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24

25  Abstract

26  Different anatomic locations of the body skin dermis come from different origins, and
27 its positional hereditary information can be maintained in adults, while highly
28  resolvable cellular specialization is less well characterized in different anatomical
29  regions. Pig is regarded as excellent model for human research in view of its similar
30 physiology to human. In this study, we performed single-cell RNA sequencing of six
31  different anatomical skin regions from the Chenghua pig with superior skin thickness
32 trait. We obtained 215,274 cells, representing seven cell types, among which we
33 primarily characterized the heterogeneity of smooth muscle cells, endothelial cells
34 and fibroblasts. We identified several phenotypes of smooth muscle cell and
35 endothelial cell and presented genes expression of pathways such as the immune
36 response in different skin regions. By comparing differentially expressed fibroblast
37  genes among different skin regions, we considered TNN, COL11A1, and INHBA as
38  candidate genes for facilitating ECM accumulation. These findings of heterogeneity
39  in the main three cell types from different anatomic skin sites will contribute to a
40  better understanding of hereditary information and places the potential focus on skin
41  generation, transmission and transplantation, paving the foundation for human skin
42 priming.

43

44 Introduction


https://doi.org/10.1101/2023.02.17.528908
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.17.528908; this version posted February 18, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

45  The problem of how hereditary information contributes to anatomical site-specific
46  differences has inspired extensive exploration. The pattern formation of spatial
47  arrangement addresses the expression control of specific genes with a cell type.
48  Anatomical site-specific pattern information is determined in the embryo, and
49  site-specific patterns of cellular specialization could also be maintained throughout
50  adulthood along with continual self-renewal tissues (Rinn et al., 2006). Information
51  on site-specific patterns in anatomical tissue has been uncovered, such as in the heart
52 (Litvinukova et al., 2020) and muscle (De Micheli et al., 2020), but the highly
53  resolvable patterns in cellular specialization are less well understood in
54  physiologically different anatomical skin regions.

55 Skin is the largest organ, providing physical, chemical and biological barrier for the
56  body. It consists of the upper epidermis and the lower dermis layers separated by the
57  basement membrane, with unambiguous spatial patterns of morphologic and
58  functional specialization (Simpson et al., 2011). Embryological studies have shown
59  that anatomic positional-specific information is provided by the stroma, which is
60 composed of extracellular matrix and mesenchymal or dermal cells during
61  embryogenesis (Rinn et al.,, 2006). Pioneering studies showed that the different
62  anatomic locations of the body skin dermis arose from different origins. The dorsum
63  dermis originates from the dermato-myotome, the ventral dermis from the lateral plate
64  mesoderm and the face dermis from the neural crest (Jinno et al., 2010; Ohtola et al.,

65  2008; Wong et al., 2006). In adults, dermal cells confer positional identity and
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66 memory for skin patterning and function (Driskell and Watt, 2015), raising the
67  question of what regional discrepancy could be maintained against plentiful cellular
68  turnover in skin.

69 The dermis is composed of resident dermal fibroblasts (FBs), smooth muscle cells
70 (SMCs), endothelial cells (ECs) and immune cells, which provide structure, strength,
71  flexibility, and defense to the skin (Driskell and Watt, 2015). FBs, the main cell type
72 in the dermis, are responsible for the collagen deposits and elastic fibres of the
73  extracellular matrix (ECM) (Parsonage et al., 2005), which are an integral part of skin
74  morphogenesis, homeostasis, and various physiological and pathological mechanisms,
75  including skin development, ageing, healing, and fibrosis (Auxenfans et al., 2009;
76  Driskell et al., 2013; Driskell and Watt, 2015). SMCs, which form blood vessels and
77  arrector pili muscle (APM), play a critical role in controlling blood distribution as well
78  as maintaining the structural integrity of the blood vessels and arrector pili muscle
79  (APM) in skin (Driskell et al., 2013; Liu and Gomez, 2019). ECs organize the vascular
80  plexus, which plays a predominant role in vascular remodeling, metabolism and the
81  immune response in the dermis, and EC metabolism is tightly connected to barrier
82  integrity, immune and cellular crosstalk with smooth muscle cells (Cantelmo et al.,
83  2016; Miyagawa et al., 2019; Tombor et al., 2021). In general, the skin dermal rection
84  is realized by cell-cell communication and dynamic, cell-matrix interactions and

85  regulatory factors.
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86 Given that the pig model is a powerful tool for skin research according to the
87  similar histological, ultrastructural, and physiological functions of skin between
88  humans and pigs, we chose the Chenghua (CH) pig, with its superior skin thickness
89 traits, for investigating regional variation. Here, single-cell RNA sequencing with an
90  unprecedented resolution allows simultaneous profiling of transcriptomes for
91  thousands of individual cells, to focus on six different anatomic sites of CH pig skin
92  tissue. We obtained a single-cell transcriptome atlas of 215,274 cells and identified
93  seven cell types with unique gene expression signatures. In our datasets, we analyzed
94  the three cell types with largest number, including SMCs, ECs and FBs. SMCs
95 revealed the signature of contractile SMCs, mesenchymal-like phenotype and
96  macrophage-like phenotype in healthy skin samples and presented some genes related
97  to ECM-integrins and immune response in different skin anatomic sites. ECs were
98  classified into four EC phenotypes, and the gene expression of integrins, immunity
99  and metabolism across six different anatomic sites of skin was explored. Moreover,
100  comparative differentially expression genes (DEGs) of FBs among different regions
101 showed that TNN, COL11A1, and INHBA might be candidate genes for ECM
102 accumulation. Taken together, the data in this study offer a comprehensive
103 understanding of the single-cell atlas that displays the different skin anatomic sites of
104 pigs, supporting future exploration as a baseline for heathy and morbid human skin.
105

106  Results
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107  Single-cell RNA sequencing analysis of Chenghua pig skin

108  To characterize the overview single-cell atlas from CH pig skin of different anatomic
109  sites efficiently, we isolated skin cells form six different anatomic sites on the head,
110  ear, shoulder, back, abdomen and leg from three female 180-day-old CH pigs (Figure
111 1A). After filtering for quality control, we obtained a total of 215,274 cells, which
112 were globally visualized with 21 cell clusters in the t-SNE plot (Figure 1B). On
113 average, 956 genes and 2687 unique molecular identifiers (UMIs) per cell were
114 detected (Figure 1—figure supplement 1A, 1B). The most representative expressed
115  genes for each cluster were used to identify the 21 cell clusters with the heatmap
116 (Figure 1C). The 21 cell clusters constituted seven cell types with known expressed
117 marker genes, of which the SMCs (clusters 0, 2, 5, 6 and 13) were marked by MYH11
118 and ACTAZ2, ECs (clusters 3, 4, 7,10 and 11) were marked by PECAM1 and APOAI,
119 FBs (clusters 1, 8, 9 and 12) were expressed by LUM and POSTN, myeloid dendritic
120 cells (MDCs) (clusters 14, 16 and 18) were labeled by BCL2A1 and CXCLS, T cells
121 (TCs) (cluster 15) were highly expressed by RHOH and SAMSNI1, KEs (cluster 17)
122 were tabbed by KRTS and S100A2, and epidermal stem cells (ESCs) (clusters 19 and
123 20) were stamped by TOP2A and EGFLS8 (Figure 1D, 1E and Figure 1—figure
124 supplement 1C).

125 The distribution ratio of these cell types was visualized among total data consisting
126 0f42.9% SMCs, 28.1% ECs, 24.6% FBs, 2.5% MDCs, 0.9% TCs, 0.6% KEs and 0.3%

127 ESCs, with similar distribution trends for the main cell types in various skin regions
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128  (Figure 1F). In addition, the cell number and cell identification among the different
129  anatomic skin sites for the head, ear, shoulder, back, abdomen and leg were
130 comparable, which indicated that the cell types displayed subtle differences, but cell
131 number per cell type was significantly varied (Figure 1—figure supplement 2). The
132  marker genes for each cell type showed the dominant transcriptional traits, and the
133 most significantly enriched pathways were presented using Gene Ontology (GO) and
134  Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses (Figure 1G).
135  Significant examples of GO function terms involved in extracellular matrix structural
136 constituent or collagen binding for FBs, actin binding or structural constituent of
137 muscle for SMCs, and extracellular matrix structural constituent or collagen binding
138  to ECs. The pathways are prominently attributed to FBs such as protein digestion and
139  absorption or ECM-receptor interaction, ECs involved in cell adhesion molecules or
140  the Rapl signaling pathway, and SMCs including the NF-kappa B signaling pathway
141 or the TNF signaling pathway.

