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Abstract 22 
Purpose: To explain how the tumor microenvironment (TME) contributes to biological and clinical 23 
heterogeneity of colorectal cancer (CRC). 24 
Methods: Using multi-omics analysis, single cell transcriptomic sequencing analysis and artificial 25 
intelligence-enabled spatial analysis of whole-slide images, we performed a comprehensive 26 
characterization of TME in colorectal cancer (CCCRC). 27 
Results: CRC samples were classified into four CCCRC subtypes with distinct TME features, 28 
namely, C1 as the proliferative subtype with low immunogenicity; C2 as the immunosuppressed 29 
subtype with the terminally exhausted immune characteristics; C3 as the immune-excluded subtype 30 
with the distinct upregulation of stromal components and a lack of T cell infiltration in tumor core; 31 
and C4 as the immunomodulatory subtype with the remarkable upregulation of anti-tumor immune 32 
components. The four CCCRC subtypes had distinct histopathological and molecular characteristics, 33 
therapeutic efficacy, and prognosis. The C1 subtype was more sensitive to chemotherapy, the C2 and 34 
C3 subtypes were more sensitive to WNT pathway inhibitor SB216763 and Hedgehog pathway 35 
inhibitor vismodegib, and the C4 subtype was suitable for ICB treatment. Finally, we established a 36 
single-sample gene classifier for identifying the CCCRC subtypes. 37 
Conclusions: Our integrative analyses ultimately established a holistic framework to thoroughly 38 
dissect the TME of CRC, and the CCCRC classification system with high biological interpretability 39 
might facilitate biomarker discoveries and clinical treatment decisions in the future. 40 
Key words: tumor microenvironment; molecular classification; multi-omics analysis; 41 
histopathology-molecular analysis; colorectal cancer 42 
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Introduction 51 
Colorectal cancer (CRC) is the third most deadly malignancy worldwide (1), and the incidence 52 

of early-onset CRC is steadily increasing (2). CRC at early and localized stages is primarily a 53 
preventable and curable disease, but up to 50% of patients with locally advanced disease eventually 54 
develop mCRC (3,4). Therefore, the clinical systematic management of CRC patients is still an 55 
unmet medical challenge (4). 56 

With the development of high-throughput technologies and bioinformatics strategies, multi-57 
omics data are used to identify and characterize the molecular subtypes of CRC, such as genomics 58 
(5), transcriptomics (6-11) and proteomics (12). The consensus molecular subtype (CMS) integrates 59 
six independent classification systems based on transcriptomics; however, it is still not explicitly 60 
used to guide clinical treatment (13). TCGA and CPTAC colorectal studies have dissected the 61 
molecular heterogeneity of CRC by integrating multi-omics data (14,15). Nevertheless, multi-omics 62 
data are complex and highly dimensional, and extracting valuable information from these data to 63 
guide clinical treatment is still a tremendous challenge (16). By reviewing the biological 64 
characteristics of the tumor, useful information can be screened for identifying molecular subtypes. 65 

The tumor cells can interact with cellular or non-cellular components, triggering dramatic 66 
molecular, cellular and physical changes in the tumor microenvironment (TME) to build a self-67 
sustainable tumor ecosystem (17,18). Simultaneously, TME profoundly affects tumor biology, 68 
responses to therapy, and clinical outcomes, which is a dynamic network mainly comprised of 69 
immune components and stromal components (19-21). Furthermore, TME can adversely affect the 70 
metabolic activities of tumor, immune and stromal cells, and form diverse metabolic phenotypes 71 
(22,23). Identifying the components of the TME and their functions, as well as the crosstalk between 72 
tumor cells and TME contributes to our understanding of the clinical heterogeneity of CRC, thereby 73 
bringing about new advances in precision medicine. Previous studies have used immune or stromal 74 
components of the TME, or a combination of both, to study the TME (24,25), but they are 75 
insufficient to completely reconstruct the heterogeneity of the TME. 76 

In this study, we considered the tumor cells and its TME as a whole and performed a 77 
comprehensive characterization of TME in colorectal cancer (CCCRC), including the functional 78 
states of the tumor cells, immune and stromal signatures, and metabolic reprogramming features. We 79 
successfully identified the four CCCRC subtypes based on 61 TME-related signatures. Integrated 80 
analyses determined that the CCCRC subtypes had distinct histopathological and molecular 81 
characteristics, therapeutic efficacy, and prognosis. 82 
 83 
Materials and Methods 84 

A total of 2195 samples were obtained from ten publicly available datasets (Supplementary 85 
Table1). The eight microarray datasets based on the same platform GPL570 (GSE13067, GSE13294, 86 
GSE14333, GSE17536, GSE33113, GSE37892, GSE38832 and GSE39582 datasets) were combined 87 
as CRC-AFFY cohort to determine molecular classification. The two RNA sequencing datasets 88 
(TCGA and CPTAC datasets) were combined as CRC-RNAseq cohort to validate molecular 89 
classification. 90 

After reviewing previously published studies, the Molecular Signatures Database (MSigDB; 91 
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp), and the Reactome pathway portal 92 
(https://reactome.org/PathwayBrowser/), we obtained 61 signatures related to tumor, immune, 93 
stromal, and metabolic reprogramming features (Supplementary Table2). Gene set variation 94 
analysis (GSVA) was performed to calculate the 61 TME-related signature scores based on gene 95 
expression profiles (GEP). We devised a novel molecular classification, called CCCRC, using 96 
consensus clustering method (26) based on the 61 TME-related signature scores in the CRC-AFFY 97 
cohort. To verify the repeatability and robustness of CCCRC, we used the “pamr.predict” function of 98 
the R package “pamr” (27) to classify the CRC samples based on the TME-related signature scores 99 
in the CRC-RNAseq cohort. 100 
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More details of histopathological examination, multi-omics analysis, scRNA-seq analysis, 101 
development of treatment strategies, and statistical analysis are provided in the supplementary 102 
material and methods. 103 
 104 
Results 105 
Establishment of the TME panel 106 

The molecular and clinical features of a tumor are characterized by the functional states of tumor 107 
cells, as well as other TME-related signatures, including immune and stromal components, and 108 
metabolic reprogramming signatures. In brief, 14 signatures (including angiogenesis, apoptosis, cell 109 
cycle, differentiation, DNA damage, DNA repair, EMT, hypoxia, inflammation, invasion, metastasis, 110 
proliferation, quiescence, and stemness) were used to describe the functional states of tumor cells. As 111 
for the immune signatures, we focused on eight categories of immune cells (T cells, natural killer 112 
cells, dendritic cells, macrophages, myeloid-derived suppressor cells, B cells, mast cells, neutrophils) 113 
and their subpopulations, as well as the other immune-related signatures. In addition to the signatures 114 
of endothelial cells, mesenchymal cells, and the extracellular matrix, we included signatures of 115 
cancer stem cells and interactions of cells with the extracellular matrix to characterize the stromal 116 
compartments. A total of 7 major metabolic pathways (Amino acid, Nucleotide, Vitamin cofactor, 117 
Carbohydrate, TCA cycle, Energy, and Lipid metabolism) were used to reveal the metabolic 118 
reprogramming of the TME. According to the above biological framework, a total of 61 TME-related 119 
signatures were collected to form the TME panel (Supplementary Table2), which ultimately 120 
established a holistic approach to thoroughly dissect the TME of CRC. 121 

We used GSVA to calculate the TME-related signature scores for each sample in each cohort. 122 
Principal coordinate analysis (PCOA) revealed that the CRC samples could be distinguished from 123 
normal samples by the TME-related signatures in the GSE39582 and TCGA cohorts (Fig. S1A). We 124 
further focused on the signatures of the functional states of tumor cells and cancer stem cells, which 125 
could classify CRC and normal samples (Fig. S1B). The P-values for intercomparisons of the 126 
euclidean distances between normal and CRC samples were all <0.05 using PERMANOVA test. 127 
Most immune signatures had higher GSVA scores in the normal samples compared with the CRC 128 
samples (Fig. S1C, D), while stromal signatures and the signatures of the functional states of tumor 129 
cells had higher GSVA scores in CRC tissues (Fig. S1C, D). As expected, amino acid, carbohydrate, 130 
and nucleotide metabolic processes were more prominent in CRC samples, which was consistent 131 
with the hallmark of infinite proliferation of tumor cells (Fig. S1C, D). 132 

Pearson’s correlation analysis of the TME-related signatures revealed three major patterns bound 133 
by positive correlations in the CRC-AFFY cohort (Fig. S1E). One pattern defining the proliferation 134 
of tumor cells consisted of cell cycle and metabolic reprograming signatures. The second was mainly 135 
comprised of immune components, such as T cells, NK cells, MDSCs and M2 macrophages. The 136 
third pattern was associated with stromal components such as angiogenesis and extracellular matrix, 137 
as well mesenchymal cells and cancer stem cells. Furthermore, we analyzed the correlation between 138 
61 TME-related signatures and the other TME-related signatures quantified by the MCP-counter 139 
algorithm in the CRC-AFFY cohort, with positive correlations of lymphocytic and stromal signatures 140 
with the signatures of the MCP-counter algorithm and highlighted the robustness of the different 141 
methods (Fig. S1F). Finally, we used the Kaplan-Meier method and Cox proportional hazard 142 
regression analysis to evaluate the prognosis of the TME-related signatures, and the stromal and 143 
tumor components significantly correlated with decreased survival (Fig. S1G, Supplementary 144 
Table3-6). Collectively, these data implied that the TME heterogeneity with distinct differences in 145 
immune, stromal, and metabolic reprogramming contributes to the development of tumors, and that 146 
the TME panel could be used to comprehensively characterize CRC. 147 
Determine and validation of CCCRC classification 148 

With the increasing application of immunotherapy and tumor vaccines, there is growing 149 
evidence highlighting the importance of the TME in tumorigenesis and development (28,29). To 150 
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reveal the TME heterogeneity of CRC using the curated TME panel, consensus clustering analysis 151 
was performed based on the TME panel scores in the CRC-AFFY cohort, and the optimal cluster 152 
number was determined to be four using the consensus matrices heat map, CDF plot, and delta area 153 
plot (Fig. S2A-C). Subsequently, the CRC samples in the CRC-AFFY cohort were classified into the 154 
four CCCRCs with distinct TME components (Fig. 1A-B, Fig. S2D). PCOA showed that the four 155 
CCCRC subtypes were distinctly separated and the P-values for intercomparisons of the euclidean 156 
distances between them were all <0.05 using PERMANOVA test (Fig. S2D). The reproducibility of 157 
the CCCRC subtypes was externally validated in the CRC-RNAseq cohort and the same four 158 
CCCRC subtypes were revealed, with similar patterns of differences in the TME components (Fig. 159 
S2E-G). PCOA also demonstrated highly similar TME compartments in the same subtype between 160 
the CRC-RNAseq and CRC-AFFY cohorts (Fig. S2D). Differences in the TME components between 161 
the CCCRC subtypes were also observed in the analysis of previously reported immune and stromal 162 
signatures obtained by the MCP-counter, CIBERSORT, and ESTIMATE algorithm (Fig. S3A-E), 163 
and 10 classical oncogenic pathway activities and 86 metabolic pathway enrichment scores 164 
calculated by GSVA (Supplementary Table7). 165 

