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Abstract

Bladder field cancerization may be associated with disease outcome in patients with bladder 

cancer. To investigate this, we analyzed biopsies from bladder urothelium and urine samples 

by genomics and proteomics analyses. Samples were procured from multiple timepoints 

from 134 patients with early stage bladder cancer and detailed long term follow-up. We 

measured the field cancerization in normal-appearing bladder biopsies and found that high 

levels were associated with high tumor mutational burden, high neoantigen load, and high 

tumor-associated CD8 T-cell exhaustion. Non-synonymous mutations in known bladder 

cancer driver genes such as KDM6A and TP53 were identified as early disease drivers in 

normal urothelium. High field cancerization was associated with worse outcome but not with 

response to BCG. The level of urinary tumor DNA (utDNA) reflected the bladder tumor 

burden and originated from both tumors and field cancerization. High utDNA levels after 

BCG were associated with worse clinical outcomes for the patients. Our results indicate that 

the level of field cancerization may affect clinical outcome, tumor development and immune 

responses. utDNA measurements have significant prognostic value and reflect the disease 

status of the bladder.

Introduction

Epithelial tumors arise from dysplasia or carcinoma in situ (CIS) precursor lesions, harboring 

genomically and histologically altered cells. However, preceding the development of 

precursor lesions and tumors, the normal-appearing epithelium may contain transformed 

cells harboring cancer-initiating driver alterations. While previous methods did not provide 

the required resolution to reveal the mutational landscape of normal-appearing tissues, a
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high resolution insight into these processes has now become possible using high-throughput

deep sequencing approaches.

Field cancerization describes areas of the epithelium affected by expanded clonal mutations,

which develop from a cell lineage that acquires genetic mutations. The mutations may result

in growth advantages of the clone, positive selection in the microenvironment and

subsequent growth leading to development of larger fields. The mutated cells within these

fields may be morphologically normal or dysplastic and may predispose to the development

of malignancies within the area1,2. Field cancerization has been described in bladder cancer

(BC) as an explanation of the high recurrence rates and clonal relationships observed

between synchronous and metachronous tumors3–6. Recent studies performing detailed

mapping of the bladder mucosa using high-throughput sequencing approaches have

identified widespread field cancerization in the bladder of individuals with and without BC,

indicating the necessity to differentiate between fields with malignant potential and fields with

mutations inconsequential for BC carcinogenesis7–9. Previous studies have suggested that

tumor formation may be highly dependent on the genes affected by mutations, the

combination of affected genes and the order in which mutations occur3,10, being a possible

explanation for the tumor development from some but not all fields.

Intravesical treatment with Bacillus Calmette-Guérin (BCG) is part of the standard treatment

regimen for patients with high-risk non-muscle invasive BC (NMIBC). The main target of

BCG instillation is CIS and field cancerization of the bladder, which remains after surgical

resection of the tumors. Whether the extent or the composition of field cancerization has an

impact on clinical manifestation, recurrence rates and treatment response, and how the field

cancerization may affect the tumor microenvironment (TME), remain to be investigated. The

local mutational burden of the bladder, including tumors and field cancerization, as well as

renal clearance of the circulating tumor DNA (ctDNA) may be reflected by the presence of

urinary tumor DNA (utDNA). Consequently, urinary tests of utDNA may provide a tool for

3

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2023. ; https://doi.org/10.1101/2023.02.20.528920doi: bioRxiv preprint 

https://paperpile.com/c/dQJGi9/Uv9iI+nBj99
https://paperpile.com/c/dQJGi9/kcTth+YjF3Y+89MaI+GWFr7
https://paperpile.com/c/dQJGi9/fxv0R+O7aLH+LXOmD
https://paperpile.com/c/dQJGi9/Cc85D+kcTth
https://doi.org/10.1101/2023.02.20.528920
http://creativecommons.org/licenses/by-nc-nd/4.0/


continuous monitoring of the bladder disease state. Previous studies have found high utDNA

levels in patients with NMIBC to be associated with worse recurrence-free survival11 and

progression to muscle invasive disease12,13. It is unclear to what extent the bladder field

cancerization and renal clearance might impact the utDNA levels. While studies on

muscle-invasive bladder cancer have found utDNA levels to be associated with lack of

response to neoadjuvant chemotherapy (NAC)14, the prognostic and predictive role of utDNA

in NMIBC needs further investigation.

Here, we analyzed selected site biopsies (SSBs; n=751) and urine samples (n=187) from

multiple bladder locations and clinical visits procured throughout the disease courses of 134

patients with high-risk NMIBC to investigate the prognostic and predictive roles of field

cancerization and utDNA.

Methods

Patients, follow-up and biological samples

A total of 134 patients with NMIBC were included in this retrospective study. Patients

received treatment at Aarhus University Hospital between 1994 and 2018 and provided

informed written consent to participate in future research. The study was approved by The

Danish National Committees on Health Research Ethics (#1708266). All methods in the

study were carried out in accordance with approved guidelines and regulations.

All patients received at least five instillations of BCG. End of follow-up (FU) was defined as

the last of the following: last cystoscopy, last detected tumor, cystectomy, progression or

metastases. Recurrence-free-survival (RFS) and HG-recurrence-free-survival (HG-RFS)

were calculated from the SSB with the highest number of mutations and until first recurrence

or HG-recurrence/progression, respectively, or end of FU. Post-BCG HG-RFS was
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calculated from BCG end-date and until first HG-recurrence or progression to MIBC, or end

of FU. Patients were censored at the end of FU in absence of an event. Patients were

censored if less than three biopsies were analyzed and no mutations were called (n=2).

Post-BCG HG-recurrence status was defined as follows: patients in BCG HG-recurrence

group experienced a HG recurrence within two years after end of BCG or progressed to

MIBC anytime during their disease course. BCG non-HG-recurrence patients did not develop

new HG disease within two years after end of BCG and did not progress to MIBC.

DNA from tumors and leukocytes was analyzed from all 134 patients using whole exome

sequencing (WES). Furthermore, SSBs were analyzed from 70 (52%) patients and urine

samples from 104 (78%) patients. Normal-appearing SSBs were selected based on the

pathologist's original descriptions of solely normal tissue in the samples. Furthermore, SSBs

with atypia, hyperplasia, dysplasia (Grade I and II), carcinoma in situ (CIS) and papillary

tumor as well as urine samples were analyzed. SSBs were collected primarily before BCG

initiation at multiple timepoints during the disease courses. Additionally, for some patients,

samples collected after BCG were included. For a detailed overview of included patients and

samples, see Table 1 and Supp. Fig. S1.

