
1

1 A promising QTL QSns.sau-MC-3D.1 likely superior 

2 to WAPO1 for wheat spikelet number per spike shows 

3 no adverse effects on yield-related traits

4

5 Jieguang Zhou1, 2, ¶, Wei Li1, 2, ¶, Yaoyao Yang1, 2, Xinlin Xie1, 2, Jiajun Liu1, 2, Yanling 

6 Liu1,2, Huaping Tang1,2, Mei Deng1,2, Qiang Xu1, 2, Qiantao Jiang1, 2, Guoyue Chen1,2, 

7 Pengfei Qi1,2, Yunfeng Jiang1, 2, Guangdeng Chen3, Yuanjiang He4, Yong Ren4, Liwei 

8 Tang5, Lulu Gou6, Youliang Zheng1, 2, Yuming Wei1, 2, *, Jian Ma1, 2, *

9

10 1State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, 
11 Sichuan Agricultural University, Chengdu, China

12 2Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China

13 3College of Resources, Sichuan Agricultural University, Chengdu, China

14 4Mianyang Academy of Agricultural Science/Crop Characteristic Resources Creation 
15 and Utilization Key Laboratory of Sichuan Providence, Mianyang, China

16 5Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China

17 6College of Agronomy, Sichuan Agricultural University, Chengdu, China

18

19 *Corresponding author

20 E-mail: ymwei@sicau.edu.cn (YMW)

21 E-mail: jianma@sicau.edu.cn (JM)

22

23 ¶contributed equally to this paper.

24

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2023. ; https://doi.org/10.1101/2023.02.17.528911doi: bioRxiv preprint 

mailto:ymwei@sicau.edu.cn
mailto:jianma@sicau.edu.cn
https://doi.org/10.1101/2023.02.17.528911
http://creativecommons.org/licenses/by/4.0/


2

25 Abstract

26 Spikelet number per spike (SNS) is one of the crucial factors determining wheat yield. 

27 Thus, improving our understanding of the genes that regulate SNS could help develop 

28 higher-yielding wheat varieties. A genetic linkage map constructed using the 

29 GenoBaits Wheat 16K Panel and the 660K SNP array contained 5991 polymorphic 

30 SNP markers spanning 2813.26 cM. A total of twelve QTL for SNS were detected in 

31 the recombinant inbred line (RIL) population msf × Chuannong 16 (MC), and two of 

32 them, i.e., QSns.sau-MC-3D.1 and QSns.sau-MC-7A, were stably expressed. 

33 QSns.sau-MC-3D.1 had high LOD values ranging from 4.99 to 11.06 and explained 

34 9.71-16.75% of the phenotypic variation. Comparison of QSns.sau-MC-3D.1 with 

35 previously reported SNS QTL suggested that it is likely a novel one. A kompetitive 

36 allele-specific PCR (KASP) marker, KASP-10, tightly linked to QSns.sau-MC-3D.1 

37 was developed to successfully validate its effect in three segregated populations and a 

38 natural population. Genetic analysis indicated that WHEAT ORTHOLOG OFAPO1 

39 (WAPO1) was a candidate gene for QSns.sau-MC-7A. The combined additive effect 

40 of QSns.sau-MC-3D.1 and WAP01 had a great additive effect increasing SNS by 

41 7.10%. In addition, our results suggested that SNS is not affected by 1BL/1RS 

42 translocations in the MC RIL population. Correlation analysis between two major 

43 QTL and other agronomic traits showed that QSns.sau-MC-3D.1 was likely 

44 independent of these agronomic traits. However, the H2 haplotype of WAPO1 may 

45 affect effective tiller number and plant height. This indicated that the breeding 

46 potential of QSns.sau-MC-3D.1 is better than that of WAPO1. The geographical 

47 distribution of QSns.nsau-MC-3D.1 showed that QSns.sau-MC-3D.1 positive allele 

48 frequency was dominant in most wheat-producing regions of China and it has been 

49 positively selected among modern cultivars released in China since the 1940s. Two 

50 genes, TraesCS3D03G0222600 and TraesCS3D03G0216800, associated with SNS 

51 development were predicted in the physical interval of QSns.sau-MC-3D.1. qRT-PCR 

52 results of the two genes showed that only the expression level of 

53 TraesCS3D03G0216800 was significantly different between msf and CN16. These 
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54 results enrich our understanding of the genetic basis of wheat SNS and will be useful 

55 for fine mapping and cloning of genes underlying QSns.sau-MC-3D.1, and provide a 

56 basis for marker-assisted selection breeding.

57 Author summary

58 In this study, we identified two major QTL (QSns.sau-MC-3D.1 and QSns.sau-MC-

59 7A) in a RIL population. WAPO1 was demonstrated to be the candidate gene for 

60 QSns.sau-MC-7A. QSns.sau-MC-3D.1 was a novel and stably expressed QTL, and 

61 further confirmed in different genetic backgrounds. Our results further demonstrate 

62 that QSns.sau-MC-3D.1 has better breeding potential because of its no adverse effect 

63 on other agronomic traits than WAPO1, and it has been positively selected during 

64 Chinese breeding programs since the 1940s. Taken together, the identification of 

65 QSns.sau-MC-3D.1 offers a promising resource to further increase wheat yields.

66
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67 Introduction

68 Bread wheat (AABBDD, Triticum aestivum L.) is one of the most important food 

69 crops in the world [1]. The increasing population and frequent natural disasters [2] 

70 lead to the world confronting a huge food gap, and high yield has always been the 

71 eternal theme of wheat breeding. Kernels per spike (KNS), thousand kernel weight 

72 (TKW), and spikes per unit area are the three components of yield [3,4]. Spikelet 

73 number per spike (SNS) is closely related to KNS [5], and breeders can usually 

74 improve wheat yield by increasing SNS. Thus, it is essential to understand the genetic 

75 pattern of SNS for optimizing wheat spike structure and cultivating new high-yielding 

76 wheat varieties.

