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Abstract

Over ten percent of men will be diagnosed with prostate cancer (PCa) during their lifetime.
Arising from luminal cells of the prostatic acinus, PCa is influenced by multiple cells in its
microenvironment. To expand our knowledge and explore means to prevent and treat the
disease, it is important to understand what drives the onset and early stages of PCa. In this
study, we developed an agent-based model of a prostatic acinus including its

microenvironment, to allow for in silico studying of PCa development.

The model was based on prior reports and in-house data of tumor cells co-cultured with
Cancer Associated Fibroblasts (CAFs) and pro-tumor and/or anti-tumor macrophages. Growth
patterns depicted by the model were pathologically validated on H&E slide images of human
PCa specimens. We identified that stochasticity of interactions between macrophages and
tumor cells at early stages strongly affect tumor development. Additionally, we discovered that
more systematic deviations in tumor development result from a combinatorial effect of the
probability of acquiring mutations and the tumor-promoting abilites of CAFs and
macrophages. In silico modeled tumors were then compared with 494 cancer patients with
matching characteristics, showing strong association between predicted tumor load and
patients’ clinical outcome. Our findings suggest that the likelihood of tumor formation depends
on a combination of stochastic events and systematic characteristics. While stochasticity
cannot be controlled, information on systematic effects may aid the development of prevention

strategies tailored to the molecular characteristics of an individual patient.
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Introduction

Prostate cancer (PCa) is generally diagnosed at late age, with 75% of all cases found in men
over 65 years old (1,2), while the formation of precursor neoplastic lesions is initiated years
earlier (3). While localized PCa can be cured, metastatic disease cannot, and its treatment is
a clinical challenge (4,5). Currently, PCa is the second most diagnosed cancer and the second
leading cause of cancer deaths in men globally (1). Studying the onset and early development
of PCa improves our understanding of this disease and could aid the development of new
treatment strategies to prevent disease progression and to improve clinical care for PCa
patients (6—10).

PCa generally initiates in the prostatic acini. In a normal acinus the epithelium is highly
organized with a bilayer of basal and luminal cells separated from the underlying stroma by
the basement membrane. During the premalignant prostatic intraepithelial neoplasia (PIN)
stage, luminal cells start to hyperproliferate (11,12). Eventually, this can lead to the disruption
of the basal cell layer and breakdown of the basement membrane, which is a prerequisite for
the invasion of tumor cells into the tumor microenvironment (TME) (13,14), allowing cancer

cells to metastasize (15,16) .

PCa is assumed to originate from mutations that confer a proliferative advantage to the
transformed cells (17,18). The accumulation of mutations is essential for the progression
towards the malignant disease, and PCa is characterized by a high heterogeneity of tumor
cells (19,20), with clonal selection shaping tumor evolution (21). Fibroblasts, normally
contribute to maintenance of the healthy homeostasis in the prostate (22—-24). However, when
in contact with neoplastic cells they can differentiate into cancer-associated-fibroblasts (CAFs)
(22). CAF differentiation already occurs in early premalignant stages, contributing to the
development and progression of PCa by stimulating tumor cell proliferation (25) and migration
(26,27) and by altering the surrounding extracellular matrix (28—30), facilitating cancer cells to
invade the stroma (31,32). Macrophages are another important cell type in PCa development,
constituting 70% of the immune cell population in the prostate TME (33). Macrophages are
attracted by cytokines released by PCa cells and initially contribute to the immune defense
against tumors (34). However, macrophages have a wide range of functions depending on
environmental cues and can differentiate from a pro-inflammatory and anti-cancer (M1-type)
to a pro-cancer (M2-type) phenotype (35). The latter may support tumor cell proliferation,

migration, and invasion (36,37).

Although several studies have characterized developmental stages of PCa and the underlying
molecular mechanisms of tumorigenesis (12,18,35,38-40), it is still unclear how such

mechanisms jointly contribute to PCa development (41).
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89  Given the limitations of in vivo temporal data acquisition in studying heterogeneity at early
90 stages in patients, novel models are required to study development of PCa. Mathematical
91  models offer valuable tools to study tumor development in silico. In particular, agent-based
92 models (ABM) are spatial models that simulate the effect of interactions in complex
93  multicellular systems such as tumors. This enables the investigation of how the overall system
94  behavior originates from the interaction of individual components (42). In ABMs, cells are seen
95 as agents that can interact with the surrounding cells (agents) based on a predefined set of
96 rules. Based on stochastic simulations, ABMs enable monitoring the evolution of the tumor
97  over time, and systematically test the impact of different aspects of the TME in a controlled

98  way that would be unfeasible in any in vitro or in vivo settings (43).