Tumor biopsies were either fresh frozen (FF) or from formalin fixed paraffin embedded

(FFPE) samples. Blood samples from all patients were stored in EDTA tubes at -80oC. SSBs

were provided as FFPE samples. Urine samples were processed as previously described15.

DNA extraction

Tumor DNA from FF and dry-frozen tumors was extracted with Gentra Puregene Tissue Kit

(Qiagen). DNA from FFPE samples was extracted using either AllPrep DNA/RNA Kit

(Qiagen) for tumors, or GeneRead FFPE Kit (Qiagen) with extra deparaffinization solution

(320μl) for SSBs. From peripheral blood, leukocyte DNA for germline (GL) reference was

extracted using Qiasymphony DSP DNA midi kit (Qiagen).
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Tumor sections (4 µm) were haematoxylin and eosin (HE) stained to estimate carcinoma cell

percentage.

DNA from FF and dry-frozen tumors was extracted from 20-25 serial cryosections of 20μm.

From FFPE tumor samples and SSBs, DNA was extracted from punches using a 1.5 mm

biopsy needle. For SSBs, all material in the block was used for extraction due to very small

samples. Total cell-free DNA from urine supernatants was extracted from a median of 3.6 mL

urine supernatant (range 0.7–3.65 mL) incubated with 10% ATL buffer before purification

using the QIAsymphony DSP Circulating DNA Kit (Qiagen).

Whole Exome Sequencing and data processing

Next generation sequencing (NGS) libraries and subsequent WES capture were prepared

using either RefSeq spike-in probes from Twist Bioscience in combination with Twist Human

Core Exome Capture kit or using the illumina TruSeq DNA Kit and NimbleGen SeqCap EZ

v3.0. Samples were sequenced using Illumina Sequence platforms. Fastq files were trimmed

using cutadapt and mapped with bwa-mem using the GRCh38 genome assembly. Duplicate

reads were marked using MarkDuplicates from GATK and base quality scores were

recalibrated (ApplyBQSR, GATK). Variants were called using Mutect2 and annotated using

SnpEffv4.3i. Finally, variants with frequency below 5% (VAF < 5%), less than three alternate

allele reads in the tumor or a ROQ score (Phred-scaled probability that the variant alleles are

not due to a read orientation artifact) below 30 were filtered out.

For the estimation of neoantigen load in tumors, HLA types were called using

POLYSOLVER16, xHLA17, and OptiType18, with patient HLA type decided by consensus vote

supported by at least two algorithms. If no majority could be reached, POLYSOLVER was

used. All novel 9-11mer peptide fragments were generated by MuPeXI19 and eluted ligands

(EL) rank-percentage scores for all HLA alleles were predicted by NetMHCpan-4.120. The

rank-percentage score represents the rank of the fragments EL probability compared to a set
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of random natural peptides. A mutation was considered a neoantigen if at least one fragment

had an EL rank percentage score<2%, for at least one HLA allele.

Tumor mutation burden (TMB) was defined as the total number of mutations divided by 36.8

Mb (Size of the Twist Human Core Exome Capture kit panel + Refseq) or 64 Mb (Size of the

NimbleGen SeqCap EZ v3.0 panel).

RNA-sequencing and data processing

RNA-sequencing (RNA-seq) was performed using either ScriptSeq (EpiCentre) library

preparation or using the KAPA RNA HyperPrep Kit (RiboErase HMR; Roche) for library

preparation. Generated libraries were sequenced on Illumina platforms. Salmon21 was used

to quantify the expression of transcripts using annotation from the Gencode release 33 on

genome assembly GRCh38. Transcript-level estimates were imported and summarized at

gene-level using the tximport R library. Samples with less than 5 mill. mapped reads were

excluded and genes not expressed in more than 25% of the remaining samples were filtered

out.

We estimated immune cell populations from the RNA-seq data using established gene

expression signatures as in Rosenthal et al.22–24

Estimation of CD8 T-cell exhaustion and post-BCG exhaustion

predictor (ExhP)

T-cell exhaustion and post-BCG exhaustion predictor (ExhP) were defined as previously

described25. In short, the residuals from the linear correlation between the estimated level of

CD8 T-cells and the mean gene expression level of PDCD1, CTLA4, LAG3, HAVCR2, and

KLRG1 were used to estimate the CD8 T-cell adjusted exhaustion level for all tumors. The

post-BCG ExhP was defined as the ratio between the identified genes upregulated in
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pre-BCG tumors from patients having exhausted and non-exhausted tumors post-BCG,

respectively. An optimal cutpoint for the post-BCG ExhP according to time to BCG

HG-recurrence was used to define the dichotomized level of post-BCG ExhP.

Design of custom targeted sequencing panels

For high-throughput targeted sequencing of tumor specific mutations, we designed three

NGS panels with 10-71 unique mutations from the patients covering 48, 53 and 50 patients

respectively, as described in25. DNA from SSBs were sequenced using panel 1 and 2,

whereas urinary cfDNA was sequenced using all three panels.

Single nucleotide variants (SNVs) for panel inclusion were selected based on the following

criteria: (1) high or moderate impact, (2) high variant allele frequencies (VAFs), (3) known

oncogenic genes26, and (4) bladder cancer associated genes27,2829,304. Mutations in the most

exonically variable genes (i.e. genes typically poorly sequenced, with high variation in

healthy individuals or encoding very long proteins) reported by the Ingenuity Variant Analysis

(IVA) software and/or at error-prone positions/in commonly reported erroneous contexts

(C>T) were excluded, unless present in cancer driver genes or known bladder cancer genes.

The three panels differed slightly in mutation selection. Patient-specific single nucleotide

polymorphisms (SNPs) were included on panel 1 for subsequent distinction and

quantification of mutations in pooled samples.

Library preparation for targeted sequencing of DNA from SSBs

DNA from SSBs was sequenced using the designed custom panel for targeted sequencing.

