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 2

Abstract 19 

 20 

Transcription of almost all mammalian genes occurs in stochastic bursts, however the 21 

fundamental control mechanisms that allow appropriate single-cell responses remain 22 

unresolved. Here we utilise single cell genomics data and stochastic models of transcription 23 

to perform global analysis of the toll-like receptor (TLR)-induced gene expression variability. 24 

Based on analysis of more than 2000 TLR-response genes across multiple experimental 25 

conditions we demonstrate that the single-cell, gene-by-gene expression variability can be 26 

empirically described by a linear function of the population mean. We show that response 27 

heterogeneity of individual genes can be characterised by the slope of the mean-variance line, 28 

which captures how cells respond to stimulus and provides insight into evolutionary 29 

differences between species. We further demonstrate that linear relationships theoretically 30 

determine the underlying transcriptional bursting kinetics, revealing different regulatory 31 

modes of TLR response heterogeneity. Stochastic modelling of temporal scRNA-seq count 32 

distributions demonstrates that increased response variability is associated with larger and 33 

more frequent transcriptional bursts, which emerge via increased complexity of 34 

transcriptional regulatory networks between genes and different species. Overall, we provide 35 

a methodology relying on inference of empirical mean-variance relationships from single cell 36 

data and new insights into control of innate immune response variability. 37 

 38 

  39 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2023. ; https://doi.org/10.1101/2023.02.20.529223doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.20.529223
http://creativecommons.org/licenses/by/4.0/


 3

Introduction 40 

 41 

Transcription of almost all mammalian genes occurs in bursts, during brief and random 42 

periods of gene activity. The patterns of temporal mRNA production in a single cell, and the 43 

overall mRNA (and protein) distribution in cellular populations, are controlled by 44 

transcriptional bursting, namely via the modulation of burst size and burst frequency [1-3]. 45 

The innate immune responses exhibit extreme variability at the single cell level, in 46 

comparison to other tissue systems [4-6], where only subsets of cells produce specific 47 

effector molecules, and thus are able to restrict pathogen growth [7]. This apparent level of 48 

variability poses a fundamental systems biology question; how do robust immune responses 49 

emerge from this heterogeneous transcriptional bursting process?  50 

 51 

Recent advances have demonstrated key insights into regulation of transcriptional bursting. 52 

In general, the bursting kinetics are gene-specific and subject to regulatory control via 53 

cellular signalling events [3, 8-11] as well as genome architecture and promoter sequences [4, 54 

12-16]. For example, core promoters control burst sizes, while enhancer elements modulate 55 

burst frequency to define cell-type specific [17] or circadian gene expression outputs [18]. 56 

Coordinated gene activity has also been shown to regulate mRNA outputs as a function of 57 

spatial position during development [19-21] as well as temporal immune responses [22]. The 58 

resulting cell-to-cell variability is a consequence of the stochastic processes governing 59 

signalling and transcription [23], but also reflects extrinsic differences between individual 60 

cells [24-27] or variability of the pathogen in the context of the innate immune response [7]. 61 

With individual genes exhibiting different levels of stimuli-induced heterogeneity, we are 62 

still lacking general understanding of how transcription is regulated at the single cell level.   63 

 64 

Toll-like (TLR) receptor signalling constitutes one of the fundamental, evolutionarily 65 

conserved innate immune defence mechanisms against foreign threats [28, 29], yet exhibits 66 

substantial cell-to-cell variability [4-6, 30, 31]. We recently demonstrated that this overall 67 

TLR response to stimulation (or in general perturbation) is constrained through gene-specific 68 

transcriptional bursting kinetics [32]. By utilising single molecule Fluorescent in situ 69 

Hybridisation (smFISH), we established that the overall mRNA variability is linearly 70 

constrained by the mean mRNA response across a range of related stimuli. Variance (and in 71 

fact higher moments) of the mRNA distributions have been also shown to be constrained by 72 

the mean response in the developing embryo [19]. These analyses suggest that complex 73 
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transcriptional regulation at a single cell level may be globally characterised by mean-74 

variance relationships of gene-specific mRNA outputs, providing new ways to characterise 75 

response variability. While quantitative smFISH provides important insights, this approach is 76 

often limited by the number of genes, which can be investigated [8, 9, 32-37], therefore 77 

further analyses of global gene expression patterns [15, 17] are required to fully understand 78 

the underlying regulatory constraints. 79 

 80 

Here we utilise scRNA-seq data on innate immune phagocytes stimulated with common TLR 81 

ligands, lipopolysaccharides (LPS) of Gram-negative bacteria upstream of TLR4 and viral-82 

like double-stranded RNA (PIC) for TLR3 [4] to investigate the control of single cell gene 83 

expression heterogeneity of the innate immune responses. We analyse 2,338 TLR-response 84 

genes and demonstrate that they globally follow empirical linear mean-variance relationships, 85 

exhibiting a genome-wide spectrum of response variability levels characterised by the slope 86 

of the relationship. We show that linear relationships define different modes of individual-87 

gene response modulation with majority of the genes undergoing frequency modulation to 88 

TLR stimulation. Mathematical modelling of scRNA-seq count distributions using dynamic 89 

stochastic telegraph models of transcription of varied complexity levels, demonstrates that 90 

increased response variability is associated with larger and more frequent transcriptional 91 

bursts, which emerge via increased regulatory complexity. Finally, we show that linear mean-92 

variance relationships capture evolutionarily differences in response variability across pig, 93 

rabbit, rat, and mouse and predict transcriptional bursting modulation between species. 94 

Overall, our data demonstrate the utility of empirical mean-variance relationships in 95 

providing new insights into control of transcriptional variability in the innate immune 96 

response. 97 

 98 

  99 
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Results 100 

 101 

TLR-induced mRNA responses exhibit linear mean-variance trends  102 

To globally investigate the control of transcriptional bursting in the TLR system relationships 103 

we used existing scRNA-seq data from mouse phagocytes either untreated or stimulated with 104 

LPS and PIC for 2, 4 and 6 hours [4]. The dataset contains unique molecular identifier (UMI) 105 

mRNA counts for 53,086 cells and 16,798 genes across 20 experimental conditions including 106 

replicates, of which 2,338 genes were identified as TLR-dependent (see Fig. 1A for 107 

correlation of sample mean and variance across all datasets, and Materials and Methods for 108 

data processing). We previously showed that the gene-specific variability can be defined by 109 

the slope of the mean-variance relationship [32]. To test this phenomenon globally, for each 110 

of the 2,338 TLR-inducible genes, the sample mean (μ) and variance (σ2) relationship was 111 

fitted using robust linear regression (�� � �� � α�), yielding 2,133 genes with a significant 112 

regression slope (p-value < 0.05, Fig. 1B). Of those, 1,551 (66% of all TLR-inducible genes) 113 

genes, referred here as high confidence genes, were characterised by coefficient of 114 

determination �� � 0.6 (Fig. 1C, see also Table S1 for list of genes and fitted relationships). 115 

Overall, the distribution of fitted slopes across the high confidence genes varied over 3 orders 116 

of magnitude, with 1,067 genes (69% of high confidence genes) characterised by slope α>1 117 

and 627 (40%) α>3, indicative of predominant non-Poissonian transcription (where one 118 

would expect α=1 and α� � 0) (Fig. 1D). 61 genes (4%) were characterised by α> 5 and 28 119 

(2%) by a α>10, highlighting genes with the highest level of expression variability (across a 120 

range of TRL responses, Fig. S1A). Among the high variability genes (α>5) we found C-C 121 

motif chemokine ligands (Ccl) 2, 3, 4, 5, 17; C-X-C motif ligands (Cxcl) 9 and 10, as well as 122 

cytokines including Interleukin 1 α (IL1a), IL1b, IL10, IL12b and Tumour Necrosis Factor α 123 

(Tnfa) (see Fig. 1E for individual gene fits). The most variable gene in the dataset was the 124 

immunoglobulin subunit Jchain with α=1372 (Fig. S1D), substantially more than the 2nd 125 

most variable Ccl5 (α=72). While the range of the mRNA output among high confidence 126 

genes varies over 3 orders of magnitude (Fig. S1B), we found that LPS induced more robust 127 

activation than PIC in terms of average expression (Fig. 1F). Overall, this analysis 128 

demonstrates that TLR-induced mRNA responses globally exhibit empirical linear mean-129 

variance relationships.  130 

 131 
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 132 

Patterns of transcriptional bursting modulation underlie TLR response heterogeneity 133 

