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Abstract

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) is a non-invasive technique
that is sensitive to microstructural geometry in neural tissue and is useful for the
detection of neuropathology in research and clinical settings. Tensor valued diffusion
encoding schemes (b-tensor) have been developed to enrich the microstructural data
that can be obtained through DW-MRI. These advanced methods have proven to be
more specific to microstructural properties than conventional DW-MRI acquisitions.
Additionally, machine learning methods are particularly useful for the study of
multidimensional data sets. In this work, we have tested the reach of b-tensor encoding
data analyses with machine learning in different histopathological scenarios. We
achieved this in three steps: 1) We induced different forms of white matter damage in
rodent optic nerves. 2) We obtained ez-vivo DW-MRI with b-tensor encoding schemes
and calculated quantitative metrics using Q-space Trajectory Imaging. 3) We used a
machine learning model to identify the main contributing features and built a voxel-wise
probabilistic classification map of histological damage. Our results show that this model
is sensitive to characteristics of microstructural damage. In conclusion, b-tensor
encoded DW-MRI analyzed with machine learning methods, have the potential to be
further developed for the detection of histopathology and neurodegeneration.

Introduction

Non-invasive inference of tissue microstructure is made possible through
diffusion-weighted magnetic resonance imaging (DW-MRI) [1]. This technique has been
useful to characterize cerebral connectivity, plasticity, development, and diverse
pathologies. The need to find clinical standardized DW-MRI biomarkers in healthy and
pathological neural tissue has driven more research in this field [2}|3]. Classical
DW-MRI techniques (i.e., those encoding diffusion through a single pair of pulsed
gradients) have shown sensitivity to nervous tissue damage but not specificity to diverse
histopathological forms [3]. Multidimensional diffusion encoding (MDE) DW-MRI 4]
techniques were developed to address this situation. Specifically, the b-tensor encoding
technique [5] provides a robust framework to explore multidimensional diffusion data.
The theoretical background of these techniques is robust, and they have been tested in
controlled environments with simulations [6] or in healthy tissue [7].

One of the main advantages of using MDE DW-MRI acquisitions is that the complex
information in the data is adequate for advanced diffusion models or signal
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representations. In the diffusion tensor distribution (DTD) [4] a collection of
micro-diffusion tensors with different shapes, sizes, and orientations describe
microstructure. Such complex micro-structural models are not attainable through
standard DW-MRI acquisitions. Thus, MDE DW-MRI can potentially characterize
certain neuropathological changes in detail. However, relatively few studies have used
this technique for this purpose [8].

Materials and methods

Animals

We used adult male Wistar rats for this study (weight: 354 £ 59 g). Animals were held
in a vivarium room under normal light/darkness conditions with controlled temperature
and humidity. Animals had ad libitum access to food and water. The study was
approved by the Bioethics Committee of the Institute of Neurobiology, Universidad
Nacional Autonoma de Mexico (protocol 096.A) under NOM-062-ZO0O-1999 law. All
procedures were performed in compliance with ARRIVE guidelines.

Animal surgery

Normal rats were used to investigate two forms of white matter pathology: axonal
degeneration and inflammation (Fig . Rats were anesthetized with a
ketamine/xylazine mixture (70mg/kg and 10mg/kg ip) and placed on a well-illuminated
surface. For each animal, the procedure was as follows: the right optic nerve was
lesioned while the left one remained intact. This allows a direct comparison between
subjects and between groups. Rats were divided into four different groups:

1. Axonal degeneration (n=6). Induced through unilateral retinal ischemia [9].
Animals were placed in a stereotaxic frame. A 32-gauge needle was inserted into
the anterior chamber of the right eye of each rat, and connected to a reservoir with
saline solution that was elevated until an in-line pressure monitor indicated 120
mmHg (higher than systolic pressure); this pressure was maintained for 90 min.

2. Inflammation (n=9). Elicited through injection of 1ul of lipopolysaccharide (LPS,
4.5 pg/pl; Sigma-Aldrich) in the optic nerve [10]. A small lateral incision behind
the eye was performed. Then, lacrimal glands and extra-ocular muscles were
dissected to expose the optic nerve. Using a 32-gauge needle coupled to a
Hamilton syringe, the injection was done approximately 1 cm rostral to the optic
chiasm. After careful and slow manual injection, the needle was left in place for
approximately 1 minute in order to avoid reflux. The skin was sutured and topical
antibiotics were administered. Animals were allowed to recover from anesthesia
and placed in their cages until perfusion.

