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11 Abstract

12 The creation of new genes is a major force of evolution. Despite as an important mechanism
13 that generated new genes, segmental duplication (SD) has yet to be accurately identified and fully
14 characterized in birds because the repetitive complexity leads to misassignment and misassembly
15  of sequence. In addition, SD may lead to new gene copies, which makes it possible to test the “out
16  oftestis” hypothesis which suggests genes are frequently born with testis-specific expression. Using
17  a high-quality chromosome-level assembly, we performed a systematic analysis and presented a
18  comprehensive landscape of SDs in tree sparrow (Passer montanus). We detected co-localization
19  of newly expanded genes and long terminal repeat retrotransposons (LTR-RTs), both of which are
20 derived from SDs and enriched in microchromosomes. The newly expanded genes are mostly found
21 in eight families including C.H>ZNF, OR, PIM, PAK, MROH, HYDIN, HSF and ITPRIPL. The large
22 majority of new members of these eight families have evolved to pseudogenes, whereas there still
23 some new copies preserved transcriptional activity. Among the transcriptionally active new
24 members, new genes from different families with diverse structures and functions shared a similar
25 testis-biased expression pattern, which is consistent with the “out of testis” hypothesis. Through a
26 case analysis of the high-quality genome assembly of tree sparrow, we reveal that the SDs contribute
27  to the formation of new genes. Our study provides a comprehensive understanding of the emergence,
28  expression and fate of duplicated genes and how the SDs might participate in these processes and

29  shape genome evolution.
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31 Introduction

32 The origination of new genes is a fundamental question on genome evolution, and gene
33 duplication is one of the most important mechanisms for new gene formation (Ohno 1970; Long et
34 al. 2003; Kaessmann 2010; Ding et al. 2012). Gene duplication can add new copies of genes in the
35 genome, which provide the raw materials for the evolution of novel gene functions and evolutionary
36 adaptation (Crow and Wagner 2006; Magadum et al. 2013). In many cases, the duplicated genes are
37  partoflarge duplicated chromosomal segments, while the large (>1 kbp) and highly identical (>90%)
38 segment copies in particular chromosomal regions are referred to as segmental duplications (SDs)
39  (Bailey et al. 2001). Owing to their high sequence identity, SDs can promote non-allelic
40  homologous recombination, as a result, they are known as hotspots of chromosomal rearrangement
41 and copy number variation (Bailey et al. 2004; Sharp et al. 2005; Bailey and Eichler 2006; Perry et
42 al. 2006; Liu et al. 2011).

43 Although critical in genome evolution and plasticity, SDs may be particularly problematic to
44 be characterized at the genomic level because of the inconspicuousness, large size and high
45  sequence similarity, therefore are frequently the last regions of genomes to be sequenced and
46  assembled (Bailey et al. 2001; Vollger et al. 2022). Birds have become one of the most densely
47 sequenced higher-level animal taxa thanks to the Bird 10,000 Genomes (B10K) Project, however,
48  atpresent, most of the avian genome assemblies are based on the next-generation sequencing (NGS)
49  technology (Zhang et al. 2014; Feng et al. 2020). Due to the short reads produced by NGS, a large
50  number of assemblies of birds are highly fragmented and insufficient for identification of highly
51  duplicated segments. Although SDs have been studied in diverse animal taxa, especially in the
52 primates (Samonte and Eichler 2002; Bailey and Eichler 2006; She et al. 2008), the characterization

53  of SD genomic landscape is relatively limited in birds.

54 Advances in long-read genome assembly may help to overcome the issue, and the recent
05 generation of a complete telomere-to-telomere (T2T) human genome (T2T-CHM13) successfully
56  demonstrated sequence resolution of complex SDs (Vollger et al. 2022). To enrich our
57  understanding on SDs organization in birds, we generated a chromosome-level genome assembly
58 of tree sparrow (Passer montanus), one of the most common passerine species in China, through
59  the combination of long-read HiFi sequencing technology and Hi-C sequencing. Using the high-
60  quality assembly, we identified the SD contents and analyzed its evolutionary process. We found

