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Abstract. The use of an antibiotic may lead to the emergence and spread of bacterial
strains resistant to this antibiotic. Experimental and theoretical studies have investigated
the drug dose that minimizes the risk of resistance evolution over the course of treatment
of an individual, showing that the optimal dose will either be the highest or the lowest drug
concentration possible to administer; however, no analytical results exist that help decide
between these two extremes. To address this gap, we develop a stochastic mathematical
model of bacterial dynamics under antibiotic treatment. We explore various scenarios of
density regulation (bacterial density affects cell birth or death rates), and antibiotic modes
of action (biostatic or biocidal). We derive analytical results for the survival probability of
the resistant subpopulation until the end of treatment, the size of the resistant subpop-
ulation at the end of treatment, the carriage time of the resistant subpopulation until it
is replaced by a sensitive one after treatment, and we verify these results with stochastic
simulations. We find that the scenario of density regulation and the drug mode of action
are important determinants of the survival of a resistant subpopulation. Resistant cells
survive best when bacterial competition reduces cell birth and under biocidal antibiotics.
Compared to an analogous deterministic model, the population size reached by the re-
sistant type is larger and carriage time is slightly reduced by stochastic loss of resistant
cells. Moreover, we obtain an analytical prediction of the antibiotic concentration that
maximizes the survival of resistant cells, which may help to decide which drug dosage
(not) to administer. Our results are amenable to experimental tests and help link the
within and between host scales in epidemiological models.
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Introduction

Bacterial pathogens resistant to antibiotics are a major public health challenge responsible for more
than a million deaths per year (Murray et al., 2022). Ecological and evolutionary principles have
guided the design and evaluation of strategies to reduce the use of antibiotics while still eradicating
pathogenic bacteria in patients (Read et al., 2011). Theoretical and experimental research on antibiotic
resistance has focused on the optimal drug dose, e.g. Day and Read (2016); Scire et al. (2019); Hansen
et al. (2020) and the optimal prescription regimen in hospitals, e.g. Bergstrom et al. (2004); Kouyos
et al. (2013); Abel zur Wiesch et al. (2014); Tepekule et al. (2017) to limit the evolution and spread of
resistance (reviewed in Opatowski et al. (2011); Blanquart (2019); Niewiadomska et al. (2019)).

The question of the optimal drug dose and duration to limit the evolution of resistance has re-
ceived much attention. “Hitting early and hitting hard” (Ehrlich, 1913; Fleming, 1964) may limit
the emergence of drug resistance (Olofsson and Cars, 2007; Cantón and Morosini, 2011; Mouton
et al., 2011; Ankomah and Levin, 2014). More recent studies challenge this view (Read et al., 2011;
Huijben et al., 2013; Day and Read, 2016) based on the result that the probability of emergence of drug
resistance is maximized at an intermediate concentration. A low antibiotic concentration prevents
the emergence of resistance by allowing the maintenance of the sensitive strain, which impedes
growth of the resistant strain through competition. On the other hand, a high antibiotic concentration
also prevents the emergence of resistance by quickly eradicating the bacterial population, limiting
the input of resistance mutations, and directly limiting the growth of the resistant subpopulation.
Thus, the emergence of drug resistance is most likely maximal at an intermediate concentration
where the sensitive population is eradicated, which frees resistance from competition (“competitive
release”, Day et al. (2015)), allowing the resistant subpopulation to grow. Depending on the treatment
window, which describes the feasible range of drug concentration and is defined by clearance of the
infection-causing bacteria and considerations on drug toxicity, a low or a high drug dose may be
best to limit the emergence of resistance. This line of argument applies to symptomatic infections
caused by pathogenic bacteria, which are the direct target of antibiotic treatment. It also applies to
commensals and opportunistic pathogens that are carried asymptomatically, which are not the target
of the antibiotic treatment but under ’bystander selection’ (Tedijanto et al., 2018).

The survival or extinction of a small resistant subpopulation emerging during treatment is ulti-
mately governed by the random processes of bacterial cell division and death. It is not clear how
this stochasticity impacts the early dynamics of resistance. Within the vast field of pharmacokinet-
ics/pharmacodynamics, the field studying the dynamics of antibiotic concentration and the impact
of antibiotics on bacterial cells, several studies modeled the dynamics of sensitive and resistant cells
in vitro or in vivo (Jumbe et al., 2003; Nguyen et al., 2014; Khan et al., 2015; Rayner et al., 2021).
These models describe deterministically how a resistant subpopulation of cells can grow and cause
a rebound in bacterial population size. The deterministic description of the bacterial dynamics is
justified when a substantial resistant sub-population exists prior to treatment, as may be the case
with large mutation rates from sensitivity to resistance and/or large initial population sizes. However,
in many common situations in commensalism or in infection, the resistant bacterial population is
initiated from one or a small number of resistant cells, and mutations or gene transfers conferring
resistance rarely occur. The early phase of resistance emergence, when the resistant subpopulation is
still small, is a stochastic process. Yet only a handful of studies theoretically explored the impact of
stochasticity on the emergence of drug resistance (Day and Read, 2016; Blanquart, 2019; Scire et al.,
2019). The simple realization that resistance emergence is a stochastic process has recently inspired
elegant empirical and theoretical work measuring and computing the probability of emergence in
single cell assays (Alexander and MacLean, 2020). Yet, an analytical solution for the probability of
emergence of resistance during treatment is still missing (although numerical solutions for resistance
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survival probabilities under periodic antimicrobial treatment conditions were obtained recently (Mar-
rec and Bitbol, 2020; Nande and Hill, 2022)). Such solution would be important to characterize the
drug concentration maximizing the probability of emergence of resistance, the size of the resistant
subpopulation within the host and, in the case of commensal bacteria, how long a treated host carries
and sheds resistance after treatment. These results can in turn provide insight on the optimal drug
dose and inform between-host models describing the shedding and transmission of the resistant
strain to other hosts. A stochastic description of the evolution of drug resistance also requires that we
specify how bacterial cells compete, and whether the drug impedes cell division or actively kills cells
(biostatic or biocidal). Both are important determinants of the probability of emergence of resistance.
Little attention has previously been paid to these aspects of the life cycle of bacterial cells.

Here, we analyze a stochastic model of within-host dynamics and treatment, and derive new
analytical results on the survival probability of a resistant subpopulation until the end of treatment;
secondarily, we analyze the size of the resistant subpopulation at the end of treatment, and the carriage
time after treatment.

Model

We study the population dynamics of a bacterial population in the absence and presence of an
antibiotic drug. We first describe how a drug initially clears the sensitive population, potentially
allowing the establishment and rise of a resistant subpopulation. This first phase applies both to the
bystander antibiotic exposure of bacteria that are carried asymptomatically and to the direct treatment
of infections (symptomatic disease). A single resistant cell is introduced during treatment by mutation
or transmission from another host. This resistant subpopulation may or may not establish in the host.
If it does establish, it grows logistically until the end of treatment. Following this establishment phase,
we model the dynamics leading to the extinction of the resistant subpopulation after treatment. When
bacteria are carried asymptomatically, no further treatment is prescribed after the end of the antibiotic
course. Sensitive strains can re-establish, either because they were not fully eradicated or because they
are reintroduced by transmission. The sensitive strain eventually competitively excludes the resistant
subpopulation because of the cost of resistance. This potentially requires several re-introductions
of the sensitive strain. When bacteria instead caused an infection, it is reasonable to assume that a
second course of antibiotic will be applied if the bacterial load is still high at the end of the first course.
We do not model this scenario.

Overall, the model is a stochastic description of the transient establishment, peak and extinction of
a resistant subpopulation within the treated host (Fig. 1).