142 Moreover, given the potential cross-species comparisons, we implemented
143 overlapping skin cell atlases among pigs, humans and mice using a t-SNE plot (Figure
144  1—figure supplement 3A). The captured gene and UMI counts were more
145  advantageous for human skin cells (Figure 1—figure supplement 3B). The cell types
146  were similar for the three species, while the percentage of cell types was different
147 such as smooth muscle cells, endothelial cells or keratinocytes (Figure 1—figure

148  supplement 3A, 3C). Some skin tissue marker genes were showed on the heatmap and
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149  dot plots, which examined the shared or species-specific genes in all cell types among
150  the three species (Figure 1—figure supplement 3D, 3E). When discounting the
151  uniqueness of the skin thickness of CH pig breeds resulting in this discrepancy of the
152 cell type proportions such as excessive cell number of SMCs and ECs, dominantly
153  originated from the vessel bed, we believed the pig skin tissue could be considered as
154  the human skin model at skin single cell atlases level for research purposes.

155

156  Heterogeneity of the smooth muscle cells

157  The most abundant cells were SMCs, followed by the ECs and FBs. SMCs play a
158  critical role in forming blood vessels and arrector pili muscle (APM) of the skin
159  (Driskell et al., 2013; Liu and Gomez, 2019). Previous studies have uncharacterized
160  SMCs in skin tissue. Here, we interrogated the heterogeneity and function of
161  cutaneous SMCs. The t-SNE analysis divided smooth muscle cell into five
162  subpopulations (clusters 0, 2, 5, 6 and 13) (Figure 2A), in which the MYHI11 and
163 ACTA2 gene markers were used for the immunohistochemistry staining of skin
164  sections to validate the microanatomical sight of SMCs (Figure 2B). Meanwhile, we
165  performed GO functional analysis using the highly expressed genes of each cluster
166 (Figure 2C). Clusters 0 and 13 predominantly taken part in structural constituent of
167  muscle, acting filament binding and acting binding. The engagement of main
168  inflammatory response and chemokine activity belonged to clusters 2, 5 and 6, of

169  which cluster 2 was also involved in collagen binding and metallopeptidase activity.
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170 These results showed that SMCs played an important role in blood vessel homeostasis
171  and function, partial collagen binding and immune responses of skin tissue. In
172 previous studies, vascular SMCs displayed a high degree of plasticity and seemed to
173  differentiate into other-like cell types characterized by the expression of marker genes
174 such as mesenchymal-like and fibroblast-like. This evidence, combined with GO
175  function analysis and the expression level of conventional marker genes, such as
176 MYHI1 and ACTA2 for SMC, GUCY1A2, CCL19, FGF7 and ASPN for
177 mesenchymal cells (MECs), and LPL, CCL2, IL6 and CXCL2 for macrophages
178  (MAC:s), presumed that cluster 2 might be mesenchymal-like phenotype or clusters 5
179  and 6 might represent macrophage phenotype. To further validate the topography of
180  SMC phenotypes, we performed pseudotime trajectory analysis based on the Monocle
181  algorithm (Figure 2D). The trajectory demonstrated that SMCs experienced a
182  dynamic transition from SMCs to mesenchymal-like phenotype and
183  mesenchymal-like phenotype to macrophage-like phenotype. The sequential gene
184  expression dynamics with all branches were visualized and showed five gene sets
185 along expression pattern, which primarily deciphered three cell states (Figure 2E).
186  Gene set 1 and 3 showed high expression of CTGF, LGR4, FABP4, CCL2,CCL19
187  and FGF7, and enriched GO terms of negative regulation of cell death, intestinal stem
188  cell homeostasis, long-chain fatty and transport and immune response, which
189  conformed well to the mesenchymal-like cells. With high expression of MYHI11,

190 MYOMI, TPM1,TPM2, SQLE, BTG2, ADIRF and TGFB3 in GO terms of muscle


https://doi.org/10.1101/2023.02.17.528908
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.17.528908; this version posted February 18, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

191  contraction, actin filament organization and ‘de novo’ action filament nucleation
192  belonged to gene set 2 and 5, which was greatly similar to contractile SMCs. Gene set
193 4 showed high expression of CXCL10, CXCL2, ICAM1, LPL and IL6, which main
194  were gathered in GO terms of cellular response to lipopolysaccharide, cell chemotaxis
195  and defense response, which may represent macrophage-like cells. Additionally, some
196  cell type-specific marker genes expression trends in five SMCs clusters were
197  presented (Figure 2F), e.g., the MECs-specific genes GUCY1A2, FGF7 and CCL19
198  were highly expressed in cluster 2, the MACs-specific genes LPL was enriched in
199  clusters 5 and 6, and SMCs-specific genes MYH11 was highly expressed in clusters 0
200  and 13. These results proved our hypothesis that cluster 2 was mesenchymal-like
201  phenotype or clusters 5 and 6 were macrophage-like phenotype.

202 For different cutaneous anatomic sites, we found that the total cells number showed
203 a significant difference, while the distribution ratio of smooth muscle cell
204  subpopulations displayed a similar trend, of which the cell number of
205  macrophage-like phenotype was most distinct, followed by SMCs, and that of the
206  mesenchymal-like phenotype was relatively constant (Figure 3A). To decode the
207  transcriptomic changes in SMCs of different cutaneous anatomic sites, the
208  differentially expressed genes (DEGs) were presented among fifteen groups (Figure
209  3B). The upregulated and downregulated genes of the differentially compared groups
210 were analyzed using GO enrichment terms (Figure 3C). Significant enriched terms of

211 GO analysis terms for upregulated genes primarily referred to extracellular region,

10
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212 collagen-containing extracellular matrix and long-chain fatty acid transport, and
213 downregulated genes took part in cytokine activity, CXCR chemokine receptor
214 binding and positive regulation of T cell migration. The majority of upregulated genes
215  subsisted in back skin compared to other locations, so we implemented KEGG
216 analysis, which involved in PI3K-Akt signaling pathway, MAPK signaling pathway,
217  immune response and integration (Figure 3D). We chose some genes of related
218  ECM-integrins and immune response to present at different skin anatomic sites
219  (Figure 3E), which showed that immune response correlated closely with shoulder
220  skin region or ECM-integrins tightly linked to skin locations on the head, back and
221  shoulder. Moreover, we investigated the key transcription factors (TFs) along all the
222 DEGs among various compared groups due to the importance of gene expression
223  regulators using single-cell regulatory network inference and clustering (SCENIC).
224 The SCENIC algorithm demonstrated a series of main regulons such as EGR1, ATF3,
225 NFKBI, PRDM1 and REL, and related target genes (Figure 3F). TFs, especially
226  ATF3 and EGRI, primarily regulate their target genes at back skin. These results
227  provide well insights into the SMCs heterogeneity in heredity and function in
228  different anatomic sites.

229

230  Heterogeneity of the endothelial cells

231  The ECs underlying the vascular systems and primarily participate in blood and skin

232 homeostasis (Kalucka et al., 2020). ECs were captured from six different anatomic

11
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233  sites and were classified into five subpopulations in our datasets, which were
234 visualized with the t-SNE plot (Figure 4A). GO functional terms analysis was carried
235  out according to the enriched expression genes of each cluster, which were closely
236  related to some terms of angiogenesis, immune response, response to viruses, cell
237  migration, cell adhesion and regulation of catalytic activity (Figure 4—figure
238 supplement 1A). To validate the spatial position of ECs in dermis, we detected the
239  expressions of representative PECAMI1 and APOAl genes via the
240  immunofluorescence of skin section (Figure 4B). ECs heterogeneity can occur in
241  diverse vascular bed of different anatomic sites or health and disease (Kalucka et al.,
242 2020). Previous studies have reported that endothelial cells (ECs) elaborately
243  construct the vasculature throughout the cutaneous dermis and are classified as
244 arteriole ECs, capillary ECs, venule ECs and lymphatic ECs (Li et al., 2021). Based on
245  the known and reported markers of EC phenotypes (Li et al., 2021; Wang et al., 2022),
246 ECs were composed of arteriole ECs expressing markers SEMA3G and MECOM
247  (clusters 7 and 10), capillaries ECs expressing marker PLVAP (cluster 3), venule ECs
248  expressing markers SELE and ACKI1 (cluster 4), and lymphatic ECs expressing
249  markers LYVEl and PROXI(cluster 11) in dermis (Figure 4C). The pseudotime
250  trajectory analysis of EC phenotypes showed an organized axis of blood ECs starting
251  from arteriole and ending at venule, in agreement with the previous literature (Wang
252 et al., 2022), and pseudotime trajectory also formed an arteriovenous anastomosis

