSI software but also a
competitive one.

Compared to Cardinal v1'® (and the unpublished Cardinal v2), Cardinal v3 was improved in
three different aspects. i) Existing methods for MSI data import and export, preprocessing,
and visualization were refined, now allowing for example the analysis of high mass
resolution data, spectral mass alignment and re-calibration; ii) a broad scope of statistical
and machine learning functionalities was added to find a) analytes with the same distribution
by co-localization analysis; b) differentially abundant analytes via class comparison'#; c)
analytes with homogeneous and heterogeneous spatial distributions by single-ion
segmentation'®; d) deep learning based methods for weakly supervised classification were
developed'® in python and implemented as CardinalNN R package to not burden Cardinal
users to learn another programming language; iii) major restructuring of the underlying code
infrastructure supports the efficient analysis of large experiments via out-of-memory
computation and parallel computation.
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Figure 1 —- Common MSI data analysis steps and the corresponding functionalities in Cardinal

a, MSI data analysis include import, visualization, preparation, preprocessing, statistical analysis & artificial
intelligence (Al), and export. b, Preprocessing methods in Cardinal allow adjustment of the analysis of various
types of MSI data. Statistical and Al methods enable class discovery (image segmentation), class comparison
(detection of changes in abundance) and class prediction (tissue and spectra classification). ¢, Cardinal supports
the analysis of large files on traditional hardware via parallel and out-of-memory computing. Time efficient parallel
CPU computation is enabled for all preprocessing and some statistics functions via the R package BiocParallel.
Most Cardinal functions directly interact with larger than memory files via the Matter R package, without the need
for converting data or copying files. Abbreviations: DGMM: Dirichlet Gaussian mixture models; MAD: mean
absolute deviations; OPLS-DA: orthogonal partial least squares discriminant analysis; PCA: principal component
analysis; PLS-DA: partial least squares discriminant analysis; ROI: region of interest; TIC: total ion current, mi-
CNN: multiple instance convolutional neural network.

In the following, we illustrate how Cardinal v3 enables new, and principally different
research. We highlight four reproducible case studies based on open datasets from the
PRIDE repository'’: 1) Segmentation of a high resolution phospholipid imaging data set'®, 2)
Single ion segmentation and concentration curves of a very large sized peptide imaging data
set'®, 3) Supervised and 4) Semi-supervised classification of a multiple replicate peptide
imaging data set®®. The raw data were transferred to the MassIVE database and the R
Markdown files containing the R code for the case studies were added as re-analysis via
MassIVE.quant (MassIVE identifier: MSV000086099, MSV000086102, MSV000089594).

The first case study demonstrates Cardinal v3 capabilities to accurately and efficiently
handle high mass resolution datasets, which was not possible with Cardinal v1. We
preprocessed the mouse bladder phospholipid imaging data and then reproduced figures
from the original publication (Fig. S1). Furthermore, we applied spatial shrunken centroids
(SSC), Cardinal’s unique spatially aware unsupervised segmentation method?'.
Unsupervised SSC resulted in five spatial segments corresponding to the three different
bladder tissue types and two background segments (Fig. 2a). SSC performs feature
regularization to report segment specific m/z features. These contained not only m/z
features, which were described in the original publication as tissue specific, but also many
additional ones (Fig. 2b).
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Figure 2 - Re-analysis of three public datasets with Cardinal

