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19  Abstract
20
21 Transcription of amost all mammalian genes occurs in stochastic bursts, however the

22 fundamental control mechanisms that allow appropriate single-cell responses reman
23 unresolved. Here we utilise single cell genomics data and stochastic models of transcription
24 to perform global analysis of the toll-like receptor (TLR)-induced gene expression variability.
25 Based on anaysis of more than 2000 TLR-response genes across multiple experimental
26  conditions we demonstrate that the single-cell, gene-by-gene expression variability can be
27  empirically described by a linear function of the population mean. We show that response
28  heterogeneity of individual genes can be characterised by the slope of the mean-variance line,
29  which captures how cells respond to stimulus and provides insight into evolutionary
30 differences between species. We further demonstrate that linear relationships theoretically
31 determine the underlying transcriptional bursting kinetics, revealing different regulatory
32 modes of TLR response heterogeneity. Stochastic modelling of temporal scRNA-seq count
33 distributions demonstrates that increased response variability is associated with larger and
34 more frequent transcriptional bursts, which emerge via increased complexity of
35 transcriptional regulatory networks between genes and different species. Overall, we provide
36 amethodology relying on inference of empirical mean-variance relationships from single cell
37 dataand new insightsinto control of innate immune response variability.
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40 Introduction

41
42  Transcription of almost al mammalian genes occurs in bursts, during brief and random

43  periods of gene activity. The patterns of tempora mRNA production in asingle cell, and the
44  overdl mRNA (and protein) distribution in cellular populations, are controlled by
45  transcriptional bursting, namely via the modulation of burst size and burst frequency [1-3].
46  The innate immune responses exhibit extreme variability at the single cell level, in
47  comparison to other tissue systems [4-6], where only subsets of cells produce specific
48  effector molecules, and thus are able to restrict pathogen growth [7]. This apparent level of
49  variability poses a fundamental systems biology question; how do robust immune responses
50 emerge from this heterogeneous transcriptional bursting process?

51

52  Recent advances have demonstrated key insights into regulation of transcriptional bursting.
53 In genera, the bursting kinetics are gene-specific and subject to regulatory control via
54  cellular signalling events [3, 8-11] as well as genome architecture and promoter sequences [4,
55 12-16]. For example, core promoters control burst sizes, while enhancer elements modulate
56  burst frequency to define cell-type specific [17] or circadian gene expression outputs [18].
57 Coordinated gene activity has also been shown to regulate mRNA outputs as a function of
58  gpatial position during development [19-21] as well as temporal immune responses [22]. The
59 resulting cell-to-cell variability is a consequence of the stochastic processes governing
60 signalling and transcription [23], but aso reflects extrinsic differences between individual
61 cells[24-27] or variability of the pathogen in the context of the innate immune response [7].
62  With individual genes exhibiting different levels of stimuli-induced heterogeneity, we are
63  dill lacking general understanding of how transcription is regulated at the single cell level.

64

65 Toll-like (TLR) receptor signalling constitutes one of the fundamental, evolutionarily
66  conserved innate immune defence mechanisms against foreign threats [28, 29], yet exhibits
67 substantia cell-to-cell variability [4-6, 30, 31]. We recently demonstrated that this overall
68 TLR response to stimulation (or in general perturbation) is constrained through gene-specific
69 transcriptional bursting kinetics [32]. By utilising single molecule Fluorescent in situ
70  Hybridisation (smFISH), we established that the overall mRNA variability is linearly
71  constrained by the mean mRNA response across a range of related stimuli. Variance (and in
72  fact higher moments) of the mRNA distributions have been also shown to be constrained by
73  the mean response in the developing embryo [19]. These analyses suggest that complex
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74  transcriptional regulation a a single cell level may be globally characterised by mean-
75  variance relationships of gene-specific mMRNA outputs, providing new ways to characterise
76  response variability. While quantitative smFISH provides important insights, this approach is
77  often limited by the number of genes, which can be investigated [8, 9, 32-37], therefore
78  further analyses of global gene expression patterns [15, 17] are required to fully understand
79  theunderlying regulatory constraints.

80

81  Here we utilise SCRNA-seq data on innate immune phagocytes stimulated with common TLR
82 ligands, lipopolysaccharides (LPS) of Gram-negative bacteria upstream of TLR4 and viral-
83 like double-stranded RNA (PIC) for TLR3 [4] to investigate the control of single cell gene
84  expression heterogeneity of the innate immune responses. We analyse 2,338 TLR-response
85  genes and demonstrate that they globally follow empirical linear mean-variance relationships,
86  exhibiting a genome-wide spectrum of response variability levels characterised by the slope
87  of the relationship. We show that linear relationships define different modes of individual-
88  gene response modulation with mgjority of the genes undergoing frequency modulation to
89 TLR stimulation. Mathematical modelling of sScCRNA-seq count distributions using dynamic
90 stochastic telegraph models of transcription of varied complexity levels, demonstrates that
91 increased response variability is associated with larger and more frequent transcriptional
92  bursts, which emerge viaincreased regulatory complexity. Finally, we show that linear mean-
93  variance relationships capture evolutionarily differences in response variability across pig,
94  rabbit, rat, and mouse and predict transcriptional bursting modulation between species.
95 Overadl, our data demonstrate the utility of empirical mean-variance relationships in
96 providing new insights into control of transcriptional variability in the innate immune
97  response.

98
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100 Results
101

102  TLR-induced mRNA responses exhibit linear mean-variance trends

103  To globally investigate the control of transcriptional bursting in the TLR system relationships
104  we used existing sSCRNA-seq data from mouse phagocytes either untreated or stimulated with
105 LPSandPIC for 2, 4 and 6 hours [4]. The dataset contains unique molecular identifier (UMI)
106  mRNA counts for 53,086 cells and 16,798 genes across 20 experimental conditions including
107  replicates, of which 2,338 genes were identified as TLR-dependent (see Fig. 1A for
108  correlation of sample mean and variance across all datasets, and Materials and Methods for
109 data processing). We previously showed that the gene-specific variability can be defined by
110 the slope of the mean-variance relationship [32]. To test this phenomenon globally, for each
111  of the 2,338 TLR-inducible genes, the sample mean (1) and variance (¢?) relationship was
112 fitted using robust linear regression (6% = au + «), yielding 2,133 genes with a significant
113 regression slope (p-value < 0.05, Fig. 1B). Of those, 1,551 (66% of al TLR-inducible genes)
114  genes, referred here as high confidence genes, were characterised by coefficient of
115  determination R? > 0.6 (Fig. 1C, see also Table Sl for list of genes and fitted relationships).
116  Overdl, the distribution of fitted slopes across the high confidence genes varied over 3 orders
117  of magnitude, with 1,067 genes (69% of high confidence genes) characterised by slope o>1
118 and 627 (40%) o>3, indicative of predominant non-Poissonian transcription (where one
119  would expect o=1 and ¢, = 0) (Fig. 1D). 61 genes (4%) were characterised by o> 5 and 28
120  (2%) by a o>10, highlighting genes with the highest level of expression variability (across a
121  range of TRL responses, Fig. S1A). Among the high variability genes (o>5) we found C-C
122 motif chemokine ligands (Ccl) 2, 3, 4, 5, 17; C-X-C motif ligands (Cxcl) 9 and 10, as well as
123 cytokines including Interleukin 1 o (IL1a), IL1b, IL10, IL12b and Tumour Necrosis Factor o
124  (Tnfa) (see Fig. 1E for individual gene fits). The most variable gene in the dataset was the
125  immunoglobulin subunit Jchain with a=1372 (Fig. S1D), substantially more than the 2™
126  most variable Ccl5 (0=72). While the range of the mRNA output among high confidence
127  genes varies over 3 orders of magnitude (Fig. S1B), we found that LPS induced more robust
128 activation than PIC in terms of average expression (Fig. 1F). Overdl, this analysis
129  demonstrates that TLR-induced mRNA responses globally exhibit empirical linear mean-
130  variancerelationships.

131
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132
133 Patternsof transcriptional bursting modulation underlie TLR response heter ogeneity

134 Having established the linear relationships relating the gene-specific transcriptional
135  variability to mean expression, we sought to study globa properties of transcriptional
136  bursting underlying these trends. We used moment estimators of the underlying sScRNA-seq
137  count distributions to calculate bursting characteristics, such that burst size b=0c?/u (i.e., the
138  Fano factor) and burst frequency bi=w/bs, which measure the departures from Poissonian
139  mRNA production [1, 3, 11, 18]. Given the empirical linear constraint, % = au + «, the
140 burst size and burst frequency become analytical functions of the mean mRNA expression
141 such that b= ap/p + arand bi=p?/(aw+ o) (Fig. 2A). In a special case when a=0, burst size
142 s constant (independent of the mean expression W) and equa to the slope of the mean-
143 varianceline o, while the frequency increases linearly with 1 and is proportional to 1/« [32].
144  However, the overall behaviour does depend on the intercept (see Fig. S1C for sensitivity
145  analyses); for >0, the burst frequency converges monotonicaly to w/a (i.e., the limiting
146  casefor op=0), while the burst size convergesto o. (from - at 1=0) as the mean expression u
147  increases (Fig. 2A in blue). For 0p<0 (Fig. 2A, in red), the relationship can only be defined
148  for u>|ml|/ e, such that burst size increases monotonically (and converges to o), while the
149  burst frequency has alocal minimum for '=2| a|/ o equal to 4|ag|/ o?, eventually converging
150 tothelimiting case u/c.

