

1 Comprehensive characterization of tumor microenvironment in colorectal cancer 2 via histopathology-molecular analysis

3 Xiangkun Wu^{1,2†}, Hong Yan^{1,2,3†}, Mingxing Qiu^{1,2†}, Xiaoping Qu^{4,5†}, Jing Wang^{1,2}, Shaowan Xu^{1,2},
4 Yiran Zheng^{4,5}, Minghui Ge^{4,5}, Linlin Yan^{4,5}, Li Liang^{1,2*}

5 1 Department of Pathology, School of Basic Medical Sciences, Southern Medical University,
6 Guangzhou, China

7 2 Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology,
8 School of Basic Medical Sciences, Southern Medical University, Guangzhou, China

9 3 Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and
10 Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China

11 4 Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China

12 5 State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu
13 Simcere Diagnostics Co., Ltd., Nanjing, China

14 *Correspondence: Li Liang, lli@smu.edu.cn

15 †These authors have contributed equally to this work and share first authorship.

16 Email: Xiangkun Wu: 18718276810@163.com; Hong Yan: yanhong0558@sina.cn; Mingxing Qiu:
17 qmx55555qmx@163.com; Xiaoping Qu: quxiaoping1@gmail.com; Jing Wang:
18 1938017208@qq.com; Shaowan Xu: 904244623@qq.com; Yiran Zheng: yrzheng2020@gmail.com;
19 Minghui Ge: ge_minghui@yeah.net; Linlin Yan: linlin.yan@simceredx.com

22 Abstract

23 **Purpose:** To explain how the tumor microenvironment (TME) contributes to biological and clinical
24 heterogeneity of colorectal cancer (CRC).

25 **Methods:** Using multi-omics analysis, single cell transcriptomic sequencing analysis and artificial
26 intelligence-enabled spatial analysis of whole-slide images, we performed a comprehensive
27 characterization of TME in colorectal cancer (CCCRC).

28 **Results:** CRC samples were classified into four CCCRC subtypes with distinct TME features,
29 namely, C1 as the proliferative subtype with low immunogenicity; C2 as the immunosuppressed
30 subtype with the terminally exhausted immune characteristics; C3 as the immune-excluded subtype
31 with the distinct upregulation of stromal components and a lack of T cell infiltration in tumor core;
32 and C4 as the immunomodulatory subtype with the remarkable upregulation of anti-tumor immune
33 components. The four CCCRC subtypes had distinct histopathological and molecular characteristics,
34 therapeutic efficacy, and prognosis. The C1 subtype was more sensitive to chemotherapy, the C2 and
35 C3 subtypes were more sensitive to WNT pathway inhibitor SB216763 and Hedgehog pathway
36 inhibitor vismodegib, and the C4 subtype was suitable for ICB treatment. Finally, we established a
37 single-sample gene classifier for identifying the CCCRC subtypes.

38 **Conclusions:** Our integrative analyses ultimately established a holistic framework to thoroughly
39 dissect the TME of CRC, and the CCCRC classification system with high biological interpretability
40 might facilitate biomarker discoveries and clinical treatment decisions in the future.

41 **Key words:** tumor microenvironment; molecular classification; multi-omics analysis;
42 histopathology-molecular analysis; colorectal cancer

43

44

45

46

47

48

49

50

51 **Introduction**

52 Colorectal cancer (CRC) is the third most deadly malignancy worldwide (1), and the incidence
53 of early-onset CRC is steadily increasing (2). CRC at early and localized stages is primarily a
54 preventable and curable disease, but up to 50% of patients with locally advanced disease eventually
55 develop mCRC (3,4). Therefore, the clinical systematic management of CRC patients is still an
56 unmet medical challenge (4).

57 With the development of high-throughput technologies and bioinformatics strategies, multi-
58 omics data are used to identify and characterize the molecular subtypes of CRC, such as genomics
59 (5), transcriptomics (6-11) and proteomics (12). The consensus molecular subtype (CMS) integrates
60 six independent classification systems based on transcriptomics; however, it is still not explicitly
61 used to guide clinical treatment (13). TCGA and CPTAC colorectal studies have dissected the
62 molecular heterogeneity of CRC by integrating multi-omics data (14,15). Nevertheless, multi-omics
63 data are complex and highly dimensional, and extracting valuable information from these data to
64 guide clinical treatment is still a tremendous challenge (16). By reviewing the biological
65 characteristics of the tumor, useful information can be screened for identifying molecular subtypes.

66 The tumor cells can interact with cellular or non-cellular components, triggering dramatic
67 molecular, cellular and physical changes in the tumor microenvironment (TME) to build a self-
68 sustainable tumor ecosystem (17,18). Simultaneously, TME profoundly affects tumor biology,
69 responses to therapy, and clinical outcomes, which is a dynamic network mainly comprised of
70 immune components and stromal components (19-21). Furthermore, TME can adversely affect the
71 metabolic activities of tumor, immune and stromal cells, and form diverse metabolic phenotypes
72 (22,23). Identifying the components of the TME and their functions, as well as the crosstalk between
73 tumor cells and TME contributes to our understanding of the clinical heterogeneity of CRC, thereby
74 bringing about new advances in precision medicine. Previous studies have used immune or stromal
75 components of the TME, or a combination of both, to study the TME (24,25), but they are
76 insufficient to completely reconstruct the heterogeneity of the TME.

77 In this study, we considered the tumor cells and its TME as a whole and performed a
78 comprehensive characterization of TME in colorectal cancer (CCCRC), including the functional
79 states of the tumor cells, immune and stromal signatures, and metabolic reprogramming features. We
80 successfully identified the four CCCRC subtypes based on 61 TME-related signatures. Integrated
81 analyses determined that the CCCRC subtypes had distinct histopathological and molecular
82 characteristics, therapeutic efficacy, and prognosis.

83 **Materials and Methods**

84 A total of 2195 samples were obtained from ten publicly available datasets (**Supplementary**
85 **Table1**). The eight microarray datasets based on the same platform GPL570 (GSE13067, GSE13294,
86 GSE14333, GSE17536, GSE33113, GSE37892, GSE38832 and GSE39582 datasets) were combined
87 as CRC-AFFY cohort to determine molecular classification. The two RNA sequencing datasets
88 (TCGA and CPTAC datasets) were combined as CRC-RNAseq cohort to validate molecular
89 classification.

90 After reviewing previously published studies, the Molecular Signatures Database (MSigDB;
91 <http://www.gsea-msigdb.org/gsea/msigdb/index.jsp>), and the Reactome pathway portal
92 (<https://reactome.org/PathwayBrowser/>), we obtained 61 signatures related to tumor, immune,
93 stromal, and metabolic reprogramming features (**Supplementary Table2**). Gene set variation
94 analysis (GSVA) was performed to calculate the 61 TME-related signature scores based on gene
95 expression profiles (GEP). We devised a novel molecular classification, called CCCRC, using
96 consensus clustering method (26) based on the 61 TME-related signature scores in the CRC-AFFY
97 cohort. To verify the repeatability and robustness of CCCRC, we used the “pamr.predict” function of
98 the R package “pamr” (27) to classify the CRC samples based on the TME-related signature scores
99 in the CRC-RNAseq cohort.

101 More details of histopathological examination, multi-omics analysis, scRNA-seq analysis,
102 development of treatment strategies, and statistical analysis are provided in the supplementary
103 material and methods.

104

105 **Results**

106 **Establishment of the TME panel**

107 The molecular and clinical features of a tumor are characterized by the functional states of tumor
108 cells, as well as other TME-related signatures, including immune and stromal components, and
109 metabolic reprogramming signatures. In brief, 14 signatures (including angiogenesis, apoptosis, cell
110 cycle, differentiation, DNA damage, DNA repair, EMT, hypoxia, inflammation, invasion, metastasis,
111 proliferation, quiescence, and stemness) were used to describe the functional states of tumor cells. As
112 for the immune signatures, we focused on eight categories of immune cells (T cells, natural killer
113 cells, dendritic cells, macrophages, myeloid-derived suppressor cells, B cells, mast cells, neutrophils)
114 and their subpopulations, as well as the other immune-related signatures. In addition to the signatures
115 of endothelial cells, mesenchymal cells, and the extracellular matrix, we included signatures of
116 cancer stem cells and interactions of cells with the extracellular matrix to characterize the stromal
117 compartments. A total of 7 major metabolic pathways (Amino acid, Nucleotide, Vitamin cofactor,
118 Carbohydrate, TCA cycle, Energy, and Lipid metabolism) were used to reveal the metabolic
119 reprogramming of the TME. According to the above biological framework, a total of 61 TME-related
120 signatures were collected to form the TME panel (**Supplementary Table2**), which ultimately
121 established a holistic approach to thoroughly dissect the TME of CRC.

122 We used GSVA to calculate the TME-related signature scores for each sample in each cohort.
123 Principal coordinate analysis (PCOA) revealed that the CRC samples could be distinguished from
124 normal samples by the TME-related signatures in the GSE39582 and TCGA cohorts (**Fig. S1A**). We
125 further focused on the signatures of the functional states of tumor cells and cancer stem cells, which
126 could classify CRC and normal samples (**Fig. S1B**). The *P*-values for intercomparisons of the
127 euclidean distances between normal and CRC samples were all <0.05 using PERMANOVA test.
128 Most immune signatures had higher GSVA scores in the normal samples compared with the CRC
129 samples (**Fig. S1C, D**), while stromal signatures and the signatures of the functional states of tumor
130 cells had higher GSVA scores in CRC tissues (**Fig. S1C, D**). As expected, amino acid, carbohydrate,
131 and nucleotide metabolic processes were more prominent in CRC samples, which was consistent
132 with the hallmark of infinite proliferation of tumor cells (**Fig. S1C, D**).

133 Pearson's correlation analysis of the TME-related signatures revealed three major patterns bound
134 by positive correlations in the CRC-AFFY cohort (**Fig. S1E**). One pattern defining the proliferation
135 of tumor cells consisted of cell cycle and metabolic reprogramming signatures. The second was mainly
136 comprised of immune components, such as T cells, NK cells, MDSCs and M2 macrophages. The
137 third pattern was associated with stromal components such as angiogenesis and extracellular matrix,
138 as well mesenchymal cells and cancer stem cells. Furthermore, we analyzed the correlation between
139 61 TME-related signatures and the other TME-related signatures quantified by the MCP-counter
140 algorithm in the CRC-AFFY cohort, with positive correlations of lymphocytic and stromal signatures
141 with the signatures of the MCP-counter algorithm and highlighted the robustness of the different
142 methods (**Fig. S1F**). Finally, we used the Kaplan-Meier method and Cox proportional hazard
143 regression analysis to evaluate the prognosis of the TME-related signatures, and the stromal and
144 tumor components significantly correlated with decreased survival (**Fig. S1G, Supplementary**
145 **Table3-6**). Collectively, these data implied that the TME heterogeneity with distinct differences in
146 immune, stromal, and metabolic reprogramming contributes to the development of tumors, and that
147 the TME panel could be used to comprehensively characterize CRC.

148 **Determine and validation of CCCRC classification**

149 With the increasing application of immunotherapy and tumor vaccines, there is growing
150 evidence highlighting the importance of the TME in tumorigenesis and development (28,29). To

151 reveal the TME heterogeneity of CRC using the curated TME panel, consensus clustering analysis
152 was performed based on the TME panel scores in the CRC-AFFY cohort, and the optimal cluster
153 number was determined to be four using the consensus matrices heat map, CDF plot, and delta area
154 plot (**Fig. S2A-C**). Subsequently, the CRC samples in the CRC-AFFY cohort were classified into the
155 four CCCRCs with distinct TME components (**Fig. 1A-B**, **Fig. S2D**). PCOA showed that the four
156 CCCRC subtypes were distinctly separated and the *P*-values for intercomparisons of the euclidean
157 distances between them were all <0.05 using PERMANOVA test (**Fig. S2D**). The reproducibility of
158 the CCCRC subtypes was externally validated in the CRC-RNAseq cohort and the same four
159 CCCRC subtypes were revealed, with similar patterns of differences in the TME components (**Fig.**
160 **S2E-G**). PCOA also demonstrated highly similar TME compartments in the same subtype between
161 the CRC-RNAseq and CRC-AFFY cohorts (**Fig. S2D**). Differences in the TME components between
162 the CCCRC subtypes were also observed in the analysis of previously reported immune and stromal
163 signatures obtained by the MCP-counter, CIBERSORT, and ESTIMATE algorithm (**Fig. S3A-E**),
164 and 10 classical oncogenic pathway activities and 86 metabolic pathway enrichment scores
165 calculated by GSVA (**Supplementary Table7**).

166 C1 (35% of all tumors), hereafter designated as the proliferative subtype, was characterized by
167 the relative upregulation of tumor proliferative activity, tumor purity, and minimal or complete lack
168 of lymphocyte and stromal infiltration, which was highly similar to the immune-desert phenotype
169 previously described (**Fig. 1B-E**). The MYC, cell cycle and TP53 pathways associated with tumor
170 proliferation had the highest GSVA scores in the C1 subtype (**Fig. S3E**). C2 (21% of all tumors),
171 hereafter designated as the immunosuppressed subtype, was characterized by the relative
172 upregulation of immune and stromal components, such as T cells, M2 macrophages, and cancer-
173 associated fibroblasts (CAFs) (**Fig. 1B-E**, **Fig. S3A-D**). However, the extent of infiltration of
174 effector cells, as well as the cytolytic score, was much lower than that of the C4 subtype (**Fig. 1B-E**,
175 **E**). C3 (24% of all tumors), hereafter designated as the immune-excluded subtype, was characterized
176 by the distinct upregulation of stromal components, such as CAFs, and cancer stem cells, as well as
177 angiogenesis and hypoxia signatures (**Fig. 1B-E**, **Fig. S3A-D**). During tumor progression, TGF-beta
178 secreted by CAFs is leveraged by tumor cells to suppress and exclude the anti-tumor immune
179 components (30). We observed that the TGF-beta pathway, as well as WNT, NOTCH and RTK-RAS
180 pathways, and the ratio of M2/M1 macrophages, were distinctly upregulated in C2 and C3 subtypes
181 (**Fig. 1D-E**, **Fig. S3E**). The scores of 5/10 oncogenic pathways were the highest in the C3 subtype
182 (**Fig. S3E**), suggesting that the activation of oncogenic pathways could lead to the formation of
183 immune-excluded phenotypes which was consistent with the previous theory (31). C4 (20% of all
184 tumors), hereafter designated as the immunomodulatory subtype, was characterized by the
185 remarkable upregulation of anti-tumor-immune components, such as effector T cells, NK cells, and
186 Th1 cells. The C4 subtype also had the highest cytolytic score compared with the other subtypes and
187 lacked stromal components and the other immunosuppressed components, which indicated an
188 immunomodulatory microenvironment (**Fig. 1B-E**).

189 To further explore the immune escape mechanism of each CCCRC subtype, the differences in T
190 cell dysfunction and T cell exclusion scores between the four CCCRC subtypes were analyzed based
191 on the gene expression profiles, which reflected the T cell features of the global tumor. Strikingly, the
192 C2 subtype had highest T cell dysfunction score, indicating that T cell dysfunction in the C2 subtype
193 was at the late stage (**Fig. 1F**, **Fig. S3F**). Using GSEA with all genes ranked according to the fold
194 change between C2 and C4 subtypes, we found that terminally exhausted CD8+ T cell and TGF-beta
195 signaling signatures were upregulated in the C2 subtype in the CRC-AFFY (**Fig. S3G**) and CRC-
196 RNAseq (**Fig. S3H**) cohorts, which might reveal that CD8+ T cell infiltration within the tumor bed
197 was suppressed by the stroma and was in a late state of dysfunction. The C3 subtype had the highest
198 T cell exclusion score (**Fig. 1F**, **Fig. S3F**), demonstrating that the low T cell infiltration into the
199 tumor bed was due to the increased abundance of CAFs, MDSCs, and M2 macrophages, thereby
200 leading to the exclusion of T cells from the tumor bed.

201 Metabolic reprogramming also differed significantly among the four CCCRC subtypes (**Fig. 1B**,
202 **Fig. S3I**). We analyzed the 86 metabolism pathways obtained from the KEGG database
203 (**Supplementary Table7**) and observed that the number of upregulated metabolic pathways of the
204 C3 subtype was the lowest. We also found that glycan metabolism was distinctly upregulated in C2
205 and C3 subtypes, which indicated that glycan metabolism was significantly associated with the
206 stroma.

207 **Associations between CCCRC subtypes and other molecular subtypes and clinical**
208 **characteristics**

209 Previous studies have identified several molecular subtypes of CRC based on GEP. We
210 investigated their associations with the CCCRC subtypes in the CRC-AFFY and CRC-RNAseq
211 cohorts (**Fig. 1G**, **Fig. S4A-F**). The C1 subtype was primarily comprised of the CMS2 subtype and
212 lower crypt-like subtype, and it contained the highest frequencies of the CCS1 subtype, B-type
213 subtype, and TA subtype. The C2 subtype mainly consisted of the CMS4 subtype, surface crypt-like
214 subtype, CCS3 subtype, C-type subtype, and inflammatory subtype, and included the highest
215 frequency of the enterocyte subtype. The C3 subtype contained the highest frequencies of CMS4,
216 CCS3, and C-type subtypes and was mainly comprised of the mesenchymal subtype and TA subtype.
217 The C4 subtype included the highest frequencies of high microsatellite instability (MSI-H) and the
218 CMS1 subtype, CIMP-H-like subtype, A-type subtype, and inflammatory subtype, and was mainly
219 comprised of the CCS2 subtype.

220 We also focused on the differences in the TME components between the CCCRC subtypes and
221 the CMS subtypes. Compared with the CMS1 subtype, the C4 subtype showed upregulated anti-
222 tumor-immune components in the CRC-AFFY cohort and lacked immunosuppressive components,
223 which were also found in the CRC-RNAseq cohort (**Fig. S5A**). CRC patients with MSI-H were
224 sensitive to ICB treatment, with C4 and CMS1 subtypes containing approximately 47% and 75% of
225 MSI-H, respectively. The C4 subtype with MSI-H showed upregulated scores of effector cells and
226 cytolytic activity and downregulated scores of extracellular matrix and matrix remodeling compared
227 with the CMS1 subtype with MSI-H (**Fig. S5B**). Similarly, we observed that the C4 subtype with
228 MSI-H and the C4 subtype with MSS had higher scores of anti-tumor immune signatures and lower
229 scores of stromal components, while the other CCCRC subtypes with MSI-H lacked anti-tumor
230 immune signatures and had more stromal components (**Fig. S5C**). This analysis indicated that
231 CCCRC subtypes could further classify the CMS subtype and MSI status to identify patients suitable
232 for ICB therapy.

233 The Kaplan-Meier method showed that the C4 subtype had significantly higher overall survival
234 (OS) and progression-free survival (PFS) than C2 and C3 subtypes, with the C3 subtype showing the
235 worst OS and PFS (**Fig. 1H**, **Fig. S6A**). Multivariate Cox proportional hazard regression analyses
236 also demonstrated that the C4 subtype independently predicted the best OS and PFS, whereas the C3
237 subtype independently predicted the worst OS and PFS after adjusting for TNM stage and CMS
238 classification system (**Fig. 1I**, **Fig. S6B**). Similar results after the analysis of prognosis were
239 observed in the CRC-RNAseq cohort (**Fig. S6C-F**).