Libraries were prepared using the Twist Library preparation EF kit (Twist Bioscience) with an

input of 50 ng DNA. The protocol involves enzymatic fragmentation; however, the

fragmentation time was decreased to 6 minutes to account for degraded DNA due to aged

FFPE blocks and very small biopsies increasing the ratio of formamide contact to tumor
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tissue and degradation. Prior to library generation of samples sequenced using panel 1,

DNA from SSB samples were mixed in pools of 2-8 samples in order to reach sufficient DNA

input amounts of 50ng. Samples sequenced using panel 2 were not pooled. Finally, for

robust error correction31, a 9 bp. Unique Molecular Identifiers (UMI) were incorporated by

replacing the twist adaptors with xGen™ UDI-UMI Adapters (Integrated DNA Technologies).

Libraries were captured using the Twist Custom Panel described in the previous section.

Post-library PCR amplification was set to 8 cycles and post capture amplification to 14

cycles. Sequencing was performed on the NovaSeq 6000 platform (illumina).

Library preparation for targeted sequencing of utDNA

Libraries and sequencing were performed as described previously25. In short, for

deep-targeted sequencing of urine supernatants, we used the designed NGS-panels (TWIST

Bioscience) and used modified Twist protocols for library preparation and capture in

combination with Unique Molecular Identifiers (UMIs).

Targeted sequencing mutation calling and data processing

Reads were mapped against the hg19 (panel 1) or hg38 (panel 2 and 3) genome using bwa

mem v.0.7.17. After mapping, consensus reads were generated from UMIs with at least

three identical UMIs supporting each consensus mutation call. Hereafter, read counts for the

SNV and SNP positions included in the panel were evaluated using the pileup tool

bam-readcount.

For error-robust calling of low-frequency mutations in SSBs and urine samples, we applied

the deepSNV pipeline32,33.

The inclusion of genomic SNV positions inferred from multiple patients on every custom

panel, facilitates an abundance of sequencing data for every genomic position. Positions

where no mutations are expected to be present are sequenced for each of the patients due
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to the patient specific mutations. We exploited this by employing an analysis framework

based on a maximum likelihood implementation of the shearwater algorithm developed by

Gerstung et al.32. In brief, a background error model was built by fitting presumably

non-mutated data, i.e. data from all samples not associated with a given mutation, to a

binomial distribution with site-specific calculation of the dispersion for every mutation of

interest. Samples with a VAF at a given position above 10% were excluded when generating

the error model. Positions with error rates above 10% were excluded. Presumably mutated

positions, i.e. data from the target positions of a given sample, was assessed for a statistical

significant difference compared to the background error model. A rho value of 10-4 was used

and only the specific base changes selected in the design of the panel were considered for

mutational analysis of the relevant genomic positions. Five SNPs were included for each

patient in order to adjust VAF for samples being part of a pool. Resulting p-values were

corrected for multiple testing using the Benjamini-Hochberg procedure and adjusted

p-values below 0.05 were considered significant.

For analysis of driver mutations in KEGG pathways, gene lists representing pathways were

obtained using R package OmnipathR for PI3K-Akt signaling and p53 signaling, whereas

gene lists for chromosome related pathways were obtained from

https://www.genome.jp/brite/hsa03036+1105. Genes not related to these, were classified as

“Other”, and pathways were prioritized in the following order when genes were represented

in multiple pathways: p53 signaling, PI3K-Akt signaling, Chromosome, Other.

Field cancerization measure

The degree of field cancerization was estimated as follows: the number of mutations in the

most mutated sample from a patient (before, after or across the whole disease course)

adjusted for each patient’s mutational weight on the panel. This was done by multiplying the

fraction of positions on the panel for each patient out of the maximum number of mutations
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on the panel for any patient. For every patient, the following was calculated:

(Fig. 1a).𝑓𝑖𝑒𝑙𝑑 = 𝑛
𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑀𝑎𝑥

*
𝑛

𝑝𝑜𝑠. 𝑝𝑎𝑛𝑒𝑙 𝑚𝑎𝑥

𝑛
𝑝𝑜𝑠. 𝑝𝑎𝑛𝑒𝑙

( )
Statistical analysis

For categorical variables, Fisher’s Exact test was used. Continuous data was tested using

Wilcoxon Rank Sum test (unpaired data). Categorical variables were compared using

Fisher’s exact test. For multiple testing, Bonferroni correction was applied. Kaplan-Meier

curves with associated log-rank tests were performed to assess time to HG-RFS, post-BCG

HG-RFS or RFS. Pearson correlation was used for comparison of numerical values.

Differences in protein expression in urine samples between relevant groups were measured

using unpaired t-tests. Statistical significance was set at p<0.05, except for protein

expression analyses in Volcano plots, where it was set at q<0.1. All statistical analyses were

performed using R version 4.1.1.

Results

Patient characteristics and molecular analyses

We analyzed samples from a total of 134 patients with NMIBC that received at least five

BCG instillations. The patients were followed for a median of 7.8 years after the first

analyzed sample and 6.0 years after BCG. Samples were analyzed as illustrated in Fig. 1a

and Supp. Fig. S1. Samples were procured at multiple timepoints and bladder locations

throughout the patient disease courses. See Table 1 for clinical information.

The level of field cancerization was defined as the maximum number of mutations detected

at any sample collected anytime during the disease course (considering both pre- and

post-BCG samples) adjusted for the patient’s mutational weight on the panel (see methods

and Fig. 1a).
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Field cancerization is associated with tumor biology

We performed deep targeted sequencing of DNA from 751 SSBs collected throughout 70

patients’ disease courses. This included 662 biopsies of normal appearing urothelium, 79

dysplastic/cancerous lesions and 10 SSBs with other abnormal characteristics. Samples

were sequenced to a mean coverage of 19,338X before UMI-consolidation and 1,357X after

UMI-collapsing. We detected tumor specific mutations in 458 out of 751 analyzed samples.

In mutated samples, we detected a mean of 17% of the mutations included on the panel for

the patient in question.