99  Here we propose the first comprehensive ABM of PCa onset and progression encompassing
100 nine agent types and 60 parameters. Our model parameters are based on prior reports and
101 in-house generated experimental data on LNCaP cultures and cocultures with fibroblasts, pro-
102 tumor, and anti-tumor macrophages. We show that our model reliably recapitulates different
103 stages and spatial morphologies observed in cancer development, based on strong
104  phenotypical parallels with histopathology images from PCa patients. Additionally, we use the
105 model to study which factors in the microenvironment mostly affect PCa development, and to
106 simulate in silico patients with different molecular characteristics, showing strong associations
107  between in silico tumors and matching clinical data from The Cancer Genome Atlas (TCGA).
108 We provide our ABM as a tool to systematically study the impact of the microenvironment on

109 PCa development.

110
111 Materials and Methods

112  Agent-based modeling assumptions and simulations

113 Inthis study we developed two ABMs to: 1. Test the requirements for PCa tumor maintenance
114 and 2. Study the onset and progression of PCa. In both cases we used a two-dimensional
115 (2D), on grid, stochastic ABM. The size of one grid space was set to the size of one tumor cell,
116  142.89 pym2 (44) forming a 125X125 grid. The first model only includes tumor cells (normal
117  and stem-like) and in all scenarios a total of 1500 cells were randomly seeded. The second
118 model includes nine different types of cellular agents (i.e., different in silico cell types) and
119 cells were no longer seeded randomly, but in an ellipsoid geometry, mimicking the prostatic
120 acinus. The average size of the lumen of the acinus was determined at 73 ym (6 gridspaces)
121  (45) and increased to 156 pm (13 gridspaces), to adapt for the limitation that there are only
122  two directions for growth and migration in the 2D model. Simulations were always repeated
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123  multiple times (as specified in the corresponding results sections) to account for the stochastic

124 nature of ABM simulations.

125 Like all models, our models are an abstraction of reality and based on a set of assumptions
126  which are listed in Supplementary Table 1. All agents (cells) occupy one space on the grid
127  and compete for space in their Moore neighborhood (i.e., the eight surrounding grid spaces).
128 The model iterates through a defined number of time steps. At each step every agent can
129 perform an action with a certain predefined probability. These probabilities are defined by
130 model parameters which are either derived from literature or estimated from our experimental
131 data as detailed in the next sections. The complete list of model parameters is provided in
132  Supplementary Table 2.

133 Modeling of tumor cells as cellular agents

134 In both models, tumor cell agents are seen as mutated luminal cells (hormal or stem cells) and
135 they have the possibility to acquire mutations (probability defined by the model parameter
136  TUpmut; Supplementary Table 2) which confers them a proliferative advantage modeled as
137  a (cumulative) increase in the probability of proliferation and maximum proliferation capacity
138 (TUadded values) (17). Mutated cells can migrate (TUpmig), die (TUpdeath) or proliferate
139 (TUpprol). Cancer stem cells have the same characteristics as normal tumor cells, but they
140 are additionally characterized by their self-renewal capacity (46). Therefore, stem cells are
141 modeled as having infinite proliferation capacity, while other luminal cells have a limited

142  proliferation capacity (TUpmax).

143 Implementation of an agent-based model of PCa onset and progression

144  The more complex ABM that we developed to study PCa developments includes the tumor
145 cells described in the previous section, and eight additional agents that can perform actions
146  and interact with each other (Fig. 1). As stated above, this model's starting geometry mimics
147  the one of a healthy prostate acinus, where luminal cells (including a fraction of stem cells)
148 are placed on a layer of basal cells, which is attached to the basement membrane (47,48).
149  Luminal cells can acquire mutations and convert into tumor cells. A layer of tissue resident
150 fibroblasts is placed outside of the acinus, surrounded by extracellular matrix (ECM) containing
151  more fibroblasts. Fibroblasts can convert to tumor-promoting CAFs when they are in proximity
152  of tumor cells (22,39,49,50). Macrophages can enter the simulation from the top left corner,
153  simulating entry from a blood vessel. Although they exist in a broad spectrum, we consider a
154  simplification of two phenotypes: M1 (immuno-promoting/anti-tumor) and M2 (tumor-

155 promoting, or TAMs) macrophages (51).
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In each iteration, all agents have their own round during which they can perform their actions
or can idle based on the defined probabilities. The basement membrane and the ECM are
instead passive agents that can only idle or be affected by the actions of other agents.
Actions are performed by agents in the following order.

1. Luminal cells can proliferate (LCpprol) within their physiological region and die
(LCpdeath). They can also gain mutations (TUpmut), thereby converting into tumor
cells (47). Tumor cells can die (TUpdeath), proliferate (TUprol) also outside their
physiological region, affect fibroblast differentiation (Fdiff) and increase macrophage
influx (Mlinfluxadd) (37,52). Additionally, they can gain more mutations (TUpmut).
Upon reaching mutation thresholds (TUthrshBM, TUthrshM, TUthrshMMP), tumor cells
can perform additional actions: break down the basement membrane (TUpkill), affect
macrophage differentiation (TUpMdiff), or break down the ECM (TUpMMP) (48,51,53).
After going through epithelial-mesenchymal transition (EMT), which is promoted by
CAF or TAM proximity, tumor cells become invasive and can migrate randomly to an
empty space in the Moore neighborhood (TUpmig) (37,54,55).

2. Basal cells can proliferate within their physiological regions (Cprol) and die (Cpdeath).
They must remain attached to the basement membrane to survive and cannot invade
the lumen (56).