240 **Differences in histological characteristics between CCCRC subtypes**

241 To further explore the biological differences between CCCRC subtypes, we investigated the
242 histological phenotypes by evaluating the WSIs of the TCGA-CRC cohort. We compared our
243 CCCRC system with the three-category immune classification system of solid tumors, termed
244 “desert”, “excluded”, and “inflamed” phenotypes (32,33). Two pathologists evaluated the
245 histological characteristics for each subtype under the microscope. The CRC samples in the TCGA-
246 CRC cohort were categorized as these three phenotypes based on the abundance of lymphocytes and
247 their spatial location with malignant epithelial cells. According to the three-category immune
248 classification system, the C4 subtype was enriched with an inflamed phenotype characterized by
249 abundant lymphocytes in direct contact with malignant cells (**Fig. 2A**). The C2 subtype was mostly
250 categorized as an excluded phenotype. The C1 and C3 subtypes were mainly classified into the

251 desert phenotype, whereas the C3 subtype was more frequently classified as an excluded phenotype
252 than the C1 subtype. Notably, the lymphocytes of C2 subtype were more frequently intermixed with
253 intra-tumor stromal components, whereas the lymphocytes of C3 subtype were more frequently
254 excluded from the tumor bed and intermixed with adjacent-tumor stromal components, both of
255 which were classified as excluded phenotype according to the three-category immune classification
256 system.

257 The above differences in the histological characteristics among the CCCRC subtypes were based
258 on the semi-quantitative analysis results of two pathologists, which are subjective to a certain extent.
259 Therefore, we used hematoxylin and eosin (HE)- stained image-based deep learning to evaluate the
260 abundance and spatial distribution of the tumor, lymphocytes, and stroma. The performance of our
261 CRC-miclass model was evaluated on the TCGA-CRC dataset with the accuracy reaching 81%
262 and the AUCs for the different tissue types ranged from 0.95 to 0.98 (Fig. S6G-H). The tissue
263 heatmap showed our model prediction results for a CRC WSI (Fig. 2B). In the core tumor (CT)
264 region, the C1 subtype had a highly increased abundance of the tumor; the C4 subtype had increased
265 lymphocyte infiltration and decreased stromal content; the C2 subtype had elevated lymphocyte and
266 stromal infiltration; and the C3 subtype had the highest abundance of stroma, but less lymphocyte
267 infiltration was detected (Fig. 2C-E). We also observed that C4 subtype had the highest lymphocyte
268 infiltration to tumor content ratio and lymphocyte infiltration to stromal content ratio, followed by
269 C2 subtype and C3 subtype had the lowest (Fig. 2F, G). In the invasive margin (IM) region, different
270 degrees of lymphocyte infiltration and stromal components were observed for each subtype (Fig. 2H,
271 I). Importantly, the ratio of lymphocyte infiltration in the IM region of the C3 subtype to the CT
272 region was the highest, which confirmed that the stromal components excluded lymphocytes from
273 the CT region in the C3 subtype (Fig. 2J). AI-enabled spatial analysis of WSIs confirmed the semi-
274 quantitative results of the pathologists, with the C1 subtype belonging to the desert phenotype, C2
275 subtype belonging to the immunosuppressive phenotype, C3 subtype belonging to the excluded
276 phenotype, and C4 subtype belonging to the hot phenotype. Collectively, our CCCRC system further
277 refined the three-category immune classification system of solid tumors (32,33) and conformed to
278 the four-category immune classification system, termed “hot”, “desert”, “immune-excluded”, and
279 “immunosuppressive” phenotypes (31).

280 Biological characterization of CCCRC subtypes

281 We further elucidated the differences in biological characteristics among the CCCRC subtypes
282 using multi-omics data from the TCGA and CPTAC databases, including genomics, epigenetics,
283 transcriptomics, and proteomics data. As for the genomic alterations, the C4 subtype had the highest
284 TMB and neoantigen values and the lowest prevalence of chromosomal instability (CIN), including
285 SCNA counts and fraction of the genome altered (FGA) scores, compared with the other subtypes
286 (Fig. 3A, B). Conversely, C1 and C3 subtypes displayed the highest CIN levels, as described by
287 SCNA counts and FGA scores, and the lowest TMB and neoantigen values (Fig. 3A, B). The C2
288 subtypes displayed median CIN levels, TMB and neoantigen values. Among the frequently mutated
289 genes (>5%), the mutation frequencies of *APC* (85.8%), *TP53* (64.9%), and *KRAS* (46.7%) were the
290 highest in the C1 subtype compared to the other subtypes (all $P < 0.05$), followed by the C3, C2 and
291 C4 subtypes, which are closely associated with the occurrence of CRC (Fig. 3A, **Supplementary**
292 **Table8**). The C4 subtype was significantly enriched in mutations of *DNAH2* (26.0%), *MYH8*
293 (26.8%), and *BRAF* (26.0%) genes (all $P < 0.05$), whereas the mutation frequency of C1, C2 and C3
294 subtypes was low. In terms of the differences in SCNA, the C1 subtype with the highest CIN level
295 harbored significantly more amplified chromosomal regions (20q12, 20q13.12, 20q11.21, and
296 20q13.32) and deleted chromosomal regions (18q21.2, 18q22.1, and 18q12.3) (all $P < 0.05$) (Fig.
297 3A, B, **Supplementary Table9**). The C3 subtype was significantly enriched in the amplified
298 chromosomal regions of 13q33.3, 13q22.1, and 13q12.2 and the deleted chromosomal regions of
299 8p21.2 and 8p23.2 (all, $P < 0.05$). No SCNA was significantly enriched in C2 and C4 subtypes. The
300 single alteration events could not adequately delineate the CCCRC subtypes, we further computed

301 the fraction of the altered samples per oncogenic pathway in each CCCRC subtype. The C4 subtype
302 had the highest frequency of mutations in the cell cycle, HIPPO, MYC, NOTCH, PI3K, TGFB and
303 RTK-RAS pathways (all $P < 0.05$) (**Fig. 3C, Supplementary Table10**). Notably, the C1 subtype had
304 the highest frequency of mutations in the WNT pathway ($P = 0.019$). The frequency of mutations in
305 the TP53 pathway was not significantly different between CCCRC subtypes. The 10 oncogenic
306 pathways had higher frequencies of amplification (all $P < 0.05$), and 9 oncogenic pathways (except
307 the NRF2 pathway) had higher frequencies of deletion (all $P < 0.05$) in C1 and C3 subtypes
308 compared with C2 and C4 subtypes. Although none of genomic alterations was limited to or specific
309 to a particular subtype, the apparent enrichment of certain alteration events within the CCCRC
310 subtypes might highlight the TME heterogeneity and the genotype-CCCRC correlations of CRC.

311 Subsequently, we found that the different CCCRC subtypes displayed highly diverse epigenetic,
312 transcriptional, and proteomic profiles. As expected, the analysis of differentially methylated genes
313 (DMGs) between CRC and normal tissues demonstrated that the C4 subtype had the most DMGs (n
314 = 145) cared to the C1 subtype (n = 109), C2 subtype (n = 12), and C3 subtype (n = 23), and the C4
315 subtype exhibited extensive hypermethylation with the highest frequency of the CpG island
316 methylator phenotype (CIMP) compared with the other subtypes (**Fig. 3D**). We further analyzed the
317 regulon activity of critical chromatin modifiers and transcription factors in CRC, which could better
318 evaluate their combinatorial biological effects. The regulon activity of the chromatin modifiers of the
319 C1 subtype was generally higher than that of the other subtypes (**Fig. 3E**). The differences in the
320 regulon activity of the chromatin modifiers might indicate that epigenetically driven transcriptional
321 networks contributed to the remodeling of the TME, especially in the C1 subtype. Meanwhile, we
322 observed that each subtype had different transcription factor activities (**Fig. 3E**). C1-specific
323 upregulated genes (FDR < 0.001, top 1,000 by log₂FC) were enriched for the pathways associated
324 with tumor proliferation and metabolism (**Fig. S7A**). C2-specific upregulated genes were enriched
325 for the pathways associated with immune function, stroma, and neurons (**Fig. S7A**). C3-specific
326 upregulated genes were enriched for the pathways associated with stroma and neurons (**Fig. S7A**).
327 Both C2 and C3 subtypes were enriched in neuron-associated pathways, suggesting that neuronal
328 development might be involved in the formation of ECM (**Fig. S7A**). C4-specific upregulated genes
329 were enriched for the pathways associated with anti-tumor immune function (**Fig. S7A**). The
330 CCCRC-specific downregulated methylation genes (FDR < 0.001, top 1,000 by FDR) and the
331 CCCRC-specific upregulated proteins (P -value < 0.05) were also enriched for analogous biological
332 functional categories (**Fig. S7B, C**). Gene expression differences among the CCCRC subtypes were
333 validated in the CRC-RNAseq cohort (**Fig. S7D-G**). DMGs, differentially expressed genes (DEGs),
334 and differentially expressed proteins (DEPs) between each subtype were enriched for similar
335 biological functional categories. Indeed, DEGs and DEPs upregulated in the C4 subtype compared
336 with the C3 subtype were significantly enriched for immune-related pathways, whereas DEGs and
337 DEPs upregulated in the C3 subtype compared with the C4 subtype were highly enriched for TGF
338 beta signaling, EMT and angiogenesis (**Fig. 3F, G**). Similarly, genes with increased DNA
339 methylation in the C4 subtype compared with the C3 subtype were enriched for EMT and ECM
340 regulation, whereas genes with decreased DNA methylation in the C4 subtype were significantly
341 enriched for immune-related pathways (**Fig. 3H**). Collectively, the similar differential biological
342 patterns of DNA methylation, gene expression, and proteins among the CCCRC subtypes highlighted
343 their role in influencing the TME of CRC.

344 **Discovery of a nongenetic tumor evolution pattern**

345 Based on the theory of linear tumor evolution, we sought to investigate whether there is a
346 dominant evolutionary pattern among the different CCCRC subtypes. We integrated DNA
347 methylation, as well as transcriptomic and proteomic profiling, to analyze the differences between
348 each pair of CCCRC subtypes. Strikingly, the evolutionary patterns from C1 to C4, C2, and C3
349 subtypes had the same sign in log₂ (fold changes) and were dominate: all positive for increasing
350 DNA methylation (FDR < 0.05) /gene expression (FDR < 0.05)/protein level (P -value < 0.05) or all

351 negative for decreasing DNA methylation/gene expression/protein level (**Fig. 4A-C**). Furthermore,
352 we intersected all the positives for increasing gene expression from C1 to C4, C2, and C3 subtypes in
353 the CRC-AFFY and CRC-RNAseq cohorts and obtained 20 CCCRC genes (**Fig. 4D**,
354 **Supplementary Table11**), which were associated with TGF-beta signaling and neural development.
355 High expression of all 20 genes was significantly associated with poor PFS prognosis. To quantify
356 the evolutionary pattern of individual CRC patients, we performed GSVA to generate CCCRC
357 scores. To better evaluate the molecular features of the CCCRC scores, we also analyzed the
358 correlation between the CCCRC scores and the TME panels. As expected, the CCCRC scores were
359 strongly associated with the immunosuppressive signatures, including M2 macrophages, MDSCs,
360 Treg cells, mesenchymal cells, EMT, angiogenesis, and hypoxia (**Fig. S7H**). The CCCRC score was
361 the highest in the C3 subtype than in the other subtypes (**Fig. 4E**), and the high CCCRC score was
362 significantly associated with shorter OS (**Fig. 4F**). Overall, our analysis implied that the four
363 CCCRC subtypes not only had their own unique biological characteristics, but also had a dominant
364 evolutionary pattern driven by epigenetic, transcriptional, and proteomic reprogramming.
365

Differences in T cell function between CCCRC subtypes

366 We obtained the gene expression data for 7766 T cells from 12 patients with CRC, including
367 four patients with the C1 subtype, one patient with the C2 subtype, two patients with the C3 subtype,
368 and four patients with the C4 subtype (**Supplementary Table12**). A total of five CD4+ and four
369 CD8+ T cell clusters were identified in tumor and normal tissues, including CD8+ intraepithelial
370 lymphocytes (CD8+ IELs), effector memory CD8+ T cells (CD8+ Tem), recently activated effector
371 memory or effector CD8+ T cells (CD8+ Temra/Teff), exhausted CD8+ T cells (CD8+ Tex), central
372 memory CD4+ T cells (CD4+ Tcm) and naive CD4+ T cells (CD4+ Tn), tissue-resident memory
373 CD4+ T (CD4+ Trm) cells, TH1-like cells, Treg cells, and T cycling cells (**Fig. S8A, B**). The
374 characteristics of the T-cell clusters are summarized in **Supplementary Table13**. **Fig. 5A** and **B**
375 show the distribution of the 10 T cell clusters among each CCCRC subtype. The bulk RNAseq
376 analyses demonstrated that C2 and C4 subtypes showed relative upregulation of immune
377 components. Notably, we found that the C4 subtype was enriched in CD8+ Tem and CD8+
378 Temra/Teff cells, but lacked CD8+ Tex cells compared with the C2 subtype (**Fig. 5C, D**). Within the
379 subset of CD8+ Tex cells, we distinguished two smaller subsets according to their gene expression
380 markers, KLRG1+ CD8+ Tex cells and HSPA1B+ CD8+ Tex cells (**Fig. S8C, D**). KLRG1+ CD8+
381 Tex cells were more enriched in C2 and C3 subtypes than the C4 subtype (**Fig. 5E**), which resemble
382 terminally exhausted T cells, and they were associated with non-response to ICB therapy (34).
383 Moreover, the higher ratio of KLRG1-to-CD8A expression, the worse the OS of patients in CRC-
384 AFFY and CRC-RNAseq cohorts (**Fig. 5F, G**). Meanwhile, we re-clustered the Treg cells and
385 identified four Treg cell subsets, namely, TXNIP+ Treg cells, TNFRSF4+ Treg cells, HSPA1A+ Treg
386 cells, and IFIT1+ Treg cells (**Fig. S8E-H**). We found that TNFRSF4+ Treg cells were significantly
387 more enriched in C2 and C3 subtypes than the C4 subtype (**Fig. 5H**), which might indicate that
388 TNFRSF4+ Treg cells were closely related to the formation of the tumor stroma. The higher ratio of
389 TNFRSF4-to-FOXP3 expression, the worse the OS of patients in CRC-AFFY and CRC-RNAseq
390 cohorts (**Fig. 5I, J**). Equally important, patients with a high ratio of KLRG1-to-CD8A expression or
391 a high ratio of TNFRSF4-to-FOXP3 expression who received ICB therapy had a shorter OS and PFS
392 than those with a low ratio of KLRG1-to-CD8A expression or a low ratio of TNFRSF4-to-FOXP3
393 expression in Gide, Hugo, Jung, and IMvigor210 datasets (**Fig. S9A-H**). We also found that the
394 expression of KLRG1 and TNFRSF4 was higher in CD8+ T cells and Treg cells, respectively, in
395 tumor tissues than in adjacent tissues (**Fig. 5K, L**). Overall, we used scRNAseq data to analyze the
396 differences in T cell function among the different CCCRC subtypes, and the C2 subtype did show
397 more immunosuppression than the C4 subtype, which was consistent with the bulk RNAseq
398 analyses.

Significance of CCCRC in guiding clinical treatment of CRC

399 The 5-fluorouracil (5-FU)-based chemotherapy, anti-VEGF (bevacizumab), and anti-EGFR

401 (cetuximab, panitumumab) therapies are the first-line treatment options for CRC. We further
402 explored whether the different CCCRC subtypes could predict therapeutic efficacy. In the CRC-
403 AFFY cohort, 564 patients with stage II and III CRC had chemotherapy-related clinical information,
404 including 323 who were not treated by chemotherapy and 241 who were treated by chemotherapy.
405 Furthermore, 155 stage II and III CRC patients with or without chemotherapy in the GSE103479
406 dataset were also included in our study. We found that C1 patients with stage II and III CRC
407 receiving chemotherapy had a better OS than those who did not and were more suitable for 5-FU-
408 based chemotherapy in the CRC-AFFY cohort and the GSE103479 dataset (**Fig. 6A, B**).

409 Furthermore, 162 mCRC patients were treated with chemotherapy or a combination of
410 chemotherapy and bevacizumab in the GSE104645 dataset. The response rate (RR) after
411 chemotherapy (including partial response [PR] and complete response [CR]) of C1 and C4 subtypes
412 tended to be higher than that of C2 and C3 subtypes (**Fig. S10A**), whereas the RR of the C2 subtype
413 treated with a combination of chemotherapy and bevacizumab tended to be higher than that of the
414 other subtypes (**Fig. S10B, C**). In addition, the RR tended to be higher in the C2 subtype treated with
415 (5-FU)-based chemotherapy and bevacizumab than in those treated with chemotherapy alone (**Fig.**
416 **S10D**).

417 The GSE104645 dataset also contained 111 mCRC patients without the *RAS* mutation who were
418 treated with anti-EGFR antibody. The disease control rates (DCR) after anti-EGFR therapy
419 (including partial response, complete response, and stable disease) were 75% for C1, 66% for C2,
420 51% for C3, and 65% for C4, respectively ($P = 0.16$) (**Fig. S10E**). The DCR of the C1 subtype with
421 anti-EGFR therapy tended to be higher than that of the other subtypes ($P = 0.08$) (**Fig. S10F**).
422 Notably, PFS of the C1 subtype with anti-EGFR therapy tended to be better than that of the other
423 subtypes (log-rank P -value = 0.067) and OS of the C1 subtype was significantly better than that of
424 the other subtypes (log-rank P -value = 0.0091) (**Fig. 6C, D**). The above results suggested that the C1
425 subtype may benefit from chemotherapy and anti-EGFR treatment, whereas the C2 subtype may
426 benefit from a combination of (5-FU)-based chemotherapy and bevacizumab, but there was no
427 evidence that the C3 subtype is suitable for these treatments.

428 To further explore the treatment strategies of the CCCRC subtypes, we trained a pre-clinical
429 model based on a filtered gene set comprised of 81 CCCRC subtype-specific and cancer cell-
430 intrinsic gene markers (**Supplementary Table14**). The pre-clinical model was constructed using the
431 xgboost algorithm with the highest accuracy, AUC and F1 scores (**Fig. S11A-C**). The 71 human CRC
432 cell lines were classified into four CCCRC subtypes (**Supplementary Table15**). The AUCs of the
433 drug response between CCCRC subtypes were compared (**Fig. 6E**). Notably, the AUCs of the
434 bromodomain and extra-terminal domain inhibitor (BET) JQ1 was significantly lower in C1 subtype.
435 The AUCs of G9a-specific inhibitor UNC0638 were significantly lower in the C3 and C1 subtypes.
436 The AUCs of WNT pathway inhibitor SB216763 and Hedgehog pathway inhibitor vismodegib were
437 significantly lower in the C3 and C2 subtypes.