Three MSI experiments were chosen as case studies: 1) a high-resolution segmentation dataset (a-b), 2) a large-
scale single ion dataset (c-e) and 3) a multiple replicates classification study (f-h). a, Case study 1: spatially
aware unsupervised segmentation of mouse bladder tissue produced five spatial segments, corresponding to
muscle layer (blue), adventitial layer (yellow), urothelium (magenta), background (green) and an unknown cluster
(orange). b, Each tissue segment shows a distinct statistical contribution profile of its m/z features. ¢, Case study
2: experimental design. Fresh-frozen porcine tissues from five different organs were covered with substance P as
a protease substrate tracer. Substance P was either applied before or after incubation (digested vs. non-digested
condition) for five different durations. Four spots with protease inhibitors were added to each tissue section to
prevent digestion in these areas. d, lon image of substance P (m/z 1347.5) and segmentation of substance P at
five different incubation times. Single ion segmentation with two segments finds segments corresponding to the
areas with (orange) and without (blue) protease inhibitor mix. e, For both segments, the log intensity ratio for
mean substance P in digested and inhibitor region at all five incubation times was plotted to show the tissue
protease activity with different incubation times. f, Case study 3 and 4: experimental setup. Two tissue micro
arrays (TMA) contained 39 patient’s bladder tissue cores with tumor and stroma annotations. g, Cross validation
reveals the best parameters for partial least squares(PLS). The contribution of the different m/z features to the
two classification categories, tumor and stroma, are plotted below. h Best parameters and contribution of m/z
features to classification for spatial shrunken centroids (SSC). i, Class annotation annotated by a pathologist in
the stained tissues next to spectra-wise class prediction by PLS, SSC, multiple instance convolutional neural
network with (micnn_sup) and without detailed spectra annotations (micnn) for four exemplary tissue cores.
Classification accuracy (Acc.) for each method on the complete test dataset is stated.

The second case study showcases Cardinal v3's ability to analyze large datasets with highly
customized and flexible analysis steps including the new and unique single-ion segmentation
method. The analyzed 55 GB dataset is one of the largest public MSI datasets and
represents 78 fresh-frozen porcine tissue sections from five organs, and contains regions
with different protease activity due to different digestion times (Fig. 2c). Calculating the mean
of all 281,395 spectra took ~ 1,200 seconds and ~ 9 GB memory on a personal computer.
Parallel computing with two cores reduced calculation times to ~ 700 seconds. Further
preprocessing took ~ 1000 seconds and ~ 10 GB memory. Thus, compared to Cardinal v1
and most non-commercial MSI software, Cardinal v3 enables the analysis of larger than
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memory datasets in reasonable times without the need to invest too much into computational
infrastructure. Cardinal v3’s unique single-ion segmentation method revealed the spectra
with and without protease activity (Fig. 2d), which were not publicly available. Basic R
functionalities enabled calculating and plotting the protease activities in different segments
and at different time points (Fig. 2e). This highlights the sheer unlimited options of the R
environment, which goes far beyond the customization options that stand-alone MSI
software can provide.

The third case study benefits from Cardinal v3’s new preprocessing and highlights the
performance of Cardinal’s unique SSC method for tissue classification and m/z feature
selection for complex experimental designs. The dataset contains two files with 39 patient
bladder tumor tissue cores and is accompanied by spectra annotation such as tissue type
(Fig. 2f). In Cardinal, we directly attached these spectral metadata to the raw data to
minimize mistakes. We applied the new mass alignment and mass re-calibration
preprocessing methods, which successfully reduced mass shifts and improved mass
accuracy, which is key for correct analyte matching and identification (Fig. S2 a,b). One file
was used for training and cross validation to find optimal parameters for classification, either
with the spatial shrunken centroids or the partial least squares method. Both methods are
tailored towards classification of spatially dependent data and their optimal parameters were
found by cross validation (Fig. 2g). Spatial shrunken centroids includes only the most
discriminating m/z features into the classifier, which facilitates m/z feature extraction and
interpretation of the classifier (Fig. 2g). Both classifiers showed an accuracy above 90% to
distinguish tumor and stroma spectra on the second file, which served as independent test
set (Fig. 2h). This shows that Cardinal even enables the reproducible and successful
analysis of lower quality datasets from experiments with multiple tissues and conditions.