Having established the linear relationships relating the gene-specific transcriptional 134 

variability to mean expression, we sought to study global properties of transcriptional 135 

bursting underlying these trends. We used moment estimators of the underlying scRNA-seq 136 

count distributions to calculate bursting characteristics, such that burst size bs=σ2/μ (i.e., the 137 

Fano factor) and burst frequency bf=μ/bs, which measure the departures from Poissonian 138 

mRNA production [1, 3, 11, 18]. Given the empirical linear constraint, �� � �� � α�, the 139 

burst size and burst frequency become analytical functions of the mean mRNA expression 140 

such that bs=α0/µ + α and bf=µ2/(α0+αμ) (Fig. 2A). In a special case when α0=0, burst size 141 

is constant (independent of the mean expression µ) and equal to the slope of the mean-142 

variance line α, while the frequency increases linearly with µ and is proportional to 1/α  [32]. 143 

However, the overall behaviour does depend on the intercept (see Fig. S1C for sensitivity 144 

analyses); for α0>0, the burst frequency converges monotonically to μ/α (i.e., the limiting 145 

case for α0=0), while the burst size converges to α (from ∞ at µ=0) as the mean expression μ 146 

increases (Fig. 2A in blue). For α0<0 (Fig. 2A, in red), the relationship can only be defined 147 

for µ>|α0|/α, such that burst size increases monotonically (and converges to α), while the 148 

burst frequency has a local minimum for μ*=2|α0|/α  equal to 4|α0|/α2, eventually converging 149 

to the limiting case μ/α.  150 

 151 

We calculated the theoretical bursting modulation schemes for the 1,551 high confidence 152 

genes and compared these to the moment estimators of the burst size and frequency from the 153 

data (Fig. 2B). We found that the average relative root mean square error (RRMSE, see 154 

methods) of the mean-variance fit in relation to data was 0.07±0.02%, where 1,431 genes had 155 

an error smaller than 0.1%. In comparison, the average error for the burst size modulation 156 

was 0.08±0.03% (with 1281 genes having an error smaller than 0.1%), while the average 157 

error for the burst frequency modulation was 0.07±0.1% (with 1,389 genes having an error 158 

smaller than 0.1%). Given their empirical nature, the predicted theoretical trends are in good 159 

agreement with the changes of burst size and frequency observed in the data. Profilin 1 160 

(Pnf1) and Cd44 are example genes characterised by intercept α0<0, while the genes 161 

encoding eukaryotic translation initiation factor 6 (Eif6) and Cxcl10 had α0>0 (Fig. 2C). 162 

Jchain is an example of a gene with a good mean-variance fit, but one of the poorest fit in 163 

terms of bursting frequency, which might be due to limited sample size and its profound 164 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2023. ; https://doi.org/10.1101/2023.02.20.529223doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.20.529223
http://creativecommons.org/licenses/by/4.0/


 7

variability (Fig. S1D). Of the 1,551 high confidence genes, 430 genes had a significant 165 

intercept (p-value < 0.05) in the regression fit, with 414 characterised by negative and 16 166 

positive intercepts (Fig. S1E). These in part reflect the empirical nature of these trends and 167 

the limited sample size, especially for those genes where α0 is small (in relation to variance), 168 

for example Cxcl10 (Fig. 2C). However, many genes, including Pnf1 and Eif6 exhibit 169 

substantial basal expression in untreated cells [8], resulting in either elevated or reduced 170 

variability (in relation to true zero) as captured via non-zero intercept in the regression fit 171 

[32].  172 

 173 

Gene specific bursting exhibits different modes of response modulation 174 

The linear mean-variance relationships reflect the constrained changes of burst size and burst 175 

frequency required to regulate response variability as shown in their derived analytical 176 

functions of the mean mRNA expression. To understand the modulation of transcriptional 177 

bursting, we first calculated fold changes of burst size vs. burst frequency across the range of 178 

mean expression calculated for individual response genes (Fig. 3A). We found that 1,015 out 179 

of the 1,551 high confidence genes exhibit 2 times more fold changes in burst frequency than 180 

burst size. This suggests a predominant frequency modulation, in agreement with recent 181 

analyses of LPS-induced macrophages [22]. However, we also found 48 genes exhibiting 182 

fold changes in burst size 2 times more than burst frequency, while 389 exhibited comparable 183 

modulation of both burst size and burst frequency. To study the transcriptional bursting 184 

modulation more systematically, we derived an analytical relationship between the burst size 185 

and frequency (independent of the mean mRNA expression) based on the linear constrains 186 

(Fig. 3B). The general relationship is given by bf=α0/(bs(bs-α)), where α0 can take positive or 187 

negative values. When α0>0, we have an inverse relationship between the burst size and 188 

frequency, which asymptotically approaches zero, as the burst size approaches infinity. It is 189 

also worth mentioning that, in this case, the function is undefined for values of burst size 190 

smaller than or equal to α (Fig. 3B, in blue), reflecting a biological limit of burst size and 191 

frequency for genes following this modulation trend. We found that 315 genes (out of the 192 

1,551 high confidence genes) exhibited such an inverse relationship, with all genes exhibiting 193 

higher frequency than burst size modulation (see Fig 3C for specific genes and Fig 3D and 194 

Table S2 for global analysis). For the case when α0<0, linear constrains define a non-195 

monotonic relationship between the burst size and frequency on the interval (0,α) with a local 196 

minimum at bs
*=α/2, and frequency diverging to infinity as burst size tends towards α or is 197 
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close to 0 (Fig. 3B, in red). From the case α0<0, three patterns of bursting modulation can be 198 

distinguished; the burst frequency and size exhibit either inverse relationship, where the 199 

frequency increases and burst size decreases (for bs < bs
*) or concurrent increases (bs > bs

*). 200 

In addition, we define a U-shape relationship such that bs � bs
* where both inverse and 201 

concurrent relationships are possible (i.e., ����� � ��
� and �����


 ��
�, per gene). We found 202 

that out of the 1236 genes characterised by α0<0, most genes (999) exhibited predominant 203 

frequency modulation following either a U-shape or a concurrent relationship, while 237 204 

genes showed higher burst size modulation and was mostly associated with U-shape trends 205 

(Fig. 3C and D). It is worth mentioning that all 7 genes confirming an inverse trend showed 206 

predominant burst size modulation. Overall, these analyses demonstrate different modes of 207 

the transcriptional bursting modulation of TLR-stimulated genes, albeit with predominant 208 

regulation via burst frequency. 209 

 210 

Increased response variability is associated with complex transcriptional regulation  211 

The distribution of fitted regression slopes varying over 3 orders of magnitude demonstrate a 212 

wide range of response variability among individual TLR-induced genes (Fig. 1D). While we 213 

have demonstrated that individual genes exhibit different modes of transcriptional bursting 214 

characteristics to regulate responses to stimulation, we wanted to understand the control of 215 

variability in the system more mechanistically. A well-established mathematical description 216 

of mRNA production involves a 2-state telegraph model (Fig. 4A), where gene activity 217 

changes randomly between “off” and “on” states, with mRNA transcription occurring in the 218 

“on” state [1, 3, 18, 36]. The associated parameters are gene activity rates (kon and koff) as 219 

well as rate of mRNA transcription (kt) and degradation (kd) (Nicolas et al., 2018). Although 220 

the 2-state telegraph model has been widely used in the past to model mRNA count data, 221 

more complex structures are often required to capture additional complexity associated with 222 

multiple regulatory steps, combinatorial promoter cycling and transcriptional initiation [12, 223 

38]. We previously showed that heterogenous Il1β mRNA transcription requires more 224 

regulatory steps than that of Tnfα [32]. We therefore hypothesised that TLR response 225 

variability is linked with the complexity of the transcriptional regulation. To test this 226 

hypothesis, we introduced a 3-state stochastic model, which assumes sequential promoter 227 

activation between “off”, “intermediate” and “on” states, equivalent to promoter cycling [12, 228 