61 several distinctive characteristics of SDs in the tree sparrow genome. In addition, we further
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62  discussed the possible role of SDs and the duplicated genes in genome evolution. This work
63  provides a reference for understanding the SDs organization and the process of new gene formation

64  in birds.
65  Results
66 Chromosome-level genome assembly of tree sparrow

67 We sequenced ~45x HiFi reads from a male tree sparrow collected from LJX and assembled
68  these reads into a 1.28 Gb genome assembly, consisting of 744 contigs with contig N50 length of
69  54.42 Mb. About 1.16 Gb sequences (91.49% of the total assembly) of the assembled genome were
70 anchored into 36 pseudo-chromosomes with the help of ~83x Hi-C sequence data (Supplementary
71 Table 1 and 2). Assembly assessment using Benchmarking Universal Single-Copy Orthologs
72 (BUSCO) (Manni et al. 2021) indicated 96.4% avian gene set were present and complete in the
73 assembled genome, confirming the high quality of our assembly (Supplementary Fig. 1). Compared
74 with the previously published Illumina-based assembly of tree sparrow (Qu et al. 2020), our
75 assembly showed great improvement of continuity and completeness (Supplementary Table 2).
76 Subsequent annotation predicted 21,485 protein coding genes covered 94.5% of the complete

7 BUSCO avian gene set (Supplementary Fig. 1).

78 Tree sparrow has 2n = 78 chromosomes in both sexes, consisting of 8 pairs of relatively large-
79  size macrochromosomes including one pair of sex chromosomes (male ZZ, female ZW), and 31
80  pairs of smaller microchromosomes (Bulatova et al. 1972). We therefore defined the 8 largest
81  assembled pseudo-chromosomes as macrochromosomes. The macrochromosomes are one-to-one
82 homologous to the large autosomes and chromosome Z of chicken (Gallus gallus, GGA), except
83 for chromosomes 2 and 6 which aligned to g-arm and p-arm of GGAIl respectively, and
84  chromosome 5 corresponded to g-arm of GGA4 (Supplementary Table 3 and Supplementary Fig.
85 2). These exceptions are the results of fission of GGA4 found in different groups of birds, when the
86  fission of GGA1 seems to be apomorphic for Passeriformes (dos Santos et al. 2017; Degrandi et al.
87 2020). Unlike macrochromosomes, some microchromosomes (chromosomes 18, 19, 25, 27, 30, 31,
88 32, 34,35 and 36) showed limited synteny conservation with zebra finch (Taeniopygia guttata) and

89  chicken (Supplementary Fig.3).

90 Comparative genomics analysis and evolution of gene families
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91 To explore the evolutionary context of tree sparrow, we performed comparative genomic
92 analysis by comparing the tree sparrow genome with another 25 representative avian species
93  (Supplementary Table 6). In total of 4,085 single copy orthologs present in all 26 avian genomes
94  were identified and used to construct a phylogenic tree (Supplementary Table 7). Tree sparrow and
95  common canary (Serinus canaria) diverged about 23 million years ago (Mya) (Fig. 2a and
96  Supplementary Fig. 5). The genes in tree sparrow genome were grouped into 13,353 gene families
97  (orthogroups) (Supplementary Fig. 4), among these gene families, 639 expanded and 1,259
98  contracted (Fig. 2a). In addition, we noticed that there are 8 gene families significantly expanded in
99  tree sparrow, including the Cys;His> zinc finger (C2H2ZNF) protein, olfactory receptor (OR),
100 proviral integration site for Moloney murine leukemia virus (PIM), p21-activated kinase (PAK),
101 maestro heat-like repeat containing protein family member (MROH), hydrocephalus-inducing
102 protein homolog (HYDIN), heat shock factor (HSF) and inositol 1,4,5-trisphosphate receptor-
103 interacting protein-like (/TPRIPL) (Fig. 2b).