3. Saline solution injection (n=9). This group aimed to evaluate the mechanical
damage produced by the sole needle insertion. The procedure was identical as the
previous group but the injection consisted of 1 ul of saline solution.

4. Control (n=8). Healthy animals with both optic nerves intact.

Brain extraction

Ten days after the surgical procedure, all the animals were deeply anesthetized using an
intraperitoneal overdose of sodium pentobarbital. Animals were transcardially perfused
with 0.9% sodium chloride followed by paraformaldehyde(4%)-glutaraldehyde (2.5%)
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solution. Brains were carefully extracted leaving at least 1 cm of optic nerves intact.
Specimens were post-fixed in fresh 4% paraformaldehyde solution at 4 °C until scanning
day.

Fig 1. Experimental design. Axonal degeneration or inflammation of the right optic
nerves was induced in vivo through retinal ischemia or LPS injection, respectively.
Additionally, saline solution was injected into a group of animals to evaluate mechanical
damage. Animals were sacrificed ten days after experimental procedures, tissue was
fixed, and the brains and optic nerves were extracted. b-tensor encoding DW-MRI were
acquired ex vivo.

Imaging

Brains were scanned 15 4+ 10 days post-extraction. The most distal portions of the optic
nerves were attached to the ventral side of the olfactory bulbs by using cyanoacrylate in
order to prevent the optic nerves from floating during the scan. To achieve a reduced

field of view for DW-MRI, we carefully dissected and kept the basal portion of the brain.

These specimens were immersed in Fluorinert (FC-40, Sigma-Aldrich) and allowed to
rest for four hours at room temperature before scanning. Acquisition protocols were
carried out at the National Laboratory for Magnetic Resonance Imaging using a 7 T
Bruker Pharmascan with 760 mT/m gradients and a Cryoprobe. The scanning room
temperature was 21 + 1 °C, and the Cryoprobe’s heated ceramic head mount was set at
the same temperature. DW-MRI images were acquired using the available sequence in
the Preclinical Neuro MRI repository (https://osf.io/nguda); which is based on a 2D
spin-echo sequence. Voxel resolution was 80 x 80 x 1000 gm3. Other MRI parameters:
TR = 1500 ms, TE = 30.9 ms, two averages, flip angle = 79°, scan time = 16 h.

DW-MRI were obtained with b-tensor encoding based on a previously described
protocol [7]; specific modifications were done for our ez vivo setting. The protocol
consists of 3 different gradient waveforms to obtain linear, planar, and spherical tensor
encodings (LTE, PTE, and STE, respectively). STE and PTE waveforms were
optimized and Maxwell-compensated [11] using NOW toolbox [12]. LTE waveforms
were extracted from the optimized STE waveforms to obtain similar gradient spectral
characteristics between waveforms [13]. All waveforms have the same duration (6; = 9.8,
d2 = 10.4, separation time = 5.72 ms), and each one was scaled in gradient magnitude
to achieve 4 different b-values (0.5, 1.4, 2.8 and 4 ms/um?). The STE waveform was
rotated to obtain 10 directions for every b-value. Rotating the STE waveforms results in
the same spherical b-tensor, but this redundancy ensures a more robust data
processing [7]. LTE and PTE waveforms were rotated to obtain [10,10,16,46] directions
for each corresponding b-value. shows the waveforms and protocol used in this
experiment.

Image data preprocessing

Given the long spin-echo based acquisition, the obtained images do not present many
artifacts. The only preprocessing step needed was denoising, as the high b-value shells
(4 ms/um?) are noisy, which we achieved through Marcenko-Pastur PCA [14}/15] as
implemented in mrtrizd [16]. Examples of final images for each encoding acquisition are
shown in Regions of interest (ROI) for injured and control optic nerves were
manually drawn in 3 to 4 slices per nerve (92 + 25 voxels for each nerve).
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Analysis of b-tensor encoded DW-MRI

We fit the QTT method to the obtained b-tensor encoding images and extract eight
microstructural metrics. Four of them capture the macroscopic behavior of the DTD
ensemble and are akin to those from diffusion tensor imaging (DTI) [17]: 1. Fractional
Anisotropy (FA). 2. Mean diffusivity (MD). 3. Axial diffusivity (AD). 4. Radial
diffusivity (RD).