We compared the mean variant allele frequency (VAF) per sample between different sample

types and observed that mutations found in normal appearing SSBs had low variant allele

frequencies (mean=0.036). The VAF per sample was observed to increase from

normal-appearing urothelium, across dysplastic lesions to tumor samples (Fig. 1b),

indicating an enrichment of transformed cells in the specimens. To further explore the role of

field cancerization in tumor development, we analyzed the mutational characteristics of

tumor mutations (included on the panels for deep targeted sequencing) in normal appearing

SSBs. We found that although a subset of the tumor mutations were detected in normal

appearing biopsies, the number of C>T mutations constitute a large fraction of mutations in

SSBs (Fig. 1c). C>T mutations have previously been described in normal bladder tissue and

accumulate in normal cells with age7,9,34. Additionally, we observed that non-synonymous

mutations were more relatively abundant in tumor samples compared to normal appearing

SSBs, where synonymous mutations were more often detected (Fig. 1d). We further

investigated whether specific cancer driver genes were mutated in normal SSBs, potentially

indicating a cancer-driver in the field, and found that 33% of high impact mutations in cancer

driver genes originally observed in the tumor samples were already present in normal SSBs

(Table 2). Among the cancer driver genes found to be already mutated in normal SSBs were

TP53, STAG2, ARID1A, KMT2D and PIK3CA (Fig. 1e), known to be important genes in BC

development and progression35.
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A high field cancerization level was associated with worse high-grade recurrence-free

survival (HG-RFS; p=0.029) evaluated shortly after detection (time span between two

cystoscopy follow-up visits; Fig. 1f and Supp. Fig. S2a), but no significant associations to

recurrence-free and progression-free survival were observed (Supp. Fig. S2b-c).

A high tumor mutational burden (TMB) and neoantigen load of the last tumor analyzed

before BCG was associated with a high pre-BCG level of field cancerization (p=0.007 and

p=0.029; Fig. 1g-h). Too few samples were included in the post-BCG setting to perform

robust statistical analysis. Surprisingly, smoking was not associated with field manifestation,

as no statistically significant correlations between the number of pack years and level of field

cancerization were observed (p=0.2; Fig. 1i). The level of field cancerization increased

significantly with higher age (p=0.0027; Fig. 1j).

To characterize the mutational landscape across the disease course and in different sample

types, we selected three patients with multiple different sample types analyzed. The

detected VAF at every genomic position was analyzed in the different sample types.

Mutations were detected across different sample types indicating a clonal cellular origin

(Supp. Fig. S3a,c,e). However, a high level of inter- and intrapatient heterogeneity was

observed. Mutations detected in tumor samples had higher VAF compared to the other

sample types, regardless of sequencing method (WES or deep targeted sequencing; Supp.

Fig. S3a,c,e). Detailed analysis of tumor (WES) and normal-appearing SSBs from the three

patients revealed high inter- and intrapatient heterogeneity in terms of number of mutations

and VAF of mutations detected in samples collected throughout the patients’ disease

courses and at different locations in the bladder (Supp. Fig. S3b,d,f).

Urinary tumor DNA levels are prognostic and reflect bladder disease status

In addition to analyzing field cancerization by sequencing of SSBs, we performed deep

targeted sequencing of 187 utDNA samples procured from 104 patients before and after
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BCG. This corresponds to a measure of release of cellular DNA from tumor cells and field

cancerization as well as from renal clearance of ctDNA. Samples were sequenced to 2,153x

UMI consolidated coverage (18,856X raw coverage). Detailed clinical follow-up allowed us to

compare utDNA levels with the clinical status of the bladder at multiple clinical time points.

The level of utDNA was significantly higher in the presence of tumors at the time of urine

sampling. The levels of utDNA increased with higher tumor stage (Fig. 2a) and tumor

multiplicity (Fig. 2b). Interestingly, utDNA was also detected in several cases where no

tumor was diagnosed (Fig. 2a-b). We therefore analyzed the prognostic importance of this

finding and observed a difference in post-BCG RFS between patients with and without

detectable utDNA after BCG (p=0.072; Fig. 2c), potentially indicating a positive lead time

between utDNA detection and recurrence development. Additionally, we found that patients

progressing to MIBC after BCG had higher levels of utDNA before and after BCG (p=0.052

and p=0.0014, respectively; Fig. 2d). Patients with high recurrence rates (one or more

tumors per year) had high utDNA levels after BCG (p<0.001; Fig. 2e). No differences were

observed between patients with high and low pre-BCG utDNA levels and their post-BCG

HG-RFS (p=0.18; Supp. Fig. S2d). Analysis of utDNA levels after BCG revealed

significantly worse post-BCG HG-RFS in patients with high levels of utDNA, indicating

treatment failure (p=0.047; Fig 2f).

To compare utDNA mutations and levels to field cancerization status, we compared

mutations observed in SSBs to mutations in urinary DNA from samples collected at the

same clinical visits (nvisits = 28; npatients=23) with and without the presence of bladder tumors.

Mutations observed in SSB samples were observed in 9/12 urine samples from the same

visits when no tumor was found in the bladder, indicating contribution from the field or

undetected tumor to the total utDNA level. If a tumor was present at the time of sampling,

15/16 urine samples contained mutations also observed in SSBs. This corroborates that

utDNA can originate from the field (or undetected tumors), and not just from detected tumors

(p=0.3; Fig. 2g).
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Field cancerization and utDNA levels may be associated with tumor 

immunology and BCG treatment response

Previously, we estimated the level of CD8 T-cell exhaustion in pre- and post-BCG tumors 

from the patients based on gene expression levels of selected immune-inhibitory genes 

adjusted for the estimated CD8 T-cell infiltration25. Furthermore, we developed a predictor of 

post-BCG CD8 T-cell exhaustion based on pre-BCG tumor gene expression levels. We 

found that CD8 T-cell exhaustion as well as prediction of post-BCG CD8 T-cell exhaustion 

were associated with HG recurrences after BCG, indicating treatment failure25. Here, we 

correlated these measures to the level of field cancerization and found high CD8 T-cell 

exhaustion in pre-BCG tumors to be associated with high pre-BCG field cancerization level 

(p=0.017; Fig. 3a). There was no correlation between the pre-BCG CD8 T-cell exhaustion 

level and the level of post-BCG field cancerization (p=0.9; Supp. Fig. S2e). Additionally, 

patients predicted to have high post-BCG exhaustion had high field cancerization levels 

(p=0.065; Fig. 3b). There was no association between the level of field cancerization and the 

amount of CD8 T-cell infiltration in tumors based on deconvolution of RNA-sequencing data 

(p=0.10; Fig. 3c). As previously reported, higher levels of utDNA were observed when 

tumor-infiltrating CD8 T-cells were categorized as exhausted using our CD8 T-cell adjusted 

exhaustion score25 compared to tumor samples with lower CD8 T-cell exhaustion both pre-

and post-BCG (p=0.008 and p=0.012, respectively; Fig. 3d). In the current study, we 

investigated the correlations between the level of utDNA and the post-BCG exhaustion 

prediction (ExhP) score which is based on gene expression levels in pre-BCG tumors. It was 

observed that high ExhP was associated with high pre- and post-BCG levels of utDNA 