151

152  We calculated the theoretical bursting modulation schemes for the 1,551 high confidence
153  genes and compared these to the moment estimators of the burst size and frequency from the
154 data (Fig. 2B). We found that the average relative root mean square error (RRMSE, see
155  methods) of the mean-variance fit in relation to data was 0.07+0.02%, where 1,431 genes had
156  an error smaler than 0.1%. In comparison, the average error for the burst size modulation
157  was 0.08+0.03% (with 1281 genes having an error smaller than 0.1%), while the average
158  error for the burst frequency modulation was 0.07+0.1% (with 1,389 genes having an error
159  smaller than 0.1%). Given their empirical nature, the predicted theoretical trends are in good
160 agreement with the changes of burst size and frequency observed in the data. Profilin 1
161 (Pnfl) and Cd44 are example genes characterised by intercept 0,0<0, while the genes
162  encoding eukaryotic tranglation initiation factor 6 (Eif6) and Cxcl10 had oo>0 (Fig. 2C).
163  Jchain is an example of a gene with a good mean-variance fit, but one of the poorest fit in

164  terms of bursting frequency, which might be due to limited sample size and its profound
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165  variability (Fig. S1D). Of the 1,551 high confidence genes, 430 genes had a significant
166  intercept (p-value < 0.05) in the regression fit, with 414 characterised by negative and 16
167  positive intercepts (Fig. S1E). These in part reflect the empirical nature of these trends and
168  thelimited sample size, especially for those genes where g is small (in relation to variance),
169 for example Cxcl10 (Fig. 2C). However, many genes, including Pnfl and Eif6 exhibit
170  substantial basal expression in untreated cells [8], resulting in either elevated or reduced
171  variability (in relation to true zero) as captured via non-zero intercept in the regression fit
172 [32].

173

174  Gene specific bursting exhibits different modes of response modulation

175  The linear mean-variance relationships reflect the constrained changes of burst size and burst
176  frequency required to regulate response variability as shown in their derived analytical
177  functions of the mean mRNA expression. To understand the modulation of transcriptional
178  bursting, we first calculated fold changes of burst size vs. burst frequency across the range of
179  mean expression calculated for individual response genes (Fig. 3A). We found that 1,015 out
180  of the 1,551 high confidence genes exhibit 2 times more fold changes in burst frequency than
181 burst size. This suggests a predominant frequency modulation, in agreement with recent
182  analyses of LPS-induced macrophages [22]. However, we also found 48 genes exhibiting
183  fold changesin burst size 2 times more than burst frequency, while 389 exhibited comparable
184  modulation of both burst size and burst frequency. To study the transcriptional bursting
185  modulation more systematically, we derived an analytical relationship between the burst size
186  and frequency (independent of the mean mMRNA expression) based on the linear constrains
187  (Fig. 3B). The general relationship is given by b= o/ (bs(bs-)), where o can take positive or
188  negative values. When ap>0, we have an inverse relationship between the burst size and
189  frequency, which asymptotically approaches zero, as the burst size approaches infinity. It is
190 also worth mentioning that, in this case, the function is undefined for values of burst size
191  smaller than or equal to « (Fig. 3B, in blue), reflecting a biological limit of burst size and
192  frequency for genes following this modulation trend. We found that 315 genes (out of the
193 1,551 high confidence genes) exhibited such an inverse relationship, with all genes exhibiting
194  higher frequency than burst size modulation (see Fig 3C for specific genes and Fig 3D and
195 Table S2 for global analysis). For the case when 0,0<0, linear constrains define a non-
196  monotonic relationship between the burst size and frequency on the interval (0,ot) with alocal

197  minimum at bs =a/2, and frequency diverging to infinity as burst size tends towards o or is
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198 closeto O (Fig. 3B, in red). From the case 0,p<0, three patterns of bursting modulation can be
199 distinguished; the burst frequency and size exhibit either inverse relationship, where the
200 frequency increases and burst size decreases (for bs < bs) or concurrent increases (bs > by ).
201 In addition, we define a U-shape relationship such that bs ~ bs where both inverse and

202 concurrent relationships are possible (i.e., b > bg and bg . < bg, per gene). We found

Smax
203 that out of the 1236 genes characterised by 00<O, most genes (999) exhibited predominant
204  frequency modulation following either a U-shape or a concurrent relationship, while 237
205  genes showed higher burst size modulation and was mostly associated with U-shape trends
206  (Fig. 3C and D). It is worth mentioning that all 7 genes confirming an inverse trend showed
207  predominant burst size modulation. Overall, these analyses demonstrate different modes of
208 the transcriptional bursting modulation of TLR-stimulated genes, albeit with predominant
209 regulation viaburst frequency.

210

211  Increased response variability isassociated with complex transcriptional regulation

212 Thedistribution of fitted regression slopes varying over 3 orders of magnitude demonstrate a
213 widerange of response variability among individual TLR-induced genes (Fig. 1D). While we
214 have demonstrated that individual genes exhibit different modes of transcriptional bursting
215  characteristics to regulate responses to stimulation, we wanted to understand the control of
216  variability in the system more mechanistically. A well-established mathematical description
217 of mRNA production involves a 2-state telegraph model (Fig. 4A), where gene activity
218  changes randomly between “off” and “on” states, with mRNA transcription occurring in the
219 “on” date [1, 3, 18, 36]. The associated parameters are gene activity rates (kon and Kos) as
220  well asrate of MRNA transcription (ki) and degradation (kq) (Nicolas et al., 2018). Although
221  the 2-state telegraph model has been widely used in the past to model mRNA count data,
222 more complex structures are often required to capture additional complexity associated with
223 multiple regulatory steps, combinatorial promoter cycling and transcriptional initiation [12,
224 38]. We previously showed that heterogenous 1114 mRNA transcription requires more
225 regulatory steps than that of Tnfa [32]. We therefore hypothesised that TLR response
226  variability is linked with the complexity of the transcriptional regulation. To test this
227  hypothesis, we introduced a 3-state stochastic model, which assumes sequential promoter
228  activation between “off”, “intermediate” and “on” states, equivalent to promoter cycling [12,

229  38], with transcription occurring in the “intermediate” (1) state as well as in the “on” state,
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230 characterised by 5 transition rates (ton, o, Kon, Kot @and kc) , 2 transcription rates (ki and ki), and
231  adegradation rate kq (Fig. 4A).

232

233 We first used a profile likelihood approach [17, 39] to fit the measured scRNA-seq count
234 distributions assuming steady state kinetics of the 2-state model (the so caled Beta-Poisson
235 model) for the 1,551 high confidence genes, each across 20 treatment datasets (Table S3).
236 Vaues of kinetic parameters were inferred for 7,804 of 31,020 datasets (~25% across 1519
237  genes), which in genera corresponded to genes characterised by larger expression, in
238 comparison to those that failed to fit (Fig. S2A). The fitted parameter values (Kon, Kort and ki,
239  expressed in units per degradation half-life) varied over 3 orders of magnitude across all
240 genes and datasets (Fig. S2B). In general, gene inactivation rates (ko) were greater than
241 activation rates (kon) (Fig. S2C), consistent with intermittent transcriptional kinetics [3, 13,
242 17]. While the Beta-Poisson model explicitly assumes a steady-state (and does not make any
243  assumptions about MRNA half-life), we wanted to account for the underlying dynamical
244  stochastic processes and corresponding temporal mRNA production and decay [34].
245  However, it was not computationally feasible to fit all genes across all scRNA-seq datasets,
246 we therefore identified on a subset of 99 high confidence genes for which at least 10 datasets
247  werefitted using a Beta-Poisson model (Fig. S2D). Of these, 96 had an existing measurement
248  of mRNA half-life (which is required for dynamical model fitting) in LPS-stimulated bone
249  marrow derived macrophages [40, 41] or other cell models. The resulting 96 high coverage
250 genesincluded 51 of 100 most variable genes (as defined by the fitted regression slope) and
251 60 of 100 most expressed genes including chemokine family Ccl5, Ccl4, Ccl3, Ccl2 as well
252 aslLlb and TNFa (Fig. S2D, E and F, see Table S3 for a list of genes, half-lives and fitted
253  relationships).

254

255  We used a genetic algorithm to fit dynamical 2-state and 3-state stochastic models across 20
256 individual datasets (LPS and PIC stimulation at O, 2, 4, 6 h time-course across replicates) for
257 the 96 high coverage genes (see Material and Methods). We then applied the Akaike
258 information criterion (AIC) [42] to select models that accurately fitted the measured mRNA
259  distributions and compare the quality of the three models per condition in order to determine
260 the best-fit model, noting that the lower AIC value corresponds to the better model fit. In
261  general, we found that Beta-Poisson model, the least constrained model, fitted better than
262  dynamical models (805 out of 1210 conditions (i.e., treatment and replicates) favoured Beta-
263  Poisson model based on their AIC values, Fig. S3A and B). The more constrained dynamical
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264  2-state model provided a best fit for 170 conditions, while the 3-state model best captured
265 235 conditions (and 30 and 57, respectively when using a more stringent criterion of two-fold
266  AIC change, Fig. S3B). When comparing 2-state with 3-state model directly and assuming a
267 two-fold AIC change between the two models, there were 141 out of 1507 conditions that
268 favoured the 2-state model, while the opposite was true for 266 conditions (see Fig. S3C for
269  other thresholds). For example, 2-state model recapitulated PIC-treated Eif6 mRNA count
270  didtribution (at 4 h) better than a 3-state model, as reflected by the AlCate<AlCs.stare. IN
271  turn, the 3-state model better recapitulated the LPS-treated Ccl2 distribution (at 2 h) spanning
272 amost over 3 orders of magnitudes (Fig. 4B). The number of 2-state-and 3-state model fits
273 was not strongly related to the treatment, time point or in fact biological replicates, although
274 LPShad 155 conditions more fitted with 3-state than 2-state model (Fig. S3D).

275

276  The 141 2-state mode fits were characterised by ko =0.02 #0.01 min™ (half-time of 35 mins)
277  on average, and off rates averaging kos=0.74#0.25 min™* (half-time of 1 min), with average
278  transcription rate k=1.23#4.44 mRNA min™, indicative of ‘bursty’ kinetics (Fig. S4A). The
279  ‘on’ rate showed significant positive correlation with the variance of the corresponding count
280  distributions (r=0.48), demonstrating that a faster ‘on’ switch contributes towards increased
281  response variability. The 266 3-state model fits were also characterised by relatively slow
282  average ‘on’ rates (ton=0.036 #0.13 min™ and ko;=0.33 #0.32 min) in relation to the “off’
283 rates (t,=0.7470.26 min™, ky=0.44+ 0.36 min™ and k.=0.50# 0.36 min™, Fig. $4B). The
284  mRNA count variance was correlated positively with to, rate (i.e., transition to intermediate
285  dtate, r=0.33) as well as with transcription rates in ‘on’ and ‘intermediate’ states (r>0.4). In
286  comparison to the 2-state model, the transcription rate in the ‘on’ state was significantly
287  higher (k=7.63#13.05 mRNA min) indicative of larger burst sizes (Fig. S4C and D).

