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HIGHLIGHTS 

1. Very few persistent transcriptional events define the trained muscle. 

2. The training status determines the acute exercise response. 

3. Epigenetic changes shape the transcriptional specification of trained muscle. 

4. Absence of the key regulator PGC-1α causes suboptimal training adaptations. 

 

SUMMARY 

Skeletal muscle has an enormous plastic potential to adapt to various external and internal 

perturbations. While morphological changes in endurance-trained muscles are well-described, 

the molecular underpinnings of training adaptation are poorly understood. We aimed at 

defining the molecular signature of a trained muscle and unraveling the training status-

dependent responses to an acute bout of exercise. Our results reveal that even though at 

baseline, the transcriptomes of trained and untrained muscles are very similar, training status 

substantially affects the transcriptional response to an acute challenge, both quantitatively and 

qualitatively, in part mediated by epigenetic modifications. Second, proteomic changes were 

elicited by different transcriptional modalities. Finally, transiently activated factors such as the 

peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) are indispensable for 

normal training adaptation. Together, these results provide a molecular framework of the 

temporal and training status-dependent exercise response that defines muscle plasticity in 

training. 

 

KEYWORDS: exercise; training; transcription; epigenetic modifications; skeletal muscle; PGC-
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INTRODUCTION 

Skeletal muscle exerts pleiotropic functions, from thermoregulation through shivering, to 

endocrine signaling by myokines and myometabolites, and detoxification of endogenous 

compounds, e.g. kynurenines or aberrantly high levels of ketone bodies1-5. However, the main 

task of skeletal muscle is the generation of force for different types of contractile activities, 

including strength, endurance, fine motor control, posture or breathing. Skeletal muscle thus 

not only exhibits broad morphological and functional specification, but also a remarkable 

adaptive plasticity to react to internal and external perturbations4. Remodeling of skeletal 

muscle requires interventions that disrupt homeostasis, to which muscle will progressively 

adapt only if repeated over time3,4. Morphologically, such adaptations are well described, e.g. 

fiber hypertrophy in resistance, or mitochondrial expansion, vascularization and energy 

substrate storage in endurance training4. In light of the powerful health benefits conferred by 

either modality of exercise6,7, it however is surprising that the molecular underpinnings of 

muscle plasticity in exercise are still only rudimentarily understood4. In particular, the 

mechanistic framework that links the perturbations evoked by individual, acute exercise bouts 

to long-term training adaptations are largely unknown3,4. Additionally, it is unclear how the 

training status affects the molecular response to an acute bout of exercise, and how changes 

in gene expression are ultimately linked to persistent modulation of protein levels, organelle 

function and tissue plasticity. Functionally, a repeated bout effect has been postulated based 

on the observation of reduced muscle damage and soreness in trained compared to naïve 

muscle8,9. Accordingly, a diminished amplitude in the expression of a number of genes in 

repeated exercise bouts has been reported, at least with constant training load10,11, 

nevertheless resulting in steady accumulation of transcripts, proteins and performance over 

time12-17. Training habituation and attenuation of the respective responses could thus define 

this process, with increasingly higher intrinsic resilience and lower perturbations of muscle 

cells. Such an encompassing model of transcriptional attenuation in training adaptation 

however is contradicted by different observations. For example, a broad-ranging qualitative 

and quantitative specification is implied by the vastly different epigenetic modifications in acute 

and chronic exercise settings17-19. Accordingly, the expression of many genes is not following 

an attenuating pattern, instead showing an exacerbated response in trained muscle, as 

described for the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α)20. Of 

note, PGC-1α and most other postulated key regulatory factors in exercise adaptation in 

skeletal muscle, including the AMP-dependent protein kinase (AMPK), the mammalian target 

of rapamycin (mTOR), or the calcium-dependent proteins calcineurin A (CnA) and 

calcium/calmodulin-dependent kinase (CaMK) are only very transiently modulated4. Therefore, 

little knowledge about the chronic, persistent mechanistic network in training adaptation exists. 
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To understand these fundamental aspects of muscle biology and plasticity, we therefore 

studied the acute endurance exercise and chronic training response of mouse muscle in a 

systematic and comprehensive manner. Based on the interrogation of the molecular 

underpinnings of epigenetic, transcriptional and proteomic changes, we provide a novel 

mechanistic framework of endurance training adaptations. The transcriptomic data of acute 

exercise and chronic training are provided in the myo-transcriptome of exercise database 

(myoTrEx, LINK). 

 

RESULTS 

The transcriptome of a trained is surprisingly similar to that of an untrained muscle 

To study differences between naïve and endurance-trained muscles, mice were exercised by 

treadmill running on 5 days per week for 1 hour (Figure S1A). After 4 weeks, a significant 

improvement in running performance was observed (Figure S1B). A proteomic analysis also 

indicated a substantial remodeling of skeletal muscle (Figure 1A; Table S1). For example, 

proteins involved in mitochondrial respiration, lipid metabolism, oxygen transport, or stress 

resilience are more abundant in trained than untrained muscle (Figures 1B, 1C, S1C, S1D; 