38], with transcription occurring in the “intermediate” (I) state as well as in the “on” state, 229 
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characterised by 5 transition rates (ton, toff, kon, koff and kc) , 2 transcription rates (kti and kt), and 230 

a degradation rate kd (Fig. 4A). 231 

 232 

We first used a profile likelihood approach [17, 39] to fit the measured scRNA-seq count 233 

distributions assuming steady state kinetics of the 2-state model (the so called Beta-Poisson 234 

model) for the 1,551 high confidence genes, each across 20 treatment datasets (Table S3). 235 

Values of kinetic parameters were inferred for 7,804 of 31,020 datasets (~25% across 1519 236 

genes), which in general corresponded to genes characterised by larger expression, in 237 

comparison to those that failed to fit (Fig. S2A). The fitted parameter values (kon, koff and kt, 238 

expressed in units per degradation half-life) varied over 3 orders of magnitude across all 239 

genes and datasets (Fig. S2B). In general, gene inactivation rates (koff) were greater than 240 

activation rates (kon) (Fig. S2C), consistent with intermittent transcriptional kinetics [3, 13, 241 

17]. While the Beta-Poisson model explicitly assumes a steady-state (and does not make any 242 

assumptions about mRNA half-life), we wanted to account for the underlying dynamical 243 

stochastic processes and corresponding temporal mRNA production and decay [34]. 244 

However, it was not computationally feasible to fit all genes across all scRNA-seq datasets, 245 

we therefore identified on a subset of 99 high confidence genes for which at least 10 datasets 246 

were fitted using a Beta-Poisson model (Fig. S2D). Of these, 96 had an existing measurement 247 

of mRNA half-life (which is required for dynamical model fitting) in LPS-stimulated bone 248 

marrow derived macrophages [40, 41] or other cell models. The resulting 96 high coverage 249 

genes included 51 of 100 most variable genes (as defined by the fitted regression slope) and 250 

60 of 100 most expressed genes including chemokine family Ccl5, Ccl4, Ccl3, Ccl2 as well 251 

as IL1b and TNFa (Fig. S2D, E and F, see Table S3 for a list of genes, half-lives and fitted 252 

relationships).  253 

 254 

We used a genetic algorithm to fit dynamical 2-state and 3-state stochastic models across 20 255 

individual datasets (LPS and PIC stimulation at 0, 2, 4, 6 h time-course across replicates) for 256 

the 96 high coverage genes (see Material and Methods). We then applied the Akaike 257 

information criterion (AIC) [42] to select models that accurately fitted the measured mRNA 258 

distributions and compare the quality of the three models per condition in order to determine 259 

the best-fit model, noting that the lower AIC value corresponds to the better model fit. In 260 

general, we found that Beta-Poisson model, the least constrained model, fitted better than 261 

dynamical models (805 out of 1210 conditions (i.e., treatment and replicates) favoured Beta-262 

Poisson model based on their AIC values, Fig. S3A and B). The more constrained dynamical 263 
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2-state model provided a best fit for 170 conditions, while the 3-state model best captured 264 

235 conditions (and 30 and 57, respectively when using a more stringent criterion of two-fold 265 

AIC change, Fig. S3B). When comparing 2-state with 3-state model directly and assuming a 266 

two-fold AIC change between the two models, there were 141 out of 1507 conditions that 267 

favoured the 2-state model, while the opposite was true for 266 conditions (see Fig. S3C for 268 

other thresholds). For example, 2-state model recapitulated PIC-treated Eif6 mRNA count 269 

distribution (at 4 h) better than a 3-state model, as reflected by the AIC2-state<AIC3-state. In 270 

turn, the 3-state model better recapitulated the LPS-treated Ccl2 distribution (at 2 h) spanning 271 

almost over 3 orders of magnitudes (Fig. 4B). The number of 2-state-and 3-state model fits 272 

was not strongly related to the treatment, time point or in fact biological replicates, although 273 

LPS had 155 conditions more fitted with 3-state than 2-state model (Fig. S3D).  274 

 275 

The 141 2-state model fits were characterised by kon=0.02 ± 0.01 min-1 (half-time of 35 mins) 276 

on average, and off rates averaging koff=0.74± 0.25 min-1 (half-time of 1 min), with average 277 

transcription rate kt=1.23± 4.44 mRNA min-1, indicative of ‘bursty’ kinetics (Fig. S4A). The 278 

‘on’ rate showed significant positive correlation with the variance of the corresponding count 279 

distributions (r=0.48), demonstrating that a faster ‘on’ switch contributes towards increased 280 

response variability. The 266 3-state model fits were also characterised by relatively slow 281 

average ‘on’ rates (ton=0.036 ± 0.13 min-1 and kon=0.33 ± 0.32 min-1) in relation to the ‘off’ 282 

rates (toff=0.74± 0.26 min-1, koff=0.44± 0.36 min-1 and kc=0.50± 0.36 min-1, Fig. S4B). The 283 

mRNA count variance was correlated positively with ton rate (i.e., transition to intermediate 284 

state, r=0.33) as well as with transcription rates in ‘on’ and ‘intermediate’ states (r>0.4). In 285 

comparison to the 2-state model, the transcription rate in the ‘on’ state was significantly 286 

higher (kt=7.63± 13.05 mRNA min-1) indicative of larger burst sizes (Fig. S4C and D).  287 

 288 

We then asked if the level of variability is linked with the model complexity. We found that 289 

scRNA-seq count distributions fitted with the 3-state model were characterised by greater 290 

variability than those corresponding to the 2-state model (see Fig. 4C and Fig. S4D for less 291 

stringent model selection thresholds). In agreement, the 3-state-model fits were associated 292 

with significantly larger burst size and lower burst frequency than that of the 2-state model 293 

fits, consistent with more heterogenous bursting kinetics across the relevant conditions. 294 

Finally, we analysed model selection across individual high coverage genes rather than 295 

corresponding conditions; we found the fraction of conditions explained by one model 296 
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changes between individual genes (e.g., 3-state model fitted 3 out of 20 for Eif6, 10 out of 20 297 

for Ccl5 and all conditions for Vcam1 Fig. 4D). Our interpretation of this is that as the mRNA 298 

responses increase, a more complex regulatory structure is required to capture the underlying 299 

distribution. We found that, for the high coverage genes, the fraction of conditions explained 300 

by the 3-state model correlated well (r=0.56, p-value < 0.0001) with the slope of mean-301 

variance relationship, and thus response heterogeneity (Fig. 4D). Overall, this demonstrates 302 

that while increased heterogeneity involves larger and infrequent bursts (in comparison to 303 

homogenous responses), this is underlined by increased complexity of the transcriptional 304 

regulatory network. 305 

 306 

Linear relationships capture evolutionary changes of response variability  307 

Previous work highlighted the relationship between evolutionary response divergence of 308 

innate immune genes and their cell-to-cell variability, with highly divergent genes exhibiting 309 

more variability [4]. However, the changes in patterns of transcriptional bursting during 310 

evolution is still poorly understood. We proposed that by comparing the linear mean-variance 311 

relationships across species, the variations in transcriptional bursting patterns that develop 312 

through evolution could be better understood. Specifically, if the evolutionary changes in 313 

response variability can be captured by a fold-change k in the slope of the relationship, then 314 

the increased variability is predicted to be due to increased burst size and reduced burst 315 

frequency by a factor k, respectively (Fig. 5A).  316 

The relationship between the mean and variance of the single cell mRNA counts was studied 317 

in data for four mammalian species from Hagai et al. (2018): mouse, rat, pig, and rabbit, in 318 

cells either untreated or treated with LPS or PIC for 2, 4 and 6 h (see methods and Table S4 319 

for species specific number of conditions per gene ranging from 12 to 21). We found that 320 

from the 2,338 LPS response genes, a subset of 218 genes with one-to-one orthologues 321 

showed response to treatment in all four species (Fig. S5A). 78% of fitted mean-variance 322 

relationships for the 218 genes were characterised by R2 > 0.6, including 102 genes in all four 323 

species and 169 in at least three species. To characterise the divergence in response 324 

variability we performed species pairwise comparison between the fitted regression slopes of 325 

the 169 genes subset (Table S5). Out of this subset 21 genes including chemokines Ccl2, 326 