253 tendency (Figure 4D). EC phenotypes exhibit diverse molecule and function such as

12
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254  immune and metabolism trait, as well as appearing in differential tissues and sites,
255  resulting in heterogeneous functions of inter-organ and different sites. Furthermore,
256  we explored the expressions of integrins (focal adhesion), immune (cell adhesion
257  molecules, chemokine signaling pathway, antigen processing and presentation,
258  leukocyte transendothelial migration and Thl and Th2 cell differentiation) and
259  metabolism (inositol phosphate, mucin type o-glycan biosynthesis, ether lipid,
260  sphingolipid and glycerolipid) across multiple EC phenotypes. ECs related
261  metabolism in our dataset was considerably active in arteriole ECs, especially cluster
262 10 involving ACER3, which controlled the homeostasis of ceramides, and LCLAT]I, a
263  lysocardiolipin acyltransferase regulating activation of mitophagy (Figure 4E). The
264  focal adhesion genes were more significantly upregulated in arteriole ECs and
265  lymphatic ECs compared to other phenotypes, including ACTG1, BIRC3 and THBSI1
266  (Figure 4—figure supplement 1B). In cell adhesion molecules, PTPRM and CDHS,
267  main responsibility for intercellular adhesion between ECs, were highly enriched in
268 arteriole ECs; moreover, PECAMI1, SELE and SELP were enriched in venule ECs
269  (Figure 4—figure supplement 1C). Other immune pathways showed that different EC
270  phenotypes significantly high expressed diverse genes, such as CXCL14 (involved in
271  monocyte and recruitment) in capillary ECs, CCL26, CXCL19 and CCL26 in venule
272 ECs (Figure 4—figure supplement 1D). The functional diversity of EC phenotypes

273  showed the degree of ECs heterogeneity.

13
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274 Here, we found that the cell number of EC phenotypes was difference among
275  different anatomic sites, with the back skin holding the most arteriole ECs and
276  minimal lymphatic ECs (Figure 4—figure supplement 1E, 1F). To further confirm the
277  heterogeneity of EC phenotypes in the skin sites of head, ear, shoulder, back,
278  abdomen and leg, we compared these genes expression of integrins, immune and
279  metabolism pathways (Figure4 F and Figure 4—figure supplement 2A-C). For
280  example, for the metabolism pathway, compared to other sites, the activity of
281  capillaries ECs, venule ECs and arteriole ECs (7 cluster not including 10 cluster) was
282  depressed in shoulder skin, while high activity in capillary ECs, venule ECs and
283  arteriole ECs was showed in leg skin including ACER3 and PIK3C2A enhanced cell
284  wviability (Gulluni et al., 2021), and high activity in lymphatic ECs, arteriole ECs (10
285  cluster not including 7 cluster) and venule ECs was presented in ear skin including
286  ACER3, GALNTI10 and PIK3C2B, a member of class II PI3Ks controlling cellular
287  proliferation, survival and migration. With abundant results on the related pathways
288  expression for EC phenotypes in different sites showed the heterogeneity of ECs for
289  different anatomic sites of skin.

290 To uncover the underlying molecular mechanisms driving the differential skin sites
291  of ECs, we compared the DEGs with differentially compared groups among different
292  anatomic sites (Figure 4G) and GO terms analysis was implemented for upregulated
293  and downregulated genes (Figure 4H). Enriched terms relating to long-chain fatty acid

294  transport, lipoprotein particle binding and extracellular matrix were showed in

14
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295  upregulated differential genes, while downregulated differential genes main were
296  existed in terms involving regulation of catalytic activity, acting binding and
297  molecular adaptor activity. Of note, the CD36, a multifunctional fatty acid transporter,
298  was reported related metabolic state of fibroblasts for ECM regulation (Zhao et al.,
299  2019). Here, we found that CD36 was upregulated in the back compared with others
300  except head, which was enriched in metabolic terms such as long-chain fatty acid
301  transport and regulation of nitric oxide. FABP4, fatty acid-binding protein 4, was a
302  lipid transport protein that was significantly differentially expressed in nine pairs
303  compared groups. Pioneering study showed FABP4 was strongly expressed in
304  subcutaneous adipocytes and adipose ECs (Wang et al., 2022). Combining data
305  showed skin thickness might have a positive correlation with subcutaneous fat
306  deposits. Additionally, we constructed single-cell transcription-factor regulatory
307  network with all DEGs (Figure 4I). The analysis predicted the following main
308  transcriptional factors: ATF3, EGR1, ERG, FLI1, PRDMI, and NFKBI. The
309  regulation of ATF3, EGR1 and ERG TFs predominate were exited in compared
310 groups of back vs. shoulder and leg vs. ear skin. With these finding, we presented the
311  heterogeneity of ECs in different anatomic sites of skin.

312

313  Heterogeneity of the fibroblast

314  The dermal fibroblasts synthesize the ECM that forms the connective tissue of skin

315  dermis to maintain the skin morphology and homeostasis. We found the CH skin

15
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316  thickness of differential skin sites owed striking difference such as back skin
317  thickness on average at 5.48 mm and that ear at 1.52 mm (Figure 5—figure
318  supplement 1A). In terms of overall skin section, the skin histomorphology of
319  different anatomic sites exhibited some difference in sparsity of collagen fibers or the
320  number of appendages, and dermal thickness descended from the back, head, shoulder,
321  leg, abdomen to ear (Figure 5A and Figure 5—figure supplement 1B). Curiously, we
322 inquired whether the discrepancy in ECM accumulation in different skin sites was
323 caused by fibroblast heterogeneity. Next, fibroblasts maps were presented from six
324  different skin anatomic sites using the t-SNE plot, which was established by four
325  clusters (clusters 1, 8, 9 and 12) (Figure 5B), and the cell number of clusters was
326  estimated (Figure 5C and Figure 5—figure supplement 1C). In previous reports
327  (Philippeos et al., 2018; Solé-Boldo et al., 2020), fibroblast in cluster 1 highly
328  expressed MGP and MFAPS5, known markers of reticular fibroblast, the most
329  representative markers of COL6AS, WIF1 and APCDD1 of papillary fibroblast in
330  clusters 8 and 9, and the mesenchymal subpopulation signature was typically
331  characterized by enriched expressed CRABP1, TNN and SFRP1 in cluster 12. GO
332  analysis showed the functions were closely related with extracellular matrix
333 organization, collagen fibril organization and cell adhesion, which illustrated four
334  clusters of fibroblasts owned analogous functions in our dataset (Figure 5—figure
335  supplement 1D). Likewise, the label-LUM and POSTN genes were marked on

336  fibroblasts of skin section via immunofluorescence (Figure 5D).
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337 With the discrepancy in ECM accumulation in different skin sites, we excavated
338  the upregulated and downregulated DEGs among the diverse compared groups by
339  heatmap, in which all DEGs were upregulated in back skin compared with other skin
340  sites (Figure SE). The remarkable GO enrichment terms of extracellular matrix,
341  extracellular region, extracellular space and collagen-containing extracellular matrix
342 showed all compared groups using GO function analysis, suggesting the difference in
343 gene expression level of FBs resulted entirely in extracellular various in different skin
344  sites (Figure 5F). We further explored the key gene causing the discrepancy in ECM
345  accumulation, so the top DEGs were visualized in the compared groups (Figure 5G
346  and Figure 5—figure supplement 1E). The point photograph presented some
347  overlapping genes in multiple compared groups especially back skin compared with
348  other skin sites, including TNN, COL11A1, SFRP1, COL6AS, INHBA, APOAL,
349 IGF1 and SPARCLI. Notably, TNN, called tenascin-N(W), is lager domain
350  glycoprotein that has the potential to modify cell adhesion and typically contribute to
351  cell motility (Chiquet-Ehrismann and Tucker, 2011); COL11A1, an extracellular
352  matrix structural constituent, comprises a subclass of regulatory collagens
353  fibrillogenesis that synergistically assemble other types of collagen such as collagen I,
354  determining fibril structure, fibril organization and functional traits (Smith and Birk,
355 2012; Sun et al., 2020); SFRP1, a member of secretory glycoprotein SFRP family, is
356  regarded as one of the main classes of macromolecules making up the ECM elements

357 and is reported to be an antagonist that inhibits human hair follicles recession
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358  (Bertolini et al., 2021; Jiang et al., 2022); INHBA is a member of TGFf superfamily
359  and is modified by AP1 expression (Ham et al., 2021). Subsequently, we implemented
360  KEGG analysis in the compared groups (Figure 5—figure supplement 1F, G) and
361  presented dominant enrichment pathways such as ECM-receptor interaction, focal
362  adhesion, protein digestion and adsorption and TGF-beta signaling pathway.
363  Interestingly, these typical overlapping genes were tightly connected with ECM
364  production (Figure 5H). At a consequence, TNN, COL11A1 and INHBA were
365  considered key candidate genes for provoking ECM accumulation. In addition, The
366  SCENIC algorithm demonstrated NF-kB1, TBX3 and ZNF366 regulons regulated
367  some DEGs in FB population (Figure 5I). Of note, the targeted INHBA is targeted by
368  TBX3 regulons. Together, our results showed the heterogeneity of FBs in different
369  anatomic sites of skin.

