

1 Chromosome-level genome assembly of tree sparrow reveals a burst of new genes driven by 2 segmental duplications

3 Shengnan Wang¹, Yingmei Zhang^{1*}, Yue Shen¹, Zhaocun Lin¹, Yuquan Miao¹, Yanzhu Ji², Gang
4 Song²

⁵ ¹Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School
⁶ of Life Science, Lanzhou University, Lanzhou, 730000, China

7 ²Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy
8 of Science, Beijing, 100101, China

9 *Corresponding author: E-mail: ymzhang@lzu.edu.cn

10

11 Abstract

12 The creation of new genes is a major force of evolution. Despite as an important mechanism
13 that generated new genes, segmental duplication (SD) has yet to be accurately identified and fully
14 characterized in birds because the repetitive complexity leads to misassignment and misassembly
15 of sequence. In addition, SD may lead to new gene copies, which makes it possible to test the “out
16 of testis” hypothesis which suggests genes are frequently born with testis-specific expression. Using
17 a high-quality chromosome-level assembly, we performed a systematic analysis and presented a
18 comprehensive landscape of SDs in tree sparrow (*Passer montanus*). We detected co-localization
19 of newly expanded genes and long terminal repeat retrotransposons (LTR-RTs), both of which are
20 derived from SDs and enriched in microchromosomes. The newly expanded genes are mostly found
21 in eight families including *C2H2ZNF*, *OR*, *PIM*, *PAK*, *MROH*, *HYDIN*, *HSF* and *ITPRIPL*. The large
22 majority of new members of these eight families have evolved to pseudogenes, whereas there still
23 some new copies preserved transcriptional activity. Among the transcriptionally active new
24 members, new genes from different families with diverse structures and functions shared a similar
25 testis-biased expression pattern, which is consistent with the “out of testis” hypothesis. Through a
26 case analysis of the high-quality genome assembly of tree sparrow, we reveal that the SDs contribute
27 to the formation of new genes. Our study provides a comprehensive understanding of the emergence,
28 expression and fate of duplicated genes and how the SDs might participate in these processes and
29 shape genome evolution.

30

31 **Introduction**

32 The origination of new genes is a fundamental question on genome evolution, and gene
33 duplication is one of the most important mechanisms for new gene formation (Ohno 1970; Long et
34 al. 2003; Kaessmann 2010; Ding et al. 2012). Gene duplication can add new copies of genes in the
35 genome, which provide the raw materials for the evolution of novel gene functions and evolutionary
36 adaptation (Crow and Wagner 2006; Magadum et al. 2013). In many cases, the duplicated genes are
37 part of large duplicated chromosomal segments, while the large (>1 kbp) and highly identical (>90%)
38 segment copies in particular chromosomal regions are referred to as segmental duplications (SDs)
39 (Bailey et al. 2001). Owing to their high sequence identity, SDs can promote non-allelic
40 homologous recombination, as a result, they are known as hotspots of chromosomal rearrangement
41 and copy number variation (Bailey et al. 2004; Sharp et al. 2005; Bailey and Eichler 2006; Perry et
42 al. 2006; Liu et al. 2011).

43 Although critical in genome evolution and plasticity, SDs may be particularly problematic to
44 be characterized at the genomic level because of the inconspicuousness, large size and high
45 sequence similarity, therefore are frequently the last regions of genomes to be sequenced and
46 assembled (Bailey et al. 2001; Vollger et al. 2022). Birds have become one of the most densely
47 sequenced higher-level animal taxa thanks to the Bird 10,000 Genomes (B10K) Project, however,
48 at present, most of the avian genome assemblies are based on the next-generation sequencing (NGS)
49 technology (Zhang et al. 2014; Feng et al. 2020). Due to the short reads produced by NGS, a large
50 number of assemblies of birds are highly fragmented and insufficient for identification of highly
51 duplicated segments. Although SDs have been studied in diverse animal taxa, especially in the
52 primates (Samonte and Eichler 2002; Bailey and Eichler 2006; She et al. 2008), the characterization
53 of SD genomic landscape is relatively limited in birds.

54 Advances in long-read genome assembly may help to overcome the issue, and the recent
55 generation of a complete telomere-to-telomere (T2T) human genome (T2T-CHM13) successfully
56 demonstrated sequence resolution of complex SDs (Vollger et al. 2022). To enrich our
57 understanding on SDs organization in birds, we generated a chromosome-level genome assembly
58 of tree sparrow (*Passer montanus*), one of the most common passerine species in China, through
59 the combination of long-read HiFi sequencing technology and Hi-C sequencing. Using the high-
60 quality assembly, we identified the SD contents and analyzed its evolutionary process. We found
61 several distinctive characteristics of SDs in the tree sparrow genome. In addition, we further

62 discussed the possible role of SDs and the duplicated genes in genome evolution. This work
63 provides a reference for understanding the SDs organization and the process of new gene formation
64 in birds.

65 **Results**

66 **Chromosome-level genome assembly of tree sparrow**

67 We sequenced ~45× HiFi reads from a male tree sparrow collected from LJX and assembled
68 these reads into a 1.28 Gb genome assembly, consisting of 744 contigs with contig N50 length of
69 54.42 Mb. About 1.16 Gb sequences (91.49% of the total assembly) of the assembled genome were
70 anchored into 36 pseudo-chromosomes with the help of ~83× Hi-C sequence data (Supplementary
71 Table 1 and 2). Assembly assessment using Benchmarking Universal Single-Copy Orthologs
72 (BUSCO) (Manni et al. 2021) indicated 96.4% avian gene set were present and complete in the
73 assembled genome, confirming the high quality of our assembly (Supplementary Fig. 1). Compared
74 with the previously published Illumina-based assembly of tree sparrow (Qu et al. 2020), our
75 assembly showed great improvement of continuity and completeness (Supplementary Table 2).
76 Subsequent annotation predicted 21,485 protein coding genes covered 94.5% of the complete
77 BUSCO avian gene set (Supplementary Fig. 1).

78 Tree sparrow has $2n = 78$ chromosomes in both sexes, consisting of 8 pairs of relatively large-
79 size macrochromosomes including one pair of sex chromosomes (male ZZ, female ZW), and 31
80 pairs of smaller microchromosomes (Bulatova et al. 1972). We therefore defined the 8 largest
81 assembled pseudo-chromosomes as macrochromosomes. The macrochromosomes are one-to-one
82 homologous to the large autosomes and chromosome Z of chicken (*Gallus gallus*, GGA), except
83 for chromosomes 2 and 6 which aligned to q-arm and p-arm of GGA1 respectively, and
84 chromosome 5 corresponded to q-arm of GGA4 (Supplementary Table 3 and Supplementary Fig.
85 2). These exceptions are the results of fission of GGA4 found in different groups of birds, when the
86 fission of GGA1 seems to be apomorphic for Passeriformes (dos Santos et al. 2017; Degrandi et al.
87 2020). Unlike macrochromosomes, some microchromosomes (chromosomes 18, 19, 25, 27, 30, 31,
88 32, 34, 35 and 36) showed limited synteny conservation with zebra finch (*Taeniopygia guttata*) and
89 chicken (Supplementary Fig.3).

90 **Comparative genomics analysis and evolution of gene families**

91 To explore the evolutionary context of tree sparrow, we performed comparative genomic
92 analysis by comparing the tree sparrow genome with another 25 representative avian species
93 (Supplementary Table 6). In total of 4,085 single copy orthologs present in all 26 avian genomes
94 were identified and used to construct a phylogenetic tree (Supplementary Table 7). Tree sparrow and
95 common canary (*Serinus canaria*) diverged about 23 million years ago (Mya) (Fig. 2a and
96 Supplementary Fig. 5). The genes in tree sparrow genome were grouped into 13,353 gene families
97 (orthogroups) (Supplementary Fig. 4), among these gene families, 639 expanded and 1,259
98 contracted (Fig. 2a). In addition, we noticed that there are 8 gene families significantly expanded in
99 tree sparrow, including the Cys₂His₂ zinc finger (*C2H2ZNF*) protein, olfactory receptor (*OR*),
100 proviral integration site for Moloney murine leukemia virus (*PIM*), p21-activated kinase (*PAK*),
101 maestro heat-like repeat containing protein family member (*MROH*), hydrocephalus-inducing
102 protein homolog (*HYDIN*), heat shock factor (*HSF*) and inositol 1,4,5-trisphosphate receptor-
103 interacting protein-like (*ITPRIPL*) (Fig. 2b).

104 **Landscape and comparative analysis of transposable elements**

105 At least 18.27% of tree sparrow genome assembly is composed of repetitive elements, made
106 up of transposable elements (TEs) (16.84%) and tandem repeat (1.43%) (Supplementary Table 4
107 and 5). The total TEs content is slightly higher than most of the 25 selected bird genomes, except
108 for two species in Piciformes (*Picoides pubescens* and *Tricholaema leucomelas*) (Fig. 2c and
109 Supplementary Table 6). DNA transposons compose 8.29% of the assembly and terminal inverted
110 repeats (TIRs) elements account for most of the DNA transposons, whereas miniature inverted-
111 repeat transposable elements (MITEs) and Helitrons only take up a small proportion
112 (Supplementary Table 5). We noticed that the DNA transposons were clearly higher and showed
113 greater expansion in tree sparrow than other birds (Fig. 2c), which were mainly derived from an
114 ancient burst of TIR/DTC (CACTA) superfamily (Supplementary Fig. 6 and 7). Furthermore, a
115 number of the DNA transposons are prevalent in passerines, indicating that they are potentially
116 active in tree sparrow genome (Fig. 2d).