Bacterial population dynamics

We study two different models of density regulation of the bacterial population (Table 1). In the first
model, population density affects the birth rate, which we refer to as ‘birth competition’. For example,
limited resource availability impedes cell division (Monod, 1949). In the second model, population
density increases the death rate, which we refer to as ‘death competition’. For example, bacterial
cells may secrete antibiotics, toxins or viruses that kill neighbouring cells (Brown et al., 2009; Hibbing
et al., 2010; Granato et al., 2019; Niehus et al., 2021). Additionally, death competition could implicitly
model the effect of the immune system (Day and Read, 2016; Scire et al., 2019). Both models of density
regulation yield the same deterministic population dynamics, as long as the overall population size
remains below the carrying capacity. In the stochastic model formulation and analysis, however, the
exact form of density regulation matters as we will show below. The relative contributions of the two
forms of competition in natural environments is poorly known. It is certain that nutrients are limited
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Figure 1: Population dynamics of the resistant (orange) and sensitive (black) strains. The sensitive
subpopulation declines almost deterministically during treatment, which is administered
for seven days (gray shaded region). At the same time the resistant subpopulation, if it
survives, increases in size. There is strong variation between the resistant growth curves
because of stochastic birth and death events. Non-surviving trajectories are not shown.
After treatment, both subpopulations grow until the overall pathogen population reaches
the carrying capacity, which happens approximately two days after the end of treatment
when the resistant subpopulation reaches its maximum. The overall size of the resistant
subpopulation at that point shows variation among the ten sample trajectories, again because
of demographic stochasticity. This variation carries over to the time at which the resistant
subpopulation is outcompeted by the sensitive subpopulation in the absence of antibiotic
treatment.

and therefore birth competition occurs; however, the extent to which bacteria kill each other when at
high density in the host environment is to the best of our knowledge unknown.

Additionally, we distinguish between two modes of action of antibiotics: biostatic and biocidal. A
biostatic drug, e.g. tetracycline or erythromycin, reduces the birth (division) rate of the cells. A biocidal
drug, e.g. ciprofloxacin or streptomycin, increases the death rate. The deterministic dynamics are the
same for the two modes of action if the antibiotic concentration is small enough. They differ, however,
for larger concentrations because the birth rate cannot be smaller than zero, while the death rate
can, in principle, increase without bounds as the antibiotic concentration increases (Fig. A.1 in the
Supplementary Information (SI)). Interestingly, the stochastic dynamics always depend on the mode
of action because the variance of the underlying stochastic process is different for the two modes of
action.

The two density regulation models and two modes of action define four scenarios. We start by
describing the dynamics of the sensitive strain in the bacterial population. The per capita birth and
death rate of sensitive cells are denoted by λS(xS , xR ) and µS(xS , xR ), where xS and xR denote the
densities of the sensitive and resistant subpopulations, respectively. These rates defining the stochastic
process vary across scenarios. For simplicity, we mostly present results from the main scenario: birth
competition and biocidal treatment. In this main scenario the birth and death rates are given by:

λS(xS , xR ) = max
(
βS −γS (xS +xR ) ,0

)
and µS(xS , xR ) = δS +αS(c), (1)
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birth competition death competition

biostatic
λ j (xS , xR ) max

(
β j −γ j (xS +xR )−α j (c),0

)
max

(
β j −α j (c),0

)
µ j (xS , xR ) δ j δ j +γ j (xS +xR )

λ j (xS , xR ) max
(
β j −γ j (xS +xR ) ,0

)
β jbiocidal

µ j (xS , xR ) δ j +α j (c) δ j +γ j (xS +xR )+α j (c)

Table 1: Birth and death rates in the four studied scenarios. The overall birth and death rates, de-
noted by λ j and µ j , are composed of the birth, death and competition processes that occur at
ratesβ j , δ j and γ j , respectively. Additionally, the effect of antibiotics, denoted byα j (c), affects
either the birth or the death rate, depending on the type of drug administered. The variable c
denotes the concentration of the antibiotic and the index j indicates the strain-specificity,
j = S or j = R for antibiotic-sensitive or -resistant cells.

where βS denotes the birth rate of the sensitive strain, δS the intrinsic death rate of the sensitive strain,
γS the competition parameter of the sensitive strain and αS(c) the effect of the antibiotic treatment
on the sensitive strain, where the drug is administered at concentration c (more details in the next
section). The basic death rate comprises both cell death and the outflux of the host compartment
colonized by bacteria.

The dynamics of the resistant strain are defined analogously. We assume that resistance comes
at a cost (Andersson and Hughes, 2010) that is mediated through a reduced birth rate βR < βS , an
increased death rate δR > δS , or through less competitiveness γR > γS . Being (partly) resistant to the
antibiotic reduces the rate at which the resistant type is affected by the antibiotic, i.e. αR (c) <αS(c).

The description of the four scenarios at the individual cell level is summarized in Table 1. In SI,
Section H we additionally study another model of density regulation, where the antibiotic interacts
with the competition process described by the density-dependent terms, and in SI, Section J we study
an alternative model with an explicit host immune response instead of death competition between
the two bacterial subpopulations.

Antibiotic response curve

We assume that the antibiotic affects the population dynamics of both the sensitive and the resistant
strains. The Minimum Inhibitory Concentration (MIC) is the concentration at which the net growth
rate, measured during the exponential phase (when density regulation can be neglected) is zero. For
the sensitive strain, it is denoted by micS and given by: βS −δS −αS(micS) = 0. The MIC of the resistant
strain, micR , is defined analogously and is larger than the MIC of the sensitive strain. The resistant
strain is unaffected by treatment (fully resistant), when micR equals infinity.

The antibiotic response curve, denoted α j (c) ( j either S or R), defines the effect of the antibiotic as
a function of its concentration. In line with empirical studies (Regoes et al., 2004; Yu et al., 2016; Lee
et al., 2020; Salas et al., 2022), we assume a sigmoid function relating the antibiotic-mediated death
rate to the antibiotic concentration:

α j (c) = (ψ j ,max −ψ j ,min)

(
c

mic j

)κ
(

c
mic j

)κ
− ψ j ,min

ψ j ,max

. (2)

The function increases from zero when the antibiotic concentration is zero (c = 0), to ψ j ,max when
c = mic j , and to ψ j ,max −ψ j ,min (note that ψ j ,min < 0) when the antibiotic concentration is much
larger than mic j .
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Figure 2: Bacterial growth rate without density-dependent effects for different antibiotic concen-
trations. The curves show the effect of a biostatic (bs) and biocidal (bc) drug. For a biostatic
drug, we plot max

(
β j −α j (c),0

)−δ j (instead of the expression written on the y-axis label,
β j −δ j −α j (c)). For clarity, we only show the biostatic drug effect for the sensitive strain
(black dot-dashed line), and not for the resistant strains. The effect of a biostatic drug on the
resistant strains would yield a minimal growth rate at −δR . Parameters for the sensitive an-
tibiotic response curve are motivated by estimates for ciprofloxacin from Regoes et al. (2004):
βS = 2.5 per day (d−1), βR = 2.25 (d−1), δS = δR = 0.5 (d−1), κ= 1.1, ψ j ,min =−156× log(10)
(d−1), ψ j ,max =β j −δ j (d−1).

The parameter ψ j ,max =β j −δ j is the maximal growth rate of strain j . This parameter is cancelled
by antibiotic-induced death when the concentration is at the MIC. The parameter ψ j ,min is negative
and corresponds to the maximal decline rate of strain j , i.e., the value β j −δ j −α j (∞). The parameter
κ is the steepness of the antibiotic response curve. Fig. 2 shows the resulting pathogen growth rate
under antibiotic treatment, i.e. β j −δ j −α j (c), for our default parameter values. For simplicity, we
neglect pharmacokinetics and model a constant antibiotic concentration during treatment.