The fourth case study illustrates Cardinal’s new deep learning extension for semi-supervised
classifications. The new method performs sub-tissue classifications with only tissue-level
annotations using multiple instance learning and captures m/z dependencies using
convolutional neural networks. The same multiple replicate dataset as in the third case study
was used. The results show that this classifier achieved comparable accuracy on the test file
compared to the classifier trained with sub-tissue level annotations (Figure 2h).

The distribution of the Cardinal software family as open-source R/Bioconductor packages
provides an ecosystem that ensures software quality and maintenance through semi-annual
releases, version control, detailed documentation and open development?2. Additionally,
Cardinal may be installed via Github, Bioconda?®, and BioContainers?*, or used on public
clouds via the graphical user interface of Galaxy?® (Table 1). Cardinal’s open source license
and its imzML export function facilitate data sharing, reproducibility, interoperability, and
flexibility. Complete analyses done in Cardinal and shared via simple R scripts or markdown
embedded code lay the foundation of reproducible research. In three published studies,
Cardinal users adjusted and expanded functionalities to their specific needs and
redistributed their new code or software for the benefit of the whole community%-12:26,

Table 1: Cardinal is available via different resources

Resource Description Link

Bioconductor Cardinal installation via  https://www.bioconductor.org/packages/relea
Bioconductor se/bioc/html/Cardinal.html
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Bioconda Cardinal installation via  https://anaconda.org/bioconda/bioconductor-
Bioconda cardinal

BioContainers Cardinal installation via  https://biocontainers.pro/tools/bioconductor-

BioContainers cardinal

Github Cardinal code https://github.com/kuwisdelu/Cardinal
repository

Github CardinalNN code https://github.com/DanGuo1223/CardinalNN
repository

Galaxy Cardinal functionalities  https://usegalaxy.eu
usable in the Galaxy
framework

To maximize its usability, Cardinal provides extensive training and help infrastructure
(Supplementary Table 1) including user guides, vignettes describing case studies and
documentation of algorithms. Overall, the updated infrastructure and methods strengthen
Cardinal v3 portfolio as a computationally efficient MSI software with a huge methods
portfolio that supports the analysis of a diverse range of MSI experiments.

Methods

Case study 1: High resolution segmentation dataset

Ro6mpp et al. imaged phospholipids in a mouse urinary bladder tissue section with an AP-
SMALDI-LTQ Orbitrap mass spectrometer that allowed a mass resolving power of 30000 at
m/z 400 and 10 um spatial resolution®. The processed imzML file was downloaded from
PRIDE (PXD001283) and imported into Cardinal using 10 ppm to obtain regular m/z bins.
The average mass spectrum between m/z 770.4 and 770.7 was plotted to visualize two
close peaks. Peak detection was performed on the mean spectrum with MAD noise
estimation and a signal to noise ratio of six. Peaks were aligned to the mean spectrum using
15 ppm and only kept if their mean intensity was above zero. For each m/z in the generated
peak list, the original peak area was integrated with the peakBin function in each total ion
current normalized spectrum. After preprocessing, the overlaid ion image was plotted for the
two close m/z features 770.51 and 770.56 using adaptive image smoothing, linear image
normalization and contrast enhancement via suppression. The spatial distributions of three
m/z features (741.5307, 798.5410, and 743.5482) were overlaid into one ion image plot
using adaptive image smoothing, linear image normalization and contrast enhancement via
suppression. Next, the preprocessed data was segmented using unsupervised spatial
shrunken centroids?' using Gaussian weights with a radius (r) of two, maximum of ten
clusters (k) and smoothing values (s) of 0, 6, 12, 18, 24 and 30. Overlaid and separated
segment images as well as the statistics showing the contribution of each m/z feature were
plotted for the segmentation with s = 24. A co-localization analysis was performed to find m/z
features that correlate with m/z 743.5448, which is located in the lamina propria.