438 Immune checkpoint blockade (ICB) therapy has recently emerged as a highly promising
439 therapeutic strategy for various malignancies, but it lacks effective markers to identify suitable
440 patients. We collected multiple ICB therapy-associated datasets to evaluate whether the CCCRC
441 classification system could be used as a tool to predict ICB therapy efficacy. GSVA of the TME-
442 related signatures and the Z-score normalization of signature scores could reduce the tissue-type-
443 specific effects. In two independent melanoma datasets (Gide and Hugo datasets, $n = 68$) treated with
444 anti-PD1 therapy, patients were classified into the four CCCRC subtypes. As expected, the RR to
445 anti-PD1 therapy in the C4 subtype was 81% in contrast to only 21% in the C3 subtype (**Fig. 6F**),
446 with prolonged PFS and OS in both subtypes (**Fig. 6G, H**). Similar findings were observed in the
447 cohorts of anti-PD1/PDL1 treated patients with urothelial carcinoma (IMvigor210 dataset, $n = 348$)
448 and lung cancer (Jung dataset, $n = 27$). RR was significantly higher in patients with the C4 subtype
449 (40%) compared with the other subtypes (C1 with 17%, C2 with 18%, C3 with 4%) in the
450 IMvigor210 dataset (**Fig. 6I**). The C1 subtype in the IMvigor210 and Jung datasets had the longest

451 OS, while patients with the C3 subtype had the worst OS (**Fig. 6J, K**).

452 Single-sample gene classifier construction

453 For each subtype, we selected the genes with $FDR < 0.05$ and $\log FC > 0$ and ordered them
454 according to fold-change to generate a subtype-specific gene set ($n = 9,256$ mRNA genes). After
455 screening by the Boruta importance test, a total of 80 unique genes were used to construct the final
456 classifier in the training set and the validation set (**Supplementary Table 16**). As shown in **Fig.**
457 **S11D-F**, the performance of the xgboost algorithm was the best with the highest accuracy, AUC and
458 F1 scores. The gene classifier based on the xgboost algorithm is publicly available at
459 <https://github.com/XiangkunWu/CCCRC>, and the CCCRC subtype information of a single patient
460 can be obtained by directly inputting the gene expression matrix of the patient. The single-sample
461 gene classifier could facilitate the discovery of new biomarkers and the personalized treatment of
462 clinical patients with CRC.

463

464 Discussion

465 The key role of the TME in dynamically regulating tumor progression and affecting treatment
466 outcomes has been widely recognized, and treatment strategies targeting the TME have become a
467 promising approach for cancer therapy (28,35-37). However, there are few comprehensive analyses
468 that consider the tumor cells and the TME as a whole. The comprehensive dissection of the crosstalk
469 between tumor cells and TME may reveal new tumor biology concepts and identify therapeutic
470 targets, and ultimately achieve precise medical treatment (20,28). Thus, we collected the molecular
471 features of the tumor cells and TME to reconstruct the whole tumor composition and performed
472 integrated analyses to understand the TME. The four CCCRC subtypes had distinct molecular and
473 histopathological characteristics, therapeutic efficacy, and prognosis (**Fig. 7**). We identified a
474 nongenetic evolutionary pattern from C1, C4, C2, and C3 was associated with an evolution from a
475 cold (C1) to a hot (C4) and eventually suppressive (C2) and excluded (C3) microenvironment (**Fig.**
476 7).

477 In this study, we identified four subtypes with distinct TME features through unsupervised
478 clustering analysis of approximately 2,000 CRC patients. C1 and C4 subtypes are typical desert and
479 inflamed tumors, respectively, while C2 and C3 subtypes were difficult to classify into one of the
480 classical immunophenotypes of the three-category immune classification system (“desert”,
481 “excluded”, and “inflamed” phenotypes) (32,33) based on TME features due to the unclear
482 distribution of stromal components and lymphocytes. Our pathologists evaluated the histological
483 characteristics for each subtype under the microscope and observed that the C2 subtype was mainly
484 categorized as an excluded phenotype and the C3 subtype was mainly classified as a desert and an
485 excluded phenotype. However, the WSIs showed that lymphocytes in the C2 subtype were more
486 frequently intermixed with the stroma within but not adjacent to the main tumor mass, and
487 lymphocytes in the C3 subtype were more frequently excluded from the tumor mass but not
488 intermixed with lymphocytes within the main tumor mass, both of which were classified as the
489 excluded phenotype. Notably, we used AI-enabled spatial analysis of WSIs to confirm the semi-
490 quantitative results of the pathologist, that is, the C2 subtype had increased lymphocyte and stromal
491 infiltration in CT and IM regions and the C3 subtype had the highest abundance of stroma and less
492 lymphocyte infiltration in the CT region, while lymphocyte infiltration and stromal components were
493 observed in the IM region. We also found that the C2 subtype had the highest T cell dysfunction
494 score and the C3 subtype had the highest T cell exclusion score. GSEA demonstrated that the
495 terminally exhausted CD8+ T cell signature was upregulated in the C2 subtype compared with the
496 C4 subtype. scRNA-seq analysis showed that KLRG1+ CD8+ T cells were significantly more
497 enriched in C2 and C3 subtypes than the C4 subtype. KLRG1+ CD8+ T cells were associated with
498 nonresponse to ICB therapy, which were more terminally differentiated than KLRG1- CD8+ T cells
499 and had lower proliferative capacity (34). KLRG1 is a marker of terminal differentiation of CD8+T
500 cells (34), and the inhibitory receptor of ILC1s (group 1 innate lymphoid cells), ILC2s, and NK cells

501 (38). ILC1s in tumors express high levels of the KLRG1 gene and pro-angiogenic activity and may
502 even promote tumor progression in TGF-beta-rich tumors (38). Therefore, we defined C2 and C3
503 subtypes as immunosuppressed and immune-excluded, respectively. Our CCCRC classification
504 system refined the three-category immune classification system (32,33). Moreover, we defined for
505 the first time the four-category immune classification system based on multi-omics analysis and
506 histological characteristics (“hot”, “immunosuppressed”, “excluded”, and “cold” phenotypes) (31).
507

508 Interestingly, we observed a dominant evolution pattern among the CCCRC subtypes based on
509 the theory of linear tumor evolution (39), that is, the evolutionary pattern from C1 (proliferative
510 subtype) to C4 (immunomodulatory subtype), C2 (immunosuppressed subtype), and C3 (immune-
511 excluded subtype) subtypes. We hypothesized that during the development of CRC, immune
512 infiltration gradually increased with the increase of genomic alterations and tumor immunogenicity,
513 while the stroma and nerves also gradually increased. The stroma and nerves play important roles in
514 the progression of CRC, gradually causing lymphocytes to become exhausted and excluding them
515 from the tumor bed. Tavernari et al. demonstrated that progression from lepidic to solid histology of
516 lung adenocarcinoma was associated with a transition from a cold (lepidic) to a hot (papillary and
517 especially acinar) and eventually suppressive and excluded (solid) microenvironment (40). Their
518 proposed nongenetic tumor evolution pattern is consistent with our findings in CRC. What's more,
519 we have identified a gene list that promotes this evolutionary pattern and interfering with these genes
520 may prevent tumor progression. We proposed CCCRC score based on the gene list to quantify the
521 evolutionary pattern of individual CRC patients, which were independent prognosis predictors and
522 associated with immunosuppressive components. Additional experimental evidence is needed to
523 verify the bold speculation of this evolutionary pattern, and a large collective effort is needed to
524 arrive at a consensus.

525 The CCCRC subtypes significantly correlated with previous molecular subtypes, including CMS
526 subtypes (13), Budinska subtypes (6), De Sousa subtypes (7), Roepman subtypes (9), and
527 Sadanandam subtypes (10), as well as prognosis. The CMS classification system integrates six
528 independent classification systems utilizing a network-based approach (13), which is considered as
529 the most robust classification system that is used to predict prognoses and to guide ICB therapy,
530 chemotherapy, and anti-EGFR therapy as well as to screen new potential targeted drugs (41-46).
531 However, patients with the CMS1 subtype, characterized by immune infiltration and activation, did
532 not have the best prognoses compared with the other CMS subtypes, while patients with the CMS2
533 subtype, characterized by low immune and inflammatory signatures, had the best prognoses (13,47).
534 Our CCCRC subtypes significantly correlated with OS and PFS of patients and had higher
535 correlation rates compared with the CMS classification system. We found that the CMS1 subtype
536 showed fewer anti-tumor immune components and more stromal components and other
537 immunosuppressive components compared to the C4 subtype. Meanwhile, the C4 subtype with MSI-
538 H had higher immune infiltration compared with the CMS4 subtype with MSI-H. Thus, we boldly
539 speculated that our CCCRC classification system was more suitable than the CMS classification
540 system for predicting the prognosis and efficacy of ICB therapy.

541 The CCCRC classification system might facilitate clinical treatment decisions and new
542 therapeutic target discoveries. To explore the potential treatment strategies for the CCCRC subtypes,
543 we generated a gene list comprised of subtype-specific, cancer cell-intrinsic genes according to the
544 study of Peter et al. to develop a pre-clinical model (41), which could be used to analyze the drug
545 response data from cell lines, patient-derived xenografts, and tumor organoids. We observed that the
546 C1 and C3 subtypes had higher CIN level than C2 and C4 subtypes. And most of the critical
547 chromatin modifications had higher regulon activity in the C1 subtype. It has been well established
548 that CIN and epigenetic silencing leads to decreased tumor intrinsic immunogenicity (48-50). Our
549 analysis also demonstrated that the C1 subtype was more sensitive to the BET inhibitor JQ1. Zhang
550 et al. found that JQ1 induces anti-tumor immunity in head and neck squamous cell carcinoma by
enhancing MHC class I expression and can improve the response rate to ICB treatment (51). C1 and

551 C3 subtypes were suitable for G9a-specific inhibitor UNC0638. Zhang et al. also found that BRD4
552 inhibits the MHC class I expression by recruiting G9a (51). The C2 and C3 subtypes were
553 significantly enriched in the WNT pathway, and our analysis also indicated that these two subtypes
554 were more sensitive to the WNT pathway inhibitor SB216763. Meanwhile, we identified a large
555 number of mutant genes significantly enriched in the C4 subtype, which mutated to cause substantial
556 immune infiltration and could be candidate genes for mRNA vaccine development. The
557 RNA-mediated immunotherapy regulating the TME is known as the next era of cancer treatment
558 (36). The CCCRC subtype-specific genes were also identified in our study to screen out the new
559 therapeutic targets for the TME.

560 To conclude, our study proposed the CCCRC classification system and performed integrated
561 data analysis to clearly characterize the molecular features and histological characteristics of each
562 CCCRC subtype, develop the corresponding personalized treatments for patients with the different
563 CCCRC subtypes, and construct the simple gene classifier to facilitate clinical application. We
564 believe that our study will serve as a research paradigm for dissecting the TME and for transitioning
565 from molecular classification to clinical translation, thereby accelerating the understanding of the
566 TME in CRC and contributing to the development of therapeutic targets against TME.
567

568 **Supplementary material and methods**

569 **Acquisition and processing of gene expression profiles (GEP) for the investigation of CCCRC**

570 A total of 2195 samples were obtained from ten publicly available datasets (**Supplementary Table1**). The
571 eight publicly available raw microarray datasets sequenced by the Affymetrix gene chip were downloaded from the
572 Gene Expression Omnibus (GEO; <https://www.ncbi.nlm.nih.gov/geo/>) and renormalized by the robust multi-
573 array average (RMA) method, including GSE13067, GSE13294, GSE14333, GSE17536, GSE33113,
574 GSE37892, GSE38832 and GSE39582. Samples that overlapped in GSE14333 and GSE17536 datasets were
575 excluded from the GSE14333 dataset. Level-3 TCGA and CPTAC RNA sequencing (RNAseq) datasets were
576 obtained from the TCGA data portal (March 2022) (<https://portal.gdc.cancer.gov/>), and the count data were
577 normalized by the “voom” method. Ensembl IDs were annotated into gene symbols using GENCODE (v36). If the
578 gene symbol had multiple probes or duplicates, the median value was calculated as its relative GEP. Before
579 merging the microarray datasets or RNAseq datasets into the CRC-AFFY or CRC-RNAseq cohort, the batch effects
580 were examined using principal component analysis (PCA) and corrected using the “Combat” function. The
581 selection criteria of these patients included: (1) CRC primary tissue samples; (2) coming from the same sequencing
582 platform; (3) surgically resected specimens. The exclusion criteria included: (1) CRC metastatic tissue; (2)
583 puncture tissues. Detailed information on the sample size and the corresponding clinicopathological data of the
584 CRC-AFFY and CRC-RNAseq cohorts are summarized in **Supplementary Table1**.

585 **Calculation of the TME-related signature scores**

586 After reviewing previously published studies, the Molecular Signatures Database (MSigDB;
587 <http://www.gsea-msigdb.org/gsea/msigdb/index.jsp>), and the Reactome pathway portal
588 (<https://reactome.org/PathwayBrowser/>), we identified relevant biomarker genes for tumor, immune, stromal,
589 and metabolic reprogramming signatures. The 4,525 mRNAs from each of the 61 TME-related signatures are listed
590 in **Supplementary Table2**, as well as the source of each signature. Gene set variation analysis (GSVA) with default
591 parameters using R package “GSVA” was performed to calculate the signature score of each TME-related signature
592 for each sample of each cohort separately based on the relative GEP (52).

593 **Normal tissue versus tumor tissue analysis**

594 To assess the distribution of normal and tumor samples in the GSE39582 (n = 19 normal) and TCGA (n = 41
595 normal) datasets, the gene expression data of each dataset were re-normalized, including the normal samples
596 (consistent with the description of data normalization above). Principal coordinate analysis (PCOA) based on
597 euclidean distance was used to analyze the distribution between normal and CRC samples (53). Permutational
598 multivariate analysis of variance (PERMANOVA) test was used to evaluate whether the difference in euclidean
599 distances between the normal and CRC samples was statistically significant (obtained using R package “vegan”
600 (54)).

601 **Comprehensive characterization of CRC**

602 The “ConsensusClusterPlus” function of the R package “ConsensusClusterPlus” (26) was applied to identify
603 the optimal number of CCCRC based on the TME-related signatures in the CRC-AFFY cohort (partitioning around
604 medoids (pam) clustering; “Pearson” distance; 1,000 iterations; from 2–7 clusters) . The stability of the clusters

605 was evaluated using the consensus matrix depicted as a dendrogram atop the heat map, the empirical cumulative
606 distribution function (CDF) plot, and the delta area plot. To verify the repeatability and robustness of CCCRC, we
607 used the “pamr.predict” function of the R package “pamr” (27) to classify the CRC samples based on the TME-
608 related signature scores in the CRC-RNAseq cohort (seed = 11, threshold = 0.566). The TME-related signature
609 scores were normalized by the Z-scores before performing “pamr.predict” analysis. PCOA based on euclidean
610 distance was used to analyze the distribution of the CCCRC subtypes.

611 **Estimation of the TME cell abundance with other methods**

612 The cell abundance of each sample was estimated based on the GEP using the microenvironment cell
613 populations-counter (MCP-counter) algorithm (55) and the CIBERSORT (56) algorithm, both of which have been
614 validated using the GEP of the corresponding cell populations and the degree of cellular infiltration estimated by
615 immunohistochemistry. The MCP-counter algorithm estimated the cell abundance of 9 immune and stromal cell
616 populations. The CIBERSORT algorithm, which applies the LM22 matrix, estimated the cell fraction of 22 immune
617 cell populations. The ESTIMATE algorithm with default parameters was utilized to estimate the degree of
618 infiltration of the total immune cells and stromal cells in the TME of each sample, as well as the tumor purity (57).
619

620 **Calculation of the other biological pathway enrichment scores**

621 Human metabolism-related pathways were obtained from the Kyoto Encyclopedia of Genes and Genomes
622 (KEGG) database (<https://www.genome.jp/kegg/>). The 1,660 genes assigned to 86 human metabolism-related
623 pathways are listed in **Supplementary Table17**. 10 oncogenic signatures containing 331 genes and the terminally
624 exhausted T cell signature were retrieved from a previously published study (58,59) (**Supplementary Table17**).
625 GSVA was performed to calculate the enrichment score of each signature for each sample of each cohort separately
626 based on the relative GEP. To identify the potential differences in the biological functions of genes among CCCRC
627 subtypes, gene set enrichment analysis (GSEA) was performed based on the gene signatures using R package
628 “clusterprofiler” (60).

629 **Histopathological examination of the TCGA-CRC samples**

630 A total of 616 TCGA CRC diagnostic hematoxylin and eosin (HE)- stained whole-slide images (WSIs) were
631 downloaded from the TCGA data portal (March 2022) (<https://portal.gdc.cancer.gov/>), and the WSIs were
632 examined blindly by two experienced pathologists. A total of 254 WSIs were included after removing the WSIs
633 with poor quality and without views of the invasive margin (**Supplementary Table18**). According to the semi-
634 quantitative pathological assessment of lymphocytes and their spatial location with malignant epithelial cells, the
635 pathologist classified CRC into three immunophenotypes: “desert”, “excluded”, and “inflamed”, as previously
636 described (32,33). The inflamed phenotype was characterized by abundant lymphocytes in direct contact with
637 malignant cells, the excluded phenotype was characterized by lymphocytes merely present in the stroma within or
638 adjacent to the main tumor mass, and the desert phenotype was characterized by the lack of lymphocytes and
639 stroma. We performed artificial intelligence (AI)-enabled spatial analysis of WSIs and developed a CRC-tissue
640 classifier to identify eight tissue types: tumor, stroma, lymphocyte, normal colon mucosa, debris, adipose, mucin,
641 and muscle, and quantified the abundances of the tumor, stroma, and lymphocytes in the core tumor (CT) region
642 and the invasive margin (IM) region, respectively.

643 Our deep learning model (CRC-tissue classifier) consisted of two sequential parts: a muscle/non-muscle
644 classifier that could distinguish each muscle patch in hematoxylin and eosin (H&E)-stained WSIs, and a seven-
645 class tissue classifier that could classify seven tissue types: tumor, stroma, lymphocytes, normal colon mucosa,
646 debris, adipose, and mucin. To develop the CRC-tissue classifier, we randomly selected 68,506 patches to train the
647 muscle/non-muscle classifier and randomly selected 54,597 patches to train the seven-class tissue classifier, after
648 combining the zenodo NCT-CRC-HE-100K dataset and the NCT-CRC-HE-100K dataset
649 (<https://zenodo.org/record/1214456#.YyRJGWB6RmM>). Next, we evaluated the model on 4288 patches from 9
650 patients from the TCGA CRC datasets. The tissue regions were manually annotated by two experienced
651 pathologists. The WSI tissue type prediction pipeline was as follows. First, the background was removed by the
652 preprocessing steps. Second, the WSIs were segmented into non-overlapping image patches at a resolution of 0.5
653 $\mu\text{m}/\text{pixel}$ (20 magnification). It is worth noting that if the WSI consisted of 40 magnifications, it was down-
654 sampled to 20 magnifications. Next, the image patches were fed into the CRC-tissue classifier. If an image patch
655 was determined to be non-muscle by the muscle/non-muscle classifier, it was fed into the multi-tissue classifier to
656 predict its tissue class. We selected ResNet50 as the basic model architecture, adding one added full connection
657 layer with ReLU as the activation function and 0.4 dropout: $\text{ReLU}(\mathbf{x}) = \max(0, \mathbf{x})$, where \mathbf{x} is the input of the
658 ReLU function. Cross Entropy was selected as the loss function. During this experiment, we tested three model
659 architectures, including ResNet50, vgg16, and Inception V3 for the multi-tissue classifier. According to the
660 accuracy of seven tissues (tumor, stroma, lymphocytes, normal colon mucosa, debris, adipose, and mucin) in the
661 CRC-7k dataset, the performance of ResNet50 was the best, which was the reason we selected ResNet50 as the
basic model architecture.

