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Abstract

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) is a non-invasive technique
that is sensitive to microstructural geometry in neural tissue and is useful for the
detection of neuropathology in research and clinical settings. Tensor valued diffusion
encoding schemes (b-tensor) have been developed to enrich the microstructural data
that can be obtained through DW-MRI. These advanced methods have proven to be
more specific to microstructural properties than conventional DW-MRI acquisitions.
Additionally, machine learning methods are particularly useful for the study of
multidimensional data sets. In this work, we have tested the reach of b-tensor encoding
data analyses with machine learning in different histopathological scenarios. We
achieved this in three steps: 1) We induced different forms of white matter damage in
rodent optic nerves. 2) We obtained ex-vivo DW-MRI with b-tensor encoding schemes
and calculated quantitative metrics using Q-space Trajectory Imaging. 3) We used a
machine learning model to identify the main contributing features and built a voxel-wise
probabilistic classification map of histological damage. Our results show that this model
is sensitive to characteristics of microstructural damage. In conclusion, b-tensor
encoded DW-MRI analyzed with machine learning methods, have the potential to be
further developed for the detection of histopathology and neurodegeneration.

Introduction 1

Non-invasive inference of tissue microstructure is made possible through 2

diffusion-weighted magnetic resonance imaging (DW-MRI) [1]. This technique has been 3

useful to characterize cerebral connectivity, plasticity, development, and diverse 4

pathologies. The need to find clinical standardized DW-MRI biomarkers in healthy and 5

pathological neural tissue has driven more research in this field [2, 3]. Classical 6

DW-MRI techniques (i.e., those encoding diffusion through a single pair of pulsed 7

gradients) have shown sensitivity to nervous tissue damage but not specificity to diverse 8

histopathological forms [3]. Multidimensional diffusion encoding (MDE) DW-MRI [4] 9

techniques were developed to address this situation. Specifically, the b-tensor encoding 10

technique [5] provides a robust framework to explore multidimensional diffusion data. 11

The theoretical background of these techniques is robust, and they have been tested in 12

controlled environments with simulations [6] or in healthy tissue [7]. 13

One of the main advantages of using MDE DW-MRI acquisitions is that the complex 14

information in the data is adequate for advanced diffusion models or signal 15
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representations. In the diffusion tensor distribution (DTD) [4] a collection of 16

micro-diffusion tensors with different shapes, sizes, and orientations describe 17

microstructure. Such complex micro-structural models are not attainable through 18

standard DW-MRI acquisitions. Thus, MDE DW-MRI can potentially characterize 19

certain neuropathological changes in detail. However, relatively few studies have used 20

this technique for this purpose [8]. 21

Materials and methods 22

Animals 23

We used adult male Wistar rats for this study (weight: 354± 59 g). Animals were held 24

in a vivarium room under normal light/darkness conditions with controlled temperature 25

and humidity. Animals had ad libitum access to food and water. The study was 26

approved by the Bioethics Committee of the Institute of Neurobiology, Universidad 27

Nacional Autonoma de Mexico (protocol 096.A) under NOM-062-ZOO-1999 law. All 28

procedures were performed in compliance with ARRIVE guidelines. 29

Animal surgery 30

Normal rats were used to investigate two forms of white matter pathology: axonal 31

degeneration and inflammation (Fig 1). Rats were anesthetized with a 32

ketamine/xylazine mixture (70mg/kg and 10mg/kg ip) and placed on a well-illuminated 33

surface. For each animal, the procedure was as follows: the right optic nerve was 34

lesioned while the left one remained intact. This allows a direct comparison between 35

subjects and between groups. Rats were divided into four different groups: 36

1. Axonal degeneration (n=6). Induced through unilateral retinal ischemia [9]. 37

Animals were placed in a stereotaxic frame. A 32-gauge needle was inserted into 38

the anterior chamber of the right eye of each rat, and connected to a reservoir with 39

saline solution that was elevated until an in-line pressure monitor indicated 120 40

mmHg (higher than systolic pressure); this pressure was maintained for 90 min. 41