3. Fibroblasts are quiescent, i.e., they only idle (57). However, when they are in close
proximity to tumor cells (i.e. max two grid spaces away, so the tumor cells can affect
fibroblast differentiation over the basement membrane during PIN), they can
differentiate into CAFs (Fdiff) (58). CAFs can proliferate (CFpprol), die (CFpdeath),
break down ECM (CFmmp), promote differentiation of macrophages towards the
tumor-promoting phenotype (CFmdiff), enable migration for mutated cells (CFemt) and
promote tumor cell proliferation (CFprom), by adding to the proliferation probability of
tumor cells (25,53,54,58).

4. Macrophages can enter the simulation (MlinfluxProb), with an increased probability
when macrophages detect tumor cells (Mlinfluxadd) (37,52). All macrophages enter
the simulation as M1 macrophages that can kill tumor cells (M1pkill), die (M1pdeath)
or migrate (M1pmig). Macrophages move randomly, unless they can sense (within 17
grid spaces, to account for the effect of chemokines) tumor cells, as they will then move
towards them (59,60). When differentiated into tumor-promoting M2 macrophages, via
stimulation by tumor cells or CAFs, they can additionally promote tumor cell

proliferation (M2TUadd) and enable tumor cell migration (M2emt) (37).

For typical simulations in this study, steps of 12 hours were used to simulate a period of 400

days. At each step the model iterates through the rounds described above and each agent
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can perform one or more actions. Apart from stem cells, all other cells have a maximum
number of times they can proliferate (luminal cells, tumor cells, basal cells, fibroblasts and
CAFs) or kill (macrophages) after which they get exhausted and die. Migration and
proliferation can only occur in the standard Moore neighborhood, except for macrophages
that can migrate in the Moore neighborhood of range two (24 neighbors instead of 8), to allow

for acinus infiltration by traveling over the basement membrane (37,52,60).

Luminal cells Basal cells

Healthy luminal

cell (LC) Tumor cell (TU)

Basal cell (BC)

TUpmut T
--------------------------- > o
Mutate —
: If above the mutation threshold
‘@ TUpprol
Proliferate TUpkill L _
LCpprol Break d Cpprol
N TUpdeath reak down L_>
Ir;] ‘_p_) basement membrane .
Proliferate Die ; Proliferate
TUpMdiff * Il
Tl t
LCpdeath & 4&) Induce macrophage Cpdeath
NM——— Mutate differentiation
Die Fdiff Die
"* M Induce' .f;;oblast
& Increrase M1 influx differentiation e
) TUpMMP
Idle B <229 Idle
Migrate vy Break down
(if enabled by EMT)  Idle Idle sl an itk
Fibroblasts Macrophages
Normal Cancer associated Anti-tumor Pro-tumor
fibroblast (F) fibroblast (CAF) macrophages (M1) macrophages (M2)
Fdiff ‘ TUpMdiff, CFmdiff
Differentiate ~ Differentiate
CFpprol
i il
Proliferate CFmmp M1pmig M2pkill
» Break down Miarate ) Kill tumor
CFpdeath extracellular matrix 9 @ M2pmig cells
Idle ; Migrate M
Die CFmdiff *» = M1pdeath 2TUadd
Induce macrophage Die M2pdeath Induce tumor cell
CFemt differentiation 4L—J proliferation
_ e CFprom M1 pkill Die M2emt
Enable tumor cell e — @&
migration (EMT) Induce tumor cell Kill tumor Enable tumor cell
proliferation cells migration (EMT)
v v v
Idle Idle Idle

Figure 1. Overview of the agents and actions they can perform during each model iteration. The simulation starts
with luminal cells (LC) and basal cells (BC) that can proliferate, die, or idle, all within physiological regions and with
fixed probabilities. The starting geometry also contains quiescent fibroblasts (F) and the passive agents (basement
membrane and ECM), macrophages enter throughout the simulation. LCs can gain mutations, resulting in an
increased M1-macrophage influx, once sensed by macrophages. These mutated cells (TU) can additionally break
down basement membrane and ECM and affect macrophage and fibroblast differentiation upon reaching mutation
thresholds. Differentiated fibroblasts (CAF) proliferate, die, and can perform tumor-promoting actions. Just as the
differentiated M2 macrophages, they stimulate TU proliferation and allow for TU migration. Macrophages (M1 and
M2) can also kill tumor cells and die or migrate. Image created with BioRender.com.
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208 Experimental data for parameter estimation

209 We performed co-culture in vitro experiments for fitting the model parameters. We used the
210 PCacellline LNCaP (ATCC), immortalized foreskin fibroblast cells (BJ fibroblasts, Agami Lab
211 NKI) and the monocytic cell line THP-1 (ATCC) which were differentiated into M1 or M2

212  macrophages.

213  LNCaP cells and fibroblasts were cultured together with either M1- or M2-macrophages in a
214  4:1:1 ratio respectively. Cells were cultured in physiological hormonal conditions with R1881
215 used to induce androgen receptor (AR) signaling. LNCaP cells were tagged with eGFP to
216  follow them overtime. LNCaP-eGFP cell proliferation was measured with IncuCyte Zoom
217  fluorescent signal imaging system for seven days and performed in triplicate. Lastly, BJ
218 fibroblast proliferation was measured separately by analysis of phase-contrast images from

219 IncuCyte Zoom to obtain fibroblast growth curves, for fibroblast parameter determination.

220  Apoptosis was measured in real time using IncuCyte Zoom (Essen, BioScience). To this end,
221  cells were grown in FBS, including androgen, with an addition of Caspase-3/7 Read Reagent

222  for Apoptosis (Essen Bioscience) in duplicate.