77 To date, quantitative trait loci (QTL) of SNS have been detected on all 21 

78 chromosomes of wheat using bi-parental populations [6]. For example, Zhai et al. [7] 

79 used the RIL population to detect a major QTL on chromosome 1B controlling SNS, 

80 which explained 30.75% of the phenotypic variance (PVE). QSns.sau-2D on 

81 chromosome 2D significantly increased SNS by up to 14.72% [8]. Mo et al. [9] 

82 identified two major and novel SNS-related QTL, QSns.sau-AM-2B.2 and QSns.sau-

83 AM-3B.2, using a tetraploid RIL population. The SNP marker Kukri_c8913_655, 

84 which is tightly linked to SNS, was identified on chromosome 3D [7]. Furthermore, 

85 some genes related to SNS have been reported, such as trs1/WFZP-A [10], VRN-

86 A3/FT-A1 [11], Q [12], TaTB1-4A [13], PPD-A1 [14], TaCol-B5 [15], and WHEAT 

87 ORTHOLOG OFAPO1 (WAPO1) [16-19]. Although many QTL/genes associated 

88 with SNS have been reported in wheat, major, stably expressed and confirmed QTL in 

89 multiple environments and genetic backgrounds and high-efficiency molecular 

90 markers is still limited.

91 Single nucleotide polymorphisms (SNPs) are the most abundant and important type of 

92 nucleic acid variation [20]. To date, multiple SNP arrays have been developed in 

93 wheat, such as the 9K, 16K, 55K, 90K, 660K, and 820K high-density SNP chips. The 
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94 Wheat 16K array was developed using an improved genotyping by target sequencing 

95 (GBTS) system with capture-in-solution (liquid chip) technology [21]. The 16K SNP 

96 was identified based on resequencing data from 20 accessions, genotyping data of 

97 1,520 germplasms collected from multiple platforms, and publicly released 

98 resequencing and exon capture data. These SNP datasets were developed and 

99 optimized using GenoBait technology to eventually produce 14,868 multiple SNP 

100 (mSNP) segments (including 37,669 SNP markers) [22].

101 In this study, we report a genetic map of bread wheat constructed based on the Wheat 

102 16K SNP array and the Wheat 660K SNP array. Using the constructed genetic map, 

103 QTL for SNS were identified. Major and novel QTL were validated in four 

104 populations with different genetic backgrounds via kompetitive allele-specific PCR 

105 (KASP) markers. Furthermore, the genetic effects and geographical distribution of the 

106 major QTL were also analyzed to clarify their application potential in breeding and to 

107 provide a theoretical basis for genetic improvement of wheat yield.

108 Results

109 SNP markers and genetic linkage map

110 Of the 37,671 SNPs, 5,991 (~15.90%) with MAF ≥0.3 and showing polymorphisms 

111 between parents in the MC mapping population were retained for further analysis. 

112 These 5,991 SNP markers were divided into 1,198 bins using the ‘BIN’ function in 

113 QTL IciMapping V4.1 and markers with the lowest ‘missing rate’ in each bin (bin 

114 markers) were selected and used to construct the genetic map (Table 1). The resultant 

115 linkage map consisted of 1,150 bin markers classified into 26 linkage groups (Table 

116 1). Among them, chromosomes 3D, 4A, 5A, 5D, and 7B each had two linkage groups, 

117 and only one was constructed for each of the remaining chromosomes (Table 1). 

118 Chromosome arm 1BS was not covered by any marker mainly due to the 1BL/1RS 

119 translocation on chromosome 1B (Fig 1). The total length of the 26 linkage groups 
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120 was 2,813.26 cM, with an average spacing of 2.45 cM (Table 1). The A, B, and D 

121 genomes included 479 (~41.65%), 473 (~41.13%), and 198 (~17.22%) markers 

122 covering lengths of 1,047.05, 925.92, and 840.28 cM with average marker intervals of 

123 2.19, 1.96, and 4.24 cM, respectively (Table 1). The lowest marker coverage was 

124 detected for the D genome, especially for chromosomes 4D and 6D (Table 1).

125 Table 1 Details of markers in the constructed genetic map.
Chromosome Group Number of 

bin marker
Number of 

mapped markers
Length (cM) cM per bin 

marker
1A 1 78 546 131.19 1.68
1B 1 47 557 93.11 1.98
1D 1 37 150 119.24 3.22
2A 1 77 297 148.17 1.92
2B 1 77 414 209.96 2.73
2D 1 31 132 104.03 3.36
3A 1 84 439 185.41 2.21
3B 1 74 427 145.19 1.96
3D 2 43 101 250.45 5.82
4A 2 57 318 147.74 2.59
4B 1 46 169 122.34 2.66
4D 1 23 69 54.55 2.37
5A 2 84 362 161.70 1.92
5B 1 64 258 137.45 2.15
5D 2 29 78 153.05 5.28
6A 1 48 327 141.65 2.95
6B 1 77 751 84.71 1.10
6D 1 7 41 60.91 8.70
7A 1 51 171 131.20 2.57
7B 2 88 313 133.16 1.51
7D 1 28 71 98.05 3.50

A genome 9 479 2460 1047.05 2.19
B genome 8 473 2889 925.92 1.96
D genome 9 198 642 840.28 4.24

Total 26 1150 5991 2813.25 2.45

126 Fig 1. The syntenic relationships between the genetic and physical maps of bin 
127 markers. GM-1A to GM-7D represented the 26 chromosomal genetic maps used in 
128 this study; PM-1A to PM-7D represented the 21 chromosomal physical maps of 
129 wheat.
130
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131 Comparison of genetic and physical maps

132 The sequences of the 5,991 mapped markers were blasted against CS V2.1 genome to 

133 obtain their physical positions (S1 Table). Among them, 5980 markers (99.82%) 

134 showed coincident physical and genetic positions (S2 Table). The genetic positions of 

135 the 1,150 bin markers were compared with their physical positions in the CS V2.1 

136 genome, and 1,015 (~88.26%) markers showed good concordance (Fig 1 and S3 

137 Table).

138 Phenotypic variation and ANOVA in all environments

139 msf had a higher value of SNS than CN16 (P < 0.01) in five environments (Table 2). 

140 The SNS of the MC RIL population ranged between 14.00 and 29.00 and was 

141 normally and continuously distributed (S1 Fig and Table 2), indicating polygenic 

142 control. The estimated H2 of SNS was 0.74, indicating that SNS was significantly 

143 affected by genetic factors (Table 2). ANOVA showed a significant effect of G 

144 (Genotype), E (Environment), and G × E interaction on SNS (P < 0.001; S4 Table). 

145 However, Block/E did not differ significantly (P > 0.05) on SNS (S4 Table), 

146 suggesting that two planting replicates within a single environment were reliable and 

147 meaningful.