288

289  We then asked if the level of variability is linked with the model complexity. We found that
290 scRNA-seq count distributions fitted with the 3-state model were characterised by greater
291  variability than those corresponding to the 2-state model (see Fig. 4C and Fig. $4D for less
292  stringent model selection thresholds). In agreement, the 3-state-model fits were associated
293  with significantly larger burst size and lower burst frequency than that of the 2-state model
294  fits, consistent with more heterogenous bursting kinetics across the relevant conditions.
295  Finaly, we analysed model selection across individual high coverage genes rather than

296  corresponding conditions; we found the fraction of conditions explained by one model

10
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297  changes between individual genes (e.g., 3-state model fitted 3 out of 20 for Eif6, 10 out of 20
298  for Ccl5 and all conditions for Vcaml Fig. 4D). Our interpretation of thisisthat as the mRNA
299  responsesincrease, a more complex regulatory structure is required to capture the underlying
300 distribution. We found that, for the high coverage genes, the fraction of conditions explained
301 by the 3-state model correlated well (r=0.56, p-value < 0.0001) with the slope of mean-
302 variance relationship, and thus response heterogeneity (Fig. 4D). Overall, this demonstrates
303 that while increased heterogeneity involves larger and infrequent bursts (in comparison to
304 homogenous responses), this is underlined by increased complexity of the transcriptional
305  regulatory network.

306

307 Linear relationships capture evolutionary changes of response variability

308 Previous work highlighted the relationship between evolutionary response divergence of
309 innate immune genes and their cell-to-cell variability, with highly divergent genes exhibiting
310 more variability [4]. However, the changes in patterns of transcriptional bursting during
311  evolution isstill poorly understood. We proposed that by comparing the linear mean-variance
312  relationships across species, the variations in transcriptional bursting patterns that develop
313  through evolution could be better understood. Specificaly, if the evolutionary changes in
314  response variability can be captured by a fold-change k in the slope of the relationship, then
315 the increased variability is predicted to be due to increased burst size and reduced burst
316  frequency by afactor k, respectively (Fig. 5A).

317  Therelationship between the mean and variance of the single cell mMRNA counts was studied
318 in data for four mammalian species from Hagai et al. (2018): mouse, rat, pig, and rabbit, in
319 cells either untreated or treated with LPS or PIC for 2, 4 and 6 h (see methods and Table $4
320 for species specific number of conditions per gene ranging from 12 to 21). We found that
321 from the 2,338 LPS response genes, a subset of 218 genes with one-to-one orthologues
322  showed response to treatment in all four species (Fig. S5A). 78% of fitted mean-variance
323  relationships for the 218 genes were characterised by R?> 0.6, including 102 genes in all four
324 gpecies and 169 in at least three species. To characterise the divergence in response
325  variability we performed species pairwise comparison between the fitted regression slopes of
326  the 169 genes subset (Table S5). Out of this subset 21 genes including chemokines Ccl2,
327 Ccl4, Ccl5 and Cxcl10 (Fig. 5B and Fig S5B), had all 6 possible pairwise comparisons
328 showing significant differences, indicating divergence in TLR response variability between

329 each of the two species. 5 significant FDR values (difference in three out of four species)

11
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330 were obtained for 49 genes including chemokines Ccl20, Ccl3, MMP9 (Fig S5B) and
331  cytokines Il1a, 1110 and 1127 indicating significant differences in response variability. On the
332 other hand, no significant differences were obtained between any of the four slopes in 7
333 genes, including a transcriptional repressor Chromobox Protein Homologue 8 (Cbx8, Fig.
334  5B). In agreement, a distribution of slope ratios calculated across all pairs of species for the
335 169 genes (Fig. 5C and Table S6) revealed 49 pairs with k > 5 and 258 pairs with k > 2,
336 indicating substantial changes of the response variability between species, including the
337  chemokine and cytokine genes. Conversely, 54% of slope ratios (549 out of total 1014 genes)
338 were smaller than 1.5, indicative of conserved variability. The inflammatory chemokines
339  were shown previously to rapidly evolve in mammals and other vertebrates with clear
340 differences in expression between closely related species [43, 44]. Moreover, gene
341  duplication of the CC chemokine ligands can result in different copy numbers of these genes
342  between individuals [45], further increasing the divergence in expression. Importantly, our
343 analyses specifically capture changes of response variability and suggest a statistical
344  relationship of these changes with the generic evolutionary divergence (see Materials and

345 Methods) of gene expression response (Fig. S5C).

346  To validate the predicted changes in transcriptional bursting during evolution (Fig. 5A), we
347  first calculated the theoretical modulation schemes for all the 169 evolutionary genes across
348  gpecies and compared these to the moment estimators of the burst size and frequency from
349 thedata(Fig. S5D). We found that the average RRM SE of the mean-variance fit in relation to
350 datawas 0.06+0.05% across all species, where 90% genes had an error smaller than 0.1%. In
351 comparison, the average error for the burst size predictions was 0.08+0.05%, while the
352  average error for the burst frequency predictions was 0.05+0.04%. The predicted theoretical
353 trends are in good agreement with the observed changes of burst size and frequency. For
354 example, Cxcl10 exhibits concurrent changes of the burst size and frequency, the level of
355 which is determined by the slope of the relationships, while Cbx8 exhibits the same
356 modulation across species (Fig. 5C). In addition, our predictions of species-specific
357 modulation scheme are based not only on the slope o, but also the mean-variance intercept,
358  which we previously showed may affect the bursting relationships (Fig. 2A and Fig. S1C).
359  We therefore investigated if the difference of the slopes aone is sufficient to predict
360 modulation of bursting characteristics across species (Fig. 5A). We stratified the 169
361 orthologous genes into divergent and non-divergent subsets, with the divergence threshold

362 defined by a 2-fold change in the slope of the mean-variance relationships. The divergent
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363  subset included 31 genes exhibiting higher slope in mouse, and 15 in pig (Fig. S5E). We
364 found that divergent genes, associated with increased response variability, exhibited
365 dignificantly higher average burst sizes (as calculated across all corresponding conditions)
366  and reciprocally lower normalised burst frequency when compared between the two species
367 (Fig. 5D). In contrast, the non-divergent genes showed no significant differences in the burst
368 size or normalized frequency, as predicted by the linear constraints. Interestingly, we aso
369 observed significant differences in the average expression between the divergent genes

370  group, opposing to the non-divergent group (Fig. S5F).

371  Wethen asked if the increased variability in gene expression between species was associated
372 with changes of regulatory complexity (Fig. 5E). Following previous methodology, we
373  selected 28 orthologue genes from the subset of 96 of high coverage genesin mouse and used
374  agenetic algorithm to recapitulate SCRNA-seq count distributions with dynamical 2-state and
375  3-state models (see Materials and Methods and Table S6 for details of the analysis). We then
376  calculated the fold change in the number of conditions (per gene) fitted with 3-state models
377  acrossal pairwise comparisons of the four species. We found that this fold change correlated
378  (Spearman’s r=0.41, p<0.0001) with the ratio of the slopes between the corresponding linear
379  relationships, such that the transition to a higher slope was associated with increased number
380 of 3-state model fits across corresponding conditions (Fig. 5E). Overall, this demonstrates
381 that evolutionary increases in TLR response variability are associated with increased
382  regulatory complexity, resulting in larger and less frequent transcriptional bursting kinetics.
383

384
385 Discussion

386

387  Transcription is inherently a stochastic process leading to heterogeneity in cell-to-cell mMRNA
388 levels. Recent advances suggest the existence of fundamental constraints governing the
389  heterogeneity of gene expression, which rely on the scaling between the variance and mean
390 of the mRNA response distribution [19, 46]. Our previous work, using smFISH data, showed
391 that the overall mRNA variability is linearly constrained by the mean mRNA response across
392 arange of immune-response stimuli [32]. However, these approaches were typically limited
393 by the number of genes considered, not alowing to generalise the observations to the
394 genome-wide scale. Here, utilising an existing scRNA-seq data on the evolutionary-
395 conserved innate immune signaling [4], we perform global analysis of the TLR gene

396  expression response variability and underlying transcriptional bursting. We demonstrate that
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397  cell-to-cell variability can be empirically described by a linear function of the population
398 mean across a genome. Based on this, we develop a methodology, relying on statistical
399 modelling of linear mean-variance relationships from single-cell data, that provides a simple
400 yet meaningful way to understand regulation of cellular heterogeneity. We demonstrate that
401 (1) The response heterogeneity of a gene can be defined as the slope of the mean-variance
402  line across >1,500 individual response genes. High variability genes include chemokines and
403  cytokines such as CCL family, while other functional genes are more homogenous, in
404  agreement with previous work [4]. (2) The changes in heterogeneity between species can be
405  described by the change in the slope of the corresponding mean-variance lines, providing
406  insightsinto the evolutionary control of TLR response variability. (3) The linear relationships
407 determine the underlying transcriptional bursting kinetics, revealing different regulatory
408 modes in response to stimulation and through evolution. (4) Application of dynamical
409  dtochastic models of transcription demonstrates a link between the variability and the
410 regulatory complexity, with complexity facilitating heterogeneity via larger and less frequent
411  transcriptional bursting kinetics.