Table S2). In contrast, the levels of proteins linked to catabolic processes related to 

proteasomal degradation are mitigated by endurance training (Figures 1B & S1E), which, 

together with the induced molecular chaperones, alludes to altered proteostasis. According to 

prevailing models, these proteomic changes are brought about by a persistent modulation of 

gene expression with repeated exercise bouts13. We therefore assessed the transcriptomic 

landscape of the trained muscle. Interestingly, only a small number of genes (<2% of the 

detected genes) was significantly altered (Figure 1D). These few genes define long-term 

cellular changes, e.g. related to fiber-type switch, metabolic remodeling or decreased 

inflammation (Figure 1E; Table S3). In line with these observations, Integrated System for Motif 

Activity Response Analysis (ISMARA)21 revealed higher activity of the Esrrb_Esrra and lower 

activity of Rela_Rel_Nfkb1 motifs (Figure 1F; Table S4). Surprisingly, the altered proteome of 

a trained muscle is only to a small extent maintained transcriptionally. These proteins are 

predominantly involved in lipid metabolic process (Figure S1F; Table S5). Thus, the majority 

of the proteins that define the long-term plasticity of a trained muscle is not directly linked to a 

corresponding transcriptional response. 

These unexpected results, defining the endurance-trained muscle as a largely non-

transcriptional event, raised the question whether perturbations evoked by acute events 

activate transcriptional networks that encode the biological programs observed in trained 

muscle. To test this hypothesis, training-naïve mice were exercised to exhaustion by treadmill 
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running, and the muscle transcriptome was assessed 0h, 4h, 6h and 8h post-exhaustion 

(Figure S1A). Similar to other studies, we found a large number of gene regulatory events in 

this context, peaking 6h post-exhaustion (Figure 1G). A subset of these acute changes 

correlated with the accumulation of proteins in a trained muscle. These proteins were mostly 

upregulated, and predominantly involved in aerobic respiration (Figure S1G; Table S5). 

Intriguingly, the acutely regulated genes only poorly overlapped with persistent transcriptomic 

changes in trained muscle, as only 21% (57 of the 276) of the genes modulated in an 

unperturbed trained muscle are also regulated acutely in naïve muscle (Figures 1H, 1I, S1H-

L). In fact, some of the genes exhibited opposite regulation (Figures 1I, S1M), e.g. reflected in 

transcripts related to inflammation (up acutely post-exercise, down in trained muscle). 

Functionally, many of the acutely regulated genes were related to a strong transcriptional 

response, and to various aspects of stress response, damage, axon guidance, and 

extracellular matrix (ECM) organization (Figure 1J; Table S3). 

 

Qualitative and quantitative differences in the transcriptional response to an acute bout 
of exercise of a trained and untrained muscle 

Since the acute response in naïve muscle was not predictive of training changes, we next 

investigated the response of a trained muscle to an acute bout of endurance exercise at the 

same four time points. Accordingly, mice that were trained for 4 weeks performed an 

exhaustive bout of treadmill running (Figure S1A). Most strikingly, the transcriptomic responses 

of naïve and trained muscle to an acute endurance exercise bout were decisively different, 

qualitatively and quantitatively, the latter both in terms of amplitude (extent of change) and 

phase (temporal regulation) (Figures 2A-C). First, less than half of the upregulated genes 

overlapped between these two conditions, and even a smaller proportion of the downregulated 

transcripts, of which a greater number was altered in the trained condition (Figure 2B). 

Strikingly, the functional prediction of the acute response of trained muscle was diametrically 

opposite to that of the untrained in regard to ECM remodeling and axon guidance (Figures 1J, 

2C, S2A-D; Table S3). Many of these predicted functions, including a modulation of 

inflammation, could originate from non-myocytes in muscle tissue. Therefore, we performed 

cellular deconvolution of the bulk with published single cell and single nucleus RNAseq data 

of untrained muscle (Figure 2D)22,23. These analyses predict a surprisingly detailed 

specification of gene expression between different cell types (Figures 2E-G, S2E, S2F). For 

example, while ECM remodeling is mainly driven by fibro-adipogenic progenitors (FAPs) in 

untrained muscle, tenocytes are more involved in the adaptive processes of ECM in trained 

muscle. These cell type-specific responses presumably result in the corresponding distinct 
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outcomes for ECM remodeling, axon guidance, and potentially other functions after an acute 

endurance exercise bout in naïve compared to trained muscle. 

In contrast to the qualitative differences in functional gene clusters between untrained and 

trained muscle, common processes induced upon an acute perturbation such as the regulation 

of transcription or response to heat stress also exhibit a strong training status-dependent 

specificity (Figures 1J, 2C). For example, qualitative differences in the regulation of 

transcription factors such as early growth response 3 (Egr3), or quantitative modulation of 

transcriptional regulators such as PGC-1α were observed (Figure 3A). ISMARA confirmed the 

substantial regulatory diversification (Figure S3A-F; Table S4). While approximately 35-43% 

of the motifs are specific to the training status (Figure S3B), many of the common motifs (n=77) 

show altered trajectories and/or amplitudes (Figures S3C-F). Of note, despite the >50% 

overlap between motif activities in untrained and trained muscle, in 21 of the 77 motifs, the 

activity profiles point in the opposite direction. For example, the Wrnip1_Mta3_Rcor1 motif 

activity is higher in untrained and lower in trained muscle and, based on the association with 

collagen formation, could contribute to the distinct patterns of ECM remodeling (Figure 3B). 