The following four QTT metrics capture the microscopic behavior of the DTD
ensemble and are only achievable through methods such as b-tensor encoding:

5. Micro Fractional Anisotropy (uFA). Measures the mean value of all the fractional
anisotropy values of all tensors in the DTD.

6. Orientation coherence (C.). Measures the level of orientation coherence of the
micro tensors in the DTD.

7. Isotropic kurtosis (K;). Quantifies the kurtosis produced by the size variance of
the micro tensors in the DTD.

8. Anisotropic kurtosis (K,). Quantifies the kurtosis produced by the microscopic
anisotropy.

We obtained QT metrics using the implementation in QTI+ [18]. The original QTI
implementation is biased to very complex microstructure |6], while QTI+ provides a
more stable solution to the DTD fitting optimization problem and achieves smoother
and more precise maps than the standard QTI implementation. We used the default
settings for QTI+. To avoid regions where DTD fitting was poor, we excluded voxels
(6.8% of all data) where any of the QTT metrics resulted in values outside their valid
range: Normalized metrics (FA, yFA) should lie between 0 and 1, and kurtosis metrics
(K; and K,) should be between 0 and 5.

Histology

Following dMRI acquisition, specimens were returned to 4% paraformaldehyde solution
and kept at 4°C until processing. Briefly, the optic nerves were separated from the basal
portion of the brain and were washed with buffered sodium cacodylate (0.1 M) and
glutaraldehyde (3%). Then, stained with osmium tetroxide (0.1%), washed with
cacodylate buffer (0.1 M), and dehydrated with ethyl alcohol at different concentrations
(10%, 20%, 30%, until absolute). Next, samples were embedded in a 1:1 epoxy
resin/propylene oxide solution for 42 h. For polymerization, samples were placed in a
plastic container with epoxy resin and kept at 60°C for 36 h. Finally, each block was
sectioned (600 nm thick) using an ultramicrotome (RMC PowerTome PT XL). Slices
were stained with a toluidine blue/sodium tetraborate solution (both 5%).

Histology images

Photomicrographs were obtained with a Leica DM750 microscope (equipped with a 5M
pixels digital camera) with x10 and x100 objectives, and an Amscope T690C-PL
microscope (equipped with a 10M pixels digital camera) with a x40 objective. We
transformed the images to 16-bit grayscale and digitally enhanced their contrast using
Fiji |19] (version = 2.9.0). Images with the x40 lens were stitched using the stitching
plug-in [20] available in Fiji.

February 16, 2023

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138


https://doi.org/10.1101/2023.02.17.529024
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.17.529024; this version posted February 18, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Machine learning pipeline

Visual inspection of the photomicrographs revealed histological patterns that overlapped
between experimental groups (see [Histological evaluation)). We therefore chose to (i)
reframe the classification labels for the machine learning pipeline into histological
classes that reflect different types of histopathological damage, as Intact, Injured, and
Injured+, and (ii) analyze voxels of the regionally-affected nerves, identified as the
Regional pattern (see Fig .

Fig 2. Labeling system based on histological patterns. Classes were assigned to
each nerve after a visual examination of histology, based on the spatial pattern and type
of histological characteristics. The left column represents the experimental procedures,
while the right column indicates the labels used for the identification of tissue type
based on diffusion properties.

Fig 3| shows a diagram with the machine learning (ML) pipeline. QTI+ data from
Intact, Injured, and Injured+ classes were used for the train/test set in the ML pipeline
in a voxel-wise fashion (A). We trained a random forest model [21] (B) (80/20% fold)
and conducted a feature relevance analysis by Gini importance [21] with scikit-learn
(version=1.1.2, https://scikit-learn.org). We classified each voxel in the Regional nerves
with this model (C and D). The resulting probability of class membership is visualized
as a composite red-green-blue (RGB) map (E), with each channel representing each
tissue class: Intact:Blue, Injured:Green, and Injured+:Red.

Fig 3. Diagram of the machine learning pipeline. We used the QTI+ data for all
voxels labeled according to histology (Panel A: each color-coded data point represents a
voxel) as input to train the random forest model (B). We classified each voxel of the
regionally-affected nerves (Regional) (C) into histological damage classes (D). Finally,
we projected the classified data back into an anatomic RGB map that quantifies tissue
damage (E).