148 Table 2 Phenotypic variation of spikelet number per spike (SNS) for the 
149 mapping population msf × CN16 and parental lines in five environments and 
150 BLUP.

Parents msf × CN16Env.
msf CN16 Min–Max Mean SD H2

2021WJ 27.60** 20.00 19.00-26.75 23.08 1.64
2021CZ 25.50** 20.44 19.00-25.88 22.78 1.26
2021YA 27.67** 22.00 18.00-29.00 23.45 1.97
2022WJ 24.00** 18.13 17.14-26.00 21.06 1.58
2022CZ 24.17** 19.00 14.00-28.00 21.35 2.09
BLUP 25.12** 20.30 19.89-24.42 21.85 0.96 0.74

151 Env., Environment; **Signifificance level at P < 0.01; SD, standard deviation; H2, 
152 broad-sense heritability; WJ, Wenjiang; CZ, Chongzhou; YA, Ya’an; BLUP, best 
153 linear unbiased prediction.
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154 Correlation analyses between SNS and other agronomic 

155 traits

156 SNS showed a significant positive correlation (P < 0.01) in all five environments and 

157 BLUP dataset (Fig 2), with coefficients ranging from 0.32 and 0.79 (Fig 2). The 

158 BLUP dataset of SNS and five other agronomic traits were employed to evaluate their 

159 Pearson's correlations. There was a significant correlation between SNS and SL, AD, 

160 and TKW (Table 3). Furthermore, there was no significant correlation between SNS 

161 and ETN, and PH (Table 3).

162 Fig 2. The correlation coefficients of spikelet number per spike (SNS) in multiple 
163 environments. The blue-colored ‘correlation coefficient’ represents a significant 

164 level at P＜0.01.

165 Table 3 Correlations between spikelet number per spike (SNS) and other 
166 agronomic traits in the mapping population msf × CN16 population.

Trait Spikelet number per spike (SNS)
Effective tiller number (ETN) -0.036

Plant height (PH) 0.086
Spike length (SL) 0.35**

Anthesis date (AD) 0.40**
Thousand kernel weight (TKW) -0.14*

167 *Signifificance level at P < 0.05; **signifificance level at P < 0.01.

168 Identification of QTL for SNS

169 Twelve QTL for SNS were identified, and they were located on chromosomes 1B, 

170 2A, 3D (2), 4A, 5A, 5B (2), 6A, 6B, 7A, and 7B, with LOD scores ranging between 

171 2.52 and 16.66 (Table 4). Among them, QSns.sau-MC-3D.1 and QSns.sau-MC-7A 

172 were identified in three and five environments as well as using the BLUP dataset 

173 (Table 4), respectively. Therefore, these two QTL were considered as the major and 

174 stable QTL for SNS. The remaining eight QTL were detected in a single or two 

175 environments explaining between 3.21% and 9.61% of the PVE and they were 
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176 accordingly designated as minor QTL (Table 4). The positive alleles of QSns.sau-

177 MC-3D.1 and QSns.sau-MC-7A were both derived from the parent msf.

178 Table 4 Quantitative trait loci for spikelet number per spike (SNS) identified in 
179 the mapping population msf × CN16 evaluated in five environments and BLUP.

QTL Env. Interval 
(cM)

Flanking 
marker

LOD PVE 
(%)

Add Physical 
position (Mb)

QSns.sau-
MC-1B

2021CZ 84.5-93 1B_679421143-
1B_687066854

2.65 4.26 -0.27 688.30-696.94

QSns.sau-
MC-2A

BLUP 53.5-64.5 2A_144065493-
2A_165841608

2.52 3.21 0.18 148.72-170.38

2021YA 81.5-89.5 KASP-10-
3D_64273412

7.2 16.75 0.82

2022WJ 83.5-88.5 KASP-10-
3D_64273412

9.71 14.82 0.62

2022CZ 81.5-88.5 KASP-10-
3D_64273412

4.99 9.71 0.63

QSns.sau-
MC-3D.1

BLUP 83.5-88.5 KASP-10-
3D_64273412

11.0
6

16.34 0.4

53.61-64.40

QSns.sau-
MC-3D.2

2021WJ 96.5-100.5 3D_122396589-
3D_138793245

3.05 5.32 0.38 122.97-139.28

2022WJ 29.5-35.5 4A_639942192-
4A_679248111

6.31 9.61 0.5

2022CZ 29.5-35.5 4A_639942192-
4A_679248111

4.41 8.47 0.60

QSns.sau-
MC-4A

BLUP 28.5-35.5 4A_639942192-
4A_679248111

2.95 3.85 0.19

639.38-681.19

QSns.sau-
MC-5A

2022WJ 0-13.5 5A_9510718-
5A_27776458

2.57 4.42 0.34 11.56-29.72

2021WJ 9.5-17.5 5B_38648213-
5B_43372176

3.48 6.16 0.41QSns.sau-
MC-5B.1

BLUP 10.5-19.5 5B_43372176-
5B_227699843

3.45 5.06 0.22

39.68-230.88

QSns.sau-
MC-5B.2

2021CZ 24.5-25.5 5B_401661494-
5B_414921497

2.85 4.59 0.28 404.64-417.83

QSns.sau-
MC-6A

2022WJ 0-5.5 6A_3774779-
6A_5558438

3.16 4.37 0.34 4.57-6.86

QSns.sau-
MC-6B

2022CZ 23.5-24.5 6B_644045066-
6B_647440241

2.99 5.34 -0.47 652.23-655.69

2021WJ 100.5-
107.5

7A_671413788-
7A_672390144

7 12.85 0.59QSns.sau-
MC-7A

2021CZ 105.5-
108.5

7A_671413788-
7A_672390144

12.2
8

22.42 0.61

676.01-679.91
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2021YA 107.5-
109.5

7A_672390144-
7A_673311365

7.32 15.87 0.8

2022WJ 100.5-
107.5

7A_671413788-
7A_672390144

8.55 12.71 0.57

2022CZ 101.5-
107.5

7A_671413788-
7A_672390144

4.97 8.95 0.61

BLUP 105.5-
107.5

7A_671413788-
7A_672390144

16.6
6

24.25 0.49

QSns.sau-
MC-7B

2021WJ 73.5-80 7B_582312831-
7B_587920157

2.77 4.79 0.36 586.93-592.64

180 QTL, quantitative trait loci; Env., environment; BLUP, best linear unbiased 
181 prediction; LOD, logarithm of odds; PVE, phenotype variance explained. Add, 
182 additive effect (positive values: positive alleles from msf, negative values: positive 
183 alleles from CN16). Physical position, the flanking marker sequences of QTL were 
184 blasted against IWGSC RefSeq V2.1 to get physical positions.
185

186 QSns.sau-MC-3D.1 was located in an 8-cM region between KASP-10 and 

187 3D_64273412. It explained 9.71-16.75% of the PVE (Table 4). The effect of 

188 QSns.sau-MC-3D.1 was highly significant (P < 0.01) in five environments and BLUP 

189 dataset (Fig 3B). According to flanking marker profiles of QSns.sau-MC-3D.1, lines 

190 with the homozygous genotype GG from msf had significantly higher (P < 0.01) SNS 

191 than those with the homozygous genotype AA from CN16 and the difference ranged 

192 from 2.29 to 6.94% (Fig 3B).