Parameterization

Although we emphasize that our analytical results allow general insights, we explored in simulations
a set of parameters that is biologically plausible for an infection by Enterobacterales. As explained
above, the key parameters governing the response to antibiotics (micS , κ, ψ j ,min) are informed by
the empirical studies of E. coli dynamics under ciprofloxacin treatment (Regoes et al., 2004) (note
that ψ j ,max is not a free parameter but equal to the maximal growth rate in the absence of antibiotic
treatment). We test different values for the level of resistance (MIC value) of the resistant strain. As
has been shown before, evolution can increase the resistance levels by several orders of magnitude,
at least up to 1000-fold for certain bacteria (Baym et al., 2016). We did not change the shape of the
antibiotic response curve for the resistant strain, in line with experimental findings (Chevereau et al.,
2015). Regarding demographic parameters, the birth rate of the sensitive strain is βS = 2.5 d−1. This
corresponds to a doubling time of 6-7 hours, or around four generations per day, similar to what
was measured for Salmonella enterica acute systemic infection in a murine model (Grant et al.,
2008): 2.4 d−1. We assumed that the cost of resistance decreases the birth rate of resistant strains
to βR = 2.25 d−1. Fitness is experimentally measured by competitive assays with 24 hours of growth,
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which for example in the case of E. coli includes 5-6 hours of exponential growth on average. Defining
fitness as the relative exponential growth difference in six hours (exp(βR ×0.25)/exp(βS ×0.25)), our
choice of parameters corresponds to a ∼6% fitness disadvantage of the resistant strain, which is in line
with experimental data (Melnyk et al., 2015). The death rates in the absence of antibiotic effect are set
to δS = δR = 0.5 d−1, which approximately corresponds to the bacterial death rates estimated in liver
and spleen in Grant et al. (2008): liver = 0.41 d−1, spleen = 0.22 d−1.

In addition, in Section G of the SI we study a second parameter set reflecting the lifestyle of E. coli
in commensalism in the gut. This parameter set assumes a faster doubling time of ∼90 minutes
(βS = 11 d−1) (Poulsen et al., 1995). The death rates are set to the same values as for infection,
δS = δR = 0.5 d−1. Here, this reflects plausible values for the outflux of E. coli in the human gut
corresponding to a mean transit time of 2 days (Asnicar et al., 2021).

The parameter determining the strength of competition between bacteria is set to γS = γR = 1 d−1.
The competition parameter does not influence our main result on the survival probability of resistance
as long as it is the same for sensitive and resistant strains. However, the competition parameter
influences both the size of the resistant subpopulation at the end of treatment and the carriage
time. Lastly, the order of the relevant population size is set to K = 1,000 for computational feasibility.
The value of the population size K , which can be understood as the volume that the population
inhabits, does not influence the survival probability of resistance (our main result), and influences the
final resistant population size in a straightforward way as a multiplicative factor. However, it affects
the mean carriage time of the resistant strain after the end of treatment in a non-obvious way, by
modulating the magnitude of the stochastic fluctuations.

Stochastic simulations

In the stochastic simulations, we keep track of bacterial counts, denoted by X j ( j either S or R) and
not densities, x j , as introduced above. To translate between counts and densities, we divide the count
by the order of the population size K . The relationship between densities and counts is then given by
x j = X j /K .

The population updates in the stochastic simulations are determined by the exact Gillespie al-
gorithm (Gillespie, 1977). To this end, the birth and death rates of sensitive and resistant cells are
computed based on the current population size by the formulas in Table 1. Random numbers to
determine the next update, birth or death of a sensitive or resistant cell, and the time of the next
update are drawn from a uniform and exponential distribution, respectively, and the population is
updated. More details are provided in Section K in the SI.

All simulations are written in the C++ programming language and use the GNU Scientific Library.
Code and data to reproduce the figures, which have been generated with python, have been deposited
at https://github.com/pczuppon/AMRWithinHost.

Results

We compute the probability of survival of a resistant subpopulation until the end of treatment, the size
of the resistant subpopulation at the end of treatment and the carriage time of the resistant strain after
the end of treatment. Together, these quantities provide a comprehensive picture of the stochastic
population dynamics of a resistant subpopulation within a host (Fig. 1).
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Survival probability of the resistant strain during treatment

We compute the survival probability of a resistant strain emerging during treatment. We assume
that the resistant subpopulation establishes from a single resistant cell appearing during treatment.
This single resistant cell could arise from a de novo mutation, or equivalently from transmission from
another host during treatment, or from standing genetic variation. For clarity, in the main text we just
present the results of resistance evolution from standing genetic variation, that is, when one resistant
cell is present at the beginning of treatment. Results on resistance dynamics from de novo emergence
are discussed in SI, Section F. Qualitatively, the results of standing genetic variation and de novo
emergence of resistance during treatment are similar. One exception is that biostatic drugs applied
at concentrations above the MIC of the sensitive strain result in no resistance evolution because cell
replication is fully suppressed, i.e., the survival probability is equal to zero for these concentrations
(Figs. F.1-3 in the SI). Another difference is that with de novo resistance the maximal survival probability
is shifted to lower concentrations compared to resistance emergence from standing genetic variation.
In our main parameterization, the maximum is reached at or below the MIC of the sensitive strain in
the case of de novo emergence.

The dynamics of the resistant subpopulation emerging from a single resistant cell are well described
by a stochastic birth-death process. We note that these dynamics only depend on the density of
sensitive cells (not their absolute numbers), which means that they are independent of the choice
of the parameter K . For small numbers of resistant cells, a deterministic description through an
ordinary differential equation is not appropriate because stochastic fluctuations cannot be ignored
and extinction events cannot be observed. We use a branching process in a time-heterogeneous
environment (Kendall, 1948; Haccou et al., 2005; Uecker and Hermisson, 2011) to approximate the
probability of survival until the end of treatment. This is the probability of having at least one
resistant cell in the bacterial population at the end of treatment, which we refer to as emergence of
resistance. Emergence, or survival, therefore does not imply establishment. We say that resistance
established if the resistant type has risen to a density large enough that the probability of stochastic
loss is negligible. A similar argument has been used in Day and Read (2016) to distinguish between
emergence and establishment (note that they refer to emergence as “occurrence” and to establishment
as “emergence”). The difference between emergence and establishment becomes visible when we
study the size of the resistant subpopulation at the end of treatment (Fig. 4).

In the following, we qualitatively compare the predictions for the survival probability in the four
scenarios. Theoretical predictions are derived in Section B in the SI. In general, the survival probabili-
ties depend on the exponential growth rates of the two strains, denoted by ρ j =β j −δ j −α j (c), and
the selection coefficient s = ρR −ρS . For example, under birth competition and biocidal treatment
we find the following form of the survival probability, denoted by ϕ, for an infinitely long treatment
(Eq. (B.35) in the SI):

ϕ= sρSρR

sρRρS + (δR +αR )ρS
(
γxS(0)+ s

) = 1

1+ δR +αR

ρR︸ ︷︷ ︸
stochastic death

(
γxS(0)

s
+1

)
︸ ︷︷ ︸

competition

. (3)

This concise equation is our main result and illuminates the factors influencing the resistant survival
probability. It encapsulates, in a simple form, the chance that a single resistant cell survives treatment
when it appears in a sensitive subpopulation of density xS(0), and the sensitive subpopulation is
declining under the action of biocidal treatment. The survival probability is large when the factor
in the denominator is small. This depends on two processes. The first is stochastic variability:
the stochastic death of resistant cells threatens the survival of the resistant subpopulation. This is
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translated in mathematical terms by the contribution of death terms to the overall growth rate (the
term (δR +αR )/ρR ). Of course, if resistant cells do not die (δR +αR = 0), the survival probability is
1. The second process is competition, mediated through the term γxS(0)/s, which depends on the
initial sensitive density and the strength of competition γ. It scales with a factor 1/s, which means
that competition is alleviated when the growth rate difference between resistant and sensitive cells is
large (s = ρR −ρS). Similar formula structures are found in both scenarios of death competition (Eqs.
(B.9) and (B.13) in the SI), the scenario of birth competition and biostatic antibiotic is not possible to
resolve analytically by our method (Eq. (B.31) in the SI). Analogous formulae can be obtained for a
finite treatment duration τ. For details, we refer to Section B in the SI.