412

413  While, in general the available sequencing data are subject to measurement noise [47], and
414  often restricted by the number of data points available, the overal mean-variance
415  relationships were captured using robust linear regression approaches. We first considered
416  regulation of 2,338 TLR-inducible genes in primary murine phagocytes across 20
417  experimental datasets corresponding to LPS and PIC treatment including biological replicates
418 (Fig. 1). We found that 2,133 relationships were characterised by a significant (non-zero)
419 regression slope (Fig. 1) with 1,551 genes (66% of total) characterised by coefficient of
420 determination R? > 0.6. In comparison, out of the 218 genes with one-to-one orthologues
421  between mouse, rat, rabbit and pig, 78% of fitted mean-variance relationships for the 218
422  genes were characterised by R? > 0.6, despite the number of datapoints being limited to 12
423  (Fig. 5). Fit quality was also reflected in the low mean squared errors between the fitted
424  trends and data, providing good support for the observed phenomenon. We subsequently
425 demonstrated that linear constraints theoretically determine transcriptional bursting
426  characteristics. We used the widely applied moment estimators of the underlying scCRNA-seq
427  mRNA distributions to calculate bursting characteristics [1, 3, 11, 18]. Given the empirical
428 linear constraint ¢% = au + «,, the burst size and burst frequency become analytical
429  functions of the mean expression (Fig. 2A). We found that 430 relationships (out of 1,551
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430  murine fits) were characterised by statistically significant intercept (op). For some genes, this
431  may reflect the empirical nature of these trends, especially for those with small intercept (in
432  relation to variance), for example Cxcl10 (Fig. 2C). However, we found that many genes with
433  non-zero intercept fits were associated with substantial basal expression in untreated cells,
434  which was also observed previously for the more quantitative smFISH data [32]. Basa
435  expression of the related gene targets has been shown to exhibit different bursting kinetics
436  from theinducible expression [8], which in part may explain the fitted non-zero intercepts for
437  asubset of genes. For ap=0, linear constraints essentially imply that the burst size must be
438  constant (and equal to the slope of the mean-variance line), while the frequency undergoes
439  modulation with the population mean changes in response to stimulation. This is in genera
440  agreement with recent analyses demonstrating a role of frequency in regulation of LPS-
441  induced macrophages [22] or stimulation [9, 20, 48-50]. However, a more detailed
442  investigation of al genes including those with non-zero intercepts, reveals different
443  regulatory modes, including a subset of genes exhibiting burst size modulation (Fig. 3). For
444  instance, a positive intercept is associated with an inverse relationship between the burst size
445  and frequency, while a negative intercept may imply concurrent burst size and frequency
446  changes. As with the mean-variance relationships, the predicted modulation schemes are
447  generally in good agreement with the data in terms of the mean-squared error. Notably, we
448  demonstrate that our methodology can be extended to capture evolutionary differences
449  between species. While gene expression divergence between species has been previously
450 measured in terms of the population response [51], the slope of the linear relationships
451  captures the specific differences in TLR response variability through evolution (Fig. 5). We
452  demonstrate that the evolutionary change of the variability can be described as a ratio k
453  between the slopes of the corresponding mean-variance fits, which theoretically implies
454 reciprocal scaling of the burst size and frequency also by k. Analysis of the 218 TLR
455  orthologue genes indeed demonstrates that responses of divergent genes are controlled by
456  reciprocal changes of burst size and frequency, while non-divergent genes show the same
457  characteristics across species. Interestingly, we found that within each pair of species,
458  divergent genes exhibited different changes of variability suggesting complex evolutionary
459  traits (e.g., 31 genes exhibiting higher variability in mouse than in pig, and 15 in pig vs.
460 mouse). It would be important to better understand how variability of particular response

461  genes evolved between different species, in the context of their sequence dissimilarities [16,
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462  43-45] as well as epigenetic [52] and signalling components [53] of the TLR signalling
463  between species.

464

465 Finaly, we used stochastic models of transcription to better understand regulation of
466  transcriptional bursting (Fig. 4). A typical representation involves a 2-state telegraph model,
467  where gene activity changes randomly between “off” and “on” states, facilitating mRNA
468  transcription [1, 3, 18, 36]. However, more complex structures are often used to capture
469  complexity associated with multiple regulatory steps, combinatorial promoter cycling and
470  transcriptional initiation [12, 38, 54, 55]. We hypothesised that TLR response variability is
471 linked with the complexity of the transcriptional regulation. We introduced a 3-state
472  stochastic model, which assumed a sequential activation between “off”, “intermediate” and
473  “on” dtates, equivalent to promoter cycling [12, 38]. First, we used a computationally
474  efficient Beta-Poisson model, a steady-state approximation of the 2-state telegraph model,
475  which has previously been used to fit sScRNA-seq distributions [17, 50]. Values of kinetic
476  parameters were inferred for 7,804 of 31,020 conditions across 1,519 genes demonstrating
477  intermittent transcriptional bursting kinetics [3, 13, 17]. However, this model does not take
478 into account the dynamical nature of the process (measurements at 0, 2, 4 and 6h) and the
479  mRNA haf-life with many genes peaking early after stimulation [41]. We therefore used a
480  genetic algorithm to fit the theoretical count distributions to the measured scRNA-seq data
481  using the dynamical 2-state and 3-state models. Based on the Beta-Poisson fits, we selected
482 96 high coverage murine response genes (and 28 orthologue genes for species analyses),
483  which have existing estimates of mRNA half-life in LPS-stimulated bone marrow derived
484  macrophages [40, 41] or other cell models. These included the highly variable and abundant
485  genes including chemokine family Ccl5, Ccl4, Ccl3, Ccl2 as well as IL1b and TNFa. While
486  the scRNA-seq can bein principle treated as time-series data (e.g., across the replicates from
487  individual mice) [34], our current understanding of TLR signalling suggest that due to
488  endotoxin resistance and desensitisation [56-58], the regulatory network, and thus model
489  structures and parameters, are time-varying rather than stationary [59]. We therefore treated
490 each data time-point (and replicate) separately, which aso allowed more efficient
491  implementation to fit 1,507 mouse, and 1,079 orthologue conditions. We then used the AIC
492  method [42] to compare the different models considered, and select the one that fitted the
493  measured mRNA distributions most accurately. The results demonstrated that a large subset
494  of genes and conditions fitted a dynamical 3-state model better than the 2-state model. We
495  found that the fraction of conditions explained by the 3-state model correlated well (r=0.56,
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496 p-value < 0.0001) with slope of the mean-variance relationship, and thus response
497  heterogeneity, for the high coverage murine genes (Fig. 4). Similarly, the increased
498  complexity was associated with evolutionary changes of response variability between species
499  (Fig. 5). In general, we found that increased regulatory complexity facilitated larger response
500 variability through increased burst sizes and reduced frequency of transcriptional bursting
501 (Fig. 4D), while scRNA-seq count variance exhibited correlations with transcription rates and
502 ‘on’ rates. A better understanding of the relationships, and in particular mechanistic basics for
503 controlling gene-specific slopes (i.e., response variability) as well as their sensitivity to
504 pharmacologica perturbation and infection and disease state, will require further detailed
505 investigations [22]. Nevertheless, we believe that our methodology, relying on the inference
506  of mean-variance relationships, provides new insight into regulation of single-cell variability
507 of innate immune signalling and will be applicable to other inducible gene expression

508  systems.
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509 Materialsand Methods
510

511  Analysisenvironment

512  Computational analysis was performed using Python v3.8.2 in a 64-bit Ubuntu environment
513  running under Windows Subsystem for Linux (WSL) 2 and using the conda v4.8.3 package
514  manager. Relevant packages were NumPy v1.19.1 (Van Der Walt et al., 2011), pandas v1.0.5
515 (Reback et al., 2020), Scanpy v1.5.1 (Wolf et al., 2018), scikit-learn v0.23.1 (Pedregosa et
516 al., 2011), SciPy v1.4.1 (Virtanen et al., 2020) and statsmodels v0.11.1 (Seabold and
517  Perktold, 2010) for processing and Matplotlib v3.2.1 (Hunter, 2007) and seaborn v0.10.1
518 (Waskom et al., 2020) for visualisation. Robust linear regression models and Benjamini-
519  Hochberg false discovery rate (FDR) correction was performed in statsmodels. Coefficient of

520 determination (R?) scores were calculated using the metrics module of scikit-learn.
521
522  Acquisition and processing of mMRNA count data

523  mRNA count data associated with the study by Hagai et al. (2018) were downloaded from
524  the Array Express database, in particular, the EEMTAB-6754.processed.2.zip file to obtain
525 the UMI counts of bone marrow-derived mononuclear phagocytes from mouse, rat, pig and
526 rabbit. Phagocytes were either untreated (Oh) or stimulated with LPS for 2, 4 and 6 h,
527 resulting in 12 scRNA-seq datasets per species. In addition, phagocytes from mice and rat
528 were aso treated with PIC at 2, 4 and 6h. Notably, the dataset contains no UMI counts for
529 PIC stimulation at 6 h for mouse 1 but has two for mouse 2 (labelled 6 and 6A). When
530 collating the counts, the missing replicate for mouse 1 was disregarded and the PIC 6A time
531 point —assumed to be atechnical replicate — was excluded. Therefore, 20 datasets (referred as
532  conditions herein) for the mouse, 21 datasets for the rat, 12 conditions for the pig and the
533  rabbit dataset were considered for each gene (see Table $4). The UMI counts were median
534  scaled per cell using the normalize total function of Scanpy and subsequently used for fitting
535 mean-variance relationships and bursting modulation. Integer values, referred to as “mRNA
536 counts” in this work were used for mathematical model fitting (see Github repository for data
537 normalisation, UMI normalisation [60] and extraction of mRNA count distributions). Gene
538 IDs, gene symbols and the descriptions of the genes were obtained from the Ensembl Release
539 103 database of the four studied species: Mus musculus (mouse), Rattus norvegicus (rat), Sus
540 scrofa (pig) and Oryctolagus Cuniculus (rabbit) using the BioMart web tool (Yates et al.
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541  2020). Hagai et al. (2018) defined a set of 2,336 LPS-responsive genes based on differential
542  expression in response to LPS stimulation with FDR-corrected p-value < 0.01 and existing
543  orthologuesin rabbit, rat and pig. I11b and Tnf were added to this list — as well characterised
544  TLR-response genes from the study of Bagnall et al. (2020)—resulting in aset of 2,338 LPS
545  response genes with 46,740 conditions overall. Similarly, the responsive genes from the three
546  other species were also determined. 2586 rat genes, 1892 pig genes and 859 rabbit genes
547  showed differential expression upon LPS stimulus. 218 one-to-one orthologue genes were

548  found to beresponsive in all species, these genes formed the analysis subset.