662 After recognizing the CRC tissue types by our deep learning model automatically, we quantified the
663 abundances of the tumor, lymphocytes, and stroma in the core tumor (CT) region and the invasive margin (IM)
664 region. The quantification pipeline consisted of four steps. First, we used the open source software QuPath-0.3.2
665 (<https://qupath.github.io/>) to delineate the CT and IM region. The IM region was defined as 500mm outside the CT
666 region (61). The CT and IM regions were manually annotated by two experienced pathologists to reduce bias.
667 Second, the abundances of the tumor, lymphocytes, and stroma in each WSI were quantified with an area ratio of
668 their area. Finally, we calculated the mean abundances of the tumor, lymphocytes, and stroma in each WSI. A total
669 of 254 TCGA-CRC WSIs were quantified.

670 **Acquisition of signatures associated with the immune checkpoint blockade (ICB) therapy response**

671 The Tumor Immune Dysfunction and Exclusion (TIDE) score was calculated using GEP, and it was used to
672 evaluate the degree of T cell dysfunction and T cell exclusion (62). The higher the score, the later the dysfunction
673 stage of T cells or the higher the degree of T cell exclusion. The gene expression average of all samples in each
674 cohort was used as the normalized control and the normalized gene expression matrix was uploaded to the TIDE
675 website (<http://tide.dfci.harvard.edu/>).

676 **Acquisition and processing of CRC multi-omics data**

677 Masked somatic mutation data (n = 571 samples), masked copy number segment data (n = 609 samples) and
678 DNA methylation beta-values (Illumina human methylation 450) (45 normal samples and 390 tumor samples) were
679 download from the TCGA data portal (March 2022) (<https://portal.gdc.cancer.gov/>). The liquid chromatography-
680 tandem mass spectrometry (LC-MS/MS)-based proteomic data for the TCGA CRC samples (n = 88 samples) were
681 obtained from a previously published study (63). The R package “maftools 2.6.05” with default parameters was
682 used to analyze the somatic mutation data. Synonymous mutations were regarded as wild-type, and genes with
683 mutation rates <5% were excluded. Nonsynonymous mutations were used to calculate tumor mutation burden
684 (TMB). Somatic copy number alterations (SCNA) defined by the GISTIC2.0 module on the GenePattern website
685 (<https://www.genepattern.org/>), including arm-level gain (1), and high amplification (2), diploid/normal (0),
686 arm-level deletion (-1), and deep deletion (-2). The CINmetrics algorithm was used to calculate chromosomal
687 instability signature (CIN), including SCNA count and fraction of the genome altered (FGA), which was proposed
688 by Vishalozza et al. (<https://rdrr.io/github/lasseignelab/CINmetrics/>) based on previously published studies
689 (64-66). If somatic mutation events or SCNAAs occurred in one or more genes in the oncogenic pathway, the tumor
690 sample was considered altered in a given pathway. The microsatellite (MSI) status was obtained from the CMS
691 website (<https://www.synapse.org/#!Synapse:syn2623706>). Tumor neoantigen signature were obtained from
692 a previously published study (67). The prevalence of somatic mutation events or SCNAAs was compared among
693 CCCRC cases using Fishers exact test or chi-square test. For the DNA methylation data, probes located in promoter
694 CpG islands were extracted, including TSS200, 1stExon, TSS1500, and 5'UTR. The probes detected on X and Y
695 chromosomes or any probe with NA value were removed. For genes with multiple probes mapped to the promoter,
696 the median beta-value was calculated as the degree of gene methylation. The beta-value difference was defined as
697 the difference between the mean beta value of each CCCRC sample and normal samples, and Wilcoxon rank-sum
698 test was used to test whether the difference was statistically significant. P-values were adjusted for multiple
699 comparisons by the FDR method. Differentially methylated genes (DMGs) between normal and CRC samples were
700 defined as |mean beta value| <0.2 in normal samples, |mean beta value| >0.5 in CRC samples, and FDR <0.05.
701 DMGs between CCCRC subtypes were defined as FDR <0.001. To identify differentially expressed genes (DEGs)
702 between CCCRC subtypes in the CRC-AFFY and CRC-RNAseq cohorts, the “limma” package was used with FDR
703 <0.001. Wilcoxon rank-sum test was used to identify differentially expressed proteins (DEPs) with P-values <0.05
704 between CCCRC subtypes.

705 **Regulon analysis**

706 The R package “RTN” was used to reconstruct the transcriptional regulatory networks of regulons (68),
707 including 31 transcription factors and 82 chromatin remodeling genes, that were associated with CRC (69,70)
708 (**Supplementary Table19**). Mutual information and Spearman’s correlation analysis were utilized to infer the
709 possible associations between a regulator and all possible targets from the GEP, and the permutation algorithm was
710 used to eliminate associations with an FDR $>1 \times 10^{-5}$. Unstable associations were removed by bootstrap analysis (n
711 = 1,000), and the weakest association in triangles consisting of two regulators and common targets were eliminated
712 by the data processing inequality algorithm. Two-tailed gene set enrichment analysis was used to calculate the
713 regulon activity score for each sample.

714 **Publicly available CRC classification systems**

715 To classify CRC samples into different CRC subtypes according to the previously published gene classifier,
716 gene lists for the five classifiers were extracted from relevant publications and summarized (**Supplementary**
717 **Table20**), including Budinska subtypes (6), De Sousa subtypes (7), Roepman subtypes (9), and Sadanandam
718 subtypes (10). The nearest template prediction (NTP) algorithm was employed to classify the samples and to

719 generate an FDR to assess the classification robustness. For NTP implementation, we screened genes that were
720 specifically and positively associated with one subtype according to the screening strategies of a previously
721 published study (71).

722 **Bulk RNAseq and scRNAseq data processing of the GSE108989 dataset**

723 A total of 12 CRC samples with bulk RNAseq and scRNAseq data were obtained from the GSE108989 dataset
724 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108989>) (72). To identify the CCCRC
725 subtypes, bulk RNAseq with transcripts per million (TPM) was further log2- transformed, and GSVA was
726 performed to calculate the signature score of each TME-related signature in each sample based on the GEP. The
727 “pamr.predict” algorithm was used to classify CRC samples into four CCCRC subtypes based on the TME-related
728 signatures (seed = 11, threshold = 0.566). For scRNAseq data processing, the raw gene expression data were
729 normalized and selected according to the following criteria: cells with >200 genes and <7,000 genes and <20% of
730 mitochondrial gene expression in UMI counts, which was determined using the Seurat R package. Counts of the
731 filtered matrix for each gene were normalized to the total library size with the Seurat “NormalizeData” function.
732 The “FindVariableGenes” function was used to identify 2,000 hypervariable genes for unsupervised clustering.
733 Next, each integrated feature was centered to a mean of zero and scaled by the standard deviation with the Seurat
734 “ScaleData” function. The “RunPCA” function was used for PCA. We identified diverse T cell clusters using the
735 “FindClusters” function, and set the resolution parameter to 0.5. Each cell cluster was compared to the other
736 clusters by the “FindAllMarkers” function to identify DEGs (only pos: TRUE, min.PCt: 0.25, logFc.threshold:
737 0.25). Cell annotation was carried out by consulting the latest cell marker databases, such as CellMarker
738 (<https://www.biologend.com/en-us/cell-markers>) and PanglaoDB
739 (<https://ngdc.cncb.ac.cn/databasecommons/database/id/6917>), combined with a previously published study
740 (72). To define the feature genes for each CCCRC subtype, differential expression analysis between CCCRC
741 subtypes was performed using the “FindMarkers” function. FDR <0.05 were considered statistically significant.

742 **Collection and processing of therapy-associated datasets**

743 Therapy-associated datasets were used to explore the treatment strategies for each CCCRC subtype. Gene
744 expression profiles of GSE103479 and GSE104645 datasets were downloaded from the GEO database. If the gene
745 symbol was annotated with multiple probes, the median value was used as the expression of the gene. The clinical
746 data of the GSE104645 dataset was obtained from the supplementary table of a study by Okita et al. (73). The
747 GSE103479 dataset contained 156 stage II and III CRC patients with or without 5-fluorouracil (5FU)-based
748 chemotherapy. The GSE104645 dataset contained 193 mCRC patients treated with chemotherapy, a combination of
749 chemotherapy and bevacizumab, or anti-EGFR therapies. The available RNAseq expression dataset of patients
750 treated with anti-PD-1 therapy was also downloaded. The Gide (PRJEB23709) dataset was downloaded, and the
751 raw fastq files was re-analyzed. The RNA reads were aligned using STAR v2.5.3 and quantified as TPM using
752 RSEM v1.3.0 and log₂-transformed. Ensembl IDs were annotated into gene symbols using GENCODE v36. The
753 gene expression profiles of Hugo (GSE78220) and Jung (GSE135222) datasets and the corresponding clinical data
754 were downloaded from the GEO database, and the FPKM values were converted to log₂-transformed TPM values.
755 We obtained the gene expression data (n = 348) of urothelial carcinoma patients in the IMvigor210 dataset treated
756 with anti-PD-L1 therapy and the corresponding clinical data using R package “IMvigor210CoreBiologics 1.0.0”
757 (IMvigor210 dataset), and the count values were converted to log₂-transformed TPM values. To reduce batch
758 effects and tissue-type-specific effects, we first performed GSVA analysis of the TME-related signatures in each
759 dataset, and the signature scores were normalized by Z-scores before using the “pamr” algorithm. Next, we used
760 the “pamr” algorithm to classify the samples into the four CCCRC subtypes based on the TME-related signatures in
761 each dataset (seed = 11, threshold = 0.566). Detailed information on the sample size and the corresponding
762 treatment data of the therapy-associated datasets are summarized in **Supplementary Table21**.

763 To explore the treatment for each CCCRC subtype using cancer cell line drug-sensitivity experiments, we
764 developed a pre-clinical model based on subtype-specific, cancer cell-intrinsic gene markers according to a
765 previously published study (41). The CCCRC subtype-specific mRNA genes (log₂ (fold change) >0 and FDR
766 <0.05) was determined by R package “limma” based on RMA normalization data in the CRC-AFFY cohort. The
767 gene expression of human CRC tissues versus patient-derived xenografts in the GSE35144 dataset by the R
768 package “limma” was used to remove those genes associated with stromal and immune components. DEGs with
769 FDR >0.5 and log₂ (fold change) <2 were considered as cancer cell-intrinsic genes. A total of 71 human CRC cell
770 lines with RNAseq data (log₂TPM) was obtained from the Genomics of Drug Sensitivity in Cancer (GDSC)
771 database (<https://depmap.org/portal/download/all/>), 43 of which had drug sensitivity results. RNAseq data for
772 71 human CRC cell lines was used to further determine the cancer cell-intrinsic genes and genes among the top
773 25% within (i) the 10–90 % percentile range of the largest expression values and (ii) the highest expression in at
774 least three samples. The subtype-specific genes and cancer cell-intrinsic genes were intersected and further
775 screened by the Boruta importance test to generate the gene list for developing the pre-clinical model. The

776 GSE13067, GSE13294, GSE33113, GSE37892, GSE38832, and GSE39582 datasets were combined as the training
777 set and the GSE14333 and GSE17536 datasets were used as the validation set, separately. The GEP of CRC cell
778 lines was normalized by the “quantileNormalizeByFeature” function in the package of “FSQN” (74). The random
779 forest algorithm (RF), support vector machine algorithm (SVM), eXtreme Gradient Boosting (xgboost) algorithm,
780 and logistic regression algorithm was used to develop the pre-clinical models. The accuracy, F1 values, and AUC
781 values were computed to evaluate the performance of the pre-clinical models. We used the pre-clinical model with
782 best predictive performance to classify 71 human CRC cell lines into four CCCRC subtypes and compared the
783 differences of the area under the receiver operator characteristics curve (AUC) drug responses among the CCCRC
784 subtypes.

785 **Discovery and validation of the single-sample gene classifier**

786 Considering that the current transcriptomic data were mostly based on next-generation sequencing platforms,
787 we constructed and validated a single-sample model to identify CCCRC subtypes based on CRC-RNAseq cohort.
788 The R package “limma” was used to determine subtype-specific mRNA genes (\log_2 (fold change) >0 and FDR
789 <0.05) based on the “voom” transformation with quantile normalization data in the CRC-RNAseq cohort. The
790 Boruta importance test was further performed to screen subtype-specific mRNA genes. The CRC-RNAseq cohort
791 was randomly divided into the training set and the validation set at a ratio of 3:7. The gene expression data was
792 normalized by the Z-scores before model training and could be applied to a single-sample setting. The single-
793 sample gene classifiers were trained with the random forest algorithm (RF), support vector machine algorithm
794 (SVM), eXtreme Gradient Boosting (xgboost) algorithm, and logistic regression algorithm using the subtype-
795 specific genes. We also validated the gene classifier in TCGA and CPTAC dataset. The accuracy, F1 values, and
796 AUC values were computed to evaluate the predictive performance of the single-sample gene classifiers.

797 **Statistical analyses**

798 All statistical analyses were conducted by R 4.0.2 software. Statistical significance of the comparisons for
799 continuous variables and categorical variables was assessed by the Wilcoxon rank-sum test or Kruskal-Wallis test
800 and Fisher’s exact test or chi-square test, respectively. Correlations between variables were estimated by
801 Spearman’s correlation analysis or Pearson’s correlation analysis. Patients were divided into either high or low gene
802 expression groups by the best cutoff calculated by the R package “survminer”. The Kaplan-Meier method with log-
803 rank test was utilized to generate the survival curves. Univariate and multivariate Cox proportional hazard
804 regression analyses were performed to generate 95% confidence intervals (CIs) and hazard ratios (HRs). Two-sided
805 P -values <0.05 were considered statistically significant.

806 **Acknowledgments**

807 This work was supported in part by research grants from the National Key R&D Program of China
808 (Grant No. 2017YFC1309002) to L.L. We thank TCGA and GEO databases and the cBioportal
809 website for free use. We thank Nanjing Simcere Medical Laboratory Science Co., Ltd. and Jiangsu
810 Simcere Diagnostics Co., Ltd., and all the members of its AI and bioinformatics team, for generously
811 sharing their experience and codes.

812

813 **Declaration of Interests**

814 The authors declare that they have no conflict of interest. X.Q., Y.Z., M.G. and L.Y. is affiliated with
815 Nanjing Simcere Medical Laboratory Science Co., Ltd. and Jiangsu Simcere Diagnostics Co., Ltd.
816 These authors have no financial interests to declare.

817

818 **References**

- 819 1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: a cancer journal for
820 clinicians **2023**;73(1):17-48 doi 10.3322/caac.21763.
- 821 2. Archambault AN, Lin Y, Jeon J, Harrison TA, Bishop DT, Brenner H, *et al.* Nongenetic
822 Determinants of Risk for Early-Onset Colorectal Cancer. JNCI cancer spectrum **2021**;5(3)
823 doi 10.1093/jncics/pkab029.
- 824 3. Andrei P, Battuello P, Grasso G, Rovera E, Tesio N, Bardelli A. Integrated approaches for
825 precision oncology in colorectal cancer: The more you know, the better. Seminars in cancer
826 biology **2022**;84:199-213 doi 10.1016/j.semcan.2021.04.007.
- 827 4. Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J, Cervantes A. Clinical
828 management of metastatic colorectal cancer in the era of precision medicine. CA: a cancer
829

830 journal for clinicians **2022**;72(4):372-401 doi 10.3322/caac.21728.

831 5. Zhao Q, Wang F, Chen YX, Chen S, Yao YC, Zeng ZL, *et al.* Comprehensive profiling of
832 1015 patients' exomes reveals genomic-clinical associations in colorectal cancer. *Nature*
833 **2022**;13(1):2342 doi 10.1038/s41467-022-30062-8.

834 6. Budinska E, Popovici V, Tejpar S, D'Ario G, Lapique N, Sikora KO, *et al.* Gene expression
835 patterns unveil a new level of molecular heterogeneity in colorectal cancer. *The Journal of*
836 *pathology* **2013**;231(1):63-76 doi 10.1002/path.4212.

837 7. De Sousa EMF, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, *et al.* Poor-prognosis
838 colon cancer is defined by a molecularly distinct subtype and develops from serrated
839 precursor lesions. *Nature medicine* **2013**;19(5):614-8 doi 10.1038/nm.3174.

840 8. Marisa L, de Reyniès A, Duval A, Selves J, Gaub MP, Vescovo L, *et al.* Gene expression
841 classification of colon cancer into molecular subtypes: characterization, validation, and
842 prognostic value. *PLoS medicine* **2013**;10(5):e1001453 doi 10.1371/journal.pmed.1001453.

843 9. Roepman P, Schlicker A, Tabernero J, Majewski I, Tian S, Moreno V, *et al.* Colorectal cancer
844 intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-
845 mesenchymal transition. *International journal of cancer* **2014**;134(3):552-62 doi
846 10.1002/ijc.28387.

847 10. Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S, *et al.* A
848 colorectal cancer classification system that associates cellular phenotype and responses to
849 therapy. *Nature medicine* **2013**;19(5):619-25 doi 10.1038/nm.3175.

850 11. Schlicker A, Beran G, Chresta CM, McWalter G, Pritchard A, Weston S, *et al.* Subtypes of
851 primary colorectal tumors correlate with response to targeted treatment in colorectal cell
852 lines. *BMC medical genomics* **2012**;5:66 doi 10.1186/1755-8794-5-66.

853 12. Li C, Sun YD, Yu GY, Cui JR, Lou Z, Zhang H, *et al.* Integrated Omics of Metastatic
854 Colorectal Cancer. *Cancer cell* **2020**;38(5):734-47.e9 doi 10.1016/j.ccr.2020.08.002.

855 13. Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, *et al.* The
856 consensus molecular subtypes of colorectal cancer. *Nature medicine* **2015**;21(11):1350-6 doi
857 10.1038/nm.3967.

858 14. Comprehensive molecular characterization of human colon and rectal cancer. *Nature*
859 **2012**;487(7407):330-7 doi 10.1038/nature11252.

860 15. Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen B, *et al.* Proteogenomic Analysis
861 of Human Colon Cancer Reveals New Therapeutic Opportunities. *Cell* **2019**;177(4):1035-
862 49.e19 doi 10.1016/j.cell.2019.03.030.

863 16. Leng D, Zheng L, Wen Y, Zhang Y, Wu L, Wang J, *et al.* A benchmark study of deep
864 learning-based multi-omics data fusion methods for cancer. *Genome biology* **2022**;23(1):171
865 doi 10.1186/s13059-022-02739-2.

866 17. Anderson NM, Simon MC. The tumor microenvironment. *Current biology : CB*
867 **2020**;30(16):R921-r5 doi 10.1016/j.cub.2020.06.081.