In Fig. 3, we plot the survival probabilities of the resistant subpopulation for different MICs of the
resistant strain and in the different models of density regulation and antibiotic modes of action as
defined in Table 1. The survival probability of the resistant subpopulation is maximal for intermediate
antibiotic concentrations c, in line with previous results (Day and Read, 2016; Scire et al., 2019). The
relationship quantitatively depends on the model of density dependence. The survival probability is
always higher for birth rather than death competition (compare y-axes between the different rows in
Fig. 3). This is explained by a larger variance of the stochastic process when the density affects the
death rate. Intuitively, a larger variance increases stochastic fluctuations, which reduces the survival
probability for a population with large birth and death rates compared to a population with the same
deterministic growth rate but small birth and death rates (Parsons et al., 2018).

By the same argument, one would expect that biocidal antibiotic treatment results in a smaller
survival probability than biostatic treatment. Interestingly though, we observe that in all scenarios,
there is just a small difference between the two antibiotic modes of action (compare the blue and
orange curves and symbols in Fig. 3). In fact, survival probabilities tend to be larger for biocidal drugs.
The largest difference is for highly resistant strains (right column on Fig. 3). This is explained by
the much stronger competitive release caused by biocidal drugs. For biocidal drugs, increasing the
antibiotic concentration continues to increase the death rate of sensitive strains and the strength of
competitive release (Fig. 2, black solid line). For biostatic drugs in contrast, the sensitive population
will reach its minimal growth rate for concentrations just slightly above the MIC. This deterministic
effect dominates the stochastic effect explained above and explains why the survival probability of
resistant strains is larger for a biocidal treatment.

Predicting the antibiotic concentration that maximizes the resistant survival probability

As just outlined, the survival probability exhibits a maximum at intermediate antibiotic concentra-
tions. In the context of treatment of symptomatic infections, the exact location of this antibiotic
concentration would inform whether the “hit hard” strategy is optimal to limit resistance evolution.

Despite having explicit expressions for the survival probability (SI, Section B), we were not able to
analytically find the concentration that maximizes the survival probability of the resistant subpop-
ulation during treatment. However, under biocidal treatment we can derive implicit solutions that
depend on the demographic parameters. For birth competition and biocidal treatment for example,
the concentration maximizing the survival probability of the resistant subpopulation is found by
solving the following equality (details in SI, Section C):

α′
S(c)

α′
R (c)

−1 = βR (ρR (c)−ρS(c))

ρR (c)(δR +αR (c))
+ βR (ρR (c)−ρS(c))2

xS(0)γρR (c)(δR +αR (c))
, (4)

where α′
j (c) denotes the derivative of the antibiotic response curve with respect to the antibiotic

concentration, and ρ j = β j −δ j −α j (c) is the exponential growth rate under treatment of strain
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Figure 3: Survival probability of the resistant subpopulation for varying drug concentrations, MIC
values, drug types and density regulations. At the beginning of treatment the population
consists of the sensitive strain at its carrying capacity and a single resistant cell. Then treat-
ment, either with a biostatic (blue) or biocidal (orange) antibiotic, is applied for seven days
(solid lines) or infinitely long (colored dashed lines). The vertical dashed line indicates the
MIC of the sensitive strain, micS = 0.017. The survival probability of the resistant subpopula-
tion obtained from 106 stochastic simulations (symbols) agrees perfectly with our theoretical
predictions (Section B in the SI). The different rows show different models (Table 1): top
row = birth competition; bottom row = death competition. The columns show survival
probabilities for different values of the resistant MIC as a multiple of the sensitive MIC: left
= low, middle = intermediate, right = high resistant MIC. Parameter values are: βS = 2.5
per day (d−1), βR = 2.25 (d−1), δS = δR = 0.5 (d−1), κ = 1.1, ψ j ,min = −156× log(10) (d−1),
ψ j ,max =β j −δ j (d−1), γS = γR = 1 (d−1), K = 1,000, XR (0) = 1, XS(0) = (βS −δS)K /γ.

k ∈ {S,R} (as in Eq. (3)). A similar condition can also be derived in the scenario of a biocidal drug and
death competition (SI, Section C).

The left-hand side of Eq. (4) reflects how much more the antibiotic affects the growth of the sen-
sitive strain compared to the resistant strain. This difference can be positive or negative. For low
concentrations, it will be positive as the sensitive strain is more affected by the antibiotic than the
resistant strain. As soon as the antibiotic response for the resistant strain has a steeper negative slope
than for the sensitive strain, the left-hand side will become negative. It is not possible to generally
predict when this will be the case, but one can expect this to be at concentrations above the MIC of the
sensitive strain (at least for sigmoid antibiotic response curves). The right-hand side is always positive
as long as the selection coefficient (the growth rate difference ρR (c)−ρS(c)) is positive, which is always
the case in a neighborhood of the maximizing concentration. Still, it is not straightforward to predict
when these fractions are large and no general prediction of the maximizing concentration is possible.

For biostatic drugs, we are not able to derive a similar condition. For death competition, however,
we find an upper bound for the concentration maximizing the survival probability. Denoting this
concentration by c̃, it is given by the lowest concentration that ensures no further sensitive cell
replication (details in SI, Section C):

c̃ = inf{c :βS −αS(c) = 0} . (5)
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Importantly, this implies that this upper bound is independent of the level of resistance of the resistant
strain. The maximum of the survival probability remains at the same concentration, as can be verified
visually in Fig. 3 (lower row, blue curves). Note that if the intrinsic death rate of sensitive cells, δS , is
zero, we find c̃ = micS , which implies that the maximum of the resistant survival probability is at a
concentration equal to or less than the MIC of the sensitive type (note that in Fig. 3 we have δS > 0).
Intuitively, this upper bound is the concentration at which competition pressure with sensitive cells
is maximally reduced. Any increase in antibiotic concentration will result in the same decline of the
sensitive strain. Administering concentrations beyond this critical threshold therefore only decreases
the birth rate of the resistant strain, explaining the decline in survival probability above this critical
concentration. In the scenario of treatment with a biostatic drug and birth competition, no analytical
prediction on the survival-maximizing concentration seems possible.

Size of resistant subpopulation at end of treatment

We now study the size of the resistant subpopulation when it survives treatment. The probability of
survival is useful to know if any resistant subpopulation is able to emerge during treatment. Yet, the
amount of shedding of resistant cells from one host to another will depend not only on the possible
emergence but also on the absolute size reached by the resistant subpopulation. Note that the resistant
subpopulation may still continue to grow after treatment has ended if the total carrying capacity has
not been reached at that time (Fig. 1).

The resistant subpopulation size at the end of treatment is typically larger in a stochastic model
than in the deterministic counterpart (compare solid and dotted lines in Fig. 4). Precisely, because
we condition on survival of the resistant subpopulation, the stochastic trajectory will increase faster
initially than the deterministic trajectory until a certain threshold number of cells is reached. This
threshold is defined by the survival probability being equal to one for a resistant subpopulation of
that size (Ewens, 2004; Czuppon et al., 2021). From that threshold level on, the dynamics are equal
to the deterministic system of ordinary differential equations. The detailed mathematical analysis
is stated in Section D in the SI. The difference between the stochastic and deterministic predictions
is largest for small differences between the resistant and sensitive strain because this is where the
survival probability of the resistant strain is smallest, which speeds up the initial stochastic resistance
establishment dynamics the most (compared to deterministic dynamics).