549
550  Fitting theoretical bursting characteristics

551  The sample mean (1) and variance (62) of mMRNA counts were calculated for the measured
552 mRNA count distribution for individual response genes across conditions. The mean-variance
553  relationships (62 = au + o) were fitted using robust linear regression, using a Huber M-
554  estimator with a tuning constant of 1.345, across all relevant conditions. A model’s fit was
555  considered successful if the slope (a) was statistically significant based on FDR-adjusted p-
556  value < 0.05, and it provided a good overall fit (unweighted R? > 0.6). FDR-adjusted p-value
557 < 0.05was also calculated for the intercept (). Assuming linear constraints of mMRNA mean
558 and variance, theoretical bursting characteristics were analytically derived, using moment

559  estimators; burst size b=a/p + ¢, burst frequency bi=p%(av+op) and b= oo/(bs(bs-0)).

?Ll(experimental data;—model data;)?
N Zliv(model data;)?

560 Relative root mean square error, RRMSE = \F , where N

561 denoted the number of datapoints, was used to compare theoretical predictions and
562 experimental data. Relative fold change was used to calculate the level of burst size and

563 frequency modulation in the measured data, across al the conditions per gene:

, . maxps—min
564  burst size modulation per gene = %
bs

565  burst frequency modulation per gene = W.
bf

566  Comparison between burst size and burst frequency modulation was quantified as the ratio of

L , . b dulati
567 thetwo quantities, i.e., modulation ratio = urst frequency modulation

burst size modulation

568
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569  Pairwise comparison of the slopes of the mean-variance regressions

570 The differences in the mean-variance relationships of a gene between species were measured
571 by pairwise comparisons between the slopes. A Student’s t-test was performed to determine
572 whether the two slopes are statistically significantly different, or not. The following formula
573  was used to calculate the t-statistic values:

slope, — slope,
Ustatistic = ’ do.f.=n,+n, —4

JSEslopelz + SEslopez g

574  SEgoperepresents the standard error of the value of the slope in the fitting of the robust linear
575  regression model on the data. The degrees of freedom (d.o.f.) is dependent on the number of
576  data points used to create the two linear regression lines compared (n; and n,, respectively).
577 P-values were determined using the cumulative distribution function of the relevant t
578 didtribution. As the four slopes were compared pairwise, six p-values were calculated per
579 gene. P-values were corrected by the Benjamini-Hochberg procedure. Two slopes were
580 deemed significantly different if the false discovery rate (FDR) corrected p-value was below
581 0.05. Subset of genes with different number of significant FDR-corrected p-values were
582 compared using a measure of evolutionary response divergence, such that response
583  divergence = log[1/3 x Yj(log[FC pig] — log[FC glire;])?], with j =(1,2,3) corresponding to
584 3 glires (mouse, rat and rabbit) and FC is the fold change in response to LPS stimulation per
585  gene (Supplementary Table 4 in [4]).

586

587 Inference of Beta-Poisson modd

588  Inference of Beta-Poisson model parameters (k,,, korr and k) from individual sScCRNA-seq
589  count distributions was performed using the profile-likelihood txburstML script (Larsson et
590 al,, 2019) downloaded from GitHub (version
591  1844c47bebf1ad2104cf15d425889768ec45df8b). Conditions that txburstML did not mark as
592  “keep” (indicating convergence) were discarded. Genes with a least 10 fitted conditions per
593  mouse (out of 20) and rat (out of 21) as well at least 6 in the pig and rabbit (out of 12) were
594 included in the high coverage gene sets.

595

596 Modeling and inference of dynamical models of transcription
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597 Theoretical temporal mRNA distributions for considered models of transcription were
598 obtained using the Chemical Master Equation (CME) following our previous approach [32].
599 In brief, the time evolution of the probability distribution over mRNA counts P(X,t), is
600 given by P(X,t) = exp[R(6)t] P,(X), where R(0) is atransition rate matrix describing flow
601  of probability between different states, where a state is defined by the number of mMRNA in
602 the cell at time t and the transcriptional states of the gene's alleles. P, (X) is specified by
603 initial data such that Yy P,(X) = 1. P(X,t) is caculated using a fast matrix exponential
604  function implemented in MATLAB by [61]. All simulations begin with initial conditions of
605 no mRNA and both gene alleles being in the ‘off’ state. R(0) depends on model structure and
606 the parameters. In this work, we considered a stochastic telegraph model—with two
607  independent alleles per gene, the activity of which switches randomly between *off’ and ‘on’
608  states, with the latter being permissive for mRNA transcription [1, 3, 36, 62]. The associated
609  kinetic parameters include switching ‘on’ and ‘off’ rates (kon and K, respectively) as well as
610 rates of mRNA transcription and degradation (k; and kg, respectively). We also considered an
611  extended model including an additional regulatory step, such that each allele exists in one of
612  three states. an inactive ‘off’, an intermediate ‘I’ or an active ‘on’. Reversible stochastic
613  trangitions (with appropriate rates) occur between the inactive and intermediate (ton and tor),
614  theintermediate and active states (kon and k), as well as direct transition between active and
615  inactive states (k;). We further assume that transcription occurs only in the intermediate and

616  active states (ki and ki, respectively).

617 A genetic algorithm (GA) was implemented using the ga function in MATLAB and
618 employed to estimate model parameters. We minimized an objective function given by the
619 average absolute distance between the theoretical (CME) and measured cumulative
620 digtribution functions (CDFs) across observed mMRNA counts per condition
621 (1/nX™,|CME; — CDF;|), where i's are unique mRNA counts observed in the measured
622  distributions (for those with total unique counts n>1). CDFs were calculated using empirical
623  cumulative distribution function (ecdf). The best of 10 model fits from independent GA runs
624  for each condition (using a population size of 100, elite count of 2, crossover factor of 0.6, 20
625  generations and the tournament selection function) was retained. Gene activation/inactivation
626  rates were constrained between 0 and 1 min, transcription was constrained between 0 and 50
627 mRNA counts min™ per allele, which is the same order of magnitude to previous estimates [2,
628 3, 62, 63]. Murine mRNA half-lives were obtained from literature, when available from
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629 LPS-stimulated bone marrow derived macrophages [40, 41] or other cell models [64-71].

630  Murine half-lives were also used when fitting orthologue genes.

631 Akaike's Information Criterium (AIC) was used to asses model fits and perform model
632  selection [42]. AIC = 2p — 21og[L(©]X)] where log [L(0O|X)] is the log-likelihood function
633 of the fitted mMRNA count distribution given measured data X defined as

634 L= (%) N [P(x; t)]¥t with Y* being a vector of the number of cells displaying

635 each observed state at time t (the sum of this vector is the total number of cells N), and p
636  corresponds to number of parameters in the model; resulting in a penalty for higher
637 complexity. Models with AIC larger than Q3+1.5(Q3-Q1), where Q1 and Q3 are the first and
638  third quartiles of the AIC distribution per model across genes were removed. As aresult, out
639  of 1507 mouse, and 1079 orthologue (pig, rat and rabbit) conditions, 1210 and 981 that fitted
640  2- and 3-state models were retained, respectively.

641
642  Statistical analyses

643  Statistical analysis was performed using GraphPad Prism 8 software (version 8.4.2). The
644  D’Agostino-Pearson test was applied to test for normal (Gaussian) distribution of acquired
645 data. Two-sample comparison was conducted using non-parametric Mann Whitney test. For
646  analyses of variance Kruskal-Wallis ANOVA with Dunn’s multiple comparisons test was
647  performed. Coefficient of determination (R?) was used to assess regression fits; Spearman

648  correlation coefficient r was used to test association between other variables.
649
650 Conflict of Interest

651  The authors declare that the research was conducted in the absence of any commercial or

652  financial relationships that could be construed as a potential conflict of interest.
653
654  Author contributions

655 NA performed analyses presented in the manuscript. DN and ZW performed preliminary
656 analyses and developed Python codes. MM and PP provided supervision and

22


https://doi.org/10.1101/2023.02.20.529223
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.20.529223; this version posted February 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

657
658

659

660

661
662

663

664
665
666

667
668

669

670

671

available under aCC-BY 4.0 International license.

conceptualisation. PP with assistance of NA and MM wrote the manuscript. All authors read
and approved the final manuscript.

Funding

NA was supported by Wellcome Trust PhD Studentship. This work was also supported by
BBSRC (BB/R007691/1);

Data Availability Statement
Python codes developed in this study are available from Github repository
(https://github.com/ppaszek/ TLR_bursting).

23


https://doi.org/10.1101/2023.02.20.529223
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.20.529223; this version posted February 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

672 References

673 1L Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S: Stochastic mRNA synthesis in
674 mammalian cells. PLoS Biol 2006, 4:e309.

675 2. Molina N, Suter DM, Cannavo R, Zoller B, Gotic |, Naef F. Stimulus-induced
676 modulation of transcriptional bursting in a single mammalian gene. Proc Natl Acad
677 Sci U SA 2013, 110:20563-20568.

678 3. Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F: Mammalian genes
679 are transcribed with widely different bursting kinetics. Science 2011, 332:472-474.

680 4. Hagai T, Chen X, Miragaia RJ, Rostom R, Gomes T, Kunowska N, Henriksson J,

681 Park JE, Proserpio V, Donati G, et a: Gene expression variability across cells and
682 speci es shapes innate immunity. Nature 2018, 563:197-202.

683 5. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R,
684 Schwartz S, Yosef N, Maboeuf C, Lu D, et a: Single-cell transcriptomics reveals
685 bimodality in expression and splicing in immune cells. Nature 2013, 498:236-240.

686 6. Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, Chen P, Gertner RS,
687 Gaublomme JT, Yosef N, et al: Single-cell RNA-seq reveals dynamic paracrine
688 control of cellular variation. Nature 2014, 510: 363-369.

689 7. Avraham R, Haseley N, Brown D, Penaranda C, Jijon HB, Trombetta JJ, Satija R,
690 Shalek AK, Xavier RJ, Regev A, Hung DT: Pathogen Cell-to-Cell Variability Drives
691 Heterogeneity in Host Immune Responses. Cell 2015, 162:1309-1321.

