

1 **System analysis of differentially expressed miRNAs in hexaploid
2 wheat display tissue-specific regulatory role during Fe deficiency
3 response**

4 Shivani Sharma^{1,2}, Dalwinder Singh¹, Riya Joon^{1,2}, Vishnu Shukla³, Ajit Pal Singh¹,
5 Palvinder Singh¹, Shrikant Mantri¹ and Ajay K Pandey^{1,*}

6

7 Author affiliations

8 ¹*National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81,
9 Knowledge City, S.A.S. Nagar, Mohali, Punjab, India.*

10 ²*Department of Biotechnology, Panjab University, Chandigarh, India.*

11 ³*Indian Institute of Science Education and Research, Tirupati, India*

12

13 ^{*}*Corresponding author*

14 Dr. Ajay K Pandey, Scientist-F

15 National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81,
16 Knowledge City, Mohali-140306, Punjab, India.

17 Telephone: +91-1724990124

18 Email: pandeyak@nabi.res.in; pandeyak1974@gmail.com

19 ORCID iD: <https://orcid.org/0000-0003-1064-139X>

20

21

22

23

24

25

26

27

28 **Abstract**

29 **Background**

30 Iron (Fe) is an essential mineral element, and its deficiency in soil largely affects crop
31 productivity. In plants, the molecular mechanisms underlying the genetic regulation of Fe
32 deficiency responses have yet to be well understood. Specifically, microRNA (miRNA)
33 mediated regulation of Fe deficiency response and its regulatory network is largely elusive.
34 In the current work, we utilized a whole genome transcriptomic approach to identify the Fe
35 deficiency-responsive miRNAs to understand the molecular mechanisms of Fe deficiency
36 response in wheat seedlings. The study also identifies nine novel miRNAs putatively
37 involved in Fe deficiency response. Further, the identified miRNAs showed tissue
38 preferences relating them to differential mechanisms against Fe deficiency.

39 **Results**

40 In the present study, we performed small RNA-targeted whole genome transcriptome
41 analysis to identify the involvement of sRNAs in Fe deficiency response. The analysis
42 identified 105 differentially expressed miRNAs corresponding to Fe deficiency response,
43 among them, 9 miRNAs were found to be novel in this study. Interestingly, tissue-specific
44 regulation of Fe deficiency response also participates through miRNA-mediated regulation.
45 We identified 17 shoot specific miRNAs and 18 root-specific miRNAs with altered
46 expression. We validated the tissue specificity of these *miRNAs* by stem-loop quantitative
47 RT-PCR. Further, an attempt was made to predict their targets to speculate their participation
48 in Fe deficiency response. This miRNA target prediction analysis suggested a few major
49 targets of the identified miRNAs, such as multicopper oxidases, E3 ubiquitin ligases, GRAS
50 family, and WRKY transcription factors previously known to play key roles in Fe
51 homeostasis. Our analysis of selected miRNAs also confirmed a temporal regulation of the
52 response.

53 **Conclusion**

54 The first information generated here will classify the repository of wheat *miRNAs* (with few
55 novel miRNAs) for their role in Fe deficiency response. Our work provides insights into
56 miRNA-mediated regulatory pathways during Fe deficiency.

57 **Keywords**

58 *miRNA*, wheat, small RNA, gene regulation, iron, transcriptome

59

60 **Background**

61 Iron (Fe) is an essential micronutrient. Being the principal component of chlorophyll, Fe-S
62 clusters of enzymes and cofactors it participates in various biochemical processes, including
63 photosynthesis, respiration etc. [1]. Despite being the fourth most abundant element in the
64 earth's crust, its bioavailability to plants is restricted owing to its presence as sparingly
65 soluble Fe^{3+} form in aerobic and high pH soil environment [2,3]. Fe deficiency in plants
66 causes interveinal chlorosis and drastically impacts vegetative growth and crop yield [4].
67 Therefore, plants have devised distinct uptake mechanisms and efficient modes of Fe
68 translocation for its tissue-specific distribution via specific transporters and chelators [5].
69 Dicots and non-graminaceous monocots utilise the strategy-I mode of Fe uptake by reduction
70 of Fe^{3+} to Fe^{2+} at the root surface, followed by internalization of soluble Fe by membrane-
71 localized iron-regulated transporter-1 (IRT1) [6]. Graminaceous plants like maize and wheat,
72 on the other hand, chelate Fe^{3+} by excreting phytosiderophores, chelation-based strategy
73 known as strategy-II. The resulting complexes are then taken up by yellow stripe-like (YSL)
74 transporter in the plasma membrane of roots. Molecular components regulating Fe
75 homeostasis in plants comprise distinct families of transcription factors (TFs) like basic
76 helix-loop-helix (bHLH), WRKY and members of no apical meristem (NAC), IDE-binding
77 factors (IDEF1 and IDEF2) [7–13]. Some of these TFs are regulated at post-translational
78 levels by E3-ubiquitin ligases such as BRUTUS (BTS) in Arabidopsis and Hemerythrin-rich
79 zinc finger-like proteins (HRZ1 & HRZ2) in rice to tackle the deleterious consequences of
80 activation of Fe uptake and transport machinery during Fe deficiency [14,15]. The studies
81 related to Fe transport and regulation have been extensively carried out in model plants like
82 Arabidopsis and rice but to only a limited extent in wheat.

83 Plant responses are regulated by a number of non-coding RNAs (ncRNAs) where
84 these ncRNAs can be categorised into three major classes i.e. small (18-30 nt), medium (31-
85 200 nt) and long (>201 nt) based on their nucleotide length [16]. MicroRNAs (miRNAs) are
86 a single-stranded non-coding endogenous class of small RNAs that regulate the target
87 mRNAs by either causing their cleavage or translational repression [17]. In plants, *miRNAs*
88 are known to play roles in diverse fundamental processes as controllers of vegetative and
89 floral organ development, phytohormone signalling, and regulation of various biotic and
90 abiotic stress responses, including regulation of genes involved in nutrient uptake and
91 transport under nutrient stress conditions [18–26]. Previously, 24 miRNAs were found to
92 have iron-deficiency responsive cis-elements (IDE1 and IDE2) in their promoter regions.
93 Around 70% of them i.e. 17 miRNAs were responsive to Fe deficiency in Arabidopsis shoot
94 and/or root [27]. In another study, 32 Fe deficiency responsive miRNAs were identified using

95 a microarray-based approach in leaves, roots and nodules of common bean (*Phaseolus*
96 *vulgaris*) [28]. Differential expression pattern of miRNAs responsive to Fe deficiency in
97 Arabidopsis rosette and shoot has also been analysed, pinpointing eight miRNAs from seven
98 different families [29]. Recently, several seed iron concentration-related QTLs were found to
99 be the targets of Fe deficiency responsive miRNAs in rice recombinant inbred lines (RILs)
100 [30]. Seven of nine miRNAs identified in the study showed downregulation in response to
101 Fe-deficient conditions. Further, identifying 26 known and 55 novel Fe-deficiency-responsive
102 miRNAs in *Citrus sinensis* suggested a larger role being played by miRNAs during Fe
103 deficiency [31].

104 Hexaploid wheat (*Triticum aestivum* L.) is the most widely grown cereal crop in
105 many countries and accounts for a total of 20% of calorific intake by humans [32]. Multiple
106 miRNAs from wheat have already been characterized for their roles in various abiotic
107 stresses, including nutrient starvation (nitrogen and phosphate), salinity and drought stress
108 [33–35]. Wheat has a complex genetic architecture, and there is a dearth of knowledge about
109 different means of genetic regulation of Fe homeostasis in this crop. Identifying distinct
110 miRNAs and their targets during Fe-homeostasis will help develop regulatory networks.
111 Previously, core components participating in strategy-II mode of Fe uptake and mobilization
112 were identified using transcriptomics-based approaches in wheat [36–38]. However,
113 information on the role of miRNAs in the Fe deficiency response in wheat is lacking.
114 Therefore, we extended this work to get an insight into the miRNA-based regulation during
115 Fe-deficient conditions. In the current study, we investigated the differentially expressed
116 miRNAs in response to Fe deficiency to understand small RNA-mediated regulation of Fe-
117 homeostasis. Our work identified a sub-set of the shoot and root-specific miRNAs targeting
118 Fe-mobilization in a tissue-specific manner.

119

120 **Results**

121 ***Analysis of wheat sRNA during Fe deficiency***

122 To get an insight into sRNA (small RNA) mediated regulation of Fe deficiency response in
123 wheat, we performed whole genome sRNA sequencing from the root and shoot tissues of
124 seedlings subjected to Fe deficiency for different time points. As the study aimed to generate
125 a Fe deficiency responsive sRNA inventory, sequencing of sRNA was done with the pooled
126 RNA samples of the respective wheat tissues exposed to Fe deficiency for different time
127 points (**Figure S1**). A total of 14.54 million and 14.46 million reads were obtained for iron
128 sufficient (+Fe), and iron deficient (−Fe) shoots, respectively, whereas 14.97 million and

129 16.03 million reads were obtained for +Fe and -Fe root libraries. After removing low-quality
130 reads, 14.31 million and 13.72 million clean reads yielded for +Fe and -Fe shoot, whereas
131 14.77 million and 15.77 million for +Fe and -Fe root, respectively. After further refining the
132 sequence reads, we ended with 6.4 million to 10.01 million total sRNA reads with 1.74
133 million to 2.28 million unique reads encompassing different types of small RNAs (**Table S1**).
134 Chromosomal distribution of the mapped sRNA reads on the wheat reference genome
135 showed a predominant contribution from A and B genomes compared to D genomes (**Figure S2**). Interestingly, all the genomes of chromosome 7 contributed to the total sRNA reads.
136

137 Interestingly, we observed that the sense strand of the genome is more responsive
138 towards Fe deficiency as more than 61% of the sRNA reads observed were coded from the
139 sense strand, while the antisense strand was only able to contribute for around 5-10% of the
140 fraction, irrespective of the tissue (**Table S1; Figure S2**). Further, we observed a decrease in
141 sRNA reads coded by both sense and antisense strands in the shoot in response to Fe
142 deficiency (4.46% and 1.03% decrease for sense and antisense strands, respectively). In
143 contrast, to shoot, there was an increase in sRNA reads in roots in response to Fe deficiency,
144 preferably over-representing sRNAs coded by antisense strand (0.2% and 1.48% for sense
145 and an antisense strand, respectively).

146 To gain an insight into sRNA distribution in the genome, we analyzed whether the
147 coding region or the non-coding region is responsive to sRNA-mediated regulation of Fe
148 deficiency response. Further, the positional mapping of generated sRNA reads from the root
149 and shoot accounted for 11.15 % and 6.24 % of reads mapping to exon and 2.54 % and 3.90
150 % to intron, respectively (**Table S2**).
151

152 ***Identification of Fe deficiency-induced miRNAs***

153 To characterize the sRNA reads into different subfamilies, we annotated all the sRNAs with
154 Rfam database into rRNA, snoRNA, snRNA, TAS, and miRNA classes (**Figure 1A-D**). This
155 analysis extended our observation of inverse relations in sRNA reads in shoot and root tissues
156 in response to Fe deficiency. This categorised data showed a significant decrease in miRNA
157 representation in response to Fe deficiency in shoot tissues. In contrast, we observed
158 increased miRNA reads in response to Fe deficiency in root tissues (**Figure 1A-D**). This data
159 suggested that miRNAs might be acting in a tissue manner in regulating Fe deficiency
160 response in wheat.