370

371  The difference of back skin cells between Chenghua and Large White pig

372 In our pervious report, the skin of CH pig was thicker than that of Large White (LW)
373 pigs (8.5 mm vs. 3.0 mm) (Zou et al., 2022), which was consistent with the current
374  data (Figure 6A and Figure 6—figure supplement 1A). Curiously, the pattern of
375  heterogeneity in skin cell for different skin anatomic sites is whether also exist in
376  different breed. To further verify the difference in skin cells across breeds, we also
377  implemented single-cell sequencing for the back skin of LW pig. We received a total

378 18,441 cells after removing minimum count cells, doublet cells and more than 5%
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379  cell-contained mitochondrial genes. The t-SEN analysis revealed the 18 clusters
380  composed of six cell types including SMCs (clusters 1, 2, 5, 6, 9, 10 and 14), ECs
381  (clusters 0, 3, 4, 12 and 15), FBs (clusters 7, 8, 11 and 13), lymphatic cells (LYCs)
382  (cluster 16), Langerhans cells (LHCs) (cluster 17) and ESCs (cluster 18) between CH
383  and LW pig (Figure 6B), and the marker genes of cluster were showed in Figure. 6C.
384  The genes/UMIs per cell and distribution of cell types were compared between the
385  two breeds (Figure 6D and Figure 6—figure supplement 1B-D). The main cell types
386  were still SMCs, ECs and FBs, and we compared the DEGs in two breeds (Figure 6E,
387  F), which showed a large difference was in FB populations. KEGG analysis for the
388  main three cell types manifested significant pathway of ether lipid metabolism for
389  ECs including LPCAT2 and ENPP2 genes, PPAR signaling pathway for SMCs, and
390  PI3-Akt signaling pathway, protein digestion and absorption, ECM-receptor
391  interaction, focal adhesion and TGF-beta signaling pathway for FBs involving in
392  TNN, POSTN, COL11A1, IGF1 and INHBA genes that overlapped with DEGs of
393  FBs of CH pig skin (Figure 6 G and Figure 6—figure supplement 1E). Moreover, the
394  extracellular space and extracellular region part were the representative striking terms
395  for DEG of FB population by GO terms analysis (Figure 6H). An analysis of the data
396  proved the ECM accumulation in skin tissue was probably dependent on these
397  overlapping genes, which might be not bound up with the origin of anatomical regions
398  or breed.

399
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400  The communication of overview skin cell

401  Intercellular communication plays an important role in complex tissues.
402  Understanding cell-cell communication in skin tissue requires accurate signaling
403  crosstalk via ligands, receptors and their cofactors, and effective overview analysis of
404  these signaling links. To investigate the signaling crosstalk of seven cell types in skin
405  tissue, we established intercellular communication by the R package CellChat. The
406  seven cell types were deemed as communication “hub”, which detected 547
407  ligand-receptor pairs and were further categorized into 36 signaling pathways
408  including the COLLAGEN, LAMININ, FN1, PDGF, CCL, CXCL, MIF and ITGB2
409  pathways (Figure 7A). Specifically, the COLLAGEN and LAMININ pathway
410  exhibited highly abundant signaling interactions among seven cell types. Network
411  centrality analysis of the COLLAGEN/LAMININ pathway revealed FB populations
412 were the main source of the COLLAGEN/LAMININ ligands targeting SMC and ESC
413  populations, which showed the COLLAGEN/LAMININ interactions were primarily
414  paracrine (Figure 7B, C and Figure 7—figure supplement 1A). Importantly, these
415  results reported the elaborately relevance between FBs and SMCs with majority
416  ligand of COL1Aland COL1A2, receptor of CD44 and ITGAI1+ITGBI1 in the
417  COLLAGEN pathway (Figure 7—figure supplement 1B). Likewise, the LAMININ
418  pathway also showed an analogous phenomenon between FB and SMC populations
419  via ligands LAMCland LAMBI1, which were receptors of CD44 and ITGA1+ITGB1

420  (Figure 7—figure supplement 1B).
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421 We implemented a communication pattern analysis to uncover the four patters in
422 outgoing secreting cells or incoming target cells (Figure 7D, E). Outgoing FB
423  populations signaling was identified by pattern #2, which represented multiple
424  pathways such as COLLAGEN, LAMININ, FN1, PTN, ANGPTL and THBS.
425  Outgoing SMCs and ESCs signaling was characterized by pattern #4, included in
426  CDH, ANGPT and PDGF pathways. Outgoing ECs signaling was characterized by
427  pattern #1, which was involved in PECAMI1, MK and NOTCH pathways. The pattern
428  #3 presented CD45, IL1 and VEGF pathways for outgoing MDC and TC populations
429  signaling. For incoming communication target cells pattern, incoming FB populations
430  signaling was characterized by pattern #3, representing NCAM, CADM and MPZ
431  pathways. The incoming SMCs, KEs and ESCs signaling was characterized by pattern
432 #4, and that of ECs was characterized by pattern #2.

433 Furthermore, the signaling pathways were grouped according to their similarity in
434  function or structure. The functional similarity grouping was classified into four
435  groups (Figure 7F). Group #1 and #4, which dominating included COLLAGEN,
436 LAMININ and PTN pathways, largely showed signaling from FBs to SMCs and
437  ESCs. Group #3 dominantly drove PECAMI1, CXCL and CCL pathways, which
438  represented the acquisition signaling pathway of ECs. The structural similarity
439  grouping also was identified four groups (Figure 7—figure supplement 1C). To
440  further elaborately explore the communication among FB, SMC and EC

441 subpopulations, we analyzed the COLLAGEN/ LAMININ pathway in the three
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442 populations including 14 clusters (Figure 7G, H and Figure 7—figure supplement 1D,
443 E). The network centrality analysis showed clusters 2, 5 and 6 of SMCs and cluster 7
444  of ECs likely actively take part in cell communication via the ligand of
445  COLIAI/LAMA2, receptor of ITGAI+ITGB1 in the COLLAGEN/ LAMININ
446  pathway. Moreover, the SCENIC algorithm demonstrated NFKB1 as the common
447  regulon among DEGs of three cell types, and the EGR1 and ATF3 regulons regulated
448  the target genes in SMCs and ECs (Figure 7I). These results manifested the
449  communication of skin cells especially main three cell types of SMCs, ECs and FBs.
450

451  Discussion

452  With the development of high-resolution single-cell sequencing that is applied to
453  delineate the atlas of diverse cell type populations and determine the molecular basis
454  underlying the heterogeneity in many complicated biological processes associated
455  with physiology and pathology among species, especially humans (Han et al., 2020),
456  mice (Kalucka et al., 2020), monkeys (Han et al., 2022) or pigs (Wang et al., 2022).
457  The origin of tissue, its development state or anatomical structure are conductive to
458  heterogeneity of cells. Previous study uncovered the skin scRNA-seq datasets from
459  embryonic development (Ge et al., 2020), different age stages (Zou et al., 2021) and
460  wound healing stages (Guerrero-Juarez et al., 2019) in humans or mice. However, the
461  single cell transcriptional diversity of different anatomic skin regions has not been

462  understood and is caused by different origins of the body skin dermis. Pig as an
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463  animal model of human medicine that demonstrate promising alternative cutaneous
464  organ based on their similar physiology, anatomic structure and genetics with
465  humans (Perleberg et al., 2018).