C1 (35% of all tumors), hereafter designated as the proliferative subtype, was characterized by 166 
the relative upregulation of tumor proliferative activity, tumor purity, and minimal or complete lack 167 
of lymphocyte and stromal infiltration, which was highly similar to the immune-desert phenotype 168 
previously described (Fig. 1B-E). The MYC, cell cycle and TP53 pathways associated with tumor 169 
proliferation had the highest GSVA scores in the C1 subtype (Fig. S3E). C2 (21% of all tumors), 170 
hereafter designated as the immunosuppressed subtype, was characterized by the relative 171 
upregulation of immune and stromal components, such as T cells, M2 macrophages, and cancer-172 
associated fibroblasts (CAFs) (Fig. 1B-E, Fig. S3A-D). However, the extent of infiltration of 173 
effector cells, as well as the cytolytic score, was much lower than that of the C4 subtype (Fig. 1B-E, 174 
E). C3 (24% of all tumors), hereafter designated as the immune-excluded subtype, was characterized 175 
by the distinct upregulation of stromal components, such as CAFs, and cancer stem cells, as well as 176 
angiogenesis and hypoxia signatures (Fig. 1B-E, Fig. S3A-D). During tumor progression, TGF-beta 177 
secreted by CAFs is leveraged by tumor cells to suppress and exclude the anti-tumor immune 178 
components (30). We observed that the TGF-beta pathway, as well as WNT, NOTCH and RTK-RAS 179 
pathways, and the ratio of M2/M1 macrophages, were distinctly upregulated in C2 and C3 subtypes 180 
(Fig. 1D-E, Fig. S3E). The scores of 5/10 oncogenic pathways were the highest in the C3 subtype 181 
(Fig. S3E), suggesting that the activation of oncogenic pathways could lead to the formation of 182 
immune-excluded phenotypes which was consistent with the previous theory (31). C4 (20% of all 183 
tumors), hereafter designated as the immunomodulatory subtype, was characterized by the 184 
remarkable upregulation of anti-tumor-immune components, such as effector T cells, NK cells, and 185 
Th1 cells. The C4 subtype also had the highest cytolytic score compared with the other subtypes and 186 
lacked stromal components and the other immunosuppressed components, which indicated an 187 
immunomodulatory microenvironment (Fig. 1B-E). 188 

To further explore the immune escape mechanism of each CCCRC subtype, the differences in T 189 
cell dysfunction and T cell exclusion scores between the four CCCRC subtypes were analyzed based 190 
on the gene expression profiles, which reflected the T cell features of the global tumor. Strikingly, the 191 
C2 subtype had highest T cell dysfunction score, indicating that T cell dysfunction in the C2 subtype 192 
was at the late stage (Fig. 1F, Fig. S3F). Using GSEA with all genes ranked according to the fold 193 
change between C2 and C4 subtypes, we found that terminally exhausted CD8+ T cell and TGF-beta 194 
signaling signatures were upregulated in the C2 subtype in the CRC-AFFY (Fig. S3G) and CRC-195 
RNAseq (Fig. S3H) cohorts, which might reveal that CD8+ T cell infiltration within the tumor bed 196 
was suppressed by the stroma and was in a late state of dysfunction. The C3 subtype had the highest 197 
T cell exclusion score (Fig. 1F, Fig. S3F), demonstrating that the low T cell infiltration into the 198 
tumor bed was due to the increased abundance of CAFs, MDSCs, and M2 macrophages, thereby 199 
leading to the exclusion of T cells from the tumor bed.  200 
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Metabolic reprogramming also differed significantly among the four CCCRC subtypes (Fig. 1B, 201 
Fig. S3I). We analyzed the 86 metabolism pathways obtained from the KEGG database 202 
(Supplementary Table7) and observed that the number of upregulated metabolic pathways of the 203 
C3 subtype was the lowest. We also found that glycan metabolism was distinctly upregulated in C2 204 
and C3 subtypes, which indicated that glycan metabolism was significantly associated with the 205 
stroma. 206 
Associations between CCCRC subtypes and other molecular subtypes and clinical 207 
characteristics 208 

Previous studies have identified several molecular subtypes of CRC based on GEP. We 209 
investigated their associations with the CCCRC subtypes in the CRC-AFFY and CRC-RNAseq 210 
cohorts (Fig. 1G, Fig. S4A-F). The C1 subtype was primarily comprised of the CMS2 subtype and 211 
lower crypt-like subtype, and it contained the highest frequencies of the CCS1 subtype, B-type 212 
subtype, and TA subtype. The C2 subtype mainly consisted of the CMS4 subtype, surface crypt-like 213 
subtype, CCS3 subtype, C-type subtype, and inflammatory subtype, and included the highest 214 
frequency of the enterocyte subtype. The C3 subtype contained the highest frequencies of CMS4, 215 
CCS3, and C-type subtypes and was mainly comprised of the mesenchymal subtype and TA subtype. 216 
The C4 subtype included the highest frequencies of high microsatellite instability (MSI-H) and the 217 
CMS1 subtype, CIMP-H-like subtype, A-type subtype, and inflammatory subtype, and was mainly 218 
comprised of the CCS2 subtype. 219 

We also focused on the differences in the TME components between the CCCRC subtypes and 220 
the CMS subtypes. Compared with the CMS1 subtype, the C4 subtype showed upregulated anti-221 
tumor-immune components in the CRC-AFFY cohort and lacked immunosuppressive components, 222 
which were also found in the CRC-RNAseq cohort (Fig. S5A). CRC patients with MSI-H were 223 
sensitive to ICB treatment, with C4 and CMS1 subtypes containing approximately 47% and 75% of 224 
MSI-H, respectively. The C4 subtype with MSI-H showed upregulated scores of effector cells and 225 
cytolytic activity and downregulated scores of extracellular matrix and matrix remodeling compared 226 
with the CMS1 subtype with MSI-H (Fig. S5B). Similarly, we observed that the C4 subtype with 227 
MSI-H and the C4 subtype with MSS had higher scores of anti-tumor immune signatures and lower 228 
scores of stromal components, while the other CCCRC subtypes with MSI-H lacked anti-tumor 229 
immune signatures and had more stromal components (Fig. S5C). This analysis indicated that 230 
CCCRC subtypes could further classify the CMS subtype and MSI status to identify patients suitable 231 
for ICB therapy. 232 

The Kaplan-Meier method showed that the C4 subtype had significantly higher overall survival 233 
(OS) and progression-free survival (PFS) than C2 and C3 subtypes, with the C3 subtype showing the 234 
worst OS and PFS (Fig. 1H, Fig. S6A). Multivariate Cox proportional hazard regression analyses 235 
also demonstrated that the C4 subtype independently predicted the best OS and PFS, whereas the C3 236 
subtype independently predicted the worst OS and PFS after adjusting for TNM stage and CMS 237 
classification system (Fig. 1I, Fig. S6B). Similar results after the analysis of prognosis were 238 
observed in the CRC-RNAseq cohort (Fig. S6C-F). 239 
Differences in histological characteristics between CCCRC subtypes 240 

To further explore the biological differences between CCCRC subtypes, we investigated the 241 
histological phenotypes by evaluating the WSIs of the TCGA-CRC cohort. We compared our 242 
CCCRC system with the three-category immune classification system of solid tumors, termed 243 
“desert”, “excluded”, and “inflamed” phenotypes (32,33). Two pathologists evaluated the 244 
histological characteristics for each subtype under the microscope. The CRC samples in the TCGA-245 
CRC cohort were categorized as these three phenotypes based on the abundance of lymphocytes and 246 
their spatial location with malignant epithelial cells. According to the three-category immune 247 
classification system, the C4 subtype was enriched with an inflamed phenotype characterized by 248 
abundant lymphocytes in direct contact with malignant cells (Fig. 2A). The C2 subtype was mostly 249 
categorized as an excluded phenotype. The C1 and C3 subtypes were mainly classified into the 250 
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desert phenotype, whereas the C3 subtype was more frequently classified as an excluded phenotype 251 
than the C1 subtype. Notably, the lymphocytes of C2 subtype were more frequently intermixed with 252 
intra-tumor stromal components, whereas the lymphocytes of C3 subtype were more frequently 253 
excluded from the tumor bed and intermixed with adjacent-tumor stromal components, both of 254 
which were classified as excluded phenotype according to the three-category immune classification 255 
system.  256 

The above differences in the histological characteristics among the CCCRC subtypes were based 257 
on the semi-quantitative analysis results of two pathologists, which are subjective to a certain extent. 258 
Therefore, we used hematoxylin and eosin (HE)- stained image-based deep learning to evaluate the 259 
abundance and spatial distribution of the tumor, lymphocytes, and stroma. The performance of our 260 
CRC-multiclass model was evaluated on the TCGA-CRC dataset with the accuracy reaching 81% 261 
and the AUCs for the different tissue types ranged from 0.95 to 0.98 (Fig. S6G-H). The tissue 262 
heatmap showed our model prediction results for a CRC WSI (Fig. 2B). In the core tumor (CT) 263 
region, the C1 subtype had a highly increased abundance of the tumor; the C4 subtype had increased 264 
lymphocyte infiltration and decreased stromal content; the C2 subtype had elevated lymphocyte and 265 
stromal infiltration; and the C3 subtype had the highest abundance of stroma, but less lymphocyte 266 
infiltration was detected (Fig. 2C-E). We also observed that C4 subtype had the highest lymphocyte 267 
infiltration to tumor content ratio and lymphocyte infiltration to stromal content ratio, followed by 268 
C2 subtype and C3 subtype had the lowest (Fig. 2F, G). In the invasive margin (IM) region, different 269 
degrees of lymphocyte infiltration and stromal components were observed for each subtype (Fig. 2H, 270 
I). Importantly, the ratio of lymphocyte infiltration in the IM region of the C3 subtype to the CT 271 
region was the highest, which confirmed that the stromal components excluded lymphocytes from 272 
the CT region in the C3 subtype (Fig. 2J). AI-enabled spatial analysis of WSIs confirmed the semi-273 
quantitative results of the pathologists, with the C1 subtype belonging to the desert phenotype, C2 274 
subtype belonging to the immunosuppressive phenotype, C3 subtype belonging to the excluded 275 
phenotype, and C4 subtype belonging to the hot phenotype. Collectively, our CCCRC system further 276 
refined the three-category immune classification system of solid tumors (32,33) and conformed to 277 
the four-category immune classification system, termed “hot”, “desert”, “immune-excluded”, and 278 
“immunosuppressive” phenotypes (31). 279 
Biological characterization of CCCRC subtypes 280 