Feature relevance analysis is a complex subject with potential caveats. Previous
work indicates that Gini importance has two main problems: First, it tends to be biased
towards features with high cardinality [22]. This, however does not apply to our data
since it is on a continuum. Second, Gini importance reports statistics related to the
training set [21]. Thus, we also performed a feature relevance analysis by permutations
on the test set [21]. After we report the accuracy/F1-Score results and feature analysis
with the test set, we calculated a bootstrapped estimator to estimate the variance of the

permutation feature analysis and checked if they maintained the same order of relevance.

To this end, we randomly permuted the train/test partitions to perform 200 different
experiments (using the same optimized hyperparameters reported for the random forest
model) to evaluate the reproducibility of the permutation feature relevance analysis. We
emphasize that this analysis is done after the main analysis with the train/test set that
is reported in the [Results| (Machine learning classificationl), and its only purpose is to
check for biases of feature analysis related to the original train/test partition.

Data availability

All DW-MRI data is available through the Open Science Framework
(https://ost.io/b2k4z/).
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Results
Experimental labels for DW-MRI data

Quantitative maps derived from QTI+ showed great asymmetry between the intact and
affected nerves for most of the metrics (Fig[4) caused by the lesion. This was confirmed
by analysis of the average values per nerve. Fig[5}A,B shows the per-animal average
difference between the intact (left) and experimental nerve (right), indicating large
differences of FA, AD, uFA and C. between the two nerves. Diffusion metrics from
nerves in the three experimental conditions showed considerable overlap between them

but were clearly different from the intact nerves (Fig C, D).[S3 Fig| shows the overall
distribution by experimental groups.

Fig 4. Q-space Trayectory Imaging contrasts. A) Anatomical atlas reference
(adapted from [23]). DW-MRI were obtained from the portion of the brain specimen
indicated by the dashed blue box. B) Example denoised DW-MRI with spherical
b-tensor encoding (b=2.8 ms/um? ). C) Enlarged images corresponding to the orange
rectangle in panel B. QTI metrics for control (left) and experimental (right) optic
nerves. (Abbreviations: fractional Anisotropy (FA), microscopic fractional anisotropy
(uFA), orientation coherence (C.), mean diffusivity (MD), radial diffusivity (RD), axial
diffusivity (AD), isotropic kurtosis (K;) and anisotropic kurtosis (Kj)).

Fig 5. QTI metrics by experimental group. Data points correspond to the
average values of all voxels of each optic nerve, per subject. A,B: Intact (Left) vs
Experimental (Right) optic nerves. Lines connect the two optic nerves of each animal.
C,D: Right optic nerves color-coded according to experimental procedure.
Semi-transparent markers show average values per animal; average values for each
experimental condition are indicated as large solid markers.

Histological evaluation

Histological examination of sections stained with toluidine blue (see showed
that retinal ischemia induced diffuse axonal degeneration and mild gliosis. Nerves
injected with LPS also had reductions of axonal density and more glial cell infiltration.
There was evidence of independent mechanical damage, as injections of saline solution
showed a range of axonal degeneration and gliosis ranging from mild to severe.
Moreover, while retinal ischemia induced tissue injury mostly in a
spatially-homogeneous fashion, nerves treated with either type of injection produced
damage either homogeneously or only within confined regions of the nerve, with some
areas showing damage, and others displaying nearly intact structure. Thus, we manually
labeled each nerve based on the type and spatial pattern of histopathology, as (1) Intact,
(2) Injured: characterized by globally-reduced axonal density; (3) Injured+: displaying
homogeneous and profound axonal loss and severe gliosis; and a (4) Regional pattern,
with different regions of the nerves showing either of three histological types (Fig .
This classification system allowed us to perform a spatial assessment of microstructural
damage produced by the experiments, i.e., we used the diffusion properties of the Intact,
Injured, and Injured+ classes to identify the corresponding histological patterns in the
regionally-affected nerves. Photomicrographs in Fig [6] show examples of the
histopathological patterns identified. Panel A is a prototypical Intact nerve,
characterized by a large number of axons with clearly-defined myelin sheaths and bright
intra-axonal space, interspersed with angular glial cell processes. Panel B shows an
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Injured nerve, displaying reduced axonal density, numerous collapsed axons with dark

intra-axonal space (green arrow), and reactive glial cells with large, amoeboid processes.