117 The long terminal repeat retrotransposons (LTR-RTs) are the most abundant retrotransposons
118 in tree sparrow genome (Supplementary Table 5). The tree sparrow genome contains about 532
119 intact LTR-RTs, 442 of these elements are endogenous retroviruses (ERVs). The ERVs in tree
120 sparrow genome were classified into 4 clades (betaretrovirus, gammaretrovirus, epsilonretrovirus
121 and spumaretrovirus) using phylogenetic reconstruction of their reverse transcriptase (RT) domains

122 (Fig. 2e). Betaretrovirus and gammaretrovirus are the two most common ERVs in tree sparrow and
123 more betaretrovirus were detected in tree sparrow and zebra finch than in chicken genome (Fig. 2e).
124 Furthermore, we found that a portion of tree sparrow and zebrafinch betaretrovirus RT domains
125 were clustered with chicken alpharetrovirus (Fig. 2e).

126 Relative to LTR-RT, long interspersed elements (LINEs) and short interspersed elements
127 (SINEs) are less common and active in tree sparrow genome as also in the other 5 songbirds (Fig.
128 2c and 2d). LINEs constitute about 3% of tree sparrow genome, when SINEs account for only 0.05%
129 (Supplementary Table 5). CR1 elements are the domain LINEs in tree sparrow, but only a tiny
130 fraction of them are potentially active (Supplementary Fig. 7).

131 The genomic landscape of transposable elements shows that the DNA transposons are
132 relatively evenly distributed across chromosomes, accompanied by occasional scattered burst (Fig.
133 3), whereas the retrotransposons showed more complex and diverse distribution characteristics. For
134 non-LTR retrotransposons, SINEs are rare in all chromosomes except for chromosome 9, when
135 regions proximity to the assembled chromosomes termini often contain high density of LINEs (Fig.
136 3). Relative to large autosomes, LTR-RTs are more concentrated in Z chromosome and
137 microchromosomes. Interestingly, we observed that LTR-RTs had the similar distribution trend
138 with the eight significantly expanded gene families including *C2H2ZNF*, *OR*, *PIM*, *PAK*, *MROH*,
139 *HYDIN*, *HSF* and *ITPRIPL* (Fig. 3).

140 **Segmental duplication contents and testis-biased expression pattern of new genes**

141 Segmental duplications (SDs) are genomic sequences larger than 1 kbp that are duplicated at
142 least one time in genome with high identity (>90%) (Bailey et al. 2001). In total, we identified 61.74
143 Mbp of nonredundant SDs (>1 kbp in length and >90% identity), which contained 692 annotated
144 protein coding genes (Fig. 4a and Supplementary Table 8). Focusing on SD regions that carry genes,
145 we detected expansions of 54 protein coding gene families through inter- and intrachromosomal
146 duplications in tree sparrow genome (Fig. 4b and Supplementary Fig. 8). Among these families,
147 *PAK* had the largest number of recently duplicated members (268 of *PAK1* and 14 of *PAK3*) and
148 showed the most concentrated chromosomal distribution (Fig. 4b and Supplementary Fig. 8). In
149 addition to *PAK*, the SD blocks also contained large numbers of copies (>20) of the other 7
150 significantly expanded gene families (*C2H2ZNF*: 26, *OR*: 54, *PIM*: 72, *MROH*: 46, *HYDIN*: 23,
151 *HSF*: 39; *ITPRIPL*: 25) (Supplementary Table 8). However, members of each of these families

152 showed relatively dispersed distribution patterns when compared with *PAK* (Fig. 4b and
153 Supplementary Fig. 8).

154 Using the transcriptome data from different tissues (testis, spleen, lung, heart, liver, kidney,
155 muscle and brain) of adult tree sparrow, we compared the expression profiles in different tissues of
156 the eight significantly expanded gene families. Surprisingly, the highly transcribed genes from
157 different families, whether located in the SD regions or not, generally exhibit testis-biased
158 expression in 6 out of the 8 genes (Fig. 5). In contrast, the few members broadly expressed in
159 different tissues are mainly located outside the SD blocks (Fig. 5). In addition, a large proportion of
160 the members in these families, especially in *OR* (~94%) and *C2H2ZNF* (~89%), are almost not
161 expressed in all tissues (Fig. 5a and Supplementary Fig. 9). The transcriptionally inactive genes are
162 also common among SD genes (Fig. 5b).

163 Based on the above results, we inferred the pattern and process of SDs in tree sparrow (Fig. 6).
164 For reasons has not yet been determined, bursts of both inter- and intrachromosomal duplication of
165 several genomic regions occurred during the evolution of tree sparrow (Fig. 6a). Followed a series
166 of SD events, a large number of additional new copies, mainly belonging to eight gene families
167 including *C2H2ZNF*, *OR*, *PIM*, *PAK*, *MROH*, *HYDIN*, *HSF* and *ITPRIPL*, were added to tree
168 sparrow genome. It seems that the expression status of new genes, no matter which families they
169 belong to, were shifted to testis-biased expression pattern (Fig. 6a). Subsequently, a majority of new
170 genes did not express in all tissues examined and became non-functional (pseudogenization),
171 whereas some copies maintained the testis-biased expression or were expressed in other tissues (Fig.
172 6b).

173 **Discussion**

174 Reference genomes are the cornerstone of modern genomics, and a high-quality assembly is
175 valuable for providing insights into species evolution. We here assembled a chromosome-level
176 genome of tree sparrow, which showed great improvement of both contig N50 (54.4 Mbp vs. 750.6
177 kbp) and scaffold N50 (64.7 Mbp vs. 11.1 Mbp) compared with a previous published short-read
178 genome assembly based on short-read sequencing (Qu et al. 2020). The final assembly size of our
179 assembly is larger than the previous one, which primarily caused by the increased assembled TE
180 content (Supplementary Table 2). Due to the limitations of current NGS technology, just like the
181 SDs, the estimates of TE content are always confused by highly repetitive region misassembly and

182 collapse (Bailey & Eichler 2006; Bustos et al. 2016; Peona et al. 2018; Vollger et al. 2022). It seems
183 that the TEs are underrepresented in the previous assembly of tree sparrow.

184 A great majority of bird genomes were previously reported to contain a low proportion of TEs
185 (<15%), except for Piciformes (Feng et al. 2020). The TE content of tree sparrow (16.82%) is higher
186 than most birds. However, unlike species in Piciformes, the higher TEs are derived mainly from
187 expansions of DNA transposons and LTR-RTs (Fig. 2c), whereas the expansion of LINE type CR1
188 transposons contribute most for the higher level of TEs in Piciformes (Zhang et al. 2014; Manthey
189 et al. 2018; Feng et al. 2020). As the scarcity of DNA transposons in avian genomes has been widely
190 reported (Kapusta and Suh et al. 2016; Gao et al. 2017), we assumed that the unexpected expansion
191 and recent activity of DNA transposons, especially CACTA superfamily, may be a species-specific
192 or lineage-specific event in tree sparrow and may play an important role in genome evolution and
193 speciation. We also noticed that most of intact LTR-RTs in tree sparrows are ERVs, which is
194 common in birds (Bolisetty et al. 2012; Hayward et al. 2015; Kapusta and Suh 2016). There are
195 some ERVs identified as betaretrovirus but more cluster with chicken alpharetrovirus, which may
196 due to the evolutionary continuum leading from betaretroviruses to alpharetrovirus in birds
197 (Bolisetty et al. 2012).

198 In addition to the minor expansion of TEs related to the other avian species, significant
199 expansions of eight gene families including *C2H2ZNF*, *OR*, *PIM*, *PAK*, *MROH*, *HYDIN*, *HSF* and
200 *ITPR1PL* were detected in the assembly. In addition, we noticed that these members from different
201 families were always clustered together in chromosomes. This indicated that the expansion event of
202 each family is not independent during evolution, while the different expansion scales of these
203 families indicated the duplication also did not happen completely synchronously. Lots of members
204 of these significantly expanded gene families were totally overlapped with the identified SDs blocks,
205 and about 80% of the SD genes were members of the eight families, which suggested that inter- and
206 intrachromosomal SDs caused a burst of new genes which are concentrated in the eight families.
207 Duplicate genes are known as major sources of genetic material and evolutionary novelty, which
208 play a crucial role in the adaptation to different environment (Moore and Purugganan 2003; Crow
209 and Wagner 2006; Conant and Wolfe 2008; Magadum et al. 2013; Wang et al. 2022). The additional
210 new copies added through SD may provide opportunities for tree sparrow adapting to new
211 environments.