692 8. Bass VL, Wong VC, Bullock ME, Gaudet S, Miller-Jensen K: TNF stimulation
693 primarily modulates transcriptional burst size of NF-kappaB-regulated genes. Mol
694 Syst Biol 2021, 17:€10127.

695 9. Larson DR, Fritzsch C, Sun L, Meng X, Lawrence DS, Singer RH: Direct observation
696 of frequency modulated transcription in single cells using light activation. Elife 2013,
697 2:e00750.

698 10. Megaridis MR, Lu YY, Tevonian EN, Junger KM, Moy JM, Bohn-Wippert K, Dar
699 RD: Fine-tuning of noise in gene expression with nucleosome remodeling. Apl
700 Bioengineering 2018, 2.

701 11. Wong VC, Bass VL, Bullock ME, Chavai AK, Lee REC, Mothes W, Gaudet S,
702 Miller-Jensen K: NF-kappaB-Chromatin Interactions Drive Diverse Phenotypes by
703 Modulating Transcriptional Noise. Cell Rep 2018, 22:585-599.

704 12.  Zoller B, Nicolas D, Molina N, Naef F: Structure of silent transcription intervals and
705 noise characteristics of mammalian genes. Molecular Systems Biology 2015, 11.

24


https://doi.org/10.1101/2023.02.20.529223
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.20.529223; this version posted February 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

706 13. Dar RD, Razooky BS, Singh A, Trimeloni TV, McCollum JM, Cox CD, Simpson

707 ML, Weinberger LS: Transcriptional burst frequency and burst size are equaly
708 modulated across the human genome. Proc Natl Acad Sci U S A 2012, 109:17454-
709 17459.

710 14 Dey SS, Foley JE, Limsirichai P, Schaffer DV, Arkin AP. Orthogonal control of

711 expresson mean and variance by epigenetic features at different genomic loci.
712 Molecular Systems Biology 2015, 11.

713 15,  Ochia H, Hayashi T, Umeda M, Yaoshimura M, Harada A, Shimizu Y, Nakano K,

714 Saiton N, Liu Z, Yamamoto T, et a: Genome-wide kinetic properties of
715 transcriptional  bursting in mouse embryonic stem cells. Science Advances,
716 6: €8826699.

717 16. Einarsson H, Salvatore M, Vaagenso C, Alcaraz N, Lange J, Rennie S, Andersson R:
718 Promoter sequence and architecture determine expression variability and confer
719 robustness to genetic variants. eLife 2022, 11.

720 17. Larsson AJM, Johnsson P, Hagemann-Jensen M, Hartmanis L, Faridani OR, Reinius
721 B, Segerstolpe A, Rivera CM, Ren B, Sandberg R: Genomic encoding of
722 transcriptional burst kinetics. Nature 2019, 565:251-254.

723 18 Nicolas D, Zoller B, Suter DM, Naef F: Modulation of transcriptional burst frequency
724 by histone acetylation. Proc Natl Acad Sci U S A 2018, 115:7153-7158.

725 19.  Zoller B, Little SC, Gregor T: Diverse Spatial Expression Patterns Emerge from
726 Unified Kinetics of Transcriptional Bursting. Cell 2018, 175:835-847.e825.

727 20. Hoppe C, Bowles JR, Minchington TG, Sutcliffe C, Upadhyai P, Rattray M, Ashe

728 HL: Modulation of the Promoter Activation Rate Dictates the Transcriptional
729 Response to Graded BMP Signaling Levels in the Drosophila Embryo. Dev Cell
730 2020, 54:727-741.e727.

731  21. Wangy, Qi J, Shao J, Tang XQ: Signaling Mechanism of Transcriptional Bursting: A

732 Technical Resolution-Independent Study. Biology (Basel) 2020, 9.

733 22. Robles-Rebollo |, Cuartero S, Canellas-Socias A, Wells S, Karimi MM, Mereu E,
734 Chivu AG, Heyn H, Whilding C, Dormann D, et a: Cohesin couples transcriptional
735 bursting probabilities of inducible enhancers and promoters. Nature Communications
736 2022, 13:4342.

737 23.  Elowitz MB, Levine AJ, Siggia ED, Swain PS: Stochastic gene expression in asingle
738 cell. Science 2002, 297:1183-1186.

739 24,  Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK: Non-genetic origins of cell-
740 to-cell variability in TRAIL-induced apoptosis. Nature 2009, 459:428-432.

25


https://doi.org/10.1101/2023.02.20.529223
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.20.529223; this version posted February 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

741 25,  Phillips NE, Mandic A, Omidi S, Naef F, Suter DM: Memory and relatedness of
742 transcriptional activity in mammalian cell lineages. Nat Commun 2019, 10:1208.

743  26.  Shaffer SM, Emert BL, Reyes Hueros RA, Cote C, Harmange G, Schaff DL,

744 Sizemore AE, Gupte R, Torre E, Singh A, et a: Memory Sequencing Reveals
745 Heritable Single-Cell Gene Expression Programs Associated with Distinct Cellular
746 Behaviors. Cell 2020, 182:947-959 €917.

747 27.  Adamson A, Boddington C, Downton P, Rowe W, Bagnall J, Lam C, Maya-Mendoza

748 A, Schmidt L, Harper CV, Spiller DG, et a: Signal transduction controls
749 heterogeneous NF-[kappa]lB dynamics and target gene expression through cytokine-
750 specific refractory states. Nat Commun 2016, 7.

751 28.  Gay NJ, Symmons MF, Gangloff M, Bryant CE: Assembly and localization of Toll-
752 like receptor signalling complexes. Nat Rev Immunol 2014, 14:546-558.

753  29. Bryant CE, Symmons M, Gay NJ: Toll-like receptor signalling through
754 macromolecular protein complexes. Mol Immunol 2015, 63:162-165.

755 30. XueQ, LuY, Eisdle MR, Suligtijo ES, Khan N, Fan R, Miller-Jensen K: Analysis of
756 single-cell cytokine secretion reveals a role for paracrine signaling in coordinating
757 macrophage responses to TLR4 stimulation. Science Signaling 2015, 8.

758  31. LuY, Xue Q, Eisele MR, Sulistijo ES, Brower K, Han L, Amir ED, Pe'er D, Miller-

759 Jensen K, Fan R: Highly multiplexed profiling of single-cell effector functions reveals
760 deep functional heterogeneity in response to pathogenic ligands. Proceedings of the
761 National Academy of Sciences of the United States of America 2015, 112:E607-
762 E615.

763 32. Bagnal J, Rowe W, Alachkar N, Roberts J, England H, Clark C, Platt M, Jackson

764 DA, Muldoon M, Paszek P. Gene-Specific Linear Trends Constrain Transcriptional
765 Variability of the Toll-like Receptor Signaling. Cell Syst 2020, 11:300-314 €308.

766 33. Bagnal J, Boddington C, England H, Brignall R, Downton P, Alsoufi Z, Boyd J,
767 Rowe W, Bennett A, Waker C, et a: Quantitative analysis of competitive cytokine
768 signaling predicts tissue thresholds for the propagation of macrophage activation. Sci
769 Signal 2018, 11.

770 34. Gomez-Schiavon M, Chen LF, West AE, Buchler NE: BayFish: Bayesian inference
771 of transcription dynamics from population snapshots of single-molecule RNA FISH
772 in single cells. Genome Biol 2017, 18:164.

773 35. Lee RE, Waker SR, Savery K, Frank DA, Gaudet S: Fold change of nuclear NF-
774 kappaB determines TNF-induced transcription in single cells. Mol Cell 2014, 53:867-
775 879.

26


https://doi.org/10.1101/2023.02.20.529223
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.20.529223; this version posted February 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

776 36.  Zenklusen D, Larson DR, Singer RH: Single-RNA counting reveals alternative modes
777 of gene expression in yeast. Nat Struct Mol Biol 2008, 15:1263-1271.

778 37. Ra A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. Imaging
779 individual mMRNA molecules using multiple singly labeled probes. Nat Methods 2008,
780 5:877-879.

781 38. Harper CV, Finkenstadt B, Woodcock DJ, Friedrichsen S, Semprini S, Ashall L,
782 Spiller DG, Mullins JJ, Rand DA, Davis JR, White MR: Dynamic analysis of
783 stochastic transcription cycles. PLoS Biol 2011, 9:e1000607.

784 39. Vu TN, Wills QF, Kalari KR, Niu N, Wang L, Rantalainen M, Pawitan Y: Beta-
785 Poisson model for single-cell RNA-seq data analyses. Bioinformatics 2016, 32:2128-
786 2135.

787  40. Kratochvill F, Machacek C, Vogl C, Ebner F, Sedlyarov V, Gruber AR, Hartweger H,

788 Vielnascher R, Karaghiosoff M, Rilicke T, et al: Tristetraprolin-driven regulatory
789 circuit controls quality and timing of mRNA decay in inflammation. Molecular
790 systems biology 2011, 7:560-560.

791 41, Hao S, Batimore D: The stability of mRNA influences the temporal order of the
792 induction of genes encoding inflammatory molecules. Nat Immunol 2009, 10:281-
793 288.

794 42.  Akake H: Information Theory and an Extension of the Maximum Likelihood
795 Principle. In.; 1973

796 43 Haygood R, Babbitt CC, Fedrigo O, Wray GA: Contrasts between adaptive coding
797 and noncoding changes during human evolution. Proceedings of the National
798 Academy of Sciences 2010, 107:7853-7857.

799 44. Niesen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fledel-
800 Alon A, Tanenbaum DM, Civello D, White TJ, et a: A Scan for Positively Selected
801 Genes in the Genomes of Humans and Chimpanzees. PLOS Biology 2005, 3:€170.

802 45. Nomiyama H, Osada N, Yoshie O: The evolution of mammalian chemokine genes.
803 Cytokine Growth Factor Rev 2010, 21:253-262.

804 46. Dar RD, Shaffer SM, Singh A, Razooky BS, Simpson ML, Raj A, Weinberger LS:
805 Transcriptional Bursting Explains the Noise-Versus-Mean Relationship in mRNA and
806 Protein Levels. Plos One 2016, 11.