193 Fig 3. The genetic map of the major QSns.sau-MC-3D.1 and its effect. A, Genetic 
194 map of chromosome 3D. The red area is the interval of QSns.sau-MC-3D.1. B, A box 
195 plot that shows the effect of QSns.sau-MC-3D.1 calculated after grouping the MC 
196 RIL population into two categories based on the genotypes of flanking markers. 
197 Orange and grey boxes indicate lines with the homozygous genotype from msf (GG) 
198 and CN16 (AA), respectively. **Significance level at P < 0.01, ns indicates no 
199 significant difference between the two groups. Differences in SNS between the two 
200 groups are labeled below the environment names and BLUP.

201 QSns.sau-MC-7A was stably detected in all environments and located in a 9-cM 

202 region between 7A_671413788 and 7A_673311365 (Table 4). It can explain up to 

203 24.25% of the PVE (Table 4). QSns.sau-MC-7A was located between 676.00 and 

204 679.91 Mb on CS 7AL by anchoring flanking markers 7A_671413788 and 

205 7A_673311365 (Table 4). Here, it is worth noting that WAPO1 
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206 (TraesCS7A03G1166400) is also located in this interval [19]. According to previous 

207 studies by Kuzay et al. [19] and Ding et al. [23], WAPO1 was classified into four 

208 haplotypes, including H1 (140G+115deletion), H2 (140T+115insertion), H3 

209 (140G+115insertion), and H4 (140T+115deletion), based on the types of SNP in its F-box 

210 region and a insertion/deletion fragment in the promoter sequence. Hence, we used 

211 the previously reported functional marker (K-WAPO1) and Indel marker (WAPO1-

212 ProS) of WAPO1 for genotyping msf and CN16 (S5 Table). Genotyping results 

213 showed that msf and CN16 belong to H2 and H3, respectively (S2 Fig). This result is 

214 consistent with the previous result that H2 is an excellent haplotype that can increase 

215 SNS [23], and further suggests that WAPO1 is likely the causal gene for QSns.sau-

216 MC-7A. Furthermore, the MC RIL population was divided into two categories (lines 

217 with haplotypes H2 and H3, respectively) based on the genotyping result of K-

218 WAPO1. SNS of the category with H2 had significantly (P < 0.01) greater values 

219 than that with H3 in each environment and BLUP dataset (S3B Fig).

220 Validation of QSns.sau-MC-3D.1

221 The effects of QSns.sau-MC-3D.1 were further evaluated in four additional 

222 populations with different genetic backgrounds (M3, M2, MS9, and CAW) using the 

223 newly designed KASP marker KASP-10 (S5 Table) tightly linked to QSns.sau-MC-

224 3D.1. Genotyping was executed for 184, 218, 178, and 388 lines of the M3, M2, MS9, 

225 and CAW populations, respectively (S4 Fig).

226 The M3 population was planted in four different environments, including 2021WJ 

227 (M3.F3.WJ), 2021CZ (M3.F3.CZ), 2022CZ (M3.F4.YA), and 2022WJ (M3.F4.WJ; Fig 

228 4A). In all the four environments, the group with the homozygous genotype GG from 

229 msf had significantly greater (P < 0.01) SNS than that with the homozygous genotype 

230 AA, and the differences between the two groups were 4.13%, 3.59%, 4.90%, and 

231 3.84%, respectively (Fig 4A). The group with the homozygous genotype GG from msf 

232 had significantly higher (P < 0.05) SNS than that with heterozygous genotype GA, 
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233 and the difference ranged from 2.27 to 3.51% (Fig 4A). Furthermore, there was no 

234 significant difference between the group with the homozygous genotype AA and that 

235 with the heterozygous genotype GA.

236 Fig 4. Validation of QSns.sau-MC-3D.1 in four populations. A, B, C, and D, 
237 Effects of QSns.sau-MC-3D.1 in the four validation populations (i.e., msf × 3642, msf 
238 × 20828, msf × Shumai969, and CAW). Lines with the homozygous genotype GG of 
239 msf × 3642, msf × 20828, msf × Shumai969, and CAW population are 42, 51, 41, and 
240 222, respectively. Lines with the heterozygous genotype GA of msf × 3642, msf × 
241 20828, and msf × Shumai969 population are 76, 97, and 80, respectively. Lines with 
242 homozygous genotype AA of msf × 3642, msf × 20828, msf × Shumai969, and CAW 
243 population are 57, 58, 49, and 85, respectively. *Significance level at P < 0.05, 
244 **Significance level at P < 0.01, and ns indicates no significant difference between 
245 the two groups. Percentage differences between the two groups are indicated above 
246 the P values at the top of each plot.

247 The M2 population was planted in two different environments, including 2021CZ 

248 (M2.F2.CZ) and 2022CZ (M2.F3.CZ). In both environments, lines with the 

249 homozygous genotype GG from msf had significantly higher (P < 0.01) SNS than 

250 those with AA, and the differences between the two groups were 9.31%, and 4.74%, 

251 respectively (Fig 4B). The group with the homozygous genotype GG from msf had 

252 significantly (P < 0.01) greater SNS than that with the heterozygous genotype GA, 

253 and the differences between the two groups were 6.29% and 4.81%, respectively (Fig 

254 4B). There was no significant difference between the lines with the homozygous 

255 genotype AA and those with the heterozygous genotype GA (Fig 4B).