In Fig. 4, we compare the stochastic prediction for the size of the resistant subpopulation at the end of
treatment (solid lines) and the deterministic prediction (dotted lines) with simulation results (symbols).
Under birth competition, the two modes of action of antibiotics affect the resistant subpopulation
size at the end of treatment differently (upper row in Fig. 4). We consistently find that the size of
the resistant subpopulation at the end of treatment is larger for biocidal drugs than for biostatic
ones. This is again explained by the stronger competitive release under biocidal drugs: the sensitive
subpopulation declines faster under biocidal treatment than under biostatic treatment (Fig. A.1 in
the SI). Under death competition, the resistant subpopulation sizes at the end of treatment do not
differ substantially between the two antibiotic types for concentrations below the sensitive MIC (lower
row in Fig. 4). For concentrations above the sensitive MIC, again the resistant subpopulation size is
smaller with biostatic than biocidal treatment. However, the difference between the two treatments is
smaller than under birth competition. This is explained by the decline of the sensitive population with
biostatic treatment being stronger under death competition than under birth competition, which in
turn increases the competitive release effect and therefore the resistant subpopulation size.

The largest resistant subpopulation is reached for an antibiotic concentration close to the MIC of the
sensitive strain in all parameter sets and scenarios (compare dashed vertical line with the maximum
of the curves in Fig. 4).
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Figure 4: Size of the resistant subpopulation at the end of treatment if the resistant subpopulation
survives. At the onset of treatment there is exactly one resistant cell in the population and
treatment lasts for seven days. The top row shows the results for the model of birth competi-
tion, the lower row corresponds to death competition. Dotted lines show the deterministic
prediction of the resistant subpopulation size, solid lines correspond to the stochastic predic-
tion that incorporates a ‘correction’ due to conditioning on survival. Symbols are the mean
resistant subpopulation sizes of 106 stochastic simulations that were conditioned on survival
of the resistant subpopulation. Blue and orange colors correspond to biostatic and biocidal
treatment, respectively. Parameters are as in Fig. 3.

Carriage time of resistant subpopulation within a host after treatment

So far, we have studied the dynamics of a bacterial population, commensal or pathogenic, during
antibiotic treatment. Following treatment, the resistant subpopulation will, if it established, still be
present and can therefore be transmitted to other hosts. Here, we study the carriage time of a resistant
commensal strain in a host after treatment has ended. The analysis of this last phase is less relevant
for infections by pathogenic bacteria, because in this case treatment would be continued, possibly
with a different antibiotic, to reduce the pathogen load and to cure the patient.

The carriage time of a commensal resistant subpopulation can be interpreted as the time it takes
a sensitive strain to re-establish within a host after antibiotic treatment has ended. At the end of
treatment, the antibiotic concentration is set to c = 0 and therefore αS(0) =αR (0) = 0. In the absence
of antibiotics, the resistant subpopulation will likely be replaced by the sensitive strain because the
resistant strain has a fitness cost compared to the sensitive strain. The size of the resistant and
sensitive subpopulations at the end of treatment (previous section) are the initial conditions for
this post-treatment phase. If the sensitive subpopulation has been eradicated during treatment, we
assume that it restarts with a single cell that is introduced from the host environment immediately
after treatment has ended. In reality, the time until re-introduction of sensitive cells is a stochastic
process governed by the influx rate from the environment.

We estimate the extinction time of the resistant subpopulation, conditioned on its extinction. To
characterize this phase, we apply a timescale separation of the fast ecological and slow evolutionary
dynamics, which reduces the problem to a single dimension (Constable and McKane, 2015; Parsons
and Rogers, 2017). We follow the frequency dynamics of the resistant type in the population, while
the overall population size is assumed to remain (approximately) constant. A timescale separation of
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Figure 5: Mean carriage time of the resistant subpopulation in a host (including the treatment time
τ= 7). The carriage time is set to zero if the resistant subpopulation did not survive antibiotic
treatment. Discontinuities are a result of discontinuities in the estimate of the resistant
subpopulation size at the end of treatment (discussion in Section D in the SI). The theoretical
predictions (lines) are derived in Section E. Symbols show the average carriage time of 106

stochastic simulations. The color coding and figure structure is the same as in the previous
figures. Parameters are the same as in Fig. 3.

the population size and the frequency dynamics applies if the difference between the resistant and
sensitive strains is small or even negligible compared to the ecological rates (Czuppon and Traulsen,
2018; Gerlee, 2022). In our standard parameter set, the evolutionary rate is proportional to the cost of
resistance βS −βR . This cost is 10% of the ecological rate βk −δk , which translates to 6% in terms of
the empirical fitness cost in (Melnyk et al., 2015), as outlined in the Parameterization section above.
We first outline the deterministic population dynamics and then comment on the differences with
a fully stochastic version. The deterministic population dynamics unfold as follows (Fig. 1): first,
on the fast timescale, the overall population size, which is the sum of sensitive and resistant cells,
will rebound to the carrying capacity very quickly. Once at carrying capacity, the population will
slowly move towards the extinction boundary of the resistant strain due to its fitness disadvantage. In
other words, the population size remains approximately constant while the frequency of the sensitive
strain increases. With demographic fluctuations, which are due to stochasticity in the birth and death
processes, extinction of the resistant strain is not certain as the sensitive strain can go extinct on its
way to re-establishment. Still, we assume that eventually the sensitive strain will replace the resistant
subpopulation. Biologically, this is motivated by a constant influx of sensitive cells, so that one of these
repeated establishment attempts will eventually be successful. We therefore condition the stochastic
process on extinction of the resistant subpopulation. Because of this conditioning, the carriage
will in reality be at least as long as our estimate. Applying results from one-dimensional stochastic
diffusion theory (Ewens, 2004; Otto and Day, 2007; Czuppon and Traulsen, 2021), we compute the
mean extinction time of the resistant population (mathematical details are stated in SI, Section E).

The comparison between our theoretical prediction and the simulation results in Fig. 5 shows that
the timescale separation in our competitive Lotka-Volterra model captures well the simulation results,
even for this relatively large evolutionary rate compared to the ecological processes. At low antibiotic
concentrations, the carriage time is comparable for the two types of antibiotics. At concentrations
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above the sensitive MIC (vertical dashed line in Fig. 5), the carriage time is larger after biocidal
treatment than after biostatic treatment. This is explained by a larger relative frequency of the resistant
strain in the bacterial population at the end of treatment (Fig. D.2 in the SI). This difference arises again
because the sensitive population size decreases faster with biocidal treatment than with biostatic
treatment (Fig. A.1 in the SI). This increases the frequency of the resistant strain directly by the lower
sensitive population size and indirectly through a larger competitive release effect, which may result
in a higher resistant population size at the end of treatment.

Stochastic effects do not reduce much the carriage time compared to a deterministic analysis
(Fig. E.1 in the SI). The carriage time of resistant strains is substantially reduced by stochasticity only
when the variance of the stochastic process is large. This is the case under death competition or when
the cost of resistance is smaller than in the default parameter set (Fig. E.2 in the SI).

Discussion

We developed a fully stochastic model describing the dynamics of antibiotic resistance in a treated
host. We mainly analyzed the survival probability of the resistant strain until the end of treatment. We
also derived results on the resistant subpopulation size at the end of treatment. These results apply to
commensal bacteria as well as to pathogens. Additionally, we computed the time after treatment until
a commensal is replaced by an antibiotic-sensitive strain due to competition, which we refer to as the
carriage time.