223  The resulting growth curves (Supplementary Fig. S1) and apoptosis data of PCa cells were

224  used to determine the parameters of tumor cells in the model.

225 Parameter identification

226  Tumor cell, fibroblast and macrophage parameters were estimated using particle swarm
227  optimization (PSO) to fit the experimental data (Supplementary Fig. S1). For each biological
228 replicate, parameters were optimized 50 times to account for biological variation and model
229  stochasticity. Final parameter values were fixed to the average estimated value after
230  assessing the robustness of the estimated values between replicates. The optimizations were
231  done sequentially, fixing the estimated model parameters. First, TUpmax and TUpprol were
232  fitted to the experimental growth curves of the LNCaP cells. TUpdeath was determined by
233  measuring apoptosis of LNCaP cells. Subsequently, Fpprol, Fpmax and Fpdeath were fitted
234  using the fibroblast growth curves. Lastly, M1pkill and Mlkmax were fitted using the
235  experimentally obtained growth curve for tumor cells in the presence of M1 macrophages and

236  fibroblasts. Similarly, M2pkill was determined. M2kmax was assumed equivalent to M1kmax.

237  The remaining parameter values were either derived from previous studies, adapted from a
238  previously published model of colorectal cancer (60,61) or qualitatively tuned (all details and

239  specific references are in Supplementary Table 2).
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240 Parameter sensitivity analysis

241 A qualitative sensitivity analysis was performed for all individual model parameters by
242  increasing them individually by 10% and recording the percentage change in output, in the
243  number of tumor cells at 400 days. All simulations were conducted ten times to account for
244  model stochasticity. Parameters with low sensitivity (i.e., for which the increase did not affect
245  the output above the deviations due to the stochasticity of the model) were fixed and are
246  specifically mentioned in Supplementary Table 2. Follow up analysis were conducted for the
247  four most sensitive parameters (i.e. those causing on average > 10% change in output),
248  simulating ten intermediate values in the region of interest (i.e., in which the effect of changing
249 the parameter is visible but not so extreme as to overpower all other parameters). Lastly,
250 pairwise combinations (with five parameter values each) of the most sensitive parameters
251 were conducted to see if there were synergistic or antagonistic relations. In all sensitivity
252  analyses the relative tumor size was recorded at 400 days and averaged across ten

253 simulations.

254 Pathology slides for assessment of morphological features

255  Pathology slices of PCa patients were used, with permission, to compare growth patterns in
256  patients with the model simulations. The patient samples were randomly picked out of daily
257  practice of prostatectomies of PCa patients. Every slide consists of a 4 um thick section of
258 FFPE material and was stained with haematotoxylin and eosin (H&E). The uropathologist

259  scanned the slides and chose representative images of prostate carcinoma.

260 Comparison between model simulations and clinical patient data

261  Model predictions were compared with clinical data from The Cancer Genome Atlas (TCGA).
262 We used a cohort of N=494 PCa patients for which molecular data (transcriptomics and
263 genomics) and survival data (62) were available. RNA sequencing (RNA-seq) data was
264  downloaded via the Firehose tool from the BROAD institute (released January 28, 2016) and
265  processed as described by Lapuente-Santana et al (63). To allow for comparison between
266  expression levels of different genes, transcripts per million (TPM) were used. Tumor
267  mutational burden (TMB) data were obtained from a previous report (64). Quantifications of
268 the relevant cell types for individual patients were obtained using deconvolution methods
269  accessible through the immunedeconv R package (65): M1 and M2 macrophages were
270 obtained using quanTlseq (66) and CAFs were derived using EPIC (67). Lastly, for 333 PCa
271  patients we also retrieved information on Gleason score and binarized them as high (>=7) and

272  low (<7) Gleason score (68). For the comparison of model simulations and clinical Progression
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273  Free Survival (PFS) we used correlation analysis (Spearman and Pearson) and Kaplan Meier

274  plots (using survival and survminer R packages).

275 Computational implementation

276  The ABM of PCa onset and development is available as Matlab code in a GitHub repository

277 at https://github.com/SysBioOncology/ABM prostate cancer development.

278

279 Results

280 In silico prostate tumors require a proliferative advantage of mutated cells additionally to
281 cancer stem cells to maintain themselves at realistic stem cell percentages

