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2 

Abstract 29 

Over ten percent of men will be diagnosed with prostate cancer (PCa) during their lifetime. 30 

Arising from luminal cells of the prostatic acinus, PCa is influenced by multiple cells in its 31 

microenvironment. To expand our knowledge and explore means to prevent and treat the 32 

disease, it is important to understand what drives the onset and early stages of PCa. In this 33 

study, we developed an agent-based model of a prostatic acinus including its 34 

microenvironment, to allow for in silico studying of PCa development.    35 

The model was based on prior reports and in-house data of tumor cells co-cultured with 36 

Cancer Associated Fibroblasts (CAFs) and pro-tumor and/or anti-tumor macrophages. Growth 37 

patterns depicted by the model were pathologically validated on H&E slide images of human 38 

PCa specimens. We identified that stochasticity of interactions between macrophages and 39 

tumor cells at early stages strongly affect tumor development. Additionally, we discovered that 40 

more systematic deviations in tumor development result from a combinatorial effect of the 41 

probability of acquiring mutations and the tumor-promoting abilities of CAFs and 42 

macrophages. In silico modeled tumors were then compared with 494 cancer patients with 43 

matching characteristics, showing strong association between predicted tumor load and 44 

patients’ clinical outcome. Our findings suggest that the likelihood of tumor formation depends 45 

on a combination of stochastic events and systematic characteristics. While stochasticity 46 

cannot be controlled, information on systematic effects may aid the development of prevention 47 

strategies tailored to the molecular characteristics of an individual patient. 48 

 49 
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Introduction 54 

Prostate cancer (PCa) is generally diagnosed at late age, with 75% of all cases found in men 55 

over 65 years old (1,2), while the formation of precursor neoplastic lesions is initiated years 56 

earlier (3). While localized PCa can be cured, metastatic disease cannot, and its treatment is 57 

a clinical challenge (4,5). Currently, PCa is the second most diagnosed cancer and the second 58 

leading cause of cancer deaths in men globally (1). Studying the onset and early development 59 

of PCa improves our understanding of this disease and could aid the development of new 60 

treatment strategies to prevent disease progression and to improve clinical care for PCa 61 

patients (6–10). 62 

PCa generally initiates in the prostatic acini. In a normal acinus the epithelium is highly 63 

organized with a bilayer of basal and luminal cells separated from the underlying stroma by 64 

the basement membrane. During the premalignant prostatic intraepithelial neoplasia (PIN) 65 

stage, luminal cells start to hyperproliferate (11,12). Eventually, this can lead to the disruption 66 

of the basal cell layer and breakdown of the basement membrane, which is a prerequisite for 67 

the invasion of tumor cells into the tumor microenvironment (TME) (13,14), allowing cancer 68 

cells to metastasize (15,16) . 69 

PCa is assumed to originate from mutations that confer a proliferative advantage to the 70 

transformed cells (17,18). The accumulation of mutations is essential for the progression 71 

towards the malignant disease, and PCa is characterized by a high heterogeneity of tumor 72 

cells (19,20), with clonal selection shaping tumor evolution (21). Fibroblasts, normally 73 

contribute to maintenance of the healthy homeostasis in the prostate (22–24). However, when 74 

in contact with neoplastic cells they can differentiate into cancer-associated-fibroblasts (CAFs) 75 

(22). CAF differentiation already occurs in early premalignant stages, contributing to the 76 

development and progression of PCa by stimulating tumor cell proliferation (25) and migration 77 

(26,27) and by altering the surrounding extracellular matrix (28–30), facilitating cancer cells to 78 

invade the stroma (31,32). Macrophages are another important cell type in PCa development, 79 

constituting 70% of the immune cell population in the prostate TME (33). Macrophages are 80 

attracted by cytokines released by PCa cells and initially contribute to the immune defense 81 

against tumors (34). However, macrophages have a wide range of functions depending on 82 

environmental cues and can differentiate from a pro-inflammatory and anti-cancer (M1-type) 83 

to a pro-cancer (M2-type) phenotype (35). The latter may support tumor cell proliferation, 84 

migration, and invasion (36,37).  85 

Although several studies have characterized developmental stages of PCa and the underlying 86 

molecular mechanisms of tumorigenesis (12,18,35,38–40), it is still unclear how such 87 

mechanisms jointly contribute to PCa development (41). 88 
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Given the limitations of in vivo temporal data acquisition in studying heterogeneity at early 89 

stages in patients, novel models are required to study development of PCa. Mathematical 90 

models offer valuable tools to study tumor development in silico. In particular, agent-based 91 

models (ABM) are spatial models that simulate the effect of interactions in complex 92 

multicellular systems such as tumors. This enables the investigation of how the overall system 93 

behavior originates from the interaction of individual components (42). In ABMs, cells are seen 94 

as agents that can interact with the surrounding cells (agents) based on a predefined set of 95 

rules. Based on stochastic simulations, ABMs enable monitoring the evolution of the tumor 96 

over time, and systematically test the impact of different aspects of the TME in a controlled 97 

way that would be unfeasible in any in vitro or in vivo settings (43). 98 

Here we propose the first comprehensive ABM of PCa onset and progression encompassing 99 

nine agent types and 60 parameters. Our model parameters are based on prior reports and 100 

in-house generated experimental data on LNCaP cultures and cocultures with fibroblasts, pro-101 

tumor, and anti-tumor macrophages. We show that our model reliably recapitulates different 102 

stages and spatial morphologies observed in cancer development, based on strong 103 

phenotypical parallels with histopathology images from PCa patients. Additionally, we use the 104 

model to study which factors in the microenvironment mostly affect PCa development, and to 105 

simulate in silico patients with different molecular characteristics, showing strong associations 106 

between in silico tumors and matching clinical data from The Cancer Genome Atlas (TCGA). 107 

We provide our ABM as a tool to systematically study the impact of the microenvironment on 108 

PCa development. 109 

 110 

Materials and Methods 111 

Agent-based modeling assumptions and simulations 112 

In this study we developed two ABMs to: 1. Test the requirements for PCa tumor maintenance 113 

and 2. Study the onset and progression of PCa. In both cases we used a two-dimensional 114 

(2D), on grid, stochastic ABM. The size of one grid space was set to the size of one tumor cell, 115 

142.89 μm2 (44) forming a 125X125 grid. The first model only includes tumor cells (normal 116 

and stem-like) and in all scenarios a total of 1500 cells were randomly seeded. The second 117 

model includes nine different types of cellular agents (i.e., different in silico cell types) and 118 

cells were no longer seeded randomly, but in an ellipsoid geometry, mimicking the prostatic 119 

acinus. The average size of the lumen of the acinus was determined at 73 μm (6 gridspaces) 120 