256 Likewise, the MS9 population was planted in two different environments, including 

257 2021CZ (MS9.F2.CZ) and 2022CZ (MS9.F3.CZ). Group 1, with the homozygous 

258 genotype GG from msf, had a significantly (P < 0.01) higher SNS than group 2 (with 

259 the homozygous genotype AA) in the two environments with differences ranging 

260 between 6.01% and 7.60% (Fig 4C).

261 In MS9.F2.CZ, the group with the homozygous genotype GG from msf was 

262 significantly (P < 0.05) higher SNS than the heterozygous genotype GA group, with a 

263 4.60% significant difference, while in MS9.F3.CZ, there was no significant difference 
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264 (Fig 4C). Moreover, unlike in M3 and M2 populations, there was a significant (P < 

265 0.05) difference between the group with the heterozygous genotype GA and the group 

266 with the homozygous genotype AA (Fig 4C). 

267 In the CAW population, the group with the homozygous genotype GG from msf 

268 showed significantly higher SNS than that of the homozygous genotype AA from 

269 CN16 (excluding heterozygotes, P < 0.05, Fig 4D). The above results indicate that 

270 QSns.sau-MC-3D.1 is a major QTL controlling SNS.

271 Effects of QSns.sau-MC-3D.1 and WAPO1 on increasing SNS

272 The effects of QSns.sau-MC-3D.1 and WAPO1 on increasing the SNS were further 

273 evaluated (Fig 5). Compared with the lines without any of the positive alleles 

274 increasing SNS, those only possessing the positive allele GG of QSns.sau-MC-3D.1 

275 or H2 of WAPO1 significantly (P < 0.01) increased SNS by 2.61% and 3.54%, 

276 respectively. And those with the combination of positive alleles of both QSns.sau-

277 MC-3D.1 and H2 significantly (P < 0.01) increased SNS by up to 7.10% (Fig 5). In 

278 addition, lines with the combination of positive alleles of QSns.sau-MC-3D.1 and H2 

279 significantly (P < 0.01) increased SNS by 4.37 and 3.44%, respectively, compared to 

280 those with either positive allele of QSns.sau-MC-3D.1 or H2 (Fig 5). However, there 

281 was no significant difference between the lines with QSns.sau-MC-3D.1 and H2 (Fig 

282 5), indicating that the genetic effect between QSns.sau-MC-3D.1 and WAPO1 may be 

283 additive.

284 Fig 5. The additive effects of QSns.sau-MC-3D.1 and WAPO1 on increasing SNS.  
285 ‘H2’ and ‘H3’ represented the H2 (140T+115insertion) and H3 (140G+115insertion) 
286 haplotype of WAPO1, respectively. **Significance level at P < 0.01, and ns indicates 
287 no significant difference between the two groups. Percentage differences between the 
288 two groups are indicated above the P values at the top of each plot.

289 Correlation between major QTL and other agronomic traits

290 The lines carrying H2 of WAPO1 in the MC RIL population were removed and the 
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291 remaining lines were used to detect correlations between QSns.sau-MC-3D.1 and 

292 other yield-related traits. The remaining lines were divided into two groups: lines with 

293 the homozygous genotype from msf (GG, 42 lines) or CN16 (AA, 48 lines) based on 

294 genotyping results using KASP-10 (Fig 6). There were no significant differences (P > 

295 0.05) between the two groups for any of the yield-related traits (ETN, PH, SL, AD, 

296 and TKW), suggesting that the expression of QSns.sau-MC-3D.1 was likely 

297 independent of these agronomic traits (Fig 6). Similarly, the lines that did not carry 

298 the homozygous genotype GG of QSns.sau-MC-3D.1 were divided into two groups: 

299 lines with the H2 (41 lines) or H3 (48 lines) based on genotyping results with K-

300 WAPO1 (Fig 6). There were significant differences between the two groups in ETN 

301 and PH (Fig 6), indicating that H2 haplotype of WAPO1 may affect ETN and PH.

302 Fig 6. Effects of two major QTL (QSns.sau-MC-3D.1 and WAPO1) on other 
303 agronomic traits. A, Effective tiller number (ETN); B, Plant height (PH); C, Spike 
304 length (SL); D, Anthesis date (AD); E, Thousand kernel weight (TKW); *Significance 
305 level at P < 0.05, ns indicates no significant difference between the two groups. 
306 Percentage differences between the two groups are indicated above the P values at the 
307 top of each plot.

308 QSns.sau-MC-3D.1 underwent positive selection in artificial 

309 domestication and breeding

310 In order to comprehensively and systematically evaluate the distribution of QSns.sau-

311 MC-3D.1 in Chinese wheat accessions, three hundred and eighty-eight accessions of 

312 the CAW population were genotyped using KASP-10. According to the 

313 polymorphism of KASP-10, the accessions were divided into two groups in the CAW 

314 population: accessions with the homozygous genotype GG and those with AA 

315 (excluding heterozygous genotype GA).

316 In 143 Chinese landraces (ML), the homozygous genotype GG of QSns.sau-MC-3D.1 

317 was dominant in all seven wheat zones except III (23.53%), V (33.33%), and VII 

318 (20%, S5A Fig). A population with 245 Chinese modern cultivars (CMC) was used to 
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319 further reveal the QSns.sau-MC-3D.1 distribution in China. As shown in S5B Fig, the 

320 frequency of homozygous genotype GG for QSns.sau-MC-3D.1 was dominant in 

321 almost all zones except the V zone (12.5%). I, II, and III belong to the zones with the 

322 oldest and strongest wheat breeding programs in China [24]. It's worth noting that the 

323 average frequency of homozygous genotype GG at QSns.sau-MC-3D.1 in zones I 

324 (66.67%), II (86.57%), and III (65%) was 72.74% (S5A Fig), which was much higher 

325 than that in ML (62.68%, S5B Fig), suggesting that modern breeding has greatly 

326 increased its frequency in CMC. Furthermore, in ML, there was no significant 

327 difference in SNS between the group with GG and that with AA (S5C Fig). In CMC, 

328 the group with GG had significantly greater (1.58%, P < 0.05) values for SNS than 

329 that with AA (S5D Fig). This suggest breeders may have indirectly increased the 

330 frequency of genotype GG of QSns.sau-MC-3D.1 in modern breeding by selecting 

331 genotypes with higher SNS.