868 18. Chen X, Song E. The theory of tumor ecosystem. *Cancer communications (London, England)*
869 **2022**;42(7):587-608 doi 10.1002/cac2.12316.

870 19. Hirata E, Sahai E. Tumor Microenvironment and Differential Responses to Therapy. *Cold*
871 *Spring Harbor perspectives in medicine* **2017**;7(7) doi 10.1101/cshperspect.a026781.

872 20. Jia Q, Wang A, Yuan Y, Zhu B, Long H. Heterogeneity of the tumor immune
873 microenvironment and its clinical relevance. *Experimental hematology & oncology*
874 **2022**;11(1):24 doi 10.1186/s40164-022-00277-y.

875 21. Zhang J, Huang D, Saw PE, Song E. Turning cold tumors hot: from molecular mechanisms to
876 clinical applications. *Trends in immunology* **2022**;43(7):523-45 doi 10.1016/j.it.2022.04.010.

877 22. Elia I, Haigis MC. Metabolites and the tumour microenvironment: from cellular mechanisms
878 to systemic metabolism. *Nature metabolism* **2021**;3(1):21-32 doi 10.1038/s42255-020-00317-
879 z.

880 23. Kaymak I, Williams KS, Cantor JR, Jones RG. Immunometabolic Interplay in the Tumor
881 Microenvironment. *Cancer cell* **2021**;39(1):28-37 doi 10.1016/j.ccr.2020.09.004.

882 24. Bagaev A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isaeva O, *et al.* Conserved pan-
883 cancer microenvironment subtypes predict response to immunotherapy. *Cancer cell*
884 **2021**;39(6):845-65.e7 doi 10.1016/j.ccr.2021.04.014.

885 25. He Y, Jiang Z, Chen C, Wang X. Classification of triple-negative breast cancers based on
886 Immunogenomic profiling. *Journal of experimental & clinical cancer research : CR*
887 **2018**;37(1):327 doi 10.1186/s13046-018-1002-1.

888 26. Monti S, Tamayo P, Mesirov J, Golub T. Consensus Clustering: A Resampling-Based Method
889 for Class Discovery and Visualization of Gene Expression Microarray Data. *Machine*
890 *Learning* **2003**;52(1):91-118 doi 10.1023/A:1023949509487.

891 27. Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by
892 shrunken centroids of gene expression. *Proceedings of the National Academy of Sciences of*
893 *the United States of America* **2002**;99(10):6567-72 doi 10.1073/pnas.082099299.

894 28. Bejarano L, Jordão MJC, Joyce JA. Therapeutic Targeting of the Tumor Microenvironment.
895 *Cancer discovery* **2021**;11(4):933-59 doi 10.1158/2159-8290.Cd-20-1808.

896 29. Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. *Nature*
897 *reviews Cancer* **2021**;21(6):360-78 doi 10.1038/s41568-021-00346-0.

898 30. Liu T, Han C, Wang S, Fang P, Ma Z, Xu L, *et al.* Cancer-associated fibroblasts: an emerging
899 target of anti-cancer immunotherapy. *Journal of hematology & oncology* **2019**;12(1):86 doi
900 10.1186/s13045-019-0770-1.

901 31. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with
902 combination immunotherapies. *Nature reviews Drug discovery* **2019**;18(3):197-218 doi
903 10.1038/s41573-018-0007-y.

904 32. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. *Nature*
905 **2017**;541(7637):321-30 doi 10.1038/nature21349.

906 33. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, *et al.*
907 Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who
908 have progressed following treatment with platinum-based chemotherapy: a single-arm,
909 multicentre, phase 2 trial. *Lancet (London, England)* **2016**;387(10031):1909-20 doi
910 10.1016/s0140-6736(16)00561-4.

911 34. Luoma AM, Suo S, Wang Y, Gunasti L, Porter CBM, Nabilsi N, *et al.* Tissue-resident
912 memory and circulating T cells are early responders to pre-surgical cancer immunotherapy.
913 *Cell* **2022**;185(16):2918-35.e29 doi 10.1016/j.cell.2022.06.018.

914 35. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, *et al.* Understanding
915 the tumor immune microenvironment (TIME) for effective therapy. *Nature medicine*
916 **2018**;24(5):541-50 doi 10.1038/s41591-018-0014-x.

917 36. Pandey PR, Young KH, Kumar D, Jain N. RNA-mediated immunotherapy regulating tumor
918 immune microenvironment: next wave of cancer therapeutics. *Molecular cancer*
919 **2022**;21(1):58 doi 10.1186/s12943-022-01528-6.

920 37. Tang T, Huang X, Zhang G, Hong Z, Bai X, Liang T. Advantages of targeting the tumor
921 immune microenvironment over blocking immune checkpoint in cancer immunotherapy.
922 *Signal transduction and targeted therapy* **2021**;6(1):72 doi 10.1038/s41392-020-00449-4.

923 38. Chiossone L, Dumas PY, Vienne M, Vivier E. Natural killer cells and other innate lymphoid
924 cells in cancer. *Nature reviews Immunology* **2018**;18(11):671-88 doi 10.1038/s41577-018-
925 0061-z.

926 39. Davis A, Gao R, Navin N. Tumor evolution: Linear, branching, neutral or punctuated?
927 *Biochimica et biophysica acta Reviews on cancer* **2017**;1867(2):151-61 doi
928 10.1016/j.bbcan.2017.01.003.

929 40. Tavernari D, Battistello E, Dheilly E, Petruzzella AS, Mina M, Sordet-Dessimoz J, *et al.*

930 Nongenetic Evolution Drives Lung Adenocarcinoma Spatial Heterogeneity and Progression.
931 Cancer discovery **2021**;11(6):1490-507 doi 10.1158/2159-8290.Cd-20-1274.

932 41. Eide PW, Bruun J, Lothe RA, Sveen A. CMScaller: an R package for consensus molecular
933 subtyping of colorectal cancer pre-clinical models. Scientific reports **2017**;7(1):16618 doi
934 10.1038/s41598-017-16747-x.

935 42. Kawazoe A, Kuboki Y, Shinozaki E, Hara H, Nishina T, Komatsu Y, *et al.* Multicenter Phase
936 I/II Trial of Napabucasin and Pembrolizumab in Patients with Metastatic Colorectal Cancer
937 (EPOC1503/SCOOP Trial). Clinical cancer research : an official journal of the American
938 Association for Cancer Research **2020**;26(22):5887-94 doi 10.1158/1078-0432.Ccr-20-1803.

939 43. Linnekamp JF, Hooff SRV, Prasetyanti PR, Kandimalla R, Buikhuisen JY, Fessler E, *et al.*
940 Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo
941 models. Cell death and differentiation **2018**;25(3):616-33 doi 10.1038/s41418-017-0011-5.

942 44. Sveen A, Bruun J, Eide PW, Eilertsen IA, Ramirez L, Murumägi A, *et al.* Colorectal Cancer
943 Consensus Molecular Subtypes Translated to Preclinical Models Uncover Potentially
944 Targetable Cancer Cell Dependencies. Clinical cancer research : an official journal of the
945 American Association for Cancer Research **2018**;24(4):794-806 doi 10.1158/1078-0432.Ccr-
946 17-1234.

947 45. Thota R, Yang M, Pflieger L, Schell MJ, Rajan M, Davis TB, *et al.* APC and TP53 Mutations
948 Predict Cetuximab Sensitivity across Consensus Molecular Subtypes. Cancers **2021**;13(21)
949 doi 10.3390/cancers13215394.

950 46. Zhan T, Faehling V, Rauscher B, Betge J, Ebert MP, Boutros M. Multi-omics integration
951 identifies a selective vulnerability of colorectal cancer subtypes to YM155. International
952 journal of cancer **2021**;148(8):1948-63 doi 10.1002/ijc.33393.

953 47. Becht E, de Reyniès A, Giraldo NA, Pilati C, Buttard B, Lacroix L, *et al.* Immune and
954 Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and
955 Relevant for Precision Immunotherapy. Clinical cancer research : an official journal of the
956 American Association for Cancer Research **2016**;22(16):4057-66 doi 10.1158/1078-
957 0432.Ccr-15-2879.

958 48. Griffin GK, Wu J, Iracheta-Vellve A, Patti JC, Hsu J, Davis T, *et al.* Epigenetic silencing by
959 SETDB1 suppresses tumour intrinsic immunogenicity. Nature **2021**;595(7866):309-14 doi
960 10.1038/s41586-021-03520-4.

961 49. Yang W, Feng Y, Zhou J, Cheung OK, Cao J, Wang J, *et al.* A selective HDAC8 inhibitor
962 potentiates antitumor immunity and efficacy of immune checkpoint blockade in
963 hepatocellular carcinoma. Science translational medicine **2021**;13(588) doi
964 10.1126/scitranslmed.aaz6804.

965 50. Zhang SM, Cai WL, Liu X, Thakral D, Luo J, Chan LH, *et al.* KDM5B promotes immune
966 evasion by recruiting SETDB1 to silence retroelements. Nature **2021**;598(7882):682-7 doi
967 10.1038/s41586-021-03994-2.

968 51. Zhang M, Wang G, Ma Z, Xiong G, Wang W, Huang Z, *et al.* BET inhibition triggers
969 antitumor immunity by enhancing MHC class I expression in head and neck squamous cell
970 carcinoma. Molecular therapy : the journal of the American Society of Gene Therapy
971 **2022**;30(11):3394-413 doi 10.1016/j.ymthe.2022.07.022.

972 52. Hänelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and
973 RNA-seq data. BMC bioinformatics **2013**;14:7 doi 10.1186/1471-2105-14-7.

974 53. Dixon P. VEGAN, a package of R functions for community ecology. **2003**;14(6):927-30 doi
975 <https://doi.org/10.1111/j.1654-1103.2003.tb02228.x>.

976 54. Desgarennes D, Garrido E, Torres-Gomez MJ, Peña-Cabriales JJ, Partida-Martinez LP.
977 Diazotrophic potential among bacterial communities associated with wild and cultivated
978 Agave species. FEMS microbiology ecology **2014**;90(3):844-57 doi 10.1111/1574-
979 6941.12438.

980 55. Becht E, Giraldo NA, Lacroix L, Buttard B, Elaroui N, Petitprez F, *et al.* Estimating
981 the population abundance of tissue-infiltrating immune and stromal cell populations using
982 gene expression. *Genome biology* **2016**;17(1):218 doi 10.1186/s13059-016-1070-5.

983 56. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, *et al.* Robust enumeration of
984 cell subsets from tissue expression profiles. *Nature methods* **2015**;12(5):453-7 doi
985 10.1038/nmeth.3337.

986 57. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, *et al.*
987 Inferring tumour purity and stromal and immune cell admixture from expression data. *Nature
988 communications* **2013**;4:2612 doi 10.1038/ncomms3612.

989 58. Beltra JC, Manne S, Abdel-Hakeem MS, Kurachi M, Giles JR, Chen Z, *et al.* Developmental
990 Relationships of Four Exhausted CD8(+) T Cell Subsets Reveals Underlying Transcriptional
991 and Epigenetic Landscape Control Mechanisms. *Immunity* **2020**;52(5):825-41.e8 doi
992 10.1016/j.jimmuni.2020.04.014.

993 59. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, *et al.* Oncogenic
994 Signaling Pathways in The Cancer Genome Atlas. *Cell* **2018**;173(2):321-37.e10 doi
995 10.1016/j.cell.2018.03.035.

996 60. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological
997 themes among gene clusters. *Omics : a journal of integrative biology* **2012**;16(5):284-7 doi
998 10.1089/omi.2011.0118.

999 61. Kather JN, Suarez-Carmona M, Charoentong P, Weis CA, Hirsch D, Bankhead P, *et al.*
1000 Topography of cancer-associated immune cells in human solid tumors. *eLife* **2018**;7 doi
1001 10.7554/eLife.36967.

1002 62. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, *et al.* Signatures of T cell dysfunction and
1003 exclusion predict cancer immunotherapy response. *Nature medicine* **2018**;24(10):1550-8 doi
1004 10.1038/s41591-018-0136-1.

1005 63. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, *et al.* Proteogenomic characterization of
1006 human colon and rectal cancer. *Nature* **2014**;513(7518):382-7 doi 10.1038/nature13438.

1007 64. Baumbusch LO, Helland Å, Wang Y, Liestøl K, Schaner ME, Holm R, *et al.* High levels of
1008 genomic aberrations in serous ovarian cancers are associated with better survival. *PLoS one*
1009 **2013**;8(1):e54356 doi 10.1371/journal.pone.0054356.

1010 65. Davison JM, Yee M, Krill-Burger JM, Lyons-Weiler MA, Kelly LA, Sciulli CM, *et al.* The
1011 degree of segmental aneuploidy measured by total copy number abnormalities predicts
1012 survival and recurrence in superficial gastroesophageal adenocarcinoma. *PLoS one*
1013 **2014**;9(1):e79079 doi 10.1371/journal.pone.0079079.

1014 66. Chin SF, Teschendorff AE, Marioni JC, Wang Y, Barbosa-Morais NL, Thorne NP, *et al.*
1015 High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER
1016 negative breast cancer. *Genome biology* **2007**;8(10):R215 doi 10.1186/gb-2007-8-10-r215.

1017 67. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, *et al.* The Immune
1018 Landscape of Cancer. *Immunity* **2018**;48(4):812-30.e14 doi 10.1016/j.jimmuni.2018.03.023.

1019 68. Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, *et al.*
1020 Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. *Cell*
1021 **2017**;171(3):540-56.e25 doi 10.1016/j.cell.2017.09.007.

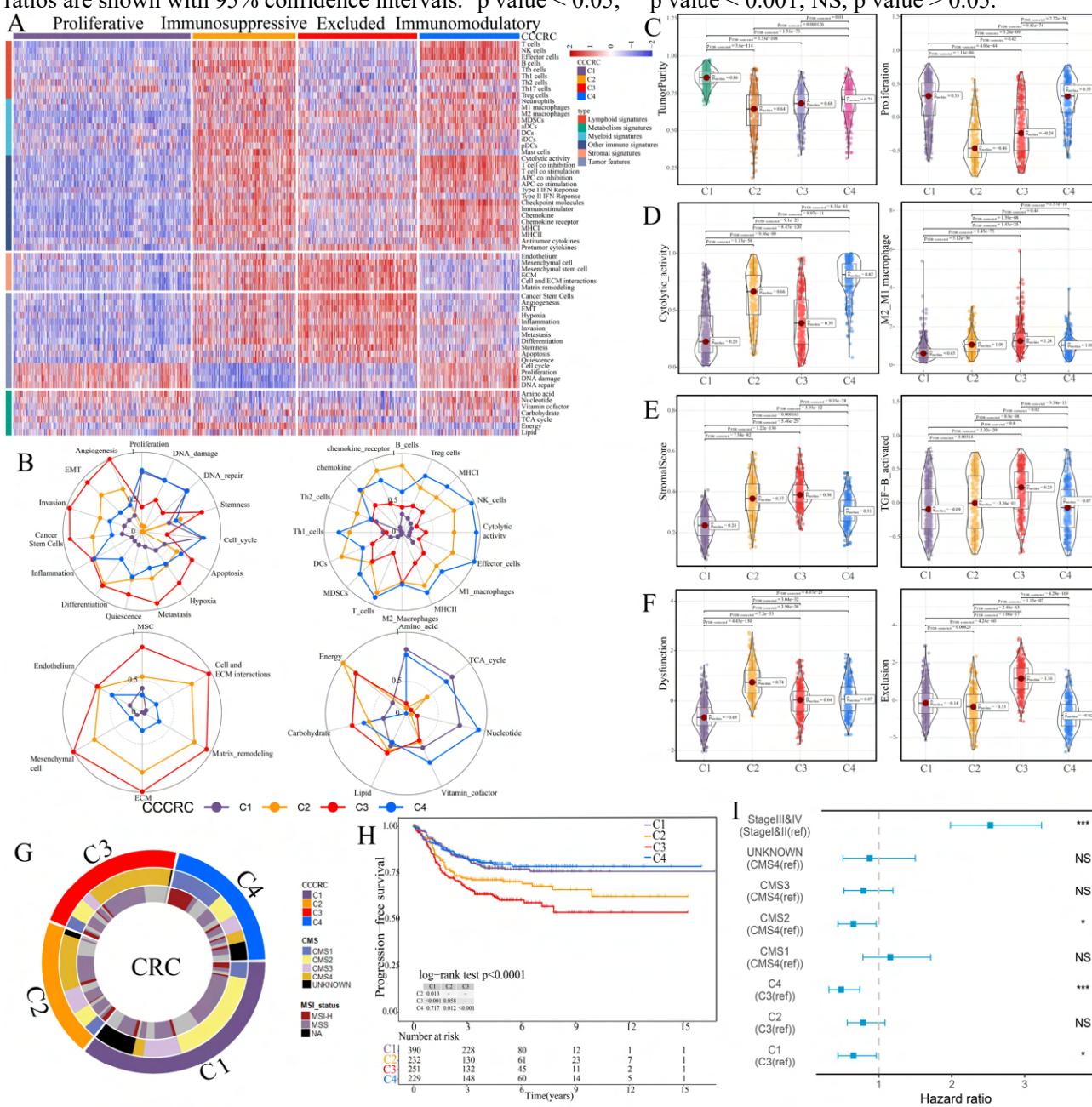
1022 69. Xu H, Liu L, Li W, Zou D, Yu J, Wang L, *et al.* Transcription factors in colorectal cancer:
1023 molecular mechanism and therapeutic implications. *Oncogene* **2021**;40(9):1555-69 doi
1024 10.1038/s41388-020-01587-3.

1025 70. Vymetalkova V, Vodicka P, Vodenkova S, Alonso S, Schneider-Stock R. DNA methylation
1026 and chromatin modifiers in colorectal cancer. *Molecular aspects of medicine* **2019**;69:73-92
1027 doi 10.1016/j.mam.2019.04.002.