(45) and increased to 156 μm (13 gridspaces), to adapt for the limitation that there are only 121 

two directions for growth and migration in the 2D model. Simulations were always repeated 122 
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multiple times (as specified in the corresponding results sections) to account for the stochastic 123 

nature of ABM simulations. 124 

Like all models, our models are an abstraction of reality and based on a set of assumptions 125 

which are listed in Supplementary Table 1. All agents (cells) occupy one space on the grid 126 

and compete for space in their Moore neighborhood (i.e., the eight surrounding grid spaces). 127 

The model iterates through a defined number of time steps. At each step every agent can 128 

perform an action with a certain predefined probability. These probabilities are defined by 129 

model parameters which are either derived from literature or estimated from our experimental 130 

data as detailed in the next sections. The complete list of model parameters is provided in 131 

Supplementary Table 2.  132 

Modeling of tumor cells as cellular agents 133 

In both models, tumor cell agents are seen as mutated luminal cells (normal or stem cells) and 134 

they have the possibility to acquire mutations (probability defined by the model parameter 135 

TUpmut; Supplementary Table 2) which confers them a proliferative advantage modeled as 136 

a (cumulative) increase in the probability of proliferation and maximum proliferation capacity 137 

(TUadded values) (17). Mutated cells can migrate (TUpmig), die (TUpdeath) or proliferate 138 

(TUpprol). Cancer stem cells have the same characteristics as normal tumor cells, but they 139 

are additionally characterized by their self-renewal capacity (46). Therefore, stem cells are 140 

modeled as having infinite proliferation capacity, while other luminal cells have a limited 141 

proliferation capacity (TUpmax). 142 

Implementation of an agent-based model of PCa onset and progression 143 

The more complex ABM that we developed to study PCa developments includes the tumor 144 

cells described in the previous section, and eight additional agents that can perform actions 145 

and interact with each other (Fig. 1). As stated above, this model's starting geometry mimics 146 

the one of a healthy prostate acinus, where luminal cells (including a fraction of stem cells) 147 

are placed on a layer of basal cells, which is attached to the basement membrane (47,48). 148 

Luminal cells can acquire mutations and convert into tumor cells. A layer of tissue resident 149 

fibroblasts is placed outside of the acinus, surrounded by extracellular matrix (ECM) containing 150 

more fibroblasts. Fibroblasts can convert to tumor-promoting CAFs when they are in proximity 151 

of tumor cells (22,39,49,50). Macrophages can enter the simulation from the top left corner, 152 

simulating entry from a blood vessel. Although they exist in a broad spectrum, we consider a 153 

simplification of two phenotypes: M1 (immuno-promoting/anti-tumor) and M2 (tumor-154 

promoting, or TAMs) macrophages (51). 155 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.16.528831doi: bioRxiv preprint 

https://paperpile.com/c/uOU5tf/ZDZD
https://paperpile.com/c/uOU5tf/ytsZ
https://paperpile.com/c/uOU5tf/EgjY+lASj
https://paperpile.com/c/uOU5tf/7YaG+4Plf+9XIi+iTTc
https://paperpile.com/c/uOU5tf/yf5g
https://doi.org/10.1101/2023.02.16.528831
http://creativecommons.org/licenses/by-nd/4.0/


6 

In each iteration, all agents have their own round during which they can perform their actions 156 

or can idle based on the defined probabilities. The basement membrane and the ECM are 157 

instead passive agents that can only idle or be affected by the actions of other agents. 158 

Actions are performed by agents in the following order. 159 

1. Luminal cells can proliferate (LCpprol) within their physiological region and die 160 

(LCpdeath). They can also gain mutations (TUpmut), thereby converting into tumor 161 

cells (47). Tumor cells can die (TUpdeath), proliferate (TUprol) also outside their 162 

physiological region, affect fibroblast differentiation (Fdiff) and increase macrophage 163 

influx (M1influxadd) (37,52). Additionally, they can gain more mutations (TUpmut). 164 

Upon reaching mutation thresholds (TUthrshBM, TUthrshM, TUthrshMMP), tumor cells 165 

can perform additional actions: break down the basement membrane (TUpkill), affect 166 

macrophage differentiation (TUpMdiff), or break down the ECM (TUpMMP) (48,51,53). 167 

After going through epithelial-mesenchymal transition (EMT), which is promoted by 168 

CAF or TAM proximity, tumor cells become invasive and can migrate randomly to an 169 

empty space in the Moore neighborhood (TUpmig) (37,54,55). 170 

2. Basal cells can proliferate within their physiological regions (Cprol) and die (Cpdeath). 171 

They must remain attached to the basement membrane to survive and cannot invade 172 

the lumen (56). 173 

3. Fibroblasts are quiescent, i.e., they only idle (57). However, when they are in close 174 

proximity to tumor cells (i.e. max two grid spaces away, so the tumor cells can affect 175 

fibroblast differentiation over the basement membrane during PIN), they can 176 

differentiate into CAFs (Fdiff) (58). CAFs can proliferate (CFpprol), die (CFpdeath), 177 

break down ECM (CFmmp), promote differentiation of macrophages towards the 178 

tumor-promoting phenotype (CFmdiff), enable migration for mutated cells (CFemt) and 179 

promote tumor cell proliferation (CFprom), by adding to the proliferation probability of 180 

tumor cells (25,53,54,58). 181 

4. Macrophages can enter the simulation (M1influxProb), with an increased probability 182 

when macrophages detect tumor cells (M1influxadd) (37,52). All macrophages enter 183 

the simulation as M1 macrophages that can kill tumor cells (M1pkill), die (M1pdeath) 184 

or migrate (M1pmig). Macrophages move randomly, unless they can sense (within 17 185 

grid spaces, to account for the effect of chemokines) tumor cells, as they will then move 186 

towards them (59,60). When differentiated into tumor-promoting M2 macrophages, via 187 

stimulation by tumor cells or CAFs, they can additionally promote tumor cell 188 

proliferation (M2TUadd) and enable tumor cell migration (M2emt) (37).   189 

For typical simulations in this study, steps of 12 hours were used to simulate a period of 400 190 

days. At each step the model iterates through the rounds described above and each agent 191 
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can perform one or more actions. Apart from stem cells, all other cells have a maximum 192 

number of times they can proliferate (luminal cells, tumor cells, basal cells, fibroblasts and 193 

CAFs) or kill (macrophages) after which they get exhausted and die. Migration and 194 

proliferation can only occur in the standard Moore neighborhood, except  for macrophages 195 

that can migrate in the Moore neighborhood of range two (24 neighbors instead of 8), to allow 196 

for acinus infiltration by traveling over the basement membrane (37,52,60).  197 

 198 

Figure 1. Overview of the agents and actions they can perform during each model iteration. The simulation starts 199 
with luminal cells (LC) and basal cells (BC) that can proliferate, die, or idle, all within physiological regions and with 200 
fixed probabilities. The starting geometry also contains quiescent fibroblasts (F) and the passive agents (basement 201 
membrane and ECM), macrophages enter throughout the simulation. LCs can gain mutations, resulting in an 202 
increased M1-macrophage influx, once sensed by macrophages. These mutated cells (TU) can additionally break 203 
down basement membrane and ECM and affect macrophage and fibroblast differentiation upon reaching mutation 204 
thresholds. Differentiated fibroblasts (CAF) proliferate, die, and can perform tumor-promoting actions. Just as the 205 
differentiated M2 macrophages, they stimulate TU proliferation and allow for TU migration. Macrophages (M1 and 206 
M2) can also kill tumor cells and die or migrate. Image created with BioRender.com. 207 
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Experimental data for parameter estimation 208 