332 Identification of candidate gene(s)

333 There were 93 high-confidence genes within the interval of QSns.sau-MC-3D.1 

334 (53.61-64.40 Mb, S6 Table). The expression patterns of those genes in various tissues 

335 and spikes at different developmental stages were analyzed, and the results showed 

336 that there were 9 genes greatly expressed in spike at the reproductive stage and 7 

337 genes highly expressed in spike at the single and double ridge stage with 2 genes 

338 shared (S6 Fig), suggesting that these 2 genes might be involved in spike 

339 development. TraesCS3D03G0222600 and TraesCS3D03G0216800 encoding MYB-

340 like transcription factor and basic helix-loop-helix (HLH) transcription factor, 

341 respectively, were likely related to spike development based on gene annotation (S6 

342 Table). qRT-PCR analysis further suggested that only the expression level of 

343 TraesCS3D03G0216800 was significantly enhanced in msf (P < 0.05, S7 Fig). Taken 

344 together, our data suggested that TraesCS3D03G0216800 may play a regulatory role 

345 in determining SNS.
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346 Discussion

347 Phenotypic correlations among investigated traits

348 In this study, SNS was significantly and positively correlated with SL (Table 3). This 

349 is consistent with previous studies [25], suggesting that longer SL provides room for 

350 more spikelets to grow [26]. There was a significant positive correlation between SNS 

351 and AD (Table 3). This result with previous studies indicated that plants with a longer 

352 flowering time may have more time for the differentiation and development of the 

353 spikelet primordia [27]. Moreover, SNS was significantly and negatively correlated 

354 with TKW (Table 3). Considering the source reservoir relationship in the plant, the 

355 increase in the number of spikelets may lead to a decrease in the nutrients allocated to 

356 a single kernel [25]. These conclusions provide a vital basis for understanding the 

357 complex relationships among wheat yield traits to further improve wheat yield.

358 QSns.sau-MC-3D.1 is a novel QTL for SNS

359 The physical locations of the QTL/SNP for SNS in previous studies were used for 

360 comparing to that of QSns.sau-MC-3D.1 (S8 Fig). QSns.sau-MC-3D.1 was located 

361 between 53.61 and 64.40 Mb in the deletion bin 3DS6-0.55-1.00 on chromosome arm 

362 3DS in CS (S8A and B Fig), which was different from the previously reported SNS-

363 related QTL/SNP (S8C Fig). For example, QTsn.cau-3D.3 was located at 3.99 Mb on 

364 a chromosome arm 3DS with the peak marker CAP11_c3914_325 [7]. QTL1935 was 

365 physically located on a chromosome arm 3DS at 110.04-129.55 Mb, overlapping with 

366 QSns.cd-3D [28]. Two SNS-related SNPs, T/C [7] and C/T [29], were located at 

367 512.68 Mb and 600.26 Mb, respectively, on a chromosome arm 2BL. The comparison 

368 of the physical locations of QSns.sau-MC-3D.1 with those of previously reported 

369 QTL suggests that QSns.sau-MC-3D.1 is likely a novel QTL controlling SNS (S8C 

370 Fig).
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371 SNS is not affected by 1BL/1RS translocation

372 The 1BL/1RS translocated chromosomes have been widely used to develop wheat 

373 cultivars [30]. In the current study, CN16 is a cultivar with 1BL/1RS translocation 

374 [31]. Identification of 1BL/1RS translocations in the MC RIL population showed 58 

375 lines with 1BL/1RS translocations, while 116 lines with non-1BL/1RS translocations 

376 (S9 Fig). t-test showed that there was no significant (P > 0.05) difference between the 

377 SNS of the two groups (S9 Fig), suggesting that translocations of 1BL/1RS 

378 chromosomes may not affect SNS in the MC RIL population. However, given its non-

379 recombinant nature and distorted segregation, wheat genotypes used to construct 

380 segregating populations should be carefully selected when aiming to identify and 

381 clone genes on related chromosomes [31].

382 The yield improvement potential of QSns.sau-MC-3D.1 is 

383 likely superior to that of WAPO1

384 Here, two major and stably expressed QTL, QSns.sau-MC-3D.1 and QSns.sau-MC-7A 

385 (WAPO1) for SNS were identified. Both the positive allele of QSns.sau-MC-3D.1 and 

386 the H2 haplotype of WAPO1 significantly (P < 0.01) increased SNS (Fig 3 and S3 

387 Fig). In previous studies, SNS tends to be significantly and negatively correlated with 

388 ETN and TKW [8], and significantly and positively correlated with PH and AD [9], 

389 which is not conducive to yield improvement and field breeding. In this study, the 

390 expression of QSns.sau-MC-3D.1 was independent of the above agronomic traits (Fig 

391 6). However, H2 haplotype expression of WAPO1 may affect ETN and PH (Fig 6). 

392 Furthermore, QSns.sau-MC-3D.1 underwent positive selection in modern breeding 

393 (S5B and D Fig). To sum up, in the process of breeding utilization, the breeding 

394 potential of QSns.sau-MC-3D.1 may be superior to that of WAPO1.

395 Candidate gene analysis of QSns.sau-MC-3D.1
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396 According to the CS reference genome V2.1, there were 93 annotated high-

397 confidence genes within the candidate intervals of QSns.sau-MC-3D.1 (S6 Table), 

398 and spatiotemporal expression patterns and functional annotations of those genes 

399 suggest that two genes, TraesCS3D03G0222600 and TraesCS3D03G0216800, may 

400 be involved in determining the development of SNS (S6 Fig, S6 Table). Previous 

401 studies have also shown that MYB transcription factors determine the fate of spikelet 

402 meristem [32,33], and HLH transcription factor regulate flowering time in grasses 

403 [34]. However, qRT-PCR of the two genes showed that only TraesCS3D03G0216800 

404 was significantly expressed between parents. These results suggested that 

405 TraesCS3D03G0216800 may be a candidate gene for QSns.sau-MC-3D.1 and laid a 

406 vital foundation for fine mapping and map-based cloning.