807 47. Luecken MD, Theis FJ: Current best practices in single-cell RNA-seq analysis. a
808 tutorial. Molecular Systems Biology 2019, 15:e8746.

27


https://doi.org/10.1101/2023.02.20.529223
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.20.529223; this version posted February 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

809 48. Nicolas D, Phillips NE, Naef F: What shapes eukaryotic transcriptional bursting? Mol
810 Biosyst 2017, 13:1280-1290.

811 49. Fukaya T, Lim B, Levine M: Enhancer Control of Transcriptional Bursting. Cell
812 2016, 166:358-368.

813  50. Luo X, Qin F, Xiao F, Cai G: BISC: accurate inference of transcriptional bursting
814 kinetics from single-cell transcriptomic data. Briefings in Bioinformatics 2022, 23.

815 51. Nourmohammad A, Rambeau J, Held T, Kovacova V, Berg J, Lassig M: Adaptive
816 Evolution of Gene Expression in Drosophila. Cell Reports 2017, 20:1385-1395.

817  52. Lind MI, Spagopoulou F: Evolutionary consequences of epigenetic inheritance.
818 Heredity 2018, 121:205-2009.

819 53. Brennan JJ, Gilmore TD: Evolutionary Origins of Toll-like Receptor Signaling.
820 Molecular Biology and Evolution 2018, 35:1576-1587.

821 54. Rybakova KN, Bruggeman FJ, Tomaszewska A, Moné MJ, Carlberg C, Westerhoff
822 HV: Multiplex Eukaryotic Transcription (In)activation: Timing, Bursting and Cycling
823 of a Ratchet Clock Mechanism. PLoS Comput Biol 2015, 11:€1004236.

824 55, Yang X, Wang Z, Wu Y, Zhou T, Zhang J. Kinetic characteristics of transcriptional
825 bursting in a complex gene model with cyclic promoter structure. Math Biosci Eng
826 2022, 19:3313-3336.

827 56. Morris MC, Gilliam EA, Li L: Innate immune programing by endotoxin and its
828 pathological conseguences. Front Immunol 2014, 5:680.

829 57. Buckley JM, Wang JH, Redmond HP: Cdllular reprogramming by gram-positive
830 bacterial components: areview. J Leukoc Biol 2006, 80:731-741.

831 58. Kalliara E, Kardynska M, Bagnall J, Spiller DG, Miiller W, Ruckerl D, Smigja J,
832 Biswas SK, Paszek P. Post-transcriptional regulatory feedback encodes JAK-STAT
833 signal memory of interferon stimulation. Frontiers in Immunology 2022, 13.

834 59. Wang Z, Guo Y, Gong H: An Integrative Analysis of Time-varying Regulatory
835 Networks From High-dimensional Data. Proc IEEE Int Conf Big Data 2018,
836 2018:3798-3807.

837 60. Grun D, Kester L, van Oudenaarden A: Validation of noise models for single-cell
838 transcriptomics. Nature Methods 2014, 11:637-640.

839 61. Al-Mohy AH, Higham NJ: Computing the Action of the Matrix Exponential, with an
840 Application to Exponential Integrators. Siam Journal on Scientific Computing 2011,
841 33:488-511.

28


https://doi.org/10.1101/2023.02.20.529223
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.20.529223; this version posted February 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

842 62.  Skinner SO, Xu H, Nagarkar-Jaiswal S, Freire PR, Zwaka TP, Golding I: Single-cell
843 analysis of transcription kinetics across the cell cycle. Elife 2016, 5.

844 63. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W,
845 Selbach M: Globa quantification of mammalian gene expression control. Nature
846 2011, 473:337-342.

847 64. Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shak N, Ko MS: Database for
848 MRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent
849 and differentiating mouse embryonic stem cells. DNA Res 2009, 16:45-58.

850  65. Payne TL, Blackinton J, Frisbee A, Pickera J, Sawant S, Vandergrift NA, Freel SA,

851 Ferrari G, Keene JD, Tomaras GD: Transcriptional and Posttranscriptional Regulation
852 of Cytokine Gene Expression in HIV-1 Antigen-Specific CD8" T Cells That Mediate
853 Virus Inhibition. Journal of Virology 2014, 88:9514-9528.

854  66. Maurer F, Tierney M, Medcalf RL: An AU-rich sequence in the 3-UTR of
855 plasminogen activator inhibitor type 2 (PAI-2) mRNA promotes PAI-2 mRNA decay
856 and provides a binding site for nuclear HUR. Nucleic Acids Res 1999, 27:1664-1673.

857  67. Raghavan A, Ogilvie RL, Relly C, Abelson ML, Raghavan S, Vasdewani J,
858 Krathwohl M, Bohjanen PR: Genome-wide analysis of mRNA decay in resting and
859 activated primary human T lymphocytes. Nucleic Acids Res 2002, 30:5529-5538.

860 68. Kambara H, Niazi F, Kostadinova L, Moonka DK, Siegel CT, Post AB, Carnero E,

861 Barriocanal M, Fortes P, Anthony DD, Vaadkhan S: Negative regulation of the
862 interferon response by an interferon-induced long non-coding RNA. Nucleic Acids
863 Res 2014, 42:10668-10680.

864  69. Martin LJ, Smith SB, Khoutorsky A, Magnussen CA, Samoshkin A, Sorge RE, Cho

865 C, Yosefpour N, Sivaselvachandran S, Tohyama S, et a: Epiregulin and EGFR
866 interactions are involved in pain processing. J Clin Invest 2017, 127: 3353-3366.

867 70. Zanol MIB, Kawasaki T, Monwan W, Murase M, Sueyoshi T, Kawa T: Innate
868 immune responses through Toll-like receptor 3 require human-antigen-R-mediated
869 Atp6v0d2 mRNA stabilization. Scientific Reports 2019, 9: 20406.

870 71. Park JH, Yu Q, Erman B, Appelbaum JS, Montoya-Durango D, Grimes HL, Singer

871 A: Suppression of IL7Ralpha transcription by IL-7 and other prosurvival cytokines: a
872 novel mechanism for maximizing IL-7-dependent T cell survival. Immunity 2004,
873 21:289-302.

874

875

29


https://doi.org/10.1101/2023.02.20.529223
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.20.529223; this version posted February 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

876  Figurel. TLR-induced transcriptional variability is linearly constrained

877  A. Overdl variability in the sScRNA-seq dataset [4]. Shown is the scatter plot of the sample
878  mean (1) and variance (c°) calculated for 2340 TLR-dependent genes across 20 experimental
879  conditions. Data points corresponding to Jchain, Ccl5 and Nfkbia highlighted in yellow, red,
880  and green, respectively. Broken line indicates 1= line.

881  B. Schematic description of the fitting protocaol.

882  C. Histogram of coefficient of determination (R?) for 2,133 gene fits characterised by a
883  significant regression slope (p-value < 0.05). R? = 0.6 broken line corresponds to the high
884  confidence gene cut-off.

885 D. Distribution of the fitted regression slopes for the 1,551 high confidence gene set.
886  Histogram of the fitted slopes shown on the left. Number of genes with different slope range
887  shown on the right.

888 E. Fitted mean-variance relationships for a subset of genes. Shown are the individua
889  datapoints (LPS, PIC and unstimulated) as well as fitted regression line with afitted equation
890 (* denotes dtatistically significant intercept, p-value < 0.05) and the coefficient of
891  determination (R?).

892 F.Mean mRNA counts across treatments (LPS, PIC) and time (0, 2, 4, 6 h) for the 1,551 high
893  confidence genes.

894
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895  Figure 2. Mean-variancerelationships constrain transcriptional bursting characteristics
896
897 A. Theoretica burst size and frequency characteristics. (Left) Simulated mean variance

898  relationships with positive (in blue, 0=20, 0,=100) and negative (in red, o=20, a,p= -100)
899 intercepts, respectively. (Middle & Right) Derived burst size and frequency modulation
900 schemes for corresponding parameter values calculated using moment estimators. A specia
901 caseof 0=20, 0,p=0 is shown in broken line.

902 B. Global modulation of transcriptional busting. Shown is the comparison between fitted
903 mean-variance relationship and derived theoretical burst size and frequency modulation
904 schemes vs. experimental data. Shown is distribution of relative root mean square error
905 (RRMSE) of 1,551 high confidence genes.

906 C. Modulation schemes for Cd44, Pfnl, Eif6 and Cxcl10 genes. Shown is the comparison
907 between theoretical relationships based on fitted mean-variance relationships (in red) and
908 corresponding estimates from data (open circles). Equations for fitted mean-variance
909 relationships highlighted in the top left panel, respectively.

910

911

912

913

914
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915 Figure 3. LPS-induced gene expression undergoes different modes of transcriptional
916  bursting

917 A. Relative changes of burst size and burst frequency. Shown is the relative fold change of
918  burst size and frequency calculated across the individual range of mean expression for 1,551
919  high confidence genes (in blue circles). Identity line depicted in black, two-fold change
920  highlighted in red.

921  B. Theoretical relationship between burst size and frequency. (Left) Simulated mean variance
922  relationships with pasitive (in blue, oo = 20, 0w = 100) and negative (in red, oo = 20, o = -100)
923  intercepts, respectively. (Right) Burst size and frequency modulation schemes for
924  corresponding parameter values calculated using moment estimators. A special case of o =
925 20, 0= 0shownin broken line.

926 C. Modulation of burst size and frequency across a range of individual genes. Shown are
927 inverse relationship (a>0) in blue as well as inverse, U-shape and concurrent relationships
928 (<0). Relationship predicted from linear constraints in solid lines and corresponding
929  estimates from experimental data in open circles. U-shape numerically defined as maximum
930 burst size value > o/2 and minimum burst size value < o/2 across conditions.