212 By analyzing the genomic region of the gene families which are related to the frequent and
213 rapid SD events, we noticed that these eight gene families had similar chromosomal distribution
214 pattern with LTR-RTs. On the one side, this result may indicate that an insertion site preference for
215 LTR-RTs is exist in these families. Interestingly, the PIM, one of the eight families, have been
216 known as a preferential proviral integration site for Moloney murine leukemia virus (Cuypers et al.
217 1984). On the other side, the adjacent distributions may also indicate that TEs were involved in the
218 segmental duplication processes. The enrichments of TEs in SD regions were widely reported in
219 mammals (Bailey 2001; Bailey et al. 2003; Cheung 2003; She et al. 2008) and insects (Fiston-Lavier
220 et al. 2007; Zhao et al. 2013; Zhao et al. 2017), although the enriched TEs are different in different
221 species. Despite all this, it still remained uncertain about whether the LTR-RTs mediated the SDs
222 in tree sparrow, or some other mechanisms drove the duplication events and the expansion of LTR-
223 RTs was just the by-products of SDs.

224 We then compared the transcription status of the significantly expanded gene families. Just as
225 reported previously, pseudogenization is the most common fate of the duplicate genes (Lynch and
226 Conery 2000), most of members of these families showed no expression in all tissues, even in the
227 most recently duplicate copies (SD genes). In addition, among the transcriptionally active members,
228 lots of testis-biased expressed genes were detected, and there still were some members showed
229 broadly expressed pattern especially among the members outside the SD regions. Compared with
230 the old genes, the new gene duplicates are more prone to have testis-biased or testis-specific
231 expression, which have been verified in multiple species (Vinckenbosch et al. 2006; Cui et al. 2015;
232 Kondo et al. 2017; Assis 2019; Zhang and Zhou 2019) and led to the “out of testis” hypothesis. This
233 hypothesis posits that the promiscuous transcription in the testis and the powerful selection
234 pressures such as sperm competition in the male germline encourage the emergence and fixation of
235 new genes, and these new genes may be expressed and acquire new functions in other tissues later
236 (Kaessmann 2010). The similar testis-biased expression pattern in eight gene families with diverse
237 structure and functions in tree sparrow is consistent with the “out of testis” hypothesis in birds.

238 In conclusion, the high-quality chromosome-level assembly of tree sparrow improves our
239 knowledge about the SDs in avian species. The SD events added a large number of new copies of
240 eight gene families into tree sparrow genomes. These SDs and subsequent burst of new genes greatly
241 shaped the tree sparrow genome and facilitated the evolutionary process. In addition, the testis-
242 biased expression patterns of these new genes provide direct proof for the “out of testis” hypothesis.

243 We hope that our study can inspire the further studies and exploration on the SDs and their
244 evolutionary consequence in other avian species.

245 **Materials and methods**

246 **Sampling and sequencing**

247 All animal collections and experiments were approved by the Committee on the Ethics of
248 Animal Experiments of School of Life Sciences of Lanzhou University. The muscle sample was
249 obtained from a male tree sparrow caught by mist nets in 2021 from Liujiashia (35°56'N, 103°53'E)
250 of Gansu Province, China. DNA was extracted using the Qiagen DNeasy Blood and Tissue Kit.
251 DNA concentration (minimum of 80 ng/μL) was measured using Qubit DNA Assay Kit in Qubit
252 2.0 Flurometer (Life Technologies, CA, USA). For PacBio sequencing, libraries were constructed
253 with an average insert size of 15kb using SMRTbell Express Template Prep Kit 2.0 (Pacific
254 Biosciences, Menlo Park, USA) and sequenced by PacBio Sequel II. Hi-C libraries were prepared
255 following a standard protocol (Belton et al. 2012) and sequenced by Illumina HiSeq 4000 (Illumina,
256 San Diego, USA). After filtering out low quality and duplicated reads, a total of 58.23 Gb (~45 ×)
257 of HiFi reads and 106.29 Gb (~83 ×) of Hi-C reads were used for genome assembly.

258 **Genome assembly and annotation**

259 Hifiasm version 0.16.0 (Cheng et al. 2021) was used for assembling PacBio HiFi reads into
260 highly continuous and accurate contigs. HiC-Pro version 3.1.0 (Servant et al. 2015) was used to
261 process Hi-C data from raw sequencing reads to normalized contact maps and the generated bin
262 matrix results were taken as input data for EndHiC (Wang et al. 2021) to assemble hifiasm-
263 assembled long contigs into chromosomal-level scaffolds.

264 RepeatModeler version 2.0.1 (Flynn et al. 2020) was used to construct a *de novo* repeat library
265 for the assembled genome of tree sparrow. We employed RepeatMasker version 4.1.1 (Tarailo-
266 Graovac and Chen 2009) to search for tandem elements by aligning the genome sequence against a
267 combination of Repbase (Bao et al. 2015) database and the *de novo* repeat library constructed by
268 RepeatModeler. Next, we used EDTA (Ou et al. 2019) pipeline to detect and annotate transposable
269 elements (TE). Subsequently, the soft-masked genome was sent to MAKER version 3.01.03 (Holt
270 and Yandell 2011) pipeline to predict protein-coding genes. All available protein sequences of zebra
271 finch (*Taeniopygia guttata*), great tit (*Parus major*), house sparrow (*Passer domesticus*), European
272 pied flycatcher (*Ficedula hypoleuca*), American crow (*Corvus brachyrhynchos*) and golden-

273 collared manakin (*Manacus vitellinus*) from NCBI were aligned to the assembled genome using
274 BLAST+ version 2.2.28 (Camacho et al. 2009) to provide protein homology evidence. All available
275 RNA-seq reads of tree sparrow in public database were assembled into transcript using Trinity
276 version 2.13.2 (Grabherr et al. 2011), and the transcript sequences were aligned to the genome to
277 provide RNA evidence. After polishing those alignments around splice sites using Exonerate
278 version 2.2.0 (Slater and Birney 2005), protein homology evidence and RNA evidence were
279 integrated with *ab initio* gene predictions from SNAP (Korf 2004), AUGUSTUS version 3.4.0
280 (Stanke et al. 2008) and GeneMark-ES version 4.68 (Lomsadze et al. 2005) by MAKER. Finally,
281 the functions of predicted gene sets were annotated by eggNOG-Mapper version 2.1.6
282 (Cantalapiedra et al. 2021). The accuracy and completeness of assembly and annotation were
283 assessed by BUSCO version 5.2.2 (Manni et al. 2021).

284 **Synteny analysis and visualization of genomic landscape**

285 We used MUMmer version 4.0.0 (Marçais et al. 2018) to align the entire assembly to the latest
286 reference genome of chicken downloaded from Ensembl, and the syntenic dot plots of the whole
287 genome and 15 longest assembled chromosomes were generated by web visualization tool
288 Assemblytics (Nattestad and Schatz 2016). We performed pairwise complete CDS alignment
289 among chicken, tree sparrow and zebra finch using MCscanX (Wang et al. 2012). The guanosine
290 and cytosine (GC) content, gene density, TE density and tandem repeat density for each 500 kb
291 genomic bin were calculated by BEDTools version 2.30.0 (Quinlan and Hall 2010) and shown in
292 circular genome map by Circos version 0.69.8 (Krzywinski et al. 2009).

293 **Comparative genomic and phylogenetic analysis**

294 Orthologous groups between tree sparrow and another 25 representative avian species,
295 covering 13 orders (Accipitriformes, Anseriformes, Apterygiformes, Casuariiformes,
296 Charadriiformes, Falconiformes, Galliformes, Passeriformes, Piciformes, Psittaciformes,
297 Strigiformes, Struthioniformes, and Tinamiformes), were inferred using OrthoFinder version 2.5.4
298 (Emms and Kelly 2019). The obtained amino acid sequences of 4,085 one-to-one single copy
299 orthologous proteins from the 26 species were aligned using MAFFT version 7.475 (Katoh and
300 Standley 2013) and concatenated into a supergene. The concatenated alignment was used to
301 construct a phylogenetic tree of 26 species using RAxML version 8.2.12 (Stamatakis 2014) with
302 100 bootstrap replicates. We ran MCMCTree program in PAML version 4.9 (Yang 2007) to estimate
303 the species divergence time with two known divergence time points: between chicken and turkey

304 (*Meleagris gallopavo*) (CI: 22-42 Mya) and between duck (*Anas platyrhynchos*) and swan goose
305 (*Anser cygnoides*) (CI: 22-36 Mya) in TimeTree database (Kumar et al. 2022). We used CAFE
306 version 4.2.1 (De Bie et al. 2006) to detect gene family expansion and contraction.