466 Therefore, in our study, using scRNA-seq detailed analyses of transcriptional
467  similarity, we depict a detailed single-cell atlas of pig skin cells from six different
468  anatomic skin sites involving in head, ear, shoulder, back, abdomen and leg.
469  Compared with reported skin cell types of pig (Han et al., 2022), the cell types varied
470  slightly, but the distribution ratio of cell types was significant different such as 7.2%
471 SMCs, 6.5% ECs, and 45.5% FBs in the reported literature and 42.9% SMCs, 28.1%
472 ECs, 24.6% FBs in this study. Similarly, melanocytes, Schwann cells, mast cell and
473  neural cell were not identified in our datasets, while they were identified in human or
474  mouse skin samples. By the way, SMCs and pericytes, called mural cells in vessels,
475  were unable to precise discriminate between the two cell types because of confusable
476  hallmarks and functions in skin tissues, so we only identified SMCs in our data. Here,
477  we believe that the discrepancy in captured cell types and cell type proportions is
478  based on the cutaneous thickness trait of CH pig breed and different scRNA-seq
479  platforms captures. In this study, we analyzed main three cell types: SMCs, ECs and
480  FBs.

481 SMCs constitute blood vessels and APM in skin tissue, with a greater proportion in
482  blood vessels. Here, five SMC subpopulations are verified and then separate into three

483  SMC phenotypes. Sophisticated studies have shown SMC phenotypic switching under
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484  pathological processes or injured conditions, a way in which SMC shift between
485  contractile phenotype and other type cell phenotypes such as mesenchymal-like,
486  fibroblast-like, macrophage-like, adipocyte-like and osteogenic-like (Yap et al., 2021;
487  Yu et al, 2022). Subsequently several studies found multiple SMC phenotypes
488  including Scal-positive vascular SMC-lineage also existed in healthy vessels
489  (Dobnikar et al., 2018). Interestingly, SMC phenotypic switching occurred in pig skin
490  tissue, varying from contractile SMCs to mesenchymal-like, mesenchymal-like to
491  macrophage-like, with the expression level of marker genes for cell types and
492  function analysis. During physiologic and pathological angiogenesis, macrophages are
493  regarded as a facilitator of vascular integrity and derivatives by way of cytokine
494  secretion and ECM remodeling (Barnett et al., 2016; Debels et al., 2013), which
495  implies SMCs are deemed immune system’s line of defense and positively participate
496  in the immune response in skin tissue. From different skin regions, the cell number of
497  the macrophage-like phenotype is highest at back site, followed by the abdomen, but
498  immune related-genes are primarily existed in shoulder, back and ear, which shows
499  activity of the macrophage-like phenotype might depend on intrinsic factors as well as
500  environmental factors.

501 Depending on the properties of diverse molecular and function, such as immune
502  responses and metabolic process in ECs, ECs heterogeneous characteristics have been
503 investigated in some organs of human skin (Li et al., 2021), the mouse brain (Kalucka

504 et al., 2020), and pig adipose tissue (Wang et al., 2022), of which ECs diversity
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505  remain largely unrevealed in skin tissue from different anatomical locations. In our
506  cutaneous datasets, five subpopulations are identified with ECs and divide into four
507  EC phenotypes, which are placed in order at the pseudotime trajectory indicating the
508  distributed paths of blood vessel, such as arteriovenous anastomosis with vein. Here,
509  an additional level of heterogeneity was explored when analyzing the expression level
510  of pathway genes involved in integrins, immune and metabolism in EC subtypes as
511  well as the EC subtypes in different anatomical regions. In integrins, ITGAG6 is high
512  expressed in pig dermis ECs, in accordance with human dermis ECs (Li et al., 2021),
513  and the expression of ITGAG is significant added in venule ECs and arteriole ECs
514  (cluster 10 not cluster 7) of the pig ear skin site and in capillaries ECs of humans. Cell
515  adhesion molecules are compared to find capillaries ECs and arteriole ECs (cluster 7
516  not cluster 10) of the back and shoulder skin main enriched MHC class II genes such
517 as SLA-DQBI and SLA-DRBI, which were highly expressed in lung organ of
518  humans/mice, indicating a role in immune surveillance (Goveia et al., 2020). A funny
519  question regarding the high expression of MHC class II genes in term of slight tissue
520  rejection by blocking MHC class Il on human endothelium (Abrahimi et al., 2016) is
521  whether there is a preference for skin graft from specific skin regions, to transplant
522  pig skin into humans. SELE, SELP and ICAM1 main mediate the communication
523  between leukocyte and ECs and are high expressed in venule ECs and arteriole ECs of
524  head, ear and back skin of pig, while the three genes are primarily existed in

525  post-capillary venule ECs of human dermis (Li et al., 2021). CDHS, an intercellular
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526  tight junction protein in ECs, is high expressed in arteriole ECs of the ear skin of pig,
527  in keeping with human dermal EC phenotype. Other immune response representative
528  genes such as cytokines (CXCL14, CCL26, CCL24, CXCL12 and CXCL19) that
529  participate in immunocyte recruitment (e.g., neutrophils) or are responsible for the
530  host defense against viral infection, enhancing immune progression and metastasis
531  (Fajgenbaum and June, 2020; Wu et al., 2020), of which CCL24/CCL26, the role of
532  eotaxins (Provost et al., 2013), are enriched in venule ECs and major distributed in the
533  head/abdomen skin regions respectively. For the ECs metabolism pathway, most
534  metabolic genes are significant expressed in arteriole ECs and exhibited overlapping
535  and specific among different skin sites. Interestingly, ENPP2 of lipid metabolism
536  gene reported enhanced the cytokine production (Grzes et al., 2021) and was
537  overexpressed during chronic inflammatory (Argaud et al., 2019), and it was enriched
538  in the abdomen skin, while LPCAT?2 of the other lipid metabolism gene under study
539  was positively correlated with lipid droplet content in colorectal cancer (Cotte et al.,
540  2018), which was main highly expressed in back and shoulder skin. These finding
541  demonstrated the extensive phenotypic plasticity and gene expression signatures of all
542  kinds of pathways in different skin sites.

543 FBs are mesenchymal cells that synthesize ECM of connective tissues, which are
544  responsible for structural integrity, wound repair and fibrosis in skin. Providing
545  plentiful proofs showed FBs heterogeneity is involved in diverse subpopulations such

546  as papillary FBs, reticular FBs, mesenchymal FBs and pro-inflammatory FBs, and its
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547  functions in humans and mice (Guerrero-Juarez et al., 2019; Zou et al., 2021).
548  Through the known marker of FB subpopulations, we found three subpopulations not
549  including pro-inflammatory in our dataset, guessing the immune function of SMCs or
550  ECs might replace pro-inflammation FBs due to the enormous cell number of SMCs
551  or ECs. Previous showed FBs of distinct anatomic locations exhibited detectable
552  differences in metabolic activity (Castor et al., 1962) and genome-wide gene
553  expression profiling of 43 skin sites (Rinn et al., 2006). The fact is that three FB
554  subpopulations focused on extracellular matrix organization and collagen fibril
555  organization, resulting in the discrepancy in ECM deposition in different anatomical
556  skin sites.

557 Therefore, the overlapping remarkable upregulate-genes were found among multi
558  compared groups, especially the back when compared with other areas, and they
559  might be regarded as key genes in ECM deposition. The ECM protein TNN is high
560 expressed in dense connective tissue such as cartilage, adult skeleton and bone
561  (Chiquet-Ehrismann and Tucker, 2011). TNN distinctly located with collagen 3 fibers
562  plays a crucial role in periodontal remodeling, an example of a dense scar-like
563  connective tissue enriched the nerve fibres replacing alveolar bone around the incisor
564 by deficient TNN in mice (Imhof et al., 2020). Here, TNN took part in these pathways
565  that were closely related with skin dermis such as ECM-receptor interaction and
566  PIK-Akt signaling pathway and were significantly upregulated in multiple compared

567  groups uniformly, surmising TNN might a key candidate gene. Collagen I is the most
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568  abundant structural macromolecule in skin tissue, and collagen mechanism is
569  determined by minor component as a regulator (Hansen and Bruckner, 2003).
570  Collagens I and XI can package into composite fibrils by nucleation and propagation,
571  in which the collagen XI content is closely connected with collagen I, determining its
572  organization and function properties. Collagen XI is the main factors in collagen
573  I-containing tissue including tendons and cartilage, but not skin tissue, and the
574  absence of COL11A1 expression results in the disruption of fibril phenotype for
575  mature tendons (Blaschke et al., 2000; Sun et al., 2020). INHBA play an important
576  role in the TGF-beta signaling pathway, stimulating the activity of SMAD2/3 and
577  encouraging cell proliferation and ECM production. INHBA expression was
578  significantly upregulated in keloid FBs compared to normal dermal FBs (Ham et al.,
579  2021). Interestingly, overlapping genes including TNN, COL11A1, SFRP1, INHBA
580  were pronouncedly expressed in mesenchymal FBs. With the paradigm of human skin
581  case presented a series of genes were significantly increased in keloid mesenchymal
582  FBs in contrast to normal scar, such as COL11A1, SFRP1, TNC, INHBA, FN1, IGF1,
583  THBS4 and POSTN, suggesting these genes might promote ECM production (Deng
584 et al., 2021). Likewise, these TNN, POSTN, COL11A1, IGF1 and INHBA genes
585  were significantly upregulated in back skin of CH pig compared with back skin of
586 LW pig. Although the mechanisms of physiological skin thickness, fibrosis or
587  scarring (pathological chronic inflammatory) are not all the same, excess ECM

588  accumulation occurs, indicating individual and mutual genes. Therefore, in our study,
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589  we speculate TNN, COL11A1 and INHBA expression might play a critical role for
590  the morphology and quantity of collagen fibril-stimulated ECM deposition in skin
591  tissue.