Ccl4, Ccl5 and Cxcl10 (Fig. 5B and Fig S5B), had all 6 possible pairwise comparisons 327 

showing significant differences, indicating divergence in TLR response variability between 328 

each of the two species. 5 significant FDR values (difference in three out of four species) 329 
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were obtained for 49 genes including chemokines Ccl20, Ccl3, MMP9 (Fig S5B) and 330 

cytokines Il1a, Il10 and Il27 indicating significant differences in response variability. On the 331 

other hand, no significant differences were obtained between any of the four slopes in 7 332 

genes, including a transcriptional repressor Chromobox Protein Homologue 8 (Cbx8, Fig. 333 

5B). In agreement, a distribution of slope ratios calculated across all pairs of species for the 334 

169 genes (Fig. 5C and Table S6) revealed 49 pairs with k > 5 and 258 pairs with k > 2, 335 

indicating substantial changes of the response variability between species, including the 336 

chemokine and cytokine genes. Conversely, 54% of slope ratios (549 out of total 1014 genes) 337 

were smaller than 1.5, indicative of conserved variability. The inflammatory chemokines 338 

were shown previously to rapidly evolve in mammals and other vertebrates with clear 339 

differences in expression between closely related species [43, 44]. Moreover, gene 340 

duplication of the CC chemokine ligands can result in different copy numbers of these genes 341 

between individuals [45], further increasing the divergence in expression. Importantly, our 342 

analyses specifically capture changes of response variability and suggest a statistical 343 

relationship of these changes with the generic evolutionary divergence (see Materials and 344 

Methods) of gene expression response (Fig. S5C). 345 

To validate the predicted changes in transcriptional bursting during evolution (Fig. 5A), we 346 

first calculated the theoretical modulation schemes for all the 169 evolutionary genes across 347 

species and compared these to the moment estimators of the burst size and frequency from 348 

the data (Fig. S5D). We found that the average RRMSE of the mean-variance fit in relation to 349 

data was 0.06±0.05% across all species, where 90% genes had an error smaller than 0.1%. In 350 

comparison, the average error for the burst size predictions was 0.08±0.05%, while the 351 

average error for the burst frequency predictions was 0.05±0.04%. The predicted theoretical 352 

trends are in good agreement with the observed changes of burst size and frequency. For 353 

example, Cxcl10 exhibits concurrent changes of the burst size and frequency, the level of 354 

which is determined by the slope of the relationships, while Cbx8 exhibits the same 355 

modulation across species (Fig. 5C). In addition, our predictions of species-specific 356 

modulation scheme are based not only on the slope α, but also the mean-variance intercept, 357 

which we previously showed may affect the bursting relationships (Fig. 2A and Fig. S1C). 358 

We therefore investigated if the difference of the slopes alone is sufficient to predict 359 

modulation of bursting characteristics across species (Fig. 5A). We stratified the 169 360 

orthologous genes into divergent and non-divergent subsets, with the divergence threshold 361 

defined by a 2-fold change in the slope of the mean-variance relationships. The divergent 362 
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subset included 31 genes exhibiting higher slope in mouse, and 15 in pig (Fig. S5E). We 363 

found that divergent genes, associated with increased response variability, exhibited 364 

significantly higher average burst sizes (as calculated across all corresponding conditions) 365 

and reciprocally lower normalised burst frequency when compared between the two species 366 

(Fig. 5D). In contrast, the non-divergent genes showed no significant differences in the burst 367 

size or normalized frequency, as predicted by the linear constraints. Interestingly, we also 368 

observed significant differences in the average expression between the divergent genes 369 

group, opposing to the non-divergent group (Fig. S5F).  370 

We then asked if the increased variability in gene expression between species was associated 371 

with changes of regulatory complexity (Fig. 5E). Following previous methodology, we 372 

selected 28 orthologue genes from the subset of 96 of high coverage genes in mouse and used 373 

a genetic algorithm to recapitulate scRNA-seq count distributions with dynamical 2-state and 374 

3-state models (see Materials and Methods and Table S6 for details of the analysis). We then 375 

calculated the fold change in the number of conditions (per gene) fitted with 3-state models 376 

across all pairwise comparisons of the four species. We found that this fold change correlated 377 

(Spearman’s r=0.41, p<0.0001) with the ratio of the slopes between the corresponding linear 378 

relationships, such that the transition to a higher slope was associated with increased number 379 

of 3-state model fits across corresponding conditions (Fig. 5E). Overall, this demonstrates 380 

that evolutionary increases in TLR response variability are associated with increased 381 

regulatory complexity, resulting in larger and less frequent transcriptional bursting kinetics.   382 

 383 

 384 

Discussion 385 

 386 

Transcription is inherently a stochastic process leading to heterogeneity in cell-to-cell mRNA 387 

levels. Recent advances suggest the existence of fundamental constraints governing the 388 

heterogeneity of gene expression, which rely on the scaling between the variance and mean 389 

of the mRNA response distribution [19, 46]. Our previous work, using smFISH data, showed 390 

that the overall mRNA variability is linearly constrained by the mean mRNA response across 391 

a range of immune-response stimuli [32]. However, these approaches were typically limited 392 

by the number of genes considered, not allowing to generalise the observations to the 393 

genome-wide scale. Here, utilising an existing scRNA-seq data on the evolutionary-394 

conserved innate immune signalling [4], we perform global analysis of the TLR gene 395 

expression response variability and underlying transcriptional bursting. We demonstrate that 396 
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cell-to-cell variability can be empirically described by a linear function of the population 397 

mean across a genome. Based on this, we develop a methodology, relying on statistical 398 

modelling of linear mean-variance relationships from single-cell data, that provides a simple 399 

yet meaningful way to understand regulation of cellular heterogeneity. We demonstrate that 400 

(1) The response heterogeneity of a gene can be defined as the slope of the mean-variance 401 

line across >1,500 individual response genes. High variability genes include chemokines and 402 

cytokines such as CCL family, while other functional genes are more homogenous, in 403 

agreement with previous work [4]. (2) The changes in heterogeneity between species can be 404 

described by the change in the slope of the corresponding mean-variance lines, providing 405 

insights into the evolutionary control of TLR response variability. (3) The linear relationships 406 

determine the underlying transcriptional bursting kinetics, revealing different regulatory 407 

modes in response to stimulation and through evolution. (4) Application of dynamical 408 

stochastic models of transcription demonstrates a link between the variability and the 409 

regulatory complexity, with complexity facilitating heterogeneity via larger and less frequent 410 

transcriptional bursting kinetics.  411 

 412 

While, in general the available sequencing data are subject to measurement noise [47], and 413 

often restricted by the number of data points available, the overall mean-variance 414 

relationships were captured using robust linear regression approaches. We first considered 415 

regulation of 2,338 TLR-inducible genes in primary murine phagocytes across 20 416 

experimental datasets corresponding to LPS and PIC treatment including biological replicates 417 

(Fig. 1). We found that 2,133 relationships were characterised by a significant (non-zero) 418 

regression slope (Fig. 1) with 1,551 genes (66% of total) characterised by coefficient of 419 

determination R2 > 0.6. In comparison, out of the 218 genes with one-to-one orthologues 420 

between mouse, rat, rabbit and pig, 78% of fitted mean-variance relationships for the 218 421 

genes were characterised by R2 > 0.6, despite the number of datapoints being limited to 12 422 