161 While analysing the length-based classification of unique sRNA reads, we found that the 20-
162 24 nucleotide sRNAs were the most abundant classes in our datasets, representing around 5-

163 30% of our data irrespective of the treatment conditions (Figure 1E). To our interest, the
164 abundance pattern of sRNAs observed in shoot and root tissues w.r.t. to Fe deficiency was
165 also found to be length biased. We observed that 24 nucleotide-long sRNAs follow decreased
166 abundance in shoot while showing an increased abundance in root tissue in response to Fe
167 deficiency (**Figure 1E**).

168 As we observed that the 20-24 nucleotide long sRNAs are over-represented in our
169 dataset, which typically lies in the range of miRNAs, we analysed these reads for
170 characteristics of miRNAs. Our analysis identified 105 miRNAs in our transcriptome
171 analysis, out of which nine were novel (**Table S3**). As evident from previous reports, most
172 active miRNAs prefer U at the first nucleotide at 5' end, which in addition to high A+U
173 content, provides them low internal stability, promoting them to be processed into mature
174 miRNA through RISC complex (RNA-induced silencing complex). Additionally, A or U at
175 the 10th position is over-represented in natural plant miRNAs, further contributing to their
176 processability [39,40]. In agreement of these previous reports, we observed that around 27%
177 of the identified miRNAs showed first nucleotide preference for U and around 45% of
178 miRNAs have nucleotide preference for A/U at 10th position (**Table S3**). Hairpin analysis of
179 these identified miRNAs classified them into 36 miRNA encoding families. Interestingly,
180 members for 35 out of 36 hairpin families are represented in the wheat genome, which was
181 the maximum variability observed among all the 66 plant species analysed (**Table S4**). To
182 further validate our report, we predicted the secondary structure of the identified miRNAs
183 with an RNAfold web server with a minimum free energy index (MFEI) algorithm
184 (<http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi>). Characteristic stem-loop
185 hairpin formation in all 9 novel miRNAs validated their secondary structure and strengthened
186 their putative function as miRNAs (**Figure S3**).

187 Next, to pinpoint miRNAs responsive to Fe deficiency, miRNAs were profiled for
188 differential expression patterns using DEGseq in all four libraries. Our analysis revealed that
189 23 miRNAs were upregulated in the shoot; 17 were shoot specific. Further, 20 miRNAs
190 showed downregulation, with 10 miRNAs downregulated in a shoot-specific manner (**Figure**
191 **2**). We extended a similar analysis for root tissues where we observed that 15 miRNAs
192 showed upregulation and 19 miRNAs showed downregulation with 8 and 10 miRNAs with
193 root-specific behaviour (**Figure 2**). This relative analysis further allowed us to identify the
194 miRNAs with similar regulation irrespective of the tissues. We found 3 miRNAs (*tae-miR1122b-3p*,
195 *-1138* and *-9652-5p*) commonly upregulated while 6 miRNAs (*tae-miRNA5049-3p*, *novel_1*,
196 *395b*, *395a*, *408* and *9666b-3p*) commonly downregulated in either

197 tissue in response to Fe deficiency. Further, 7 miRNAs (*tae-miRNA9679-5p*, *-9782*, *-1118*, *-1117*, *-9674a-5p*, *-9654a-3p* and *novel_10*) showed inverse behaviour in terms of their
198 transcriptional induction during Fe deficiency when shoot and root tissues are compared
199 (Figure 2).

201

202 ***Analysis of miRNA for their temporal expression responses***

203 In order to validate our transcriptomic results, we checked the expression of miRNAs in both
204 the tissues. We randomly selected eight miRNAs from our transcriptomic data and performed
205 stem-loop qRT-PCR analysis with gene-specific primer sets (Table S5). Following this
206 analysis, we found that the expression pattern of all the selected miRNAs was very similar to
207 the one observed in transcriptomic analysis with Pearson's correlation coefficient
208 ($R^2=0.9803$) (Figure 3).

209 To further understand miRNA-mediated Fe deficiency response temporally, we
210 studied expression patterns of multiple miRNAs in either of the tissues after subjecting them
211 to Fe deficiency stress for 6, 9, 12 and 15 days. We selected miRNAs found differentially
212 regulated in the wheat shoot (*tae-miR6201*, *-5050*, *-9774*, *-1122a*, *-1137b-5p* and *-9671-5p*)
213 and root (*tae-miR1138*, *-167c-5p*, *-444a*, *-9652-5p*, *-9654a-3p* and *-397-5p*) tissues. Although
214 we found a perfect correlation between our transcriptome and stem-loop qRT-PCR data,
215 varying temporal transcriptional responses of miRNAs were observed during early and
216 prolonged Fe deficiency stress, irrespective of the tissue considered (Figure 4). This
217 approach helped us to characterize the tissue-specific expression responses into three
218 categories. The first includes early responsive miRNAs, where most of the miRNAs showed
219 early induction in the shoot, though, in the root, few miRNAs showed a low early response
220 (*tae-miR444a*, *-9654a-3p* and *-397-5p*). The second category comprises late responsive
221 miRNAs mainly accumulated in root tissues, including (*tae-miR444a*, *-167c-5p*, *-9654a-3p*
222 and *-397-5p*). Additionally, in shoot tissues, most of them showed weak late responsive
223 nature except two miRNAs (*tae-miR1137b-5p* and *tae-miR9671-5p*) which showed
224 constantly induced and late responsive behaviour, respectively, in response to Fe deficiency
225 (Figure 4). The third category highlights the miRNAs with mixed temporal expression
226 during Fe deficiency, which included *tae-miR9774* in shoot and *tae-miR1138* and *tae-miR-9652-5p*
227 in the root. Altogether, our study observed a time-dependent regulation of the wheat
228 miRNAs and potentially established the molecular responses during Fe deficiency.

229

230 ***Sub-genomic expression of miRNAs in wheat***

231 In order to further comment on the involvement of different genomes of wheat in the
232 regulation of miRNA expression, we analysed the expression of the differentially expressed
233 miRNAs in in-silico expression analysis with PmiRExAt database
234 (<http://pmirexat.nabi.res.in/>). The database provided us with the expression values for 62 out
235 of 105 differentially expressed miRNAs in *T. aestivum* (AABBDD), *T. durum* c.v. Langdon
236 TTR16 (AABB) and *Aegilops tauschii*, TQ113 (DD) genomes (**Figure S4A**). Our analysis
237 suggested that the DD genome progenitor *A. tauschii* expressed the least number of miRNAs
238 (27%) while the incorporation of the DD genome into AABB genome (*T. durum*) only
239 partially increased the number of miRNAs expressed (**Figure S4B**). Therefore, though we
240 did not find any negative impact of the DD genome, the AABB genome contributed most to
241 the expression of the selected miRNAs. Although, when we analysed the expression levels of
242 selected miRNAs in different genomes, the AABBDD genome contributed the most to the
243 expression levels of miRNAs (48%), while the AABB genome was the least contributor
244 (21%) while the DD genome contributed around 31% for the expression levels of the
245 miRNAs (**Figure S4C**). Therefore, in conclusion, we observed that the DD genome has the
246 lowest penetrance in miRNA expression levels and the highest expressivity.

247

248 ***KEGG and GO enrichment analysis***

249 Next, we performed the KEGG enrichment and Gene Ontology (GO) analysis to predict the
250 biological functions of miRNA target genes. This was done to identify the molecular
251 pathways or processes that could be affected by differentially expressed miRNAs under Fe
252 deficiency in a tissue-specific manner. Firstly, the target genes of differentially expressed
253 microRNAs were subjected to KEGG enrichment to identify significantly enriched metabolic
254 pathways. Most of the target genes in both root and shoot were significantly enriched in the
255 biosynthesis of secondary metabolites (**Figure 5**). However, some highly significant
256 enrichment was found to be specific in shoots and roots. For instance, metabolic pathways
257 such as ubiquitin-mediated proteolysis, Carbon metabolism, steroid biosynthesis and RNA
258 degradation and were enriched in shoots (**Figure 5**). In contrast, taurine metabolism, fatty
259 acid metabolism, glutamate metabolism, Nicotinate and nicotinamide metabolism, inositol
260 phosphate metabolism, ABC transporters, RNA transport and homologous recombination,
261 were significantly enriched (**Figure 5**) in roots.

262 GO enrichment analysis suggested that both in shoot and root, miRNA target genes
263 are significantly involved in retrograde transport, RNA polymerase complex and DNA
264 damage/conformation change/duplex unwinding/helicase activity (**Figure 6**). Biological

265 processes (BP) such as siRNA processing, triterpenoid metabolism, cell morphogenesis/cell
266 shape regulation, vacuole organization, and protein translation were enriched specifically in
267 shoots. In contrast, target genes in roots were enriched in BP such as prenylated protein
268 catabolism, regulation of abiotic stress, amino acid catabolism and potassium ion membrane
269 transport. Specific enrichment of GO terms belonging to cellular component (CC) was high
270 in shoots. For instance, shoot target genes were significantly involved in GARP complex,
271 myosin complex, mediator complex, ATPase complex and condensed chromosome. In roots,
272 the mitochondrial matrix component was explicitly enriched. Besides, molecular function
273 (MF) such as syntaxin binding, nuclear pore structure constituent, demethylase activity and
274 small GTPase binding were found to be predominant in shoots and enrichment of MF
275 activities mainly, prenylcysteine oxidase activity, glutathione oxidase activity, SNARE
276 binding and molecular adaptor activity were specific to roots (**Figure 7**). Collectively, under
277 Fe deficiency, miRNAs can significantly affect retrograde transport and DNA activities,
278 along with they could target specific biological functions in shoots and roots. We conclude
279 that functional pathway genes in the GO process can overlap in different tissue and be
280 targeted by different miRNAs expressed in a tissue-specific manner.

281

282 ***Target prediction of wheat miRNAs revealed an adaptive response against Fe deficiency***

283 To identify the regulatory network involved in Fe-homeostasis by these distinct miRNAs, we
284 predicted their targets and analysed them for their involvement in Fe deficiency response.
285 Among the most interesting targets for these Fe deficiency responsive miRNAs revealed a
286 complex network involving multicopper oxidases (MCOs), transcription factors like GRAS
287 and MADS-box, major facilitator superfamily (MFS) transporters, E3 ubiquitin-protein
288 ligases, oxidoreductases, protein kinases etc.. In prediction analysis, we observed that
289 miRNA397-5p could target transcripts encoding for MCOs. *Tae-miRNA171b* was predicted
290 to target transcripts encoding for GRAS TF. On similar lines, sulphate transporters are
291 predicted to be targeted by Fe deficiency-induced miRNA395a and 395b. As we proposed to
292 understand the miRNAs mediated regulatory network against Fe deficiency, we predicted the
293 differential response of shoot and root-expressed miRNAs in terms of their targets.
294 Interestingly, we observed that among the targets for root-induced miRNAs, GRAS family
295 TFs, NAC and MADS TFs, SCR-like genes, serine/threonine phosphatases, and sugar
296 transporters.

297 While among the targets of root down-regulated miRNAs included potassium
298 transporter, CNX (molecular chaperon), bHLH TFs, MFS transporters, Zn finger TFs, F-box

299 related, sulphate transporters, kinases, cell wall-related genes. Our analysis supported our
300 previous report suggesting over-accumulation of bHLH TFs during Fe deficiency [36].
301 miRNA-regulated expression of CNX type of molecular chaperones suggested an adaptive
302 response for root against the detrimental effect of ROS accumulation during Fe deficiency.
303 Apart from it, we observed that a significantly downregulated miRNA in the root (*tae-miR*
304 *5049-3p*) was found to target *S-adenosyl-L-methionine-dependent methyltransferase* while
305 the S-adenosyl-methionine is the precursor for mugineic acid (MAs) family of PS [41]. This
306 indicates that PS biosynthesis in wheat might be regulated through *tae-miR 5049-3p*. In the
307 shoot, however, we observed that targets associated with redox enzymes, kinases and
308 phosphatases were over-represented. Among the TFs families, NAC and myb were among
309 the targets of Fe-responsive miRNAs and phytohormone (like auxin and JA) associated genes
310 were also targeted through these miRNAs. Therefore, the target prediction analysis, on the
311 one hand, strengthens the involvement of miRNAs in Fe deficiency response in wheat. At the
312 same time, it also suggests a tissue-specific regulation of their targets.