1028 71. Medico E, Russo M, Picco G, Cancelliere C, Valtorta E, Corti G, *et al.* The molecular
1029 landscape of colorectal cancer cell lines unveils clinically actionable kinase targets. *Nature*

1030 communications **2015**;6:7002 doi 10.1038/ncomms8002.
1031 72. Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, *et al.* Lineage tracking reveals dynamic
1032 relationships of T cells in colorectal cancer. *Nature* **2018**;564(7735):268-72 doi
1033 10.1038/s41586-018-0694-x.
1034 73. Okita A, Takahashi S, Ouchi K, Inoue M, Watanabe M, Endo M, *et al.* Consensus molecular
1035 subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic
1036 efficacy against metastatic colorectal cancer. *Oncotarget* **2018**;9(27):18698-711 doi
1037 10.18632/oncotarget.24617.
1038 74. Franks JM, Cai G, Whitfield ML. Feature specific quantile normalization enables cross-
1039 platform classification of molecular subtypes using gene expression data. *Bioinformatics*
1040 (Oxford, England) **2018**;34(11):1868-74 doi 10.1093/bioinformatics/bty026.
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

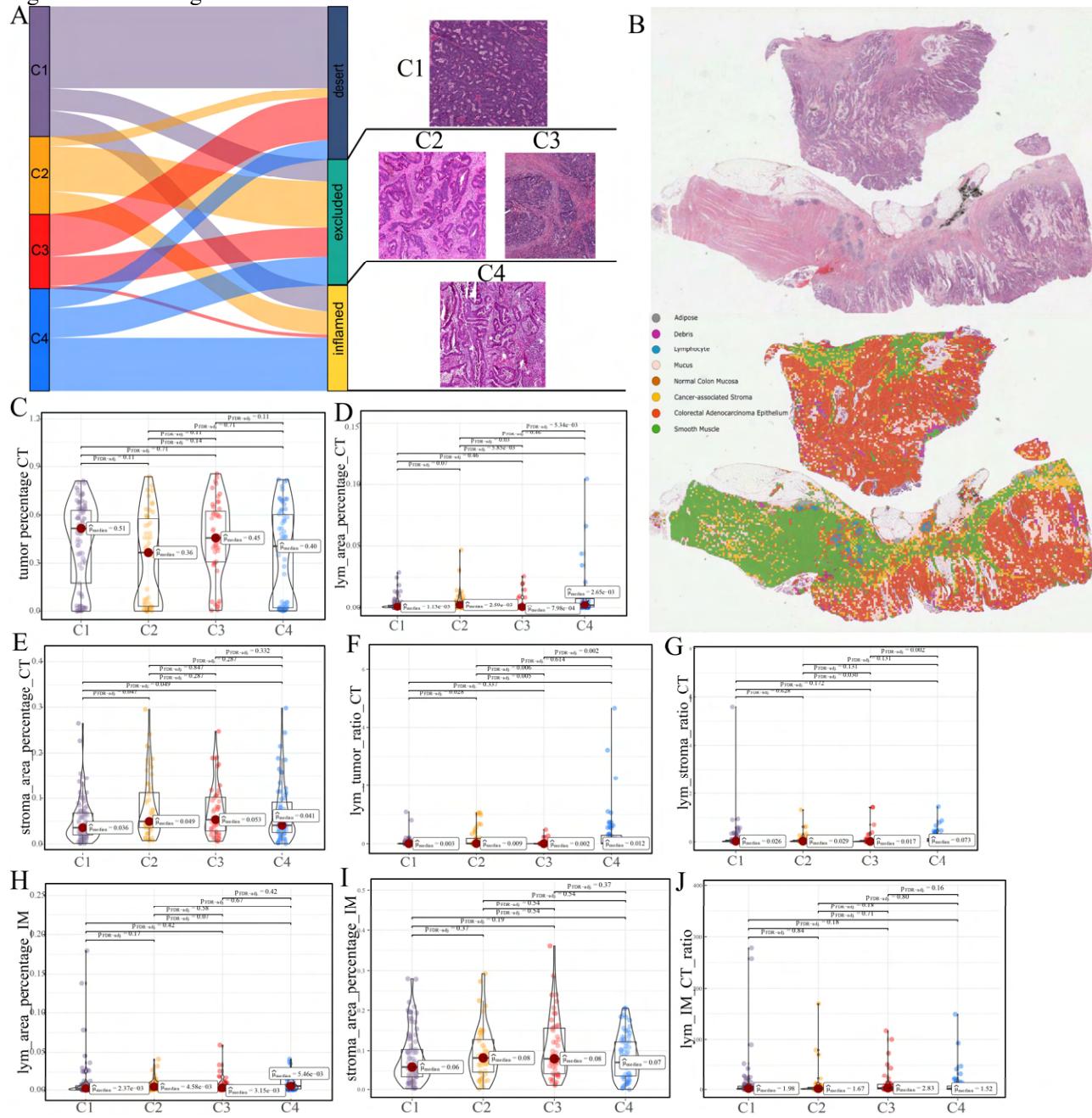
1080
 1081 **Figure 1. Comprehensive characterization of colorectal cancer (CCCRC).** **A.** Heat map of 1471 CRC patients
 1082 in the CRC-AFFY cohort classified into four distinct TME subtypes based on the 61 TME-related signatures.
 1083 **B.** Radars display the characteristic TME-related signatures, including tumor, immune, stroma, and metabolism
 1084 signatures, of each CCCRC subtype in the CRC-AFFY cohort. **C-E.** Box plots show differences in tumor (**C**),
 1085 immune (**D**), and stroma (**E**) signatures in the CRC-AFFY cohort. Tumor purity and stroma scores were obtained
 1086 from the ESTIMATE algorithm. Proliferative activity (proliferation), cytolytic score, M1 and M2 macrophage
 1087 proportions, and TGFB activity were calculated by GSVA. **F.** Differences in T cell dysfunction and T cell
 1088 exclusion scores between four CCCRC subtypes were analyzed based on the gene expression profiles in CRC-
 1089 AFFY cohort. **G.** Overlap of CCCRC subtypes with consensus molecular subtypes (CMS) and microsatellite
 1090 instability (MSI) status (high microsatellite instability [MSI-H], microsatellite stability [MSS]) in the CRC-AFFY
 1091 and CRC-RNAseq cohorts. **H.** Kaplan-Meier method with log-rank test of progression-free survival (PFS) among
 1092 the four CCCRC subtypes in the CRC-AFFY cohort. **I.** Forest plot of multivariate Cox proportional hazard
 1093 regression analysis of PFS after adjusting for TNM stage and CMS subtype in the CRC-AFFY cohort. The hazard
 ratios are shown with 95% confidence intervals. *p value < 0.05; ***p value < 0.001; NS, p value > 0.05.



1094
 1095
 1096

1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

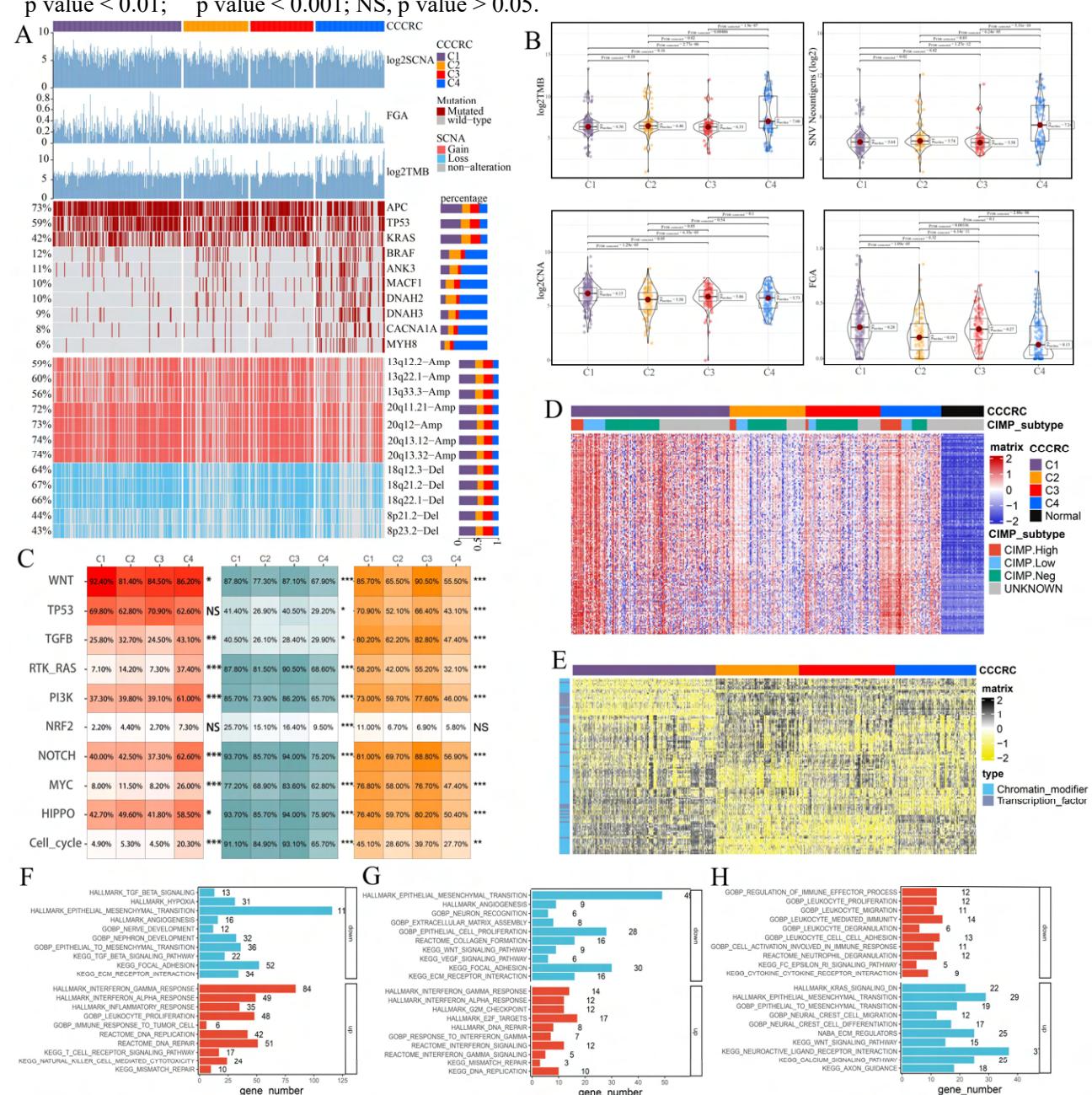
Figure 2. Differences in histological characteristics between CCCRC subtypes. **A.** Sankey plot shows overlap of CCCRC subtypes with the three-category immune classification system (“desert”, “excluded”, and “inflamed” phenotypes), and their representative hematoxylin and eosin (HE)-stained whole slide images (WSIs). C1: TCGA-AA-3955; C2: TCGA-A6-6654; C3: TCGA-CK-4948; and C4: TCGA-AD-6963. **B.** Representative WSI (top) and the CRC-multiclass model-inference segmentation of seven tissue types: tumor, stroma, lymphocyte, normal colon mucosa, debris, adipose, and mucin (bottom). **C-E.** Box plots show differences in the abundance of tumors (**C**), lymphocyte infiltration (**D**), and stroma (**E**) in the core tumor (CT) region. **F, G.** Box plots show differences in the lymphocyte infiltration to tumor content ratio (**F**) and lymphocyte infiltration to stromal content ratio (**G**) in the CT region. **H, I.** Box plots show differences in the abundance of lymphocytes infiltration (**H**) and stroma (**I**) in the invasive margin (IM) region. **J.** Box plots show differences in the ratio of lymphocyte infiltration in the IM region to the CT region.



1108
1109
1110
1111
1112
1113

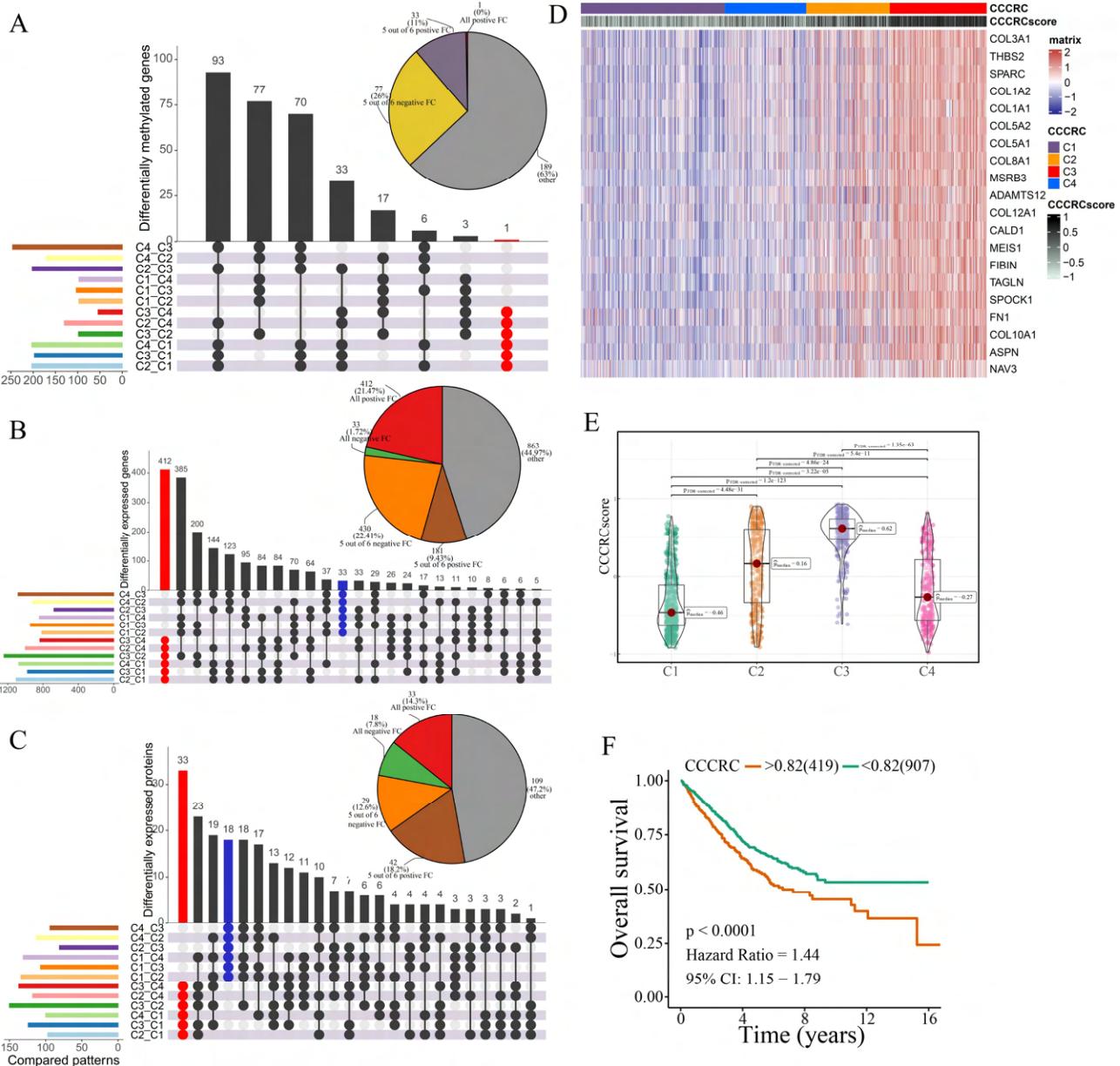
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128

Figure 3. Biological characterization of CCCRC subtypes based on multi-omics data. **A.** Distribution of driver gene mutations and somatic copy number alterations (SCNAs) among the CCCRC subtypes in the TCGA-CRC dataset. **B.** Box plots show differences in tumor mutation burden (TMB), neoantigens, SCNA counts, and fraction of the genome altered (FGA) scores among the four CCCRC subtypes in the TCGA-CRC dataset. **C.** Genomic alterations in 10 oncogenic pathways were compared among the four CCCRC subtypes in the TCGA-CRC dataset. The color of the box represents the different types of genomic alterations (red, mutation; blue, amplification; yellow, deletion), and the color saturation represents the frequency. The color of the p value represents which oncogenic pathway had the highest frequency of the genomic alterations. **D, E.** Heat map shows differentially methylated genes derived from each CCCRC subtype vs normal tissues (**D**) and regulon activity profiles for transcription factors and chromatin modifiers (**E**). **F.** Significantly enriched gene sets among genes upregulated in the C4 subtype (red bars) and the C3 subtype (blue bars). **G.** Significantly enriched gene sets among proteins upregulated in the C4 subtype (red bars) and the C3 subtype (blue bars). **H.** Significantly enriched gene sets of methylated genes with downregulated DNA methylation in the C4 subtype compared to the C3 subtype (red bars) or with upregulated DNA methylation in the C4 subtype compared to the C3 subtype (blue bars). *p value < 0.05; **p value < 0.01; ***p value < 0.001; NS, p value > 0.05.



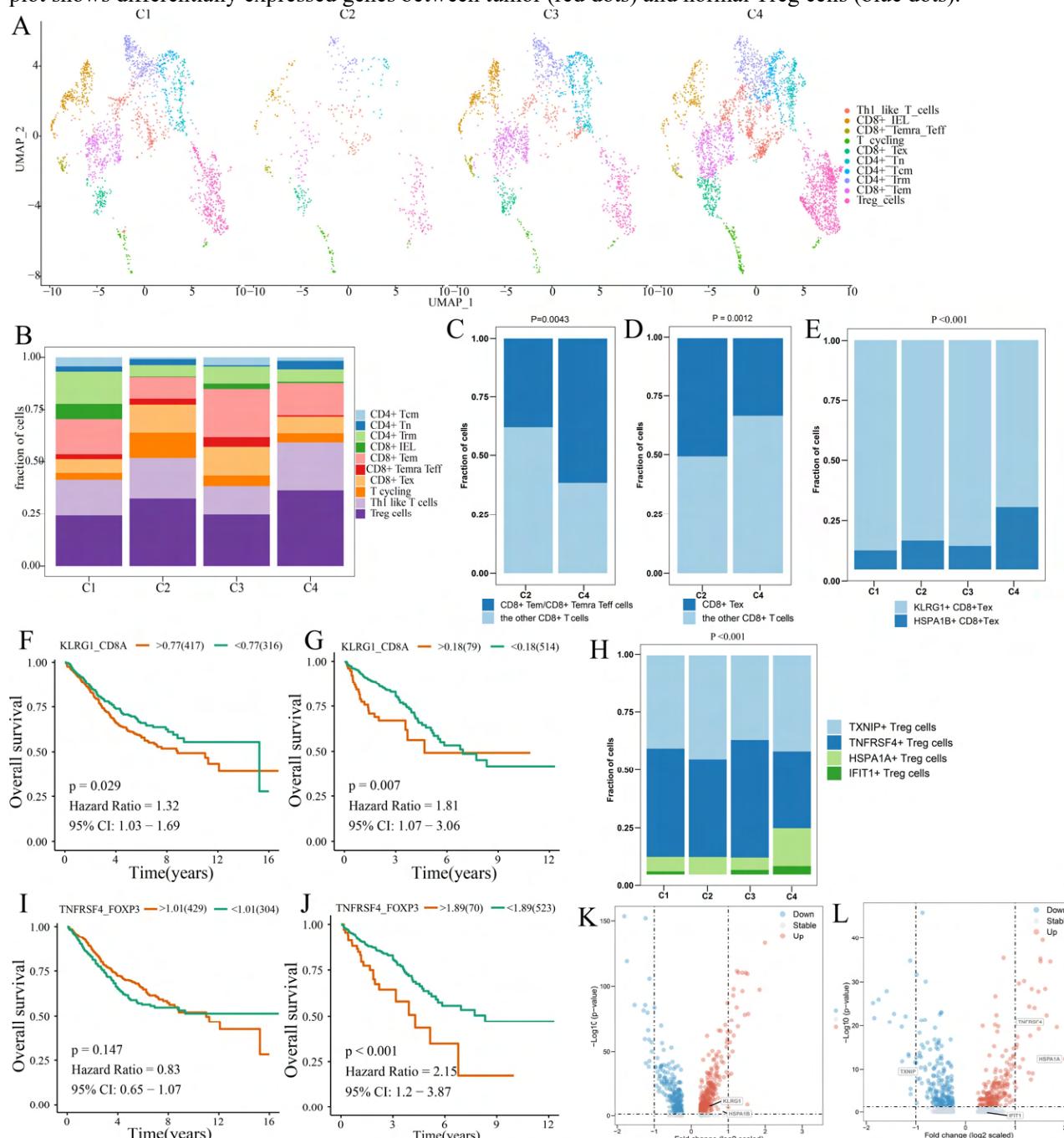
1129
1130
1131

1132
 1133 **Figure 4. Discovery of a nongenetic tumor evolution pattern. A-C.** Venn plots show “all positive” for increasing
 1134 DNA methylation/gene expression/protein levels or “all negative” for decreasing DNA methylation/gene
 1135 expression/protein levels. Pie chart (top right) distributions of the sign of pairwise FCs computed for differentially
 1136 methylated genes (A), all differentially expressed genes (B) and all differentially expressed proteins (C). **D.**
 1137 Heatmap shows gene expression levels of 20 CCCRC genes among the four CCCRC subtypes. **E.** Box plots show
 1138 differences in the CCCRC score among the four CCCRC subtypes in the CRC-AFFY cohort. **F.** Kaplan–Meier
 1139 method of overall survival (OS) among the four CCCRC subtypes in the CRC-AFFY and CRC-RNAseq cohorts.