2. Inflammation (n=9). Elicited through injection of 1µl of lipopolysaccharide (LPS, 42

4.5 µg/µl; Sigma-Aldrich) in the optic nerve [10]. A small lateral incision behind 43

the eye was performed. Then, lacrimal glands and extra-ocular muscles were 44

dissected to expose the optic nerve. Using a 32-gauge needle coupled to a 45

Hamilton syringe, the injection was done approximately 1 cm rostral to the optic 46

chiasm. After careful and slow manual injection, the needle was left in place for 47

approximately 1 minute in order to avoid reflux. The skin was sutured and topical 48

antibiotics were administered. Animals were allowed to recover from anesthesia 49

and placed in their cages until perfusion. 50

3. Saline solution injection (n=9). This group aimed to evaluate the mechanical 51

damage produced by the sole needle insertion. The procedure was identical as the 52

previous group but the injection consisted of 1 µl of saline solution. 53

4. Control (n=8). Healthy animals with both optic nerves intact. 54

Brain extraction 55

Ten days after the surgical procedure, all the animals were deeply anesthetized using an 56

intraperitoneal overdose of sodium pentobarbital. Animals were transcardially perfused 57

with 0.9% sodium chloride followed by paraformaldehyde(4%)-glutaraldehyde (2.5%) 58
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solution. Brains were carefully extracted leaving at least 1 cm of optic nerves intact. 59

Specimens were post-fixed in fresh 4% paraformaldehyde solution at 4 °C until scanning 60

day. 61

Fig 1. Experimental design. Axonal degeneration or inflammation of the right optic
nerves was induced in vivo through retinal ischemia or LPS injection, respectively.
Additionally, saline solution was injected into a group of animals to evaluate mechanical
damage. Animals were sacrificed ten days after experimental procedures, tissue was
fixed, and the brains and optic nerves were extracted. b-tensor encoding DW-MRI were
acquired ex vivo.

Imaging 62

Brains were scanned 15± 10 days post-extraction. The most distal portions of the optic 63

nerves were attached to the ventral side of the olfactory bulbs by using cyanoacrylate in 64

order to prevent the optic nerves from floating during the scan. To achieve a reduced 65

field of view for DW-MRI, we carefully dissected and kept the basal portion of the brain. 66

These specimens were immersed in Fluorinert (FC-40, Sigma-Aldrich) and allowed to 67

rest for four hours at room temperature before scanning. Acquisition protocols were 68

carried out at the National Laboratory for Magnetic Resonance Imaging using a 7 T 69

Bruker Pharmascan with 760 mT/m gradients and a Cryoprobe. The scanning room 70

temperature was 21± 1 °C, and the Cryoprobe’s heated ceramic head mount was set at 71

the same temperature. DW-MRI images were acquired using the available sequence in 72

the Preclinical Neuro MRI repository (https://osf.io/ngu4a); which is based on a 2D 73

spin-echo sequence. Voxel resolution was 80× 80× 1000 µm3. Other MRI parameters: 74

TR = 1500 ms, TE = 30.9 ms, two averages, flip angle = 79°, scan time = 16 h. 75

DW-MRI were obtained with b-tensor encoding based on a previously described 76

protocol [7]; specific modifications were done for our ex vivo setting. The protocol 77

consists of 3 different gradient waveforms to obtain linear, planar, and spherical tensor 78

encodings (LTE, PTE, and STE, respectively). STE and PTE waveforms were 79

optimized and Maxwell-compensated [11] using NOW toolbox [12]. LTE waveforms 80

were extracted from the optimized STE waveforms to obtain similar gradient spectral 81

characteristics between waveforms [13]. All waveforms have the same duration (δ1 = 9.8, 82

δ2 = 10.4, separation time = 5.72 ms), and each one was scaled in gradient magnitude 83

to achieve 4 different b-values (0.5, 1.4, 2.8 and 4 ms/µm2). The STE waveform was 84

rotated to obtain 10 directions for every b-value. Rotating the STE waveforms results in 85

the same spherical b-tensor, but this redundancy ensures a more robust data 86

processing [7]. LTE and PTE waveforms were rotated to obtain [10,10,16,46] directions 87

for each corresponding b-value. S1 Fig shows the waveforms and protocol used in this 88

experiment. 89

Image data preprocessing 90

Given the long spin-echo based acquisition, the obtained images do not present many 91

artifacts. The only preprocessing step needed was denoising, as the high b-value shells 92