Panel C shows an Injured+ nerve, nearly devoid of axons with a considerable amount of
glia in a reactive foamy state. Lastly, panel D shows a Regional nerve, with large and
clearly-delimited regions that can be described with the three aforementioned classes.
As noted in (Fig 2] this classification based on the histological type was used to perform
voxel-wise ML-based classification from QTI+ metrics.

Fig 6. Histopathological patterns after experimental procedures. A: Intact
nerve with a large number of axons and narrow glial processes. B: Injured nerve with
collapsed axons (green arrow), reduced number of axons, and gliosis. C: Injured+ nerve
with very few axons and large reactive glial processes with foamy interior indicative of
myelin degradation (red arrow). D: Regional nerve showing clearly separated areas
(dashed white line) of either of the three histological patterns. The areas in the regional
nerves have characteristics of the intact and injured classes, making them a suitable fit
for a machine learning classification problem. Photomicrographs of whole nerves
acquired at x10 magnification; photomicrographs in colored squares acquired at x100
magnification.

Histology-based labels for DW-MRI data

A voxel-wise inspection according to the histology-based classes of the right
(experimental) nerves reveals differences in the distributions for QTI metrics in groups
(Fig . Albeit their large overlap, it is possible to visually separate the distributions.
Group-wise analyses showed considerable alterations of QTT metrics in all
histopathological types, characterized by reduced FA, AD, uFA, and C., and increased
RD and K; (S4 Fig). MD showed slight reductions in the Injured and Injured-+
conditions.

Fig 7. Voxel-wise scatter plots according to the histology-based labeling
system. Metrics from the Intact class (blue) are clearly different from those of the
experimental classes. Metrics from Injured and Injured+ classes are overlapped but still
separable. The Regional class, being composed of areas of either Intact or any of the
two injured classes, shows diffusion metrics distributed across the metrics space.

Machine learning classification

We trained a random forest model for the voxel-wise classification of histopathological
classes in nerves identified as having Regional abnormalities, according to the pipeline
in Fig 3] (maximum depth=6; number of estimators [trees|=100). The overall
classification accuracy was 80.11% and an Fl-score of 79.4% (with a weighted average
for multiclass classification) to distinguish between the three histopathological classes.
Fig [8JA shows the confusion matrix for the classification of the test data set. Fig
shows the results of the feature relevance analysis. FA and AD—metrics from the
classic DTT—are the two most relevant features for the machine learning model.
shows the permutation feature analysis and the bootstrapped feature analyses, which
confirmed the relevance of FA, AD and C. for classification, in that order.

In addition to illustrating the classification pipeline, Fig shows voxels from
Regional nerves (Fig ) classified with the ML method. Fig shows an example of
classified voxels as a RGB map. The majority of voxels within left nerves (intact) are
correctly classified (blue-intact). The right (experimental) nerves show most of the
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voxels identified as Injured, with spatial patterns that correspond to histology (see
Fig @

Fig 8. Machine learning results A: Confusion matrix for classification in the test
set. B: Feature relevance from the random forest. FA and AD, both derived from DTI,
are highly important for classification. With the exception of C., metrics derived from
QTT are less relevant.

An example voxel-wise classification of a single nerve (LPS injection and identified
as Regional, see Fig[2]) shows the algorithm is sensitive to microstructural degeneration.
(Fig E[) Voxels identified as Injured and Injured+ are larger in number in rostral slices
(i.e., nearest to the injection site), with more caudal slices gradually showing more
voxels classified as Intact. Notably, photomicrographs of the same nerve at the
approximate same levels as the DW-MRI show a similar spatial pattern of injury and
corresponding histopathological pattern as that identified by the random forest. The
vast majority of voxels in the left (intact) nerves are correctly identified as Intact.
shows three more examples of correct histopathological damage classification.

Fig 9. Voxel-wise classification of histological patterns. Rat histological
example data showing Regional damage of the left and right (experimental) nerves. The
two optic nerves are shown in three different slices in rostro-caudal order.
Photomicrographs of the same experimental nerve at the approximate same locations
show clearly demarcated areas of Injured and Intact histological patterns, that
correspond to the voxel-wise classification of the DW-MRI of the experimental nerve.

Discussion

In this work, we explore the synergy of QTT metrics and machine learning for the
non-invasive identification of white matter histological damage. Our data show that
these metrics are sensitive to altered histological patterns. Two DTI and one QTI
metrics were the most relevant for accurate classification of tissue damage. i.e. the
metric achievable only through b-tensor encoding further improved the results obtained
from the machine learning pipeline.