104  Landscape and comparative analysis of transposable elements

105 At least 18.27% of tree sparrow genome assembly is composed of repetitive elements, made
106  up of transposable elements (TEs) (16.84%) and tandem repeat (1.43%) (Supplementary Table 4
107  and 5). The total TEs content is slightly higher than most of the 25 selected bird genomes, except
108  for two species in Piciformes (Picoides pubescens and Tricholaema leucomelas) (Fig. 2¢ and
109  Supplementary Table 6). DNA transposons compose 8.29% of the assembly and terminal inverted
110 repeats (TIRs) elements account for most of the DNA transposons, whereas miniature inverted-
111 repeat transposable elements (MITEs) and Helitrons only take up a small proportion
112 (Supplementary Table 5). We noticed that the DNA transposons were clearly higher and showed
113 greater expansion in tree sparrow than other birds (Fig. 2¢), which were mainly derived from an
114 ancient burst of TIR/DTC (CACTA) superfamily (Supplementary Fig. 6 and 7). Furthermore, a
115  number of the DNA transposons are prevalent in passerines, indicating that they are potentially

116 active in tree sparrow genome (Fig. 2d).

117 The long terminal repeat retrotransposons (LTR-RTs) are the most abundant retrotransposons
118  in tree sparrow genome (Supplementary Table 5). The tree sparrow genome contains about 532
119  intact LTR-RTs, 442 of these elements are endogenous retroviruses (ERVs). The ERVs in tree
120 sparrow genome were classified into 4 clades (betaretrovirus, gammaretrovirus, epsilonretrovirus

121 and spumaretrovirus) using phylogenetic reconstruction of their reverse transcriptase (RT) domains
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122 (Fig. 2e). Betaretrovirus and gammaretrovirus are the two most common ERVs in tree sparrow and
123 more betaretrovirus were detected in tree sparrow and zebra finch than in chicken genome (Fig. 2e).
124 Furthermore, we found that a portion of tree sparrow and zebrafinch betaretrovirus RT domains

125 were clustered with chicken alpharetrovirus (Fig. 2e).

126 Relative to LTR-RT, long interspersed elements (LINEs) and short interspersed elements
127 (SINEs) are less common and active in tree sparrow genome as also in the other 5 songbirds (Fig.
128  2cand 2d). LINEs constitute about 3% of tree sparrow genome, when SINEs account for only 0.05%
129  (Supplementary Table 5). CR1 elements are the domain LINEs in tree sparrow, but only a tiny

130 fraction of them are potentially active (Supplementary Fig. 7).

131 The genomic landscape of transposable elements shows that the DNA transposons are
132 relatively evenly distributed across chromosomes, accompanied by occasional scattered burst (Fig.
133 3), whereas the retrotransposons showed more complex and diverse distribution characteristics. For
134 non-LTR retrotransposons, SINEs are rare in all chromosomes except for chromosome 9, when
135  regions proximity to the assembled chromosomes termini often contain high density of LINEs (Fig.
136 3). Relative to large autosomes, LTR-RTs are more concentrated in Z chromosome and
137  microchromosomes. Interestingly, we observed that LTR-RTs had the similar distribution trend
138  with the eight significantly expanded gene families including C-H>ZNF, OR, PIM, PAK, MROH,

139 HYDIN, HSF and ITPRIPL (Fig. 3).
140  Segmental duplication contents and testis-biased expression pattern of new genes

141 Segmental duplications (SDs) are genomic sequences larger than 1 kbp that are duplicated at
142 least one time in genome with high identity (>90%) (Bailey et al. 2001). In total, we identified 61.74
143 Mbp of nonredundant SDs (>1 kbp in length and >90% identity), which contained 692 annotated
144 protein coding genes (Fig. 4a and Supplementary Table 8). Focusing on SD regions that carry genes,
145  we detected expansions of 54 protein coding gene families through inter- and intrachromosomal
146  duplications in tree sparrow genome (Fig. 4b and Supplementary Fig. 8). Among these families,
147  PAK had the largest number of recently duplicated members (268 of PAKI and 14 of PAK3) and
148 showed the most concentrated chromosomal distribution (Fig. 4b and Supplementary Fig. 8). In
149  addition to PAK, the SD blocks also contained large numbers of copies (>20) of the other 7
150  significantly expanded gene families (C2H2ZNF: 26, OR: 54, PIM: 72, MROH: 46, HYDIN: 23,

151 HSF: 39; ITPRIPL: 25) (Supplementary Table 8). However, members of each of these families
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152 showed relatively dispersed distribution patterns when compared with PAK (Fig. 4b and