(4 ms/µm2) are noisy, which we achieved through Marčenko-Pastur PCA [14,15] as 93

implemented in mrtrix3 [16]. Examples of final images for each encoding acquisition are 94

shown in S2 Fig. Regions of interest (ROI) for injured and control optic nerves were 95

manually drawn in 3 to 4 slices per nerve (92 ± 25 voxels for each nerve). 96
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Analysis of b-tensor encoded DW-MRI 97

We fit the QTI method to the obtained b-tensor encoding images and extract eight 98

microstructural metrics. Four of them capture the macroscopic behavior of the DTD 99

ensemble and are akin to those from diffusion tensor imaging (DTI) [17]: 1. Fractional 100

Anisotropy (FA). 2. Mean diffusivity (MD). 3. Axial diffusivity (AD). 4. Radial 101

diffusivity (RD). 102

The following four QTI metrics capture the microscopic behavior of the DTD 103

ensemble and are only achievable through methods such as b-tensor encoding: 104

5. Micro Fractional Anisotropy (µFA). Measures the mean value of all the fractional 105

anisotropy values of all tensors in the DTD. 106

6. Orientation coherence (Cc). Measures the level of orientation coherence of the 107

micro tensors in the DTD. 108

7. Isotropic kurtosis (Ki). Quantifies the kurtosis produced by the size variance of 109

the micro tensors in the DTD. 110

8. Anisotropic kurtosis (Ka). Quantifies the kurtosis produced by the microscopic 111

anisotropy. 112

We obtained QTI metrics using the implementation in QTI+ [18]. The original QTI 113

implementation is biased to very complex microstructure [6], while QTI+ provides a 114

more stable solution to the DTD fitting optimization problem and achieves smoother 115

and more precise maps than the standard QTI implementation. We used the default 116

settings for QTI+. To avoid regions where DTD fitting was poor, we excluded voxels 117

(6.8% of all data) where any of the QTI metrics resulted in values outside their valid 118

range: Normalized metrics (FA, µFA) should lie between 0 and 1, and kurtosis metrics 119

(Ki and Ka) should be between 0 and 5. 120

Histology 121

Following dMRI acquisition, specimens were returned to 4% paraformaldehyde solution 122

and kept at 4°C until processing. Briefly, the optic nerves were separated from the basal 123

portion of the brain and were washed with buffered sodium cacodylate (0.1 M) and 124

glutaraldehyde (3%). Then, stained with osmium tetroxide (0.1%), washed with 125

cacodylate buffer (0.1 M), and dehydrated with ethyl alcohol at different concentrations 126

(10%, 20%, 30%, until absolute). Next, samples were embedded in a 1:1 epoxy 127

resin/propylene oxide solution for 42 h. For polymerization, samples were placed in a 128

plastic container with epoxy resin and kept at 60°C for 36 h. Finally, each block was 129

sectioned (600 nm thick) using an ultramicrotome (RMC PowerTome PT XL). Slices 130

were stained with a toluidine blue/sodium tetraborate solution (both 5%). 131

Histology images 132

Photomicrographs were obtained with a Leica DM750 microscope (equipped with a 5M 133

pixels digital camera) with x10 and x100 objectives, and an Amscope T690C-PL 134

microscope (equipped with a 10M pixels digital camera) with a x40 objective. We 135

transformed the images to 16-bit grayscale and digitally enhanced their contrast using 136

Fiji [19] (version = 2.9.0). Images with the x40 lens were stitched using the stitching 137

plug-in [20] available in Fiji. 138
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Machine learning pipeline 139

Visual inspection of the photomicrographs revealed histological patterns that overlapped 140

between experimental groups (see Histological evaluation). We therefore chose to (i) 141

reframe the classification labels for the machine learning pipeline into histological 142

classes that reflect different types of histopathological damage, as Intact, Injured, and 143

Injured+, and (ii) analyze voxels of the regionally-affected nerves, identified as the 144

Regional pattern (see Fig 2). 145

Fig 2. Labeling system based on histological patterns. Classes were assigned to
each nerve after a visual examination of histology, based on the spatial pattern and type
of histological characteristics. The left column represents the experimental procedures,
while the right column indicates the labels used for the identification of tissue type
based on diffusion properties.