307 **TE analysis**

308 We used the same EDTA pipeline as tree sparrow to annotate TE in other 25 bird genomes, in
309 order to ensure comparability. Firstly, we used a combination of LTR_FINDER (Xu and Wang
310 2007) and LTRharvest (Ellinghaus et al. 2008) with LTR_retriever (Ou and Jiang 2018) to annotate
311 LTR-RTs. We extracted the intact LTR-RTs to further classified using TEsorter (Zhang et al. 2022)
312 with Gypsy Database (GyDB) (Llorens et al. 2011). The RT domains of the identified ERVs of tree
313 sparrow, zebra finch and chicken were used to construct a maximum-likelihood (ML) tree using IQ-
314 TREE version 2.1.2 (Minh et al. 2020). Secondly, we used the LINE and SINE repeat database in
315 RepeatMasker to generate a library to annotate LINEs and SINEs. Finally, the DNA transposons
316 were detected by TIR-Learner (Su et al. 2019) and HelitronScanner (Xiong et al. 2014). TIR-
317 Learner was used to detect TIRs and MITEs, when HelitronScanner was used to detect Helitron
318 transposons. TIRs and MITEs were classified into 5 different superfamilies: *hAT* (DTA), *CACTA*
319 (DTC), *PIF/Harbinger* (DTH), *Mutator* (DTM), and *Tcl/Mariner* (DTT). We used the
320 calcDivergenceFromAlign.pl script in RepeatMasker to calculate divergence rate using the Kimura
321 2-parameter divergence metric. Only TE with 0% divergence may be potentially active. The
322 numbers of TEs and eight significantly expanded gene families (*C2H2ZNF*, *OR*, *PIM*, *PAK*, *MROH*,
323 *HYDIN*, *HSF* and *ITPRIPL*) were counted in 1 Mbp windows with 200 kbp steps using BEDTools.

324 **Segmental duplication characterization**

325 We used BISER version 1.2.3 (Išerić et al. 2022) to detect segmental duplication with
326 identity >90% and length >1 kbp. The largest (>70 kbp) and most identical (>95%) segmental
327 duplications were visualized using karyoploteR package (Gel and Serra 2017) in R. The protein
328 coding genes overlapped with SDs blocks were extracted using BEDTools. The chromosome
329 distributions of these genes were obtained from genome annotation information and visualized using
330 TBtools version 1.098685 (Chen et al. 2020).

331 **Tissue expression profiles**

332 We downloaded all valuable transcriptome data of tree sparrow from the NCBI Sequence Read
333 Archive (SRA) database. The reads were mapped to the assembly using STAR v2.7.9a (Dobin et al.

334 2013). We performed gene-level quantification approach using featureCounts v2.8.1 (Liao et al.
335 2014) and the expression heatmaps of all members of eight significantly expanded gene families in
336 eight tissues (brain, heart, kidney, liver, lung, muscle, spleen, and testis) were generated using
337 ComplexHeatmap v2.10.0 (Gu et al. 2016) package in R.

338 **Data Accessibility Statement**

339 All raw sequence data have been deposited in the National Center for Biotechnology
340 Information (NCBI) Sequence Read Archive (SRA) (BioProject: PRJNA867105).

341 **Author contributions**

342 Y. Z. and S.W. conceived the project and designed the research. S.W., Y.S., Z.L. and Y.M.
343 collected samples in the field. S.W. performed the bioinformatic analysis and drafted the original
344 manuscript. Y.Z., G.S. and Y.J. revised and edited the manuscript.

345 **Acknowledgments**

346 This work was supported by the National Natural Science Foundation of China (Grant No.
347 31572216) and Foundation for Excellent Doctoral Student of Gansu Province (No. 22JR5RA413).
348 We received support for the computational work from the Supercomputing Centre of Lanzhou
349 University.

350 **References**

351 Assis R. 2019. Out of the testis, into the ovary: biased outcomes of gene duplication and deletion in
352 *Drosophila*. *Evolution* 73: 1850-1862.

353 Bailey JA, Eichler EE. 2006. Primate segmental duplications: crucibles of evolution, diversity and
354 disease. *Nat Rev Genet* 7: 552-564.

355 Bailey JA, Baertsch R, Kent WJ, Haussler D, Eichler EE. 2004. Hotspots of mammalian
356 chromosomal evolution. *Genome Biol* 5: R23.

357 Bailey JA, Liu G, Eichler EE. 2003. An Alu transposition model for the origin and expansion of
358 human segmental duplications. *Am J Hum Genet* 73: 823-834.

359 Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE. 2001. Segmental duplications: organization
360 and impact within the current human genome project assembly. *Genome Res* 11: 1005-1017.

361 Bao W, Kojima KK, Kohany O. 2015. Repbase update, a database of repetitive elements in
362 eukaryotic genomes. *Mob. DNA* 6: 11.

363 Belton JM, McCord RP, Gibcus J, Naumova N, Zhan Y, Dekker J. 2012. Hi-C: A comprehensive
364 technique to capture the conformation of genomes. *Methods* 58: 268-276.

365 Bolisetty M, Blomberg J, Benachenhou F, Sperber G, Beemon K. 2012. Unexpected diversity and
366 expression of avian endogenous retroviruses. *mBio* 3: e00344-12.

367 Bulatova NS, Radjabli SI, Panov EN. 1972. Karyological description of three species of the genus
368 *Passer*. *Experientia* 28: 1369-1371.

369 Bustos AD, Cuadrado A, Jouve N. 2016. Sequencing of long stretches of repetitive DNA. *Sci Rep*
370 6: 36665.

371 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009.
372 BLAST+: architecture and applications. *BMC Bioinformatics* 10: 421.

373 Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 2021. eggNOG-mapper
374 v2: functional annotation, orthology assignments, and domain prediction at the metagenomic
375 scale. *Mol Biol Evol* 38: 5825-5829.

376 Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. 2020. TBtools: an integrative
377 toolkit developed for interactive analyses of big biological data. *Mol Plant* 13, 1194-1202.

378 Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly
379 using phased assembly graphs with hifiasm. *Nat Methods* 18: 170-175.

380 Cheung J, Estivill X, Khaja R, MacDonald JR, Lau K, Tsui L, Scherer SW. 2003. Genome-wide
381 detection of segmental duplications and potential assembly errors in the human genome
382 sequence. *Genome Biol* 4: R25.

383 Conant GC, Wolfe KH. 2008. Turning a hobby into a job: how duplicated genes find new
384 functions. *Nat Rev Genet* 9: 938-950.

385 Crow KD, Wagner GP. 2006. What is the role of genome duplication in the evolution of complexity
386 and diversity. *Mol Biol Evol* 23: 887-892.

387 Cui X, Lv Y, Chen M, Nikoloski Z, Twell D, Zhang D. 2015. Young genes out of the male: an
388 insight from evolutionary age analysis of the pollen transcriptome. *Mol Plant* 8: 935-945.

389 Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W, van Wezenbeek P, Melief
390 C, Berns A. 1984. Murine leukemia virus-induced T-cell lymphomagenesis: integration of
391 proviruses in a distinct chromosomal region. *Cell* 37: 141-150.

392 De Bie T, Cristianini N, Demuth JP, Hahn MW. 2006. CAFE: a computational tool for the study of
393 gene family evolution. *Bioinformatics* 22: 1269-1271.

394 Ding Y, Zhou Q, Wang W. 2012. Origins of new genes and evolution of their novel functions. *Annu
395 Rev Ecol Evol Syst* 43: 345-363.

396 Degrandi TM, Barcellos SA, Costa AL, Garnero ADV, Hass I, Gunski RJ. 2020. Introducing the
397 bird chromosome database: an overview of cytogenetic studies in birds. *Cytogenet Genome*
398 *Res* 160: 199-205.

399 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras
400 TR. 2013. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29: 15-21.

401 dos Santos MdS, Kretschmer R, Frankl-Vilches C, Bakker A, Gahr M, O'Brien PCM, Ferguson-
402 Smith MA, de Oliveira EHC. 2017. Comparative cytogenetics between two important songbird,
403 models: the zebra finch and the canary. *PLoS ONE* 12: e0170997.

404 Ellinghaus D, Kurtz S, Willhoeft U. 2008. LTRharvest, an efficient and flexible software for *de*
405 *novo* detection of LTR retrotransposons. *BMC Bioinformatics* 9: 18.

406 Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative
407 genomics. *Genome Biol* 20: 238.

408 Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, Reeve AH, Xie D, Chen G, Guo C, Faircloth BC,
409 et al. 2020. Dense sampling of bird diversity increases power of comparative genomics. *Nature*
410 587: 252-257.

411 Fiston-Lavier A, Anxolabehere D, Quesneville H. 2007. A model of segmental duplication
412 formation in *Drosophila melanogaster*. *Genome Res* 17: 1458-1470.

413 Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF. 2020. RepeatModeler2
414 for automated genomic discovery of transposable element families. *Proc Natl Acad Sci USA*
415 117: 9451-9457.

416 Gao B, Wang S, Wang Y, Shen D, Xue S, Chen C, Cui H, Song C. 2017. Low diversity, activity,
417 and density of transposable elements in five avian genomes. *Funct Integr Genomics* 17: 427-
418 439.

419 Gel B, Serra E. 2017. karyoploteR: an R/Bioconductor package to plot customizable genomes
420 displaying arbitrary data. *Bioinformatics* 33: 3088-3090.