We further elucidated the differences in biological characteristics among the CCCRC subtypes 281 
using multi-omics data from the TCGA and CPTAC databases, including genomics, epigenetics, 282 
transcriptomics, and proteomics data. As for the genomic alterations, the C4 subtype had the highest 283 
TMB and neoantigen values and the lowest prevalence of chromosomal instability (CIN), including 284 
SCNA counts and fraction of the genome altered (FGA) scores, compared with the other subtypes 285 
(Fig. 3A, B). Conversely, C1 and C3 subtypes displayed the highest CIN levels, as described by 286 
SCNA counts and FGA scores, and the lowest TMB and neoantigen values (Fig. 3A, B). The C2 287 
subtypes displayed median CIN levels, TMB and neoantigen values. Among the frequently mutated 288 
genes (>5%), the mutation frequencies of APC (85.8%), TP53 (64.9%), and KRAS (46.7%) were the 289 
highest in the C1 subtype compared to the other subtypes (all P < 0.05), followed by the C3, C2 and 290 
C4 subtypes, which are closely associated with the occurrence of CRC (Fig. 3A, Supplementary 291 
Table8). The C4 subtype was significantly enriched in mutations of DNAH2 (26.0%), MYH8 292 
(26.8%), and BRAF (26.0%) genes (all P < 0.05), whereas the mutation frequency of C1, C2 and C3 293 
subtypes was low. In terms of the differences in SCNA, the C1 subtype with the highest CIN level 294 
harbored significantly more amplified chromosomal regions (20q12, 20q13.12, 20q11.21, and 295 
20q13.32) and deleted chromosomal regions (18q21.2, 18q22.1, and 18q12.3) (all P < 0.05) (Fig. 296 
3A, B, Supplementary Table9). The C3 subtype was significantly enriched in the amplified 297 
chromosomal regions of 13q33.3, 13q22.1, and 13q12.2 and the deleted chromosomal regions of 298 
8p21.2 and 8p23.2 (all, P < 0.05). No SCNA was significantly enriched in C2 and C4 subtypes. The 299 
single alteration events could not adequately delineate the CCCRC subtypes, we further computed 300 
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the fraction of the altered samples per oncogenic pathway in each CCCRC subtype. The C4 subtype 301 
had the highest frequency of mutations in the cell cycle, HIPPO, MYC, NOTCH, PI3K, TGFB and 302 
RTK-RAS pathways (all P < 0.05) (Fig. 3C, Supplementary Table10). Notably, the C1 subtype had 303 
the highest frequency of mutations in the WNT pathway (P = 0.019). The frequency of mutations in 304 
the TP53 pathway was not significantly different between CCCRC subtypes. The 10 oncogenic 305 
pathways had higher frequencies of amplification (all P < 0.05), and 9 oncogenic pathways (except 306 
the NRF2 pathway) had higher frequencies of deletion (all P < 0.05) in C1 and C3 subtypes 307 
compared with C2 and C4 subtypes. Although none of genomic alterations was limited to or specific 308 
to a particular subtype, the apparent enrichment of certain alteration events within the CCCRC 309 
subtypes might highlight the TME heterogeneity and the genotype-CCCRC correlations of CRC. 310 

Subsequently, we found that the different CCCRC subtypes displayed highly diverse epigenetic, 311 
transcriptional, and proteomic profiles. As expected, the analysis of differentially methylated genes 312 
(DMGs) between CRC and normal tissues demonstrated that the C4 subtype had the most DMGs (n 313 
= 145) cared to the C1 subtype (n = 109), C2 subtype (n = 12), and C3 subtype (n = 23), and the C4 314 
subtype exhibited extensive hypermethylation with the highest frequency of the CpG island 315 
methylator phenotype (CIMP) compared with the other subtypes (Fig. 3D). We further analyzed the 316 
regulon activity of critical chromatin modifiers and transcription factors in CRC, which could better 317 
evaluate their combinatorial biological effects. The regulon activity of the chromatin modifiers of the 318 
C1 subtype was generally higher than that of the other subtypes (Fig. 3E). The differences in the 319 
regulon activity of the chromatin modifiers might indicate that epigenetically driven transcriptional 320 
networks contributed to the remodeling of the TME, especially in the C1 subtype. Meanwhile, we 321 
observed that each subtype had different transcription factor activities (Fig. 3E). C1-specific 322 
upregulated genes (FDR < 0.001, top 1,000 by log2FC) were enriched for the pathways associated 323 
with tumor proliferation and metabolism (Fig. S7A). C2-specific upregulated genes were enriched 324 
for the pathways associated with immune function, stroma, and neurons (Fig. S7A). C3-specific 325 
upregulated genes were enriched for the pathways associated with stroma and neurons (Fig. S7A). 326 
Both C2 and C3 subtypes were enriched in neuron-associated pathways, suggesting that neuronal 327 
development might be involved in the formation of ECM (Fig. S7A). C4-specific upregulated genes 328 
were enriched for the pathways associated with anti-tumor immune function (Fig. S7A). The 329 
CCCRC-specific downregulated methylation genes (FDR < 0.001, top 1,000 by FDR) and the 330 
CCCRC-specific upregulated proteins (P-value < 0.05) were also enriched for analogous biological 331 
functional categories (Fig. S7B, C). Gene expression differences among the CCCRC subtypes were 332 
validated in the CRC-RNAseq cohort (Fig. S7D-G). DMGs, differentially expressed genes (DEGs), 333 
and differentially expressed proteins (DEPs) between each subtype were enriched for similar 334 
biological functional categories. Indeed, DEGs and DEPs upregulated in the C4 subtype compared 335 
with the C3 subtype were significantly enriched for immune-related pathways, whereas DEGs and 336 
DEPs upregulated in the C3 subtype compared with the C4 subtype were highly enriched for TGF 337 
beta signaling, EMT and angiogenesis (Fig. 3F, G). Similarly, genes with increased DNA 338 
methylation in the C4 subtype compared with the C3 subtype were enriched for EMT and ECM 339 
regulation, whereas genes with decreased DNA methylation in the C4 subtype were significantly 340 
enriched for immune-related pathways (Fig. 3H). Collectively, the similar differential biological 341 
patterns of DNA methylation, gene expression, and proteins among the CCCRC subtypes highlighted 342 
their role in influencing the TME of CRC. 343 
Discovery of a nongenetic tumor evolution pattern 344 

Based on the theory of linear tumor evolution, we sought to investigate whether there is a 345 
dominant evolutionary pattern among the different CCCRC subtypes. We integrated DNA 346 
methylation, as well as transcriptomic and proteomic profiling, to analyze the differences between 347 
each pair of CCCRC subtypes. Strikingly, the evolutionary patterns from C1 to C4, C2, and C3 348 
subtypes had the same sign in log2 (fold changes) and were dominate: all positive for increasing 349 
DNA methylation (FDR < 0.05) /gene expression (FDR < 0.05)/protein level (P-value < 0.05) or all 350 
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negative for decreasing DNA methylation/gene expression/protein level (Fig. 4A-C). Furthermore, 351 
we intersected all the positives for increasing gene expression from C1 to C4, C2, and C3 subtypes in 352 
the CRC-AFFY and CRC-RNAseq cohorts and obtained 20 CCCRC genes (Fig. 4D, 353 
Supplementary Table11), which were associated with TGF-beta signaling and neural development. 354 
High expression of all 20 genes was significantly associated with poor PFS prognosis. To quantify 355 
the evolutionary pattern of individual CRC patients, we performed GSVA to generate CCCRC 356 
scores. To better evaluate the molecular features of the CCCRC scores, we also analyzed the 357 
correlation between the CCCRC scores and the TME panels. As expected, the CCCRC scores were 358 
strongly associated with the immunosuppressive signatures, including M2 macrophages, MDSCs, 359 
Treg cells, mesenchymal cells, EMT, angiogenesis, and hypoxia (Fig. S7H). The CCCRC score was 360 
the highest in the C3 subtype than in the other subtypes (Fig. 4E), and the high CCCRC score was 361 
significantly associated with shorter OS (Fig. 4F). Overall, our analysis implied that the four 362 
CCCRC subtypes not only had their own unique biological characteristics, but also had a dominant 363 
evolutionary pattern driven by epigenetic, transcriptional, and proteomic reprogramming. 364 
Differences in T cell function between CCCRC subtypes 365 

We obtained the gene expression data for 7766 T cells from 12 patients with CRC, including 366 
four patients with the C1 subtype, one patient with the C2 subtype, two patients with the C3 subtype, 367 
and four patients with the C4 subtype (Supplementary Table12). A total of five CD4+ and four 368 
CD8+ T cell clusters were identified in tumor and normal tissues, including CD8+ intraepithelial 369 
lymphocytes (CD8+ IELs), effector memory CD8+ T cells (CD8+ Tem), recently activated effector 370 
memory or effector CD8+ T cells (CD8+ Temra/Teff), exhausted CD8+ T cells (CD8+ Tex), central 371 
memory CD4+ T cells (CD4+ Tcm) and naive CD4+ T cells (CD4+ Tn), tissue-resident memory 372 
CD4+ T (CD4+ Trm) cells, TH1-like cells, Treg cells, and T cycling cells (Fig. S8A, B). The 373 
characteristics of the T-cell clusters are summarized in Supplementary Table13. Fig. 5A and B 374 
show the distribution of the 10 T cell clusters among each CCCRC subtype. The bulk RNAseq 375 
analyses demonstrated that C2 and C4 subtypes showed relative upregulation of immune 376 
components. Notably, we found that the C4 subtype was enriched in CD8+ Tem and CD8+ 377 
Temra/Teff cells, but lacked CD8+ Tex cells compared with the C2 subtype (Fig. 5C, D). Within the 378 
subset of CD8+ Tex cells, we distinguished two smaller subsets according to their gene expression 379 
markers, KLRG1+ CD8+ Tex cells and HSPA1B+ CD8+ Tex cells (Fig. S8C, D). KLRG1+ CD8+ 380 
Tex cells were more enriched in C2 and C3 subtypes than the C4 subtype (Fig. 5E), which resemble 381 
terminally exhausted T cells, and they were associated with non-response to ICB therapy (34). 382 
Moreover, the higher ratio of KLRG1-to-CD8A expression, the worse the OS of patients in CRC-383 
AFFY and CRC-RNAseq cohorts (Fig. 5F, G). Meanwhile, we re-clustered the Treg cells and 384 
identified four Treg cell subsets, namely, TXNIP+ Treg cells, TNFRSF4+ Treg cells, HSPA1A+ Treg 385 
cells, and IFIT1+ Treg cells (Fig. S8E-H). We found that TNFRSF4+ Treg cells were significantly 386 
more enriched in C2 and C3 subtypes than the C4 subtype (Fig. 5H), which might indicate that 387 
TNFRSF4+ Treg cells were closely related to the formation of the tumor stroma. The higher ratio of 388 
TNFRSF4-to-FOXP3 expression, the worse the OS of patients in CRC-AFFY and CRC-RNAseq 389 
cohorts (Fig. 5I, J). Equally important, patients with a high ratio of KLRG1-to-CD8A expression or 390 
a high ratio of TNFRSF4-to-FOXP3 expression who received ICB therapy had a shorter OS and PFS 391 
than those with a low ratio of KLRG1-to-CD8A expression or a low ratio of TNFRSF4-to-FOXP3 392 
expression in Gide, Hugo, Jung, and IMvigor210 datasets (Fig. S9A-H). We also found that the 393 
expression of KLRG1 and TNFRSF4 was higher in CD8+ T cells and Treg cells, respectively, in 394 
tumor tissues than in adjacent tissues (Fig. 5K, L). Overall, we used scRNAseq data to analyze the 395 
differences in T cell function among the different CCCRC subtypes, and the C2 subtype did show 396 
more immunosuppression than the C4 subtype, which was consistent with the bulk RNAseq 397 
analyses. 398 
Significance of CCCRC in guiding clinical treatment of CRC 399 