153  Supplementary Fig. 8).

154 Using the transcriptome data from different tissues (testis, spleen, lung, heart, liver, kidney,
155  muscle and brain) of adult tree sparrow, we compared the expression profiles in different tissues of
156  the eight significantly expanded gene families. Surprisingly, the highly transcribed genes from
157  different families, whether located in the SD regions or not, generally exhibit testis-biased
158  expression in 6 out of the 8 genes (Fig. 5). In contrast, the few members broadly expressed in
159 different tissues are mainly located outside the SD blocks (Fig. 5). In addition, a large proportion of
160  the members in these families, especially in OR (~94%) and C2H2ZNF (~89%), are almost not
161  expressed in all tissues (Fig. 5a and Supplementary Fig. 9). The transcriptionally inactive genes are

162 also common among SD genes (Fig. 5b).

163 Based on the above results, we inferred the pattern and process of SDs in tree sparrow (Fig. 6).
164  For reasons has not yet been determined, bursts of both inter- and intrachromosomal duplication of
165  several genomic regions occurred during the evolution of tree sparrow (Fig. 6a). Followed a series
166  of SD events, a large number of additional new copies, mainly belonging to eight gene families
167 including C.H>ZNF, OR, PIM, PAK, MROH, HYDIN, HSF and ITPRIPL, were added to tree
168  sparrow genome. It seems that the expression status of new genes, no matter which families they
169  belong to, were shifted to testis-biased expression pattern (Fig. 6a). Subsequently, a majority of new
170 genes did not express in all tissues examined and became non-functional (pseudogenization),

171 whereas some copies maintained the testis-biased expression or were expressed in other tissues (Fig.

172 6b).
173 Discussion

174 Reference genomes are the cornerstone of modern genomics, and a high-quality assembly is
175  valuable for providing insights into species evolution. We here assembled a chromosome-level
176  genome of tree sparrow, which showed great improvement of both contig N50 (54.4 Mbp vs. 750.6
177  kbp) and scaffold N50 (64.7 Mbp vs. 11.1 Mbp) compared with a previous published short-read
178  genome assembly based on short-read sequencing (Qu et al. 2020). The final assembly size of our
179  assembly is larger than the previous one, which primarily caused by the increased assembled TE
180  content (Supplementary Table 2). Due to the limitations of current NGS technology, just like the

181 SDs, the estimates of TE content are always confused by highly repetitive region misassembly and
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182 collapse (Bailey & Eichler 2006; Bustos et al. 2016; Peona et al. 2018; Vollger et al. 2022). It seems

183  that the TEs are underrepresented in the previous assembly of tree sparrow.

184 A great majority of bird genomes were previously reported to contain a low proportion of TEs
185  (<15%), except for Piciformes (Feng et al. 2020). The TE content of tree sparrow (16.82%) is higher
186 than most birds. However, unlike species in Piciformes, the higher TEs are derived mainly from
187  expansions of DNA transposons and LTR-RTs (Fig. 2c), whereas the expansion of LINE type CR1
188  transposons contribute most for the higher level of TEs in Piciformes (Zhang et al. 2014; Manthey
189  etal.2018; Feng et al. 2020). As the scarcity of DNA transposons in avian genomes has been widely
190  reported (Kapusta and Suh et al. 2016; Gao et al. 2017), we assumed that the unexpected expansion
191  and recent activity of DNA transposons, especially CACTA superfamily, may be a species-specific
192 or lineage-specific event in tree sparrow and may play an important role in genome evolution and
193  speciation. We also noticed that most of intact LTR-RTs in tree sparrows are ERVs, which is
194  common in birds (Bolisetty et al. 2012; Hayward et al. 2015; Kapusta and Suh 2016). There are
195 some ERVs identified as betaretrovirus but more cluster with chicken alpharetrovirus, which may
196 due to the evolutionary continuum leading from betaretroviruses to alpharetrovirus in birds

197  (Bolisetty et al. 2012).