We performed co-culture in vitro experiments for fitting the model parameters. We used the 209 

PCa cell line LNCaP (ATCC), immortalized foreskin fibroblast cells (BJ fibroblasts, Agami Lab 210 

NKI) and the monocytic cell line THP-1 (ATCC) which were differentiated into M1 or M2 211 

macrophages.  212 

LNCaP cells and fibroblasts were cultured together with either M1- or M2-macrophages in a 213 

4:1:1 ratio respectively. Cells were cultured in physiological hormonal conditions with R1881 214 

used to induce androgen receptor (AR) signaling. LNCaP cells were tagged with eGFP to 215 

follow them overtime. LNCaP-eGFP cell proliferation was measured with IncuCyte Zoom 216 

fluorescent signal imaging system for seven days and performed in triplicate. Lastly, BJ 217 

fibroblast proliferation was measured separately by analysis of phase-contrast images from 218 

IncuCyte Zoom to obtain fibroblast growth curves, for fibroblast parameter determination.  219 

Apoptosis was measured in real time using IncuCyte Zoom (Essen, BioScience). To this end, 220 

cells were grown in FBS, including androgen, with an addition of Caspase-3/7 Read Reagent 221 

for Apoptosis (Essen Bioscience) in duplicate. 222 

The resulting growth curves (Supplementary Fig. S1) and apoptosis data of PCa cells were 223 

used to determine the parameters of tumor cells in the model. 224 

Parameter identification 225 

Tumor cell, fibroblast and macrophage parameters were estimated using particle swarm 226 

optimization (PSO) to fit the experimental data (Supplementary Fig. S1). For each biological 227 

replicate, parameters were optimized 50 times to account for biological variation and model 228 

stochasticity. Final parameter values were fixed to the average estimated value after 229 

assessing the robustness of the estimated values between replicates. The optimizations were 230 

done sequentially, fixing the estimated model parameters. First, TUpmax and TUpprol were 231 

fitted to the experimental growth curves of the LNCaP cells. TUpdeath was determined by 232 

measuring apoptosis of LNCaP cells. Subsequently, Fpprol, Fpmax and Fpdeath were fitted 233 

using the fibroblast growth curves. Lastly, M1pkill and M1kmax were fitted using the 234 

experimentally obtained growth curve for tumor cells in the presence of M1 macrophages and 235 

fibroblasts. Similarly, M2pkill was determined. M2kmax was assumed equivalent to M1kmax. 236 

The remaining parameter values were either derived from previous studies, adapted from a 237 

previously published model of colorectal cancer (60,61) or qualitatively tuned (all details and 238 

specific references are in Supplementary Table 2).  239 
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Parameter sensitivity analysis 240 

A qualitative sensitivity analysis was performed for all individual model parameters by 241 

increasing them individually by 10% and recording the percentage change in output, in the 242 

number of tumor cells at 400 days. All simulations were conducted ten times to account for 243 

model stochasticity. Parameters with low sensitivity (i.e., for which the increase did not affect 244 

the output above the deviations due to the stochasticity of the model) were fixed and are 245 

specifically mentioned in Supplementary Table 2. Follow up analysis were conducted for the 246 

four most sensitive parameters (i.e. those causing on average > 10% change in output), 247 

simulating ten intermediate values in the region of interest (i.e., in which the effect of changing 248 

the parameter is visible but not so extreme as to overpower all other parameters). Lastly, 249 

pairwise combinations (with five parameter values each) of the most sensitive parameters 250 

were conducted to see if there were synergistic or antagonistic relations. In all sensitivity 251 

analyses the relative tumor size was recorded at 400 days and averaged across ten 252 

simulations.   253 

Pathology slides for assessment of morphological features 254 

Pathology slices of PCa patients were used, with permission, to compare growth patterns in 255 

patients with the model simulations. The patient samples were randomly picked out of daily 256 

practice of prostatectomies of PCa patients. Every slide consists of a 4 μm thick section of 257 

FFPE material and was stained with haematotoxylin and eosin (H&E). The uropathologist 258 

scanned the slides and chose representative images of prostate carcinoma. 259 

Comparison between model simulations and clinical patient data 260 

Model predictions were compared with clinical data from The Cancer Genome Atlas (TCGA). 261 

We used a cohort of N=494 PCa patients for which molecular data (transcriptomics and 262 

genomics) and survival data (62) were available. RNA sequencing (RNA-seq) data was 263 

downloaded via the Firehose tool from the BROAD institute (released January 28, 2016) and 264 

processed as described by Lapuente-Santana et al (63). To allow for comparison between 265 

expression levels of different genes, transcripts per million (TPM) were used. Tumor 266 

mutational burden (TMB) data were obtained from a previous report (64). Quantifications of 267 

the relevant cell types for individual patients were obtained using deconvolution methods 268 

accessible through the immunedeconv R package (65): M1 and M2 macrophages were 269 

obtained using quanTIseq (66) and CAFs were derived using EPIC (67). Lastly, for 333 PCa 270 

patients we also retrieved information on Gleason score and binarized them as high (>=7) and 271 

low (<7) Gleason score (68). For the comparison of model simulations and clinical Progression 272 
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Free Survival (PFS) we used correlation analysis (Spearman and Pearson) and Kaplan Meier 273 

plots (using survival and survminer R packages).  274 

Computational implementation 275 

The ABM of PCa onset and development is available as Matlab code in a GitHub repository 276 

at https://github.com/SysBioOncology/ABM_prostate_cancer_development.  277 

 278 

Results 279 

In silico prostate tumors require a proliferative advantage of mutated cells additionally to 280 

cancer stem cells to maintain themselves at realistic stem cell percentages  281 

Cancer stem cells are known to play an important role in PCa development (69–73). To identify 282 

the percentage of stem cells needed for our in silico tumors to maintain themselves, we used 283 

a simple ABM including only normal tumor cells and/or tumor stem cells (as defined in Material 284 

and Methods) that were randomly seeded on the grid to test different possible scenarios in 285 

silico (74). For the first scenario, tumor cells were not allowed to gain a proliferative advantage 286 

via mutations. This allowed us to assess the ability of stem cells alone to sustain the tumor. 287 