Case study 2: Large scale single ion segmentation dataset
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Erich et al. cut consecutive sections from five different porcine tissues (kidney, spleen,
pancreas, liver and muscle) and spotted four times 1 pl protease inhibitor mix onto each
tissue section®. For each organ, five tissue sections were spray-covered with substance P
before incubation to allow its digestion in the areas without protease inhibitor mix (‘digested
samples’) and the other six sections were spray-covered after incubation to prevent
digestion (‘not digested samples’). Incubation times were set to 15, 30, 60, 120 and 360 min
to measure the endogenous protease activity over time. Afterwards, imaging with a MALDI-
TOF device in the m/z range 500 to 2500 at 200 um spatial resolution was performed. The
55 GB imzML ‘time-curve-dataset’ was downloaded from PRIDE (PXD011104) and imported
into Cardinal. Peak detection was performed on the mean spectrum with the MAD noise
estimation and a signal to noise ratio of 2.5. Peaks were aligned to the mean spectrum and
only m/z features with non-zero mean intensities were kept. The peak area was integrated in
the total ion current normalized data at the m/z peak positions £ 100 ppm. Time and memory
consumption for these calculations were recorded once while using a single core and once
with two cores via the BiocParallel function. Next, the ion image of substance P (m/z 1347.7)
was plotted on the preprocessed file with the following parameters: contrast enhancement
via histogram and adaptive image smoothing. All tissue specimens were annotated for their
condition (digest/no digest) and time points (15, 30, 45, 60, 120, 360 min) via their position in
the x-y coordinate grid. The five different tissue types were manually annotated according to
the annotation provided in the original manuscript. These spectra annotations were
integrated with the MSI data and filtered for ‘digest’ and ‘no digest’ spleen spectra.
Substance P (m/z 1347.7) was plotted in the ‘digest’ spleen tissues with contrast
enhancement via suppression and Gaussian image smoothing. Single ion segmentation'® of
substance P in the digested spleen was performed to obtain the spectra with and without
inhibitor mix. This was performed by applying spatially-aware Dirichlet Gaussian mixture
model (DGMM) with a radius (r) of one, two clusters (k) and without annealing during
parameter optimization. The obtained spatial clusters were plotted. For both clusters,
substance P mean intensity was calculated for the digested (no inhibitor mix) and not
digestion (inhibitor mix) spectra of both datasets at all digestion times. The obtained mean
intensities were normalized to the mean intensity of substance P in the undigested spleen
tissues at the same time points, log transformed and plotted as a time curve.

Case study 3: Multiple replicates classification dataset

Tryptic peptides were imaged in urothelial tissues with a MALDI-TOF device at 150 um spatial
resolution?’. The study cohort consisted of two tissue microarrays (TMAs) containing 39
patient’s urothelial tissue specimens with different types of urothelial cancer or benign
diagnoses and annotations for tumor and stroma tissue regions. Both Analyze 7.5 files as well
as the metadata containing spectra annotations were downloaded from PRIDE (PXD026459)
and imported into Cardinal. This metadata was attached to the raw data in Cardinal and the
data was filtered to keep only spectra with tumor or stroma annotations. The preprocessing
was done separately for TMA1 and TMA2 to borrow as little information as possible between
the two datasets that serve as test and training dataset in the classification. Gaussian signal
smoothing with a window of 8 and kernel standard deviation of 2 was performed. Next, the
baseline was removed with a median function that was applied to 750 blocks. The m/z values
of all spectra were aligned to their mean spectrum with 200 ppm tolerance. Zoomed in mass
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spectra for six random spectra before and after m/z alignment were plotted for visual control.
To shift the m/z to the correct positions, m/z re-calibration with four internal calibrants and 200
ppm was performed. Again, six mass spectra before and after re-calibration were plotted,
zooming onto the m/z axis for the internal calibrant angiotensin. Afterwards, peaks were
detected in TMA2 with the ‘simple method’, signal to noise ratio of 5, window of 10 and 500
blocks to estimate the noise. Picked peaks were aligned with 200 ppm to the mean spectrum
and filtered to keep only peaks that occur in at least 1% of all spectra and had a mean intensity
above zero. The obtained peak list was used to integrate the corresponding peak intensity
areas from the smoothed and baseline removed data in a 200 ppm window with the peakBin
function in TMA1 and TMA2 separately. Lastly, intensities were normalized to the total ion
current of each spectrum. Classification using spatial shrunken centroids algorithm?' was
performed. First, to find the optimal classification parameters, 5-fold cross validation was
performed on the training dataset (TMA2), while peak binning to the peak list was done
separately for each fold. Next, the preprocessed TMA2 file was classified using spatial
shrunken centroids classification with the optimal parameters (r = 1, s = 25). Then the classifier
was used to predict the test dataset (TMA1). Classification (cross validation, classification and
prediction) was repeated with the partial least squares (PLS) method.