282  Cancer stem cells are known to play an important role in PCa development (69—73). To identify
283  the percentage of stem cells needed for our in silico tumors to maintain themselves, we used
284  asimple ABM including only normal tumor cells and/or tumor stem cells (as defined in Material
285 and Methods) that were randomly seeded on the grid to test different possible scenarios in
286  silico (74). For the first scenario, tumor cells were not allowed to gain a proliferative advantage
287  via mutations. This allowed us to assess the ability of stem cells alone to sustain the tumor.
288 Irrespective of the starting percentage of stem cells, we achieved an almost full grid at
289  approximately 15000 tumor cells and stabilizing stem cell percentage at approximately 17%
290 (Fig. 2A). While the tumor was able to survive with stem cells alone, this final stem cell
291  percentage is much higher than we could reasonably expect based on literature, which is
292  reported to be 0.1-0.3% in the human prostate (69). The second scenario included no stem
293 cells, but only tumor cells with a possibility of gaining (more) mutations that confers
294  proliferative advantage. For all simulations all tumor cells died within 40 days, meaning that a
295  tumor cannot survive based on acquired mutations only (Fig 2B). The third scenario included
296  both a percentage of initial stem cells and tumor cells with the ability of gaining mutations. In
297  this case, the tumor could maintain itself while the percentage of stem cells stabilized at a
298  much lower value; approximately 0.5% (Fig. 2C). Based on these observations, we conclude
299 thatthe combination of stem cells and possibility for luminal cells to mutate (and with that, gain
300 a proliferative advantage), is required for tumor maintenance at realistic stem cell levels, and

301 that this does not depend on the initial percentage of stem cells.

302
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304 Figure 2. In silico testing of requirements for tumor maintenance. A, Amount of tumor cells (blue) and percentage
305 of stem cells (orange, dotted) simulated over time under the condition that included only stem cells to maintain
306 tumors. Simulations for six different initial percentages of stem cells (SCstart) are shown. B, Similar plot testing the
307 condition in which the proliferative advantage of mutated tumor cells is the only source for tumor maintenance.
308 Simulations for three different probabilities of acquiring mutations (Pmut) are shown. C, Similar plot testing the
309 condition in which tumor maintenance depends on both stem cells and tumor cells that can gain mutations. Four
310 combinations of initial stem cell percentage and probability of mutation acquisition are shown.

311 Model simulations recapitulate known steps of PCa development

312  After defining the basic requirements for tumor maintenance, we developed a comprehensive
313 ABM to describe onset and development of PCa in a simulated in vivo setting starting from a
314  healthy prostate acinus (Fig. 3). This model is schematically depicted in Fig. 1 and is based
315 onthe set of assumptions and parameters in Supplementary Table 1 and 2 respectively (see
316 Material and Methods).
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318 Figure 3. Overview of the starting geometry in threefold; a pathology slice, schematic representation, and model
319 geometry visualization. A, A histology slice of a healthy prostatic acinus (H&E staining, 400x magnification). B,
320 Schematic representation of the acinus. C, Modeled starting geometry, including a color scheme of all cells included
321 in the starting geometry

322  Running the model simulations, we can observe how PCa develops over time (Fig. 4A-1, video
323 inSupplementary File V1). The initial condition is a healthy prostatic acinus with empty lumen
324  (Fig. 4A). Luminal cells can start to mutate and then grow in the lumen (Fig. 4B). Mutated
325 luminal cells give rise to prostatic intraepithelial neoplasia (PIN), characterized by luminal cell
326  hyperplasia, while the basement membrane remains intact (19,75,76) (Fig. 4B-F). Mutated
327 luminal cells (hereafter called tumor cells) attract macrophages, resulting in an increased

328 macrophage influx towards the acinus (Fig. 4C) (37,51). Basal cell layer breakdown starts to
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329  occur during early PIN (Fig. 4D) and increases exponentially with disease progression (16).
330 During PCa development, CAFs originate from normal fibroblasts due to tumor cell stimulation
331 (Fig. 4E) (77). Tumor cells also affect polarization of macrophages towards the tumor-
332  promoting phenotype by cytokine secretion, resulting in an increased number of M2-like
333  macrophages (Fig. 4F). This increasing tumor-promoting environment results in basement
334 membrane breakdown (Fig. 4G) allowing the disease to progress towards cancer. The tumor
335  promoting cells (TAMs and CAFs) elicit EMT in tumor cells, making them invasive (Fig. 4H)
336  (54,55). This results in tumor cells invading the surrounding tissue, and thereby starting the
337  cancerous phase (Fig. 41). Based on these findings, we conclude that our model can represent

338 all main steps of PCa onset and development well.

A Healthy equilibrium stage B Mutations of luminal cells C Increased macrophage influx

D Break down of basal cell layer E Fibroblasts turning into CAFs F Macrophage differentiation

H Epithelial to mesenchymal transition | Invasive cancer

Cancer-associated
fibroblasts (CAF)

Stem cell Tumor Invasive (EMT) Extracellular Anti-tumor . Pro-tumor
339 stem cell tumor cell matrix (ECM) macrophages (M1) macrophages (M2)