Irrespective of the starting percentage of stem cells, we achieved an almost full grid at 288 

approximately 15000 tumor cells and stabilizing stem cell percentage at approximately 17% 289 

(Fig. 2A). While the tumor was able to survive with stem cells alone, this final stem cell 290 

percentage is much higher than we could reasonably expect based on literature, which is 291 

reported to be 0.1-0.3% in the human prostate (69). The second scenario included no stem 292 

cells, but only tumor cells with a possibility of gaining (more) mutations that confers 293 

proliferative advantage. For all simulations all tumor cells died within 40 days, meaning that a 294 

tumor cannot survive based on acquired mutations only (Fig 2B). The third scenario included 295 

both a percentage of initial stem cells and tumor cells with the ability of gaining mutations. In 296 

this case, the tumor could maintain itself while the percentage of stem cells stabilized at a 297 

much lower value; approximately 0.5% (Fig. 2C). Based on these observations, we conclude 298 

that the combination of stem cells and possibility for luminal cells to mutate (and with that, gain 299 

a proliferative advantage), is required for tumor maintenance at realistic stem cell levels, and 300 

that this does not depend on the initial percentage of stem cells.   301 

 302 
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 303 
Figure 2. In silico testing of requirements for tumor maintenance. A, Amount of tumor cells (blue) and percentage 304 
of stem cells (orange, dotted) simulated over time under the condition that included only stem cells to maintain 305 
tumors. Simulations for six different initial percentages of stem cells (SCstart) are shown. B, Similar plot testing the 306 
condition in which the proliferative advantage of mutated tumor cells is the only source for tumor maintenance. 307 
Simulations for three different probabilities of acquiring mutations (Pmut) are shown. C, Similar plot testing the 308 
condition in which tumor maintenance depends on both stem cells and tumor cells that can gain mutations. Four 309 
combinations of initial stem cell percentage and probability of mutation acquisition are shown.  310 

Model simulations recapitulate known steps of PCa development 311 

After defining the basic requirements for tumor maintenance, we developed a comprehensive 312 

ABM to describe onset and development of PCa in a simulated in vivo setting starting from a 313 

healthy prostate acinus (Fig. 3). This model is schematically depicted in Fig. 1 and is based 314 

on the set of assumptions and parameters in Supplementary Table 1 and 2 respectively (see 315 

Material and Methods).  316 

 317 

Figure 3. Overview of the starting geometry in threefold; a pathology slice, schematic representation, and model 318 
geometry visualization. A, A histology slice of a healthy prostatic acinus (H&E staining, 400x magnification). B, 319 
Schematic representation of the acinus. C, Modeled starting geometry, including a color scheme of all cells included 320 
in the starting geometry 321 

Running the model simulations, we can observe how PCa develops over time (Fig. 4A-I, video 322 

in Supplementary File V1). The initial condition is a healthy prostatic acinus with empty lumen 323 

(Fig. 4A). Luminal cells can start to mutate and then grow in the lumen (Fig. 4B). Mutated 324 

luminal cells give rise to prostatic intraepithelial neoplasia (PIN), characterized by luminal cell 325 

hyperplasia, while the basement membrane remains intact (19,75,76) (Fig. 4B-F). Mutated 326 

luminal cells (hereafter called tumor cells) attract macrophages, resulting in an increased 327 

macrophage influx towards the acinus (Fig. 4C) (37,51). Basal cell layer breakdown starts to 328 
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occur during early PIN (Fig. 4D) and increases exponentially with disease progression (16). 329 

During PCa development, CAFs originate from normal fibroblasts due to tumor cell stimulation 330 

(Fig. 4E) (77). Tumor cells also affect polarization of macrophages towards the tumor-331 

promoting phenotype by cytokine secretion, resulting in an increased number of M2-like 332 

macrophages (Fig. 4F). This increasing tumor-promoting environment results in basement 333 

membrane breakdown (Fig. 4G) allowing the disease to progress towards cancer. The tumor 334 

promoting cells (TAMs and CAFs) elicit EMT in tumor cells, making them invasive (Fig. 4H) 335 

(54,55). This results in tumor cells invading the surrounding tissue, and thereby starting the 336 

cancerous phase (Fig. 4I). Based on these findings, we conclude that our model can represent 337 

all main steps of PCa onset and development well.  338 

 339 

Figure 4. Initial healthy stage and following eight steps of PCa development as by PCa ABM simulation. A, Healthy 340 
prostatic acinus. B, Mutations start to occur in the luminal cells converting them into tumor cells. C, The presence of 341 
mutated cells increases the influx of M1 macrophages. D, Mutated cells start to occupy spaces in the basal cell 342 
layer. E, Fibroblasts are differentiating towards their tumor-promoting phenotype (CAFs). F, Macrophages are 343 
differentiating towards their tumor-promoting phenotype. G, All these factors lead to break down of the basement 344 
membrane. H, Mutated cells become more invasive and start undergoing EMT. I, Invasive cancer with cells 345 
spreading through the surrounding tissue. The white grid spaces indicate ‘empty space’, corresponding to the 346 
lumen or to the cleaved ECM (for example by CAFs).  347 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.16.528831doi: bioRxiv preprint 

https://paperpile.com/c/uOU5tf/XAj3
https://paperpile.com/c/uOU5tf/cjpkE
https://paperpile.com/c/uOU5tf/gbeP+2DMY
https://doi.org/10.1101/2023.02.16.528831
http://creativecommons.org/licenses/by-nd/4.0/


13 

Using the parameter set defined in Supplementary Table 2, we ran 500 simulations and 348 

observed that only 36% of them results in breaking down of the basement membrane, which 349 

we consider as a marker of invasive PCa. We decided to investigate the main stochastic 350 

factors contributing to tumor development in silico. If the malignant cells are recognized by the 351 

macrophages at an early stage, this results in a fast increase in the ratio of macrophages to 352 

tumor cells. This allows the immune system to control and overcome the disease 353 

(Supplementary Fig. S2A). However, if this does not happen at early stages, the tumor 354 

develops to evade the immune response and subverts the immune response by converting 355 

macrophages to the pro-tumor phenotype, increasing the M2:M1 macrophage ratio 356 

(Supplementary Fig. S2B). We also observed that there are several factors that contribute 357 

to determining the time of invasion. Earlier invasions are characterized by higher numbers of 358 

CAFs, a higher average mutation load and higher M2:M1 macrophage ratio (Supplementary 359 