Case study 4: Multiple replicate semi-supervised classification

The processed dataset generated in case study 3 from the 39 urothelial tissue cores was used
in this case study. The split of training and test set was according to the two TMAs in which
the tissue cores were assembled. To mimic a scenario where spectra annotations are not
available but only the annotation for the complete tissue are available, the tissue annotations
were assigned as tumor if any spectrum in the tissue was tumor and as stroma if none of the
spectra in the tissue was tumor. The training dataset with tissue annotations was used to train
the semi-supervised classification model on one TMA. Note that the spectra annotations were
not used during training. The classifier used was a convolutional neural network (CNN) with
three convolutional layers and one fully connected layer'®. Then, the trained CNN was used
to predict spectra annotations on the testing dataset, the other TMA, and the metrics, such as
accuracy, sensitivity, and specificity, were calculated based on the ground-truth spectra
annotations. To compare with standard supervised training that uses the detailed spectra
annotations, the CNN with the same architecture was trained using ground-truth spectra
annotations and evaluated on the same test dataset.

General methods

For all case studies, we uploaded the raw data together with the analysis R code as a re-
analysis into the MassIVE.quant repository?” (MasslIVE & Mass|VE.quant identifier: case
study 1: MSV000086099 & RMSV000000684; case study 2: MSV000086102 &
RMSV000000664; case study 3 and 4: MSV000089594 & RMSV000000686) and in addition
deposited the R code in GitHub (https://github.com/Vitek-Lab/Cardinal3-vignettes).

All analyses were performed with Cardinal (version 3.1.0) in R. Figures were exported from
R as pdf file and figure as well as text size were adjusted in Adobe lllustrator.
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Supplementary Figure $1 - Cardinal 2 supports visualization and preprocessing of
high mass resolution data

a, Reproducing the overlay ion image of three m/z features with different spatial abundances
(Figure 1A in original publication). b, Zoomed in average mass spectra show two peaks that
are only 0.05 m/z apart (Figure 2C in original publication) and could be detected as separate
peaks. The red dotted lines indicate that both peaks will be picked separately during peak
detection. ¢, Visualizing the spatial distribution of both peaks shows that they are present in
different tissue regions (Figure 2B in original publication). The peaks in the original
publication were likely mislabeled as suggested by Fig. S5 of the same publication and the
inverse image we obtained here.
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Supplementary Figure S2 - Cardinal 2 enables more accurate m/z values in the
multiple replicates classification dataset

a, Zoomed in mass spectra for six random spectra of the first dataset show m/z shifts
between the spectra before m/z alignment. Applying Cardinal’s new mass alignment step
increases the alignment of the peaks substantially.

b, Zoomed in mass spectra for six random spectra of the first dataset before and after mass
re-calibration show how Cardinal’'s new mass re-calibration method shifts the monoisotopic
angiotensin peak towards its theoretical m/z position (m/z 1296.7, dashed vertical line).

Supplementary information

Supplementary table 1: Cardinal documentation, training, support
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