592 Skin physiological and pathological (wound healing or fibrosis) conditions not only
593  determine the complex and diverse cellular composition but also establish the central
594  signaling pathways between interacting cell groups, offering good insights into
595  cellular crosstalk. For mouse skin wound tissue, network analysis categorized into 25
596  signaling pathways involving in TGF, non-canonical WNT, TNF, SPP1 and CXCL,
597  and identified the inferred TGFp signaling as the most prominent pathway between
598  myeloid cells and FB populations (Guerrero-Juarez et al., 2019). Twenty-two
599  signaling pathways of embryonic mouse skin were identified, such as WNT, ncWNT,
600  TGFB, PDGF, NGF, FGF and SEMA3, predicting the WNT signaling pathway paid
601  an important role between epidermal to dermal cells to form skin morphogenesis
602  (Gupta et al., 2019). Moreover, the major highly active pathways in diseased human
603  skin including MIF, CXCL, GALECTIN, FGF and CCL, which showed MIF
604  signaling pathway was main pathway from inflammatory FBs to inflammatory TCs
605 (He et al., 2020). In our datasets, 36 signaling pathways were presented involving in
606 COLLAGEN, LAMININ, FN1, PDGF, CCL, CXCL and MIF, of which the
607 COLLAGEN and LAMININ signaling were the most enriched among different skin
608  regions of pig. These results indicate the key signaling pathways depended on skin

609  morphogenesis.
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610 In summary, in our study, the heterogeneity of main cell types from different
611  anatomic skin sites was comprehensive detailed, giving clear evidence of the use of
612 pig as an excellent skin model focused on generation, transmission, positional
613  information and transplant, paving the foundation for skin priming.

614

615  Materials and Methods

616  Skin samples dissociation and cell collection

617  Skin samples were obtained from three CH pigs at six different anatomical body areas
618  (head, ear, shoulder, back, abdomen, leg) and three LW pigs with one region (back).
619  The fresh skin samples were thoroughly scraped off the hair and subcutaneous fat and
620  were washed thrice with ice-cold Dulbecco’s Phosphate-Buffered Salline (1 x DPBS).
621  The skin samples (size approximately 2 cm x 2 cm) were fully dissected into small
622  pieces in 4 mL tube and then transferred into 50 mL centrifuge tube with 15 mL mix
623  digestion medium containing 1 mg/mL collagenase type I, II, IV, V (Sigma-Aldrich,
624  Saint Louis, USA), 1 mg/mL elastinase (Coolaber, Beijing, China), and 2 U/mL
625 DNase I (Coolaber, Beijing, China) in Dulbecco's Modified Eagle Medium (DMED).
626  The skin samples were digested at 37 °C for 120 min-180 min, and simultaneously
627  gently shaken once every 10 min. The digestion reaction was interrupted by DMEM
628 including 10% fetal bovine serum (FBS) (Gibco, New York, USA). Then, the tissue
629  suspension was filtered with 70 pm and 40 pm cell strainer and transfected into a 15

630 mL centrifuge tube to obtain cells sediment by centrifugation at 350 x g for 5 min at

30


https://doi.org/10.1101/2023.02.17.528908
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.17.528908; this version posted February 18, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

631 4 °C. The cells sediment was added to 2 mL Red Blood Cells Lysis Solution (Qiagen,
632  Duesseldorf, Germany) at room temperature for 5 min to remove red blood cells. The
633  cells sediment was added to 2 mL TrypLE (Gibco, New York, USA) at 37 °C for 45
634  min to dissolve cell clot. The dissociated cells were washed twice and resuspended in
635  cold DMED supplemented with 10% FBS. Finally, cells staining with 0.4 % Trypan
636  Blue Solution was used to estimate cell activity rate and concentration by Countess™
637  Cell Counting Chamber Slides.

638  Single-cell library construction and sequencing

639  Approximately 20,000 cells were captured in droplet emulsions and the mRNA of
640  single-cell libraries were constructed according to the DNBelab C Series Single-Cell
641  Library Prep Set (MGI, Shenzhen, China) (Han et al., 2022). In brief, single-cell
642  suspension were subjected to a series of progress, including droplet encapsulation,
643  emulsion breakage, mRNA captured bead collection, reverse transcription, and cDNA
644  amplification and purification, to generate barcoded libraries. Indexed sequencing
645  libraries were established based on the instruction’s protocol. The quality supervision
646  of libraries was implemented with a Qubit ssDNA Assay Kit (Thermo Fisher
647  Scientific, Waltham, USA). Libraries were further sequenced by the DNBSEQ
648  sequencing platform at the China National GeneBank.

649  Single-cell RNA sequencing data processing

650  The raw single-cell sequencing data were processed by DNBelab C Series scRNA

651  analysis software. Reads were aligned to the reference genome (Ensemble assembly:
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652  Sus scrofall.l) to generate a digital gene expression matrix by STAR (Wang et al.,
653  2022). The quality control parameters involving in gene counts per cell, UMI count
654  per cell and % mitochondrial genes were stipulated. Cells genes were expressed in
655 less than three cells, and cells were removed on the basis of detected genes number
656  with a minimal of 200. Mitochondrial gene expression was set at a threshold of 5%
657  for per cell. For each library, the doublet was removed using DoubleFinder with the
658  default parameter (Wang et al., 2022). Then, the aligned reads were filtered to obtain
659  cell barcodes and unique molecular identifiers (UMI) for gene-cell matrices, which
660  were used for downstream analysis.

661  Identification of cell clustering and cell type

662  After the initial DNBelab C Series scRNA analysis software processing, the cells
663  were pre-processed and filtered. The data were normalized per sample using
664  NormalizaData with default options and highly variable genes were calculated by
665  FindVariableFeatures and then elected based on their average expression and
666  dispersion. The cell cluster was presented with the standard integration process of P
667  value < 0.01 through the “FindClusters” function described in Seurat (Wang et al.,
668  2022). The cell-types in each cell cluster were identified with enriched expression
669  using “FindAllMarkers” function in SCSA with default parameters, together with
670  canonical cell-type markers from extensive reported literature on pig and human skin.
671  Gene with |log2FC| > 0.25 and adjusted p-value < 0.05 were considered marker genes.

672  And subsequently the cell cluster was visualized with t-SNE plot.
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673  Identification of DEGs among multiple compared groups and GO/KEGG
674  enrichment analysis

675  We used the FindMarkers function in Seurat to confirm skin related DEGs between
676  CH-back and CH-head, CH-back and CH-ear, CH-back and CH-shoulder, CH-back
677 and CH-abdomen, CH-back and CH-leg, CH-shoulder and CH-head, CH-shoulder
678  and ear, CH-shoulder and CH-abdomen, CH-shoulder and CH-leg, CH-head and
679  CH-ear, CH-head and CH-abdomen, CH-head and CH-leg, CH-leg and CH-abdomen,
680 CH-leg and CH-ear, and CH-abdomen and CH-ear for each cluster. DEGs of 15
681  compared groups were identified with [log2FC| > 0.25 and adjusted p-value < 0.05. In
682  the global clusters, Gene ontology (GO) analysis was implemented with the Dr. Tom
683  platform of BGI. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis,
684  which was also performed with the Dr. Tom platform of BGI, further identified gene
685  biological function including signal transduction pathways, metabolic pathways and
686  so on in dermal cell populations.