Fig 3 shows a diagram with the machine learning (ML) pipeline. QTI+ data from 146

Intact, Injured, and Injured+ classes were used for the train/test set in the ML pipeline 147

in a voxel-wise fashion (A). We trained a random forest model [21] (B) (80/20% fold) 148

and conducted a feature relevance analysis by Gini importance [21] with scikit-learn 149

(version=1.1.2, https://scikit-learn.org). We classified each voxel in the Regional nerves 150

with this model (C and D). The resulting probability of class membership is visualized 151

as a composite red-green-blue (RGB) map (E), with each channel representing each 152

tissue class: Intact:Blue, Injured:Green, and Injured+:Red. 153

Fig 3. Diagram of the machine learning pipeline. We used the QTI+ data for all
voxels labeled according to histology (Panel A: each color-coded data point represents a
voxel) as input to train the random forest model (B). We classified each voxel of the
regionally-affected nerves (Regional) (C) into histological damage classes (D). Finally,
we projected the classified data back into an anatomic RGB map that quantifies tissue
damage (E).

Feature relevance analysis is a complex subject with potential caveats. Previous 154

work indicates that Gini importance has two main problems: First, it tends to be biased 155

towards features with high cardinality [22]. This, however does not apply to our data 156

since it is on a continuum. Second, Gini importance reports statistics related to the 157

training set [21]. Thus, we also performed a feature relevance analysis by permutations 158

on the test set [21]. After we report the accuracy/F1-Score results and feature analysis 159

with the test set, we calculated a bootstrapped estimator to estimate the variance of the 160

permutation feature analysis and checked if they maintained the same order of relevance. 161

To this end, we randomly permuted the train/test partitions to perform 200 different 162

experiments (using the same optimized hyperparameters reported for the random forest 163

model) to evaluate the reproducibility of the permutation feature relevance analysis. We 164

emphasize that this analysis is done after the main analysis with the train/test set that 165

is reported in the Results (Machine learning classification), and its only purpose is to 166

check for biases of feature analysis related to the original train/test partition. 167

Data availability 168

All DW-MRI data is available through the Open Science Framework 169

(https://osf.io/b2k4z/). 170
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Results 171

Experimental labels for DW-MRI data 172

Quantitative maps derived from QTI+ showed great asymmetry between the intact and 173

affected nerves for most of the metrics (Fig 4) caused by the lesion. This was confirmed 174

by analysis of the average values per nerve. Fig 5-A,B shows the per-animal average 175

difference between the intact (left) and experimental nerve (right), indicating large 176

differences of FA, AD, µFA and Cc between the two nerves. Diffusion metrics from 177

nerves in the three experimental conditions showed considerable overlap between them 178

but were clearly different from the intact nerves (Fig 5-C, D). S3 Fig shows the overall 179

distribution by experimental groups. 180

Fig 4. Q-space Trayectory Imaging contrasts. A) Anatomical atlas reference
(adapted from [23]). DW-MRI were obtained from the portion of the brain specimen
indicated by the dashed blue box. B) Example denoised DW-MRI with spherical
b-tensor encoding (b=2.8 ms/µm2 ). C) Enlarged images corresponding to the orange
rectangle in panel B. QTI metrics for control (left) and experimental (right) optic
nerves. (Abbreviations: fractional Anisotropy (FA), microscopic fractional anisotropy
(µFA), orientation coherence (Cc), mean diffusivity (MD), radial diffusivity (RD), axial
diffusivity (AD), isotropic kurtosis (Ki) and anisotropic kurtosis (Ka)).