.Luminal cell .Tumor cell .Basal cell Basement .Fibroblasts

membrane

340 Figure 4. Initial healthy stage and following eight steps of PCa development as by PCa ABM simulation. A, Healthy
341 prostatic acinus. B, Mutations start to occur in the luminal cells converting them into tumor cells. C, The presence of
342 mutated cells increases the influx of M1 macrophages. D, Mutated cells start to occupy spaces in the basal cell
343 layer. E, Fibroblasts are differentiating towards their tumor-promoting phenotype (CAFs). F, Macrophages are
344 differentiating towards their tumor-promoting phenotype. G, All these factors lead to break down of the basement
345 membrane. H, Mutated cells become more invasive and start undergoing EMT. I, Invasive cancer with cells
346 spreading through the surrounding tissue. The white grid spaces indicate ‘empty space’, corresponding to the
347 lumen or to the cleaved ECM (for example by CAFs).
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348 Using the parameter set defined in Supplementary Table 2, we ran 500 simulations and
349  observed that only 36% of them results in breaking down of the basement membrane, which
350 we consider as a marker of invasive PCa. We decided to investigate the main stochastic
351  factors contributing to tumor development in silico. If the malignant cells are recognized by the
352  macrophages at an early stage, this results in a fast increase in the ratio of macrophages to
353 tumor cells. This allows the immune system to control and overcome the disease
354  (Supplementary Fig. S2A). However, if this does not happen at early stages, the tumor
355 develops to evade the immune response and subverts the immune response by converting
356 macrophages to the pro-tumor phenotype, increasing the M2:M1 macrophage ratio
357 (Supplementary Fig. S2B). We also observed that there are several factors that contribute
358 to determining the time of invasion. Earlier invasions are characterized by higher numbers of
359 CAFs, a higher average mutation load and higher M2:M1 macrophage ratio (Supplementary
360 Fig. S2C-E). These results highlight how, based on stochastic simulations, our ABM enabled

361  us to identify the aleatory factors that support PCa development.

362 Model simulations recapitulate geometries present in histology images

363  Does our in silico prostate cancer model reliably represent clinically observed tumor growth
364  patterns? To address this question, we compared our model simulations with pathology slides
365  of PCa patients that were randomly picked out of daily practice. The uropathologist scanned
366 the slides and selected representative images of prostate carcinoma. A common growth
367  pattern during the PIN phase is tufting, which is characterized by protrusions consisting of
368  multiple cell layers growing on the basal cell layer (78) (Fig. 5A), which was observed as
369  emergent behavior in our model simulations (Fig. 5B). In the simulations, this tufted geometry
370 originates from mutated cells that grow in clusters attached to the basal cell layer. Interestingly,
371 permanent ‘tufts’ in our model contain stem cells suggesting that the presence of stem cell
372  clusters could be an indication of the directionality of tumor growth. Another common growth
373  pattern in developing PCa is bridging, when cells grow from one side of the acinus towards
374  the other side (Fig. 5C), which was also portrayed in the in silico developing tumors (Fig. 5D).
375  Overall, we can conclude that our ABM recapitulates important growth patterns observed in

376  histology slices of actual PCa patients.
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378 Figure 5. Comparison between model simulations and histology images (tufting and bridging). A, Pathology slice
379 of a PCa patient (H&E staining, 400x magnification) showing a ‘tufted’ pattern of growths on the luminal cell layer.
380 B, Model simulation depicting the tufting growth pattern. C, Pathology slice of a PCa patient (H&E staining, 400x
381 magpnification) showing bridging; growth of cells from one side of the acinus towards the other side. D, Simulated
382  PCa development showing the bridging growth pattern.

383  Tumor development is most strongly impacted by mutation probability, tumor promoting
384 ability of CAFs and macrophage phenotype

385  Having established that the simulated onset and development of PCa recapitulates tumor
386  developmental processes and growth patterns as observed in patients, we next investigated
387  which model parameters most strongly affect tumor growth. Performing sensitivity analysis
388 (Material and Methods), we identified four model parameters causing a strong variation in
389 the final simulated tumor load (Fig. 6A). These sensitive model parameters are: tumor
390 promotion by CAFs (CFprom), migration probability of anti-tumor M1-like macrophages
391 (Mlpmig), tumor mutation load required for macrophage differentiation (TUthrshM), and
392  mutation probability for luminal cells (TUpmut). Looking at the dynamics of tumor formation
393 when tuning these parameters, we observed that the mutation probability increases growth
394  speed from the start of the simulation, while the pro-tumorigenic effects of macrophage influx
395 and CAF involvement occur at a later stage (Supplementary Fig. S3). Since these
396  parameters can be related to molecular markers which are largely variable between patients,
397 we decided to vary the corresponding parameters to generate relevant in silico patient
398  populations. Analyzing the combined effect of parameter pairs on tumor growth, we empirically
399 selected one high and one low value for each parameter (Supplementary Table 3). We chose
400 values for which the effects of the parameter variation were clearly observable, but not too
401  overpowering (other parameters having little/no effect based on Supplementary Fig. S4). To
402  reduce the number of variables in order to have big enough clinical patient groups for the
403 analysis described in the next section, we merged the two macrophage parameters: high

404  migration probability and low threshold for phenotype switching (pro-tumor macrophages)
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405  versus low migration probability and high threshold for macrophage phenotype switching (anti-
406  tumor macrophages). This resulted in three parameter sets that allow for simulation of patients
407  with: 1. High vs low level of tumor-promoting effect of CAFs; 2. High vs low pro-tumor
408 macrophage characterization; 3. High vs low level of mutation frequency of tumor cells. By
409  systematically combining the effect of these three parameter sets, we obtained eight patient
410 groups (Fig. 6).