Intriguingly, even the genes with converging expression patterns in untrained and trained 

muscle often exhibit quantitative differences. While the maximal and minimal amplitude of most 

commonly regulated genes is very similar in untrained and trained muscle, a substantially 

higher proportion of these genes display a higher amplitude in trained muscle 0h post-exercise 

(Figures 3C, S4A). In fact, the peak expression of many of the overlapping genes shifted 

towards earlier time points in the trained compared to the untrained muscle (Figures 3D, S4B, 

S4C). Accordingly, almost half of all upregulated genes in trained muscle peak at 0h while this 

only applies to ~20% of the upregulated genes in untrained muscle (majority peaks after 6h) 

(Figure 3D). Overall, opposed to the model of general attenuation of gene expression with 

training habituation3,10,11,13-15, our results suggest a much more complex picture, with significant 

occurrence of all scenarios: attenuation, exacerbation, and selective expression changes in 

the naïve or trained muscle after an acute exercise bout (Figure 3E). Moreover, most of the 

acute transcriptional changes are not retained in an unperturbed trained muscle (Figure S4D). 

However, collectively, these gene regulatory events correlate with the trained proteome and 

explain up to 43% for upregulated, and 30% for downregulated proteins for which transcript 

data are available (Figure 3F), highlighting the importance of broad comparisons between 

transcriptomes and proteomes24. Interestingly, proteins that are transcriptionally sustained in 

a trained muscle (22% of the proteins) are involved in lipid metabolic process (Figure 3F; Table 

S5). In contrast, genes that are transiently induced upon acute exercise in untrained or trained 

muscle contribute to the elevation of proteins involved in aerobic respiration and protein folding, 

respectively. The 47% of the proteome for which no transcriptional regulation was seen could 

either be underlying transcriptional events at different time points than analyzed in this study, 
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or primarily be affected by post-transcriptional mechanisms. Interestingly, many of these 

proteins cluster in the tricarboxylic acid (TCA) cycle. Overall, these findings allude to a complex 

regulatory network by which long-term adaptations are brought about. 

 

Priming of regulatory genes in trained muscle by DNA methylation changes 

Next, we studied mechanistic processes that contribute to the divergent specification of 

exercise-induced gene expression in naïve and trained muscle. Epigenetic changes have 

previously been reported in training adaptation17,19. We therefore performed reduced 

representation bisulfite sequencing (RRBS) to catalogue DNA methylation events in the trained 

muscle and those elicited by acute exercise. An acute endurance exercise bout resulted in a 

number of DNA methylation changes at 0h and 4h, some of which could be associated with 

gene expression changes (Figures S4E, S4F). Such transient epigenetic regulation of 

transcription has been described for PGC-1α and other exercise-responsive genes18. 

Intriguingly, the chronically retained DNA methylation events in trained muscle differed 

substantially from these acute changes (Figure 3G, S4G). Of note, almost none of these 

differentially methylated regions (DMRs) could be associated with the gene expression 

changes in trained muscle (Figure S4H). In contrast, a subset of these DMRs are in the 

immediate genomic vicinity of a small subset of genes (120 out of 2387) that are regulated 

after an acute exercise bout in the trained muscle (Figure 3H), indicating that these epigenetic 

modulations could contribute to a priming of transcriptional regulation in this context. 

Intriguingly, these genes enrich in functions related to the regulation of transcription, Wnt 

signaling and axon guidance signaling effectors (Figures 3H, S4I-K; Table S6). For example, 

the exercise induction of nuclear receptor 4A3 (Nr4a3), which is associated with DMRs in the 

trained muscle, is not only greatly exacerbated in the trained compared to the untrained 

muscle, but also displaying a phase-shift with a peak immediately post-exercise (Figure 3I). 

Thus, epigenetic modifications could contribute to the different gene expression of a trained 

muscle upon an acute perturbation, primarily affecting regulatory genes, with subsequent 

downstream consequences independent of DNA methylation changes. 

 

PGC-1α is indispensable for a normal transcriptional response to acute exercise and 
long-term training 

Notably, many transcriptional regulators that are engaged strongly and early after acute 

exercise exhibit a diversification between the first and, in our setting, 22nd bout, thus naïve and 

trained muscle, including PGC-1α (Figure 3A). This coregulatory protein has been strongly 

implicated in the acute response by integrating various signaling pathways, and subsequently 
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affecting the activity of numerous transcription factors, thereby coordinating a complex 

transcriptional network25. Our observation, recapitulating prior results in human muscle20, of a 

quantitative difference of PGC-1α in trained compared to untrained muscle would indicate that 

PGC-1α not only controls an acute stress response, but might also affect the transcriptome of 

exercised muscle in the trained state. However, the relevance of adequate regulation and 

function of PGC-1α in long-term training adaptations has not been established, and at least in 

part conflicting findings have been reported26-29. To obtain comprehensive information on 

muscle PGC-1α in training, we therefore repeated the exercise study with muscle-specific 

PGC-1α knockout (mKO) mice. In agreement with previous work30, mKO mice exhibit a 

reduced endurance capacity, running approximately 40% less than WT controls (Figure 4A). 