The 5-fluorouracil (5-FU)-based chemotherapy, anti-VEGF (bevacizumab), and anti-EGFR 400 
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(cetuximab, panitumumab) therapies are the first-line treatment options for CRC. We further 401 
explored whether the different CCCRC subtypes could predict therapeutic efficacy. In the CRC-402 
AFFY cohort, 564 patients with stage II and III CRC had chemotherapy-related clinical information, 403 
including 323 who were not treated by chemotherapy and 241 who were treated by chemotherapy. 404 
Furthermore, 155 stage II and III CRC patients with or without chemotherapy in the GSE103479 405 
dataset were also included in our study. We found that C1 patients with stage II and III CRC 406 
receiving chemotherapy had a better OS than those who did not and were more suitable for 5-FU-407 
based chemotherapy in the CRC-AFFY cohort and the GSE103479 dataset (Fig. 6A, B). 408 

Furthermore, 162 mCRC patients were treated with chemotherapy or a combination of 409 
chemotherapy and bevacizumab in the GSE104645 dataset. The response rate (RR) after 410 
chemotherapy (including partial response [PR] and complete response [CR]) of C1 and C4 subtypes 411 
tended to be higher than that of C2 and C3 subtypes (Fig. S10A), whereas the RR of the C2 subtype 412 
treated with a combination of chemotherapy and bevacizumab tended to be higher than that of the 413 
other subtypes (Fig. S10B, C). In addition, the RR tended to be higher in the C2 subtype treated with 414 
(5-FU)-based chemotherapy and bevacizumab than in those treated with chemotherapy alone (Fig. 415 
S10D). 416 

The GSE104645 dataset also contained 111 mCRC patients without the RAS mutation who were 417 
treated with anti-EGFR antibody. The disease control rates (DCR) after anti-EGFR therapy 418 
(including partial response, complete response, and stable disease) were 75% for C1, 66% for C2, 419 
51% for C3, and 65% for C4, respectively (P = 0.16) (Fig. S10E). The DCR of the C1 subtype with 420 
anti-EGFR therapy tended to be higher than that of the other subtypes (P = 0.08) (Fig. S10F). 421 
Notably, PFS of the C1 subtype with anti-EGFR therapy tended to be better than that of the other 422 
subtypes (log-rank P-value = 0.067) and OS of the C1 subtype was significantly better than that of 423 
the other subtypes (log-rank P-value = 0.0091) (Fig. 6C, D). The above results suggested that the C1 424 
subtype may benefit from chemotherapy and anti-EGFR treatment, whereas the C2 subtype may 425 
benefit from a combination of (5-FU)-based chemotherapy and bevacizumab, but there was no 426 
evidence that the C3 subtype is suitable for these treatments. 427 

To further explore the treatment strategies of the CCCRC subtypes, we trained a pre-clinical 428 
model based on a filtered gene set comprised of 81 CCCRC subtype-specific and cancer cell-429 
intrinsic gene markers (Supplementary Table14). The pre-clinical model was constructed using the 430 
xgboost algorithm with the highest accuracy, AUC and F1 scores (Fig. S11A-C). The 71 human CRC 431 
cell lines were classified into four CCCRC subtypes (Supplementary Table15). The AUCs of the 432 
drug response between CCCRC subtypes were compared (Fig. 6E). Notably, the AUCs of the 433 
bromodomain and extra-terminal domain inhibitor (BET) JQ1 was significantly lower in C1 subtype. 434 
The AUCs of G9a-specific inhibitor UNC0638 were significantly lower in the C3 and C1 subtypes. 435 
The AUCs of WNT pathway inhibitor SB216763 and Hedgehog pathway inhibitor vismodegib were 436 
significantly lower in the C3 and C2 subtypes. 437 

Immune checkpoint blockade (ICB) therapy has recently emerged as a highly promising 438 
therapeutic strategy for various malignancies, but it lacks effective markers to identify suitable 439 
patients. We collected multiple ICB therapy-associated datasets to evaluate whether the CCCRC 440 
classification system could be used as a tool to predict ICB therapy efficacy. GSVA of the TME-441 
related signatures and the Z-score normalization of signature scores could reduce the tissue-type-442 
specific effects. In two independent melanoma datasets (Gide and Hugo datasets, n = 68) treated with 443 
anti-PD1 therapy, patients were classified into the four CCCRC subtypes. As expected, the RR to 444 
anti-PD1 therapy in the C4 subtype was 81% in contrast to only 21% in the C3 subtype (Fig. 6F), 445 
with prolonged PFS and OS in both subtypes (Fig. 6G, H). Similar findings were observed in the 446 
cohorts of anti-PD1/PDL1 treated patients with urothelial carcinoma (IMvigor210 dataset, n = 348) 447 
and lung cancer (Jung dataset, n = 27). RR was significantly higher in patients with the C4 subtype 448 
(40%) compared with the other subtypes (C1 with 17%, C2 with 18%, C3 with 4%) in the 449 
IMvigor210 dataset (Fig. 6I). The C1 subtype in the IMvigor210 and Jung datasets had the longest 450 
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OS, while patients with the C3 subtype had the worst OS (Fig. 6J, K). 451 
Single-sample gene classifier construction 452 

For each subtype, we selected the genes with FDR <0.05 and logFC >0 and ordered them 453 
according to fold-change to generate a subtype-specific gene set (n = 9,256 mRNA genes). After 454 
screening by the Boruta importance test, a total of 80 unique genes were used to construct the final 455 
classifier in the training set and the validation set (Supplementary Table16). As shown in Fig. 456 
S11D-F, the performance of the xgboost algorithm was the best with the highest accuracy, AUC and 457 
F1 scores. The gene classifier based on the xgboost algorithm is publicly available at 458 
https://github.com/XiangkunWu/CCCRC, and the CCCRC subtype information of a single patient 459 
can be obtained by directly inputting the gene expression matrix of the patient. The single-sample 460 
gene classifier could facilitate the discovery of new biomarkers and the personalized treatment of 461 
clinical patients with CRC. 462 
 463 
Discussion 464 

The key role of the TME in dynamically regulating tumor progression and affecting treatment 465 
outcomes has been widely recognized, and treatment strategies targeting the TME have become a 466 
promising approach for cancer therapy (28,35-37). However, there are few comprehensive analyses 467 
that consider the tumor cells and the TME as a whole. The comprehensive dissection of the crosstalk 468 
between tumor cells and TME may reveal new tumor biology concepts and identify therapeutic 469 
targets, and ultimately achieve precise medical treatment (20,28). Thus, we collected the molecular 470 
features of the tumor cells and TME to reconstruct the whole tumor composition and performed 471 
integrated analyses to understand the TME. The four CCCRC subtypes had distinct molecular and 472 
histopathological characteristics, therapeutic efficacy, and prognosis (Fig. 7). We identified a 473 
nongenetic evolutionary pattern from C1, C4, C2, and C3 was associated with an evolution from a 474 
cold (C1) to a hot (C4) and eventually suppressive (C2) and excluded (C3) microenvironment (Fig. 475 
7). 476 

In this study, we identified four subtypes with distinct TME features through unsupervised 477 
clustering analysis of approximately 2,000 CRC patients. C1 and C4 subtypes are typical desert and 478 
inflamed tumors, respectively, while C2 and C3 subtypes were difficult to classify into one of the 479 
classical immunophenotypes of the three-category immune classification system (“desert”, 480 
“excluded”, and “inflamed” phenotypes) (32,33) based on TME features due to the unclear 481 
distribution of stromal components and lymphocytes. Our pathologists evaluated the histological 482 
characteristics for each subtype under the microscope and observed that the C2 subtype was mainly 483 
categorized as an excluded phenotype and the C3 subtype was mainly classified as a desert and an 484 
excluded phenotype. However, the WSIs showed that lymphocytes in the C2 subtype were more 485 
frequently intermixed with the stroma within but not adjacent to the main tumor mass, and 486 
lymphocytes in the C3 subtype were more frequently excluded from the tumor mass but not 487 
intermixed with lymphocytes within the main tumor mass, both of which were classified as the 488 
excluded phenotype. Notably, we used AI-enabled spatial analysis of WSIs to confirm the semi-489 
quantitative results of the pathologist, that is, the C2 subtype had increased lymphocyte and stromal 490 
infiltration in CT and IM regions and the C3 subtype had the highest abundance of stroma and less 491 
lymphocyte infiltration in the CT region, while lymphocyte infiltration and stromal components were 492 
observed in the IM region. We also found that the C2 subtype had the highest T cell dysfunction 493 
score and the C3 subtype had the highest T cell exclusion score. GSEA demonstrated that the 494 
terminally exhausted CD8+ T cell signature was upregulated in the C2 subtype compared with the 495 
C4 subtype. scRNA-seq analysis showed that KLRG1+ CD8+ T cells were significantly more 496 
enriched in C2 and C3 subtypes than the C4 subtype. KLRG1+ CD8+ T cells were associated with 497 
nonresponse to ICB therapy, which were more terminally differentiated than KLRG1- CD8+ T cells 498 
and had lower proliferative capacity (34). KLRG1 is a marker of terminal differentiation of CD8+T 499 
cells (34), and the inhibitory receptor of ILC1s (group 1 innate lymphoid cells), ILC2s, and NK cells 500 
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(38). ILC1s in tumors express high levels of the KLRG1 gene and pro-angiogenic activity and may 501 
even promote tumor progression in TGF-beta-rich tumors (38). Therefore, we defined C2 and C3 502 
subtypes as immunosuppressed and immune-excluded, respectively. Our CCCRC classification 503 
system refined the three-category immune classification system (32,33). Moreover, we defined for 504 
the first time the four-category immune classification system based on multi-omics analysis and 505 
histological characteristics (“hot”, “immunosuppressed”, “excluded”, and “cold” phenotypes) (31). 506 

Interestingly, we observed a dominant evolution pattern among the CCCRC subtypes based on 507 
the theory of linear tumor evolution (39), that is, the evolutionary pattern from C1 (proliferative 508 
subtype) to C4 (immunomodulatory subtype), C2 (immunosuppressed subtype), and C3 (immune-509 
excluded subtype) subtypes. We hypothesized that during the development of CRC, immune 510 
infiltration gradually increased with the increase of genomic alterations and tumor immunogenicity, 511 
while the stroma and nerves also gradually increased. The stroma and nerves play important roles in 512 
the progression of CRC, gradually causing lymphocytes to become exhausted and excluding them 513 
from the tumor bed. Tavernari et al. demonstrated that progression from lepidic to solid histology of 514 
lung adenocarcinoma was associated with a transition from a cold (lepidic) to a hot (papillary and 515 
especially acinar) and eventually suppressive and excluded (solid) microenvironment (40). Their 516 
proposed nongenetic tumor evolution pattern is consistent with our findings in CRC. What’s more, 517 
we have identified a gene list that promotes this evolutionary pattern and interfering with these genes 518 
may prevent tumor progression. We proposed CCCRC score based on the gene list to quantify the 519 
evolutionary pattern of individual CRC patients, which were independent prognosis predictors and 520 
associated with immunosuppressive components. Additional experimental evidence is needed to 521 
verify the bold speculation of this evolutionary pattern, and a large collective effort is needed to 522 
arrive at a consensus. 523 