Generally, the survival probability, size of resistant subpopulation, and carriage time are all maxi-
mized at an intermediate antibiotic concentration (Figs. 3-5) in line with previous studies (Day and
Read, 2016; Scire et al., 2019). Our main new results are explicit analytical formulae for the probability
of survival and predictions for the antibiotic concentration that maximizes this probability. We find
that in the scenario of biostatic treatment and death competition, this maximizing concentration is
very close to, not necessarily below, the MIC of the sensitive strain, and independent of the resistant
pharmacodynamic parameters. The distance between the sensitive MIC and the maximizing concen-
tration is determined by the death rate of the sensitive strain and the shape of the antibiotic response
curve of the sensitive strain. Precisely, the smaller the death rate of the sensitive strain, the closer
is this maximizing concentration to the sensitive MIC. Under biocidal treatment, the condition for
the concentration maximizing resistant survival cannot be evaluated in all generality and depends in
particular on the shape of the antibiotic response curve (Eq. (4)). We find in extensive simulations that
the concentration maximizing the resistant survival probability is always close to the sensitive MIC.
This was true in our default and alternative parameter set (Section G), for a broad range of sigmoid
antibiotic response curves (Section I in the SI), in an alternative model where the bacterial population
is limited by the host’s immune response instead of intraspecific competition (Section J in the SI)
and in previous models, e.g. Day and Read (2016); Blanquart (2019); Scire et al. (2019). If patients
are generally prescribed antibiotic doses at or above the MIC of the sensitive drug, this implies that
to limit resistance emergence, “hitting hard” (at the maximum tolerable dose) is best in the case of
biostatic drugs and seems often to be best in the case of biocidal drugs. More importantly, hitting hard
is best not only to limit the probability of emergence of resistance, but also to limit the growth of the
resistant subpopulation (Fig. 4).

One originality of our model is that we describe in detail the bacterial life cycle including density
regulation on birth vs. death, and antibiotic effect on birth vs. death (see Marrec and Bitbol (2020) for
similar models). These considerations are particularly important in stochastic models. One interesting
result is that the probability of survival is larger when competition reduces the birth rate. This is
explained by a reduction in demographic stochasticity from this type of density regulation compared
to death competition. Precisely, in two scenarios with the same deterministic dynamics, as is the case
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with birth and death competition for a growing resistant subpopulation, in the scenario with the lower
birth and death rates, in our case birth competition, the subpopulation is less likely to be lost due
to demographic stochasticity (Parsons et al., 2018). Another interesting result is that biocidal drugs
lead to stronger competitive release than biostatic drugs. Biocidal drugs eliminate the sensitive strain
faster by driving the death rate to very large values, while the birth rate, which is affected by biostatic
drugs, can only be reduced to zero (Figs. 2 and A.1 in the SI). As a consequence, the probability of
emergence of resistance, resistant subpopulation size and overall carriage time of resistant pathogens
are larger for biocidal drugs.

This result that biostatic drugs suppress resistance evolution more than biocidal drugs, derived
when resistant cells are already present at the onset of treatment (Fig. 3), is reinforced when resistance
instead evolves de novo (Section F in the SI). As biostatic drugs suppress cell replication, they also
limit the mutational input compared to biocidal drugs. These comparisons between biostatic and
biocidal drugs corroborate and extend findings from another theoretical study that investigated de
novo resistance evolution under periodic treatment with different drug types (Marrec and Bitbol,
2020). The authors found that infection clearance is more likely under biocidal treatment. Yet, perfect
biostatic drugs, i.e. drugs that fully suppress cellular division, are superior in suppression of de
novo resistance evolution. These conflicting theoretical recommendations suggest that it might be
complicated to translate our results to the clinical setting. The simple and robust result emerging from
theory on the superior impact of biocidal drugs in faster clearance of the sensitive strain is not even
verified in recent clinical studies. Several meta-analyses found no difference in treatment success
between biostatic and biocidal drugs (Nemeth et al., 2014; Wald-Dickler et al., 2017; Saleem et al.,
2022). It is possible that drugs that are in theory biostatic, in practice also directly kill bacteria at
clinically relevant doses (Wald-Dickler et al., 2017). In vitro experiments might be a promising next
step to test the conflicting impacts of different modes of action on clearance and resistance evolution
(see below).

In our parameterization, we assumed high drug resistance (large MIC differences between resistant
and sensitive cells), which leads to large survival probabilities (up to 60%) and limited stochastic
effects. We also assumed a large, but realistic, cost of resistance (∼ 6−10% in main text and SI) (Melnyk
et al., 2015), which reduced stochastic effects in the post-treatment phase. All stochastic effects would
be stronger for smaller differences between the drug-sensitive and -resistant cells, i.e., weak resistance
and weak cost of resistance. Precisely, the survival probability would be smaller and the differences
between different antibiotic modes of action and density dependence would be larger. A smaller cost
of resistance will always prolong the carriage time (Fig. E.2 in the SI).

Our model has several limitations. We model a single antibiotic course of fixed duration (e.g. seven
days). Variation in treatment duration will affect the quantitative values, but not the qualitative
pattern of the studied quantities. For example, compare the dashed and solid colored lines in Fig. 3
that correspond to an infinite treatment and a seven day treatment, respectively. Importantly, the con-
centration maximizing the risk of resistance evolution remains unchanged. The last phase examining
the duration of carriage of the resistant strain is less relevant if we consider pathogenic bacteria. In
this case, as the total bacterial population size quickly recovers to pre-treatment values after the end of
treatment (Fig. 1), it is likely that the host would undergo a second antibiotic course to cure the disease.
However, bystander exposure to antibiotics in carriage (not infection), where our post-treatment phase
applies, is the most common context of exposure for several important bacterial species (Tedijanto
et al., 2018). Last, we assume that the antibiotic concentration is constant throughout treatment. In
reality, the antibiotic concentration might fluctuate in time, which would impact the probability of
emergence and the final population size. Models with explicit pharmacokinetics did not directly study
the probability of resistance emergence and establishment in comparison to a scenario with constant
concentration of a single drug (Chakrabarti and Michor, 2017; Yu et al., 2018; Nande and Hill, 2022;
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Nyhoegen and Uecker, 2023). It is therefore difficult to speculate how explicit pharmacokinetics would
affect our results.

Our theoretical work suggests several interesting experiments. Some of our findings have in fact
already been tested experimentally. A larger resistant subpopulation size at the beginning of treatment
increases the probability of survival and establishment of the resistant strain and the subpopulation
size at the end of treatment (Alexander and MacLean (2020) and Eq. (B.2) in the SI). Another study
investigated the population dynamics of a pathogen population under different drug modes of action
and found that biocidal treatment reduces the population size more strongly than biostatic treatment
(Coates et al. (2018) and our Fig. A.1 in the SI). Based on our theoretical results, further in vitro
experiments could be conducted to characterize the probability of emergence of resistance depending
on drug concentration, the model of density regulation and the drug mode of action. We predict that
the differences between the two drug modes of action are strongest when density affects the birth rate
(Fig. 4).

The validity of our prediction on the resistant survival probability in Eq. (3) can also be tested. To
this end, one needs to expose sensitive cells to antibiotics, and measure the survival probability of an
introduced resistant cell as a function of the antibiotic concentration. In parallel, one can evaluate all
terms of Eq. (3) through simple in vitro experiments. The exponential growth rates of both types of
cells (ρS ,ρR ), as well as the death rate of antibiotic resistant bacteria (αR ), can all be measured in vitro
at different antibiotic concentrations. The competition coefficient γ need not be measured provided
that the starting sensitive population is at stationary phase equilibrium (the term γxS(0) is equal to
βS −δS). Our prediction that biostatic drugs always have a maximizing concentration at (or slightly
above) the sensitive MIC, irrespective of the level of resistance, can even be tested without knowledge
of the demographic parameters.