Nevertheless, the PGC-1α loss-of-function animals substantially improved maximal 

performance after 4 weeks of training, in relative and absolute terms, however still significantly 

less than the WT counterparts (Figures 4A, 4B). Moreover, maximal oxygen consumption 

(VO2max) failed to improve in mKOs (Figure 4C), alluding to an alternative adaptation of 

endurance capacity in these mice. In the acutely perturbed, training-naïve muscle, a massive 

blunting of transcriptional induction at the later time points (4-8h post-exercise) was found, thus 

subsequent to the physiological PGC-1α elevation in WT muscle (Figures 4D-J). Overall, 

absence of muscle PGC-1α affected 56% of all up-, and 65% of all downregulated exercise-

responsive genes (Figure 4K). Some of these genes are functionally related to ECM 

remodeling, Wnt signaling and microglial cell proliferation (Figures 4L-N, S5A; Table S7), 

linked to a corresponding mitigation of Wrnip1_Mta3_Rcor1 and other transcription factor 

motifs related to the regulation of these processes (Figure S5B; Table S4). Genes which were 

not qualitatively affected by the absence of muscle PGC-1α contribute to transcriptional 

regulation and response to heat stress and protein folding (Figures 4G, 4J, S5C; Table S7). 

Intriguingly, the expression of a notable number of genes is only modulated in mKO muscles 

(Figure 5SC), for example a number of transcripts encoding proteins involved in inflammation, 

confirming prior descriptions of exacerbated activity-induced muscle damage and inflammation 

in mKO animals30. 

Interestingly, some of the striking differences in acute gene expression between the untrained 

WT and mKO mice were mitigated by training. For example, the temporal difference, e.g. the 

shift towards peak gene expression at 0h, was also seen in the mKOs (Figure 5A). Additionally, 

the attenuation of the late response (4-8h post-exercise) is diminished in trained mKOs 

(Figures 5B-G). Moreover, less qualitative differences in transcript induction was seen in this 

context. Nevertheless, still 39% of the up-, and 62% of the downregulation was dependent on 

the presence of muscle PGC-1α in trained muscle (Figure 5H). These participate in encoding 

proteins involved in transcription, metabolism of lipids and carbohydrates, as well as ECM 

remodeling (Figures 5I, S6A; Table S7). Interestingly, the induction and repression of ECM 
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genes in untrained and trained WT muscle following an acute endurance exercise bout, 

respectively, are under the control of PGC-1α (Figures 5I, S6B, S6C). 

Next, we investigated how these substantially altered transcriptional profiles after acute 

exercise bouts in untrained and trained muscles of PGC-1α propagate to the unperturbed 

trained quadriceps. First, the already constrained transcriptional changes in WT muscle were 

even further reduced in the absence of PGC-1α (Figure 5J). Of note, 90% of all up-, and 87% 

of all downregulated transcriptional events were dependent on the presence of PGC-1α in WT 

muscle (Figure 5J). Many of these genes encode proteins important for lipid metabolism and 

the fast-to-slow muscle fiber transition (Figure 5K; Table S7). As a coregulator, PGC-1α 

function depends on transcription factor binding to modulate gene expression. We therefore 

wanted to assess the mechanistic underpinnings of PGC-1α action in exercise. ISMARA 

revealed that in the context of acute exercise bouts, the absence of muscle PGC-1α affected 

52% of all significantly affected motif activities in an untrained, and 39% in a trained muscle 

(Figures S6D-G; Table S4). Even more impressive, in the unperturbed trained muscle, almost 

all (91%) transcription factor binding motif activities were affected by the loss-of-function of 

PGC-1α in mKOs (Figure S6H; Table S4). Most notably, the significant training-linked increase 

in Esrrb_Esrra motif activity, a binding site for the estrogen-related receptor α (ERRα), was 

completed blunted in mKOs (Figure 5L). In line, the activity of this motif was highly increased 

in muscle-specific PGC-1α gain-of-function transgenic mice (mTG) and decreased in the loss-

of-function model (Figure 5L). Thus, the massive constriction of transcription in the absence of 

muscle PGC-1α is associated with acute and persistent mitigations of transcription factor 

activities. 

Finally, an abnormal endurance training adaptation was substantiated by the proteomic 

analysis of trained muscle of WT and mKO mice. First, many of the training-regulated proteins 

involved in mitochondrial respiration, lipid metabolic process and TCA cycle are already found 

at lower levels in sedentary mKO animals (Figures 6A, S7A; Tables S1, S2). In these mice, 

training fails to modulate such proteins as seen in WT controls (Figures 6B-E, S7B-D). For 

example, proteins involved in the TCA cycle, mitochondrial respiration, or reactive species 

detoxification were either not modulated by training, or did not reach the levels seen in 

sedentary WT muscle. The phenotypic, transcriptomic and proteomic data strongly indicate 

that PGC-1α thus is indispensable for a normal training response. 

 

PGC-1α controls exercise-linked DNA methylation events 

We next compared the exercise- and training-induced epigenetic changes in WTs and mKOs. 

First, a markedly higher number of hypermethylated regions were found in trained mKO 
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muscle, with little overlap with DMRs in WT quadriceps (Figures 6F, 6G). Similarly, the 

differentially expressed genes (DEGs) after acute exercise associated with DMRs of a trained 

muscle exhibited only a small overlap between the genotypes (Figures 6H, S7E). 

Nevertheless, many of these genes partitioned to regulation of transcription in mKOs, 

functionally similar to the results in WTs (Figures 6I, S7F, Table S6). Based on the largely 

different transcriptome of trained muscle, a divergence in DMRs might not be unexpected. 