The CCCRC subtypes significantly correlated with previous molecular subtypes, including CMS 524 
subtypes (13), Budinska subtypes (6), De Sousa subtypes (7), Roepman subtypes (9), and 525 
Sadanandam subtypes (10), as well as prognosis. The CMS classification system integrates six 526 
independent classification systems utilizing a network-based approach (13), which is considered as 527 
the most robust classification system that is used to predict prognoses and to guide ICB therapy, 528 
chemotherapy, and anti-EGFR therapy as well as to screen new potential targeted drugs (41-46). 529 
However, patients with the CMS1 subtype, characterized by immune infiltration and activation, did 530 
not have the best prognoses compared with the other CMS subtypes, while patients with the CMS2 531 
subtype, characterized by low immune and inflammatory signatures, had the best prognoses (13,47). 532 
Our CCCRC subtypes significantly correlated with OS and PFS of patients and had higher 533 
correlation rates compared with the CMS classification system. We found that the CMS1 subtype 534 
showed fewer anti-tumor immune components and more stromal components and other 535 
immunosuppressive components compared to the C4 subtype. Meanwhile, the C4 subtype with MSI-536 
H had higher immune infiltration compared with the CMS4 subtype with MSI-H. Thus, we boldly 537 
speculated that our CCCRC classification system was more suitable than the CMS classification 538 
system for predicting the prognosis and efficacy of ICB therapy. 539 

The CCCRC classification system might facilitate clinical treatment decisions and new 540 
therapeutic target discoveries. To explore the potential treatment strategies for the CCCRC subtypes, 541 
we generated a gene list comprised of subtype-specific, cancer cell-intrinsic genes according to the 542 
study of Peter et al. to develop a pre-clinical model (41), which could be used to analyze the drug 543 
response data from cell lines, patient-derived xenografts, and tumor organoids. We observed that the 544 
C1 and C3 subtypes had higher CIN level than C2 and C4 subtypes. And most of the critical 545 
chromatin modifications had higher regulon activity in the C1 subtype. It has been well established 546 
that CIN and epigenetic silencing leads to decreased tumor intrinsic immunogenicity (48-50). Our 547 
analysis also demonstrated that the C1 subtype was more sensitive to the BET inhibitor JQ1. Zhang 548 
et al. found that JQ1 induces anti-tumor immunity in head and neck squamous cell carcinoma by 549 
enhancing MHC class I expression and can improve the response rate to ICB treatment (51). C1 and 550 
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C3 subtypes were suitable for G9a-specific inhibitor UNC0638. Zhang et al. also found that BRD4 551 
inhibits the MHC class I expression by recruiting G9a (51). The C2 and C3 subtypes were 552 
significantly enriched in the WNT pathway, and our analysis also indicated that these two subtypes 553 
were more sensitive to the WNT pathway inhibitor SB216763. Meanwhile, we identified a large 554 
number of mutant genes significantly enriched in the C4 subtype, which mutated to cause substantial 555 
immune infiltration and could be candidate genes for mRNA vaccine development. The 556 
RNA‑mediated immunotherapy regulating the TME is known as the next era of cancer treatment 557 
(36). The CCCRC subtype-specific genes were also identified in our study to screen out the new 558 
therapeutic targets for the TME.  559 

To conclude, our study proposed the CCCRC classification system and performed integrated 560 
data analysis to clearly characterize the molecular features and histological characteristics of each 561 
CCCRC subtype, develop the corresponding personalized treatments for patients with the different 562 
CCCRC subtypes, and construct the simple gene classifier to facilitate clinical application. We 563 
believe that our study will serve as a research paradigm for dissecting the TME and for transitioning 564 
from molecular classification to clinical translation, thereby accelerating the understanding of the 565 
TME in CRC and contributing to the development of therapeutic targets against TME. 566 
 567 
Supplementary material and methods 568 
Acquisition and processing of gene expression profiles (GEP) for the investigation of CCCRC 569 

A total of 2195 samples were obtained from ten publicly available datasets (Supplementary Table1). The 570 
eight publicly available raw microarray datasets sequenced by the Affymetrix gene chip were downloaded from the 571 
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) and renormalized by the robust multi-572 
array average (RMA) method, including GSE13067, GSE13294, GSE14333, GSE17536, GSE33113, 573 
GSE37892, GSE38832 and GSE39582. Samples that overlapped in GSE14333 and GSE17536 datasets were 574 
excluded from the GSE14333 dataset. Level-3 TCGA and CPTAC RNA sequencing (RNAseq) datasets were 575 
obtained from the TCGA data portal (March 2022) (https://portal.gdc.cancer.gov/), and the count data were 576 
normalized by the “voom” method. Ensembl IDs were annotated into gene symbols using GENCODE (v36). If the 577 
gene symbol had multiple probes or duplicates, the median value was calculated as its relative GEP. Before 578 
merging the microarray datasets or RNAseq datasets into the CRC-AFFY or CRC-RNAseq cohort, the batch effects 579 
were examined using principal component analysis (PCA) and corrected using the “Combat” function. The 580 
selection criteria of these patients included: (1) CRC primary tissue samples; (2) coming from the same sequencing 581 
platform; (3) surgically resected specimens. The exclusion criteria included: (1) CRC metastatic tissue; (2) 582 
puncture tissues. Detailed information on the sample size and the corresponding clinicopathological data of the 583 
CRC-AFFY and CRC-RNAseq cohorts are summarized in Supplementary Table1. 584 
Calculation of the TME-related signature scores 585 

After reviewing previously published studies, the Molecular Signatures Database (MSigDB; 586 
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp), and the Reactome pathway portal 587 
(https://reactome.org/PathwayBrowser/), we identified relevant biomarker genes for tumor, immune, stromal, 588 
and metabolic reprogramming signatures. The 4,525 mRNAs from each of the 61 TME-related signatures are listed 589 
in Supplementary Table2, as well as the source of each signature. Gene set variation analysis (GSVA) with default 590 
parameters using R package “GSVA” was performed to calculate the signature score of each TME-related signature 591 
for each sample of each cohort separately based on the relative GEP (52). 592 
Normal tissue versus tumor tissue analysis 593 

To assess the distribution of normal and tumor samples in the GSE39582 (n = 19 normal) and TCGA (n = 41 594 
normal) datasets, the gene expression data of each dataset were re-normalized, including the normal samples 595 
(consistent with the description of data normalization above). Principal coordinate analysis (PCOA) based on 596 
euclidean distance was used to analyze the distribution between normal and CRC samples (53). Permutational 597 
multivariate analysis of variance (PERMANOVA) test was used to evaluate whether the difference in euclidean 598 
distances between the normal and CRC samples was statistically significant (obtained using R package “vegan” 599 
(54)). 600 
Comprehensive characterization of CRC 601 

The “ConsensusClusterPlus” function of the R package “ConsensusClusterPlus” (26) was applied to identify 602 
the optimal number of CCCRC based on the TME-related signatures in the CRC-AFFY cohort (partitioning around 603 
medoids (pam) clustering; “Pearson” distance; 1,000 iterations; from 2−7 clusters) . The stability of the clusters 604 
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was evaluated using the consensus matrix depicted as a dendrogram atop the heat map, the empirical cumulative 605 
distribution function (CDF) plot, and the delta area plot. To verify the repeatability and robustness of CCCRC, we 606 
used the “pamr.predict” function of the R package “pamr” (27) to classify the CRC samples based on the TME-607 
related signature scores in the CRC-RNAseq cohort (seed = 11, threshold = 0.566). The TME-related signature 608 
scores were normalized by the Z-scores before performing “pamr.predict” analysis. PCOA based on euclidean 609 
distance was used to analyze the distribution of the CCCRC subtypes. 610 
Estimation of the TME cell abundance with other methods 611 

The cell abundance of each sample was estimated based on the GEP using the microenvironment cell 612 
populations-counter (MCP-counter) algorithm (55) and the CIBERSORT (56) algorithm, both of which have been 613 
validated using the GEP of the corresponding cell populations and the degree of cellular infiltration estimated by 614 
immunohistochemistry. The MCP-counter algorithm estimated the cell abundance of 9 immune and stromal cell 615 
populations. The CIBERSORT algorithm, which applies the LM22 matrix, estimated the cell fraction of 22 immune 616 
cell populations. The ESTIMATE algorithm with default parameters was utilized to estimate the degree of 617 
infiltration of the total immune cells and stromal cells in the TME of each sample, as well as the tumor purity (57). 618 
Calculation of the other biological pathway enrichment scores 619 

Human metabolism-related pathways were obtained from the Kyoto Encyclopedia of Genes and Genomes 620 
(KEGG) database (https://www.genome.jp/kegg/). The 1,660 genes assigned to 86 human metabolism-related 621 
pathways are listed in Supplementary Table17. 10 oncogenic signatures containing 331 genes and the terminally 622 
exhausted T cell signature were retrieved from a previously published study (58,59) (Supplementary Table17). 623 
GSVA was performed to calculate the enrichment score of each signature for each sample of each cohort separately 624 
based on the relative GEP. To identify the potential differences in the biological functions of genes among CCCRC 625 
subtypes, gene set enrichment analysis (GSEA) was performed based on the gene signatures using R package 626 
“clusterprofiler” (60). 627 
Histopathological examination of the TCGA-CRC samples 628 

A total of 616 TCGA CRC diagnostic hematoxylin and eosin (HE)- stained whole-slide images (WSIs) were 629 
downloaded from the TCGA data portal (March 2022) (https://portal.gdc.cancer.gov/), and the WSIs were 630 
examined blindly by two experienced pathologists. A total of 254 WSIs were included after removing the WSIs 631 
with poor quality and without views of the invasive margin (Supplementary Table18). According to the semi-632 
quantitative pathological assessment of lymphocytes and their spatial location with malignant epithelial cells, the 633 
pathologist classified CRC into three immunophenotypes: “desert”, “excluded”, and “inflamed”, as previously 634 
described (32,33). The inflamed phenotype was characterized by abundant lymphocytes in direct contact with 635 
malignant cells, the excluded phenotype was characterized by lymphocytes merely present in the stroma within or 636 
adjacent to the main tumor mass, and the desert phenotype was characterized by the lack of lymphocytes and 637 
stroma. We performed artificial intelligence (AI)-enabled spatial analysis of WSIs and developed a CRC-tissue 638 
classifier to identify eight tissue types: tumor, stroma, lymphocyte, normal colon mucosa, debris, adipose, mucin, 639 
and muscle, and quantified the abundances of the tumor, stroma, and lymphocytes in the core tumor (CT) region 640 
and the invasive margin (IM) region, respectively. 641 