198 In addition to the minor expansion of TEs related to the other avian species, significant
199  expansions of eight gene families including C>H.ZNF, OR, PIM, PAK, MROH, HYDIN, HSF and
200  ITPRIPL were detected in the assembly. In addition, we noticed that these members from different
201 families were always clustered together in chromosomes. This indicated that the expansion event of
202 each family is not independent during evolution, while the different expansion scales of these
203  families indicated the duplication also did not happene completely synchronously. Lots of members
204 of'these significantly expanded gene families were totally overlapped with the identified SDs blocks,
205 and about 80% of the SD genes were members of the eight families, which suggested that inter- and
206  intrachromosomal SDs caused a burst of new genes which are concentrated in the eight families.
207  Duplicate genes are known as major sources of genetic material and evolutionary novelty, which
208  play a crucial role in the adaptation to different environment (Moore and Purugganan 2003; Crow
209  and Wagner 2006; Conant and Wolfe 2008; Magadum et al. 2013; Wang et al. 2022). The additional
210 new copies added through SD may provide opportunities for tree sparrow adapting to new

211 environments.
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212 By analyzing the genomic region of the gene families which are related to the frequent and
213 rapid SD events, we noticed that these eight gene families had similar chromosomal distribution
214 pattern with LTR-RTs. On the one side, this result may indicate that an insertion site preference for
215 LTR-RTs is exist in these families. Interestingly, the PIM, one of the eight families, have been
216 known as a preferential proviral integration site for Moloney murine leukemia virus (Cuypers et al.
217 1984). On the other side, the adjacent distributions may also indicate that TEs were involved in the
218  segmental duplication processes. The enrichments of TEs in SD regions were widely reported in
219  mammals (Bailey 2001; Bailey et al. 2003; Cheung 2003; She et al. 2008) and insects (Fiston-Lavier
220 etal. 2007; Zhao et al. 2013; Zhao et al. 2017), although the enriched TEs are different in different
221 species. Despite all this, it still remained uncertain about whether the LTR-RTs mediated the SDs
222 intree sparrow, or some other mechanisms drove the duplication events and the expansion of LTR-

223 RTs was just the by-products of SDs.

224 We then compared the transcription status of the significantly expanded gene families. Just as
225 reported previously, pseudogenization is the most common fate of the duplicate genes (Lynch and
226 Conery 2000), most of members of these families showed no expression in all tissues, even in the
227 mostrecently duplicate copies (SD genes). In addition, among the transcriptionally active members,
228 lots of testis-biased expressed genes were detected, and there still were some members showed
229  broadly expressed pattern especially among the members outside the SD regions. Compared with
230  the old genes, the new gene duplicates are more prone to have testis-biased or testis-specific
231  expression, which have been verified in multiple species (Vinckenbosch et al. 2006; Cui et al. 2015;
232 Kondo etal. 2017; Assis 2019; Zhang and Zhou 2019) and led to the “out of testis” hypothesis. This
233 hypothesis posits that the promiscuous transcription in the testis and the powerful selection
234 pressures such as sperm competition in the male germline encourage the emergence and fixation of
235  new genes, and these new genes may be expressed and acquire new functions in other tissues later
236  (Kaessmann 2010). The similar testis-biased expression pattern in eight gene families with diverse

237 structure and functions in tree sparrow is consistent with the “out of testis” hypothesis in birds.

238 In conclusion, the high-quality chromosome-level assembly of tree sparrow improves our
239  knowledge about the SDs in avian species. The SD events added a large number of new copies of
240  eight gene families into tree sparrow genomes. These SDs and subsequent burst of new genes greatly
241 shaped the tree sparrow genome and facilitated the evolutionary process. In addition, the testis-

242 biased expression patterns of these new genes provide direct proof for the “out of testis™ hypothesis.
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243 We hope that our study can inspire the further studies and exploration on the SDs and their