421 Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L,
422 Raychowdhury R, Zeng Q, et al. 2011. Trinity: reconstructing a full-length transcriptome
423 without a genome from RNA-Seq data. *Nat Biotechnol* 29: 644-652.

424 Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in
425 multidimensional genomic data. *Bioinformatics* 32: 2847-2849.

426 Hayward A, Cornwallis CK, Jern P. 2015. Pan-vertebrate comparative genomics unmasks retrovirus
427 macroevolution. *Proc Natl Acad Sci USA* 112: 464-469.

428 Holt C, Yandell M. 2011. MAKER2: an annotation pipeline and genome-database management tool
429 for second-generation genome projects. *BMC Bioinformatics* 12: 491.

430 Išerić H, Alkan C, Hach F, Numanagić I. 2022. Fast characterization of segmental duplication
431 structure in multiple genome assemblies. *Algorithms Mol Biol* 17: 4.

432 Kaessmann H. 2010. Origins, evolution, and phenotypic impact of new genes. *Genome Res* 20:
433 1313-1326.

434 Kapusta A, Suh A. 2016. Evolution of bird genomes-a transposon's-eye view. *Ann N Y Acad Sci*
435 1389: 164-185.

436 Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
437 improvements in performance and usability. *Mol Biol Evol* 30: 772-780.

438 Kondo S, Vedanayagam J, Mohammed J, Eizadshenass S, Kan L, Pang N, Aradhya R, Siepel A,
439 Steinhauer J, Lai EC. 2017. New genes often acquire male-specific functions but rarely become
440 essential in *Drosophila*. *Genes Dev* 31: 1841-1846.

441 Korf I. 2004. Gene finding in novel genomes. *BMC Bioinformatics* 5: 59.

442 Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. 2009.
443 Circos: an information aesthetic for comparative genomics. *Genome Res* 19: 1639-1645.

444 Kumar S, Suleski M, Craig JM, Kasprowicz AE, Sanderford M, Li M, Stecher G, Hedges SB. 2022.
445 TimeTree 5: an expanded resource for species divergence times. *Mol Biol Evol* 39: msac174.

446 Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning
447 sequence reads to genomic features. *Bioinformatics* 30: 923-930.

448 Liu P, Lacaria M, Zhang F, Withers M, Hastings PJ, Lupski JM. 2011. Frequency of nonallelic
449 homologous recombination is correlated with length of homology: evidence that ectopic
450 synapsis precedes ectopic crossing-over. *Am J Hum Genet* 89: 580-588.

451 Llorens C, Futami R, Covelli L, Domínguez-Escribá L, Viu JM, Tamarit D, Aguilar-Rodríguez J,
452 Vicente-Ripolles M, Fuster G, Bernet GP, et al. 2011. The Gypsy Database (GyDB) of mobile
453 genetic elements: release 2.0. *Nucleic Acids Res* 39: D70-D74.

454 Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. 2005. Gene identification in
455 novel eukaryotic genomes by self-training algorithm. *Nucleic Acids Res* 33: 6494-6506.

456 Long M, Betrán E, Thornton K, Wang W. 2003. The origin of new genes: glimpses from the young
457 and old. *Nat Rev Genet* 4: 865-875.

458 Lynch M, Conery JS. 2000. The evolutionary fate and consequences of duplicate genes. *Science*
459 290: 1151-1155.

460 Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R. 2013. Gene duplication as a
461 major force in evolution. *J Genet* 92: 155-161.

462 Manthey JD, Moyle RG, Boissinot S. 2018. Multiple and independent phases of transposable
463 elements amplification in the genomes of Piciformes (Woodpeckers and Allies). *Genome Biol*
464 *Evol* 10: 1445-1456.

465 Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO update: novel and
466 streamlined workflows along with broader and deeper phylogenetic coverage for scoring of
467 eukaryotic, prokaryotic, and viral genomes. *Mol Biol Evol* 38: 4647-4654.

468 Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. 2018. MUMmer4: a fast
469 and versatile genome alignment system. *PLoS Comput Biol* 14: e1005944.

470 Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R.
471 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the
472 genomic era. *Mol Biol Evol* 37: 1530-1534.

473 Moore RC, Purugganan MD. 2003. The early stages of duplicate gene evolution. *Proc Natl Acad*
474 *Sci USA* 100: 15682-15687.

475 Nattestad M, Schatz MC. 2016. Assemblytics: a web analytics tool for the detection of variants from
476 an assembly. *Bioinformatics* 32: 3021-3023.

477 Ohno S. 1970. Evolution by gene duplication. Springer, New York.

478 Peona V, Weissensteiner MH, Suh A. 2018. How complete are “complete” genome assemblies?-
479 An avian perspective. *Mol Ecol Resour* 18: 1188-1195.

480 Perry GH, Tchinda J, McGrath SD, Zhang J, Picker SR, Cáceres AM, Iafrate AJ, Tyler-Smith C,
481 Scherer SW, Eichler EE, et al. 2006. Hotspots for copy number variation in chimpanzees and
482 humans. *Proc Natl Acad Sci USA* 103: 8006-8011.

483 Ou S, Jiang N. 2018. LTR_retriever: a highly accurate and sensitive program for identification of
484 long terminal repeat retrotransposons. *Plant Physiol* 176: 1410-1422.

485 Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, Lugo CSB, Elliott TA, Ware D, Peterson
486 T, et al. 2019. Benchmarking transposable element annotation methods for creation of a
487 streamlined, comprehensive pipeline. *Genome Biol* 20: 275.

488 Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features.
489 *Bioinformatics* 26: 841-842.

490 Qu Y, Chen C, Xiong Y, She H, Zhang YE, Cheng Y, DuBay S, Li D, Ericson PGP, Hao Y, et al.
491 2020. Rapid phenotypic evolution with shallow genomic differentiation during early stages of
492 high elevation adaptation in Eurasian tree sparrows. *Natl Sci Rev* 7: 113-127.

493 Samonte RV, Eichler EE. 2002. Segmental duplications and the evolution of the primate genome.
494 *Nat Rev Genet* 3: 65-72.

495 Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, Heard E, Dekker J, Barillot E.
496 2015. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. *Genome Biol* 16:
497 259.

498 Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM, Clark RA,
499 Schwartz S, Segraves R, Oseroff VV, Albertson DG, Pinkel D, Eichler EE. 2005. Segmental
500 duplications and copy-number variation in the human genome. *Am J Hum Genet* 77: 78-88.

501 She X, Cheng Z, Zöllner S, Church DM, Eichler EE. 2008. Mouse segmental duplication and copy
502 number variation. *Nat Genet* 40: 909-914.

503 Slater GSC, Birney E. 2005. Automated generation of heuristics for biological sequence comparison.
504 *BMC Bioinformatics* 6: 31.

505 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
506 phylogenies. *Bioinformatics* 30: 1312-1313.

507 Stanke M, Diekhans M, Baertsch R, Haussler D. 2008. Using native and syntenically mapped cDNA
508 alignments to improve *de novo* gene finding. *Bioinformatics* 24: 637-644.

509 Su W, Gu X, Peterson T. 2019. TIR-Learner, a new ensemble method for TIR transposable element
510 annotation, provides evidence for abundant new transposable elements in the maize genome.
511 *Mol Plant* 12: 447-460.

512 Tarailo-Graovac M, Chen N. 2009. Using RepeatMasker to identify repetitive elements in genomic
513 sequences. *Curr Protoc Bioinform* 25: 4.10.1-4.10.14.

514 Vinckenbosch N, Dupanloup I, Kaessmann H. 2006. Evolutionary fate of retroposed gene copies in
515 the human genome. *Proc Natl Acad Sci USA* 103: 3220-3225.

516 Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, Diekhans M, Sulovari
517 A, Munson KM, Lewis AP, et al. 2022. Segmental duplications and their variation in a
518 complete human genome. *Science* 376: 55.

519 Wang S, Wang H, Jiang F, Wang A, Liu H, Zhao H, Yang B, Xu D, Zhang Y, Fan W. 2021. EndHiC:
520 assemble large contigs into chromosomal-level scaffolds using the Hi-C links from contig ends.
521 arXiv:2111.15411.

522 Wang S, Zhang Y, Yang W, Shen Y, Lin Z, Zhang S, Song G. Duplicate genes as sources for rapid
523 adaptive evolution of sperm under environmental pollution in tree sparrow. *Mol Ecol* doi:
524 10.1111/mec.16833.

525 Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H, Kissinger JC,
526 Paterson AH. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene
527 synteny and collinearity. *Nucleic Acids Res* 40: e49.