Our deep learning model (CRC-tissue classifier) consisted of two sequential parts: a muscle/non-muscle 642 
classifier that could distinguish each muscle patch in hematoxylin and eosin (H&E)-stained WSIs, and a seven-643 
class tissue classifier that could classify seven tissue types: tumor, stroma, lymphocytes, normal colon mucosa, 644 
debris, adipose, and mucin. To develop the CRC-tissue classifier, we randomly selected 68,506 patches to train the 645 
muscle/non-muscle classifier and randomly selected 54,597 patches to train the seven-class tissue classifier, after 646 
combining the zenodo NCT-CRC-HE-100K dataset and the NCT-CRC-HE-100K dataset 647 
(https://zenodo.org/record/1214456#.YyRJGWB6RmM). Next, we evaluated the model on 4288 patches from 9 648 
patients from the TCGA CRC datasets. The tissue regions were manually annotated by two experienced 649 
pathologists. The WSI tissue type prediction pipeline was as follows. First, the background was removed by the 650 
preprocessing steps. Second, the WSIs were segmented into non-overlapping image patches at a resolution of 0.5 651 
m/pixel (20 magnification). It is worth noting that if the WSI consisted of 40 magnifications, it was down-652 
sampled to 20 magnifications. Next, the image patches were fed into the CRC-tissue classifier. If an image patch 653 
was determined to be non-muscle by the muscle/non-muscle classifier, it was fed into the multi-tissue classifier to 654 
predict its tissue class. We selected ResNet50 as the basic model architecture, adding one added full connection 655 
layer with ReLU as the activation function and 0.4 dropout: ReLU(x) = max (0, x), where x is the input of the 656 
ReLU function. Cross Entropy was selected as the loss function. During this experiment, we tested three model 657 
architectures, including ResNet50, vgg16, and Inception V3 for the multi-tissue classifier. According to the 658 
accuracy of seven tissues (tumor, stroma, lymphocytes, normal colon mucosa, debris, adipose, and mucin) in the 659 
CRC-7k dataset, the performance of ResNet50 was the best, which was the reason we selected ResNet50 as the 660 
basic model architecture. 661 
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After recognizing the CRC tissue types by our deep learning model automatically, we quantified the 662 
abundances of the tumor, lymphocytes, and stroma in the core tumor (CT) region and the invasive margin (IM) 663 
region. The quantification pipeline consisted of four steps. First, we used the open source software QuPath-0.3.2 664 
(https://qupath.github.io/) to delineate the CT and IM region. The IM region was defined as 500mm outside the CT 665 
region (61). The CT and IM regions were manually annotated by two experienced pathologists to reduce bias.  666 
Second, the abundances of the tumor, lymphocytes, and stroma in each WSI were quantified with an area ratio of 667 
their area. Finally, we calculated the mean abundances of the tumor, lymphocytes, and stroma in each WSI. A total 668 
of 254 TCGA-CRC WSIs were quantified. 669 
Acquisition of signatures associated with the immune checkpoint blockade (ICB) therapy response 670 

The Tumor Immune Dysfunction and Exclusion (TIDE) score was calculated using GEP, and it was used to 671 
evaluate the degree of T cell dysfunction and T cell exclusion (62). The higher the score, the later the dysfunction 672 
stage of T cells or the higher the degree of T cell exclusion. The gene expression average of all samples in each 673 
cohort was used as the normalized control and the normalized gene expression matrix was uploaded to the TIDE 674 
website (http://tide.dfci.harvard.edu/). 675 
Acquisition and processing of CRC multi-omics data 676 

Masked somatic mutation data (n = 571 samples), masked copy number segment data (n = 609 samples) and 677 
DNA methylation beta-values (Illumina human methylation 450) (45 normal samples and 390 tumor samples) were 678 
download from the TCGA data portal (March 2022) (https://portal.gdc.cancer.gov/). The liquid chromatography-679 
tandem mass spectrometry (LC-MS/MS)-based proteomic data for the TCGA CRC samples (n = 88 samples) were 680 
obtained from a previously published study (63). The R package “maftools 2.6.05” with default parameters was 681 
used to analyze the somatic mutation data. Synonymous mutations were regarded as wild-type, and genes with 682 
mutation rates <5% were excluded. Nonsynonymous mutations were used to calculate tumor mutation burden 683 
(TMB). Somatic copy number alterations (SCNA) defined by the GISTIC2.0 module on the GenePattern website 684 
(https://www.genepattern.org/), including arm-level gain (1), and high amplification (2), diploid/normal (0), 685 
arm-level deletion (-1), and deep deletion (-2). The CINmetrics algorithm was used to calculate chromosomal 686 
instability signature (CIN), including SCNA count and fraction of the genome altered (FGA), which was proposed 687 
by Vishaloza et al. (https://rdrr.io/github/lasseignelab/CINmetrics/) based on previously published studies 688 
(64-66). If somatic mutation events or SCNAs occurred in one or more genes in the oncogenic pathway, the tumor 689 
sample was considered altered in a given pathway. The microsatellite (MSI) status was obtained from the CMS 690 
website (https://www.synapse.org/#!Synapse:syn2623706). Tumor neoantigen signature were obtained from 691 
a previously published study (67). The prevalence of somatic mutation events or SCNAs was compared among 692 
CCCRC cases using Fishers exact test or chi-square test. For the DNA methylation data, probes located in promoter 693 
CpG islands were extracted, including TSS200, 1stExon, TSS1500, and 5´UTR. The probes detected on X and Y 694 
chromosomes or any probe with NA value were removed. For genes with multiple probes mapped to the promoter, 695 
the median beta-value was calculated as the degree of gene methylation. The beta-value difference was defined as 696 
the difference between the mean beta value of each CCCRC sample and normal samples, and Wilcoxon rank-sum 697 
test was used to test whether the difference was statistically significant. P-values were adjusted for multiple 698 
comparisons by the FDR method. Differentially methylated genes (DMGs) between normal and CRC samples were 699 
defined as |mean beta value| <0.2 in normal samples, |mean beta value| >0.5 in CRC samples, and FDR <0.05. 700 
DMGs between CCCRC subtypes were defined as FDR <0.001. To identify differentially expressed genes (DEGs) 701 
between CCCRC subtypes in the CRC-AFFY and CRC-RNAseq cohorts, the “limma” package was used with FDR 702 
<0.001. Wilcoxon rank-sum test was used to identify differentially expressed proteins (DEPs) with P-values <0.05 703 
between CCCRC subtypes. 704 
Regulon analysis 705 

The R package “RTN” was used to reconstruct the transcriptional regulatory networks of regulons (68), 706 
including 31 transcription factors and 82 chromatin remodeling genes, that were associated with CRC (69,70) 707 
(Supplementary Table19). Mutual information and Spearman’s correlation analysis were utilized to infer the 708 
possible associations between a regulator and all possible targets from the GEP, and the permutation algorithm was 709 
used to eliminate associations with an FDR >1×10-5. Unstable associations were removed by bootstrap analysis (n 710 
= 1,000), and the weakest association in triangles consisting of two regulators and common targets were eliminated 711 
by the data processing inequality algorithm. Two-tailed gene set enrichment analysis was used to calculate the 712 
regulon activity score for each sample. 713 
Publicly available CRC classification systems 714 

To classify CRC samples into different CRC subtypes according to the previously published gene classifier, 715 
gene lists for the five classifiers were extracted from relevant publications and summarized (Supplementary 716 
Table20), including Budinska subtypes (6), De Sousa subtypes (7), Roepman subtypes (9), and Sadanandam 717 
subtypes (10).The nearest template prediction (NTP) algorithm was employed to classify the samples and to 718 
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generate an FDR to assess the classification robustness. For NTP implementation, we screened genes that were 719 
specifically and positively associated with one subtype according to the screening strategies of a previously 720 
published study (71). 721 
Bulk RNAseq and scRNAseq data processing of the GSE108989 dataset 722 

A total of 12 CRC samples with bulk RNAseq and scRNAseq data were obtained from the GSE108989 dataset 723 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc =GSE108989) (72). To identify the CCCRC 724 
subtypes, bulk RNAseq with transcripts per million (TPM) was further log2- transformed, and GSVA was 725 
performed to calculate the signature score of each TME-related signature in each sample based on the GEP. The 726 
“pamr.predict” algorithm was used to classify CRC samples into four CCCRC subtypes based on the TME-related 727 
signatures (seed = 11, threshold = 0.566). For scRNAseq data processing, the raw gene expression data were 728 
normalized and selected according to the following criteria: cells with >200 genes and <7,000 genes and <20% of 729 
mitochondrial gene expression in UMI counts, which was determined using the Seurat R package. Counts of the 730 
filtered matrix for each gene were normalized to the total library size with the Seurat “NormalizeData” function. 731 
The “FindVariableGenes” function was used to identify 2,000 hypervariable genes for unsupervised clustering. 732 
Next, each integrated feature was centered to a mean of zero and scaled by the standard deviation with the Seurat 733 
“ScaleData” function. The “RunPCA” function was used for PCA. We identified diverse T cell clusters using the 734 
“FindClusters” function, and set the resolution parameter to 0.5. Each cell cluster was compared to the other 735 
clusters by the “FindAllMarkers” function to identify DEGs (only pos: TRUE, min.PCt: 0.25, logFc.threshold: 736 
0.25). Cell annotation was carried out by consulting the latest cell marker databases, such as CellMarker 737 
(https://www.biolegend.com/en-us/cell-markers) and PanglaoDB 738 
(https://ngdc.cncb.ac.cn/databasecommons/database/id/6917), combined with a previously published study 739 
(72). To define the feature genes for each CCCRC subtype, differential expression analysis between CCCRC 740 
subtypes was performed using the “FindMarkers” function. FDR <0.05 were considered statistically significant. 741 
Collection and processing of therapy-associated datasets 742 

Therapy-associated datasets were used to explore the treatment strategies for each CCCRC subtype. Gene 743 
expression profiles of GSE103479 and GSE104645 datasets were downloaded from the GEO database. If the gene 744 
symbol was annotated with multiple probes, the median value was used as the expression of the gene. The clinical 745 
data of the GSE104645 dataset was obtained from the supplementary table of a study by Okita et al. (73). The 746 
GSE103479 dataset contained 156 stage II and III CRC patients with or without 5-fluorouracil (5FU)-based 747 
chemotherapy. The GSE104645 dataset contained 193 mCRC patients treated with chemotherapy, a combination of 748 
chemotherapy and bevacizumab, or anti-EGFR therapies. The available RNAseq expression dataset of patients 749 
treated with anti-PD-1 therapy was also downloaded. The Gide (PRJEB23709) dataset was downloaded, and the 750 
raw fastq files was re-analyzed. The RNA reads were aligned using STAR v2.5.3 and quantified as TPM using 751 
RSEM v1.3.0 and log2-transformed. Ensembl IDs were annotated into gene symbols using GENCODE v36. The 752 
gene expression profiles of Hugo (GSE78220) and Jung (GSE135222) datasets and the corresponding clinical data 753 
were downloaded from the GEO database, and the FPKM values were converted to log2-transformed TPM values. 754 
We obtained the gene expression data (n = 348) of urothelial carcinoma patients in the IMvigor210 dataset treated 755 
with anti-PD-L1 therapy and the corresponding clinical data using R package “IMvigor210CoreBiologies 1.0.0” 756 
(IMvigor210 dataset), and the count values were converted to log2-transformed TPM values. To reduce batch 757 
effects and tissue-type-specific effects, we first performed GSVA analysis of the TME-related signatures in each 758 
dataset, and the signature scores were normalized by Z-scores before using the “pamr” algorithm. Next, we used 759 
the “pamr” algorithm to classify the samples into the four CCCRC subtypes based on the TME-related signatures in 760 
each dataset (seed = 11, threshold = 0.566). Detailed information on the sample size and the corresponding 761 
treatment data of the therapy-associated datasets are summarized in Supplementary Table21. 762 