(p=0.002 and p=0.040, respectively; Fig. 3e). The pre-BCG field cancerization level was 

neither associated with post-BCG HG-recurrence status (p=0.3; Fig. 3f) nor with post-BCG 

HG-RFS (p=0.93; Fig. 3g), suggesting a potential indirect effect of field cancerization on 

BCG treatment response via effects on the tumor biology. However, field cancerization did 

not show predictive value per se.
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Field cancerization and utDNA levels reflect urinary immune oncology-related

proteins associated with disease aggressiveness

We investigated if the level of field cancerization was reflected in urinary protein levels. We

analyzed 91 urine samples from 53 patients for the levels of proteins related to

immuno-oncology pathways. Only urine samples collected at clinical visits without detectable

tumors were included. We observed that patients with high post-BCG field cancerization

levels had significantly higher levels of the proteins VEGFA, CD27, LAP TGFβ1 and TRAIL,

amongst others (p<0.05; Fig. 4a). These proteins have been associated with increased

angiogenesis, cell survival, proliferation and migration as well as immune activation36–38.

Pre-BCG samples were not included due to low numbers when adjusting for tumor status.

For many of the patients, the same urine samples were analyzed for both

immuno-oncology-related protein expression and utDNA (83/86 pre-BCG urine samples and

69/69 post-BCG urine samples). When comparing the urinary protein levels in post-BCG

samples from visits without detectable tumor, IL8 was found to be expressed at significantly

higher levels in samples from patients with high utDNA levels compared to low utDNA levels

(Fig. 4b). IL-8 is a mediator of inflammatory responses and is associated with migration,

invasion, angiogenesis and metastasis in cancer39. No samples from the pre-BCG setting

had high levels of utDNA when no tumor was present in the bladder.

When analyzing the levels of proteins grouped by their biological functions, higher levels of

proteins related to suppression of tumor immunity, vascular and tissue remodeling and

apoptosis/cell killing were observed after BCG in patients with a high field cancerization level

(Fig. 4c). For utDNA, no statistically significant differences were observed when protein

levels and utDNA were assessed in urine samples collected after BCG treatment (Fig. 4d).
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Discussion

Field cancerization has been investigated during several years in multiple cancer types,

however, clinical consequences have not been addressed in detail earlier due to small

cohort sizes and limited granularity in measurements.

Using deep targeted sequencing, we analyzed 751 normal-appearing and

dysplastic/cancerous SSBs along with utDNA from 134 patients with NMIBC.

We found high field cancerization to be associated with HG recurrences, high TMB, tumor

neoantigen load and CD8 T-cell exhaustion in tumors as well as with prediction of high

post-BCG CD8 T-cell exhaustion, and patient age (Fig. 5). In addition, we observed that the

levels of utDNA correlated with disease aggressiveness, tumor multiplicity and were

associated with tumor CD8 T-cell exhaustion and prediction of post-BCG CD8 T-cell

exhaustion, possibly reflecting a more aggressive disease. Interestingly, field cancerization

and/or potentially undetected tumors were reflected in utDNA measurements.

We found that high pre-BCG field cancerization levels were associated with high CD8 T-cell

exhaustion in BCG-naïve tumors and with prediction of post-BCG exhaustion. Contrarily, we

did not observe any differences in the number of tumor-infiltrating CD8 T-cells based on field

cancerization levels. Previous studies have shown that prolonged exposure to antigens,

either viral or cancerous, may cause CD8 T-cells to become exhausted, resulting in altered

effector functions and high expression of immune-inhibitory receptors40. We suggest that

increased field cancerization may result in prolonged exposure due to continuous

presentation of neoantigens, causing CD8 T-cell exhaustion. Abdel-Hakeem et al. have

shown that previously exhausted T-cells develop into a compromised memory CD8 T-cell

phenotype as compared to traditional memory T-cells, resulting in constrained future immune

responses41. This finding may explain the relationship between high field cancerization levels

and CD8 T-cell exhaustion within tumors and prediction of post-BCG exhaustion, although
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the number of CD8 T-cells were similar. Additionally, we showed that an increased field

cancerization level was associated with higher TMB and neoantigen load in the tumors,

indicating increased mutagenesis and possible presentation of neoantigens, potentially

resulting in exhausted CD8 T-cells. However, additional studies analyzing the immune

landscape related to field cancerization are needed to elucidate to interaction between the

two.

Our mutational analyses showed that non-synonymous mutations in known cancer driver

genes were present in normal appearing SSBs. These genes may represent early tumor

drivers present in the normal appearing urothelium. Driver genes only found to be mutated in

tumor samples were generally less common in BC and may represent later events in the

tumor evolution, although the study design does not allow us to determine tumor specificity.

We found mutations to be shared at varying frequencies between various sample types

collected at different clinical timepoints. We further found that the level of field cancerization

was not predictive of response to BCG-therapy. However, our study showed that cancerous

lesions in the bladder and the normal-appearing urothelium share (driver) mutations,

indicating a clonal origin from a pre-existing field - or shedding/migration of cancer cells,

which is also a possibility42. However, this may be more unlikely because of the need for

attachment and subsequent growth from the urothelium6. Bondaruk et al. performed detailed

genomic mapping of cancerous bladders and showed that oncogenic mutations were

present in normal-appearing and low-grade dysplastic urothelial samples and that tumors

developed from field effects in the bladder8, supporting the presented findings. The diffuse

distribution of mutations at varying frequencies, either because of possible diffuse field

cancerization, lack of representative biopsies or selection difficulties with clonal mutations for

the sequencing panel design, may complicate the use of SSBs for prognostic and predictive

purposes, however, the analyses highlight important aspects of bladder cancer recurrence

patterns and tumor driver events.
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Consistent with what has been reported by Lawson et al.7, we found field cancerization to

increase significantly with age and being characterized by frequent C>T mutations,

supporting the accumulation of mutations during life. A high level of field cancerization was

associated with worse HG-RFS shortly after the biopsy timepoint, indicating increased risk of

development of recurrences with a more altered urothelium. We were not able to show a

significant correlation between smoking history (measured in pack years) and the level of

field cancerization, although there were indications of higher field cancerization level in

patients with more pack years. Smoking is the main risk factor for developing BC, possibly

through increased field cancerization induced by smoking carcinogens. A study on field

cancerization in lung tissue found that mutation rates of former smokers were similar to

never smokers, suggesting a normalization of the field level upon smoking cessation43.