407 Materials and Methods

408 Plant Materials

409 A wheat population (MC population) containing 198 F6 RILs (excluding two parental 

410 lines) was derived from an across between msf and Chuannong 16 (CN16) used in this 

411 study. msf is a spontaneous mutant characterized by multi-spikelets, multi-florets (Fig 

412 7), large spike and high fruiting rate. CN16 is a commercial wheat cultivar, developed 

413 by Triticeae Research Institute of Sichuan Agricultural University, with excellent 

414 agronomic performances including multiple tillers and good plant type [31]. The MC 

415 population was used for QTL identification. Major and novel QTL for SNS identified 

416 in the MC RIL population were validated in three populations, including msf × 3642 

417 (M3, F3, and F4, 184 lines), msf × 20828 (M2, F2, and F3, 218 lines), and msf × 

418 Shumai969 (MS9, F2, and F3, 178 lines). Line 20828 was kindly provided by Dr. Wu 

419 Yu (Chengdu Institute of Biology, Chinese Academy of Sciences). The line 3642 and 

420 cultivar Shumai969 were provided by the Triticeae Research Institute of Sichuan 

421 Agricultural University. In addition, three hundred and eighty-eight Chinese wheat 

422 accessions (CAW), including 143 landraces from the mini-core collection (ML) and 
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423 245 modern cultivars (CMC) released since the 1940s (S7 Table) [35], were further 

424 employed to verify the effect of the major QTL.

425 Fig 7. Phenotypes of msf and CN16. The white bar represents 5 cm.

426 Field experiments and phenotypic evaluation

427 The MC RIL population and parents were planted in five different environments 

428 including Wenjiang (103°51′ E, 30°43′ N) in 2021 and 2022 (2021WJ and 2022WJ); 

429 Chongzhou (103°38′E, 30°32′N) in 2021 and 2022 (2021CZ and 2022CZ); Ya’an 

430 (103°0′E, 29°58′N) in 2021 (2021YA). The trials in all the environments were 

431 performed in a randomized block design with two replications. Seven seeds of each 

432 line were planted in a 0.75 m row with 0.1 meters between plants, and 0.3 meters 

433 between rows. Field management followed local practices for wheat production.

434 SNS was measured by counting the number of spikelets of the main spike, effective 

435 tiller number (ETN) was counted as the number of the fertile spike per plant before 

436 harvest, plant height (PH) was calculated as the distance from the base to the tip of the 

437 highest spike (excluding awns) per plant, spike length (SL) was measured as the 

438 length from the rachis node of the first base spikelet to the tip of the main spike 

439 (excluding awns) per plant, TKW was calculated as 10 times the average weight of 

440 100 kernels in each line, and anthesis date (AD) was defined as the number of days 

441 between sowing and 50% of the plants flowering in each line. At least four plants free 

442 of disease in each replicate of each line with consistent growth were selected for trait 

443 measurement and then averaged for further analysis.

444 Three segregation populations for validation, M3, M2, and MS9, were planted in four 

445 (2021WJ, 2021CZ, 2022CZ, and 2022YA), two (2021CZ and 2022CZ), and two 

446 (2021CZ and 2022CZ) different environments, respectively. CAW was planted in 

447 three different environments including Luoyang (Henan province, China) in 2002 and 

448 2005 (2002 LY and 2002 LY), Shunyi (Beijing, China) in 2010 (2010 SY), and 

449 Chongzhou (103°38′E, 30°32′N) in 2022 (2022CZ). Planting trials and phenotypic 
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450 traits collection of CAW (2002 LY, 2005 LY, and 2010 SY) were described by Wang 

451 et al. [35] and Zheng et al. [24], respectively. The methods of planting and SNS 

452 measurement for M3, M2, MS9, and CAW (2022CZ) were same as for the MC RIL 

453 population.

454 Genotyping

455 Genomic DNA extraction from leaf samples collected at the joining stage adopted the 

456 CTAB protocol [36], and DNA quality was assessed using a NanoDrop One C 

457 (Thermo Fisher Scientific, Assembled in the USA). The 198 lines and parents of the 

458 MC population were genotyped using the Wheat 16K SNP array from Mol Breeding 

459 Company (Shijiazhuang in Hebei province; http://www.molbreeding.com). The 

460 Wheat 660K SNP array from Capitalbio Technology (Beijing, 

461 http://www.capitalbiotech.com/) was also used to genotype the two parents of the MC 

462 RIL population. The primers used in this study were synthesized by Tsingke 

463 Biotechnology Co., Ltd. (https://www.tsingke.com.cn/).

464 Data analysis

465 The frequency distribution of SNS in each environment and correlation analysis were 

466 performed using Origin 9.0 software and SPSS V26.0 for Windows (SPSS Inc., 

467 Chicago, IL), respectively. The best linear unbiased prediction (BLUP) dataset for all 

468 the investigated traits was tested using SAS V8.0 (SAS Institute, Cary, North 

469 Carolina). The calculation of the broad-sense heritability (H2) of SNS was performed 

470 as described by Smith et al. [37]. Analysis of variance (ANOVA) was performed 

471 using the Aov (ANOVA of multi-environment trials) module of QTL IciMapping 

472 V4.1 (https://www.isbreeding.net/) to detect interactions between replications, 

473 genotypes and environments. The student’s t-test performed by SPSS V26.0 was used 

474 to evaluate the differences in parents and RIL population. Furthermore, the correlation 

475 coefficients between traits were calculated using SPSS V26.0 based on the BLUP 
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476 dataset of each trait.

477 Linkage map construction and QTL analysis

478 14,870 SNP markers (14,868 mSNP segments + 2 polymorphic SNP) from the 16K 

479 SNP array and the 660K SNP array were obtained. Firstly, the minor allele frequency 

480 (MAF) was calculated for each SNP marker in the MC RIL population, and those 

481 with MAF greater than 0.3 were retained. Secondly, the retaining markers were 

482 analyzed by using the BIN function in QTL IciMapping V4.1, based on their 

483 segregation patterns in the MC RIL population, with parameters ‘distortion value’ and 

484 ‘missing rate’ being set as 0.01 and 20%, respectively. A single marker with the 

485 lowest ‘missing rate’ from each set of bin markers was further selected. Finally, the 

486 bin markers were grouped and sorted using the Kosambi mapping function in QTL 

487 IciMapping V4.1 with the logarithm of odds (LOD) greater than 3 after preliminary 

488 analysis of markers with LOD scores ranging from 2 to 10. The finally retained 

489 markers were used to generate genetic maps using the ‘MAP’ function in the QTL 

490 IciMapping V4.1 software and maps were further drawn in MapChart V2.32. The 

491 flanking sequences (200bp) of SNPs were used to blast against (E-value of 1e-5) 

492 genome sequences of the International Wheat Genome Sequencing Consortium 

493 (IWGSC) Chinese Spring (CS) RefSeq V2.1 [38] to get their physical locations. The 

494 syntenic relationships between the genetic and physical maps of the bin markers were 

495 presented using the Strawberry Perl V5.24.0.1.