313

314 **Discussion**

315 Earlier miRNA-mediated regulation has been reported under different abiotic and biotic
316 stresses [42–46]. Reports on miRNAs regulating plant adaptation to Fe deficiency and their
317 functional analysis are limited mainly to the model plant *Arabidopsis* [27]. Exploring the
318 miRNA has provided information on the network associations that help crop plants to adapt
319 to different abiotic stresses. However, an attempt has yet to be made to unravel the miRNA-
320 mediated control of Fe homeostasis in hexaploid wheat. Although genes involved in Fe
321 homeostasis were reported earlier, the miRNA-mediated targets were not addressed in wheat
322 [36]. Noteworthy, such molecular responses largely depend on the genotype and specific
323 stress condition. This study attempts to identify wheat miRNA that could be linked to the
324 target pathway functions to identify the critical regulatory miRNA-mRNA interaction
325 involved in Fe deficiency conditions. A total of 105 miRNAs were identified in shoots and
326 roots, respectively. Our work identified 9 novel miRNAs with distinct expression responses
327 during Fe deficiency with a typical stem-loop structure (**Figure S2**).

328 In this study, sRNA libraries were generated from the roots and shoots of wheat
329 seedlings subjected to Fe deficiency for different time points. This was done to generate the
330 inventory of miRNA that could assist in collating miRNA that may differentially express at
331 any time. Our analysis resulted in the identification of multiple root and shoot specific
332 miRNAs in response to Fe deficiency (Figure 2; Table S3). Among these differentially

333 expressed miRNAs, a subset of randomly selected miRNAs from root and shoot were
334 employed to validate the RNA-Seq data. qRT-PCR of these tissue specific miRNAs drew a
335 strong correlation with respect to RNA-Seq data. . Furthermore, the characterization of
336 differentially expressed miRNAs from root (*tae-miR1138*, *-167c-5p*, *-444a*, *-9652-5p*, *-*
337 *9654a-3p* and *-397-5p*) and shoot (*tae-miR6201*, *-5050*, *-9774*, *-1122a*, *-1137b-5p* and *-9671-*
338 *5p*) revealed the spatio-temporal expression of these Fe-responsive miRNAs.

339 Fe deficiency is a major nutritional disorder that limits crop productivity. In plants,
340 multiple miRNA gene families are known to be involved in the Fe deficiency responses
341 [27,47]. In addition, correlation studies were done where the expression of specific miRNA
342 was observed in high and low Fe genotypes of wheat and rice [30,48]. These studies support
343 that miRNA-mediated control could occur concerning the Fe flux in a tissue-specific manner.
344 In our analysis size of the majority of the filtered reads was 21-24 nt (**Figure 1E**).
345 Specifically, the 24 nt size class represented the highest among the total sizes. This range is
346 consistent with the previous reports from other plant species [49–51].

347 Wheat DE miRNA targets candidate genes from the family of TFs, such as MADS,
348 GRAS, WRKY, and F-box-containing proteins. At the transcript level, miRNA targets
349 include ferroxidases, E3 ubiquitin ligases and enzymatic reaction associated genes. Previous
350 results have shown that members of the above TFs and other metabolic genes showed up-
351 and/or down-regulation during Fe deficiency [27,36]. This suggests that miRNA responding
352 to the Fe deficiency targets Fe-responsive genes to modulate nutrient homeostasis.
353 Interestingly, one of the primary targets of this study identified encoding multiple MCOs
354 belonging to the laccases gene family. Wheat recruit strategy-II mode of Fe^{3+} in its chelated
355 form. The generation of the Fe^{3+} in the periplasmic space is primarily controlled by the
356 ferroxidase activity of the laccases subfamily [52,53]. In plants, multiple MCOs were shown
357 to be differentially expressed under Fe deficiency [54]. Consistant to these studies, in our
358 analysis *tae-miR397-5p* shows potential targets for multiple wheat MCOs (**Table S6**). This
359 suggested a mechanistic insight that regulated the turnover of wheat ferroxidase activity in
360 wheat through *miR397* at the post-transcriptional level. Earlier studies demonstrated the
361 *Arabidopsis miR397* role in imparting improved plant tolerance to cold stress [55]. In barley,
362 the expression of *miR397* decreased under the Boron toxicity [56] and citrus plants [31]. The
363 expanded role of *miR397* suggests its involvement in enhancing the rice grain size by
364 promoting panicle branching [57]. Another candidate, *tae-miR444*, was highly upregulated in
365 Fe deficiency. The monocot-specific rice *miR444* was shown to be an important factor in
366 relaying the antiviral signalling from virus infection to plant RNA-dependent RNA

367 polymerase1 [58]. At the mechanistic level, it was shown that *miR444* could repress the
368 MADS-box encoding transcript. Our target prediction suggests that *Tae-miR444* could target
369 multiple wheat MADS-box and F-box containing encoded transcripts. MADS-box encoded
370 transcripts are differentially regulated during Fe deficiency conditions. *Tae-miR1122* also
371 shows root-specific induction in Fe deficiency. Based on the prediction searches, *Tae-*
372 *miR1122* was identified to be differentially expressed in the EST libraries represented by cold
373 stress and Aluminium exposed wheat root tips and seedlings [59]. Earlier reports have
374 suggested that expression of miRNAs under different nutrient deficiencies influences the
375 adaptation to different conditions. For example, *Arabidopsis* miRNAs show overlapping
376 responses during multiple nutrient deficiency conditions. This suggests the multifunctional
377 role of miRNA that may be commonly upregulated or suppressed by certain nutrients [60].

378 Research on sulphur (S) and Fe interaction suggests that Fe uptake depends on the
379 assimilation of the S in the roots [61-63]. S in the soil is absorbed as SO_4^{2-} in root tissue and
380 is translocated to the aerial parts in its reduced forms to be utilized in the subcellular organs
381 such as chloroplasts and mitochondria for cysteine and methionine biosynthesis. Strategy II
382 plants primarily rely on releasing PS in the rhizosphere to mobilise soil Fe. The slow rate of
383 PS biosynthesis and decreased nicotianamine (NA) level in the cells were linked to the S
384 deficiency. Therefore, sulphate metabolism and plant distribution have been linked with Fe
385 uptake and translocation. Plant sulphate transporters (SULTR) were differentially regulated
386 under the changing regimes of Fe [36,64]. A S-containing compound such as glutathione
387 (GSH) shows a link with the tolerance to Fe [65]. Therefore, the differential regulation of
388 genes involved in sulphate uptake and its metabolism should be tightly regulated. miR395 is
389 an integral part of sulphate assimilation that regulates the expression of SULTR to maintain
390 sulphate uptake and utilization in plant tissue. Fe deficiency-induced wheat miRNA395
391 supports the notion of the cross-talk regulation between the Fe and S homeostasis in
392 monocots. Our study observed high target scores for multiple SULTR targeted by wheat
393 miR395 (Supplementary Table S4). We conclude that Fe deficiency-induced recruitment of
394 post-transcriptional regulation could affect the secondary process regulating nutrient uptake.

395 Comparison of miRNA repertoires between wheat and its diploid progenitors
396 provides useful information about the changes in miRNA gene content over time and the role
397 of miRNAs in wheat's adaptation to its environment [66]. Our study observed a high
398 proportion of sRNA contribution from A and B genomes compared to D genomes. This was
399 consistent for both +Fe and -Fe datasets. Genome expression bias under stress conditions at
400 the transcriptome level (mRNA) has been reported earlier in hexaploid wheat with high

401 contribution from the A genome [67, 68, 36, 38]. Although analysis of such biasness for
402 miRNA is tedious, we tend to calculate the contribution of the miRNA putatively arising
403 from different genomes. Our analysis for the -Fe regulated miRNAs points to a high
404 expression contribution in the ancestral genotypes of wheat with the highest for the *T.*
405 *aestivum* (AABBDD) and *T. durum* c.v. Langdon TTR16 (AABB) compared to *Aegilops*
406 *tauschii* (DD genome). Our observation agrees with previous reports, suggesting the least
407 involvement of DD genome in miRNA diversity [66]. It could be possible that incorporating
408 the DD genome into the AABB genome increased the expression of miRNAs, suggesting a
409 synergistic effect or some trans-genomic regulation. The reasoning for these observations
410 could be answered by extended miRNA genome bias expression that remains to be
411 investigated.

412 Altogether, miRNA profiling suggests their involvement in regulating Fe deficiency
413 responses. Our work provides evidence that miRNA perturbed due to Fe deficiency targets a
414 subset of previously reported Fe-responsive genes (**Figure 7**), This reflects that miRNA-
415 mediated control of Fe-responsive genes contributes to such regulatory mechanism in
416 hexaploid wheat. Specifically, the miRNA can target the genes primarily involved in
417 changing the Fe redox status and its uptake. Similarly, the regulation of multiple TFs was
418 also targeted by miRNA (**Figure 7**). Overall, the generated datasets will serve as an
419 important resource to further investigate the transcriptional rearrangements that influence
420 different tiers of molecular response during Fe deficiency. A further study focusing on the
421 candidate miRNAs function could add a new paradigm into Fe deficiency and other stress to
422 improve plant growth and yield.

423

424 **Material and methods**

425 ***Plant material, Fe deficiency treatment and sampling***

426 Hexaploid wheat cv. “C-306” was used for this experiment. Wheat grains were stratified in
427 the dark at 4°C overnight and germinated for 4 days on Petri plates lined with Whatman filter
428 paper. The endosperms were removed from the developing seedlings to cut out the nutrient
429 supply from the seed. Subsequently, the seedlings were grown for 5d in Hoagland’s nutrient
430 solution and then subjected to Fe deficiency treatment. For Fe starvation (-Fe), 2 µM Fe (III)
431 EDTA was used as the Fe source. For control plants (+Fe), Hoagland’s nutrient solution was
432 used, keeping other nutrients unchanged with 80 µM Fe(III) EDTA. Plants were grown in the
433 growth chamber set at 21±1°C, 50–65% relative humidity, and a photon rate of 300 µmol
434 quanta m⁻² s⁻¹ with a 16 h day/8 h night cycle. For sampling, roots, and shoots were collected

435 from three biological replicates at different time points, i.e., 6, 9, 12 and 15 days after
436 deficiency, and crushed in liquid nitrogen. Total RNA extraction was performed from the
437 root and shoot at the indicated time points (**Figure S1**). RNA samples from these time points
438 were pooled in equal proportions for the control and Fe deficiency samples of root and shoot
439 tissue, respectively.

440

441 ***Preparation of Small RNA library and RNA sequencing***

442 The total RNA of control and treated roots and shoots was extracted using Trizol
443 Reagent (Invitrogen, ThermoFisher, USA) according to the manufacturer's instructions. The
444 RNA quantity and purity were assessed using NanoDropTM One (ThermoFisher Scientific)
445 and denatured agarose gel electrophoresis. RNA integrity number (RIN) was checked using
446 Bioanalyzer 2100 (Agilent Technologies, USA), and samples proceeded for small RNA
447 library preparation. The library was constructed by TruSeq Small RNA Sample Prep Kit
448 (Illumina, USA). Small RNAs were ligated with 3' and 5' adapters, followed by reverse
449 transcription, PCR enrichment, purification, and size selection. The sRNA libraries were
450 sequenced on the NovaSeq6000 Illumina Sequencing platform. Transcriptome sequencing
451 data were deposited at NCBI (Submission: SUB12485490 with BioProject: PRJNA916207).