However, similar studies have not been conducted in bladder specimens. This finding in lung

tissue may, at least partly, explain the lack of correlation between smoking exposure and

field cancerization level. Furthermore, uncertainties regarding occupational exposure as well

as other potential correlates to field cancerization may complicate interpretation of this

analysis. Therefore, larger studies with more detailed information on smoking and

occupational exposure need to be performed to determine the role of these factors on the

development and manifestation of field cancerization and subsequent tumor development

and recurrences.

We observed that mutations observed in SSBs were detected in the urine in 9/12 cases

when no tumor was found in the bladder. This indicates that the field cancerization may

contribute to the utDNA via shedding of mutated DNA. This corroborates the finding in Fig.

2B-C, where utDNA was detected without tumors being present in the bladder. However,

combined with the finding that utDNA levels increase from visits with only normal urothelium

to visits with tumor suggests that the main contributing factor to utDNA may be shedding

from existing tumors and not the field cancerization itself. We also observed that higher

utDNA levels were correlated to tumor multiplicity, higher recurrence rates and progression
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to MIBC. Additionally, we found that high post-BCG levels of utDNA, indicating treatment

failure, were associated with worse post-BCG HG-RFS. Combined, these results suggest

that utDNA may serve as an alternative approach for disease surveillance in BC and

treatment response monitoring, mirroring the total mutational status of the bladder by

reflecting both field cancerization, multiplicity of tumors and tumor stage as well as risk of

post-BCG recurrences. Higher levels of utDNA with higher grade, T-stage and presence of

CIS have been reported by Zhang et al.11. Furthermore, others have described utDNA to

predict recurrences, treatment failure and progression, suggesting the use of utDNA in the

surveillance and prognostic setting11,12,14,44. Here we present a detailed, multi omics study on

a high number of patients. For clinical implementation the findings need to be validated in

clinical trials.

Finally, we investigated the levels of immuno-oncological proteins in the urine from patients

with high vs. low field cancerization and high vs. low utDNA levels. Interestingly, we

observed that a high field remaining after BCG therapy was associated with higher levels of

the proteins VEGFA, CD27 and TRAIL, amongst others. These proteins have been

associated with increased vascular formation, cancer cell survival, proliferation and migration

as well as immune activation36–38, suggesting an altered, immune modulating and

cancer-promoting urothelium when affected by high field cancerization. High utDNA levels

after BCG were associated with increased levels of the mediator of inflammatory responses,

IL-8, suggesting that the presence of field cancerization, as indicated by the shedding of

mutated DNA to the urine in the absence of tumors, may result in immune activation in the

bladder.

Altogether, these results suggest that field cancerization forms the basis of clonal

development of dysplastic and cancer lesions in the bladder and may be important for

driving an exhausted phenotype of CD8 T-cells. Furthermore, utDNA may serve as a
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prognostic and predictive biomarker in BC, potentially improving the clinical management of

patients with NMIBC.

Conclusions

Our results show several important correlates to BC carcinogenesis, prognosis and

treatment outcome. High levels of field cancerization in the bladder may cause CD8 T-cell

exhaustion in tumors, possibly via increased TMB and neoantigen loads within tumors.

Furthermore, high field cancerization is associated with worse clinical outcomes for the

patients. The overall mutational status of the bladder, including field cancerization, is

reflected in urine samples and utDNA measurements may be used for assessing risk in

NMIBC, and for guiding surveillance and early treatment interventions. The findings need to

be validated in clinical trials, but could eventually improve surveillance and treatment

strategies for patients with NMIBC.
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Figure legends

Fig. 1
Study overview and analyses of selected site biopsies (SSBs). a) Overview of the process of 

data acquisition including panel design from tumor WES data for deep targeted sequencing 

of DNA from SSBs and urine samples, data processing and estimation of field cancerization 

level from SSBs (created with BioRender.com). b) Mean VAF measured per sample across 

different sample types analyzed with deep targeted sequencing of SSB DNA (Wilcoxon 

rank sum test and Bonferroni adjustment). c) Analysis of the number of mutations of six 

alteration types in tumors and normal appearing SSBs (Fisher’s exact test). d) Analysis 

of the number of synonymous (low+modifier impact) and non-synonymous (high

+moderate impact) mutations in tumors and normal appearing SSBs (Fisher’s exact test). 

e) Number of non-synonymous mutations in normal appearing SSBs and tumor samples in 

cancer driver genes colored by functional pathways for genes with more than five 

mutations. f) Kaplan-Meier plot of high grade recurrence free survival (HG-RFS) from 

SSBs with highest number of mutations for 67 patients stratified by level of field 

cancerization level. Patients without any detectable field
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and less than three analyzed SSBs were left out from the analysis. Field groups were based

on median (log-rank test). g) Comparison of the pre-BCG field cancerization level and the

pre-BCG tumor mutation burden, split by median (Wilcoxon rank sum test). h) Comparison of

the pre-BCG field cancerization level and the pre-BCG tumor neoantigen load (Wilcoxon

rank sum test). i) Comparison of the field cancerization level, median split, and the number

of pack years for current or former smokers (Wilcoxon rank sum test). j) Correlation between

the patient age at sampling time and the level of field cancerization in the all analyzed

samples with measurable mutations (Pearson correlation).

Fig. 2
Urinary tumor DNA (utDNA) and clinical correlations. a) Comparison between the utDNA

level and tumor status of the bladder at the same clinical time point (Wilcoxon rank sum test,

Bonferroni correction). b) Comparison of the number of tumors in the bladder and utDNA

level measured at the same clinical visit (Wilcoxon rank sum test). c) Kaplan-Meier plot of

post-BCG recurrence-free survival (RFS) for 44 patients where no tumor was clinically

visible, but utDNA was measured or absent (log-rank test). d) Comparison of the level of

urinary utDNA measured pre- and post-BCG and the progression status of the patients

(Wilcoxon rank sum test). e) Comparison of tumor recurrence rate during the disease course

and the level of utDNA measured pre- and post-BCG, respectively (High = one or more

tumors per year. Low = less than one tumor per year; Wilcoxon rank sum test). f)

Kaplan-Meier plot of post-BCG high grade recurrence free survival (HG-RFS) for 72 patients

stratified by the post-BCG level of urinary utDNA (split by median; log-rank test). g)

Comparison of the fraction of visits where mutations detected in normal appearing SSBs

were observed in urine samples from the same clinical visit. Clinical visits with and without

tumor in the bladder are shown (Fisher’s exact test). CIS = Carcinoma in situ. P=Progression

to MIBC after BCG. NP= No progression.