However, it was surprising that absence of muscle PGC-1α also significantly altered epigenetic 

modulations in the untrained muscle after an acute exercise bout. At 0h, a relative shift from 

hypo- to hypermethylated regions was seen in mKO compared to WT mice (Figure 6J). DMRs 

almost completely disappeared at 4h (Figure 6J). Nevertheless, a strong functional cluster 

associated with transcription emerged from the overlap between DMRs and DEGs (Figures 

6K, 6L; Table S6). Collectively, these results imply PGC-1α to be directly involved in the 

regulation of DNA methylation associated with gene expression. To test this hypothesis, we 

analyzed the epigenetic, transcriptomic and proteomic changes elicited by a muscle-specific 

PGC-1α gain-of-function model. Indeed, a substantial number of DMRs were detected in 

mTGs. Similar to trained WT quadriceps muscle, and mirroring the outcome in mKO animals, 

DMRs in mTGs skewed towards hypomethylation (Figure S7G). However, the overlap between 

DMRs of trained WT and sedentary mTG mice was very small and only 2.8% of the 

transcriptionally regulated genes have DMRs (Figures S7H, S7I). In line with previous 

observations31, the transcriptome of mTGs differs substantially from the chronically and acutely 

training- and exercise-regulated genes in WT muscle (Figure S7J). A better functional 

representation of training adaptation is provided by the mTG proteome, in which a strong 

accumulation of mitochondrial proteins, including members of the TCA cycle and respiratory 

chain, lipid metabolism, and a depletion of inflammation and proteasomal catabolic processes 

recapitulate many of the changes observed in trained WT muscle (Figure S7K; Table S1, S2). 

 

DISCUSSION 

The ability of skeletal muscle to adapt to internal and external perturbations is a fundamental 

function, indispensable for human evolution as persistence hunters32,33. The plasticity evoked 

by endurance and resistance training leads to a pleiotropic remodeling of the function of many 

organs beyond muscle, linked to potent health benefits1,6,7,34,35. Inversely, the increasingly 

sedentary lifestyle in many societies defies the evolutionary changes, and thus constitutes a 

strong and independent risk factor for a large number of chronic pathologies, thereby 

contributing to morbidity and mortality36,37. While exercise-based interventions are highly 

efficacious in the prevention and therapy of many pathologies, often rivaling the effect of 

clinically approved drugs6,38-40, attempts to pharmacologically “mimic” training in a safe and 
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efficient manner so-far have failed41,42. In light of the enormous fundamental and clinical 

significance of physical activity, it is surprising that our understanding of the underlying 

processes remains incomplete. Our findings now provide evidence for a much more complex 

process than proposed in prevailing models, with several novel aspects that describe muscle 

plasticity in different contexts as well as the basic mechanistic and regulatory principles of 

training adaptation. 

First, even though massive morphological and functional remodeling is necessary for training 

adaptation, untrained and trained muscles are to a large extent transcriptionally 

indistinguishable, and steady-state gene expression changes explain only a small part of the 

corresponding modulation of the proteome. This was unexpected based on the contemporary 

view that repeated exercise bouts result in a steady increase in the basal expression of 

transcripts involved in mitochondrial function, substrate utilization, and other functional aspects 

that define a trained muscle13. Second, the massive, yet transient remodeling of the muscle 

transcriptome after acute exercise is quantitatively and qualitatively different when comparing 

a naïve to a trained muscle. Our findings vastly expand the prevailing models predicting an 

attenuation of the acute regulation of genes with repeated exercise bouts inasmuch we also 

report exacerbation, a shift in peak expression, and complete disappearance and de novo 

emergence of numerous transcripts (Figure 7). Finally, some transcripts exhibit diametrically 

opposite expression in acute exercise in untrained and trained muscles, e.g. genes encoding 

proteins involved in ECM remodeling, inflammation or axon guidance. This suggests a 

decidedly specific homeostatic perturbation and concomitant transcriptional response 

dependent on training status. These highly divergent modes of adaptation imply a complex 

regulatory framework by which training adaptation is brought about: expressed in the shift from 

a strong stress response and damage mitigation in naïve to improved resilience in trained 

muscle besides the metabolic, contractile and other adaptations. The deconvolution analysis 

however indicates that many of these changes are induced by events in non-muscle cells, in 

a presumably complex multicellular crosstalk and interaction. Future studies therefore have to 

consider this aspect and aim at an analysis at the level of individual cell types instead of bulk 

muscle tissue. 

Our data also shed more light onto the mechanistic underpinnings of acute exercise and 

chronic training. We observed a clear differentiation between the acute epigenetic 

modifications and those persistently observed in a chronically trained muscle in an unperturbed 

state. The relatively small number of DMRs in close vicinity to differentially regulated genes in 

this context might be surprising, and might be at least in part caused by the limitation of RRBS. 

The association of epigenetic marks with gene expression, however, implies a priming of a 

limited number of key transcriptional regulators, which accordingly exhibit a different response 

to an acute bout of exercise in untrained and trained muscle. This priming might be sufficient 
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for signal propagation and amplification to downstream genes and thereby contribute to the 

quantitative and qualitative differences in the transcriptional networks engaged in these two 

settings. 