244 evolutionary consequence in other avian species.
245  Materials and methods

246  Sampling and sequencing

247 All animal collections and experiments were approved by the Committee on the Ethics of
248  Animal Experiments of School of Life Sciences of Lanzhou University. The muscle sample was
249  obtained from a male tree sparrow caught by mist nets in 2021 from Liujiaxia (35°56'N, 103°53'E)
250  of Gansu Province, China. DNA was extracted using the Qiagen DNeasy Blood and Tissue Kit.
251 DNA concentration (minimum of 80 ng/ul) was measured using Qubit DNA Assay Kit in Qubit
252 2.0 Flurometer (Life Technologies, CA, USA). For PacBio sequencing, libraries were constructed
253 with an average insert size of 15kb using SMRTbell Express Template Prep Kit 2.0 (Pacific
254 Biosciences, Menlo Park, USA) and sequenced by PacBio Sequel II. Hi-C libraries were prepared
255 following a standard protocol (Belton et al. 2012) and sequenced by Illumina HiSeq 4000 (Illumina,
256  San Diego, USA). After filtering out low quality and duplicated reads, a total of 58.23 Gb (~45 x)
257  of HiFi reads and 106.29 Gb (~83 x) of Hi-C reads were used for genome assembly.

258  Genome assembly and annotation

259 Hifiasm version 0.16.0 (Cheng et al. 2021) was used for assembling PacBio HiFi reads into
260  highly continuous and accurate contigs. HiC-Pro version 3.1.0 (Servant et al. 2015) was used to
261 process Hi-C data from raw sequencing reads to normalized contact maps and the generated bin
262 matrix results were taken as input data for EndHiC (Wang et al. 2021) to assemble hifiasm-

263  assembled long contigs into chromosomal-level scaffolds.

264 RepeatModeler version 2.0.1 (Flynn et al. 2020) was used to construct a de novo repeat library
265  for the assembled genome of tree sparrow. We employed RepeatMasker version 4.1.1 (Tarailo-
266  Graovac and Chen 2009) to search for tandem elements by aligning the genome sequence against a
267  combination of Repbase (Bao et al. 2015) database and the de novo repeat library constructed by
268  RepeatModeler. Next, we used EDTA (Ou et al. 2019) pipeline to detect and annotate transposable
269  elements (TE). Subsequently, the soft-masked genome was sent to MAKER version 3.01.03 (Holt
270  and Yandell 2011) pipeline to predict protein-coding genes. All available protein sequences of zebra
271 finch (Taeniopygia guttata), great tit (Parus major), house sparrow (Passer domesticus), European

272 pied flycatcher (Ficedula hypoleuca), American crow (Corvus brachyrhynchos) and golden-

10
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273 collared manakin (Manacus vitellinus) from NCBI were aligned to the assembled genome using
274  BLAST+ version 2.2.28 (Camacho et al. 2009) to provide protein homology evidence. All available
275  RNA-seq reads of tree sparrow in public database were assembled into transcript using Trinity
276  version 2.13.2 (Grabherr et al. 2011), and the transcript sequences were aligned to the genome to
277  provide RNA evidence. After polishing those alignments around splice sites using Exonerate
278  version 2.2.0 (Slater and Birney 2005), protein homology evidence and RNA evidence were
279  integrated with ab initio gene predictions from SNAP (Korf 2004), AUGUSTUS version 3.4.0
280  (Stanke et al. 2008) and GeneMark-ES version 4.68 (Lomsadze et al. 2005) by MAKER. Finally,
281  the functions of predicted gene sets were annotated by eggNOG-Mapper version 2.1.6
282 (Cantalapiedra et al. 2021). The accuracy and completeness of assembly and annotation were

283  assessed by BUSCO version 5.2.2 (Manni et al. 2021).
284  Synteny analysis and visualization of genomic landscape

285 We used MUMmer version 4.0.0 (Margais et al. 2018) to align the entire assembly to the latest
286  reference genome of chicken downloaded from Ensembl, and the syntenic dot plots of the whole
287  genome and 15 longest assembled chromosomes were generated by web visualization tool
288  Assemblytics (Nattestad and Schatz 2016). We performed pairwise complete CDS alignment
289  among chicken, tree sparrow and zebra finch using MCscanX (Wang et al. 2012). The guanosine
290  and cytosine (GC) content, gene density, TE density and tandem repeat density for each 500 kb
291 genomic bin were calculated by BEDTools version 2.30.0 (Quinlan and Hall 2010) and shown in