931 D. Prevalence of different modulation schemes across 1,551 high confidence genes.
932  Definition of the mode as in C, dominant modulation defined by absolute difference in the

933  burst sizevs. frequency changes across the respective range of mean expression (asin A).
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934  Figure4. TLR response variability is associated with regulatory complexity

935 A. Schematic representation of the 2-state and 3-state models of transcription.

936 B. Comparison between the fitted and measured mRNA counts distributions. Shown are
937  cumulative probability distribution of data (in green) vs. the corresponding 2-state and 3-state
938 stochastic model fits (in red and blue, respectively) for representative condition for Eif6 (PIC,
939  4h, replicate 3) and Ccl2 (LPS, 2h, replicate 2) genes.

940 C. Analysis of transcriptional bursting across high coverage genes and conditions fitted by 2-
941  state vs 3-state models. Shown is the comparison between best fit 2-state and 3-state models
942 in terms of mean MRNA expression, variance, burst size and frequency from experimental
943  data. Best fit defined by AlChest moder<0.5AIC 2nq hest (from Fig. S3B). Burst size and frequency
944  caculated per condition using moment estimators. Statistical significance assessed with
945  Mann-Whitney test (** p-value<0.01, **** p-value <0.0001).

946 D. Relationship between slope of the mean-variance relationship and fraction of 3-state
947 modd fits for high coverage genes. Fraction of 3-state model fits per gene defined by the
948  number of conditions with AlCs.state model<AlCo-state OVer al conditions per gene. Broken line
949 indicates 0.5, r denotes Spearman correlation coefficient.

950
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951  Figure5. Evolutionary control of TLR response variability

952  A. Schematic representation of response variability during evolution for putative species A
953  and B. Shown are mean variance relationships corresponding to slopes (o1 and os=kes) and
954 the predicted burst size (b) and frequency (f) modulation schemes for corresponding
955  parameter values calculated using moment estimators.

956  B. Histogram of the slope ratio k calculated for the 169 orthologue genes across all pairwise
957  comparisons between mouse, rat, rabbit and pig. k=max(e,o)/min(ea, %), where oy and o
958  denote slopes of the fitted mean-variance relationships for each pair of species per gene.

959 C. Modulation schemes for Cxcl10 and Cbx8 genes. Shown is the comparison between
960 theoretical relationships based on the fitted mean-variance relationships (in solid lines,
961  colour-coded by species) and corresponding moment estimates for burst size and frequency
962 from experimental data (circles).

963 D. Analysis of burst size and frequency for divergent and non-divergent mouse and pig TLR-
964  response genes. Shown are box plots of average burst size and mean-normalized frequency
965 per gene stretified into divergent (Omouse> 20ig OF Olpig™>204ig) and complementary non-
966 divergent groups (31, 15 and 123 orthologue genes, respectively). Statistical significance
967  assessed with a paired Wilcoxon test (**** p-value < 0.0001, *** p-value < 0.001, ns not
968  dgnificant).

969 E. Change of variability between species is associated with regulatory complexity. Top:
970 Schematic representation of the hypothesis. Bottom: Relationship between the slope ratio
971 (oal/os) estimated for 146 pairwise comparisons between 28 fitted orthologue genes for
972  mouse, rat, rabbit and pig; and the corresponding ratio between species A and B of the
973  number of conditions per gene with 3-state model fitting better than 2-state model. Absolute
974  difference in AIC of the two models was used for model selection. Shown is the Spearman
975  correlation coefficient r and ap-value for r > 0.

976

977

978

979
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980 Figure S1. Analysis of the variability in the TLR responses. A. Fitted regression lines for
981 the 1,551 high confidence genes, shown are genes with different range of the slope o.
982  Highlighted in different colours are fits for the individual genes. Broken line indicates u=c>
983 line. B. Histogram of the measured mRNA response range for the 1,551 high confidence
984 genes. C. Effect of the slope (left) and intercept (right) of the mean-variance relationship on
985 the burst size and burst frequency modulation. Shown are simulated burst size and frequency
986 modulation schemes for a range of o and o, (as indicated on the graph). D. Modulation
987  schemes for Jchain gene. Shown is the comparison between theoretical relationships based
988 on fitted mean-variance relationships (in red) and corresponding estimates from data (open
989 circles). Equation for fitted mean-variance relationships highlighted in the top left panel,
990 respectively. E. Relationship between the slope (o) and in the intercept (o) across fitted
991 1,551 high confidence genes.
992
993 Figure S2. Inferred kinetic parameter rates for 2-state telegraph model using Beta-
994  Poisson model. A. Comparison between the 1,551 high confidence genes across al
995  conditions that either fit or do not fit the Beta-Poisson model. B. Histogram of fitted Kon, Kot
996 and k; across 7704 conditions for 1,519 high confidence genes. Inference performed using
997  profile likelihood of the Beta-Poisson model. Parameters units are expressed per degradation
998 half-life C. Relationship between inferred ko, VS. kot rates (left) and kon vs. k; (right) across
999  parameters from A. Rates for Nfkbia, 1112 and Ccl5 highlighted in different colours. ldentity
1000 line depicted with a broken line. D. Histogram of the number of inferred conditions across
1001 1,159 high confidence genes. Broken line highlights the threshold for at least 10 conditions
1002 fitted per gene. E. Histogram of the fitted regression slopes for the 96 high coverage gene set.
1003  F. Ftted regression lines for the 96 high coverage genes. Highlighted in colour are fits for the
1004 individual genes of interest. Broken line indicates 1= o line.
1005
1006  Figure S3. Analysis of stochastic models of transcription. A. Comparison between the
1007 fitted and measured scRNA-seq count distributions for few gene examples. Shown are
1008 cumulative probability distribution of data (in green) vs. the corresponding Beta-Poisson, 2-
1009  state and 3-state model fits (in blue, red and violet, respectively) for Adm (LPS, 2h, replicate
1010 1), lla (PIC, 2h, replicate 1), Cd40 (LPS, 4h, replicate 1) and 117r (Oh, replicate 2) genes.
1011 Ratios of respective AICs between models highlighted on top. B. Summary of comparing
1012  Beta-Poisson, 2-state and 3-state model fits across the conditions of the high coverage genes.
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1013  Best models defined either by AIC smaller (in white) or 2-fold smaller (in black) than the
1014  next best model. C. Summary of 2-state and 3-state model fits across a range of thresholds
1015 T= AlCosuae/AlCssare fOr the fitted 96 high coverage genes across al conditions. D.
1016  Relationships between the number of Beta-Poisson, 2-state and 3-state model fits for the 96
1017  high coverage genes across all conditions. Best fit model defined by AlChest model<AlCand best.
1018

1019

1020 Figure $4. Model-based analysis of transcriptional bursting. A. Summary of 2-state
1021  mode fits defined for 141 conditions such that AlC;.sate<0.5AIC3.sate (aS in Fig. 4C). Shown
1022 s the distribution of fitted ko, (Min™) and ke (Min™) rates as well as Spearman correlation
1023  coefficient r with mRNA variance. B. Summary of 3-state model fits defined for 266
1024  conditions such that AlC3.state<0.5AIC2state (S in Fig. 4C). Shown is the distribution of fitted
1025 rates as well as Spearman correlation coefficient r with mRNA variance (and between
1026  selected rates). C. Comparison between fitted transcription rates for 2-state and 3-state
1027 models (as in A and B, respectively). Statistical significance assessed with Kruskall-Wallis
1028  test with Dunn’s correction for multiple comparisons (* p-value < 0.05, *** p-value < 0.001).
1029 D. Analysis of transcriptional bursting across high coverage genes and conditions fitted by 2-
1030  dtate vs 3-state models. Shown is the comparison between best fit 2- and 3-state models in
1031 terms of mean mMRNA expression, variance, burst size and frequency. Best fit defined by
1032 AlChpest model<AlCang nest (from Fig. S3B). Burst size and frequency calculated per condition
1033  using moment estimators. Statistical significance assessed with Mann-Whitney test (* p-value
1034 <0.05, *** p-value < 0.001, **** p-value <0.0001, ns not significant).

1035

1036  Figure S5. Analysis of transcriptional bursting across species. A. Schematic diagram of
1037 dataanalysis; 169 orthologue genes exhibiting good mean-variance fits (R* > 0.6) statistically
1038 tested for differences in the slope of the linear fit. Right: Venn diagram of TLR response
1039 orthologue genesin at least one of the species studied by Hagai et al. (2018). B. Fitted mean-
1040 variance relationships for a subset of orthologue genes across species. Shown is the
1041  comparison between the fitted mean-variance relationships (in solid lines, colour-coded by
1042  species) and corresponding data (circles). C. Evolutionary response divergence across
1043  orthologue gene subsets defined by the number of statistically significant FDRs between
1044  fitted regression slopes across four species (as in Table S2). Statistical significance assessed
1045 using ordinary ANOVA with Dunnett’s correction for multiple comparisons (*** p-value <
1046  0.001, * p-value < 0.05, ns not significant). D. Global modulation of transcriptional busting
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across species. Shown is the comparison between fitted mean-variance relationship and
theoretical burst size and frequency modulation schemes vs. relationships derived from data.
Shown is aviolin plot of relative root mean square error (RRMSE) of 169 orthologue genes.
E. Histogram of the slope ratio (otmouse/Oig) fOr the 169 orthologue genes between mouse and
Pig. omouse 8N 0ig denote slopes of the fitted mean-variance relationships for each pair of
species per gene. F. Analysis of divergent and non-divergent mouse and pig TLR-response
genes. Shown are box plots of average mRNA expression per gene stratified into divergent
(Otmouse™ 20upig OF Olpig™>204ig) and complementary non-divergent group (31, 15 and 123
orthologue genes, respectively). Statistical significance assessed with a paired Wilcoxon test

(*** p-value < 0.001,ns not significant).

Table S1. Fitted mean-variance relationships for the mouse TRL response genes.

Table S2. Modulation of transcriptional bursting across 1,551 mouse high confidence genes.
Table S3. Modelling of sStcRNA-seq count distributions.

Table $4. Number of phagocyte cells and genes measured in each single cell in the four
species. Only the genes showing expression under at least one condition were studied

Table S5. Pairwise comparison of the slopes of the mean-variance regression lines was
performed between each two species. The table shows the number of significant FDR values
(<0.05) obtained for each of the 169 orthologue genes studied.

Table S6. Analysis of TLR response variability across species.
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