(Fig. 5). Fit quality was also reflected in the low mean squared errors between the fitted 423 

trends and data, providing good support for the observed phenomenon. We subsequently 424 

demonstrated that linear constraints theoretically determine transcriptional bursting 425 

characteristics. We used the widely applied moment estimators of the underlying scRNA-seq 426 

mRNA distributions to calculate bursting characteristics [1, 3, 11, 18]. Given the empirical 427 

linear constraint �� � �� � α�, the burst size and burst frequency become analytical 428 

functions of the mean expression (Fig. 2A). We found that 430 relationships (out of 1,551 429 
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murine fits) were characterised by statistically significant intercept (α0). For some genes, this 430 

may reflect the empirical nature of these trends, especially for those with small intercept (in 431 

relation to variance), for example Cxcl10 (Fig. 2C). However, we found that many genes with 432 

non-zero intercept fits were associated with substantial basal expression in untreated cells, 433 

which was also observed previously for the more quantitative smFISH data [32]. Basal 434 

expression of the related gene targets has been shown to exhibit different bursting kinetics 435 

from the inducible expression [8], which in part may explain the fitted non-zero intercepts for 436 

a subset of genes. For α0=0, linear constraints essentially imply that the burst size must be 437 

constant (and equal to the slope of the mean-variance line), while the frequency undergoes 438 

modulation with the population mean changes in response to stimulation. This is in general 439 

agreement with recent analyses demonstrating a role of frequency in regulation of LPS-440 

induced macrophages [22] or stimulation [9, 20, 48-50]. However, a more detailed 441 

investigation of all genes including those with non-zero intercepts, reveals different 442 

regulatory modes, including a subset of genes exhibiting burst size modulation (Fig. 3). For 443 

instance, a positive intercept is associated with an inverse relationship between the burst size 444 

and frequency, while a negative intercept may imply concurrent burst size and frequency 445 

changes. As with the mean-variance relationships, the predicted modulation schemes are 446 

generally in good agreement with the data in terms of the mean-squared error. Notably, we 447 

demonstrate that our methodology can be extended to capture evolutionary differences 448 

between species. While gene expression divergence between species has been previously 449 

measured in terms of the population response [51], the slope of the linear relationships 450 

captures the specific differences in TLR response variability through evolution (Fig. 5). We 451 

demonstrate that the evolutionary change of the variability can be described as a ratio k 452 

between the slopes of the corresponding mean-variance fits, which theoretically implies 453 

reciprocal scaling of the burst size and frequency also by k. Analysis of the 218 TLR 454 

orthologue genes indeed demonstrates that responses of divergent genes are controlled by 455 

reciprocal changes of burst size and frequency, while non-divergent genes show the same 456 

characteristics across species. Interestingly, we found that within each pair of species, 457 

divergent genes exhibited different changes of variability suggesting complex evolutionary 458 

traits (e.g., 31 genes exhibiting higher variability in mouse than in pig, and 15 in pig vs. 459 

mouse). It would be important to better understand how variability of particular response 460 

genes evolved between different species, in the context of their sequence dissimilarities [16, 461 
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43-45] as well as epigenetic [52] and signalling components [53] of the TLR signalling 462 

between species.   463 

 464 

Finally, we used stochastic models of transcription to better understand regulation of 465 

transcriptional bursting (Fig. 4). A typical representation involves a 2-state telegraph model, 466 

where gene activity changes randomly between “off” and “on” states, facilitating mRNA 467 

transcription [1, 3, 18, 36]. However, more complex structures are often used to capture 468 

complexity associated with multiple regulatory steps, combinatorial promoter cycling and 469 

transcriptional initiation [12, 38, 54, 55]. We hypothesised that TLR response variability is 470 

linked with the complexity of the transcriptional regulation. We introduced a 3-state 471 

stochastic model, which assumed a sequential activation between “off”, “intermediate” and 472 

“on” states, equivalent to promoter cycling [12, 38]. First, we used a computationally 473 

efficient Beta-Poisson model, a steady-state approximation of the 2-state telegraph model, 474 

which has previously been used to fit scRNA-seq distributions [17, 50]. Values of kinetic 475 

parameters were inferred for 7,804 of 31,020 conditions across 1,519 genes demonstrating 476 

intermittent transcriptional bursting kinetics [3, 13, 17]. However, this model does not take 477 

into account the dynamical nature of the process (measurements at 0, 2, 4 and 6h) and the 478 

mRNA half-life with many genes peaking early after stimulation [41]. We therefore used a 479 

genetic algorithm to fit the theoretical count distributions to the measured scRNA-seq data 480 

using the dynamical 2-state and 3-state models. Based on the Beta-Poisson fits, we selected 481 

96 high coverage murine response genes (and 28 orthologue genes for species analyses), 482 

which have existing estimates of mRNA half-life in LPS-stimulated bone marrow derived 483 

macrophages [40, 41] or other cell models. These included the highly variable and abundant 484 

genes including chemokine family Ccl5, Ccl4, Ccl3, Ccl2 as well as IL1b and TNFa. While 485 

the scRNA-seq can be in principle treated as time-series data (e.g., across the replicates from 486 

individual mice) [34], our current understanding of TLR signalling suggest that due to 487 

endotoxin resistance and desensitisation [56-58], the regulatory network, and thus model 488 

structures and parameters, are time-varying  rather than stationary [59]. We therefore treated 489 

each data time-point (and replicate) separately, which also allowed more efficient 490 

implementation to fit 1,507 mouse, and 1,079 orthologue conditions. We then used the AIC 491 

method [42] to compare the different models considered, and select the one that fitted the 492 

measured mRNA distributions most accurately. The results demonstrated that a large subset 493 

of genes and conditions fitted a dynamical 3-state model better than the 2-state model. We 494 

found that the fraction of conditions explained by the 3-state model correlated well (r=0.56, 495 
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p-value < 0.0001) with slope of the mean-variance relationship, and thus response 496 

heterogeneity, for the high coverage murine genes (Fig. 4). Similarly, the increased 497 

complexity was associated with evolutionary changes of response variability between species 498 

(Fig. 5). In general, we found that increased regulatory complexity facilitated larger response 499 

variability through increased burst sizes and reduced frequency of transcriptional bursting 500 

(Fig. 4D), while scRNA-seq count variance exhibited correlations with transcription rates and 501 

‘on’ rates. A better understanding of the relationships, and in particular mechanistic basics for 502 

controlling gene-specific slopes (i.e., response variability) as well as their sensitivity to 503 

pharmacological perturbation and infection and disease state, will require further detailed 504 

investigations [22]. Nevertheless, we believe that our methodology, relying on the inference 505 

of mean-variance relationships, provides new insight into regulation of single-cell variability 506 

of innate immune signalling and will be applicable to other inducible gene expression 507 

systems.  508 
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Materials and Methods 509 

 510 

Analysis environment 511 

Computational analysis was performed using Python v3.8.2 in a 64-bit Ubuntu environment 512 

running under Windows Subsystem for Linux (WSL) 2 and using the conda v4.8.3 package 513 

manager. Relevant packages were NumPy v1.19.1 (Van Der Walt et al., 2011), pandas v1.0.5 514 

(Reback et al., 2020), Scanpy v1.5.1 (Wolf et al., 2018), scikit-learn v0.23.1 (Pedregosa et 515 

al., 2011), SciPy v1.4.1 (Virtanen et al., 2020) and statsmodels v0.11.1 (Seabold and 516 

Perktold, 2010) for processing and Matplotlib v3.2.1 (Hunter, 2007) and seaborn v0.10.1 517 

(Waskom et al., 2020) for visualisation. Robust linear regression models and Benjamini-518 

Hochberg false discovery rate (FDR) correction was performed in statsmodels. Coefficient of 519 

determination (��) scores were calculated using the metrics module of scikit-learn.  520 

 521 

Acquisition and processing of mRNA count data 522 

mRNA count data associated with the study by Hagai et al. (2018) were downloaded from 523 

the Array Express database, in particular, the E-MTAB-6754.processed.2.zip file  to obtain 524 

the UMI counts of bone marrow-derived mononuclear phagocytes from mouse, rat, pig and 525 

rabbit. Phagocytes were either untreated (0h) or stimulated with LPS for 2, 4 and 6 h, 526 

resulting in 12 scRNA-seq datasets per species. In addition, phagocytes from mice and rat 527 

were also treated with PIC at 2, 4 and 6h. Notably, the dataset contains no UMI counts for 528 