To explore the treatment for each CCCRC subtype using cancer cell line drug-sensitivity experiments, we 763 
developed a pre-clinical model based on subtype-specific, cancer cell-intrinsic gene markers according to a 764 
previously published study (41). The CCCRC subtype-specific mRNA genes (log2 (fold change) >0 and FDR 765 
<0.05) was determined by R package “limma” based on RMA normalization data in the CRC-AFFY cohort. The 766 
gene expression of human CRC tissues versus patient-derived xenografts in the GSE35144 dataset by the R 767 
package “limma” was used to remove those genes associated with stromal and immune components. DEGs with 768 
FDR >0.5 and log2 (fold change) <2 were considered as cancer cell-intrinsic genes. A total of 71 human CRC cell 769 
lines with RNAseq data (log2TPM) was obtained from the Genomics of Drug Sensitivity in Cancer (GDSC) 770 
database (https://depmap.org/portal/download/all/), 43 of which had drug sensitivity results. RNAseq data for 771 
71 human CRC cell lines was used to further determine the cancer cell-intrinsic genes and genes among the top 772 
25% within (i) the 10−90 % percentile range of the largest expression values and (ii) the highest expression in at 773 
least three samples. The subtype-specific genes and cancer cell-intrinsic genes were intersected and further 774 
screened by the Boruta importance test to generate the gene list for developing the pre-clinical model. The 775 
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GSE13067, GSE13294, GSE33113, GSE37892, GSE38832, and GSE39582 datasets were combined as the training 776 
set and the GSE14333 and GSE17536 datasets were used as the validation set, separately. The GEP of CRC cell 777 
lines was normalized by the “quantileNormalizeByFeature” function in the package of “FSQN” (74). The random 778 
forest algorithm (RF), support vector machine algorithm (SVM), eXtreme Gradient Boosting (xgboost) algorithm, 779 
and logistic regression algorithm was used to develop the pre-clinical models. The accuracy, F1 values, and AUC 780 
values were computed to evaluate the performance of the pre-clinical models. We used the pre-clinical model with 781 
best predictive performance to classify 71 human CRC cell lines into four CCCRC subtypes and compared the 782 
differences of the area under the receiver operator characteristics curve (AUC) drug responses among the CCCRC 783 
subtypes. 784 
Discovery and validation of the single-sample gene classifier 785 

Considering that the current transcriptomic data were mostly based on next-generation sequencing platforms, 786 
we constructed and validated a single-sample model to identify CCCRC subtypes based on CRC-RNAseq cohort. 787 
The R package “limma” was used to determine subtype-specific mRNA genes (log2 (fold change) >0 and FDR 788 
<0.05) based on the “voom” transformation with quantile normalization data in the CRC-RNAseq cohort. The 789 
Boruta importance test was further performed to screen subtype-specific mRNA genes. The CRC-RNAseq cohort 790 
was randomly divided into the training set and the validation set at a ratio of 3:7. The gene expression data was 791 
normalized by the Z-scores before model training and could be applied to a single-sample setting. The single-792 
sample gene classifiers were trained with the random forest algorithm (RF), support vector machine algorithm 793 
(SVM), eXtreme Gradient Boosting (xgboost) algorithm, and logistic regression algorithm using the subtype-794 
specific genes. We also validated the gene classifier in TCGA and CPTAC dataset. The accuracy, F1 values, and 795 
AUC values were computed to evaluate the predictive performance of the single-sample gene classifiers. 796 
Statistical analyses 797 

All statistical analyses were conducted by R 4.0.2 software. Statistical significance of the comparisons for 798 
continuous variables and categorical variables was assessed by the Wilcoxon rank-sum test or Kruskal-Wallis test 799 
and Fisher’s exact test or chi-square test, respectively. Correlations between variables were estimated by 800 
Spearman’s correlation analysis or Pearson’s correlation analysis. Patients were divided into either high or low gene 801 
expression groups by the best cutoff calculated by the R package “survminer”. The Kaplan-Meier method with log-802 
rank test was utilized to generate the survival curves. Univariate and multivariate Cox proportional hazard 803 
regression analyses were performed to generate 95% confidence intervals (CIs) and hazard ratios (HRs). Two-sided 804 
P-values <0.05 were considered statistically significant. 805 
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Figure 1. Comprehensive characterization of colorectal cancer (CCCRC). A. Heat map of 1471 CRC patients 1080 
in the CRC-AFFY cohort classified into four distinct TME subtypes based on the 61 TME-related signatures. B. 1081 
Radars display the characteristic TME-related signatures, including tumor, immune, stroma, and metabolism 1082 
signatures, of each CCCRC subtype in the CRC-AFFY cohort. C-E. Box plots show differences in tumor (C), 1083 
immune (D), and stroma (E) signatures in the CRC-AFFY cohort. Tumor purity and stroma scores were obtained 1084 
from the ESTIMATE algorithm. Proliferative activity (proliferation), cytolytic score, M1 and M2 macrophage 1085 
proportions, and TGFB activity were calculated by GSVA. F. Differences in T cell dysfunction and T cell 1086 
exclusion scores between four CCCRC subtypes were analyzed based on the gene expression profiles in CRC-1087 
AFFY cohort. G. Overlap of CCCRC subtypes with consensus molecular subtypes (CMS) and microsatellite 1088 
instability (MSI) status (high microsatellite instability [MSI-H], microsatellite stability [MSS]) in the CRC-AFFY 1089 
and CRC-RNAseq cohorts. H. Kaplan-Meier method with log-rank test of progression-free survival (PFS) among 1090 
the four CCCRC subtypes in the CRC-AFFY cohort. I. Forest plot of multivariate Cox proportional hazard 1091 
regression analysis of PFS after adjusting for TNM stage and CMS subtype in the CRC-AFFY cohort. The hazard 1092 
ratios are shown with 95% confidence intervals. *p value < 0.05; ***p value < 0.001; NS, p value > 0.05. 1093 
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Figure 2. Differences in histological characteristics between CCCRC subtypes. A. Sankey plot shows overlap 1097 
of CCCRC subtypes with the three-category immune classification system (“desert”, “excluded”, and “inflamed” 1098 
phenotypes), and their representative hematoxylin and eosin (HE)-stained whole slide images (WSIs). C1: TCGA-1099 
AA-3955; C2: TCGA-A6-6654; C3: TCGA-CK-4948; and C4: TCGA-AD-6963. B. Representative WSI (top) and 1100 
the CRC-multiclass model-inference segmentation of seven tissue types: tumor, stroma, lymphocyte, normal 1101 
colon mucosa, debris, adipose, and mucin (bottom). C-E. Box plots show differences in the abundance of tumors 1102 
(C), lymphocyte infiltration (D), and stroma (E) in the core tumor (CT) region. F, G. Box plots show differences 1103 
in the lymphocyte infiltration to tumor content ratio (F) and lymphocyte infiltration to stromal content ratio (G) in 1104 
the CT region. H, I. Box plots show differences in the abundance of lymphocytes infiltration (H) and stroma (I) in 1105 
the invasive margin (IM) region. J. Box plots show differences in the ratio of lymphocyte infiltration in the IM 1106 
region to the CT region. 1107 
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Figure 3. Biological characterization of CCCRC subtypes based on multi-omics data. A. Distribution of driver 1114 
gene mutations and somatic copy number alterations (SCNAs) among the CCCRC subtypes in the TCGA-CRC 1115 
dataset. B. Box plots show differences in tumor mutation burden (TMB), neoantigens, SCNA counts, and fraction 1116 
of the genome altered (FGA) scores among the four CCCRC subtypes in the TCGA-CRC dataset. C. Genomic 1117 
alterations in 10 oncogenic pathways were compared among the four CCCRC subtypes in the TCGA-CRC dataset. 1118 
The color of the box represents the different types of genomic alterations (red, mutation; blue, amplification; 1119 
yellow, deletion), and the color saturation represents the frequency. The color of the p value represents which 1120 
oncogenic pathway had the highest frequency of the genomic alterations. D, E. Heat map shows differentially 1121 
methylated genes derived from each CCCRC subtype vs normal tissues (D) and regulon activity profiles for 1122 
transcription factors and chromatin modifiers (E). F. Significantly enriched gene sets among genes upregulated in 1123 
the C4 subtype (red bars) and the C3 subtype (blue bars). G. Significantly enriched gene sets among proteins 1124 
upregulated in the C4 subtype (red bars) and the C3 subtype (blue bars). H. Significantly enriched gene sets of 1125 
methylated genes with downregulated DNA methylation in the C4 subtype compared to the C3 subtype (red bars) 1126 
or with upregulated DNA methylation in the C4 subtype compared to the C3 subtype (blue bars). *p value < 0.05; 1127 
**p value < 0.01; ***p value < 0.001; NS, p value > 0.05. 1128 
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Figure 4. Discovery of a nongenetic tumor evolution pattern. A-C. Venn plots show “all positive” for increasing 1132 
DNA methylation/gene expression/protein levels or “all negative” for decreasing DNA methylation/gene 1133 
expression/protein levels. Pie chart (top right) distributions of the sign of pairwise FCs computed for differentially 1134 
methylated genes (A), all differentially expressed genes (B) and all differentially expressed proteins (C). D. 1135 
Heatmap shows gene expression levels of 20 CCCRC genes among the four CCCRC subtypes. E. Box plots show 1136 
differences in the CCCRC score among the four CCCRC subtypes in the CRC-AFFY cohort. F. Kaplan–Meier 1137 
method of overall survival (OS) among the four CCCRC subtypes in the CRC-AFFY and CRC-RNAseq cohorts. 1138 
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Figure 5. Differences in T cell function between CCCRC subtypes. A. UMAP shows the composition of T cells 1150 
colored by cluster and divided by the CCCRC subtype in CRC tissues. B. Histogram shows the cell distribution of 1151 
10 T cell types in the different CCCRC subtypes. C. Proportion of effector memory CD8+ T cells (CD8+ Tem), 1152 
recently activated effector memory or effector CD8+ T cells (CD8+ Temra/Teff), and the other CD8+ T cells 1153 
(shown in the histogram) in the C2 and C4 subtypes. D. Proportion of exhausted CD8+ T cells (CD8+ Tex) and the 1154 
other CD8+ T cells (shown in the histogram) in the C2 and C4 subtypes. E. Histogram shows the cell distribution 1155 
of KLRG1+ CD8+Tex and HSPA1B+ CD8+Tex cells in the different CCCRC subtypes. F, G. Kaplan-Meier 1156 
method with log-rank test of overall survival (OS) in the CRC-AFFY cohort (F) and the CRC-RNAseq cohort (G) 1157 
between low and high ratios of KLRG1-to-CD8A expression in patients. H. Histogram shows the cell distribution 1158 
of TXNIP+ Treg cells, TNFRSF4+ Treg cells, HSPA1A+ Treg cells, and IFIT1+ Treg cells in the different 1159 
CCCRC subtypes. I, J. Kaplan–Meier method with log-rank test of OS in the CRC-AFFY cohort (I) and the CRC-1160 
RNAseq cohort (J) between low and high ratios of TNFRSF4-to-CD8A expression in patients. K. Volcano plot 1161 
shows differentially expressed genes between tumor (red dots) and normal CD8+ T cells (blue dots). L. Volcano 1162 
plot shows differentially expressed genes between tumor (red dots) and normal Treg cells (blue dots).  1163 