452

453 ***Bioinformatics analysis and miRNA identification***

454 The data obtained from high throughput sequencing was processed into raw sequencing reads
455 by CASAVA base recognition. Low-quality raw reads containing adaptors, 5' primer
456 contamination, and polynucleotide tails, and reads with >50% bases having a Qphred less
457 than or equal to 5, and the ones in which >10% base information were indeterminable were
458 discarded. The clean reads ranging from 18 to 30 nucleotides were mapped to the reference
459 genome sequence of *T. aestivum* using Bowtie to analyze their expression level and
460 distribution on the genome. Rfam database and Repeat Masker were used to remove non-
461 coding RNAs – rRNA, tRNA, snRNA, snoRNA, and repeat sequences. The unmatched reads
462 were classified as putative miRNAs and subsequently aligned against miRbase
463 (<http://www.mirbase.org/>) to obtain detailed information on mapped reads, including the
464 secondary structure of mapped miRNAs, the sequence of miRNAs in each sample, their
465 length, and occurrences. Matched sequences were identified as conserved miRNAs, and the
466 characteristic hairpin structure of other remaining miRNAs (marked as novel miRNAs) was
467 predicted by miRDeep2, miREvo software and RNA fold server
468 (<http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi>) [69,70].

469

470 ***Identification of differential expressed miRNAs***

471 To investigate the differentially expressed miRNAs between (+)Fe or (-Fe) libraries, the
472 expression of known and unique miRNAs in each sample was statistically analysed by
473 transcripts per million (TPM) [71]. Read counts were normalized to TPM as follows: The
474 normalized expression = (read count*1,000,000)/Mapped reads. The differential expression
475 level of miRNAs was calculated using DEGseq [72] and miRNAs with \log_2 fold change >1
476 and p-value < 0.01 were considered as differentially expressed.

477

478 ***miRNA target prediction and annotation***

479 Wheat target genes for known and novel microRNAs were predicted using the psRobot and
480 psRNATarget tool with default parameters [73,74]. To determine the functional
481 categorization of miRNA target genes, Gene Ontology analysis was carried out using
482 PANTHER classification system (<http://pantherdb.org/>) [75]. p-values were corrected using
483 the Bonferroni method, and GO terms with adjusted p-value <= 0.05 were considered
484 significantly enriched. GO terms enriched by more than 3 folds were plotted using the
485 ggplot2 package from R studio [76]. To gain insight into the metabolic pathways of target
486 genes, KEGG pathway enrichment was carried out by KOBAS software [77]. Owing to lack
487 of wheat dataset in KOBAS, rice dataset was used to identify significantly enriched KEGG
488 pathways [36,78]. We annotated the wheat sequences with RefSeq rice dataset using
489 BLASTN and cut-off score 1e-10, and used adjusted p-value of 0.05 to obtain the significant
490 pathways.

491

492 ***Quantification of miRNAs by real time-PCR***

493 To get an insight into the spatio-temporal expression patterns of differentially expressed
494 miRNAs and to validate the transcriptome data, stem-loop qRT PCR analysis was conducted.
495 Primers were designed following the method of [79] and are listed in **Table S5**. Briefly, 1 μ g
496 of DNase-treated total RNA was reverse-transcribed using TaqMan microRNA reverse
497 transcription kit (Applied BiosystemsTM) according to the manufacturer's instructions. The
498 real-time PCR program was set as follows: 95°C for 3 min, 45 cycles (95°C for 10 sec, 55°C
499 for 20 sec, 72°C for 20 sec). All reactions were performed in triplicate for each time point.
500 The relative expression levels of the miRNAs were calculated by the $2^{-\Delta\Delta CT}$ method [80]. For
501 normalization, the wheat gene U6 (GenBank: X63066.1) was used as an internal control [81].

502 All qRT-PCR was performed using SYBR Green I (Takara SYBR Premix Ex Taq) on the
503 Bio-Rad CFX96 Real-time PCR detection system.

504 The spatiotemporally pooled total RNA samples of Fe sufficient and deficient root
505 and shoot tissues (individually) used for transcriptomic analysis were employed for qRT-
506 PCR-based validation of the RNA-Seq data. Eight miRNAs were randomly selected to test
507 the correlation between the two data sets.

508

509 **Expression analysis of differentially expressed miRNAs in wheat database**

510 For expression analysis of differentially expressed miRNAs in parent cultivars of wheat, we
511 utilized our in-house Plants miRNA expression atlas database (PmiRExAt,
512 <http://pmirexat.nabi.res.in/>). The expression from the parent lines was collated for the whole
513 plant, including *T. aestivum* (AABBDD), *T. durum* c.v. Langdon TTR16 (AABB) and
514 *Aegilops tauschii*, TQ113 (DD). The table was collated using the TPM values and
515 comparative analysis was done using pie charts. The contribution of different subgenomes
516 was calculated based on the number of miRNAs detected in any specific genome
517 (penetrance) and the level of miRNA expression in any particular subgenome (expressivity).

518

519 **Availability of data and materials**

520 The small RNA-Seq raw read data has been submitted at NCBI (Submission: SUB12485490
521 with BioProject: PRJNA916207).

522

523 **Acknowledgments**

524 The authors thank the Executive Director of NABI for the facilities and support. This work
525 was funded by the Department of Science and Technology- Science & Engineering Research
526 Board (SERB) Grant number CRG/2020/000940 and the NABI-CORE grant to AKP. DBT-
527 eLibrary Consortium (DeLCON) is acknowledged for providing timely support and access to
528 e-resources for this work. The wheat genome resources developed by International Wheat
529 Genome Sequencing Consortium are highly appreciated.

530

531 **Author contribution:**

532 AKP and SS conceived and designed the research. SS and APS carried out wet lab
533 experiments; SS, APS, RJ, PS, DS, SM and VS carried out wet lab experiments and
534 performed data analyses. AKP, SS, APS and DS wrote and finalized the manuscript. All
535 authors have read and approved the final manuscript.

536 **Ethical approval**

537 Not applicable.

538 **Consent for publication**

539 Not applicable

540 **Competing interests**

541 The authors declare no competing interests.

542

543

544 **References**

- 545 1. Briat JF, Dubos C, Gaymard F. Iron nutrition, biomass production, and plant product
546 quality. *Trends in Plant Science*. 2015; doi:10.1016/j.tplants.2014.07.005.
- 547 2. Morrissey J, Guerinot M Lou. Iron uptake and transport in plants: The good, the bad,
548 and the ionome. *Chem Rev*. 2009; doi:10.1021/cr900112r.
- 549 3. Buckhout TJ, Schmidt W. Iron in Plants. John Wiley & Sons, Ltd. 2013;
550 doi:10.1002/9780470015902.a0023713.
- 551 4. Abadía J, Vázquez S, Rellán-Álvarez R, El-Jendoubi H, Abadía A, Álvarez-
552 Fernández A, et al. Towards a knowledge-based correction of iron chlorosis. *Plant
553 Physiology and Biochemistry*. 2011; doi:10.1016/j.plaphy.2011.01.026. p. 471–82.
- 554 5. Kobayashi T, Nozoye T, Nishizawa NK. Iron transport and its regulation in plants.
555 *Free Radical Biology and Medicine*. 2019; doi: 10.1016/j.freeradbiomed.2018.10.439.
- 556 6. Hell R, Stephan UW. Iron uptake, trafficking and homeostasis in plants. *Planta*. 2003;
557 doi:10.1007/s00425-002-0920-4.
- 558 7. Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC. The basic helix-
559 loop-helix transcription factor family in plants: A genome-wide study of protein
560 structure and functional diversity. *Mol Biol Evol*. 2003; doi: 10.1093/molbev/msg088.
- 561 8. Ogo Y, Nakanishi Itai R, Nakanishi H, Kobayashi T, Takahashi M, Mori S, et al. The
562 rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe
563 uptake under Fe-deficient conditions. *Plant J*. 2007; doi: 10.1111/j.1365-
564 313X.2007.03149.x.
- 565 9. Zheng L, Ying Y, Wang L, Wang F, Whelan J, Shou H. Identification of a novel iron
566 regulated basic helix-loop-helix protein involved in Fe homeostasis in *Oryza sativa*.
567 *BMC Plant Biol*. 2010; doi: 10.1186/1471-2229-10-166.
- 568 10. Colangelo EP, Guerinot M Lou. The essential basic helix-loop-helix protein FIT1 is
569 required for the iron deficiency response. *Plant Cell*. 2004; doi:
570 10.1105/tpc.104.024315.
- 571 11. Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN. The bHLH
572 transcription factor POPEYE regulates response to iron deficiency in *arabidopsis*
573 roots. *Plant Cell*. 2010; doi:10.1105/tpc.110.074096.
- 574 12. Yan JY, Li CX, Sun L, Ren JY, Li GX, Ding ZJ, et al. A WRKY transcription factor
575 regulates Fe translocation under Fe deficiency. *Plant Physiol*. 2016; doi:
576 10.1104/pp.16.00252.
- 577 13. Zhang H, Li Y, Yao X, Liang G, Yu D. POSITIVE REGULATOR OF IRON
578 HOMEOSTASIS1, OsPRI1, facilitates Iron homeostasis. *Plant Physiol*. 2017; doi:
579 10.1104/pp.17.00794.
- 580 14. Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, Nishizawa NK. Iron-

- 581 binding haemerythrin RING ubiquitin ligases regulate plant iron responses and
582 accumulation. *Nat Commun.* 2013; doi:10.1038/ncomms3792.
- 583 15. Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA. Iron-binding e3 ligase
584 mediates iron response in plants by targeting basic helix-loop-helix transcription
585 factors1. *Plant Physiol.* 2015; doi:10.1104/pp.114.250837.
- 586 16. Yu Y, Zhang Y, Chen X, Chen Y. Plant Noncoding RNAs: Hidden Players in
587 Development and Stress Responses. *Annu Rev Cell Dev Biol.* 2019;
588 doi:10.1146/annurev-cellbio-100818-125218.
- 589 17. Chen X. Small RNAs and their roles in plant development. *Annu Rev Cell Dev Biol.*
590 2009; doi:10.1146/annurev.cellbio.042308.113417.
- 591 18. Jian H, Wang J, Wang T, Wei L, Li J, Liu L. Identification of rapeseed MicroRNAs
592 involved in early stage seed germination under salt and drought stresses. *Front Plant
593 Sci.* 2016; doi:10.3389/fpls.2016.00658.
- 594 19. Gao S, Yang L, Zeng HQ, Zhou ZS, Yang ZM, Li H, et al. A cotton miRNA is
595 involved in regulation of plant response to salt stress. *Sci Rep.* 2016; doi:
596 10.1038/srep19736.
- 597 20. Li C, Zhang B. MicroRNAs in Control of Plant Development. *Journal of Cellular
598 Physiology.* 2016; doi:10.1002/jcp.25125.
- 599 21. Wang B, Sun Y fei, Song N, Wei J ping, Wang X jie, Feng H, et al. MicroRNAs
600 involving in cold, wounding and salt stresses in *Triticum aestivum* L. *Plant Physiol
601 Biochem.* 2014; doi:10.1016/j.plaphy.2014.03.020.
- 602 22. Zhang Q, Zhao C, Li M, Sun W, Liu Y, Xia H, et al. Genome-wide identification of
603 *thellungiella salsuginea* microRNAs with putative roles in the salt stress response. *BMC
604 Plant Biol.* 2013; doi: 10.1186/1471-2229-13-180.
- 605 23. Guo S, Xu Y, Liu H, Mao Z, Zhang C, Ma Y, et al. The interaction between
606 OsMADS57 and OsTB1 modulates rice tillering via DWARF14. *Nat Commun.* 2013;
607 doi:10.1038/ncomms2542.
- 608 24. Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, et al. Photoperiod- and thermo-sensitive
609 genic male sterility in rice are caused by a point mutation in a novel noncoding RNA
610 that produces a small RNA. *Cell Res.* 2012; doi:10.1038/cr.2012.28.
- 611 25. Willmann MR, Poethig RS. Time to grow up: The temporal role of smallRNAs in
612 plants. *Current Opinion in Plant Biology.* 2005; doi:10.1016/j.pbi.2005.07.008.
- 613 26. Sunkar R, Li YF, Jagadeeswaran G. Functions of microRNAs in plant stress
614 responses. *Trends in Plant Science.* 2012; doi:10.1016/j.tplants.2012.01.010.
- 615 27. Kong WW, Yang ZM. Identification of iron-deficiency responsive microRNA genes
616 and cis-elements in *Arabidopsis*. *Plant Physiol Biochem.* 2010; doi:
617 10.1016/j.plaphy.2009.12.008.
- 618 28. Valdés-López O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP, et al.
619 MicroRNA expression profile in common bean (*Phaseolus vulgaris*) under nutrient
620 deficiency stresses and manganese toxicity. *New Phytol.* 2010; doi:10.1111/j.1469-
621 8137.2010.03320.X.
- 622 29. Waters BM, McInturf SA, Stein RJ. Rosette iron deficiency transcript and microRNA
623 profiling reveals links between copper and iron homeostasis in *Arabidopsis thaliana*. *J
624 Exp Bot.* 2012; doi:10.1093/jxb/ers239.
- 625 30. Agarwal S, Mangrauthia SK, Sarla N. Expression profiling of iron deficiency
626 responsive microRNAs and gene targets in rice seedlings of Madhukar x Swarna
627 recombinant inbred lines with contrasting levels of iron in seeds. *Plant Soil.* 2015;
628 doi: 10.1007/s11104-015-2561-y.
- 629 31. Jin LF, Yarra R, Yin XX, Liu YZ, Cao HX. Identification and function prediction of
630 iron-deficiency-responsive microRNAs in citrus leaves. *3 Biotech.* 2021; doi:

- 631 10.1007/S13205-021-02669-Z.
- 632 32. FAOSTAT. Food and Agriculture Organization of the the United Nations.
633 <http://www.fao.org/faostat/en/#data/FBS>.
- 634 33. Lu W, Li J, Liu F, Gu J, Guo C, Xu L, et al. Expression pattern of wheat miRNAs
635 under salinity stress and prediction of salt-inducible miRNAs targets. *Front Agric*
636 *China*. 2011; doi:10.1007/s11703-011-1133-z.
- 637 34. Ravichandran S, Ragupathy R, Edwards T, Domaratzki M, Cloutier S. Microrna-
638 guided regulation of heat stress response in wheat. *BMC Genomics*. 2019; doi:
639 10.1186/s12864-019-5799-6.
- 640 35. Hou G, Du C, Gao H, Liu S, Sun W, Lu H, et al. Identification of microRNAs in
641 developing wheat grain that are potentially involved in regulating grain characteristics
642 and the response to nitrogen levels. *BMC Plant Biol*. 2020; doi:10.1186/s12870-020-
643 2296-7.
- 644 36. Kaur G, Shukla V, Kumar A, Kaur M, Goel P, Singh P, et al. Integrative analysis of
645 hexaploid wheat roots identifies signature components during iron starvation.
646 *bioRxiv*.2019; doi:10.1101/539098.
- 647 37. Wang M, Kawakami Y, Bhullar NK. Molecular Analysis of Iron Deficiency
648 Response in Hexaploid Wheat. *Front Sustain Food Syst*. 2019;
649 doi:10.3389/fsufs.2019.00067.
- 650 38. Wang M, Gong J, Bhullar NK. Iron deficiency triggered transcriptome changes in
651 bread wheat. *Comput Struct Biotechnol J*. 2020; doi:10.1016/j.csbj.2020.09.009.
- 652 39. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. Specific
653 effects of microRNAs on the plant transcriptome. *Dev Cell*. 2005;
654 doi:10.1016/j.devcel.2005.01.018.
- 655 40. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA
656 interference. *Nat Biotechnol*. 2004; <https://doi.org/10.1038/nbt936>.
- 657 41. Kobayashi T, Nishizawa NK. Iron uptake, translocation, and regulation in higher
658 plants. *Annu Rev Plant Biol*. 2012; doi:10.1146/annurev-arplant-042811-105522.
- 659 42. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, et al. A plant
660 miRNA contributes to antibacterial resistance by repressing auxin signaling. *Science*.
661 2006; doi:10.1126/SCIENCE.1126088.
- 662 43. Zeller G, Henz SR, Widmer CK, Sachsenberg T, Rätsch G, Weigel D, et al. Stress-
663 induced changes in the *Arabidopsis thaliana* transcriptome analyzed using whole-
664 genome tiling arrays. *Plant J*. 2009; doi:10.1111/J.1365-313X.2009.03835.X.
- 665 44. Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, et al. Constitutive Expression of a
666 miR319 Gene Alters Plant Development and Enhances Salt and Drought Tolerance in
667 Transgenic Creeping Bentgrass. *Plant Physiol*. 2013; doi:10.1104/PP.112.208702.
- 668 45. Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L. Genome-wide identification and
669 analysis of drought-responsive microRNAs in *Oryza sativa*. *J Exp Bot*. 2010; doi:
670 10.1093/JXB/ERQ237.
- 671 46. Rong W, Qi L, Wang A, Ye X, Du L, Liang H, et al. The ERF transcription factor
672 TaERF3 promotes tolerance to salt and drought stresses in wheat. *Plant Biotechnol J*.
673 2014; doi:10.1111/PBI.12153.
- 674 47. Carrió-Seguí À, Ruiz-Rivero O, Villamayor-Belinchón L, et al. The altered
675 expression of Microrna408 influences the *arabidopsis* response to iron deficiency.
676 *Front Plant Sci*. 2019; doi: 10.3389/fpls.2019.00324.
- 677 48. Paul S, Gayen D, Datta SK, Datta K. Analysis of high iron rice lines reveals new
678 miRNAs that target iron transporters in roots. *J Exp Bot*. 2016; doi:
679 10.1093/JXB/ERW346.
- 680 49. Jeong DH, Park S, Zhai J, Gurazada SGR, de Paoli E, Meyers BC, et al. Massive

- 681 Analysis of Rice Small RNAs: Mechanistic Implications of Regulated MicroRNAs
 682 and Variants for Differential Target RNA Cleavage. *Plant Cell*. 2011; doi:
 683 10.1105/TPC.111.089045.

684 50. Peng W, Song N, Li W, Yan M, Huang C, Yang Y, et al. Integrated Analysis of
 685 MicroRNA and Target Genes in *Brachypodium distachyon* Infected by *Magnaporthe*
 686 *oryzae* by Small RNA and Degradome Sequencing. *Front Plant Sci*. 2021; doi:
 687 10.3389/fpls.2021.742347/BIBTEX.

688 51. Li H, Meng H, Sun X, Deng J, Shi T, Zhu L, et al. Integrated microRNA and
 689 transcriptome profiling reveal key miRNA-mRNA interaction pairs associated with
 690 seed development in Tartary buckwheat (*Fagopyrum tataricum*). *BMC Plant Biol*.
 691 2021; doi: 10.1186/S12870-021-02914-W.

692 52. J.T. Hoopes, J.F. Dean. Ferroxidase activity in a laccase-like multicopper oxidase
 693 from *Liriodendron tulipifera*. *Plant Physiol. Biochem* 2004; doi:
 694 10.1016/j.plaphy.2003.10.011.

695 53. Huston WM, Jennings MP and McEwan AG. The multicopper oxidase
 696 of *Pseudomonas aeruginosa* is a ferroxidase with a central role in iron acquisition.
 697 *Molecular Microbiology*. 2002; doi: 10.1046/j.1365-2958.2002.03132.x.

698 54. Bernal M, Krämer U. Involvement of *Arabidopsis* Multi-Copper Oxidase-
 699 Encoding LACCASE12 in Root-to-Shoot Iron Partitioning: A Novel Example of
 700 Copper-Iron Crosstalk. *Front Plant Sci*. 2021; doi:10.3389/fpls.2021.688318.

701 55. Dong CH, Pei H. Over-expression of miR397 improves plant tolerance to cold stress
 702 in *Arabidopsis thaliana*. *J Plant Biol*. 2014; doi:10.1007/S12374-013-0490-Y.

703 56. Ozhuner E, Eldem V, Ipek A, Okay S, Sakcali S, Zhang B, et al. Boron Stress
 704 Responsive MicroRNAs and Their Targets in Barley. *PLoS One*. 2013; doi:
 705 10.1371/JOURNAL.PONE.0059543.

706 57. Zhang YC, Yu Y, Wang CY, et al. Overexpression of microRNA OsmiR397
 707 improves rice yield by increasing grain size and promoting panicle branching. *Nat*
 708 *Biotechnol*. 2013; doi:10.1038/nbt.2646.

709 58. Wang H, Jiao X, Kong X, Hamera S, Wu Y, Chen X, et al. A Signaling Cascade from
 710 miR444 to RDR1 in Rice Antiviral RNA Silencing Pathway. *Plant Physiol*. 2016; doi:
 711 10.1104/PP.15.01283.

712 59. Pandey B, Gupta OP, Pandey DM, Sharma I, Sharma P. Identification of new stress-
 713 induced microRNA and their targets in wheat using computational approach. *Plant*
 714 *Signal Behav*. 2013; doi:10.4161/psb.23932.

715 60. Liang G, Ai Q, Yu D. Uncovering miRNAs involved in crosstalk between nutrient
 716 deficiencies in *Arabidopsis*. *Sci Rep*. 2015; doi:10.1038/srep11813.

717 61. Astolfi S, Zuchi S, Cesco S, Varanini Z, Pinton R. Influence of iron nutrition on
 718 sulphur uptake and metabolism in maize (*Zea mays L.*) roots. *Soil Sci Plant Nutr*.
 719 2004; doi:10.1080/00380768.2004.10408577.

720 62. Astolfi S, Zuchi S, Hubberten H-M, Pinton R, Hoefgen R. Supply of sulphur to S-
 721 deficient young barley seedlings restores their capability to cope with iron shortage. *J*
 722 *Exp Bot*. 2010; doi:10.1093/jxb/erp346.

723 63. Zuchi S, Cesco S, Astolfi S. High S supply improves Fe accumulation in durum wheat
 724 plants grown under Fe limitation. *Environ Exp Bot*. 2012; doi:
 725 <https://doi.org/10.1016/j.envexpbot.2011.11.001>.

726 64. Khan MS, Lu Q, Cui M, Rajab H, Wu H, Chai T, et al. Crosstalk Between Iron and
 727 Sulfur Homeostasis Networks in *Arabidopsis*. *Frontiers in Plant Science*. 2022; doi:
 728 10.3389/fpls.2022.878418.

729 65. Shanmugam V, Wang Y-W, Tsednee M, Karunakaran K, Yeh K-C. Glutathione plays
 730 an essential role in nitric oxide-mediated iron-deficiency signaling and iron-

- 731 deficiency tolerance in *Arabidopsis*. Plant J. 2015;
732 doi:<https://doi.org/10.1111/tpj.13011>.

733 66. Alptekin B, Budak H. Wheat miRNA ancestors: evident by transcriptome analysis of
734 A, B, and D genome donors. *Funct Integr Genomics*. 2017; doi:10.1007/s10142-016-
735 0487-y.

736 67. Zaharieva M, Monneveux P. Cultivated einkorn wheat (*Triticum monococcum* L.
737 subsp. *monococcum*): the long life of a founder crop of agriculture. *Genetic
738 Resources and Crop Evolution*. 2014; doi: 10.1007/s10722-014-0084-7.