PIC stimulation at 6 h for mouse 1 but has two for mouse 2 (labelled 6 and 6A). When 529 

collating the counts, the missing replicate for mouse 1 was disregarded and the PIC 6A time 530 

point – assumed to be a technical replicate – was excluded. Therefore, 20 datasets (referred as 531 

conditions herein) for the mouse, 21 datasets for the rat, 12 conditions for the pig and the 532 

rabbit dataset were considered for each gene (see Table S4). The UMI counts were median 533 

scaled per cell using the normalize_total function of Scanpy and subsequently used for fitting 534 

mean-variance relationships and bursting modulation. Integer values,  referred to as “mRNA 535 

counts” in this work were used for mathematical model fitting (see Github repository for data 536 

normalisation, UMI normalisation [60] and extraction of mRNA count distributions). Gene 537 

IDs, gene symbols and the descriptions of the genes were obtained from the Ensembl Release 538 

103 database of the four studied species: Mus musculus (mouse), Rattus norvegicus (rat), Sus 539 

scrofa (pig) and Oryctolagus Cuniculus (rabbit) using the BioMart web tool (Yates et al. 540 
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2020). Hagai et al. (2018) defined a set of 2,336 LPS-responsive genes based on differential 541 

expression in response to LPS stimulation with FDR-corrected p-value < 0.01 and existing 542 

orthologues in rabbit, rat and pig. Il1b and Tnf were added to this list – as well characterised 543 

TLR-response genes from the study of Bagnall et al. (2020)–resulting in a set of  2,338  LPS 544 

response genes with 46,740 conditions overall. Similarly, the responsive genes from the three 545 

other species were also determined. 2586 rat genes, 1892 pig genes and 859 rabbit genes 546 

showed differential expression upon LPS stimulus. 218 one-to-one orthologue genes were 547 

found to be responsive in all species, these genes formed the analysis subset. 548 

 549 

Fitting theoretical bursting characteristics 550 

The sample mean (�) and variance (��) of mRNA counts were calculated for the measured 551 

mRNA count distribution for individual response genes across conditions. The mean-variance 552 

relationships (�� � �� � α�) were fitted using robust linear regression, using a Huber M-553 

estimator with a tuning constant of 1.345, across all relevant conditions. A model’s fit was 554 

considered successful if the slope (�) was statistically significant based on FDR-adjusted p-555 

value < 0.05, and it provided a good overall fit (unweighted �� > 0.6). FDR-adjusted p-value 556 

< 0.05 was also calculated for the intercept (α�). Assuming linear constraints of mRNA mean 557 

and variance, theoretical bursting characteristics were analytically derived, using moment 558 

estimators; burst size bs=α0/µ + α, burst frequency bf=µ2/(α0+αμ) and bf=α0/(bs(bs-α)). 559 

Relative root mean square error, ����� �  �∑ 	
��
�
�
���� ���������
� �������
�
���

� ∑ 	���
� �������
�
�

 , where N 560 

denoted the number of datapoints, was used to compare theoretical predictions and 561 

experimental data. Relative fold change was used to calculate the level of burst size and 562 

frequency modulation in the measured data, across all the conditions per gene: 563 

����� ���� ����������  �� !��� � ����	��
��	
�
��	

, 564 

����� "��#���$% ����������  �� !��� � ����
��
��

�
��


. 565 

Comparison between burst size and burst frequency modulation was quantified as the ratio of 566 

the two quantities, i.e., ���������� ����� � ����� ��
��
��� �������
��

����� �
�
 �������
��
. 567 

 568 
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Pairwise comparison of the slopes of the mean-variance regressions 569 

The differences in the mean-variance relationships of a gene between species were measured 570 

by pairwise comparisons between the slopes. A Student’s t-test was performed to determine 571 

whether the two slopes are statistically significantly different, or not. The following formula 572 

was used to calculate the t-statistic values: 573 

�����
��
� � ��� �� & ��� ��

�������
�
� � ������
�

�
,       �. �. ". � �� � �� & 4 

SEslope represents the standard error of the value of the slope in the fitting of the robust linear 574 

regression model on the data. The degrees of freedom (d.o.f.) is dependent on the number of 575 

data points used to create the two linear regression lines compared (n1 and n2, respectively). 576 

P-values were determined using the cumulative distribution function of the relevant t 577 

distribution. As the four slopes were compared pairwise, six p-values were calculated per 578 

gene. P-values were corrected by the Benjamini-Hochberg procedure. Two slopes were 579 

deemed significantly different if the false discovery rate (FDR) corrected p-value was below 580 

0.05. Subset of genes with different number of significant FDR-corrected p-values were 581 

compared using a measure of evolutionary response divergence, such that response 582 

divergence = log[1/3 × ∑j(log[FC pig] − log[FC glirej])2], with  j =(1,2,3) corresponding to 583 

3 glires (mouse, rat and rabbit) and FC is the fold change in response to LPS stimulation per 584 

gene (Supplementary Table 4 in [4]). 585 

 586 

Inference of Beta-Poisson model 587 

Inference of Beta-Poisson model parameters ()��, )��� and )�) from individual scRNA-seq 588 

count distributions was performed using  the profile-likelihood txburstML script (Larsson et 589 

al., 2019) downloaded from GitHub (version 590 

1844c47be5f1ad2104cf15d425889768ec45df8b). Conditions that txburstML did not mark as 591 

“keep” (indicating convergence) were discarded. Genes with a least 10 fitted conditions per 592 

mouse (out of 20) and rat (out of 21) as well at least 6 in the pig and rabbit (out of 12) were 593 

included in the high coverage gene sets.  594 

 595 

Modelling and inference of dynamical models of transcription  596 
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Theoretical temporal mRNA distributions for considered models of transcription were 597 

obtained using the Chemical Master Equation (CME) following our previous approach [32]. 598 

In brief, the time evolution of the probability distribution over mRNA counts *+,, �-, is 599 

given by *+,, �- � exp1�+2-�3 *�+,-, where �+2- is a transition rate matrix describing flow 600 

of probability between different states, where a state is defined by the number of mRNA in 601 

the cell at time t and the transcriptional states of the gene’s alleles. *�+,- is specified by 602 

initial data such that ∑ *�+,- � 1� . *+,, �- is calculated using a fast matrix exponential 603 

function implemented in MATLAB by  [61]. All simulations begin with initial conditions of 604 

no mRNA and both gene alleles being in the ‘off’ state. �+2- depends on model structure and 605 

the parameters. In this work, we considered a stochastic telegraph model—with two 606 

independent alleles per gene, the activity of which switches randomly between ‘off’ and ‘on’ 607 

states, with the latter being permissive for mRNA transcription [1, 3, 36, 62]. The associated 608 

kinetic parameters include switching ‘on’ and ‘off’ rates (kon and koff, respectively) as well as 609 

rates of mRNA transcription and degradation (kt and kd, respectively). We also considered an 610 

extended model including an additional regulatory step, such that each allele exists in one of 611 

three states: an inactive ‘off’, an intermediate ‘I’ or an active ‘on’. Reversible stochastic 612 

transitions (with appropriate rates) occur between the inactive and intermediate (ton and toff), 613 

the intermediate and active states (kon and koff), as well as direct transition between active and 614 

inactive states (kc). We further assume that transcription occurs only in the intermediate and 615 

active states (kti and kt, respectively).  616 

A genetic algorithm (GA) was implemented using the ga function in MATLAB and 617 

employed to estimate model parameters. We minimized an objective function given by the 618 

average absolute distance between the theoretical (CME) and measured cumulative 619 

distribution functions (CDFs) across observed mRNA counts per condition 620 

(1/� ∑ |8��
 & 89:
|�

 � ), where i's are unique mRNA counts observed in the measured 621 

distributions (for those with total unique counts n>1). CDFs were calculated using empirical 622 

cumulative distribution function (ecdf). The best of 10 model fits from independent GA runs 623 

for each condition (using a population size of 100, elite count of 2, crossover factor of 0.6, 20 624 

generations and the tournament selection function) was retained. Gene activation/inactivation 625 

rates were constrained between 0 and 1 min-1, transcription was constrained between 0 and 50 626 

mRNA counts min-1 per allele, which is the same order of magnitude to previous estimates [2, 627 

3, 62, 63]. Murine mRNA half-lives were obtained from literature, when available from  628 
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LPS-stimulated bone marrow derived macrophages [40, 41] or other cell models [64-71]. 629 

Murine half-lives were also used when fitting orthologue genes.  630 

Akaike’s Information Criterium (AIC) was used to asses model fits and perform model 631 

selection [42].  ;<8 � 2 & 2 log1A+Θ|C-3 where log 1A+Θ|C-3 is the log-likelihood function 632 

of the fitted mRNA count distribution given measured data X defined as 633 

 A � D !∑ "�� #!