Fig. 3
Field cancerization level, utDNA and immuno-related parameters. a-e: Immune correlates

estimated from RNA-sequencing data from tumors. a) Comparison of the pre-field

cancerization level and the CD8 T-cell adjusted exhaustion status of pre-BCG tumors

(Wilcoxon rank sum test). b) Comparison of the pre-field cancerization level and the

pre-BCG tumor-based predictor of post-BCG CD8 T-cell exhaustion (ExhP; Wilcoxon rank

sum test). c) Comparison of the pre-field cancerization level and the level of CD8 T-cell

infiltration in pre-BCG tumors (Wilcoxon rank sum test). d) Comparison of the CD8 T-cell

adjusted exhaustion status of pre- and post-BCG tumor samples, respectively, and the level

27

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2023. ; https://doi.org/10.1101/2023.02.20.528920doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.20.528920
http://creativecommons.org/licenses/by-nc-nd/4.0/


of utDNA (Wilcoxon rank sum test). e) Comparison of the post-BCG exhaustion predictor 

(ExhP) and the level of utDNA based on pre- and post-BCG measurements, respectively 

(Wilcoxon rank sum test). f) Comparison of the level of pre-BCG field cancerization level and 

post-BCG HG-recurrence status of the patients (Wilcoxon rank sum test).

Fig. 4

Field cancerization, utDNA and immuno-oncological protein features. a-d) Detection of 

immune-oncology related protein responses by urine analyses (Olink proteomics). All 

significantly differentially expressed proteins are named (Wilcoxon Rank Sum test). Colored 

= significant p-value < 0.05 (unadjusted). Grey = not significant. Dotted lines indicate a 

significance level of 0.05. Numerical differences in mean NPX-values between compared 

groups are shown on the x-axis. a) Comparisons between urinary protein levels in patients 

with high and low field cancerization (split by median) measured in urine samples collected 
post-BCG (npatients=14). b) Comparisons between urinary protein levels in patients with high 

and low utDNA levels (split by median) measured in urine samples collected post-BCG 
(npatients=36). c) Comparison of the mean urinary level of proteins grouped by biological 

features between samples from patients with high and low field cancerization post-BCG 

(n=14; Wilcoxon rank sum test). Non-adjusted p-values are indicated.

d) Comparison of the mean urinary level of proteins grouped by biological features between 

samples from patients with high and low utDNA in post-BCG urine samples (n=36; Wilcoxon 

rank sum test). Non-adjusted p-values are indicated.

Fig. 5

Graphical illustration of summary of main study findings from analyses of field cancerization 

(created with BioRender.com). Light gray, italic text indicates proposed hypotheses. TMB = 

Tumor mutation burden. BCG = Bacillus-Calmette Guérin. ExhP = Exhaustion predictor.

Table 1

Clinical characteristics of the selected patient cohort. Samples collected within 120 days 

after TURBT were considered reTURBT. Analyzed tumors account for the tumor samples 

(WES or RNA-seq) closest to BCG-initiation or diagnosed tumor. BCG = Bacillus 

Calmette-Guérin. HG = high grade. LG = low grade/G2. CIS = Carcinoma in situ. SSB = 

Selected site biopsy. utDNA = urinary tumor DNA. Normal SSBs cover normal-appearing 

SSBs. Abnormal SSBs include SSBs with tumor, CIS, dysplasia, hyperplasia and
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metaplasia. TURBT = transurethral resection of bladder tumors. IQR = Interquartile range.

*Two samples were missing tumor grade. For simplicity, they have been included as HG

tumors.

Table 2
Analysis of cancer driver genes in tumors and normal SSBs. The full list of high impact

mutations in cancer driver genes detected in tumor and normal-appearing SSBs as well as

only in tumor samples.

Supp. Fig. S1
Detailed overview of included patients and samples. Lines represent disease courses from

time of first analyzed samples to end of FU centered around the first induction course of at

least five instillations of BCG (orange). Colors indicate analyses performed (tumor =

sequencing of tumor material, utDNA = deep targeted sequencing of utDNA, SSB = deep

targeted sequencing of SSB DNA, Protein = Urinary Olink proteomics). Shapes indicate the

number of different analyses performed on samples from the same clinical visit.

Supp. Fig. S2
Clinical and immunological correlation to SSBs and utDNA. a) Kaplan-Meier plot of high

grade recurrence free survival (HG-RFS) from SSB with highest number of mutations for 67

patients stratified by the level of field cancerization (split by median; log-rank test). b)

Kaplan-Meier plot of recurrence free survival (RFS) from SSB with highest number of

mutations for 67 patients stratified by the level of field cancerization (split by median;

log-rank test). c) Kaplan-Meier plot of progression free survival (PFS) from SSB with highest

number of mutations for 67 patients stratified by the level of field cancerization (split by

median; log-rank test). d) Kaplan-Meier plot of post-BCG HG-RFS for 85 patients stratified

by the pre-BCG level of utDNA (split by median; log-rank test). e) Comparison of pre-BCG

tumor CD8 T-cell adjusted exhaustion status and post-BCG field cancerization level

(Wilcoxon rank sum test).

Supp. Fig. S3
Mutation tracking across different sample types for three patients (pt 1=a+b, pt 2 = c+d, pt 3

= e+f. a,c,e: Comparison of the VAF for patient-specific mutations across different sample

types and time points. X-axis = Mutated positions. Y-axis = VAF/position. Mutations analyzed

were included on the panels for deep targeted sequencing. Colors indicate different sample
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types analyzed for each patient. b,d,f) Heatmaps showing mutation VAF of mutations in 

tumor WES data (T) from where mutations were selected and in normal-appearing selected 

site biopsies (SSBs) from multiple clinical visits (indicated by columns). Timing in relation to 

BCG treatment is added. BCG = Bacillus Calmette-Guérin.
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Table 1: Clinical Characteristics - All patients with SSBs or utDNA
Variable N = 134

Age, Median (IQR) 70 (62, 75)

Sex, n (%)

    Female 29 (22%)

    Male 105 (78%)

Smoking status, n (%)

    Current 55 (41%)