From the many regulatory factors that have been implied in exercise adaptation, we 

investigated the regulation and function of PGC-1α. We now unequivocally demonstrate that 

muscle PGC-1α is indispensable for normal transcriptional muscle plasticity, both after acute 

endurance exercise bouts in naïve and trained, as well as in the endurance-trained muscle. 

Moreover, we now show that VO2max, a marker for maximal endurance capacity, fails to 

significantly improve in the mKOs. Furthermore, training-induced shifts in the metabolism of 

ketone bodies and lactate are minimized in these animals43,44. Thus, collectively, these 

constraints might contribute to the limited gains that are possible in the absence of muscle 

PGC-1α, in our and previous studies resulting in a stagnation of endurance adaptation in mKOs 

at the level of untrained WT mice. Unexpectedly, we also found a strong impact of muscle 

PGC-1α on epigenetic marks, both chronically as well as acutely, both in loss- as well as in 

gain-of-function experiments. Future studies should therefore aim at investigating the 

molecular underpinnings of this link. Collectively, these findings demonstrate that regulatory 

factors such as PGC-1α, even though only acutely regulated, have a profound impact on long-

term training adaptations. However, the regulatory complexity of muscle plasticity might have 

been underestimated since redundant, alternative or contingency pathways and factors seem 

to be able to be engaged in such settings to re-establish adaptation. This is not only true for 

PGC-1α, but also for AMPK and mTOR, which seem dispensable for certain aspects of 

training-induced muscle changes45-48. Such a complex regulatory framework would make 

sense in light of the evolutionary importance of the regulation of muscle plasticity, which has 

to function at least suboptimally to ensure survival even if individual factors fail. 

Overall, our findings provide a new, refined, and much more complex model to describe how 

training adaptations are brought about. These results provide insights into an unsuspected and 

hitherto undescribed complexity in transcriptomic, epigenetic and proteomic changes in muscle 

plasticity, and hint at a vast, multifaceted mechanistic framework that controls the effects of 

acute exercise perturbations and long-term training alterations (Figure 7). Once validated and 

expanded in other species, muscles, training paradigms and time points, and in a more fine-

grained cell type-specific manner, these insights will not only help to better understand such a 

fundamental process that was a main driver of human evolution, but also to leverage novel 

results to design strategies to benefit human health and well-being. It is encouraging that such 

efforts currently are ongoing, e.g. in the framework of the Wu Tsai Human Performance 

Alliance or the Molecular Transducers of Physical Activity Consortium (MoTrPAC)49. 
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MATERIALS AND METHODS 

A detailed description of the materials and methods are provided in the supplemental 

information. 
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FIGURE LEGENDS 

 

Figure 1. The transcriptome of a trained is similar to that of an untrained muscle. 

(A) Volcano plot of all detected proteins in trained muscle using mass spectrometry-based 

proteomics (orange = higher abundant; blue = lower abundant; cutoff: p <0.05; Log2FC ±0.2). 

(B) All functional annotation clusters of up- (orange) and downregulated (blue) proteins in 

trained muscle with an enrichment score >2. 

(C) Examples of proteins involved in the response to stress in sedentary untrained (light gray) 

and unperturbed training (dark gray) muscle. 

(D) Number of genes differentially expressed in unperturbed trained muscle (cutoff: FDR 

<0.05; Log2FC ±0.6). 

(E) All functional annotation clusters of up- (orange) and downregulated (blue) genes in trained 

muscle with an enrichment score >2. 

(F) Motifs of transcription factors from ISMARA that are among those with the highest and 

lowest activity. 

(G) Number of genes after an acute bout of exhaustion exercise that are up- (orange) and 

downregulated (blue). 

(H) Venn diagram of all genes that are regulated after an acute bout of exercise (light color, 

dashed line) and those that are changed in unperturbed trained muscle (orange = upregulated; 

blue = downregulated). 

(I) Heatmap of all genes differentially expressed in unperturbed trained muscle to visualize the 

overlap with acutely regulated genes using euclidean distance hierarchical clustering for rows. 

(J) All functional annotation clusters of up- (orange) and downregulated (blue) genes after an 

acute exercise bout in untrained muscle with an enrichment score >2. 

Data from 5 biological replicates. Data represent means ± SEM. Statistics were performed 

using empirical Bayes moderated t-statistics for proteomics and within the CLC genomics 

workbench software for RNAseq data. * indicates difference to Ctrl (pre-exercise condition) if 

not otherwise indicated; in (C) * p-value <0.05; in (F) * z-score >1.96. See also Figure S1; 

Tables S1-S4. 
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Figure 2. Qualitative transcriptional response to exercise depends on training status. 

(A) Number of genes differentially expressed immediately (0h), 4h, 6h and 8h after an acute 

bout of exhaustion exercise (cutoff: FDR <0.05; Log2FC ±0.6) in untrained and trained muscle. 

(B) Venn diagram of all significantly up- (orange) and downregulated (blue) genes (all time 

points merged) in untrained (light color, dashed line) and trained (dark color, solid line) muscle. 

(C) All functional annotation clusters of up- (orange) and downregulated (blue) genes after an 

acute exercise bout in trained muscle with an enrichment score >2. 

(D) UMAP plot of public available single cell and single nucleus RNAseq datasets22,23 to 

demonstrate the cellular specification of the exercise response in muscle (FAP = fibro-

adipogenic progenitors; MuSC = muscle stem cells; MTJ = myotendinous junction; NMJ = 

neuromuscular junction). 