Fig. S2C-E). These results highlight how, based on stochastic simulations, our ABM enabled 360 

us to identify the aleatory factors that support PCa development. 361 

Model simulations recapitulate geometries present in histology images 362 

Does our in silico prostate cancer model reliably represent clinically observed tumor growth 363 

patterns? To address this question, we compared our model simulations with pathology slides 364 

of PCa patients that were randomly picked out of daily practice. The uropathologist scanned 365 

the slides and selected representative images of prostate carcinoma. A common growth 366 

pattern during the PIN phase is tufting, which is characterized by protrusions consisting of 367 

multiple cell layers growing on the basal cell layer (78) (Fig. 5A), which was observed as 368 

emergent behavior in our model simulations (Fig. 5B). In the simulations, this tufted geometry 369 

originates from mutated cells that grow in clusters attached to the basal cell layer. Interestingly, 370 

permanent ‘tufts’ in our model contain stem cells suggesting that the presence of stem cell 371 

clusters could be an indication of the directionality of tumor growth. Another common growth 372 

pattern in developing PCa is bridging, when cells grow from one side of the acinus towards 373 

the other side (Fig. 5C), which was also portrayed in the in silico developing tumors (Fig. 5D). 374 

Overall, we can conclude that our ABM recapitulates important growth patterns observed in 375 

histology slices of actual PCa patients.  376 
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 377 
Figure 5. Comparison between model simulations and histology images (tufting and bridging). A, Pathology slice 378 
of a PCa patient (H&E staining, 400x magnification) showing a ‘tufted’ pattern of growths on the luminal cell layer. 379 
B, Model simulation depicting the tufting growth pattern. C, Pathology slice of a PCa patient (H&E staining, 400x 380 
magnification) showing bridging; growth of cells from one side of the acinus towards the other side. D, Simulated 381 
PCa development showing the bridging growth pattern.  382 

Tumor development is most strongly impacted by mutation probability, tumor promoting 383 

ability of CAFs and macrophage phenotype  384 

Having established that the simulated onset and development of PCa recapitulates tumor 385 

developmental processes and growth patterns as observed in patients, we next investigated 386 

which model parameters most strongly affect tumor growth. Performing sensitivity analysis 387 

(Material and Methods), we identified four model parameters causing a strong variation in 388 

the final simulated tumor load (Fig. 6A). These sensitive model parameters are: tumor 389 

promotion by CAFs (CFprom), migration probability of anti-tumor M1-like macrophages 390 

(M1pmig), tumor mutation load required for macrophage differentiation (TUthrshM), and 391 

mutation probability for luminal cells (TUpmut). Looking at the dynamics of tumor formation 392 

when tuning these parameters, we observed that the mutation probability increases growth 393 

speed from the start of the simulation, while the pro-tumorigenic effects of macrophage influx 394 

and CAF involvement occur at a later stage (Supplementary Fig. S3). Since these 395 

parameters can be related to molecular markers which are largely variable between patients, 396 

we decided to vary the corresponding parameters to generate relevant in silico patient 397 

populations. Analyzing the combined effect of parameter pairs on tumor growth, we empirically 398 

selected one high and one low value for each parameter (Supplementary Table 3). We chose 399 

values for which the effects of the parameter variation were clearly observable, but not too 400 

overpowering (other parameters having little/no effect based on Supplementary Fig. S4). To 401 

reduce the number of variables in order to have big enough clinical patient groups for the 402 

analysis described in the next section, we merged the two macrophage parameters: high 403 

migration probability and low threshold for phenotype switching (pro-tumor macrophages) 404 
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versus low migration probability and high threshold for macrophage phenotype switching (anti-405 

tumor macrophages). This resulted in three parameter sets that allow for simulation of patients 406 

with: 1. High vs low level of tumor-promoting effect of CAFs; 2. High vs low pro-tumor 407 

macrophage characterization; 3. High vs low level of mutation frequency of tumor cells.  By 408 

systematically combining the effect of these three parameter sets, we obtained eight patient 409 

groups (Fig. 6). 410 

For all four groups with high tumor mutation probability, over 88% of the simulations showed 411 

disease progression towards cancer (Supplementary Table 4). This is lower for other groups, 412 

with the two groups with pro-tumor macrophages and low mutation probability resulting in 413 

modeled cancer progression in less than 8% of the simulations.  414 

 415 

Figure 6. Effect on tumor growth of varying sensitive model parameters.  A, Grouped histogram of the repeated 416 
sensitivity analysis (5 times for each parameter), overlapped by four (differently colored) histograms of the most 417 
sensitive parameters: mutation probability of luminal cells (Pmut, red), probability of CAFs promoting tumor cell 418 
proliferation (CFprom, green), yellow represents the amount of mutations needed before tumor cells affect 419 
macrophage differentiation (TUthrshM) and M1 macrophage migration probability (M1pmig, blue). B, The averaged 420 
evolution of the amount of tumor cells for 40 simulations that developed cancer for each of the eight subclasses. 421 
These classes were based on the ‘high’ or ‘low’ status of sensitive parameters for CAFs, TAMs and tumor cells. 422 
Included is a violin plot depicting the spread of simulated tumor cell amounts. C, An example of tumor development 423 
for each group at an early point in the simulation (50 days), the point at which it becomes invasive and the state at 424 
the end of the simulation (400 days).  425 

To compare model simulations with clinical data, which are only available for developed 426 

tumors from patients who underwent prostate surgery, we performed follow-up analysis 427 

considering only the simulations resulting in cancer development. The group with the most 428 
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aggressive tumors consists of simulated patients with high tumor-promoting CAFs, high pro-429 

tumor macrophages characterization and a highly aggressive tumor cell phenotype (red line 430 

showing the simulated tumor growth over time in Fig. 6B and corresponding example 431 

simulation in the red box in Fig. 6C). On the contrary, the group with the least aggressive 432 

tumors is simulated when all parameter sets are set to 'low' (i.e. the least tumor-promoting 433 

phenotype; pink line in Fig 6B and pink box in Fig. 6C). 434 

As expected, the time of invasiveness (i.e., breakdown of the basement membrane, marked 435 

with an x in Fig. 6B) is significantly earlier for the tumors with high mutation probability as 436 

compared to those with low mutation probability (one-sided Wilcoxon Rank Sum test, p-value 437 

= 2.26e-10). However, the time of invasiveness does not always correlate with growth speed. 438 

The tumor group with the steepest growth curve (red line, Fig. 6B) becomes invasive later 439 

compared to more slowly growing tumors (e.g., the blue line, with anti-tumor macrophage 440 

characterization, p-value = 0.030). This analysis suggests that different mechanisms can 441 

affect how quickly tumors develop and how long it takes for tumors to become invasive. 442 

Model simulations of tumor load associate with patient prognosis 443 

Considering the same eight patient groups (all possible combinations of the three parameter 444 

sets) defined in the previous section, we wanted to assess if the in silico behaviors correlate 445 

with patient prognosis. To do so, we compared model predictions of tumor load (only for cases 446 

that developed cancer) with clinical data from a cohort of PCa patients (N=494) from the TCGA 447 

database. For each of the three parameter sets we defined whether a patient belonged to the 448 

“low” or “high” group considering three molecular markers (see Supplementary Table 5 for 449 

detailed motivation of the choice of the markers). Tumor aggressiveness was defined based 450 

on TMB and the expression of two frequently mutated genes in PCa (TP53 and CDKN1B) 451 