739 68. Kaur G, Meena V, Kumar A, Suman G, Tyagi D, Joon R, Balk J, Pandey A.
740 Asymmetric expression of homoeologous genes in wheat roots modulates the early
741 phase of iron-deficiency signalling. *Environ. Exp. Bot.* 2023; doi:
742 10.1016/j.envexpbot.2023.105254.

743 69. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately
744 identifies known and hundreds of novel microRNA genes in seven animal
745 clades. *Nucleic Acids Res.* 2012; doi: 10.1093/nar/gkr688.

746 70. Wen M, Shen Y, Shi S, Tang T. miREvo: an integrative microRNA evolutionary
747 analysis platform for next-generation sequencing experiments. *BMC Bioinformatics*.
748 2012;doi: 10.1186/1471-2105-13-140.

749 71. Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, et al. Integrated Profiling of MicroRNAs
750 and mRNAs: MicroRNAs Located on Xq27.3 Associate with Clear Cell Renal Cell
751 Carcinoma. *PLoS ONE*. 2010; doi: 10.1371/journal.pone.0015224.

752 72. Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying
753 differentially expressed genes from RNA-seq data. *Bioinformatics*. 2010; doi:
754 10.1093/bioinformatics/btp612.

755 73. Dai X, Zhao PX. psRNATarget: a plant small RNA target analysis server. *Nucleic
756 Acids Res.* 2011; doi: 10.1093/nar/gkr319.

757 74. Wu HJ, Ma YK, Chen T, Wang M, Wang XJ. PsRobot: a web-based plant small RNA
758 meta-analysis toolbox. *Nucleic Acids Res.* 2012; doi: 10.1093/nar/gks554.

759 75. Mi H, Muruganujan A, Huang X, et al. Protocol Update for large-scale genome and
760 gene function analysis with the PANTHER classification system (v.14.0). *Nat Protoc.*
761 2019; doi: 10.1038/s41596-019-0128-8.

762 76. Wickham H. *ggplot2: Elegant Graphics for Data Analysis*. 2nd ed. Springer
763 International Publishing; 2016.

764 77. Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway
765 identification using the KEGG Orthology (KO) as a controlled
766 vocabulary. *Bioinformatics*. 2005; doi: 10.1093/bioinformatics/bti430.

767 78. Zhang L, Dong C, Chen Z, et al. WheatGmap: a comprehensive platform for wheat
768 gene mapping and genomic studies. *Mol Plant*. 2021;
769 doi:10.1016/j.molp.2020.11.018.

770 79. Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by
771 stem-loop RT-PCR. *Nucleic Acids Res.* 2005; doi: 10.1093/NAR/GNI178.

772 80. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time
773 quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods*. 2001; doi:
774 10.1006/METH.2001.1262.

775 81. Gasparis S, Yanushevska Y, Nadolska-Orczyk A. Bioinformatic identification and
776 expression analysis of new microRNAs from wheat (*Triticum aestivum* L.). *Acta
777 Physiol Plant*. 2017; doi: 10.1007/s11738-017-2530-6.

779 **Figures for the Manuscript**

780

781 **Figure 1: Expression of Fe-regulated sRNAs in hexaploid wheat tissues.** Doughnut
782 pie chart showing a differential abundance of sRNAs families in wheat **A)** Fe sufficient
783 shoot, **B)** Fe deficient shoot, **C)** Fe sufficient root and **D)** Fe deficient root tissues. **E)** The
784 total length distribution of Fe-deficiency responsive sRNAs identified from *Triticum*
785 *aestivum*. The abscissa is the length of sRNAs reads, the ordinate is the percentage of one
786 length read accounted for total sRNAs. **F)** Venn diagram showing comparative analysis of
787 differentially expressed miRNAs in Fe-responsive root and shoot sRNA libraries.

788 **Figure 2. Expression of Fe-regulated miRNAs in hexaploid wheat tissues.** Heat map
789 showing differentially expressed miRNAs in shoot and root. **A)** Significantly up and
790 down-regulated miRNAs in the shoot with their expression values in root in response to
791 Fe deficiency. **B)** Significantly up and down-regulated miRNAs in root with their
792 expression values in the shoot. Heat maps were plotted against the \log_2 FC values of each
793 miRNA in response to Fe deficiency. FC=1.5 was considered as the criteria for
794 significance.

795 **Figure 3. Stem-loop qRT-PCR-based validation of transcriptome data.** Expression
796 profile of selected miRNAs in **A)** shoot **B)** root in response to Fe deficiency in wheat. **C)**
797 Line graph showing correlation of qRT-PCR based analysis with transcriptome expression
798 of selected miRNAs in shoot and root tissues of wheat in Fe deficiency response. Relative
799 fold change in the expression was calculated (n=3) after performing the qRT PCR
800 analysis. Two-tailed student's *t*-test ($p \leq 0.05$) was used to determine the significant
801 change.

802 **Figure 4. Temporal expression profiling of selected Fe deficiency responsive**
803 **miRNAs in wheat.** Expression profile of selected miRNAs in **A)** shoot **B)** root in
804 response to Fe deficiency in wheat. Relative fold change in the expression was calculated
805 (n=3) after performing the qRT PCR analysis. Two-tailed student's *t*-test ($p \leq 0.05$) was
806 used to determine the significant change.

807 **Figure 5: KEGG enrichment for target genes of Fe-responsive miRNAs in the root**
808 **and shoot.** KEGG pathway is displayed along the Y-axis, and X-axis represents all genes
809 enriched in a particular pathway. The colour of the circle indicates the q-value, and the
810 size of the dot correlates with the number of DEGs mapped to the specific pathway.

811 **Figure 6:** Gene Ontology (GO) categorization of targets of differential expressed Fe-
812 deficiency responsive miRNAs. The y-axis represents the category of miRNA targets, and
813 the x-axis shows. The bubble size indicates the number of genes, with the colour
814 representing the significance as denoted by the *p*-value.

815 **Figure 7. A speculated model for miRNA-mediated Fe homeostasis in hexaploid**
816 **wheat.** The model represents the multiple miRNAs that were DE expressed under Fe
817 deficiency. These miRNA targets distinct genes involved in different biological functions,
818 as mentioned. Some major functions include redox-related metal transporters,
819 transcription factors and E3 ubiquitin ligases.

820

821 **Supplementary Figures**

822 **Figure S1. The schematic** diagram for workflow pipeline to identify the small RNAs and
823 development of miRNA inventory.

824 **Figure S2. Small RNA reads distribution per chromosome of the wheat genome.**
825 Images showing a graphical representation of sRNA reads for **A)** Control shoot, **B)** Fe
826 deficient shoot, **C)** Control root, and **D)** Fe deficient root. The chromosome is shown as
827 the outer circle. Grey background in the middle area shows the distribution of 10,000
828 reads on the chromosome. Red in the gray background represents the number of sRNAs
829 on the sense strand of the chromosome, while blue represents the number of sRNAs on
830 the antisense strand. All reads are shown in the center area of the circle, where red
831 represents the number of sRNAs on the sense strand of the chromosome, and the green
832 represents the number of sRNAs on the antisense strand.

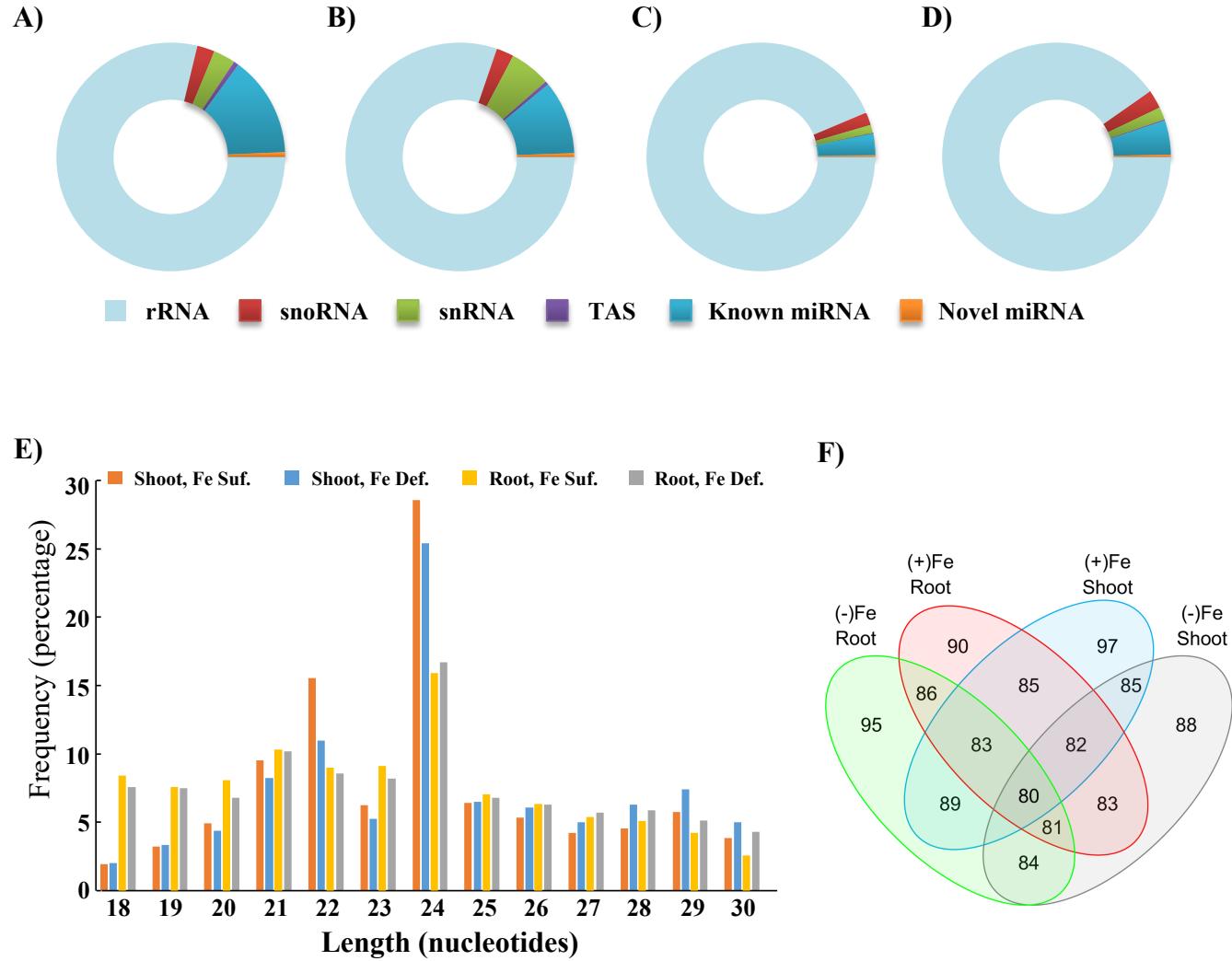
833 **Figure S3. Secondary structure plots of novel identified miRNAs.** The hairpin
834 structure of each novel miRNA was predicated with RNA fold server
835 (<http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi>) using the pre-miRNA
836 sequence based on minimum free energy.

837 **Figure S4. Genome biased expression of miRNAs in wheat.** **A)** Heat map was
838 generated using the PmiRExAt <http://pmirexat.nabi.res.in> server. Values in the heat map
839 represent the TPM (transcripts per million) values. **B)** Average number of miRNAs being
840 expressed in different wheat genomes. **C)** Average relative expression of miRNAs in
841 different wheat genomes.