Fig 5. QTI metrics by experimental group. Data points correspond to the
average values of all voxels of each optic nerve, per subject. A,B: Intact (Left) vs
Experimental (Right) optic nerves. Lines connect the two optic nerves of each animal.
C,D: Right optic nerves color-coded according to experimental procedure.
Semi-transparent markers show average values per animal; average values for each
experimental condition are indicated as large solid markers.

Histological evaluation 181

Histological examination of sections stained with toluidine blue (see Histology) showed 182

that retinal ischemia induced diffuse axonal degeneration and mild gliosis. Nerves 183

injected with LPS also had reductions of axonal density and more glial cell infiltration. 184

There was evidence of independent mechanical damage, as injections of saline solution 185

showed a range of axonal degeneration and gliosis ranging from mild to severe. 186

Moreover, while retinal ischemia induced tissue injury mostly in a 187

spatially-homogeneous fashion, nerves treated with either type of injection produced 188

damage either homogeneously or only within confined regions of the nerve, with some 189

areas showing damage, and others displaying nearly intact structure. Thus, we manually 190

labeled each nerve based on the type and spatial pattern of histopathology, as (1) Intact, 191

(2) Injured : characterized by globally-reduced axonal density; (3) Injured+: displaying 192

homogeneous and profound axonal loss and severe gliosis; and a (4) Regional pattern, 193

with different regions of the nerves showing either of three histological types (Fig 2). 194

This classification system allowed us to perform a spatial assessment of microstructural 195

damage produced by the experiments, i.e., we used the diffusion properties of the Intact, 196

Injured, and Injured+ classes to identify the corresponding histological patterns in the 197

regionally-affected nerves. Photomicrographs in Fig 6 show examples of the 198

histopathological patterns identified. Panel A is a prototypical Intact nerve, 199

characterized by a large number of axons with clearly-defined myelin sheaths and bright 200

intra-axonal space, interspersed with angular glial cell processes. Panel B shows an 201
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Injured nerve, displaying reduced axonal density, numerous collapsed axons with dark 202

intra-axonal space (green arrow), and reactive glial cells with large, amoeboid processes. 203

Panel C shows an Injured+ nerve, nearly devoid of axons with a considerable amount of 204

glia in a reactive foamy state. Lastly, panel D shows a Regional nerve, with large and 205

clearly-delimited regions that can be described with the three aforementioned classes. 206

As noted in (Fig 2, this classification based on the histological type was used to perform 207

voxel-wise ML-based classification from QTI+ metrics. 208

Fig 6. Histopathological patterns after experimental procedures. A: Intact
nerve with a large number of axons and narrow glial processes. B: Injured nerve with
collapsed axons (green arrow), reduced number of axons, and gliosis. C: Injured+ nerve
with very few axons and large reactive glial processes with foamy interior indicative of
myelin degradation (red arrow). D: Regional nerve showing clearly separated areas
(dashed white line) of either of the three histological patterns. The areas in the regional
nerves have characteristics of the intact and injured classes, making them a suitable fit
for a machine learning classification problem. Photomicrographs of whole nerves
acquired at x10 magnification; photomicrographs in colored squares acquired at x100
magnification.

Histology-based labels for DW-MRI data 209

A voxel-wise inspection according to the histology-based classes of the right 210

(experimental) nerves reveals differences in the distributions for QTI metrics in groups 211

(Fig 7). Albeit their large overlap, it is possible to visually separate the distributions. 212

Group-wise analyses showed considerable alterations of QTI metrics in all 213

histopathological types, characterized by reduced FA, AD, µFA, and Cc, and increased 214

RD and Ki (S4 Fig). MD showed slight reductions in the Injured and Injured+ 215

conditions. 216

Fig 7. Voxel-wise scatter plots according to the histology-based labeling
system. Metrics from the Intact class (blue) are clearly different from those of the
experimental classes. Metrics from Injured and Injured+ classes are overlapped but still
separable. The Regional class, being composed of areas of either Intact or any of the
two injured classes, shows diffusion metrics distributed across the metrics space.