(17,79,80). Pro-tumor macrophage characterization was defined based on the ratio of M2:M1 452 

macrophages and the expression of two genes involved in pro-tumor macrophage 453 

differentiation (CXCL2 and STAT3) (81–83).  Finally, the tumor-promoting CAFs effect was 454 

defined based on the quantification of CAFs and the expression of two soluble molecules 455 

secreted by CAFs that affect tumor progression (TGFBR2 and IGF1; the latter one with an 456 

inverse relationship) (50,84–86). For each parameter set, a patient was assigned to the 'high' 457 

category if at least two out of three makers were above the cohort median, and 'low' otherwise. 458 

In this way, we could divide the TCGA patients in eight clinical patient groups with similar 459 

characteristics to the in silico groups. 460 

We observed a negative correlation between the tumor load from the in silico patient groups 461 

and the PFS time of the matching clinical PCa patients. (Pearson correlation = -0.73, p-value 462 
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= 0.04, Fig. 7A). Patients classified in the three groups with highest tumor load showed a 463 

worse prognosis (albeit not statistically significant, p-value=0.089; Kaplan Meier plot in Fig. 464 

7B) and a significantly higher Gleason score (chi-squared test, p-value=0.005; Fig. 7C) as 465 

compared to the patients in the three groups with lowest tumor load. Overall, these results 466 

indicate that tumors which are characterized to be more aggressive in silico correspond to 467 

patients with higher grade and worst prognosis. 468 

 469 

Figure 7. Clinical validation of model predictions for different patient groups. A, Correlation between the simulated 470 
tumor growth (simulation time 400 days, 40 simulations per modeled patient group) and the average progression 471 
free survival time for clinical patients assigned to the matching patients groups based on molecular markers. Colors 472 
correspond to those used in Figure 6B, portraying simulated tumor growth over time of the same classes. B, Kaplan 473 
Meier plot of two patient groups. Patients were considered as low tumor (red) load if they belong to the three groups 474 
with lowest simulated tumor load and high tumor load (blue) if they belong to the three groups with highest simulated 475 
tumor load. C, Binary Gleason scores per patient group; Gleason scores of 7 or higher were considered ‘high’ and 476 
Gleason scores of 6 or lower were considered ‘low’.    477 

 478 

Discussion 479 

The process of PCa development can take years and is heavily influenced by many different 480 

types of cells, stochastic events, and the tumor microenvironment. Its unpredictable nature 481 

and extensive adaptation strategies bear resemblance to the process of evolution, which 482 

makes it particularly hard to combat at a later stage. Recreating the complete disease settings 483 

to better understand and treat the disease is therefore rather difficult in in vitro or in vivo 484 

settings. 485 

As recently emphasized in an opinion paper by West and colleagues (87), agent-based 486 

models are key tools to reproduce the complexity of the tumor in silico, offering a 487 

complementary approach to in vitro and in vivo experiments. They allow the integration of 488 

different types of knowledge, framing it in the form of an intuitive set of rules. Despite their 489 

simplicity in the formulation, they allow simulation of complex behaviors deriving from cell-cell 490 

interactions.    491 

Here, we designed a comprehensive agent-based model that provides an in silico 492 

experimental set up to study PCa onset and progression. The rules defining our ABM were 493 
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based on a set of assumptions integrating knowledge from several studies. Model parameters 494 

were additionally fine-tuned by fitting our in-house generated in vitro co-culture data. After 495 

showing that our model was able to reproduce known tumor patterns and relevant steps of 496 

tumor progression, we used the model to in silico study the impact that deterministic and 497 

stochastic events have on PCa progression. 498 

In our study we identified pro-tumor activity of CAFs and macrophages and mutation 499 

probability of the tumors as main deterministic causes of in silico tumor heterogeneity. While 500 

high tumor mutation probability generally results in fast invasion and bigger tumors, the effects 501 

and quantities of macrophages and fibroblasts at different time points were found to be a very 502 

important factor in PCa development and progression too. These findings could help to 503 

improve our understanding of different patient molecular characteristics and how these 504 

contribute to the likelihood of progression, thus suggesting new prevention strategies and 505 

options for patient-tailored treatment plans. However, more clinical data on patients not (yet) 506 

in a malignant disease stage would be needed to assess if these markers could be used as 507 

indicators of disease stages and be functionally associated with disease progression. This 508 

assessment could be tested by monitoring prostatitis patients, which is a risk factor for PCa 509 

(88). 510 

We additionally observed that, running the model multiple times starting with the same initial 511 

conditions, only a fraction of the simulations developed into cancer. This is determined only 512 

by the stochasticity of the events included in the simulation that mimics the in vivo stochasticity 513 

of cellular interactions. We observed that aleatory events related to the interactions between 514 

macrophages and tumor cells can determine the success of early immunosurveillance thus 515 

determining the fate of the tumor. The stochasticity of interactions also affects how long it 516 

takes before the tumor becomes invasive, driven by the balance between the number of CAFs, 517 

amount of driver mutations and the ratio of anti-/pro-tumor macrophages. While there is 518 

increasing awareness that clinicians should consider the impact of genetics to account for 519 

patients heterogeneity in prostate cancer management (89,90), our results underlie the 520 

importance of monitoring the microenvironment phenotype (e.g. using multiplexed tissue 521 

imaging) during PCa progression.  522 

Although we have shown that our AMB model is a valuable tool to conduct in silico experiments 523 

on the onset of prostate cancer, it is important to keep in mind that models are always an 524 

approximation of reality and the choice of the level of details included is driven by the aim of 525 

the study. Our model could be extended in the future to study treatment response and more 526 

advanced disease stages, such as the effect of androgen deprivation therapy or androgen 527 

receptor (AR) inhibition and the development of castration resistance. Considering that AR is 528 
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known to play a role, not only on prostate cancer cells, but also on fibroblasts (26) and 529 

macrophages (55), an extension of our ABM could be a valuable tool to take an integrative 530 

approach to study how the the PCa microenvironment mediates therapy response. 531 

Additionally, for this study we chose to focus on macrophages and fibroblasts because of their 532 

prominent role in PCa, but the model could be further extended to include other cell types, 533 

such as T-cells. Although PCa is known to be an immune excluded and suppressed tumor 534 

type, recent studies showed the potential of combining T-cell-based immunotherapies (i.e. 535 

immune checkpoint blockers or CAR T cells) with other therapies targeting the PCa 536 

microenvironment to restore anti-tumor immunity in advanced prostate cancer (91,92). ABMs 537 

could help to understand the effect of combining different therapies in specific 538 

microenvironment subtypes, therefore suggesting how to tailor combinatorial treatment. 539 

Furthermore, we have now chosen to model the effect of cytokines and chemokines implicitly 540 