496 Inclusive composite interval mapping with the biparental population module 

497 (mapping method: ICIM-ADD. Step = 1 cM, PIN = 0.001, and LOD threshold = 2.5) 

498 in QTL IciMapping V4.1 was performed to detect QTL for SNS.

499 Among the QTL detected in more than three environments (including BLUP dataset) 

500 and explaining greater than 10% of the PVE were considered as major and stable 

501 QTL, and those with common flanking markers were treated as identical ones. The 

502 detected QTL were basically named as per the International Rules of Genetic 
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503 Nomenclature (http://wheat.pw.usda.gov/ggpages/wgc/98/Intro.htm). ‘Q’, ‘SNS’, 

504 ‘sau’, and ‘MC’ represent ‘QTL’, ‘Spikelet Number per Spike’, ‘Sichuan Agricultural 

505 University’, and ‘the MC RIL population’, respectively.

506 Comparison with previously reported QTL/SNP for SNS

507 Previously reported closely linked marker sequences of QTL/SNP related to SNS 

508 were obtained from WheatQTLdb V2.0 [6], and further blasted against genomes 

509 sequences of IWGSC RefSeq V2.1 [38] to get their physical locations.

510 Marker development and QTL validation

511 To further narrow down the intervals of major QTL, significant SNPs from the 660K 

512 SNP array were converted into KASP markers (S5 Table) to genotype the MC RIL 

513 population. According to QTL mapping results, the flanking markers closely linked to 

514 novel and major QTL were converted to KASP markers as previously described [31]. 

515 The validation populations, M3, M2, MS9, and CAW, were genotyped using the 

516 KASP marker (S5 Table). The 10 μl reaction system includes 1 μl DNA, 2.6 μl RNA-

517 free deionized water, 5 μl SsoFast EvaGreen mixture (Bio-Rad, Hercules, CA, USA), 

518 and 1.4 μl of mixture forward and reverse primers. All KASP processes were carried 

519 out on a CFX96 Real-Time PCR Detection System (BioRad, USA) [39]. The lines 

520 were divided into three groups based on the genotyping results: (1) lines with 

521 homozygous genotype GG from msf; (2) lines with homozygous genotype AA from 

522 alternative parent; (3) lines with the heterozygous genotype GA. Finally, we assessed 

523 the differences in SNS between the three groups using an independent samples t-test 

524 (P < 0.05) to determine the effects of major QTL.

525 Identification of lines carrying 1BL/1RS translocation

526 The parental CN16 is a genotype carrying the 1BL/1RS translocation [31]. Thus, we 

527 identified 1BL/1RS translocations of the RILs derived from msf and CN16. Firstly, 
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528 SNP markers on chromosome 1B were screened from the 16K SNP array in the MC 

529 RIL population (2,061 markers in total). The markers mapped on 1BS of IWGSC 

530 RefSeq V2.1 [38] were identified (501 markers). Secondly, SNP markers genotyped 

531 as ‘NA’ (no genotype detected) in CN16 were retained (276 markers) for further 

532 analysis. The ‘NA’ information present under 276 markers for each line was counted. 

533 According to the distribution of NA in each line, the lines with less than or equal to 19 

534 NA in these 276 markers were considered as non-1BL/1RS translocation lines and 

535 those with the number of NA greater than or equal to 62 were 1BL/1RS translocation 

536 lines. Moreover, to validate the 1BL/1RS translocation in the MC RIL population, we 

537 also used the 1BS- and 1RS-specific markers to detect the translocation [40]. The 20 

538 μl reaction system included 2 μl DNA, 6 μl RNA-free deionized water, 10 μl 2×Taq 

539 PCR PreMix (+Blue dye, innovagene), and 1 μl of each primer (10μm). The reaction 

540 conditions were as follows: pre-denaturation at 95 ℃ for 5 min; a total of 35 cycles of 

541 denaturation at 95 ℃ for 30 s, annealing at 62 ℃ for 30 s and extension at 72 ℃ for 30 

542 s; and final extension at 72 ℃ for 7 min. Primer information was listed in S5 Table. 

543 Finally, the lines carrying 1BL/1RS translocation from the MC RIL population were 

544 counted based on the above two methods.

545 Potential candidate gene(s) for major QTL

546 According to the mapping result, the sequences of the flanking markers were used to 

547 blast (E-value of 1e-5) against the IWGSC RefSeq V2.1 to obtain their physical 

548 locations. The high-confidence genes within the physical positions were obtained 

549 from WheatOmics 1.0 (http://202.194.139.32/) [41]. The functional annotations of 

550 predicted genes were assigned based on UniProt (http://www.uniprot.org/). Gene 

551 expression data in various tissues was extracted from expVIP (http://www.wheat-

552 expression.com/). The data on gene expression patterns in different stages of spike 

553 development were obtained from a previous study [42]. Furthermore, the expression 

554 pattern of the predicted gene was represented in the HeatMap drawn on Hiplot [43].
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555 Gene expression studies

556 Total RNA extracted from freshly harvested spikes at single ridge end-stage with the 

557 RNAprep pure Plant Kit (Biofit Biotechnologies co. Ltd, Chengdu, China) was 

558 digested with RNase-free DNase (Takara) to remove residual genomic DNA. The 

559 RNA was reverse-transcribed into cDNA by using a Prime ScriptTM RT Reagent Kit 

560 (TaKaRa, Kyoto, Japan) according to the manufacturer's instructions. SYBR qPCR 

561 Master Mix kit (Q711, Vazyme, Nanjing, China) and a Bio-Rad CFX96 real-time 

562 PCR detection system (Bio-Rad, Hercules, USA) were used for qRT-PCR. Three 

563 biological replicates were performed for each parent, and each sample was assayed 

564 three times. The PCR reaction mixture contained: 2 μl cDNA, 5 μl 2X SYBR Green 

565 mix, 0.5 μl forward primer, 0.5 μl reverse primer and 2 μl ddH2O, in a final volume of 

566 10 μl. The PCR program was as follows: 94 °C for 5 min, followed by 35 cycles of 

567 94 °C for 30 s, 62 °C for 30 s, and finally 72 °C for 30 s. The 2-ΔΔCt method was used 

568 to calculate the relative expression levels of the candidate genes. The Actin gene was 

569 used as an internal control. Specific primers for qRT-PCR were designed in NCBI and 

570 the details of primers were listed in S5 Table.
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