The within-host dynamics of antimicrobial resistance underpin the between-host epidemiolog-
ical dynamics of resistance. In fact, the dynamics of colonization by resistant strains and the slow
dynamics of clearance of the resistant strain after treatment are key determinants of the intermediate
equilibrium frequency reached by the resistant strain in a host population (Davies et al., 2019). Here,
we produced mathematical results that help bridge the gap between the two scales. All quantities
derived here (probability of survival, population size reached, carriage time) are relevant to epidemi-
ological dynamics and determine the total shedding of resistance. Stochasticity implies that not all
events of transmission of a resistant strain lead to survival and establishment of a resistant subpopula-
tion; when establishment is successful, however, a greater resistant subpopulation is reached than in
the equivalent deterministic model. These two effects may approximately compensate in terms of
shedding of resistance: accounting for stochasticity leads to fewer hosts colonized by resistant strains,
but to more resistance transmission per successfully colonized host. The carriage time is reduced by
stochasticity, but this reduction is small for our choice of parameters (highly resistant strains with a
strong cost; Figs. E.1 and E.2 in the SI).

In conclusion, we developed a fully stochastic mathematical description of the emergence of a
resistant subpopulation during antibiotic treatment. This work could motivate experiments studying
how drug resistance evolves from small populations of resistant cells, and better epidemiological
models explicitly linking the within and between host scales.

Supplementary Information

Mathematical analysis of the model. The supplement contains details of the mathematical derivation
of the main results and additional simulations and figures.
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Coates, J., Park, B. R., Le, D., Şimşek, E., Chaudhry, W., and Kim, M. Antibiotic-induced population
fluctuations and stochastic clearance of bacteria. eLife, 7, 2018. doi: 10.7554/elife.32976.

Constable, G. W. and McKane, A. J. Models of genetic drift as limiting forms of the Lotka-Volterra
competition model. Physical Review Letters, 114(3), 2015. doi: 10.1103/physrevlett.114.038101.

Czuppon, P. and Traulsen, A. Fixation probabilities in populations under demographic fluctuations.
Journal of Mathematical Biology, 77(4):1233–1277, 2018. doi: 10.1007/s00285-018-1251-9.

Czuppon, P. and Traulsen, A. Understanding evolutionary and ecological dynamics using a continuum
limit. Ecology and Evolution, 11(11):5857–5873, 2021. doi: 10.1002/ece3.7205.

Czuppon, P., Schertzer, E., Blanquart, F., and Débarre, F. The stochastic dynamics of early epidemics:
probability of establishment, initial growth rate, and infection cluster size at first detection. Journal
of The Royal Society Interface, 18(184), 2021. doi: 10.1098/rsif.2021.0575.

Davies, N. G., Flasche, S., Jit, M., and Atkins, K. E. Within-host dynamics shape antibiotic resis-
tance in commensal bacteria. Nature Ecology & Evolution, 3(3):440–449, 2019. doi: 10.1038/
s41559-018-0786-x.

Day, T. and Read, A. F. Does high-dose antimicrobial chemotherapy prevent the evolution of resistance?
PLoS Computational Biology, 12(1):e1004689, 2016. doi: 10.1371/journal.pcbi.1004689.

Day, T., Huijben, S., and Read, A. F. Is selection relevant in the evolutionary emergence of drug
resistance? Trends in Microbiology, 23(3):126–133, mar 2015. doi: 10.1016/j.tim.2015.01.005.

Ehrlich, P. Chemotherapeutics: Scientific principles, methods, and results. The Lancet, 182(4694):
445–451, 1913. doi: 10.1016/s0140-6736(01)38705-6.

Ewens, W. Mathematical Population Genetics. I. Theoretical Introduction. Springer, New York, 2004.

Fleming, A. Penicillin. Nobel lectures, physiology or medicine 1942–1962. Elsevier Publishing Com-
pany, 1964.

Gerlee, P. Weak selection and the separation of eco-evo time scales using perturbation analysis.
Bulletin of Mathematical Biology, 84(5):52, 2022. doi: 10.1007/s11538-022-01009-3.

Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical
Chemistry, 81(25):2340–2361, 1977. doi: 10.1021/j100540a008.

Granato, E. T., Meiller-Legrand, T. A., and Foster, K. R. The evolution and ecology of bacterial warfare.
Current biology, 29(11):R521–R537, 2019.

Grant, A. J., Restif, O., McKinley, T. J., Sheppard, M., Maskell, D. J., and Mastroeni, P. Modelling
within-host spatiotemporal dynamics of invasive bacterial disease. PLoS Biology, 6(4):e74, 2008.

Haccou, P., Jagers, P., and Vatutin, V. A. Branching Processes: Variation, Growth, and Extinction of
Populations. Cambridge Studies in Adaptive Dynamics. Cambridge University Press, 2005. doi:
10.1017/CBO9780511629136.

19

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.02.20.529188doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.20.529188
http://creativecommons.org/licenses/by-nc/4.0/


Hansen, E., Karslake, J., Woods, R. J., Read, A. F., and Wood, K. B. Antibiotics can be used to contain
drug-resistant bacteria by maintaining sufficiently large sensitive populations. PLoS Biology, 18(5):
e3000713, 2020. doi: 10.1371/journal.pbio.3000713.

Hibbing, M. E., Fuqua, C., Parsek, M. R., and Peterson, S. B. Bacterial competition: surviving and
thriving in the microbial jungle. Nature reviews microbiology, 8(1):15–25, 2010.

Huijben, S., Bell, A. S., Sim, D. G., Tomasello, D., Mideo, N., Day, T., and Read, A. F. Aggressive
chemotherapy and the selection of drug resistant pathogens. PLoS Pathogens, 9(9):e1003578, 2013.
doi: 10.1371/journal.ppat.1003578.

Jumbe, N., Louie, A., Leary, R., Liu, W., Deziel, M. R., Tam, V. H., Bachhawat, R., Freeman, C., Kahn, J. B.,
Bush, K., et al. Application of a mathematical model to prevent in vivo amplification of antibiotic-
resistant bacterial populations during therapy. The Journal of clinical investigation, 112(2):275–285,
2003.

Kendall, D. G. On the Generalized “Birth-and-Death” Process. The Annals of Mathematical Statistics,
19(1):1–15, 1948. doi: 10.1214/aoms/1177730285.

Khan, D. D., Lagerbäck, P., Cao, S., Lustig, U., Nielsen, E. I., Cars, O., Hughes, D., Andersson, D. I., and
Friberg, L. E. A mechanism-based pharmacokinetic/pharmacodynamic model allows prediction of
antibiotic killing from MIC values for WT and mutants. Journal of Antimicrobial Chemotherapy, 70
(11):3051–3060, 2015.

Kouyos, R., Klein, E., and Grenfell, B. Hospital-community interactions foster coexistence between
methicillin-resistant strains of staphylococcus aureus. PLoS Pathogens, 9(2):e1003134, 2013. doi:
10.1371/journal.ppat.1003134.

Lee, C. Y., Cheu, R. K., Lemke, M. M., Gustin, A. T., France, M. T., Hampel, B., Thurman, A. R., Doncel,
G. F., Ravel, J., Klatt, N. R., and Arnold, K. B. Quantitative modeling predicts mechanistic links
between pre-treatment microbiome composition and metronidazole efficacy in bacterial vaginosis.
Nature Communications, 11(1), 2020. doi: 10.1038/s41467-020-19880-w.

Marrec, L. and Bitbol, A.-F. Resist or perish: Fate of a microbial population subjected to a periodic
presence of antimicrobial. PLoS Computational Biology, 16(4):1–19, 2020. doi: 10.1371/journal.pcbi.
1007798.

Melnyk, A. H., Wong, A., and Kassen, R. The fitness costs of antibiotic resistance mutations. Evolution-
ary applications, 8(3):273–283, 2015.

Monod, J. The growth of bacterial cultures. Annual review of microbiology, 3(1):371–394, 1949.