∏ "�!�
 E ∏ 1*+G
 , �-3"��


 �  with H�  being a vector of the number of cells displaying 634 

each observed state at time t (the sum of this vector is the total number of cells N), and p 635 

corresponds to number of parameters in the model; resulting in a penalty for higher 636 

complexity. Models with AIC larger than Q3+1.5(Q3-Q1), where Q1 and Q3 are the first and 637 

third quartiles of the AIC distribution per model across genes were removed. As a result, out 638 

of 1507 mouse, and 1079 orthologue (pig, rat and rabbit) conditions, 1210 and 981 that fitted 639 

2- and 3-state models were retained, respectively.  640 

 641 

Statistical analyses 642 

Statistical analysis was performed using GraphPad Prism 8 software (version 8.4.2). The 643 

D’Agostino-Pearson test was applied to test for normal (Gaussian) distribution of acquired 644 

data. Two-sample comparison was conducted using non-parametric Mann Whitney test. For 645 

analyses of variance Kruskal-Wallis ANOVA with Dunn’s multiple comparisons test was 646 

performed. Coefficient of determination (R2) was used to assess regression fits; Spearman 647 

correlation coefficient r was used to test association between other variables. 648 
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Figure 1. TLR-induced transcriptional variability is linearly constrained 876 

A. Overall variability in the scRNA-seq dataset [4]. Shown is the scatter plot of the sample 877 

mean (μ) and variance (σ2) calculated for 2340 TLR-dependent genes across 20 experimental 878 

conditions. Data points corresponding to Jchain, Ccl5 and Nfkbia highlighted in yellow, red, 879 

and green, respectively. Broken line indicates μ=σ2 line.   880 

B. Schematic description of the fitting protocol. 881 

C. Histogram of coefficient of determination (R2) for 2,133 gene fits characterised by a 882 

significant regression slope (p-value < 0.05).  R2 = 0.6 broken line corresponds to the high 883 

confidence gene cut-off.  884 

D. Distribution of the fitted regression slopes for the 1,551 high confidence gene set. 885 

Histogram of the fitted slopes shown on the left. Number of genes with different slope range 886 

shown on the right. 887 

E. Fitted mean-variance relationships for a subset of genes. Shown are the individual 888 

datapoints (LPS, PIC and unstimulated) as well as fitted regression line with a fitted equation 889 

(* denotes statistically significant intercept, p-value < 0.05) and the coefficient of 890 

determination (R2). 891 

F. Mean mRNA counts across treatments (LPS, PIC) and time (0, 2, 4, 6 h) for the 1,551 high 892 

confidence genes. 893 
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Figure 2. Mean-variance relationships constrain transcriptional bursting characteristics 895 

 896 

A. Theoretical burst size and frequency characteristics. (Left) Simulated mean variance 897 

relationships with positive (in blue, α=20, α0=100) and negative (in red, α=20, α0= -100) 898 

intercepts, respectively. (Middle & Right) Derived burst size and frequency modulation 899 

schemes for corresponding parameter values calculated using moment estimators. A special 900 

case of α=20, α0=0 is shown in broken line. 901 

B. Global modulation of transcriptional busting. Shown is the comparison between fitted 902 

mean-variance relationship and derived theoretical burst size and frequency modulation 903 

schemes vs. experimental data. Shown is distribution of relative root mean square error 904 

(RRMSE) of 1,551 high confidence genes. 905 

C. Modulation schemes for Cd44, Pfn1, Eif6 and Cxcl10 genes. Shown is the comparison 906 

between theoretical relationships based on fitted mean-variance relationships (in red) and 907 

corresponding estimates from data (open circles). Equations for fitted mean-variance 908 

relationships highlighted in the top left panel, respectively.  909 

 910 

 911 

  912 

 913 
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Figure 3. LPS-induced gene expression undergoes different modes of transcriptional 915 

bursting 916 

A. Relative changes of burst size and burst frequency.  Shown is the relative fold change of 917 

burst size and frequency calculated across the individual range of mean expression for 1,551 918 

high confidence genes (in blue circles). Identity line depicted in black, two-fold change 919 

highlighted in red. 920 

B. Theoretical relationship between burst size and frequency. (Left) Simulated mean variance 921 

relationships with positive (in blue, α = 20, α0 = 100) and negative (in red, α = 20, α0 = -100) 922 

intercepts, respectively. (Right) Burst size and frequency modulation schemes for 923 

corresponding parameter values calculated using moment estimators. A special case of α = 924 

20, α0= 0 shown in broken line. 925 

C. Modulation of burst size and frequency across a range of individual genes. Shown are 926 

inverse relationship (α0>0) in blue as well as inverse, U-shape and concurrent relationships 927 

(α0<0). Relationship predicted from linear constraints in solid lines and corresponding 928 

estimates from experimental data in open circles. U-shape numerically defined as maximum 929 

burst size value > α/2 and minimum burst size value < α/2 across conditions. 930 

D. Prevalence of different modulation schemes across 1,551 high confidence genes. 931 

Definition of the mode as in C, dominant modulation defined by absolute difference in the 932 

burst size vs. frequency changes across the respective range of mean expression (as in A). 933 
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Figure 4. TLR response variability is associated with regulatory complexity 934 

A. Schematic representation of the 2-state and 3-state models of transcription. 935 

B. Comparison between the fitted and measured mRNA counts distributions. Shown are 936 

cumulative probability distribution of data (in green) vs. the corresponding 2-state and 3-state 937 

stochastic model fits (in red and blue, respectively) for representative condition for Eif6 (PIC, 938 

4h, replicate 3) and Ccl2 (LPS, 2h, replicate 2) genes. 939 

C. Analysis of transcriptional bursting across high coverage genes and conditions fitted by 2-940 

state vs 3-state models. Shown is the comparison between best fit 2-state and 3-state models 941 

in terms of mean mRNA expression, variance, burst size and frequency from experimental 942 

data. Best fit defined by AICbest model<0.5AIC2nd best (from Fig. S3B). Burst size and frequency 943 

calculated per condition using moment estimators. Statistical significance assessed with 944 

Mann-Whitney test (** p-value<0.01, **** p-value <0.0001).  945 

D. Relationship between slope of the mean-variance relationship and fraction of 3-state 946 

model fits for high coverage genes. Fraction of 3-state model fits per gene defined by the 947 

number of conditions with AIC3-state model<AIC2-state over all conditions per gene. Broken line 948 

indicates 0.5, r denotes Spearman correlation coefficient.  949 

  950 
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Figure 5. Evolutionary control of TLR response variability 951 

A. Schematic representation of response variability during evolution for putative species A 952 

and B. Shown are mean variance relationships corresponding to slopes (α1 and α2=kα1) and 953 

the predicted burst size (b) and frequency (f) modulation schemes for corresponding 954 

parameter values calculated using moment estimators. 955 

B. Histogram of the slope ratio k calculated for the 169 orthologue genes across all pairwise 956 

comparisons between mouse, rat, rabbit and pig. k=max(α1,α2)/min(α1,α2), where α1 and α2 957 

denote slopes of the fitted mean-variance relationships for each pair of species per gene.  958 

C. Modulation schemes for Cxcl10 and Cbx8 genes. Shown is the comparison between 959 

theoretical relationships based on the fitted mean-variance relationships (in solid lines, 960 

colour-coded by species) and corresponding moment estimates for burst size and frequency 961 

from experimental data (circles). 962 

D. Analysis of burst size and frequency for divergent and non-divergent mouse and pig TLR-963 

response genes. Shown are box plots of average burst size and mean-normalized frequency 964 

per gene stratified into divergent (αmouse> 2αpig or αpig>2αpig) and complementary non-965 

divergent groups (31, 15 and 123 orthologue genes, respectively). Statistical significance 966 

assessed with a paired Wilcoxon test (**** p-value < 0.0001, *** p-value < 0.001, ns not 967 

significant).  968 

E. Change of variability between species is associated with regulatory complexity. Top: 969 

Schematic representation of the hypothesis. Bottom: Relationship between the slope ratio 970 