Machine learning classification 217

We trained a random forest model for the voxel-wise classification of histopathological 218

classes in nerves identified as having Regional abnormalities, according to the pipeline 219

in Fig 3 (maximum depth=6; number of estimators [trees]=100). The overall 220

classification accuracy was 80.11% and an F1-score of 79.4% (with a weighted average 221

for multiclass classification) to distinguish between the three histopathological classes. 222

Fig 8A shows the confusion matrix for the classification of the test data set. Fig 8B 223

shows the results of the feature relevance analysis. FA and AD—metrics from the 224

classic DTI—are the two most relevant features for the machine learning model. S5 Fig 225

shows the permutation feature analysis and the bootstrapped feature analyses, which 226

confirmed the relevance of FA, AD and Cc for classification, in that order. 227

In addition to illustrating the classification pipeline, Fig 3D shows voxels from 228

Regional nerves (Fig 3C) classified with the ML method. Fig 3E shows an example of 229

classified voxels as a RGB map. The majority of voxels within left nerves (intact) are 230

correctly classified (blue–intact). The right (experimental) nerves show most of the 231
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voxels identified as Injured, with spatial patterns that correspond to histology (see 232

Fig 6). 233

Fig 8. Machine learning results A: Confusion matrix for classification in the test
set. B: Feature relevance from the random forest. FA and AD, both derived from DTI,
are highly important for classification. With the exception of Cc, metrics derived from
QTI are less relevant.

An example voxel-wise classification of a single nerve (LPS injection and identified 234

as Regional, see Fig 2) shows the algorithm is sensitive to microstructural degeneration. 235

(Fig 9). Voxels identified as Injured and Injured+ are larger in number in rostral slices 236

(i.e., nearest to the injection site), with more caudal slices gradually showing more 237

voxels classified as Intact. Notably, photomicrographs of the same nerve at the 238

approximate same levels as the DW-MRI show a similar spatial pattern of injury and 239

corresponding histopathological pattern as that identified by the random forest. The 240

vast majority of voxels in the left (intact) nerves are correctly identified as Intact. S6 241

Fig shows three more examples of correct histopathological damage classification. 242

Fig 9. Voxel-wise classification of histological patterns. Rat histological
example data showing Regional damage of the left and right (experimental) nerves. The
two optic nerves are shown in three different slices in rostro-caudal order.
Photomicrographs of the same experimental nerve at the approximate same locations
show clearly demarcated areas of Injured and Intact histological patterns, that
correspond to the voxel-wise classification of the DW-MRI of the experimental nerve.

Discussion 243

In this work, we explore the synergy of QTI metrics and machine learning for the 244

non-invasive identification of white matter histological damage. Our data show that 245

these metrics are sensitive to altered histological patterns. Two DTI and one QTI 246

metrics were the most relevant for accurate classification of tissue damage. i.e. the 247

metric achievable only through b-tensor encoding further improved the results obtained 248

from the machine learning pipeline. 249

The optic nerve has been widely used to evaluate white matter changes through 250

DW-MRI. A common approach is to induce retinal ischemia that results in Wallerian 251

degeneration of the retinal ganglion cells and their axons throughout the lesioned nerve, 252

which reflects as specific patterns of diffusion abnormalities [24,25]. In this study, we 253

explored the possibility to detect and differentiate between inflammation and axonal 254

degeneration. Considering that both processes present with different severity in several 255

neurological disorders, the aim is to achieve better methods to differentiate them and 256

improve the diagnostic yield of dMRI. However, no tissue damage differentiation was 257

observed between optic nerves only mechanically damaged and those injected with LPS; 258

both showed axonal degeneration and gliosis at diverse severity levels. Injections of the 259

nerve produced enough tissue damage to reduce FA, similar to the reductions caused by 260

retinal ischemia (Fig 5) [24,25]. Decreased µFA was also observed in all experimental 261

conditions, indicative of an increase of isotropic diffusion profiles from glial cells present 262

as a result of inflammation and mechanical tissue damage, as confirmed by histology 263