 1164 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2023. ; https://doi.org/10.1101/2023.02.16.528849doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.16.528849
http://creativecommons.org/licenses/by/4.0/


Figure 6. Significance of CCCRC in guiding the clinical treatment of colorectal cancer. A, B. Kaplan-Meier 1165 
method of overall survival (OS) between stage II and III CRC C1 patients with or without chemotherapy in the 1166 
CRC-AFFY cohort (A) and the GSE103479 (B) dataset. C, D. Kaplan-Meier method of OS (C) and progression-1167 
free survival (PFS) (D) among the four CCCRC subtypes in the GSE104645 dataset. E. Box plots show the 1168 
differences in the area under the receiver operator characteristics curve (AUC) of drug responses among the four 1169 
CCCRC subtypes. F. Pie chart shows the differences in the proportion of responses to immune checkpoint blockade 1170 
treatment among the four CCCRC subtypes in the two independent melanoma cohorts (Gide and Hugo datasets, n 1171 
= 68) treated with anti-PD1 therapy. G, H. Kaplan-Meier method with log-rank test of PFS (G) and OS (H) among 1172 
the four CCCRC subtypes in the two independent melanoma cohorts (Gide and Hugo datasets, n = 68) treated with 1173 
anti-PD1 therapy. I. Pie chart shows the differences in the proportion of responses to immune checkpoint blockade 1174 
treatment among the four CCCRC subtypes in the urothelial carcinoma cohort (n = 298) treated with anti-PDL1 1175 
therapy. J, K. Kaplan-Meier method with log-rank test of OS and PFS among the four CCCRC subtypes in the 1176 
urothelial carcinoma cohort (n = 348) (J) and the lung cancer cohort (n = 27) (K) treated with anti-PD1/PDL1 1177 
therapy. PRCR: partial response and complete response; PDSD: progressive disease and stable disease. 1178 
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Figure 7. Overview of characteristics of CCCRC subtypes. These included tumor 1182 
microenvironment features, multi-omics features, scRNA-seq features, treatment strategies and 1183 
prognostic value for CCCRC subtypes. 1184 
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Supplementary Figure Legends 1197 
Figure S1. Establishment of TME gene expression panel. A, B. PCOA shows that the CRC 1198 
samples could be distinguished from the normal samples by the TME-related signatures (A) and the 1199 
signatures of the functional states of tumor cells and cancer stem cells (B) in the GSE39582 and 1200 
TCGA cohorts. C, D. Difference analysis of TME signature scores between tumor (T) and normal 1201 
(N) tissues in the GSE39582 cohort (C) and the TCGA cohort (D). E. Pearson’s correlation analysis 1202 
of the TME-related signatures show four major patterns bound by positive correlations in the CRC-1203 
AFFY cohort. F. Heat map of Pearson’s correlation analysis of the 61 TME-related signatures and 1204 
the other TME-related signatures quantified by the MCP-counter algorithm in the CRC-AFFY 1205 
cohort. G. Univariate cox analysis shows the ability of each TME signature to predict progression-1206 
free survival in the CRC-AFFY cohort. 1207 
Figure S2. Comprehensive characterization of colorectal cancer (CCCRC). A. Consensus 1208 
matrices heat map (k = 2 to 6). B. Empirical cumulative distribution function (CDF) plot. C. Delta 1209 
area plot. D. Principal coordinate analysis of Euclidean distances calculated using the scores of 61 1210 
TME-related signatures in the CRC-AFFY (dark colors) and CRC-RNAseq (light colors) cohorts. 1211 
Circles and error bars represent the mean and the standard errors of the mean, respectively. E. Heat 1212 
map of 725 CRC patients in the CRC-RNAseq cohort classified into four distinct TME subtypes 1213 
based on the 61 TME-related signatures. F, G. Shrunken differences d′ik for the 61 TME-related 1214 
signatures having at least one nonzero difference in the CRC-AFFY cohort (F) and the CRC-1215 
RNAseq cohort (G). 1216 
Figure S3. Differences in the TME components obtained from MCP-counter, CIBERSORT, 1217 
and the ESTIMATE algorithm among the CCCRC subtypes in the CRC-AFFY cohort. A, B. 1218 
Heat map of the TME-related signature scores derived from the MCP-counter (A) and CIBERSORT 1219 
(B) algorithm. C-E. Box plots show differences in the TME-related signature scores derived from 1220 
the MCP-counter (C), CIBERSORT (D), and the GSVA (E) algorithm among the CCCRC subtypes. 1221 
F. Differences in T cell dysfunction and T cell exclusion scores between four CCCRC subtypes were 1222 
analyzed based on the gene expression profiles in CRC-RNAseq cohort. G, H. Gene set enrichment 1223 
analysis (GSEA) of the terminally exhausted CD8+ T cell signature (Texterm signature) and the 1224 
TGFB signaling signature between C2 and C4 subtypes in the CRC- AFFY cohort (G) and CRC- 1225 
RNAseq cohort (H). I. Circle bars display significant differences in metabolic reprogramming 1226 
among the four CCCRC subtypes. *p value < 0.05; **p value < 0.01; ***p value < 0.001; ****p value < 1227 
0.0001. 1228 
Figure S4. Overlap of the CCCRC subtypes with published CRC molecular subtypes in the 1229 
CRC-AFFY and CRC-RNAseq cohorts, including Budinska subtypes. A, Consensus molecular 1230 
subtypes (CMS). B, De Sousa subtypes. C, Microsatellite instability (MSI) status (high microsatellite 1231 
instability [MSI-H]). D, Microsatellite stability (MSS). E, Roepman subtypes. F, Sadanandam 1232 
subtypes. 1233 
Figure S5. Box plots show differences in the TME-related signature scores between the C4 and 1234 
CMS1 subtypes. A, Between the C4 subtype with MSI-H and the CMS1 subtype with MSI-H. B, 1235 
Between the C4 subtype with MSI-H, the C4 subtype with MSS, and the other CCCRC subtypes 1236 
with MSI-H. C, MSI-H, high microsatellite instability. *p value < 0.05; **p value < 0.01; ***p value < 1237 
0.001; ****p value < 0.0001. 1238 
Figure S6. Survival analyses of the CCCRC subtypes. A, Kaplan-Meier method with log-rank test 1239 
of overall survival (OS) among the four CCCRC subtypes in the CRC-AFFY cohort. B, Forest plot 1240 
of multivariate Cox proportional hazard regression analysis for OS after adjusting for TNM stage 1241 
and CMS subtype in the CRC-AFFY cohort. C, D, Kaplan–Meier method (C) and multivariate Cox 1242 
proportional hazard regression analysis (D) of progression-free survival (PFS) among the four 1243 
CCCRC subtypes in the CRC-RNAseq cohort. E, F, Kaplan-Meier method with log-rank test (E) 1244 
and multivariate Cox proportional hazard regression analysis (F) of OS among the four CCCRC 1245 
subtypes in the CRC-RNAseq cohort. The hazard ratios are shown with 95% confidence intervals. *p 1246 
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value < 0.05; **p value < 0.01; ***p value < 0.001; NS, p value > 0.05. G. Confusion matrix shows 1247 
overlapping numbers of predicted tissues and actual tissues. H. AUC curves show performance of 1248 
the CRC-multiclass model on the TCGA-CRC dataset. 1249 
Figure S7. Biological characterization of the CCCRC subtypes based on multi-omics data. A-C, 1250 
Significantly enriched gene sets among the CCCRC subtype-specific upregulated genes, CCCRC 1251 
subtype-specific downregulated methylation genes, and CCCRC subtype-specific upregulated 1252 
proteins. D-G, Scatter plots show gene expression log2-fold changes for all genes among the four 1253 
CCCRC subtypes (C1 subtype vs the other subtypes, D; C2 subtype vs the other subtypes, E; C3 1254 
subtype vs the other subtypes, F; and C4 subtype vs the other subtypes, G) in the CRC-AFFY cohort 1255 
and the CRC-RNAseq cohort. H, Relationship between CCCRC scores and TME-related signature 1256 
scores. 1257 
Figure S8. A, UMAP shows the composition of T cells colored by cluster in tumor and normal 1258 
tissues. B, UMAP shows the composition of T cells colored by cluster and classified by CCCRC 1259 
subtype in tumor and normal tissues. C-H, The tSNE visualized plot shows the expression of the top 1260 
10 marker genes for KLRG1+ CD8+ Tex (C), HSPA1B+ CD8+ Tex cells (D), TXNIP+ Treg cells 1261 
(E), TNFRSF4+ Treg cells (F), HSPA1A+ Treg cells (G), and IFIT1+ Treg cells (H). 1262 
Figure S9. A-D, Kaplan-Meier method with log-rank test of overall survival (OS) and progression-1263 
free survival (PFS) between the high ratio of KLRG1-to-CD8A expression and the low ratio of 1264 
KLRG1-to-CD8A expression in Gide (A), Hugo (B), Jung (C), and IMvigor210 (D) datasets. E-H, 1265 
Kaplan-Meier method with log-rank test of OS and PFS between the high ratio of TNFRSF4-to-1266 
FOXP3 expression and the low ratio of TNFRSF4-to-FOXP3 expression in Gide (E), Hugo (F), Jung 1267 
(G), and IMvigor210 (H) datasets. 1268 
Figure S10. A, Pie chart shows the differences in the proportions of responses to chemotherapy 1269 
among the four CCCRC subtypes in the GSE104645 dataset. B, C, Pie chart shows the differences in 1270 
the proportions of responses to a combination of chemotherapy and bevacizumab among the four 1271 
CCCRC subtypes (B) and between the C2 subtype and the other subtypes (C) in the GSE104645 1272 
dataset. D, Pie chart shows the differences in the proportions of responses to chemotherapy plus 1273 
bevacizumab versus responses to chemotherapy in the C2 subtype of the GSE104645 dataset. E, Pie 1274 
chart shows the differences in the proportions of the disease control rate (DCR) of anti-EGFR 1275 
therapy among the four CCCRC subtypes in the GSE104645 dataset. F, Pie chart shows the 1276 
differences in the proportions of responses to anti-EGFR therapy between the C2 subtype and the 1277 
other subtypes in the GSE104645 dataset. PRCR, partial response and complete response; PDSD, 1278 
progressive disease and stable disease; DC, disease control; NDC, no disease control. 1279 
Figure S11. Establishment of machine learning model.  1280 
A-C. The pre-clinical model was constructed using the random forest algorithm (RF), support vector 1281 
machine algorithm (SVM), extreme gradient boosting (xgboost) algorithm, logistic regression 1282 
algorithm. Accuracy (A), F1 score (B), and AUC value (C) were computed to evaluate the 1283 
performance of the models. D-F. The single-sample gene classifier was constructed using the RF, 1284 
SVM, xgboost algorithm, logistic regression algorithm. Accuracy (D), F1 score (E), and AUC value 1285 
(F) were computed to evaluate the performance of the classifiers. 1286 
 1287 
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