(e.g. by basing an interaction between two cells on the distance between them), but it would 541 

be an interesting addition to model humoral factors explicitly (e.g. using hybrid models (93)), 542 

for example when wanting to zoom in more on androgen dependence and the path to 543 

castration resistant disease. However, this would also increase the number of model 544 

parameters and the computational costs.  545 

Previous in silico models of PCa have been focused on specific mechanisms such as the 546 

formation of bone metastases (76) or the role of disrupted stem cell movement in causing 547 

excessive growth in healthy prostatic ducts (94). To our knowledge, this is the first ABM to 548 

simulate the onset and development of prostate cancer in healthy prostatic acini considering 549 

the effects of the microenvironment including fibroblasts and macrophages. Our analysis 550 

shows that, not only tumor cells, but also macrophages and fibroblasts play an important role 551 

in PCa development and could provide potential markers of disease progression. 552 

Acknowledgements 553 

The results shown here are in part based upon data generated by the TCGA Research 554 

Network: http://cancergenome.nih.gov/. The authors would like to thank Oscar Lapuente-555 

Santana for providing the pre-processed TCGA data, dr. F. Finotello for assistance in running 556 

the immunedeconv package and J. van Leeuwen for testing the code of the ABM. We would 557 

like to thank members of the Eduati, Zwart and Bergman labs for valuable discussion and 558 

feedback. 559 

Fundings 560 

WZ is supported by Oncode Insitute.  561 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.16.528831doi: bioRxiv preprint 

https://paperpile.com/c/uOU5tf/i89s
https://paperpile.com/c/uOU5tf/2DMY
https://paperpile.com/c/uOU5tf/jKCx+XV8n
https://paperpile.com/c/uOU5tf/dKDL
https://paperpile.com/c/uOU5tf/DLuat
https://paperpile.com/c/uOU5tf/yg1e8
http://cancergenome.nih.gov/
https://doi.org/10.1101/2023.02.16.528831
http://creativecommons.org/licenses/by-nd/4.0/


20 

References 562 

1.  Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global 563 
Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 564 
36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49. 565 

2.  Ramon J, Denis LJ. Prostate Cancer. Springer Science & Business Media; 2007. 566 

3.  Davidson D, Bostwick DG, Qian J, Wollan PC, Oesterling JE, Rudders RA, et al. Prostatic 567 
intraepithelial neoplasia is a risk factor for adenocarcinoma: predictive accuracy in needle 568 
biopsies. J Urol. 1995;154:1295–9. 569 

4.  Fahmy O, Alhakamy NA, Rizg WY, Bagalagel A, Alamoudi AJ, Aldawsari HM, et al. 570 
Updates on Molecular and Biochemical Development and Progression of Prostate 571 
Cancer. J Clin Med Res [Internet]. 2021;10. Available from: 572 
http://dx.doi.org/10.3390/jcm10215127 573 

5.  Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. 574 
Genes Dev. 2018;32:1105–40. 575 

6.  Germann M, Wetterwald A, Guzmán-Ramirez N, van der Pluijm G, Culig Z, Cecchini MG, 576 
et al. Stem-like cells with luminal progenitor phenotype survive castration in human 577 
prostate cancer. Stem Cells. 2012;30:1076–86. 578 

7.  Menon R, Deng M, Rüenauver K, Queisser A, Peifer M, Pfeifer M, et al. Somatic copy 579 
number alterations by whole-exome sequencing implicates YWHAZ and PTK2 in 580 
castration-resistant prostate cancer. J Pathol. 2013;231:505–16. 581 

8.  Grasso CS, Wu Y-M, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The 582 
mutational landscape of lethal castration-resistant prostate cancer. Nature. 583 
2012;487:239–43. 584 

9.  Gao H, Ouyang X, Banach-Petrosky WA, Shen MM, Abate-Shen C. Emergence of 585 
androgen independence at early stages of prostate cancer progression in Nkx3.1; Pten 586 
mice. Cancer Res. 2006;66:7929–33. 587 

10.  Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, Gerald WL. Gene expression 588 
profiling predicts clinical outcome of prostate cancer. J Clin Invest. 2004;113:913–23. 589 

11.  Packer JR, Maitland NJ. The molecular and cellular origin of human prostate cancer. 590 
Biochim Biophys Acta. 2016;1863:1238–60. 591 

12.  De Marzo AM, Platz EA, Sutcliffe S, Xu J, Grönberg H, Drake CG, et al. Inflammation in 592 
prostate carcinogenesis. Nat Rev Cancer. 2007;7:256–69. 593 

13.  Packer JR, Maitland NJ. The molecular and cellular origin of human prostate cancer. 594 
Biochim Biophys Acta. 2016;1863:1238–60. 595 

14.  Fahmy O, Alhakamy NA, Rizg WY, Bagalagel A, Alamoudi AJ, Aldawsari HM, et al. 596 
Updates on Molecular and Biochemical Development and Progression of Prostate 597 
Cancer. J Clin Med Res [Internet]. 2021;10. Available from: 598 
http://dx.doi.org/10.3390/jcm10215127 599 

15.  Bostwick DG, Amin MB, Dundore P, Marsh W, Schultz DS. Architectural patterns of high-600 
grade prostatic intraepithelial neoplasia [Internet]. Human Pathology. 1993. page 298–601 
310. Available from: http://dx.doi.org/10.1016/0046-8177(93)90041-e 602 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.16.528831doi: bioRxiv preprint 

http://paperpile.com/b/uOU5tf/trWh
http://paperpile.com/b/uOU5tf/trWh
http://paperpile.com/b/uOU5tf/trWh
http://paperpile.com/b/uOU5tf/vZoF
http://paperpile.com/b/uOU5tf/JXML
http://paperpile.com/b/uOU5tf/JXML
http://paperpile.com/b/uOU5tf/JXML
http://paperpile.com/b/uOU5tf/HSbM
http://paperpile.com/b/uOU5tf/HSbM
http://paperpile.com/b/uOU5tf/HSbM
http://paperpile.com/b/uOU5tf/HSbM
http://dx.doi.org/10.3390/jcm10215127
http://paperpile.com/b/uOU5tf/gua9
http://paperpile.com/b/uOU5tf/gua9
http://paperpile.com/b/uOU5tf/xRnP
http://paperpile.com/b/uOU5tf/xRnP
http://paperpile.com/b/uOU5tf/xRnP
http://paperpile.com/b/uOU5tf/ULCv
http://paperpile.com/b/uOU5tf/ULCv
http://paperpile.com/b/uOU5tf/ULCv
http://paperpile.com/b/uOU5tf/LemC
http://paperpile.com/b/uOU5tf/LemC
http://paperpile.com/b/uOU5tf/LemC
http://paperpile.com/b/uOU5tf/S8eo
http://paperpile.com/b/uOU5tf/S8eo
http://paperpile.com/b/uOU5tf/S8eo
http://paperpile.com/b/uOU5tf/9Rtd
http://paperpile.com/b/uOU5tf/9Rtd
http://paperpile.com/b/uOU5tf/e4go
http://paperpile.com/b/uOU5tf/e4go
http://paperpile.com/b/uOU5tf/uDD3
http://paperpile.com/b/uOU5tf/uDD3
http://paperpile.com/b/uOU5tf/eKdS
http://paperpile.com/b/uOU5tf/eKdS
http://paperpile.com/b/uOU5tf/EqOF
http://paperpile.com/b/uOU5tf/EqOF
http://paperpile.com/b/uOU5tf/EqOF
http://paperpile.com/b/uOU5tf/EqOF
http://dx.doi.org/10.3390/jcm10215127
http://paperpile.com/b/uOU5tf/ptTM
http://paperpile.com/b/uOU5tf/ptTM
http://paperpile.com/b/uOU5tf/ptTM
http://dx.doi.org/10.1016/0046-8177(93)90041-e
https://doi.org/10.1101/2023.02.16.528831
http://creativecommons.org/licenses/by-nd/4.0/