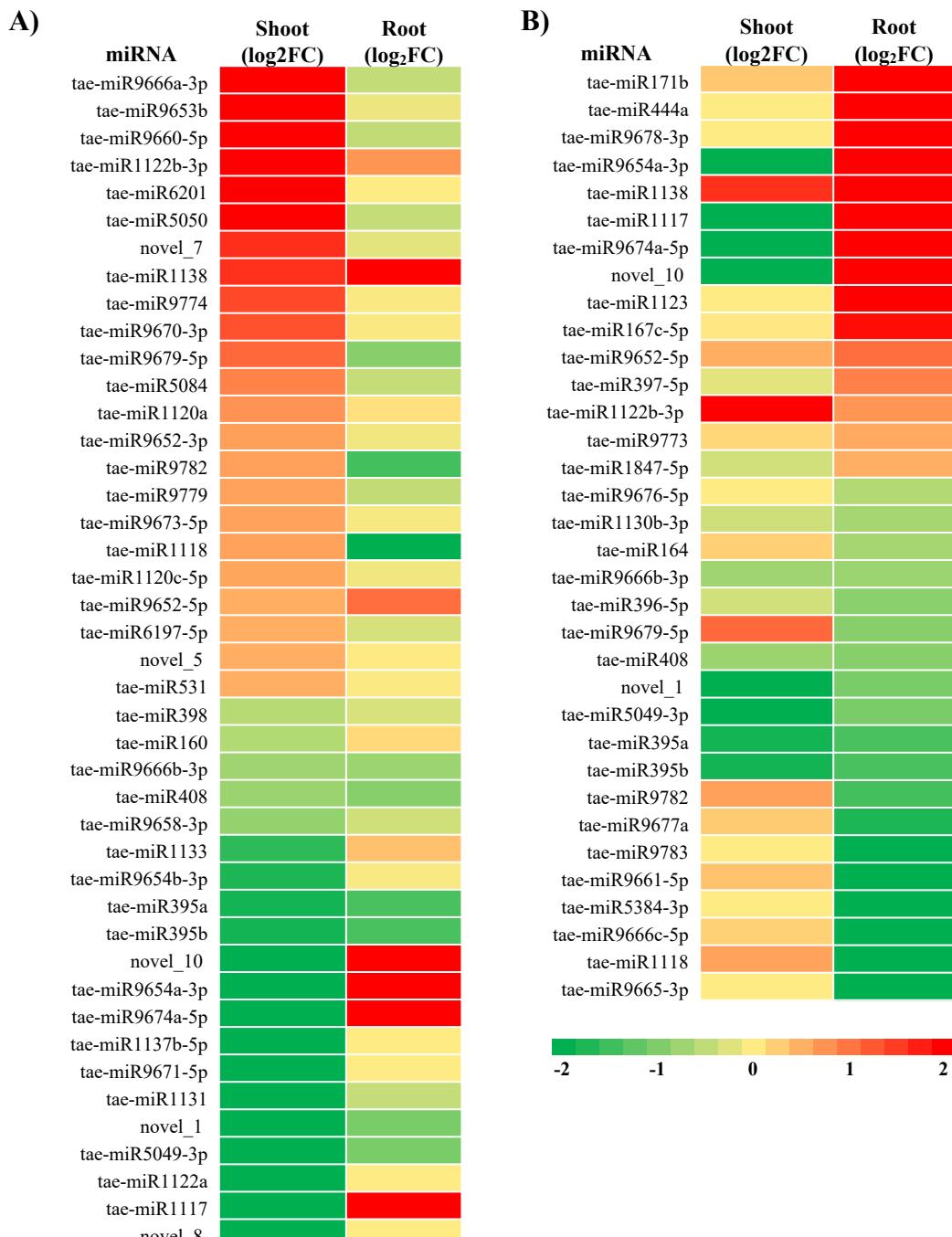
842

843 **Supplementary Tables**

844 **Table S1.** Small RNAs obtained in Control (Fe-EDTA 80 μ M) and –Fe treated (Fe-EDTA
845 2 μ M) Wheat C-306 small RNA libraries of root and shoot


846 **Table S2.** Positional mapping of wheat small RNAs to exon and intron

847 **Table S3.** List of differentially expressed miRNAs in response to Fe deficiency, along
848 with their precursor and mature sequences. Values against each miRNA indicate the \log_2
849 fold change observed in the expression.


850 **Table S4.** Hairpin family classification of all the miRNAs identified in this study and
851 across different plant species. "+" means that the miRNA family exists in this species,
852 and a "-" means the miRNA family does not exist in this species.

853 **Table S5.** Primer sequences of the DE miRNAs for expression analysis by stem-loop
854 qRT-PCR.

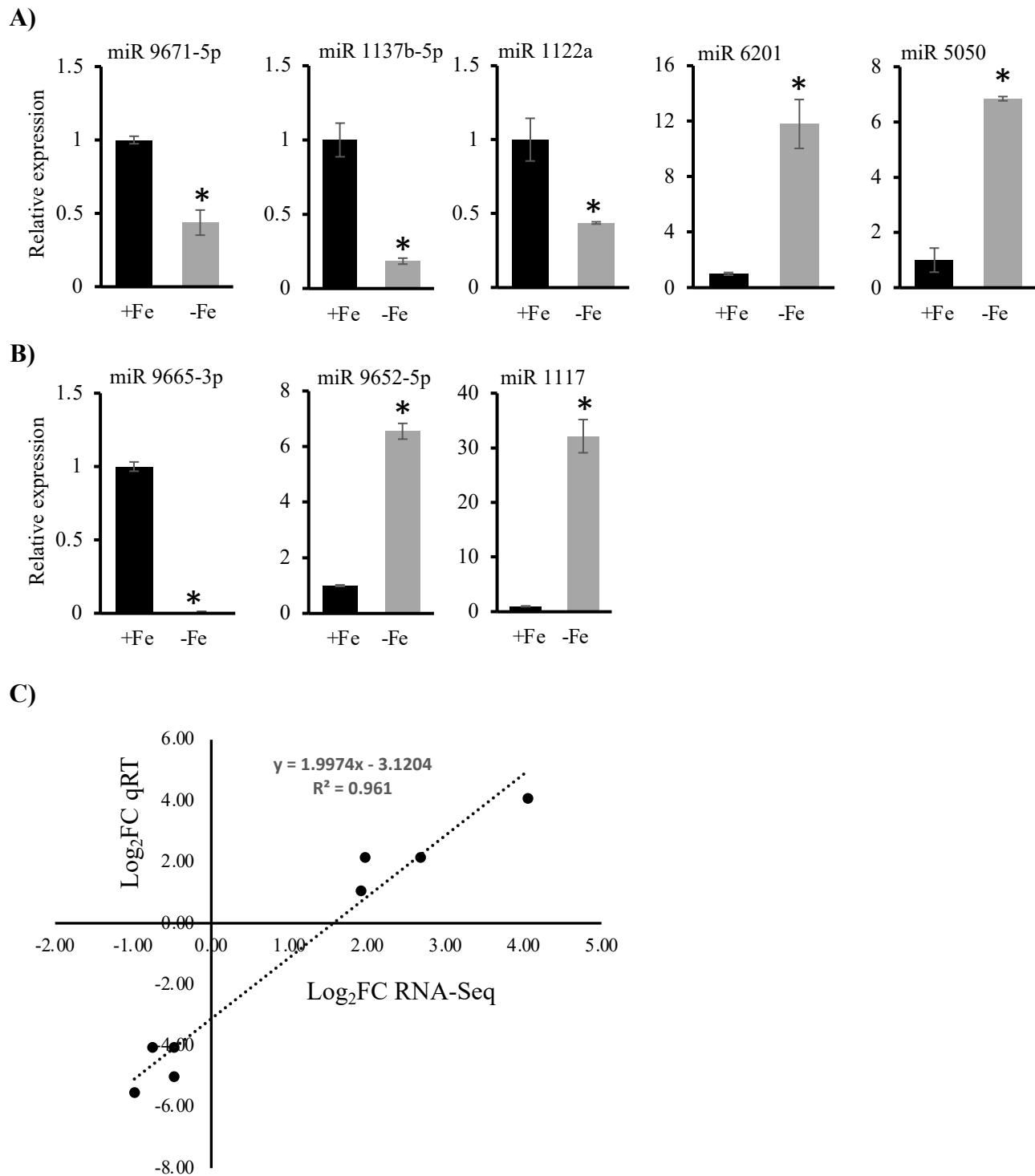

855 **Table S6.** List of target genes for DE miRNAs in hexaploid wheat roots and shoots
856 identified by pSRNATarget.