292 circular genome map by Circos version 0.69.8 (Krzywinski et al. 2009).
293  Comparative genomic and phylogenetic analysis

294 Orthologous groups between tree sparrow and another 25 representative avian species,
295  covering 13 orders (Accipitriformes, Anseriformes, Apterygiformes, Casuariiformes,
296 Charadriiformes, Falconiformes, Galliformes, Passeriformes, Piciformes, Psittaciformes,
297  Strigiformes, Struthioniformes, and Tinamiformes), were inferred using OrthoFinder version 2.5.4
298  (Emms and Kelly 2019). The obtained amino acid sequences of 4,085 one-to-one single copy
299  orthologous proteins from the 26 species were aligned using MAFFT version 7.475 (Katoh and
300 Standley 2013) and concatenated into a supergene. The concatenated alignment was used to
301  construct a phylogenetic tree of 26 species using RAXML version 8.2.12 (Stamatakis 2014) with
302 100 bootstrap replicates. We ran MCMCtree program in PAML version 4.9 (Yang 2007) to estimate

303  the species divergence time with two known divergence time points: between chicken and turkey
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304 (Meleagris gallopavo) (CI: 22-42 Mya) and between duck (4nas platyrhynchos) and swan goose
305 (Anser cygnoides) (CI: 22-36 Mya) in TimeTree database (Kumar et al. 2022). We used CAFE

306 version 4.2.1 (De Bie et al. 2006) to detect gene family expansion and contraction.
307  TE analysis

308 We used the same EDTA pipeline as tree sparrow to annotate TE in other 25 bird genomes, in
309  order to ensure comparability. Firstly, we used a combination of LTR_FINDER (Xu and Wang
310 2007) and LTRharvest (Ellinghaus et al. 2008) with LTR_retriever (Ou and Jiang 2018) to annotate
311  LTR-RTs. We extracted the intact LTR-RTs to further classified using TEsorter (Zhang et al. 2022)
312 with Gypsy Database (GyDB) (Llorens et al. 2011). The RT domains of the identified ERVs of tree
313 sparrow, zebra finch and chicken were used to construct a maximum-likelihood (ML) tree using 1Q-
314 TREE version 2.1.2 (Minh et al. 2020). Secondly, we used the LINE and SINE repeat database in
315 RepeatMasker to generate a library to annotate LINEs and SINEs. Finally, the DNA transposons
316 were detected by TIR-Learner (Su et al. 2019) and HelitronScanner (Xiong et al. 2014). TIR-
317 Learner was used to detect TIRs and MITEs, when HelitronScanner was used to detect Helitron
318  transposons. TIRs and MITEs were classified into 5 different superfamilies: 24T (DTA), CACTA
319  (DTC), PIF/Harbinger (DTH), Mutator (DTM), and Tcl/Mariner (DTT). We used the
320 calcDivergenceFromAlign.pl script in RepeatMasker to calculate divergence rate using the Kimura
321 2-parameter divergence metric. Only TE with 0% divergence may be potentially active. The
322 numbers of TEs and eight significantly expanded gene families (C.H>ZNF, OR, PIM, PAK, MROH,

323 HYDIN, HSF and ITPRIPL) were counted in 1 Mbp windows with 200 kbp steps using BEDTools.
324 Segmental duplication characterization

325 We used BISER version 1.2.3 (ISeri¢ et al. 2022) to detect segmental duplication with
326  identity >90% and length >1 kbp. The largest (>70 kbp) and most identical (>95%) segmental
327  duplications were visualized using karyoploteR package (Gel and Serra 2017) in R. The protein
328  coding genes overlapped with SDs blocks were extracted using BEDTools. The chromosome
329  distributions of these genes were obtained from genome annotation information and visualized using

330  TBtools version 1.098685 (Chen et al. 2020).
331  Tissue expression profiles

332 We downloaded all valuable transcriptome data of tree sparrow from the NCBI Sequence Read

333 Archive (SRA) database. The reads were mapped to the assembly using STAR v2.7.9a (Dobin et al.
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334 2013). We performed gene-level quantification approach using featureCounts v2.8.1 (Liao et al.
335  2014) and the expression heatmaps of all members of eight significantly expanded gene families in
336  eight tissues (brain, heart, kidney, liver, lung, muscle, spleen, and testis) were generated using