1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149

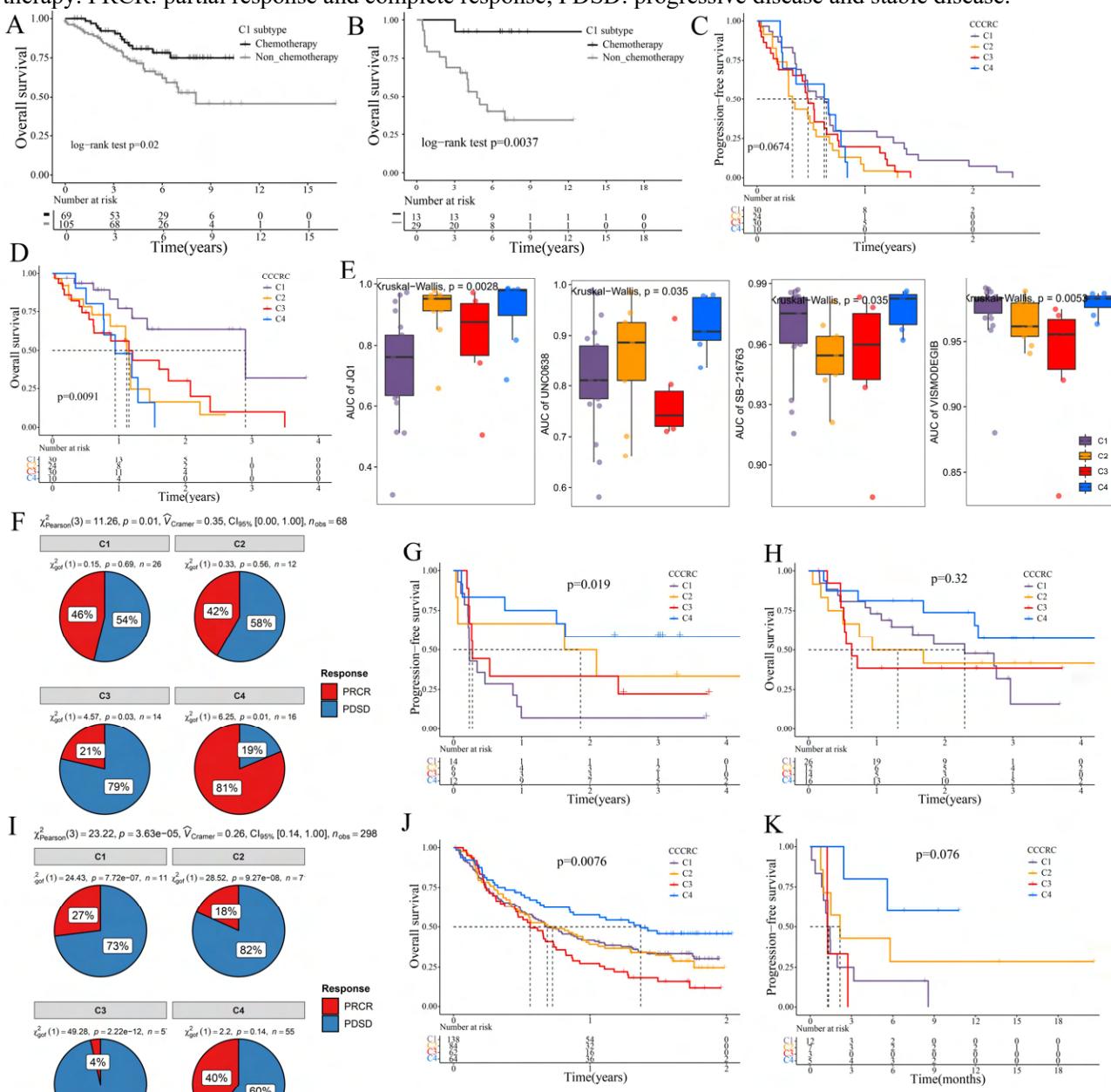
1150
 1151 **Figure 5. Differences in T cell function between CCCRC subtypes.** **A.** UMAP shows the composition of T cells
 1152 colored by cluster and divided by the CCCRC subtype in CRC tissues. **B.** Histogram shows the cell distribution of
 1153 10 T cell types in the different CCCRC subtypes. **C.** Proportion of effector memory CD8+ T cells (CD8+ Tem),
 1154 recently activated effector memory or effector CD8+ T cells (CD8+ Temra/Teff), and the other CD8+ T cells
 1155 (shown in the histogram) in the C2 and C4 subtypes. **D.** Proportion of exhausted CD8+ T cells (CD8+ Tex) and the
 1156 other CD8+ T cells (shown in the histogram) in the C2 and C4 subtypes. **E.** Histogram shows the cell distribution
 1157 of KLRG1+ CD8+ Tex and HSPA1B+ CD8+ Tex cells in the different CCCRC subtypes. **F, G.** Kaplan-Meier
 1158 method with log-rank test of overall survival (OS) in the CRC-AFFY cohort (**F**) and the CRC-RNAseq cohort (**G**)
 1159 between low and high ratios of KLRG1-to-CD8A expression in patients. **H.** Histogram shows the cell distribution
 1160 of TXNIP+ Treg cells, TNFRSF4+ Treg cells, HSPA1A+ Treg cells, and IFIT1+ Treg cells in the different
 1161 CCCRC subtypes. **I, J.** Kaplan-Meier method with log-rank test of OS in the CRC-AFFY cohort (**I**) and the CRC-
 1162 RNAseq cohort (**J**) between low and high ratios of TNFRSF4-to-CD8A expression in patients. **K.** Volcano plot
 1163 shows differentially expressed genes between tumor (red dots) and normal CD8+ T cells (blue dots). **L.** Volcano
 plot shows differentially expressed genes between tumor (red dots) and normal Treg cells (blue dots).



1164

1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178

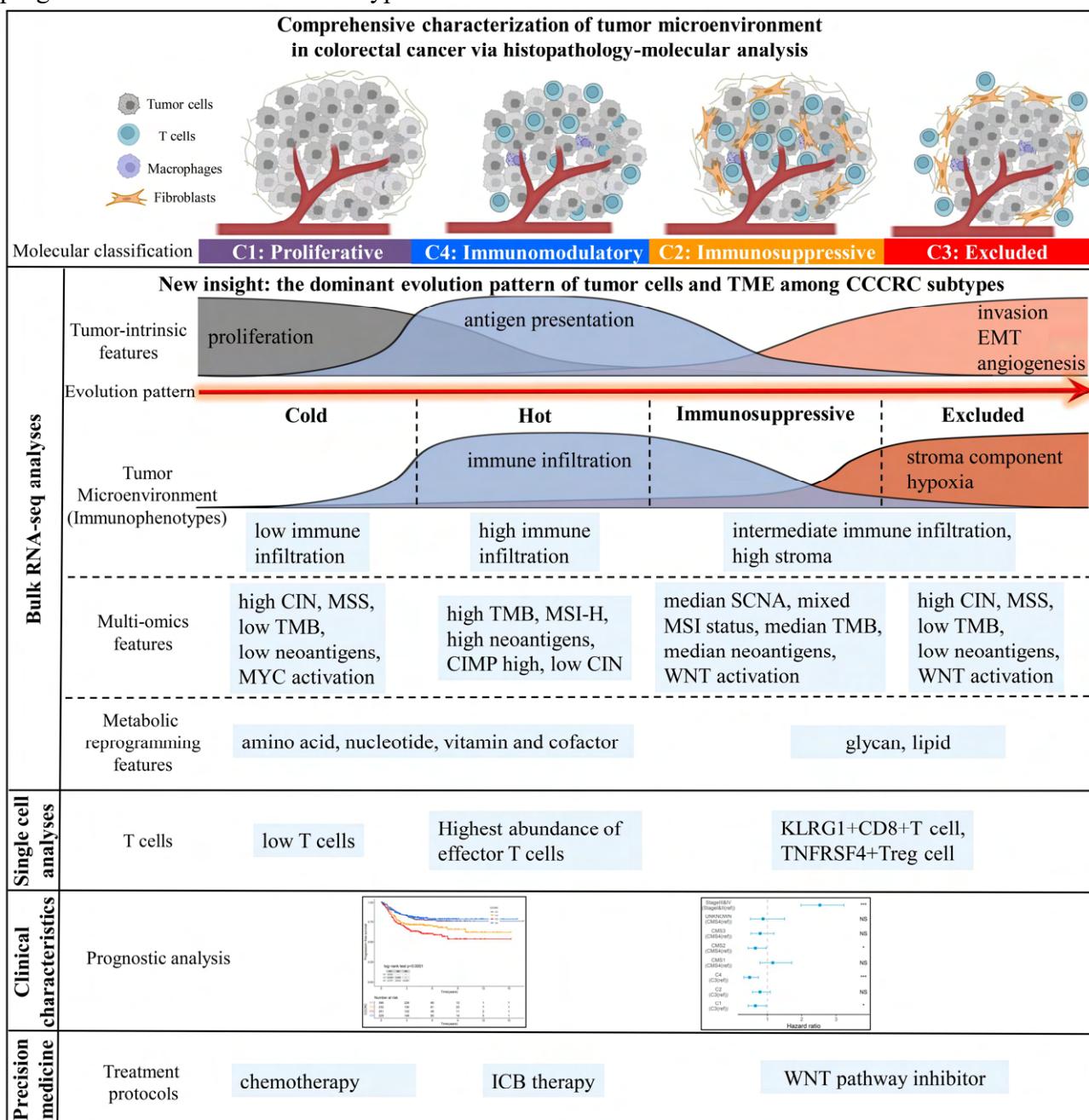
Figure 6. Significance of CCCRC in guiding the clinical treatment of colorectal cancer. A, B. Kaplan-Meier
 method of overall survival (OS) between stage II and III CRC C1 patients with or without chemotherapy in the
 CRC-AFFY cohort (**A**) and the GSE103479 (**B**) dataset. **C, D. Kaplan-Meier method of OS** (**C**) and progression-
 free survival (PFS) (**D**) among the four CCCRC subtypes in the GSE104645 dataset. **E. Box plots show the**
 differences in the area under the receiver operator characteristics curve (AUC) of drug responses among the four
 CCCRC subtypes. **F. Pie chart shows the differences in the proportion of responses to immune checkpoint blockade**
 treatment among the four CCCRC subtypes in the two independent melanoma cohorts (Gide and Hugo datasets, n
 = 68) treated with anti-PD1 therapy. **G, H. Kaplan-Meier method with log-rank test of PFS** (**G**) and OS (**H**) among
 the four CCCRC subtypes in the two independent melanoma cohorts (Gide and Hugo datasets, n = 68) treated with
 anti-PD1 therapy. **I. Pie chart shows the differences in the proportion of responses to immune checkpoint blockade**
 treatment among the four CCCRC subtypes in the urothelial carcinoma cohort (n = 298) treated with anti-PDL1
 therapy. **J, K. Kaplan-Meier method with log-rank test of OS and PFS** among the four CCCRC subtypes in the
 urothelial carcinoma cohort (n = 348) (**J**) and the lung cancer cohort (n = 27) (**K**) treated with anti-PD1/PDL1
 therapy. PRCR: partial response and complete response; PDSD: progressive disease and stable disease.



1179
 1180
 1181

1182
1183
1184

Figure 7. Overview of characteristics of CCCRC subtypes. These included tumor microenvironment features, multi-omics features, scRNA-seq features, treatment strategies and prognostic value for CCCRC subtypes.



1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

1197 **Supplementary Figure Legends**

1198 **Figure S1. Establishment of TME gene expression panel.** **A, B.** PCOA shows that the CRC
1199 samples could be distinguished from the normal samples by the TME-related signatures (**A**) and the
1200 signatures of the functional states of tumor cells and cancer stem cells (**B**) in the GSE39582 and
1201 TCGA cohorts. **C, D.** Difference analysis of TME signature scores between tumor (T) and normal
1202 (N) tissues in the GSE39582 cohort (**C**) and the TCGA cohort (**D**). **E.** Pearson's correlation analysis
1203 of the TME-related signatures show four major patterns bound by positive correlations in the CRC-
1204 AFFY cohort. **F.** Heat map of Pearson's correlation analysis of the 61 TME-related signatures and
1205 the other TME-related signatures quantified by the MCP-counter algorithm in the CRC-AFFY
1206 cohort. **G.** Univariate cox analysis shows the ability of each TME signature to predict progression-
1207 free survival in the CRC-AFFY cohort.

1208 **Figure S2. Comprehensive characterization of colorectal cancer (CCCRC).** **A.** Consensus
1209 matrices heat map ($k = 2$ to 6). **B.** Empirical cumulative distribution function (CDF) plot. **C.** Delta
1210 area plot. **D.** Principal coordinate analysis of Euclidean distances calculated using the scores of 61
1211 TME-related signatures in the CRC-AFFY (dark colors) and CRC-RNAseq (light colors) cohorts.
1212 Circles and error bars represent the mean and the standard errors of the mean, respectively. **E.** Heat
1213 map of 725 CRC patients in the CRC-RNAseq cohort classified into four distinct TME subtypes
1214 based on the 61 TME-related signatures. **F, G.** Shrunken differences $d'ik$ for the 61 TME-related
1215 signatures having at least one nonzero difference in the CRC-AFFY cohort (**F**) and the CRC-
1216 RNAseq cohort (**G**).

1217 **Figure S3. Differences in the TME components obtained from MCP-counter, CIBERSORT,**

1218 and the ESTIMATE algorithm among the CCCRC subtypes in the CRC-AFFY cohort. **A, B.**
1219 Heat map of the TME-related signature scores derived from the MCP-counter (**A**) and CIBERSORT
1220 (**B**) algorithm. **C-E.** Box plots show differences in the TME-related signature scores derived from
1221 the MCP-counter (**C**), CIBERSORT (**D**), and the GSVA (**E**) algorithm among the CCCRC subtypes.
1222 **F.** Differences in T cell dysfunction and T cell exclusion scores between four CCCRC subtypes were
1223 analyzed based on the gene expression profiles in CRC-RNAseq cohort. **G, H.** Gene set enrichment
1224 analysis (GSEA) of the terminally exhausted CD8+ T cell signature (Texterm signature) and the
1225 TGFB signaling signature between C2 and C4 subtypes in the CRC-AFFY cohort (**G**) and CRC-
1226 RNAseq cohort (**H**). **I.** Circle bars display significant differences in metabolic reprogramming
1227 among the four CCCRC subtypes. * p value < 0.05; ** p value < 0.01; *** p value < 0.001; **** p value <
1228 0.0001.

1229 **Figure S4. Overlap of the CCCRC subtypes with published CRC molecular subtypes in the**
1230 **CRC-AFFY and CRC-RNAseq cohorts, including Budinska subtypes.** **A,** Consensus molecular
1231 subtypes (CMS). **B,** De Sousa subtypes. **C,** Microsatellite instability (MSI) status (high microsatellite
1232 instability [MSI-H]). **D,** Microsatellite stability (MSS). **E,** Roepman subtypes. **F,** Sadanandam
1233 subtypes.

1234 **Figure S5. Box plots show differences in the TME-related signature scores between the C4 and**

1235 CMS1 subtypes. **A,** Between the C4 subtype with MSI-H and the CMS1 subtype with MSI-H. **B,**
1236 Between the C4 subtype with MSI-H, the C4 subtype with MSS, and the other CCCRC subtypes
1237 with MSI-H. **C,** MSI-H, high microsatellite instability. * p value < 0.05; ** p value < 0.01; *** p value <
1238 0.001; **** p value < 0.0001.

1239 **Figure S6. Survival analyses of the CCCRC subtypes.** **A,** Kaplan-Meier method with log-rank test
1240 of overall survival (OS) among the four CCCRC subtypes in the CRC-AFFY cohort. **B,** Forest plot
1241 of multivariate Cox proportional hazard regression analysis for OS after adjusting for TNM stage
1242 and CMS subtype in the CRC-AFFY cohort. **C, D,** Kaplan-Meier method (**C**) and multivariate Cox
1243 proportional hazard regression analysis (**D**) of progression-free survival (PFS) among the four
1244 CCCRC subtypes in the CRC-RNAseq cohort. **E, F,** Kaplan-Meier method with log-rank test (**E**)
1245 and multivariate Cox proportional hazard regression analysis (**F**) of OS among the four CCCRC
1246 subtypes in the CRC-RNAseq cohort. The hazard ratios are shown with 95% confidence intervals. * p

1247 value < 0.05; ** p value < 0.01; *** p value < 0.001; NS, p value > 0.05. **G.** Confusion matrix shows
1248 overlapping numbers of predicted tissues and actual tissues. **H.** AUC curves show performance of
1249 the CRC-miclass model on the TCGA-CRC dataset.

1250 **Figure S7. Biological characterization of the CCCRC subtypes based on multi-omics data. A-C,**
1251 Significantly enriched gene sets among the CCCRC subtype-specific upregulated genes, CCCRC
1252 subtype-specific downregulated methylation genes, and CCCRC subtype-specific upregulated
1253 proteins. **D-G,** Scatter plots show gene expression log2-fold changes for all genes among the four
1254 CCCRC subtypes (C1 subtype vs the other subtypes, **D**; C2 subtype vs the other subtypes, **E**; C3
1255 subtype vs the other subtypes, **F**; and C4 subtype vs the other subtypes, **G**) in the CRC-AFFY cohort
1256 and the CRC-RNAseq cohort. **H,** Relationship between CCCRC scores and TME-related signature
1257 scores.

1258 **Figure S8. A,** UMAP shows the composition of T cells colored by cluster in tumor and normal
1259 tissues. **B,** UMAP shows the composition of T cells colored by cluster and classified by CCCRC
1260 subtype in tumor and normal tissues. **C-H,** The tSNE visualized plot shows the expression of the top
1261 10 marker genes for KLRG1+ CD8+ Tex (**C**), HSPA1B+ CD8+ Tex cells (**D**), TXNIP+ Treg cells
1262 (**E**), TNFRSF4+ Treg cells (**F**), HSPA1A+ Treg cells (**G**), and IFIT1+ Treg cells (**H**).