Figure 1

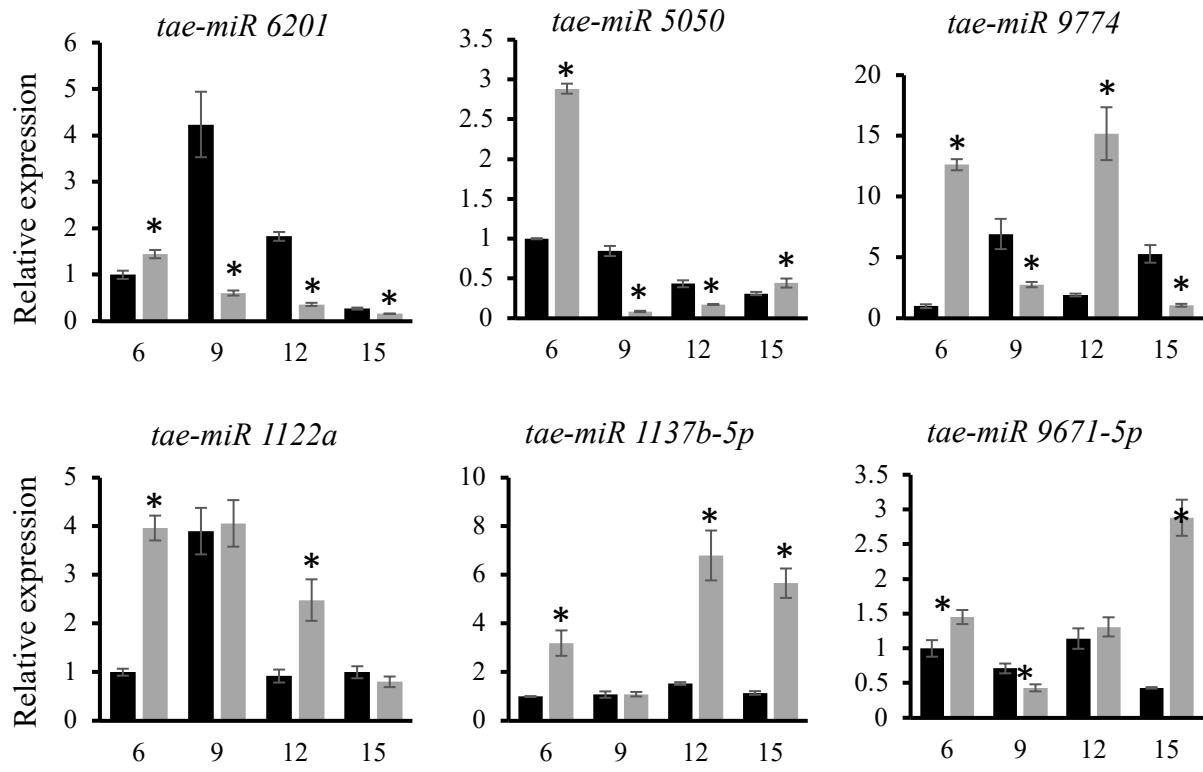


Figure 2

Figure 3

A) Shoot

B) Root

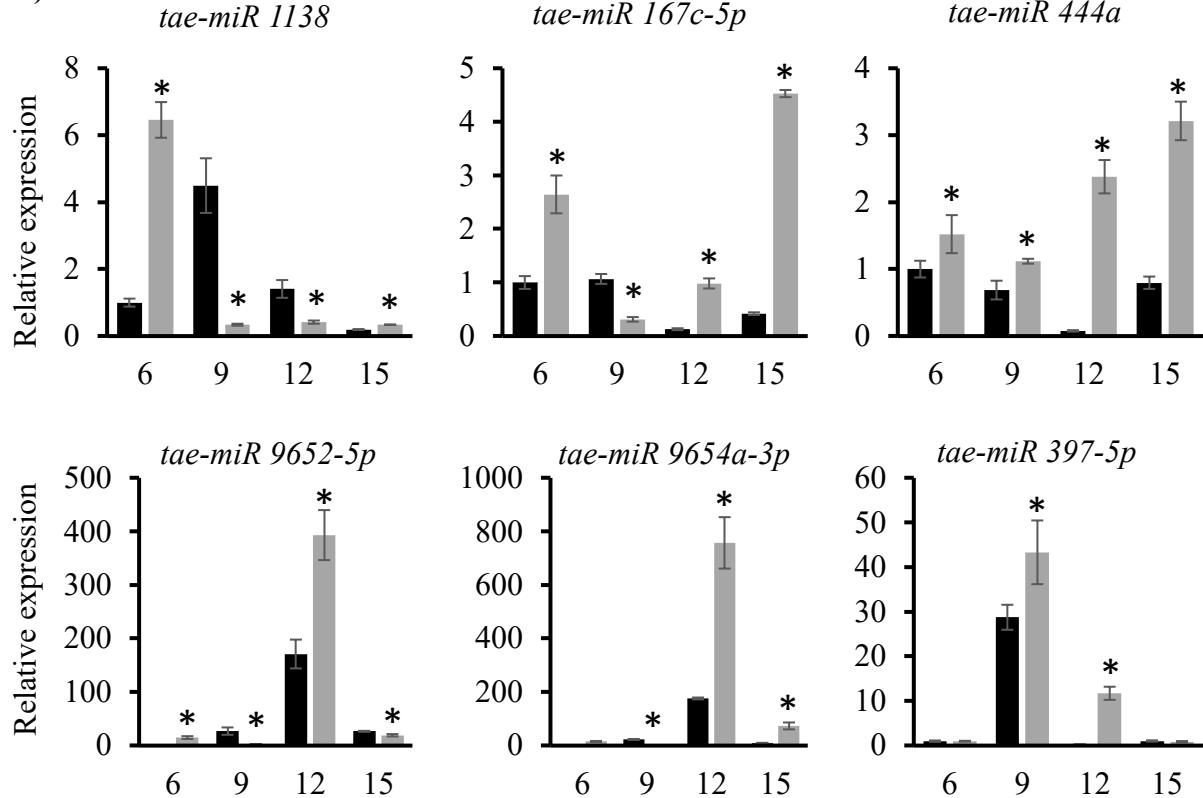
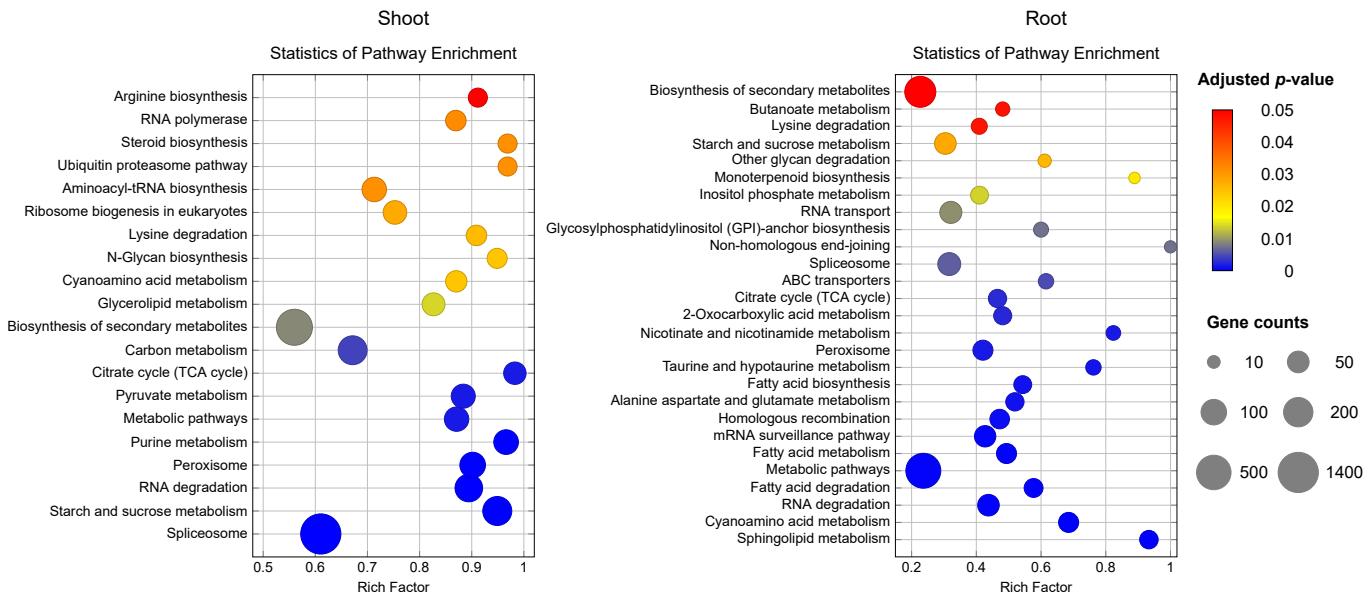



Figure 4

Figure 5

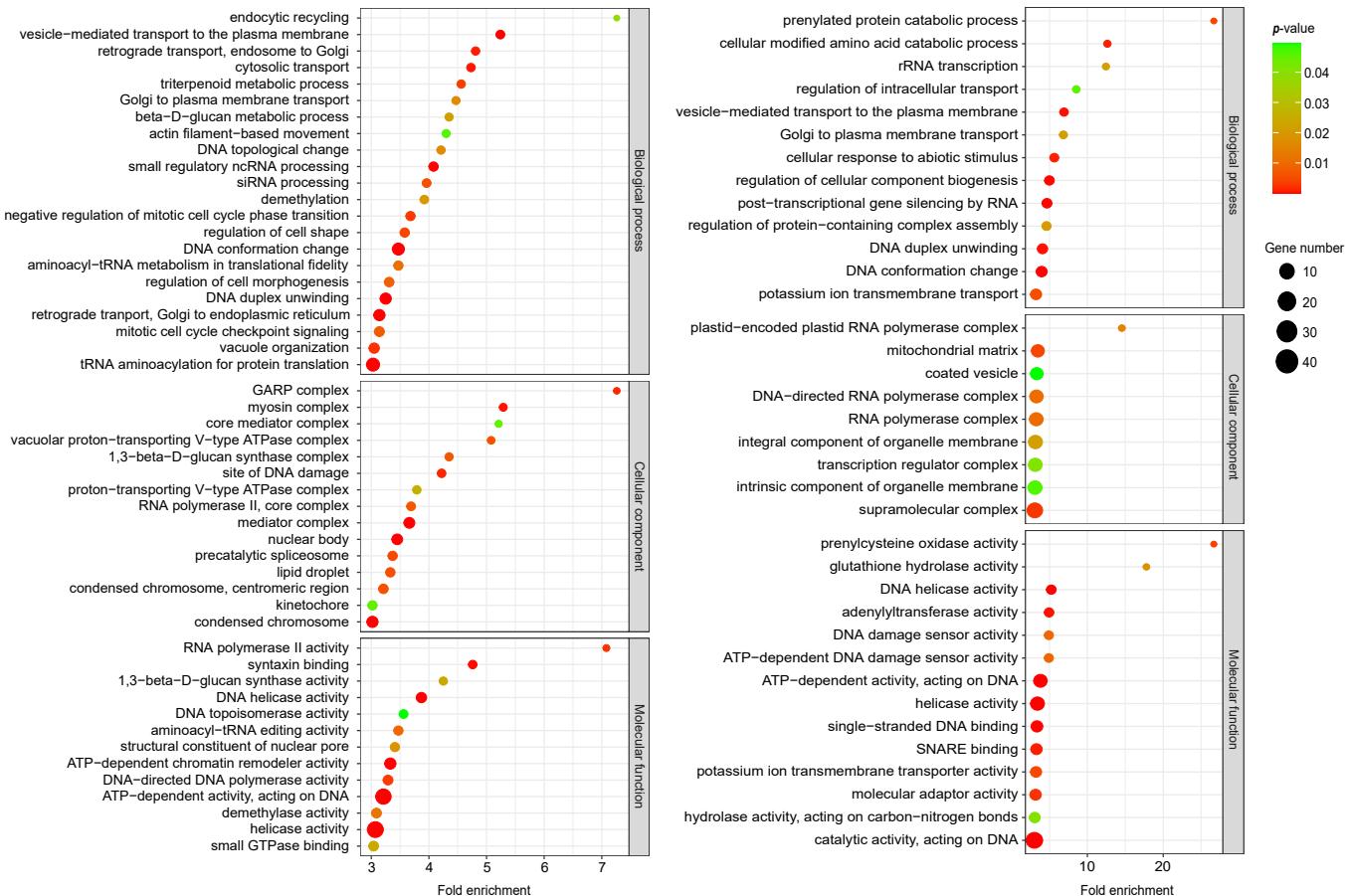
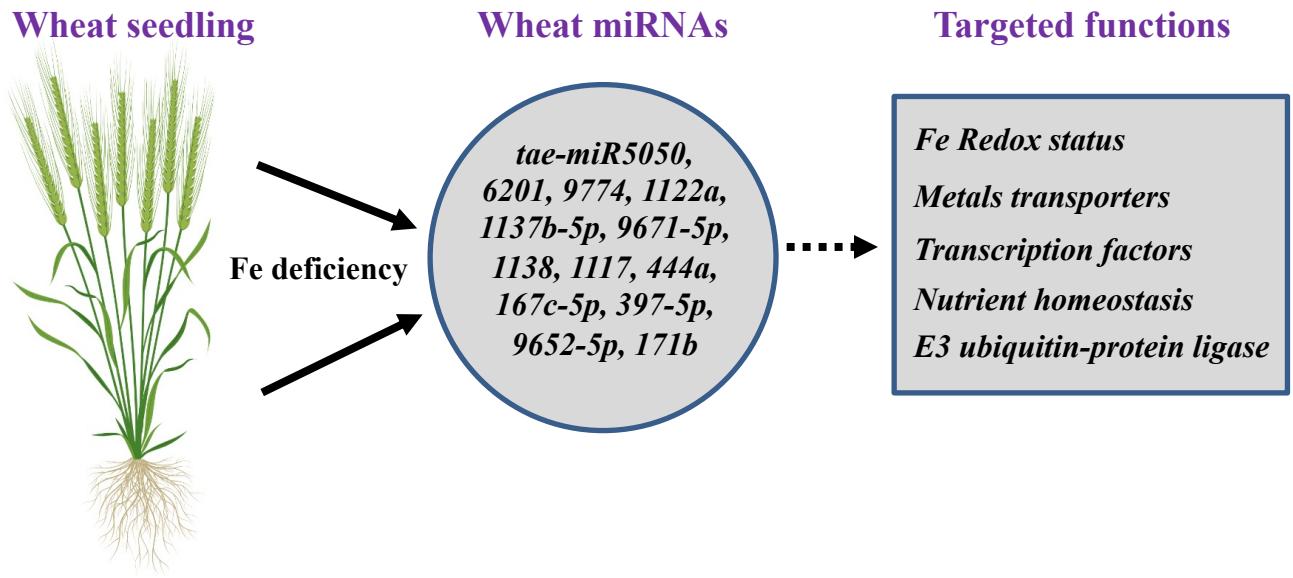



Figure 6

Figure 7