411  For all four groups with high tumor mutation probability, over 88% of the simulations showed
412  disease progression towards cancer (Supplementary Table 4). This is lower for other groups,
413  with the two groups with pro-tumor macrophages and low mutation probability resulting in

414  modeled cancer progression in less than 8% of the simulations.
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416 Figure 6. Effect on tumor growth of varying sensitive model parameters. A, Grouped histogram of the repeated
417 sensitivity analysis (5 times for each parameter), overlapped by four (differently colored) histograms of the most
418 sensitive parameters: mutation probability of luminal cells (Pmut, red), probability of CAFs promoting tumor cell
419 proliferation (CFprom, green), yellow represents the amount of mutations needed before tumor cells affect
420 macrophage differentiation (TUthrshM) and M1 macrophage migration probability (M1pmig, blue). B, The averaged
421 evolution of the amount of tumor cells for 40 simulations that developed cancer for each of the eight subclasses.
422 These classes were based on the ‘high’ or ‘low’ status of sensitive parameters for CAFs, TAMs and tumor cells.
423 Included is a violin plot depicting the spread of simulated tumor cell amounts. C, An example of tumor development
424 for each group at an early point in the simulation (50 days), the point at which it becomes invasive and the state at
425  the end of the simulation (400 days).

426  To compare model simulations with clinical data, which are only available for developed
427  tumors from patients who underwent prostate surgery, we performed follow-up analysis
428  considering only the simulations resulting in cancer development. The group with the most
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429  aggressive tumors consists of simulated patients with high tumor-promoting CAFs, high pro-
430 tumor macrophages characterization and a highly aggressive tumor cell phenotype (red line
431  showing the simulated tumor growth over time in Fig. 6B and corresponding example
432  simulation in the red box in Fig. 6C). On the contrary, the group with the least aggressive
433  tumors is simulated when all parameter sets are set to 'low' (i.e. the least tumor-promoting

434  phenotype; pink line in Fig 6B and pink box in Fig. 6C).

435  As expected, the time of invasiveness (i.e., breakdown of the basement membrane, marked
436  with an x in Fig. 6B) is significantly earlier for the tumors with high mutation probability as
437  compared to those with low mutation probability (one-sided Wilcoxon Rank Sum test, p-value
438 =2.26e-10). However, the time of invasiveness does not always correlate with growth speed.
439  The tumor group with the steepest growth curve (red line, Fig. 6B) becomes invasive later
440 compared to more slowly growing tumors (e.g., the blue line, with anti-tumor macrophage
441  characterization, p-value = 0.030). This analysis suggests that different mechanisms can

442  affect how quickly tumors develop and how long it takes for tumors to become invasive.

443 Model simulations of tumor load associate with patient prognosis

444  Considering the same eight patient groups (all possible combinations of the three parameter
445  sets) defined in the previous section, we wanted to assess if the in silico behaviors correlate
446  with patient prognosis. To do so, we compared model predictions of tumor load (only for cases
447  thatdeveloped cancer) with clinical data from a cohort of PCa patients (N=494) from the TCGA
448  database. For each of the three parameter sets we defined whether a patient belonged to the
449  “low” or “high” group considering three molecular markers (see Supplementary Table 5 for
450 detailed motivation of the choice of the markers). Tumor aggressiveness was defined based
451 on TMB and the expression of two frequently mutated genes in PCa (TP53 and CDKN1B)
452  (17,79,80). Pro-tumor macrophage characterization was defined based on the ratio of M2:M1
453 macrophages and the expression of two genes involved in pro-tumor macrophage
454  differentiation (CXCL2 and STAT3) (81-83). Finally, the tumor-promoting CAFs effect was
455  defined based on the guantification of CAFs and the expression of two soluble molecules
456  secreted by CAFs that affect tumor progression (TGFBR2 and IGF1; the latter one with an
457  inverse relationship) (50,84-86). For each parameter set, a patient was assigned to the 'high’
458  category if at least two out of three makers were above the cohort median, and 'low' otherwise.
459 In this way, we could divide the TCGA patients in eight clinical patient groups with similar

460 characteristics to the in silico groups.

461  We observed a negative correlation between the tumor load from the in silico patient groups

462  and the PFS time of the matching clinical PCa patients. (Pearson correlation = -0.73, p-value
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463 = 0.04, Fig. 7A). Patients classified in the three groups with highest tumor load showed a
464  worse prognosis (albeit not statistically significant, p-value=0.089; Kaplan Meier plot in Fig.
465 7B) and a significantly higher Gleason score (chi-squared test, p-value=0.005; Fig. 7C) as
466  compared to the patients in the three groups with lowest tumor load. Overall, these results
467 indicate that tumors which are characterized to be more aggressive in silico correspond to

468  patients with higher grade and worst prognosis.
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470 Figure 7. Clinical validation of model predictions for different patient groups. A, Correlation between the simulated
471 tumor growth (simulation time 400 days, 40 simulations per modeled patient group) and the average progression
472 free survival time for clinical patients assigned to the matching patients groups based on molecular markers. Colors
473 correspond to those used in Figure 6B, portraying simulated tumor growth over time of the same classes. B, Kaplan
474 Meier plot of two patient groups. Patients were considered as low tumor (red) load if they belong to the three groups
475 with lowest simulated tumor load and high tumor load (blue) if they belong to the three groups with highest simulated
476 tumor load. C, Binary Gleason scores per patient group; Gleason scores of 7 or higher were considered ‘high’ and
477 Gleason scores of 6 or lower were considered ‘low’.