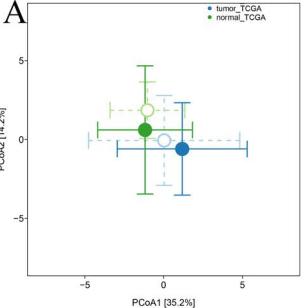
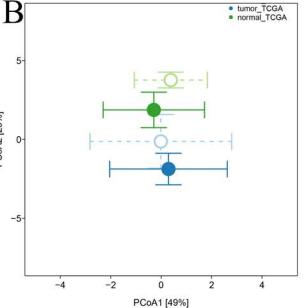
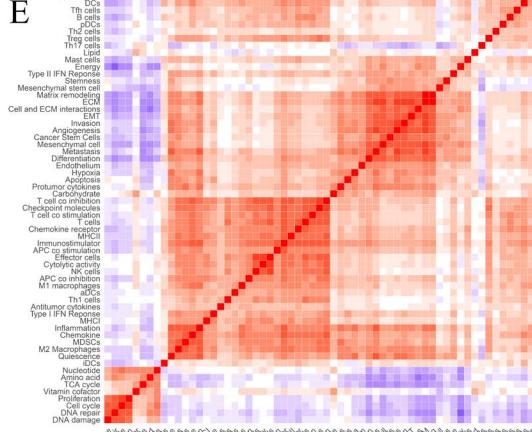
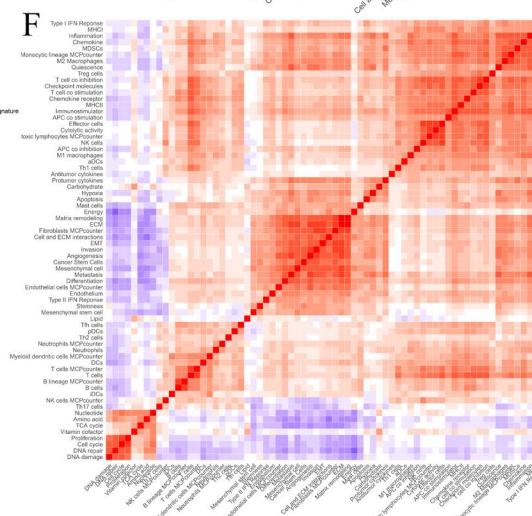
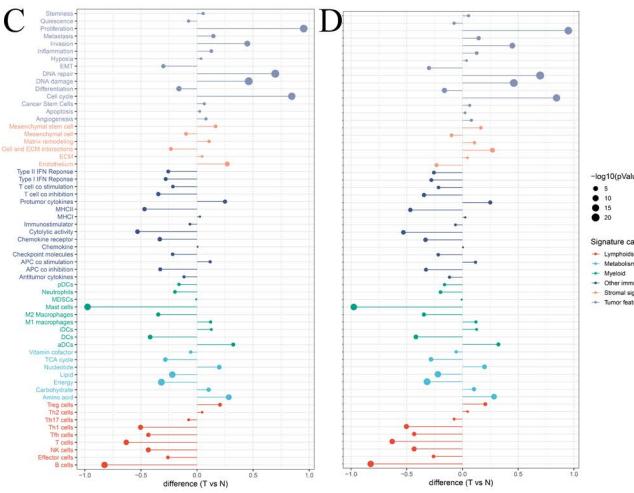
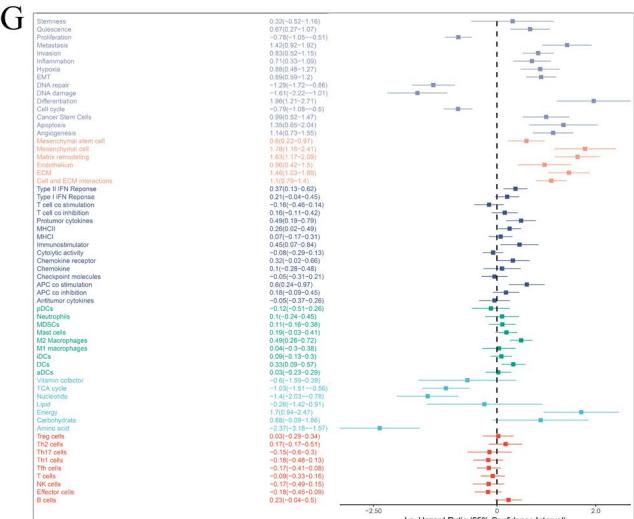
1263 **Figure S9. A-D,** Kaplan-Meier method with log-rank test of overall survival (OS) and progression-
1264 free survival (PFS) between the high ratio of KLRG1-to-CD8A expression and the low ratio of
1265 KLRG1-to-CD8A expression in Gide (**A**), Hugo (**B**), Jung (**C**), and IMvigor210 (**D**) datasets. **E-H,**
1266 Kaplan-Meier method with log-rank test of OS and PFS between the high ratio of TNFRSF4-to-
1267 FOXP3 expression and the low ratio of TNFRSF4-to-FOXP3 expression in Gide (**E**), Hugo (**F**), Jung
1268 (**G**), and IMvigor210 (**H**) datasets.

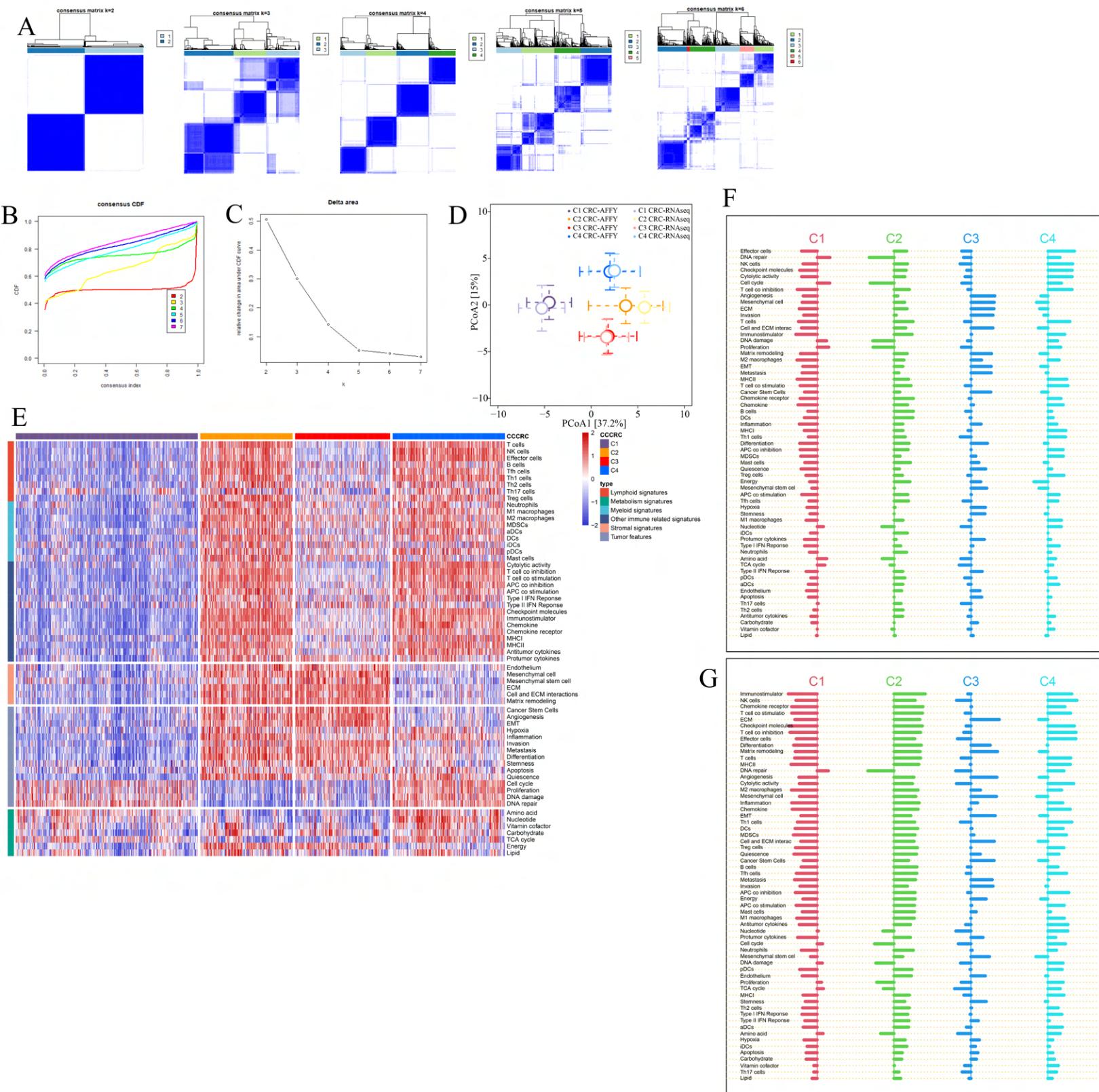
1269 **Figure S10. A,** Pie chart shows the differences in the proportions of responses to chemotherapy
1270 among the four CCCRC subtypes in the GSE104645 dataset. **B, C,** Pie chart shows the differences in
1271 the proportions of responses to a combination of chemotherapy and bevacizumab among the four
1272 CCCRC subtypes (**B**) and between the C2 subtype and the other subtypes (**C**) in the GSE104645
1273 dataset. **D,** Pie chart shows the differences in the proportions of responses to chemotherapy plus
1274 bevacizumab versus responses to chemotherapy in the C2 subtype of the GSE104645 dataset. **E,** Pie
1275 chart shows the differences in the proportions of the disease control rate (DCR) of anti-EGFR
1276 therapy among the four CCCRC subtypes in the GSE104645 dataset. **F,** Pie chart shows the
1277 differences in the proportions of responses to anti-EGFR therapy between the C2 subtype and the
1278 other subtypes in the GSE104645 dataset. PRCR, partial response and complete response; PDSD,
1279 progressive disease and stable disease; DC, disease control; NDC, no disease control.

1280 **Figure S11. Establishment of machine learning model.**

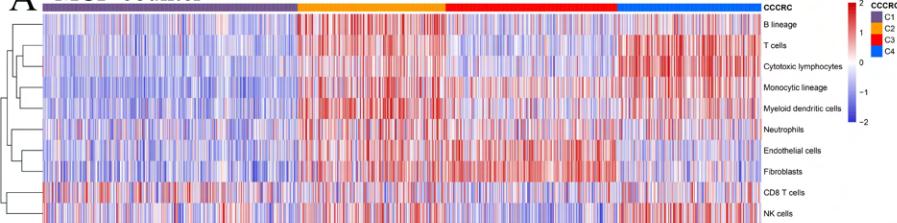
1281 **A-C.** The pre-clinical model was constructed using the random forest algorithm (RF), support vector
1282 machine algorithm (SVM), extreme gradient boosting (xgboost) algorithm, logistic regression
1283 algorithm. Accuracy (**A**), F1 score (**B**), and AUC value (**C**) were computed to evaluate the
1284 performance of the models. **D-F.** The single-sample gene classifier was constructed using the RF,
1285 SVM, xgboost algorithm, logistic regression algorithm. Accuracy (**D**), F1 score (**E**), and AUC value
1286 (**F**) were computed to evaluate the performance of the classifiers.

1287

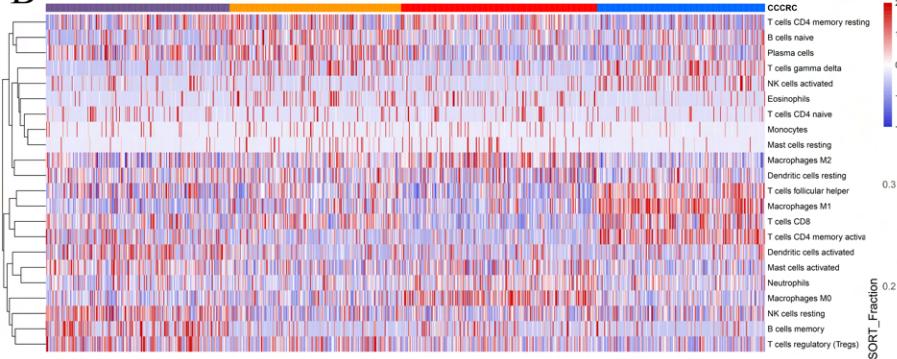




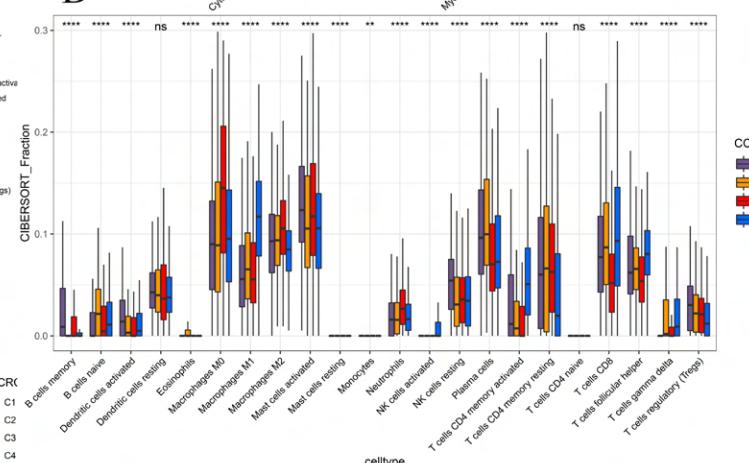
A MCP-counter



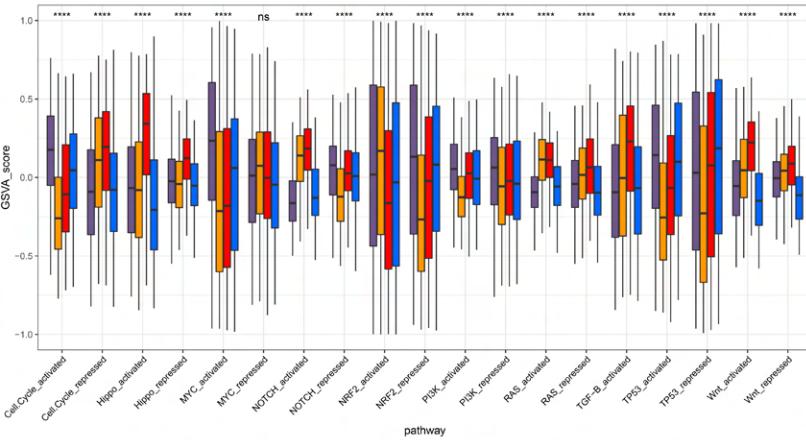
B CIBERSOFT



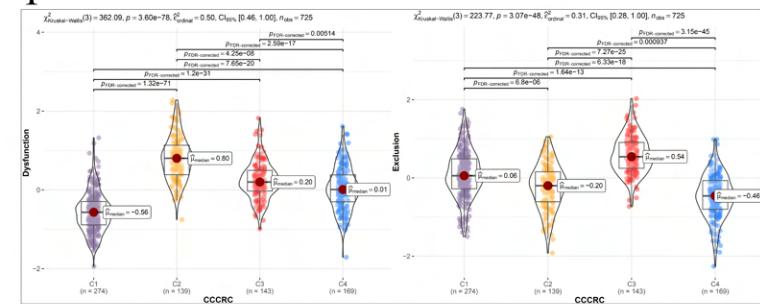
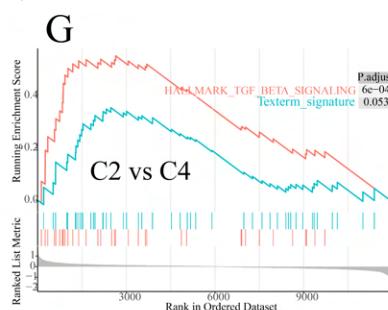
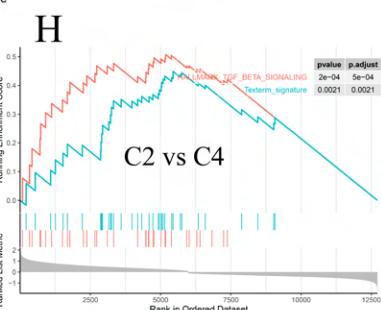
D



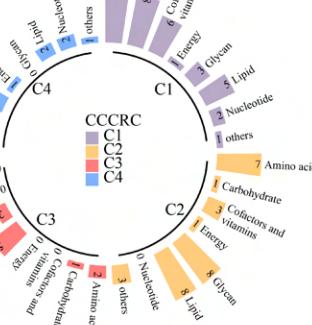
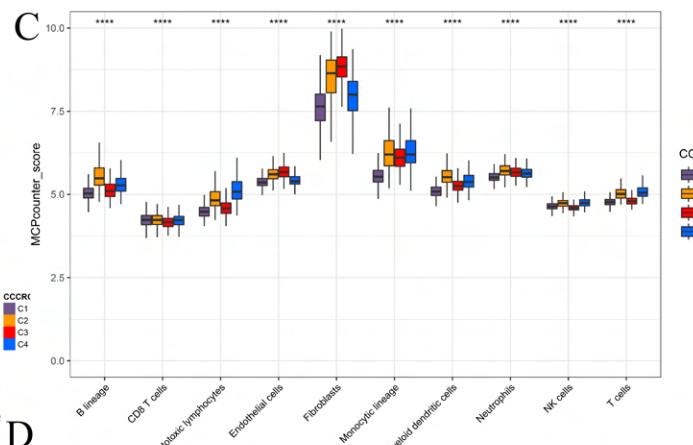
E



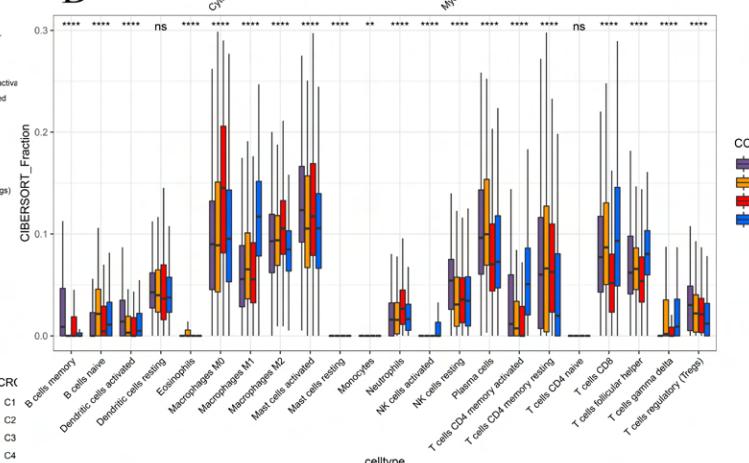
F



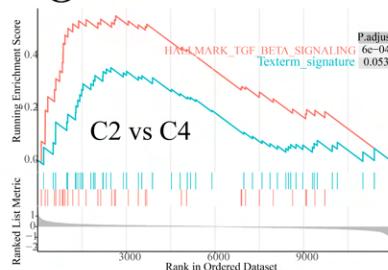
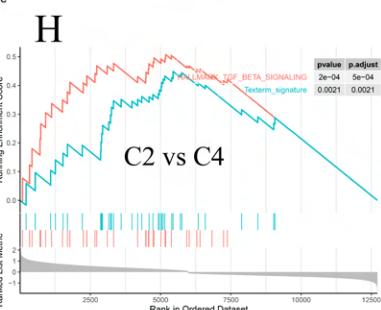
I



D



G



I