    Former 60 (45%)

    Never 18 (13%)

    Unknown 1 (0.7%)

Pack years, Median (IQR) 25 (15, 40)

Progression to MIBC, n (%)

    Progression 28 (21%)

    No progression 106 (79%)

Total number of tumors, Median (IQR) 6 (3, 10)

Recurrence rate, Median (IQR) 0.96 (0.52, 1.50)

Outcome category, n (%)

    BCG HG-recurrence 64 (48%)

    BCG non-HG-recurrence 70 (52%)

Number of normal SSBs sequenced/pt, Median (IQR) 10 (5, 13)

Number of abnormal SSBs sequenced, Median (IQR) 2.00 (1.00, 3.25)

Analyses performed, n (%)

    SSB 30 (22%)

    SSB and utDNA 39 (29%)

    utDNA 65 (49%)

Pre-BCG stage and grade, n (%)

    CIS 17 (13%)

    T1 HG* 39 (29%)

    T1 LG 6 (4.5%)

    Ta HG* 38 (28%)

    Ta LG 34 (25%)

Pre-BCG concomitant CIS, n (%) 34 (25%)

Pre-BCG reTURBT, n (%)

    reTURBT 32 (24%)

    No reTURBT 102 (76%)

Pre-BCG tumor status, n (%)

    Primary tumor 42 (31%)

    Recurrent tumor 92 (69%)

Pre-BCG EAU risk group, n (%)

    Very High Risk 29 (22%)

    High Risk 53 (40%)

    Intermediate Risk 52 (39%)

Previous Mitomycin C treatment, n (%) 8 (6.0%)

Post-BCG follow-up (years), Median (IQR) 6.0 (2.8, 8.4)

Follow-up from first analyzed sample (years), Median (IQR) 7.8 (4.3, 10.0)

Clinical characteristics of the selected patient cohort. FU = follow-up. HG = High grade. LG = Low grade+G2. CIS = Carcinoma in situ. SSB = Selected site biopsy. tdDNA = Tumor-derived DNA.
Normal SSBs cover normal-appearing SSBs. Abnormal SSBs include SSBs with tumor, CIS, dysplasia, hyperplasia and metaplasia.* Two samples were missing tumor grade. For simplicity, they have
been included HG tumors.
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Driver gene Tumor WES Normal SSB Driver gene Tumor WES Normal SSB Driver gene Tumor WES Normal SSB
EGFR Mutation Mutation SETDB2 Mutation No mutation SPTAN1 Mutation No mutation
NCOR1 Mutation Mutation BUB1B Mutation No mutation CYP17A1 Mutation No mutation
U2AF1 Mutation Mutation CLSPN Mutation No mutation MIB1 Mutation No mutation
PREX2 Mutation Mutation EP300 Mutation No mutation MAPK1 Mutation No mutation
STAG2 Mutation Mutation KIAA1109 Mutation No mutation DDR2 Mutation No mutation
RB1 Mutation Mutation CDKN1A Mutation No mutation STAT6 Mutation No mutation
LYST Mutation Mutation ATG5 Mutation No mutation HDAC9 Mutation No mutation
ARID1A Mutation Mutation RAD51B Mutation No mutation IRF1 Mutation No mutation
KMT2D Mutation Mutation POLE Mutation No mutation RUNX1 Mutation No mutation
CHEK2 Mutation Mutation MEN1 Mutation No mutation TOP2A Mutation No mutation
FBXW7 Mutation Mutation TRIM27 Mutation No mutation DDX10 Mutation No mutation
IKZF2 Mutation Mutation ARID2 Mutation No mutation PRKDC Mutation No mutation
CDC20 Mutation Mutation DDX4 Mutation No mutation ZMYM3 Mutation No mutation
SP140 Mutation Mutation LRP1B Mutation No mutation CDKN2A Mutation No mutation
DDX3X Mutation Mutation PTPN6 Mutation No mutation RTEL1 Mutation No mutation
TP53 Mutation Mutation CSF3R Mutation No mutation CD44 Mutation No mutation
COL3A1 Mutation Mutation HECTD1 Mutation No mutation RYBP Mutation No mutation
ASXL2 Mutation Mutation CRKL Mutation No mutation CSF1R Mutation No mutation
PSIP1 Mutation Mutation GRHL3 Mutation No mutation RARA Mutation No mutation
RANBP2 Mutation Mutation POLQ Mutation No mutation SOS1 Mutation No mutation
ATP2B3 Mutation Mutation TSC1 Mutation No mutation PGR Mutation No mutation
KDM6A Mutation Mutation NFATC2 Mutation No mutation BRAF Mutation No mutation
KMT2A Mutation Mutation HRAS Mutation No mutation BAP1 Mutation No mutation
TRIM29 Mutation Mutation PC Mutation No mutation BCL9L Mutation No mutation
PTPRB Mutation Mutation RBL2 Mutation No mutation AXL Mutation No mutation
CREBBP Mutation Mutation SAMHD1 Mutation No mutation PTPRD Mutation No mutation
SPOP Mutation Mutation DIS3 Mutation No mutation RNF213 Mutation No mutation
PIK3R1 Mutation Mutation EBF1 Mutation No mutation DDB2 Mutation No mutation
SYNE2 Mutation Mutation BUB1 Mutation No mutation ATRX Mutation No mutation
DOT1L Mutation Mutation KMT2B Mutation No mutation SMARCA4 Mutation No mutation
PIK3CA Mutation Mutation DDR1 Mutation No mutation RHOB Mutation No mutation
PTPN13 Mutation Mutation HUWE1 Mutation No mutation RANBP17 Mutation No mutation
ESCO2 Mutation Mutation AFF1 Mutation No mutation FH Mutation No mutation
WRN Mutation Mutation ZNF750 Mutation No mutation AMER1 Mutation No mutation
ZFHX3 Mutation Mutation AKAP9 Mutation No mutation MAD2L2 Mutation No mutation
MDN1 Mutation Mutation ATM Mutation No mutation VPS13C Mutation No mutation
PDE4DIP Mutation Mutation FANCD2 Mutation No mutation PARP1 Mutation No mutation
KMT2C Mutation Mutation SMARCA2 Mutation No mutation MAPK3 Mutation No mutation
RBM10 Mutation Mutation RALGDS Mutation No mutation FGFR2 Mutation No mutation

ARHGEF12 Mutation No mutation YES1 Mutation No mutation

Table 2
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