687  Cross-species comparison for skin cell atlas in pigs, humans and mice

688  Published skin single-cell datasets of humans (Solé-Boldo et al., 2020; Zou et al.,
689  2021) and mice (Joost et al., 2020; Ko et al., 2022) were download from GEO with a
690 10 X sequencing platform. The count matrices of the three species were integrated for
691  clustering using the Seurat R package with standard process for interspecies skin cell
692  atlas analysis. The expressed genes that were orthologous were kept in the three

693  species. The comparison of cell numbers and UMI count matrices was obtained for
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694  pigs, humans and mice. And the cell types were annotated by cell-type marker genes
695 identified in this study.

696  Pseudotime analysis

697  The cell pseudotime trajectory was constructed using R package Monocle2 (Trapnell
698 et al., 2014). This method arranges these cells on a trajectory that describes the
699 complete differentiation process as a quasi-time sequence of these cells through the
700  asynchronous nature of each cell in the differentiation process.

701 Cell-cell communication inference

702  To understanding global communication among the cell types of pig skin, we used the
703 R package CellChat (v1.0.5) (Trapnell et al., 2014) with ligand-receptor interactions
704  for visual intercellular communications from scRNA-seq data. As the database covers
705  the human species, we select these pig genes according to their homologous with
706  humans. CellChat implement some visualization methods, including the interaction
707  number, interaction weight, communication patterns of incoming river plot,
708  communication patterns of outgoing river plot, functional pathways, structural
709  pathways, chord plot, circle plot, hierarchy plot and ligand-receptor of contributions.
710  Targeted transcription factors interaction among cells

711  The transcription factor (TF) list for pig species was downloaded from the
712 AnimalTFDB (v4.0). We identified all the TFs using motif enrichment data in

713 cisTarget database (https://resources.aertslab.org/cistarget/), of which the “grn”

714 module constructed a co-expression network, the “cxt” module inferred regulomes,
715 and the “aucell” module calculated the AUC value in SCENIS (v0.11.2) (Kalucka et
716 al., 2020). From the above data, we selected the DEGs of SMCs, ECs and FBs
717  corresponding to TF and visualized these networks using Cytoscape software.

718 SKkin section
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719  The total skin thickness from 3 pigs per breed with different sites was measured three
720  times with a Vernier caliper at the same position and recorded. The skin tissues were
721  fixed in a solution of 10% neutral buffered formalin and processed using routine
722 histological procedures. Then, the sections were cut at a thickness of 5 pm using a
723  microtome. The dermal thickness was determined using CaseViewer software
724  according to a previous method after hematoxylin-eosin staining (Zou et al., 2022).
725  The mean values and standard deviations were calculated.

726  Immunofluorescence staining

727 A 5 um-thick back skin section was incubated with primary polyclonal rabbit
728  antibody (ABclonal, Wuhan, China) against MYHI11 (1:500 dilution) and ACTA2
729  (1:500 dilution) overnight at 4 °C for SMCs, APOA1 (1:500 dilution) and PECAM1
730 (1;200 dilution) for ECs, and LUM (1;200 dilution) and POSTN (1;200 dilution) for
731  FBs. FITC-goat anti-rabbit IgG and Cy3-conjugated goat anti-rabbit [gG were used as
732 secondary antibodies (1:200 dilution) at room temperature for 1 hour. Then, the cell
733  nuclei were stained with DAPI dye for 30 min. These procedures were implemented
734 under dark conditions. Finally, these images were captured by confocal microscopy.

735  Statistical analysis

736  Statistical testing was applied by GraphPad Prism. The data are shown as the mean +

737  SD for one group.
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768  The following dataset was generated:

Author(s) Year Datasettitle  Dataset URL Dataset and
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Zou Q, 2023 Single-cell https://www.ncbi.nlm.nih.go NCBI Gene
Yuan R, transcriptome  v/geo/query/acc.cgi?acc= Expression
Zhang Y analysis on GSE225416 Omnibus,
the anatomic GSE225416
positional
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heterogeneity

of pig skin

769

770  The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Dataset and
Identifier
Solé-Bol 2020 Single-cell https://www.ncbi.nlm. NCBI Gene
do L, transcriptto-mes of the nih.gov/geo/query/acc Expression
Raddatz human skin reveal .cgi?acc=GSE130973 Omnibus,
G age-related loss  of GSE130973
fibroblast priming
Zou Z, 2021 A Single-Cell https://download.cncb. Genome
Long X Transcri-ptomic ~ Atlas ac.cn/gsa-human/HR  Sequence
of Human Skin Aging ~ A000395 Archive,
HRA000395

Ko KL, 2022 NF-kB perturbation https://www.ncbinlm. NCBI Gene

Meriet JJ reveals unique nih.gov/geo/query/acc  Expression
immune-omeodulatory  .cgi?acc=GSE172226  Omnibus,
functions in  Prxl+ GSE172226
fibroblasts that promote

development of atopic
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dermatitis
Joost S, 2020 The Molecular https:/www.ncbi.nlm. NCBI Gene
Annusver Anato-my of Mouse nih.gov/geo/query/acc Expression
K Skin  during  Hair .cgi?acc=GSE129218 Omnibus,
Growth and Rest GSE129218
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Figure legends

Figure 1. Single-cell atlas of six different anatomical areas of Chenghua pig skin.

(A) Flowchart overview of skin single-cell RNA sequencing from different
anatomical skin regions of Chenghua pig. (B) The t-SNE plot visualization showing
21 clusters of annotated cell types from Chenghua pig skin. (C) Heatmap showing the
top 12 of highly expressed genes from each cluster. Each column represents a cluster,
each row represents a gene. Light yellow shows the maximum expression level of
genes, and deep green shows no expression. (D) Dot plot showing the two
representative genes for each cell type. Color indicates the log2 value, and circle size
indicates gene expression level. (E) The marker genes for each cell type are
distributed on the t-SNE plot. Color indicates gene expression. (F) The distribution
ratio of cell types for total cells and six different anatomical skin areas. (G) The most
enriched GO terms and KEGG pathways for each cell type. SMC, smooth muscle cell;
EC, endothelial cell; FB, fibroblast; MDC, myeloid dendritic cell; TC, T cell; KE,
keratinocyte; and ESC, epidermal stem cell.

Figure 1—Source data 1. Source data of marker genes for each cluster in Figure 1C.
Figure 1—figure supplement 1. The count of genes/UMI and the expression of

marker genes. (A) Violin plot showing the number of genes detected from different
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1018  skin sites. (B) Violin plot showing the UMI count detected from different skin sites. C
1019  Violin plot showing the genes expression levels of MYHI11, ACTA2, APOAI,
1020 PECAMI, POSTN, LUM, BCL2A1, CXCL8, RHOH, SAMSNI1, TOP2A, SCN7A,
1021  KTRS and S100A2 in each cell cluster of skin cells in CH pigs.

1022  Figure 1—figure supplement 1—Source data 1. Source data of the gene/UMI counts
1023  in figure supplement 1A and 1B

1024  Figure 1—figure supplement 2. The cell types of different skin regions. (A) UMAP
1025  visualization of cell types from different skin regions in global CH skin cells. The
1026  number of cell types in different skin regions. (B) The cell types of individual skin
1027  sites by UMAP visualization.

1028  Figure 1—figure supplement 3. Comparison of skin cells among human, pig and
1029  mouse species. (A) The t-SNE plot visualization of all cell types for skin cells among
1030 humans, pigs and mice. (B) Violin plots showing the number of UMI and gene counts
1031  of skin cells among humans, pigs and mice. (C) Bubble plot representing the ratio of
1032 cell types for skin cells and the gene number among humans, pigs and mice. Color
1033  shows gene number and circle size indicates cell abundance. (D) Heatmap showing
1034  high expression levels of genes in each cell type of skin cells among humans, pigs and
1035  mice. Light yellow shows the genes with high expression. (E) Bubble plot showing
1036  the ratio and expression of marker genes in skin cells among humans, pigs and mice.
1037  Color represents genes expression and circle size indicates the percent of expressing

1038  cells.
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1039

1040  Figure 2. Smooth muscle cell heterogeneity. (A) The t-SNE plot visualization of
1041  smooth muscle cell populations including clusters 0, 2, 5, 6 and 13. (B) Confocal
1042  images showing immunofluorescence staining of ACTA2 (green) and MYHI11 (red)
1043  in back skin sections, representative markers of smooth muscle cells. Scale bar = 50
1044  pm. n = 3. (C) The enriched GO terms of biological process for each smooth muscle
1045 cell subpopulation sorted by g-value. (D) Pseudotime ordering of SMC
1046  subpopulations using Monocle 2. (E) Heatmap illustrating the dynamics of
1047  representative differentially expressed genes among SMC phenotypes, in which the
1048  important GO terms relating to biological process were described. (F) These genes
1049  expression along pseudotiom in SMC subpopulations.