The optic nerve has been widely used to evaluate white matter changes through
DW-MRI. A common approach is to induce retinal ischemia that results in Wallerian
degeneration of the retinal ganglion cells and their axons throughout the lesioned nerve,
which reflects as specific patterns of diffusion abnormalities [24,25]. In this study, we
explored the possibility to detect and differentiate between inflammation and axonal
degeneration. Considering that both processes present with different severity in several
neurological disorders, the aim is to achieve better methods to differentiate them and
improve the diagnostic yield of dMRI. However, no tissue damage differentiation was
observed between optic nerves only mechanically damaged and those injected with LPS;
both showed axonal degeneration and gliosis at diverse severity levels. Injections of the
nerve produced enough tissue damage to reduce FA, similar to the reductions caused by
retinal ischemia (Fig[p)) [24,25]. Decreased pFA was also observed in all experimental
conditions, indicative of an increase of isotropic diffusion profiles from glial cells present
as a result of inflammation and mechanical tissue damage, as confirmed by histology
(Fig E[) Dispersion, as seen with C., was also reduced in all affected nerves, which fits
the observed tissue disorganization of the experimental nerves. The rest of the metrics
derived from DTI or QTT overlapped among all the experimental conditions
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(Fig ) This prevented us from establishing a clear differentiation between
inflammation and axonal degeneration.

We observed that mechanical damage varied from subtle axonal degeneration to the
annihilation of the entire axonal population (Fig @ We therefore, re-classified our data
based on histological findings and their spatial extent (Fig , with the injured nerves
(Injured and Injured+) distinguished by the presence of foamy reactive glia that usually
appears only in advanced stages of degeneration [26,27]. In addition, many injected
nerves showed a mosaic of Intact, Injured, and Injured+ histopathologies, which we set
out to automatically classify based on the diffusion profiles derived from nerves with
spatially homogeneous tissue characteristics. As we were working with complex
8-dimensional data from thousands of voxels, this was an ideal setting for a machine
learning application.

Random forest models were used based on the following facts: 1) Less prone to
overfit, 2) easier to interpret (it’s possible to inspect and interpret the individual
estimators—i.e. decision trees-in the model), 3) the variance in the estimators provides
resilience to: (i) noise and (ii) poor quality data points, 4) feature relevance analysis is
straightforward. We obtained similar results when using state of the art machine
learning methods like XGBoost [28] and neural networks [29]. This indicates that
classification performance is more related to the nature of our data than to the
classification algorithm used.

The overall accuracy performance of the automatic classification was high (80%).
While the best distinction performance was between Intact and the two Injured classes,
there was a modest success in the differentiation between the Injured and Injured+
classes (Fig ) Confusion between the two degrees of injury may be due to axonal loss
(present in both types) acting as the main microstructural characteristic driving the
measured diffusion properties. Other dMRI modalities specific to glial cells [30] or

combined with other MRI modalities like spectroscopy [31] could disentangle these cases.

Feature relevance analysis (Fig ) revealed that FA and AD are the most relevant
features to differentiate between tissue types. This was expected, as both are sensitive
to the overall loss of anisotropy in white matter capturing the main effect of
degeneration. DTT metrics are sensitive but not specific. We expected features exclusive
to B-Tensor encoding to improve the classification algorithm by providing additional
information, given their specificity to certain properties of microstructure [8]. For
instance, we expected C\ to capture the increased axonal dispersion typical of WM
degeneration, as previous studies using standard DW-MRI acquisitions had
suggested [32]. Indeed, C. is the third important feature in the analysis. Nevertheless,
C, is (by QTI definition) correlated to FA, and therefore contributes less to the
classification problem if FA is already included in the analysis. Indeed, repeating the
same pipeline using only QTI features revealed that C. is the most relevant feature of
the analysis while preserving a similar classification performance (not shown). uFA was
only slightly relevant for the classification; we hypothesize that gliosis reduces uFA in a
similar pattern in all experiments, thus reducing its efficacy as a predictor. While DTI
metrics capture the overall loss of diffusion anisotropy, QTI metrics could be capturing
the fine details in the diffusion properties to separate these conditions. We also
expected K; (related to the variance of sizes in the DTD model [5]) to be increased as a
result of glial infiltration. K, might explain the loss of micro anisotropy in the medium
and is also related to axonal loss. The relatively low explained variance in the data by
the kurtosis metrics may be attributed to the bias secondary to the assumption of the
DTD model that pK is equal to zero |33], which is not the case in degeneration [34],
and therefore K, and K; may both be absorbing this effect. Note that features
achievable with DTT (FA and AD) capture the main properties of neurodegeneration in
aligned white matter bundles, but dispersion (C.) and yFA could be important factors
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in white matter regions with crossing fibers or gray matter.