(Fig 9). Dispersion, as seen with Cc, was also reduced in all affected nerves, which fits 264

the observed tissue disorganization of the experimental nerves. The rest of the metrics 265

derived from DTI or QTI overlapped among all the experimental conditions 266
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(Fig 5C,5D). This prevented us from establishing a clear differentiation between 267

inflammation and axonal degeneration. 268

We observed that mechanical damage varied from subtle axonal degeneration to the 269

annihilation of the entire axonal population (Fig 6). We therefore, re-classified our data 270

based on histological findings and their spatial extent (Fig 2), with the injured nerves 271

(Injured and Injured+) distinguished by the presence of foamy reactive glia that usually 272

appears only in advanced stages of degeneration [26,27]. In addition, many injected 273

nerves showed a mosaic of Intact, Injured, and Injured+ histopathologies, which we set 274

out to automatically classify based on the diffusion profiles derived from nerves with 275

spatially homogeneous tissue characteristics. As we were working with complex 276

8-dimensional data from thousands of voxels, this was an ideal setting for a machine 277

learning application. 278

Random forest models were used based on the following facts: 1) Less prone to 279

overfit, 2) easier to interpret (it’s possible to inspect and interpret the individual 280

estimators–i.e. decision trees–in the model), 3) the variance in the estimators provides 281

resilience to: (i) noise and (ii) poor quality data points, 4) feature relevance analysis is 282

straightforward. We obtained similar results when using state of the art machine 283

learning methods like XGBoost [28] and neural networks [29]. This indicates that 284

classification performance is more related to the nature of our data than to the 285

classification algorithm used. 286

The overall accuracy performance of the automatic classification was high (80%). 287

While the best distinction performance was between Intact and the two Injured classes, 288

there was a modest success in the differentiation between the Injured and Injured+ 289

classes (Fig 8A). Confusion between the two degrees of injury may be due to axonal loss 290

(present in both types) acting as the main microstructural characteristic driving the 291

measured diffusion properties. Other dMRI modalities specific to glial cells [30] or 292

combined with other MRI modalities like spectroscopy [31] could disentangle these cases. 293

Feature relevance analysis (Fig 8B) revealed that FA and AD are the most relevant 294

features to differentiate between tissue types. This was expected, as both are sensitive 295

to the overall loss of anisotropy in white matter capturing the main effect of 296

degeneration. DTI metrics are sensitive but not specific. We expected features exclusive 297

to B-Tensor encoding to improve the classification algorithm by providing additional 298

information, given their specificity to certain properties of microstructure [8]. For 299

instance, we expected Cc to capture the increased axonal dispersion typical of WM 300

degeneration, as previous studies using standard DW-MRI acquisitions had 301

suggested [32]. Indeed, Cc is the third important feature in the analysis. Nevertheless, 302

Cc is (by QTI definition) correlated to FA, and therefore contributes less to the 303

classification problem if FA is already included in the analysis. Indeed, repeating the 304

same pipeline using only QTI features revealed that Cc is the most relevant feature of 305

the analysis while preserving a similar classification performance (not shown). µFA was 306

only slightly relevant for the classification; we hypothesize that gliosis reduces µFA in a 307

similar pattern in all experiments, thus reducing its efficacy as a predictor. While DTI 308

metrics capture the overall loss of diffusion anisotropy, QTI metrics could be capturing 309

the fine details in the diffusion properties to separate these conditions. We also 310

expected Ki (related to the variance of sizes in the DTD model [5]) to be increased as a 311

result of glial infiltration. Ka might explain the loss of micro anisotropy in the medium 312

and is also related to axonal loss. The relatively low explained variance in the data by 313

the kurtosis metrics may be attributed to the bias secondary to the assumption of the 314

DTD model that µK is equal to zero [33], which is not the case in degeneration [34], 315

and therefore Ka and Ki may both be absorbing this effect. Note that features 316

achievable with DTI (FA and AD) capture the main properties of neurodegeneration in 317

aligned white matter bundles, but dispersion (Cc) and µFA could be important factors 318
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in white matter regions with crossing fibers or gray matter. 319