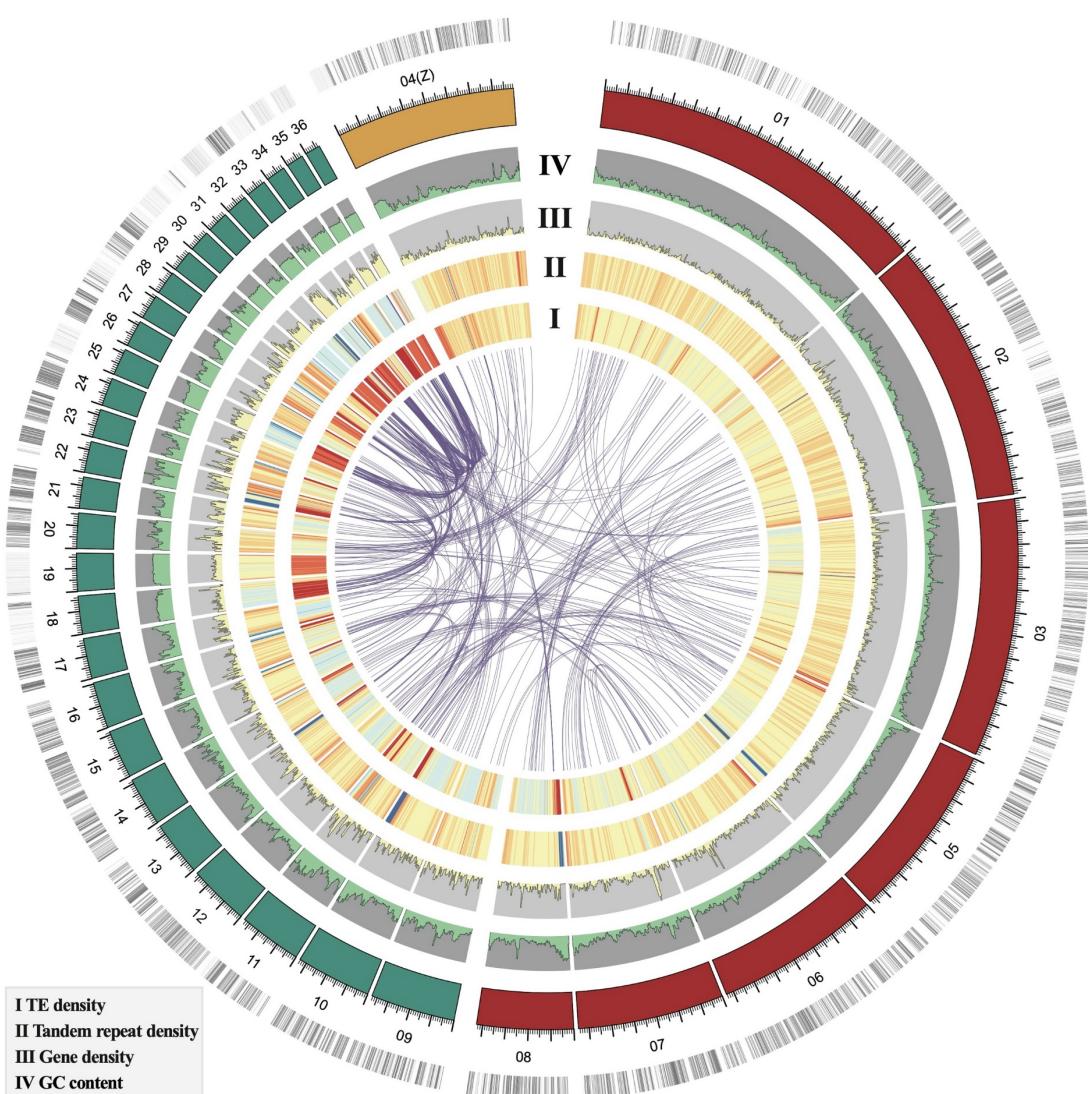
528 Xiong W, He L, Lai J, Dooner HK, Du C. 2014. HelitronScanner uncovers a large overlooked cache
529 of Helitron transposons in many plant genomes. *Proc Natl Acad Sci USA* 111: 10263-10268.

530 Xu Z, Wang H. 2007. LTR-FINDER: an efficient tool for the prediction of full-length LTR
531 retrotransposons. *Nucleic Acids Res* 35: W265-W268.

532 Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. *Mol Biol Evol* 24: 1586-
533 1591.

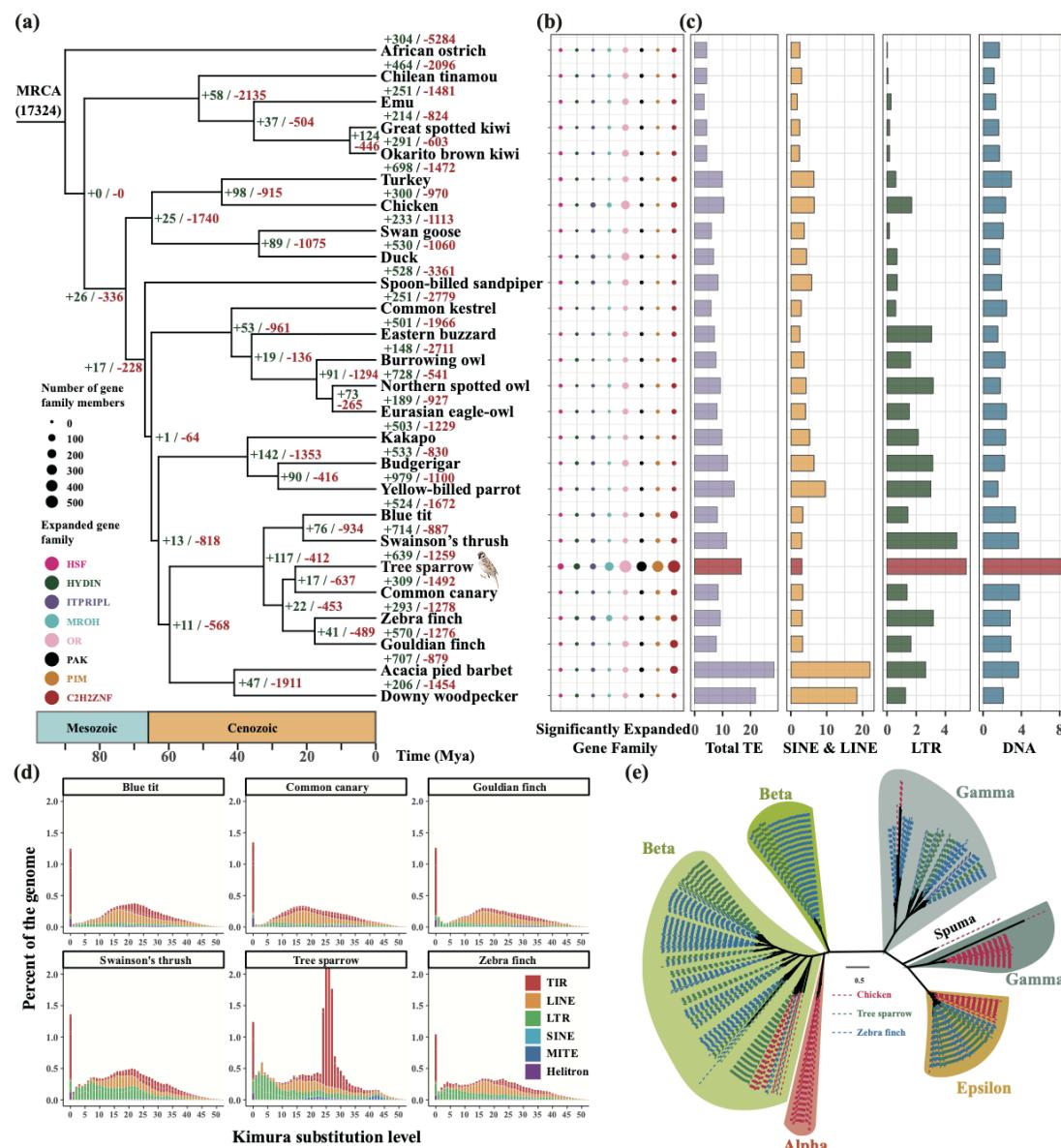
534 Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, Storz JF, Antunes A, Greenwold MJ, Meredith RW,
535 et al. 2014. Comparative genomics reveals insights into avian genome evolution and adaptation.
536 *Science* 346: 1311-1320.

537 Zhang J, Zhou Q. 2019. On the regulatory evolution of new genes throughout their life history. *Mol
538 Biol Evol* 36: 15-27.