(E-F) Deconvolution of genes involved in ECM remodeling that are upregulated in untrained 

(E) and downregulated in trained (F) muscle. 

(G) Schematic representation of genes involved in axon guidance and the possible functional 

consequences50. The left square below each gene name represents the untrained response 

and the right square the trained response. Red = upregulated; blue = downregulated 

(illustration was created with BioRender.com). 

Data from 5 biological replicates. Data represent means ± SEM. Statistics of RNAseq data 

were performed within the CLC genomics workbench software. * indicates difference to Ctrl 

(pre-exercise condition); *<0.05; **<0.01; ***<0.001. See also Figure S2; Table S3. 

 

Figure 3. Faster transcriptional response in trained muscle after one bout of exhaustion 
exercise. 

(A) Examples of distinct gene signatures represented in the annotation cluster “regulation of 

transcription” in untrained (light gray) and trained (dark gray) muscle. 

(B) Motif activities from ISMARA and expression changes of a predicted target gene that show 

an opposite regulation in untrained and trained muscle. 

(C) Proportion of overlapping genes with either the same maximal/minimal fold change (white), 

higher amplitude (orange = upregulated; blue = downregulated) in untrained muscle (light 

color) or higher amplitude in trained muscle (dark color). The second bar graph (named 0h) 

represents the proportion of genes with the same maximal value and depicts the proportion of 
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gene that have the same fold change at the 0h time point (white), higher amplitude in untrained 

muscle (light color) or higher amplitude in trained muscle (dark color). 

(D) Representation of the time points when peak expression is reach in either all upregulated 

genes (upper 2 bars) or only the 599 commonly upregulated genes (lower 2 bars). 

(E) Examples of different gene trajectories in untrained and trained muscle after an acute 

exercise bout representing the different training status-specific transcriptional scenarios. 

(F) Relative transcriptional contribution to the proteome of an unperturbed trained muscle: 

A/dark orange = mRNA unperturbed trained muscle, B/light orange/light blue = mRNA acute 

response untrained muscle, C/orange/blue = mRNA acute response trained muscle, D/white 

= protein only (unperturbed trained muscle). 

(G) Circos plot of differentially methylated regions (DMRs) 0h, 4h post-exercise and in 

unperturbed trained muscle. 

(H) Bar Venn diagram of DMRs of an unperturbed trained muscle (white) and differentially 

expressed genes (DEG) after acute exercise in trained muscle (dark gray) and the functional 

annotation clusters of the overlap (light gray, n = 120) with an enrichment score >2. 

(I) Example of a transcription factor that is differentially methylated in trained muscle and higher 

expressed after exercise in trained (dark gray) compared to untrained muscle (light gray). 

Data from 5 biological replicates. Data represent means ± SEM. Statistics were performed 

using empirical Bayes moderated t-statistics for proteomics and within the CLC genomics 

workbench software for RNAseq data. Difference in relative expression changes presented in 

(D) were calculated using a two-tailed Student’s t-test. * indicates difference to Ctrl (pre-

exercise condition); *<0.05 (for motif activity: * z-score >1.96); **<0.01; ***<0.001. See also 

Figures S3, S4; Tables S4-S6. 

 

Figure 4. PGC-1α is indispensable for a normal transcriptional response to acute 
exercise and long-term training. 

(A) Performance of untrained (light color) and trained (dark color) WT (gray) and mKO (blue) 

animals. 

(B) Relative improvement of WT and mKO animals after 4 weeks of progressive treadmill 

training. 

(C) Changes in VO2max before (light color) and after (dark color) training. 
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(D) Number of genes that are up- and downregulated 0h, 4h, 6h and 8h after an acute exercise 

bout in untrained WT and mKO animals. 

(E) Circos plot of all upregulated genes immediately post-exercise (0h) in untrained WT and 

mKO mice. 

(F) Relative fold change (and median) of all commonly regulated genes at the 0h time point in 

untrained muscle. 

(G) Example of gene trajectories with the peak expression immediately post-exercise in 

untrained WT and mKO animals. 

(H) Circos plot of all upregulated genes after 4-8h (merged together) in untrained WT and mKO 

mice. 

(I) Relative fold change (and median) of all commonly regulated genes 4-8h post-exercise in 

untrained muscle. 

(J) Examples of gene trajectories with a peak at a later time point in untrained WT and mKO 

animals. 

(K) Venn diagrams of all up- and downregulated genes after an acute bout of exercise in 

untrained WT (light gray) and mKO (light blue) mice. 

(L) All functional annotation clusters of up- (orange) and downregulated (blue) genes that are 

only regulated in untrained WT mice (745 genes up- and 314 genes downregulated) with an 

enrichment score >2. 

(M-N) Examples of genes involved in ECM organization (M) and Wnt signaling (N) that are 

only regulated in WT muscle. 

Data from 5 biological replicates (except for panels A-C). Data represents means ± SEM (if not 

otherwise stated). Statistics of RNAseq data were performed within the CLC genomics 

workbench software. Two-tailed Student t-test were performed in panel (A-C) to assess 

differences between untrained and trained animals as well as between genotypes. A paired 

two-tailed Student t-test was performed in (C) to observe individual improvements in VO2max. * 

indicates difference to Ctrl (pre-exercise condition) if not otherwise indicated; # indicates 

differences to the same condition in WTs; *<0.05; **<0.01; ***<0.001. See also Figure S5; 

Table S7. 
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Figure 5. Differences in gene expression between WT and mKO animals is mitigated by 
training. 