There are some limitations in this study. First, the experimental procedures 320

(particularly those related to direct nerve injections) produced overlapping 321

histopathologies. This precluded the distinction between axonal degeneration and 322

inflammation, and limits the interpretability of our findings. In particular, we cannot 323

conclude from our data whether QTI is capable of resolving between those two 324

histopathological processes. However, careful examination of histological slides allowed 325

us to differentiate between Injured and Injured+ classes based on the presence of foamy 326

glial cells and the extent of axonal loss, which were identified by the random forest 327

algorithm based on diffusion metrics. Future work should try to minimize confounding 328

factors introduced by mechanical damage of the tissue by utilizing other experimental 329

approaches. Second, slice thickness was large (1 mm). Thick slices were acquired to 330

improve the signal to noise ratio, but partial volume effects could introduce inaccuracies 331

in the estimation of diffusion metrics, particularly for the Regional pattern as injured 332

regions vary along the nerve. Third, STE and LTE waveforms were tuned [7, 13] but 333

this does not ensure they have the same diffusion time window [35]. Diffusion time 334

dependence could be an important factor in neurodegeneration [3] and was not directly 335

investigated or controlled for in this study; further studies should give some insight into 336

the contribution of time-dependent diffusion to distinguish between types of histological 337

damage. Last, machine learning applications benefit from large data sets. While our 338

voxel-wise data set is not small the overall accuracy of the method could be improved 339

with more data points. 340

There are other possibilities for the analysis of b-tensor encoding data. Like the 341

diffusion tensor, QTI is a signal representation [36]. There are other interesting avenues 342

of analysis like Diffusion Tensor Distribution imaging [37] that can extract direct DTD 343

features or even extend it to multidimensional MRI analysis to capture relaxometry 344

effects [38, 39]. Approaches with biophysical models using b-tensor encoding [40, 41] can 345

be used to extract microstructural properties that cannot be obtained without strong 346

modeling assumptions using single diffusion encoding acquisitions. Nevertheless, they 347

are based on the standard model of white matter that is applicable for healthy tissue, 348

and it is unknown whether it would be adequate for the detection of severe deviations 349

(i.e., tissue damage) without modifications to the underlying assumptions. More work is 350

needed to test if these approaches to DW-MRI could identify tissue damage with high 351

sensitivity and specificity. 352

Machine learning methods provide a new paradigm to understand and use the 353

advanced methods available in the DW-MRI field. Direct visualization of tissue type 354

probabilities as a color map (Fig 9), while proof of concept, provides a straightforward 355

qualitative assessment of the type of damage at every voxel. The combination of spatial 356

specificity and the availability of quantitative diffusion metrics can be a powerful tool to 357

evaluate and diagnose microstructural changes in neurological disorders. 358

Conclusion 359

In this work, we explore the ability b-tensor encoding methods to detect and 360

differentiate between distinct forms of white matter pathologies. Specifically, we 361

explored the metrics derived from QTI using state of the art machine learning methods. 362

The majority of QTI metrics are sensitive to microstructural changes induced by 363

neuropathology. While classic DTI metrics were the most important features for the 364

training phase in the machine learning algorithm, features exclusive to b-tensor 365

encoding improved its precision. 366
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Supporting information 367

S1 Fig. Protocol scheme. Full protocol scheme and example waveforms 368

(b=2.8ms/µm2) used in this study. 369

S2 Fig. b-tensor encoding example images. Example preprocessed DW-MRI 370

acquired b-tensor encoding (b=2.8 ms/µm2) of a single slice from one representative 371

animal in the retinal ischemia group. Linear, planar and spherical tensor encodings 372

(LTE, PTE, STE) and a non-diffusion-weighted image (b=0 ms/µm2) are shown. The 373

yellow rectangle indicates the optic nerves. 374

S3 Fig. Violin plots for the experimental groups for each QTI metric. 375

S4 Fig. Violin plots for the three nerve classes and regional pattern 376

(defined by histological examination) for each QTI metric. 377

S5 Fig. Feature relevance analysis A) Permutation feature relevance analysis in 378

the test set. B) Bootstraped permutation feature analysis. FA and AD are the most 379

important features. Gini importance (B) showed Cc as the third-ranking relevant 380

feature. 381

S6 Fig. Examples of Regional histological damage and corresponding 382

machine learning classification based on MDE DW-MRI. 383
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