337  ComplexHeatmap v2.10.0 (Gu et al. 2016) package in R.
338  Data Accessibility Statement

339 All raw sequence data have been deposited in the National Center for Biotechnology

340  Information (NCBI) Sequence Read Archive (SRA) (BioProject: PRINA867105).
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548  Figure 1. Landscape of assembled tree sparrow genome. The layer of colored blocks is a circular
549  representation of the 36 pseudochromosomes and the outermost track represents the gene
550  distribution in the chromosomes, and we show the microchromosomes in green when the
551  macrochromosomes are shown in red (autosomes) and yellow (Z chromosome). The inner 4 tracks
552 show the GC content, gene density, tandem repeat density and TE density respectively. The synteny

553 blocks are clearly demonstrated by links within the circle.
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555  Figure 2. Comparative genomic analysis of tree sparrow. (a) Phylogenetic tree of 26 avian
556  species and gene family evolution. The number of expanded (green) and extracted (red) gene
557  families are shown besides each node and above each species. (b) The eight significantly expanded
558  gene family in tree sparrow. The size of solid circle represents the number of gene family members.
559  (c) Overview of TE contents of 26 avian species. The bar chart displays the percentage of TEs in
560  the assembly. (d) Landscape plot of TE in 6 passerines. Kimura substitution level was showed on
561  the x-axis, and percentage of the genome represented by each TE classification was showed on y-
562  axis. Only the spike at 0% divergence indicating recently active TE. (¢) The ML tree of the RT

563  domains of tree sparrow, zebra finch and chicken ERVs.
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Figure 3. Chromosomal distribution of eight significantly expanded gene families and TEs.
The distribution of members of the eight significantly expanded gene families across chromosomes
is consistent with the LTR-RTs. The microchromosomes 18-36 are zoomed in, and all members of

the eight gene families (yellow) are showed on the uppermost panel with LTR-RTs.
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569

570  Figure 4. Segmental duplication contents in tree sparrow. (a) The pattern of segmental
571  duplications of tree sparrow. The graphic shows an overview of large and high-identity
572 intrachromosomal (blue) and interchromosomal (grey purple) segmental duplications (>70 kbp

573 and >95% sequence identity). The red bar highlight regions represent the C2H2ZNF, OR, PIM, PAK,
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574  MROH, HYDIN, HSF and ITPRIPL gene families. (b) The chromosomal distributions of protein

575  coding genes located in interchromosomal duplication regions.

OR (32) 4 'DIN ( HSF (51)

("7H7ZNF(66) MROH(147) PAK (174) PIM (291)

& © S
&szf’ \° W Q&(}\)‘ @b‘” §\& QQ &z% %‘g‘ \? Q@"\} @6‘” Q\é Q‘ &e% %Q@ V° QS?\? ®§° @& Q,Q &é’ %Q 0‘\@ 5 *-} ﬁ\é@{’

HYDIN (18/23) ITPRIPIL (13/25) C2H2ZNF (5/26)

HSF (33/39) MROH (40/46)

OR (6/54) PIM (24/72) PAK (132/282)

R & & 2P
o < B
CFTES @tﬁ& l

576

077  Figure 5. Tissue expression patterns of the eight significantly expanded gene families. (a)
578  Heatmap of expression profiles of tree sparrow eight significantly expanded gene families. The

579  transcriptionally inactive members were filtered and not shown in the heatmap, and the figures in
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brackets represent the numbers of transcriptionally active members. The scale bar represents the
logio-transformed TMM values. (b) Heatmap of expression profiles of all SD genes, no matter
transcriptionally active or inactive, of the eight families. The numbers in brackets represent active

SD genes and all SD genes respectively.
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Figure 6. Model of SDs in tree sparrow. (a) Inter- and intrachromosomal duplication events
occurred independently in tree sparrow genome. Following the SDs, the expression patterns of new

genes were shifted to testis-biased. (b) Subsequently, the possible outcomes of new genes including
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588  becoming pseudogenes, maintaining testis-biased expression or changing to broadly expression in

589  other tissues.
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