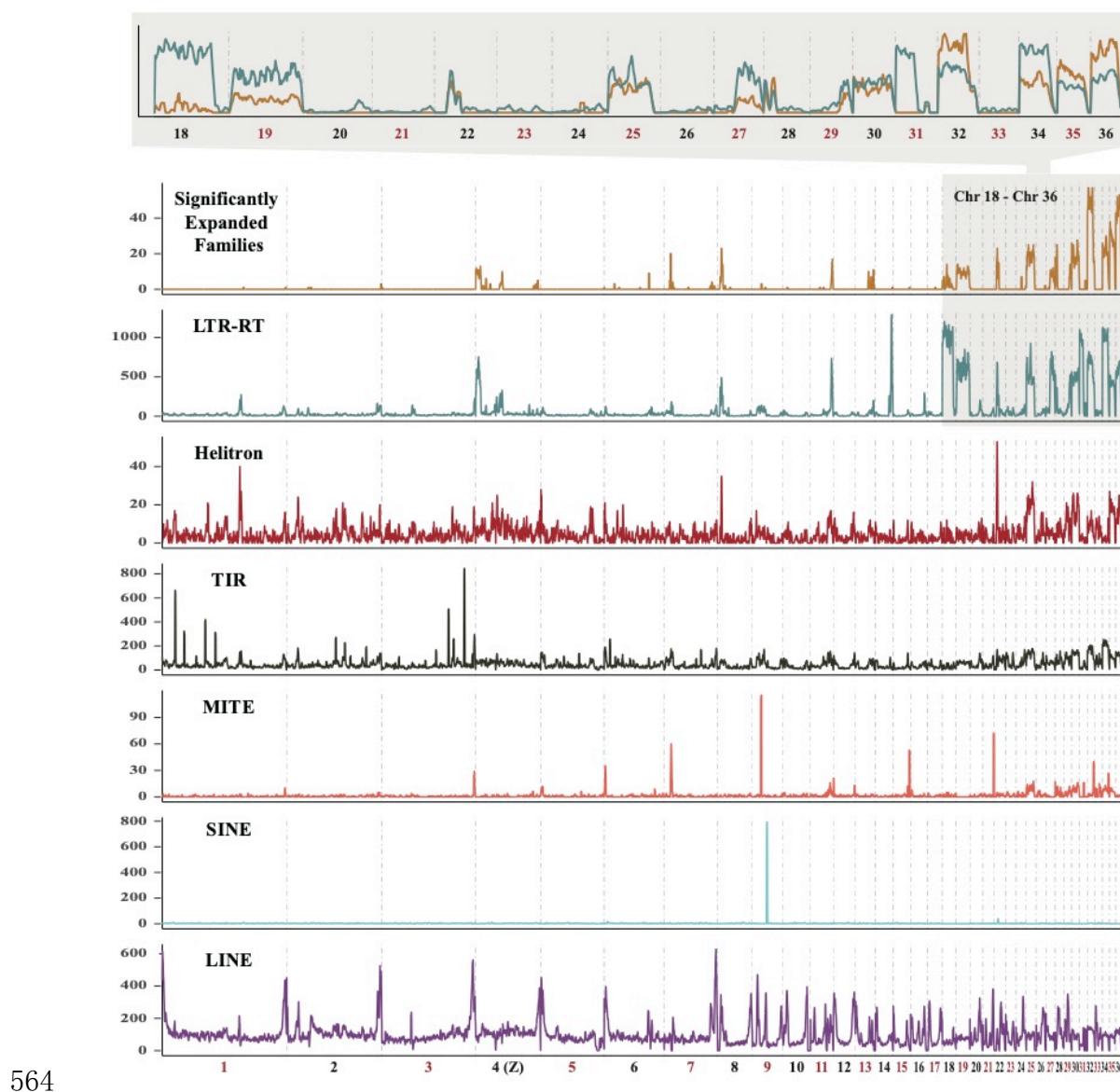

539 Zhang R, Li G, Wang, X, Dainat J, Wang Z, Ou S, Ma Y. 2022. TEsorter: an accurate and fast
540 method to classify LTR-retrotransposons in plant genomes. *Hortic Res* 9: uhac017.

541 Zhao Q, Ma D, Vasseur L, You M. 2017. Segmental duplications: evolution an impact among the
542 current Lepidoptera genomes. *BMC Evol Biol* 17: 161.

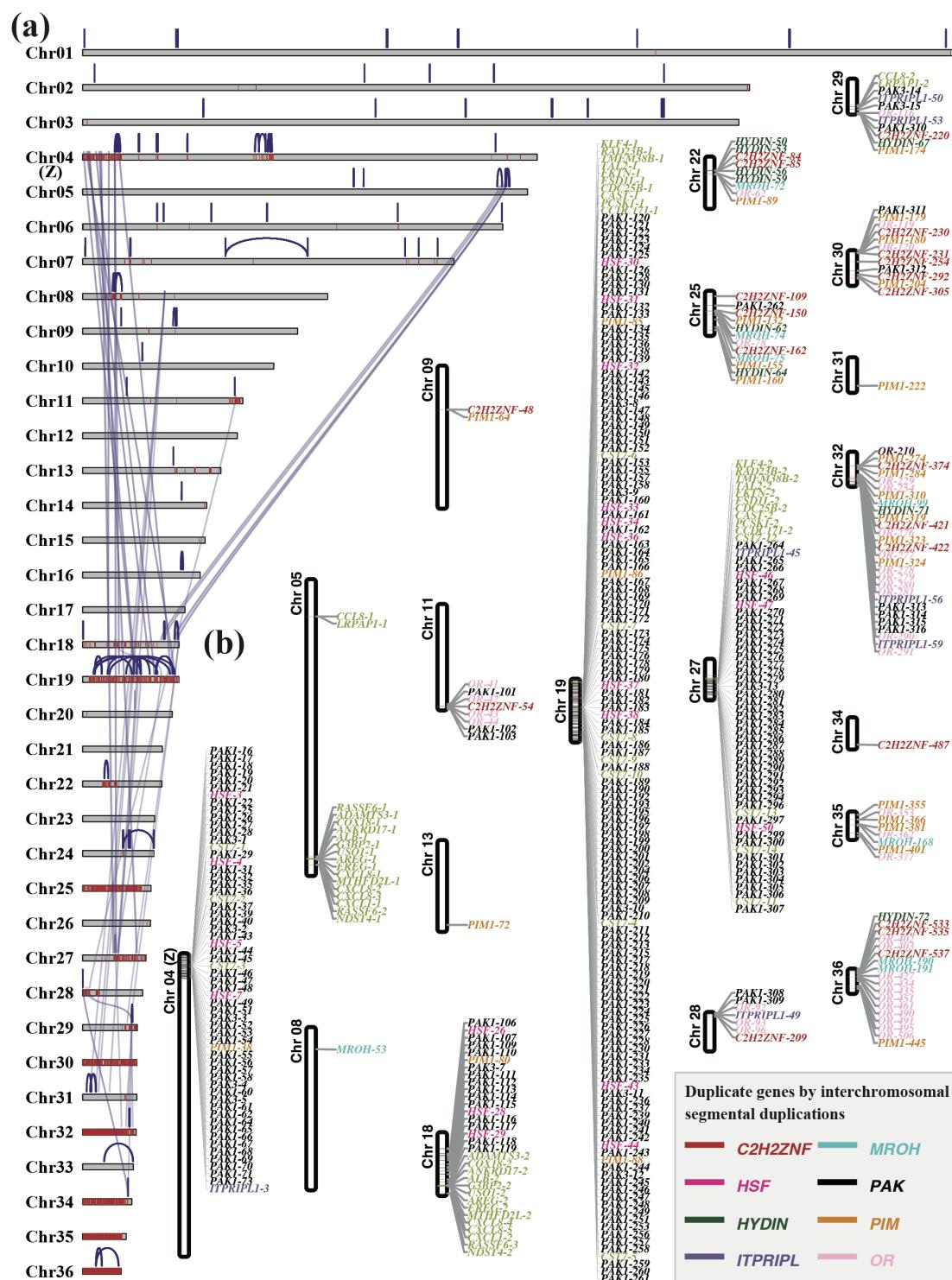
543 Zhao Q, Zhu Z, Kasahara M, Morishita S, Zhang Z. 2013. Segmental duplications in the silkworm
544 genome. *BMC Genomics* 14: 521.