(αA/αB) estimated for 146 pairwise comparisons between 28 fitted orthologue genes for 971 

mouse, rat, rabbit and pig; and the corresponding ratio between species A and B of the 972 

number of conditions per gene with 3-state model fitting better than 2-state model. Absolute 973 

difference in AIC of the two models was used for model selection. Shown is the Spearman 974 

correlation coefficient r and a p-value for r > 0.  975 

 976 

 977 

 978 

  979 
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Figure S1. Analysis of the variability in the TLR responses. A. Fitted regression lines for 980 

the 1,551 high confidence genes, shown are genes with different range of the slope α. 981 

Highlighted in different colours are fits for the individual genes. Broken line indicates μ=σ2 982 

line.  B. Histogram of the measured mRNA response range for the 1,551 high confidence 983 

genes.  C. Effect of the slope (left) and intercept (right) of the mean-variance relationship on 984 

the burst size and burst frequency modulation. Shown are simulated burst size and frequency 985 

modulation schemes for a range of α and α0 (as indicated on the graph). D. Modulation 986 

schemes for Jchain gene. Shown is the comparison between theoretical relationships based 987 

on fitted mean-variance relationships (in red) and corresponding estimates from data (open 988 

circles). Equation for fitted mean-variance relationships highlighted in the top left panel, 989 

respectively. E. Relationship between the slope (α) and in the intercept (α0) across fitted 990 

1,551 high confidence genes.  991 

 992 

Figure S2.  Inferred kinetic parameter rates for 2-state telegraph model using Beta-993 

Poisson model. A. Comparison between the 1,551 high confidence genes across all 994 

conditions that either fit or do not fit the Beta-Poisson model. B. Histogram of fitted kon, koff 995 

and kt across 7704 conditions for 1,519 high confidence genes. Inference performed using 996 

profile likelihood of the Beta-Poisson model. Parameters units are expressed per degradation 997 

half-life C. Relationship between inferred kon vs. koff rates (left) and kon vs. kt (right) across 998 

parameters from A. Rates for Nfkbia, Il12 and Ccl5 highlighted in different colours. Identity 999 

line depicted with a broken line. D. Histogram of the number of inferred conditions across 1000 

1,159 high confidence genes. Broken line highlights the threshold for at least 10 conditions 1001 

fitted per gene. E. Histogram of the fitted regression slopes for the 96 high coverage gene set. 1002 

F. Fitted regression lines for the 96 high coverage genes. Highlighted in colour are fits for the 1003 

individual genes of interest. Broken line indicates μ=σ2 line.   1004 

 1005 

Figure S3. Analysis of stochastic models of transcription. A. Comparison between the 1006 

fitted and measured scRNA-seq count distributions for few gene examples. Shown are 1007 

cumulative probability distribution of data (in green) vs. the corresponding Beta-Poisson, 2-1008 

state and 3-state model fits (in blue, red and violet, respectively) for Adm (LPS, 2h, replicate 1009 

1), Il1α (PIC, 2h, replicate 1), Cd40 (LPS, 4h, replicate 1) and Il7r (0h, replicate 2) genes. 1010 

Ratios of respective AICs between models highlighted on top. B. Summary of comparing 1011 

Beta-Poisson, 2-state and 3-state model fits across the conditions of the high coverage genes. 1012 
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Best models defined either by AIC smaller (in white) or 2-fold smaller (in black) than the 1013 

next best model. C. Summary of 2-state and 3-state model fits across a range of thresholds 1014 

T= AIC2-state/AIC3-state for the fitted 96 high coverage genes across all conditions. D. 1015 

Relationships between the number of Beta-Poisson, 2-state and 3-state model fits for the 96 1016 

high coverage genes across all conditions. Best fit model defined by AICbest model<AIC2nd best. 1017 

 1018 

 1019 

Figure S4. Model-based analysis of transcriptional bursting.  A. Summary of 2-state 1020 

model fits defined for 141 conditions such that AIC2-state<0.5AIC3-state (as in Fig. 4C). Shown 1021 

is the distribution of fitted kon (min-1) and koff  (min-1) rates as well as Spearman correlation 1022 

coefficient r with mRNA variance. B. Summary of 3-state model fits defined for 266 1023 

conditions such that AIC3-state<0.5AIC2-state (as in Fig. 4C). Shown is the distribution of fitted 1024 

rates as well as Spearman correlation coefficient r with mRNA variance (and between 1025 

selected rates). C. Comparison between fitted transcription rates for 2-state and 3-state 1026 

models (as in A and B, respectively). Statistical significance assessed with Kruskall-Wallis 1027 

test with Dunn’s correction for multiple comparisons (* p-value < 0.05, *** p-value < 0.001). 1028 

D. Analysis of transcriptional bursting across high coverage genes and conditions fitted by 2-1029 

state vs 3-state models. Shown is the comparison between best fit 2- and 3-state models in 1030 

terms of mean mRNA expression, variance, burst size and frequency. Best fit defined by 1031 

AICbest model<AIC2nd best (from Fig. S3B). Burst size and frequency calculated per condition 1032 

using moment estimators. Statistical significance assessed with Mann-Whitney test (* p-value 1033 

< 0.05, *** p-value < 0.001, **** p-value <0.0001, ns not significant). 1034 

 1035 

Figure S5. Analysis of transcriptional bursting across species. A. Schematic diagram of 1036 

data analysis; 169 orthologue genes exhibiting good mean-variance fits (R2 > 0.6) statistically 1037 

tested for differences in the slope of the linear fit. Right: Venn diagram of TLR response 1038 

orthologue genes in at least one of the species studied by Hagai et al. (2018). B. Fitted mean-1039 

variance relationships for a subset of orthologue genes across species. Shown is the 1040 

comparison between the fitted mean-variance relationships (in solid lines, colour-coded by 1041 

species) and corresponding data (circles). C. Evolutionary response divergence across 1042 

orthologue gene subsets defined by the number of statistically significant FDRs between 1043 

fitted regression slopes across four species (as in Table S2). Statistical significance assessed 1044 

using ordinary ANOVA with Dunnett’s correction for multiple comparisons (*** p-value < 1045 

0.001, * p-value < 0.05, ns not significant). D. Global modulation of transcriptional busting 1046 
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across species. Shown is the comparison between fitted mean-variance relationship and 1047 

theoretical burst size and frequency modulation schemes vs. relationships derived from data. 1048 

Shown is a violin plot of relative root mean square error (RRMSE) of 169 orthologue genes. 1049 

E. Histogram of the slope ratio (αmouse/αpig) for the 169 orthologue genes between mouse and 1050 

pig. αmouse and αpig denote slopes of the fitted mean-variance relationships for each pair of 1051 

species per gene. F. Analysis of divergent and non-divergent mouse and pig TLR-response 1052 

genes. Shown are box plots of average mRNA expression per gene stratified into divergent 1053 

(αmouse> 2αpig or αpig>2αpig) and complementary non-divergent group (31, 15 and 123 1054 

orthologue genes, respectively). Statistical significance assessed with a paired Wilcoxon test 1055 

(*** p-value < 0.001,ns not significant).  1056 

 1057 

 1058 

Table S1. Fitted mean-variance relationships for the mouse TRL response genes. 1059 

Table S2. Modulation of transcriptional bursting across 1,551 mouse high confidence genes. 1060 

Table S3. Modelling of scRNA-seq count distributions. 1061 

Table S4. Number of phagocyte cells and genes measured in each single cell in the four 1062 

species. Only the genes showing expression under at least one condition were studied 1063 

Table S5. Pairwise comparison of the slopes of the mean-variance regression lines was 1064 

performed between each two species. The table shows the number of significant FDR values 1065 

(<0.05) obtained for each of the 169 orthologue genes studied. 1066 

Table S6. Analysis of TLR response variability across species. 1067 

 1068 
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