(A) Number of genes that are up- and downregulated 0h, 4h, 6h and 8h after an acute exercise 

bout in untrained WT (light gray), trained WT (dark gray), untrained mKO (light blue) and 

trained mKO (dark blue) animals. 

(B) Circos plot of all upregulated genes immediately post-exercise (0h) in trained WT and mKO 

mice. 

(C) Relative fold change (and median) of all commonly regulated genes at the 0h time point in 

trained WT and mKO mice. 

(D) Example of gene trajectories with a peak immediately post-exercise in untrained WT, 

trained WT and trained mKO animals. 

(E) Circos plot of all upregulated genes after 4-8h (merged together) in trained WT and mKO 

mice. 

(F) Relative fold change (and median) of all commonly regulated genes 4-8h post-exercise in 

trained WT and mKO mice. 

(G) Examples of gene trajectories with a peak at a later time point in untrained WT, trained WT 

and trained mKO animals. 

(H) Venn diagrams of all up- and downregulated genes after an acute bout of exercise in 

trained WT (dark gray) and mKO (dark blue) mice. 

(I) All functional annotation clusters of up- (orange) and downregulated (blue) genes that are 

only regulated in trained WT mice (487 genes up- and 755 genes downregulated) with an 

enrichment score >2. 

(J) Bar Venn diagram of the genes altered in unperturbed trained WT (gray) and mKO (blue) 

muscle (overlap = light blue). 

(K) All functional annotation clusters of genes that are only up- (orange) and downregulated 

(blue) in trained muscle of WT animals only (up: n = 96; down = 147) with an enrichment score 

>2. 

(L) Motif of the transcription factors from ISMARA with the most significant activity change in 

trained WT animals and the comparison of the activity in trained mKO (left blue), gain-of-

function model (sedentary muscle-specific PGC-1α transgenics – mTG – purple) and loss-of-

function model (sedentary mKO, dark blue). 
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Data from 5 biological replicates. Data represents means ± SEM (if not otherwise stated). 

Statistics of RNAseq data were performed within the CLC genomics workbench software. * 

indicates difference to Ctrl (pre-exercise condition); *<0.05 (for motif activity: * z-score >1.96); 

**<0.01; ***<0.001. See also Figure S6; Tables S4, S7. 

 

Figure 6. PGC-1α controls exercise-linked DNA methylation events. 

(A) Top 3 functional annotation clusters of up- (orange) and downregulated (blue) proteins in 

sedentary mKO compared to sedentary WT muscle. 

(B) Venn diagram of all upregulated proteins in trained WT (gray) and mKO muscle (lighter 

blue: trained mKO compared to sedentary mKO animals; darker blue: trained mKO compared 

to sedentary WT mice). 

(C-E) Examples of proteins involved in TCA cycle (C), response to stress (D) and lipid 

metabolic process (E) in trained WT (gray), sedentary mTG (pink), sedentary mKO (dark blue) 

and trained mKO (blue). Values are expressed relative to the WT sedentary control. 

(F) Number of differentially methylated regions (DMRs) in trained mKO muscle 

(hypermethylated = solid bar; hypomethylated = open bar). 

(G) Circos plot of all DMRs in trained mKO and those in trained WT animals. 

(H) Circos plot of differentially expressed genes (DEGs) with DMRs in trained WT and trained 

mKO animals (genes of the overlap from Figures 3H and S7E). 

(I) All functional annotation clusters of the 110 genes (overlap DMR and DEG from Figure S7E) 

in trained mKO animals with an enrichment score >2. 

(J) Number of hyper- (solid bars) and hypomethylated (open bars) regions 0h and 4h after 

exhaustion in untrained mKO animals. 

(K) Venn diagram of all DMRs 0h and 4h post-exercise (open circles) and DEGs after an acute 

bout of exercise (colored circle) in untrained mKO animals. 

(L) All functional annotation clusters of genes that are differentially methylated and 

transcriptionally regulated after an acute bout of exercise in WT (gray) and mKO (blue) mice. 

Data from 5-6 biological replicates. Statistics were performed using empirical Bayes 

moderated t-statistics for proteomics and within the CLC genomics workbench software for 

RNAseq data. * indicates difference to sedentary WT animals; # indicates difference to 

sedentary mKO animals; *<0.05; **<0.01; ***<0.001. See also Figure S7; Tables S1, S2, S6. 
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Figure 7. Schematic representation of the molecular exercise response. In an untrained 

muscle, short-term epigenetic regulation is coupled to acute perturbations of the transcriptome 

after an acute bout of exercise (orange = upregulated/hypermethylated; blue = 

downregulated/hypomethylated). With repeated bouts over time, a trained muscle is 

established hallmarked by morphological and functional adaptations that improve 

performance. This state is characterized by substantial proteomic remodeling, however in the 

context of a small number of chronically maintained gene expression modulation. Persistent 

modification of epigenetic marks prime the response of the trained muscle to recurring acute 

exercise bouts, in which substantial qualitative and quantitative changes in gene expression 

events compared to those observed in naïve muscle occur. 
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