545

546 **Figure**

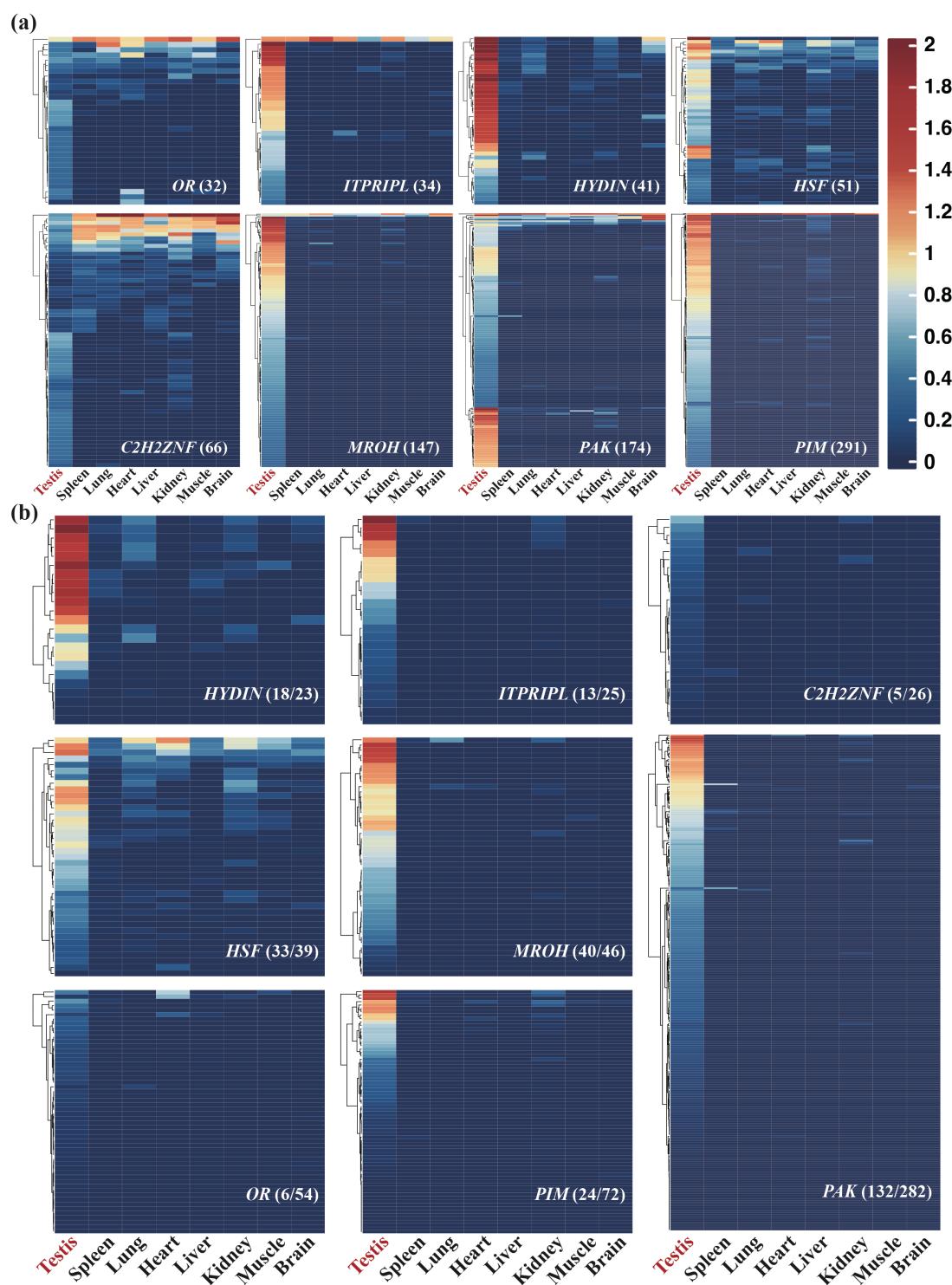

547

548 **Figure 1. Landscape of assembled tree sparrow genome.** The layer of colored blocks is a circular
549 representation of the 36 pseudochromosomes and the outermost track represents the gene
550 distribution in the chromosomes, and we show the microchromosomes in green when the
551 macrochromosomes are shown in red (autosomes) and yellow (Z chromosome). The inner 4 tracks
552 show the GC content, gene density, tandem repeat density and TE density respectively. The synteny
553 blocks are clearly demonstrated by links within the circle.



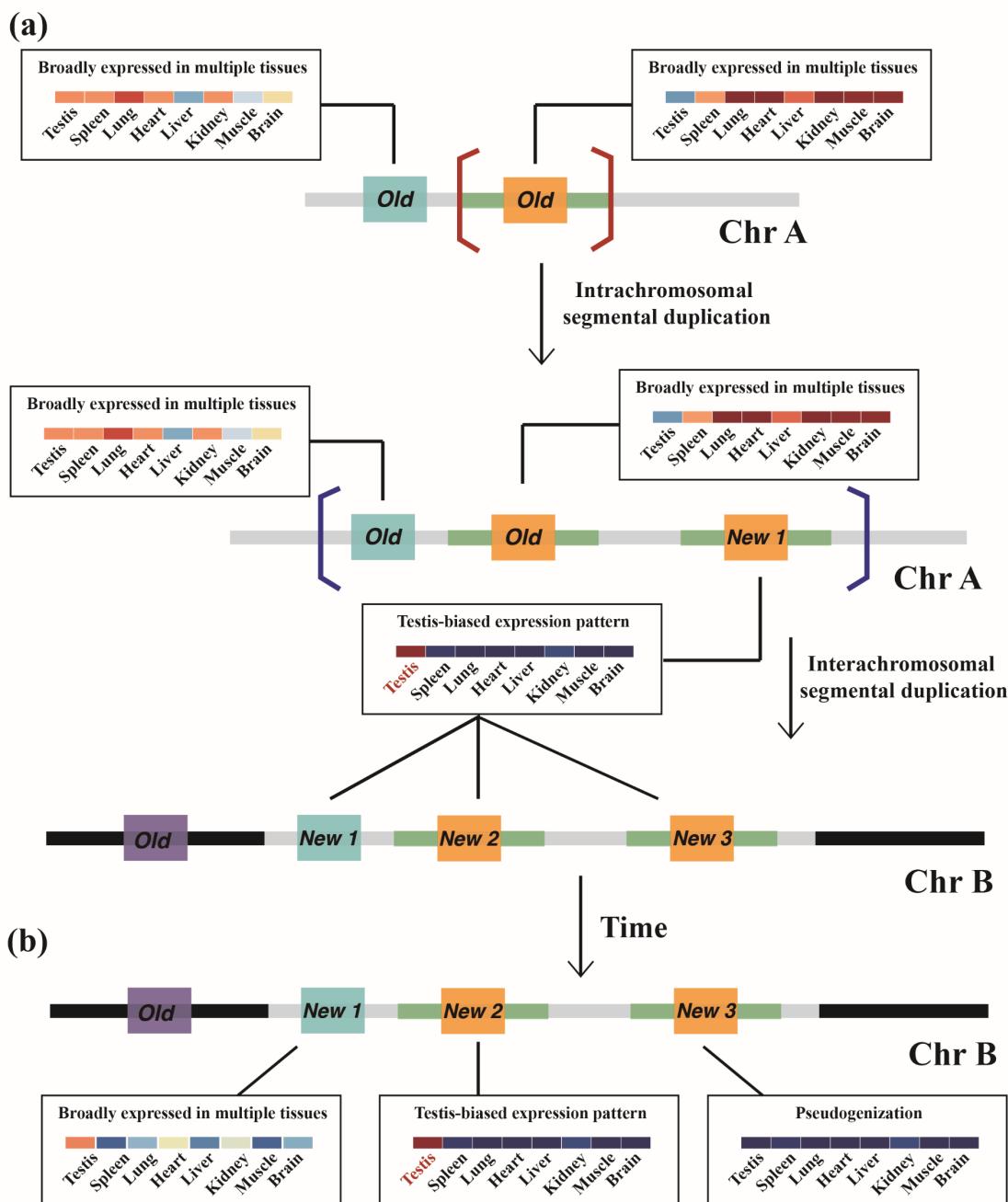
554

555 **Figure 2. Comparative genomic analysis of tree sparrow.** (a) Phylogenetic tree of 26 avian
556 species and gene family evolution. The number of expanded (green) and extracted (red) gene
557 families are shown besides each node and above each species. (b) The eight significantly expanded
558 gene family in tree sparrow. The size of solid circle represents the number of gene family members.
559 (c) Overview of TE contents of 26 avian species. The bar chart displays the percentage of TEs in
560 the assembly. (d) Landscape plot of TE in 6 passerines. Kimura substitution level was showed on
561 the x-axis, and percentage of the genome represented by each TE classification was showed on y-
562 axis. Only the spike at 0% divergence indicating recently active TE. (e) The ML tree of the RT
563 domains of tree sparrow, zebra finch and chicken ERVs.



564 **Figure 3. Chromosomal distribution of eight significantly expanded gene families and TEs.**
565 The distribution of members of the eight significantly expanded gene families across chromosomes
566 is consistent with the LTR-RTs. The microchromosomes 18-36 are zoomed in, and all members of
567 the eight gene families (yellow) are showed on the uppermost panel with LTR-RTs.

570 **Figure 4. Segmental duplication contents in tree sparrow.** (a) The pattern of segmental
571 duplications of tree sparrow. The graphic shows an overview of large and high-identity
572 intrachromosomal (blue) and interchromosomal (grey purple) segmental duplications (>70 kbp
573 and >95% sequence identity). The red bar highlight regions represent the *C2H2ZNF*, *OR*, *PIM*, *PAK*,


574 MROH, HYDIN, HSF and ITPRIPL gene families. (b) The chromosomal distributions of protein
575 coding genes located in interchromosomal duplication regions.

576

577 **Figure 5. Tissue expression patterns of the eight significantly expanded gene families.** (a)
578 Heatmap of expression profiles of tree sparrow eight significantly expanded gene families. The
579 transcriptionally inactive members were filtered and not shown in the heatmap, and the figures in

580 brackets represent the numbers of transcriptionally active members. The scale bar represents the
 581 log₁₀-transformed TMM values. (b) Heatmap of expression profiles of all SD genes, no matter
 582 transcriptionally active or inactive, of the eight families. The numbers in brackets represent active
 583 SD genes and all SD genes respectively.

584

585 **Figure 6. Model of SDs in tree sparrow.** (a) Inter- and intrachromosomal duplication events
 586 occurred independently in tree sparrow genome. Following the SDs, the expression patterns of new
 587 genes were shifted to testis-biased. (b) Subsequently, the possible outcomes of new genes including

588 becoming pseudogenes, maintaining testis-biased expression or changing to broadly expression in
589 other tissues.