Mouton, J. W., Ambrose, P. G., Canton, R., Drusano, G. L., Harbarth, S., MacGowan, A., Theuretzbacher,
U., and Turnidge, J. Conserving antibiotics for the future: New ways to use old and new drugs from
a pharmacokinetic and pharmacodynamic perspective. Drug Resistance Updates, 14(2):107–117,
2011. doi: 10.1016/j.drup.2011.02.005.

Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., Han, C., Bisignano, C.,
Rao, P., Wool, E., ..., and Naghavi, M. Global burden of bacterial antimicrobial resistance in 2019: a
systematic analysis. The Lancet, 399(10325):629–655, 2022. doi: 10.1016/s0140-6736(21)02724-0.

Nande, A. and Hill, A. L. The risk of drug resistance during long-acting antimicrobial therapy. Proceed-
ings of the Royal Society B: Biological Sciences, 289(1986), 2022. doi: 10.1098/rspb.2022.1444.

20

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.02.20.529188doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.20.529188
http://creativecommons.org/licenses/by-nc/4.0/


Nemeth, J., Oesch, G., and Kuster, S. P. Bacteriostatic versus bactericidal antibiotics for patients
with serious bacterial infections: systematic review and meta-analysis. Journal of Antimicrobial
Chemotherapy, 70(2):382–395, 2014. doi: 10.1093/jac/dku379.

Nguyen, T. T., Guedj, J., Chachaty, E., de Gunzburg, J., Andremont, A., and Mentré, F. Mathematical
modeling of bacterial kinetics to predict the impact of antibiotic colonic exposure and treatment
duration on the amount of resistant enterobacteria excreted. PLoS Computational Biology, 10(9):
e1003840, 2014.

Niehus, R., Oliveira, N. M., Li, A., Fletcher, A. G., and Foster, K. R. The evolution of strategy in bacterial
warfare via the regulation of bacteriocins and antibiotics. eLife, 10, 2021. doi: 10.7554/elife.69756.

Niewiadomska, A. M., Jayabalasingham, B., Seidman, J. C., Willem, L., Grenfell, B., Spiro, D., and
Viboud, C. Population-level mathematical modeling of antimicrobial resistance: a systematic review.
BMC Medicine, 17(1), 2019. doi: 10.1186/s12916-019-1314-9.

Nyhoegen, C. and Uecker, H. Sequential antibiotic therapy in the laboratory and in the patient. Journal
of The Royal Society Interface, 20(198), 2023. doi: 10.1098/rsif.2022.0793.

Olofsson, S. K. and Cars, O. Optimizing drug exposure to minimize selection of antibiotic resistance.
Clinical Infectious Diseases, 45:S129–S136, 2007. doi: 10.1086/519256.

Opatowski, L., Guillemot, D., Boëlle, P.-Y., and Temime, L. Contribution of mathematical modeling
to the fight against bacterial antibiotic resistance. Current Opinion in Infectious Diseases, 24(3):
279–287, 2011. doi: 10.1097/qco.0b013e3283462362.

Otto, S. P. and Day, T. A Biologist’s Guide to Mathematical Modeling in Ecology and Evolution. Princeton
Univ. Press, Princeton, NJ, 2007.

Parsons, T. L. and Rogers, T. Dimension reduction for stochastic dynamical systems forced onto a
manifold by large drift: a constructive approach with examples from theoretical biology. Journal of
Physics A: Mathematical and Theoretical, 50(41):415601, 2017. doi: 10.1088/1751-8121/aa86c7.

Parsons, T. L., Lambert, A., Day, T., and Gandon, S. Pathogen evolution in finite populations: slow
and steady spreads the best. Journal of The Royal Society Interface, 15(147):20180135, 2018. doi:
10.1098/rsif.2018.0135.

Poulsen, L. K., Licht, T. R., Rang, C., Krogfelt, K. A., and Molin, S. Physiological state of Escherichia coli
BJ4 growing in the large intestines of streptomycin-treated mice. Journal of Bacteriology, 177(20):
5840–5845, 1995.

Rayner, C. R., Smith, P. F., Andes, D., Andrews, K., Derendorf, H., Friberg, L. E., Hanna, D., Lepak, A.,
Mills, E., Polasek, T. M., et al. Model-informed drug development for anti-infectives: state of the art
and future. Clinical Pharmacology & Therapeutics, 109(4):867–891, 2021.

Read, A. F., Day, T., and Huijben, S. The evolution of drug resistance and the curious orthodoxy of
aggressive chemotherapy. Proceedings of the National Academy of Sciences, 108:10871–10877, 2011.
doi: 10.1073/pnas.1100299108.

Regoes, R. R., Wiuff, C., Zappala, R. M., Garner, K. N., Baquero, F., and Levin, B. R. Pharmacodynamic
functions: a multiparameter approach to the design of antibiotic treatment regimens. Antimicrobial
Agents and Chemotherapy, 48(10):3670–3676, 2004. doi: 10.1128/aac.48.10.3670-3676.2004.

21

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.02.20.529188doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.20.529188
http://creativecommons.org/licenses/by-nc/4.0/


Salas, J. R., Gaire, T., Quichocho, V., Nicholson, E., and Volkova, V. V. Modelling the antimicrobial
pharmacodynamics for bacterial strains with versus without acquired resistance to fluoroquinolones
or cephalosporins. Journal of Global Antimicrobial Resistance, 28:59–66, 2022. doi: 10.1016/j.jgar.
2021.10.026.

Saleem, N., Ryckaert, F., Snow, T. A. C., Satta, G., Singer, M., and Arulkumaran, N. Mortality and
clinical cure rates for pneumonia: a systematic review, meta-analysis, and trial sequential analysis of
randomized control trials comparing bactericidal and bacteriostatic antibiotic treatments. Clinical
Microbiology and Infection, 28(7):936–945, 2022. doi: 10.1016/j.cmi.2021.12.021.

Scire, J., Hozé, N., and Uecker, H. Aggressive or moderate drug therapy for infectious diseases? Trade-
offs between different treatment goals at the individual and population levels. PLoS Computational
Biology, 15(8):e1007223, 2019. doi: 10.1371/journal.pcbi.1007223.

Tedijanto, C., Olesen, S. W., Grad, Y. H., and Lipsitch, M. Estimating the proportion of bystander
selection for antibiotic resistance among potentially pathogenic bacterial flora. Proceedings of the
National Academy of Sciences, 115(51), 2018. doi: 10.1073/pnas.1810840115.

Tepekule, B., Uecker, H., Derungs, I., Frenoy, A., and Bonhoeffer, S. Modeling antibiotic treatment in
hospitals: A systematic approach shows benefits of combination therapy over cycling, mixing, and
mono-drug therapie. PLoS Computational Biology, 13(9):e1005745, 2017. doi: 10.1371/journal.pcbi.
1005745.

Uecker, H. and Hermisson, J. On the fixation process of a beneficial mutation in a variable environment.
Genetics, 188(4):915–930, 2011. doi: 10.1534/genetics.110.124297.

Wald-Dickler, N., Holtom, P., and Spellberg, B. Busting the Myth of “Static vs Cidal”: A Systemic
Literature Review. Clinical Infectious Diseases, 66(9):1470–1474, 2017. doi: 10.1093/cid/cix1127.

Yu, G., Baeder, D. Y., Regoes, R. R., and Rolff, J. Combination effects of antimicrobial peptides.
Antimicrobial Agents and Chemotherapy, 60(3):1717–1724, 2016. doi: 10.1128/aac.02434-15.

Yu, G., Baeder, D. Y., Regoes, R. R., and Rolff, J. Predicting drug resistance evolution: insights from
antimicrobial peptides and antibiotics. Proceedings of the Royal Society B: Biological Sciences, 285
(1874):20172687, 2018. doi: 10.1098/rspb.2017.2687.

22

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.02.20.529188doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.20.529188
http://creativecommons.org/licenses/by-nc/4.0/