478

479 Discussion

480 The process of PCa development can take years and is heavily influenced by many different
481  types of cells, stochastic events, and the tumor microenvironment. Its unpredictable nature
482 and extensive adaptation strategies bear resemblance to the process of evolution, which
483  makes it particularly hard to combat at a later stage. Recreating the complete disease settings
484  to better understand and treat the disease is therefore rather difficult in in vitro or in vivo
485  settings.

486  As recently emphasized in an opinion paper by West and colleagues (87), agent-based
487 models are key tools to reproduce the complexity of the tumor in silico, offering a
488 complementary approach to in vitro and in vivo experiments. They allow the integration of
489  different types of knowledge, framing it in the form of an intuitive set of rules. Despite their
490  simplicity in the formulation, they allow simulation of complex behaviors deriving from cell-cell

491 interactions.

492 Here, we designed a comprehensive agent-based model that provides an in silico

493  experimental set up to study PCa onset and progression. The rules defining our ABM were
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494  based on a set of assumptions integrating knowledge from several studies. Model parameters
495  were additionally fine-tuned by fitting our in-house generated in vitro co-culture data. After
496  showing that our model was able to reproduce known tumor patterns and relevant steps of
497  tumor progression, we used the model to in silico study the impact that deterministic and

498  stochastic events have on PCa progression.

499 In our study we identified pro-tumor activity of CAFs and macrophages and mutation
500 probability of the tumors as main deterministic causes of in silico tumor heterogeneity. While
501 high tumor mutation probability generally results in fast invasion and bigger tumors, the effects
502 and quantities of macrophages and fibroblasts at different time points were found to be a very
503 important factor in PCa development and progression too. These findings could help to
504 improve our understanding of different patient molecular characteristics and how these
505 contribute to the likelihood of progression, thus suggesting new prevention strategies and
506  options for patient-tailored treatment plans. However, more clinical data on patients not (yet)
507 in a malignant disease stage would be needed to assess if these markers could be used as
508 indicators of disease stages and be functionally associated with disease progression. This
509 assessment could be tested by monitoring prostatitis patients, which is a risk factor for PCa
510 (88).

511 We additionally observed that, running the model multiple times starting with the same initial
512  conditions, only a fraction of the simulations developed into cancer. This is determined only
513 Dby the stochasticity of the events included in the simulation that mimics the in vivo stochasticity
514  of cellular interactions. We observed that aleatory events related to the interactions between
515 macrophages and tumor cells can determine the success of early immunosurveillance thus
516 determining the fate of the tumor. The stochasticity of interactions also affects how long it
517  takes before the tumor becomes invasive, driven by the balance between the number of CAFs,
518 amount of driver mutations and the ratio of anti-/pro-tumor macrophages. While there is
519 increasing awareness that clinicians should consider the impact of genetics to account for
520 patients heterogeneity in prostate cancer management (89,90), our results underlie the
521  importance of monitoring the microenvironment phenotype (e.g. using multiplexed tissue

522  imaging) during PCa progression.

523  Although we have shown that our AMB model is a valuable tool to conduct in silico experiments
524  on the onset of prostate cancer, it is important to keep in mind that models are always an
525  approximation of reality and the choice of the level of details included is driven by the aim of
526  the study. Our model could be extended in the future to study treatment response and more
527 advanced disease stages, such as the effect of androgen deprivation therapy or androgen
528 receptor (AR) inhibition and the development of castration resistance. Considering that AR is
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529 known to play a role, not only on prostate cancer cells, but also on fibroblasts (26) and
530 macrophages (55), an extension of our ABM could be a valuable tool to take an integrative

531 approach to study how the the PCa microenvironment mediates therapy response.

532  Additionally, for this study we chose to focus on macrophages and fibroblasts because of their
533  prominent role in PCa, but the model could be further extended to include other cell types,
534  such as T-cells. Although PCa is known to be an immune excluded and suppressed tumor
535 type, recent studies showed the potential of combining T-cell-based immunotherapies (i.e.
536 immune checkpoint blockers or CAR T cells) with other therapies targeting the PCa
537  microenvironment to restore anti-tumor immunity in advanced prostate cancer (91,92). ABMs
538 could help to understand the effect of combining different therapies in specific

539  microenvironment subtypes, therefore suggesting how to tailor combinatorial treatment.

540  Furthermore, we have now chosen to model the effect of cytokines and chemokines implicitly
541  (e.g. by basing an interaction between two cells on the distance between them), but it would
542  be an interesting addition to model humoral factors explicitly (e.g. using hybrid models (93)),
543 for example when wanting to zoom in more on androgen dependence and the path to
544 castration resistant disease. However, this would also increase the number of model

545  parameters and the computational costs.

546  Previous in silico models of PCa have been focused on specific mechanisms such as the
547  formation of bone metastases (76) or the role of disrupted stem cell movement in causing
548  excessive growth in healthy prostatic ducts (94). To our knowledge, this is the first ABM to
549  simulate the onset and development of prostate cancer in healthy prostatic acini considering
550 the effects of the microenvironment including fibroblasts and macrophages. Our analysis
551  shows that, not only tumor cells, but also macrophages and fibroblasts play an important role

552  in PCa development and could provide potential markers of disease progression.
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