1050

1051  Figure 3. Smooth muscle cell heterogeneity of different anatomical skin regions.

1052 (A) The cell number of SMC subpopulations in different skin regions. (B) Heatmap
1053  showing the differentially expressed genes of SMCs in multiple compared groups.
1054  Red represents upregulated genes, blue represents downregulated genes and the
1055  number of differentially expressed genes is indicated. (C) The enriched GO terms of
1056  multiple compared groups. Color indicates g-value, circle indicates gene counts. (D)
1057  KEGG analysis for upregulated genes of back skin compared to other locations. (E)
1058  The expression level of genes involved in ECM-integrins and immune response

1059  pathway in different skin regions. Red represents high expression of genes. (F)
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1060  Transcriptional regulatory network of differentially expressed genes for SMCs in
1061  multiple compared groups. Blue nodes represent regulators and green nodes represent
1062  the target genes of regulators.

1063  Figure 3—Source data 1. Source data of the differentially expressed genes of SMCs
1064  in multiple compared groups in Figure 3B.

1065

1066  Figure 4. Endothelial cell heterogeneity. (A) The t-SNE plot visualization of
1067  endothelial cell populations. (B) Immunofluorescence staining of APOA1 (green) and
1068  PECAMI (red) in back skin sections, representative markers of endothelial cells.
1069  Scale bar = 50 pm. n = 3. (C) Dot plot representing marker genes of endothelial cell
1070  phenotypes. Color indicates gene expression, circle indicates the log2FC value. (D)
1071  Pseudotime ordering of ECs subpopulations using monocle 2. (E) Heatmap showing
1072 the gene expression of metabolic pathways in EC subpopulations. (F) Heatmap of
1073 gene expression of metabolic pathways in EC subpopulations of different skin regions.
1074  (G) Heatmap of DEGs for ECs in multiple compared groups. Red represents
1075  upregulated genes, blue represents downregulated genes. (H) The significantly
1076 enriched GO terms of ECs in multiple compared groups. (I) Regulatory network of
1077  DEGs for ECs of different skin regions. Blue nodes represent regulators and green
1078  nodes represent the target genes of regulators.

1079  Figure 4—Source data 1. Source data of the differentially expressed genes of ECs in

1080  multiple compared groups in Figure 4G.
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1081  Figure 4—figure supplement 1. Endothelial cell heterogeneity. (A) The enriched GO
1082  terms pertaining to biological process for each EC subpopulations sorted by g-value.
1083 (B) Heatmap of gene expression for focal adhesion pathway among EC
1084  subpopulations. (C) Heatmap of gene expression for cell adhesion molecule pathway
1085 among EC subpopulations. (D) Heatmap of gene expression for other immune
1086  pathways among EC subpopulations. (E) The cell number of EC subpopulations in
1087  different skin regions.

1088  Figure 4—figure supplement 2. Endothelial cell heterogeneity in different skin
1089  regions. Heatmap of gene expression in focal adhesion pathway (A), cell adhesion
1090  molecule (B) pathway, and other immune pathways (C) among EC subpopulations of
1091  different skin regions.

1092

1093  Figure 5. Fibroblast heterogeneity. (A) Skin section with HE staining (left) and
1094  dermal thickness of six different sites (right) including head, ear, back, shoulder,
1095  abdomen and leg. Scale bar = 1000 pm. n = 3. (B) The t-SNE plot showing FB
1096  populations. (C) The cell number of FB populations in different skin regions. (D)
1097  Images showing immunofluorescence staining of POSTN (green) and LUM (red) in
1098  back skin sections, representative markers of FBs. Scale bar = 50 pm. n = 3. (E)
1099  Heatmap of DEGs for FBs in multiple compared groups. Red represents upregulated
1100 genes, blue represents downregulated genes. (F) The enriched GO term of FBs in

1101  multiple compared groups. (G) Multiple volcanic maps showing the DEGs of
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1102 compared groups in back skin compared to other locations. Representative genes are
1103  indicated. (H) KEGG analysis of representative genes in image G. (I) Regulatory
1104  network of DEGs of FBs of different skin regions. Blue nodes represent regulators
1105  and green nodes represent the target genes of regulators.

1106  Figure 5—Source data 1. Source data of the differentially expressed genes of FBs in
1107  multiple compared groups in Figure SE.

1108  Figure 5—figure supplement 1. Fibroblast heterogeneity. (A) The skin thickness of
1109  different sites. (B) Skin sections of different regions. Scar bar = 1000 um. n = 3. (C)
1110 The cell number of FB subpopulation. (D) The enriched GO terms for biological
1111 process of each FB subpopulations sorted by g-value. (E) Multiple volcano maps
1112 showing of DEGs of multiple compared groups. Representative genes are indicated.
1113 (F) Significant pathways of multi-compared groups. (G) KEGG analysis of back skin
1114  compared with other regions.

1115

1116  Figure 6. The difference in back skin cells between Chenghua and Large White pigs.
1117 (A) Skin section with HE staining (left) and dermal thickness of back skin between
1118  CH and LW pig (right). Scale bar = 1000 pm. n = 3. (B) The t-SNE plot visualization
1119  of all clusters of annotated cell types between CH and LW pigs. (C) Representative
1120 genes of each cluster of skin cells between CH and LW pigs. Color represents the
1121  gene expression and circle represents the percentage of cells. (D) The distribution of

1122 cell types between CH and LW pig skin tissues. (E) Heatmap of DEGs for SMCs,
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1123 ECs and FBs. Green represents upregulated genes, orange represents downregulated
1124 genes. (F) Multiple volcano maps of DEGs for SMCs, ECs and FBs. Representative
1125  genes are indicated. (G) KEGG analysis of DEGs for FBs. (H) GO term of DEGs for
1126 FBs. Red region is the most enriched GO terms.

1127  Figure 6—Source data 1. Source data of marker genes for each cluster in Figure 6C.
1128  Figure 6—Source data 2. Source data of the differentially expressed genes of SMCs,
1129  ECs and FBs in compared group in Figure 6E.

1130  Figure 6—figure supplement 1. Comparison of skin cells from CH and LW pigs. (A)
1131 Skin sections of CH and LW pig. Scar bar = 1000 pm. n = 3. (B) Violin plot showing
1132 the number of genes detected from CH and LW pig skin. (C) Violin plot showing the
1133 UMI count detected from CH and LW pig skin. (D) UMAP visualization of cell types
1134  in CH and LW pig skin. (E) KEGG analysis of DEGs from ECs and SMCs between
1135 CH and LW pigs.

1136

1137  Figure 7. The communication of skin cells. (A) Circle plot representing the cell
1138  communication among cell types. Circle sizes represent the number of cells and edge
1139  width represents the communication probability. Hierarchical plot showing the
1140  intercellular communication network for the COLLAGEN (B) /LAMININ (C)
1141  signaling pathways. Circle sizes represent the number of cells and edge width
1142 represents communication probability. The inferred outgoing communication patterns

1143 (D) and incoming communication patterns (E) of secreting cell of CH pig skin. (F)
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1144  The distribution of signaling pathways with their functional similarity. The
1145 COLLAGEN (G) /LAMININ (H) signaling network among cell subpopulations of
1146 SMCs, FBs and ECs. Circle sizes represent the number of cells and edge width
1147  represents communication probability. (I) Regulatory network of DEGs for SMCs,
1148 ECs and FBs of different skin regions. Orange nodes represent regulators and
1149  yellow/blue/green nodes represent the target genes of regulators.

1150  Figure 7—Source data 1. Cell communication of skin cells in Figure 7A.

1151  Figure 7—figure supplement 1. Cell communication of skin cells. (A) Circle plot
1152 representing the cell communication among cell types in the COLLAGEN/LAMININ
1153  signaling pathways. Edge width represents communication probability. (B) Relative
1154  contribution of each ligand-receptor pair of the COLLAGEN/LAMININ signaling
1155  pathway. (C) Projecting signaling pathway in a two-dimensional manifold based on
1156  their structural similarity. (D) Hierarchical plot showing the intercellular
1157  communication network of subpopulations of SMCs, ECs and FBs for
1158  COLLAGEN/LAMININ signaling pathways. Circle sizes represent the number of
1159  cells and edge width represents communication probability. (E) Circle plot
1160  representing the cell communication of the central ligand-receptor pair of the

1161  COLLAGEN/LAMININ signaling pathway in subpopulation of SMCs, ECs and FBs.
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