There are some limitations in this study. First, the experimental procedures
(particularly those related to direct nerve injections) produced overlapping
histopathologies. This precluded the distinction between axonal degeneration and
inflammation, and limits the interpretability of our findings. In particular, we cannot
conclude from our data whether QTI is capable of resolving between those two
histopathological processes. However, careful examination of histological slides allowed
us to differentiate between Injured and Injured+ classes based on the presence of foamy
glial cells and the extent of axonal loss, which were identified by the random forest
algorithm based on diffusion metrics. Future work should try to minimize confounding
factors introduced by mechanical damage of the tissue by utilizing other experimental
approaches. Second, slice thickness was large (1 mm). Thick slices were acquired to
improve the signal to noise ratio, but partial volume effects could introduce inaccuracies
in the estimation of diffusion metrics, particularly for the Regional pattern as injured
regions vary along the nerve. Third, STE and LTE waveforms were tuned [7}/13] but
this does not ensure they have the same diffusion time window [35|. Diffusion time
dependence could be an important factor in neurodegeneration [3] and was not directly
investigated or controlled for in this study; further studies should give some insight into
the contribution of time-dependent diffusion to distinguish between types of histological
damage. Last, machine learning applications benefit from large data sets. While our
voxel-wise data set is not small the overall accuracy of the method could be improved
with more data points.

There are other possibilities for the analysis of b-tensor encoding data. Like the
diffusion tensor, QTI is a signal representation [36]. There are other interesting avenues
of analysis like Diffusion Tensor Distribution imaging [37] that can extract direct DTD
features or even extend it to multidimensional MRI analysis to capture relaxometry
effects [3839]. Approaches with biophysical models using b-tensor encoding [40L|41] can
be used to extract microstructural properties that cannot be obtained without strong
modeling assumptions using single diffusion encoding acquisitions. Nevertheless, they
are based on the standard model of white matter that is applicable for healthy tissue,
and it is unknown whether it would be adequate for the detection of severe deviations
(i.e., tissue damage) without modifications to the underlying assumptions. More work is
needed to test if these approaches to DW-MRI could identify tissue damage with high
sensitivity and specificity.

Machine learning methods provide a new paradigm to understand and use the
advanced methods available in the DW-MRI field. Direct visualization of tissue type
probabilities as a color map (Fig E[), while proof of concept, provides a straightforward
qualitative assessment of the type of damage at every voxel. The combination of spatial
specificity and the availability of quantitative diffusion metrics can be a powerful tool to
evaluate and diagnose microstructural changes in neurological disorders.

Conclusion

In this work, we explore the ability b-tensor encoding methods to detect and
differentiate between distinct forms of white matter pathologies. Specifically, we

explored the metrics derived from QTI using state of the art machine learning methods.

The majority of QTI metrics are sensitive to microstructural changes induced by
neuropathology. While classic DTT metrics were the most important features for the
training phase in the machine learning algorithm, features exclusive to b-tensor
encoding improved its precision.
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Supporting information

S1 Fig. Protocol scheme. Full protocol scheme and example waveforms
(b=2.8ms/um?) used in this study.

S2 Fig. b-tensor encoding example images. Example preprocessed DW-MRI
acquired b-tensor encoding (b=2.8 ms/um?) of a single slice from one representative
animal in the retinal ischemia group. Linear, planar and spherical tensor encodings
(LTE, PTE, STE) and a non-diffusion-weighted image (b=0 ms/um?) are shown. The
yellow rectangle indicates the optic nerves.

S3 Fig. Violin plots for the experimental groups for each QTI metric.

S4 Fig. Violin plots for the three nerve classes and regional pattern
(defined by histological examination) for each QTI metric.

S5 Fig. Feature relevance analysis A) Permutation feature relevance analysis in
the test set. B) Bootstraped permutation feature analysis. FA and AD are the most
important features. Gini importance (B) showed C, as the third-ranking relevant
feature.

S6 Fig. Examples of Regional histological damage and corresponding
machine learning classification based on MDE DW-MRI.
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