21 

16.  Bostwick DG, Brawer MK. Prostatic intra-epithelial neoplasia and early invasion in 603 
prostate cancer. Cancer. 1987;59:788–94. 604 

17.  Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat J-P, et al. 605 
Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate 606 
cancer. Nat Genet. 2012;44:685–9. 607 

18.  Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell 608 
[Internet]. 2007. Available from: http://dx.doi.org/10.1201/9780203833445 609 

19.  Packer JR, Maitland NJ. The molecular and cellular origin of human prostate cancer. 610 
Biochim Biophys Acta. 2016;1863:1238–60. 611 

20.  Fahmy O, Alhakamy NA, Rizg WY, Bagalagel A, Alamoudi AJ, Aldawsari HM, et al. 612 
Updates on Molecular and Biochemical Development and Progression of Prostate 613 
Cancer. J Clin Med Res [Internet]. 2021;10. Available from: 614 
http://dx.doi.org/10.3390/jcm10215127 615 

21.  Skvortsov S, Skvortsova I-I, Tang DG, Dubrovska A. Concise Review: Prostate Cancer 616 
Stem Cells: Current Understanding. Stem Cells. 2018;36:1457–74. 617 

22.  Bonollo F, Thalmann GN, Julio MK, Karkampouna S. The Role of Cancer-Associated 618 
Fibroblasts in Prostate Cancer Tumorigenesis [Internet]. Cancers. 2020. page 1887. 619 
Available from: http://dx.doi.org/10.3390/cancers12071887 620 

23.  Brizzi MF, Tarone G, Defilippi P. Extracellular matrix, integrins, and growth factors as 621 
tailors of the stem cell niche. Curr Opin Cell Biol. 2012;24:645–51. 622 

24.  Levesque C, Nelson PS. Cellular Constituents of the Prostate Stroma: Key Contributors 623 
to Prostate Cancer Progression and Therapy Resistance. Cold Spring Harb Perspect Med 624 
[Internet]. 2018;8. Available from: http://dx.doi.org/10.1101/cshperspect.a030510 625 

25.  Linxweiler J, Hajili T, Körbel C, Berchem C, Zeuschner P, Müller A, et al. Cancer-626 
associated fibroblasts stimulate primary tumor growth and metastatic spread in an 627 
orthotopic prostate cancer xenograft model [Internet]. Scientific Reports. 2020. Available 628 
from: http://dx.doi.org/10.1038/s41598-020-69424-x 629 

26.  Cioni B, Nevedomskaya E, Melis MHM, van Burgsteden J, Stelloo S, Hodel E, et al. Loss 630 
of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs) promotes 631 
CCL2- and CXCL8-mediated cancer cell migration. Mol Oncol. 2018;12:1308–23. 632 

27.  Sun D-Y, Wu J-Q, He Z-H, He M-F, Sun H-B. Cancer-associated fibroblast regulate 633 
proliferation and migration of prostate cancer cells through TGF-β signaling pathway. Life 634 
Sci. 2019;235:116791. 635 

28.  Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9. 636 

29.  Roy R, Yang J, Moses MA. Matrix Metalloproteinases As Novel Biomarker s and Potential 637 
Therapeutic Targets in Human Cancer [Internet]. Journal of Clinical Oncology. 2009. page 638 
5287–97. Available from: http://dx.doi.org/10.1200/jco.2009.23.5556 639 

30.  Cirri P, Chiarugi P. Cancer-associated-fibroblasts and tumour cells: a diabolic liaison 640 
driving cancer progression. Cancer Metastasis Rev. 2012;31:195–208. 641 

31.  Fahmy O, Alhakamy NA, Rizg WY, Bagalagel A, Alamoudi AJ, Aldawsari HM, et al. 642 
Updates on Molecular and Biochemical Development and Progression of Prostate 643 
Cancer. J Clin Med Res [Internet]. 2021;10. Available from: 644 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.16.528831doi: bioRxiv preprint 

http://paperpile.com/b/uOU5tf/XAj3
http://paperpile.com/b/uOU5tf/XAj3
http://paperpile.com/b/uOU5tf/ZDZD
http://paperpile.com/b/uOU5tf/ZDZD
http://paperpile.com/b/uOU5tf/ZDZD
http://paperpile.com/b/uOU5tf/E6vp
http://paperpile.com/b/uOU5tf/E6vp
http://dx.doi.org/10.1201/9780203833445
http://paperpile.com/b/uOU5tf/oS9s
http://paperpile.com/b/uOU5tf/oS9s
http://paperpile.com/b/uOU5tf/2JKB
http://paperpile.com/b/uOU5tf/2JKB
http://paperpile.com/b/uOU5tf/2JKB
http://paperpile.com/b/uOU5tf/2JKB
http://dx.doi.org/10.3390/jcm10215127
http://paperpile.com/b/uOU5tf/AD75
http://paperpile.com/b/uOU5tf/AD75
http://paperpile.com/b/uOU5tf/7YaG
http://paperpile.com/b/uOU5tf/7YaG
http://paperpile.com/b/uOU5tf/7YaG
http://dx.doi.org/10.3390/cancers12071887
http://paperpile.com/b/uOU5tf/G2OR
http://paperpile.com/b/uOU5tf/G2OR
http://paperpile.com/b/uOU5tf/0Sk2
http://paperpile.com/b/uOU5tf/0Sk2
http://paperpile.com/b/uOU5tf/0Sk2
http://dx.doi.org/10.1101/cshperspect.a030510
http://paperpile.com/b/uOU5tf/uvbf
http://paperpile.com/b/uOU5tf/uvbf
http://paperpile.com/b/uOU5tf/uvbf
http://paperpile.com/b/uOU5tf/uvbf
http://dx.doi.org/10.1038/s41598-020-69424-x
http://paperpile.com/b/uOU5tf/i89s
http://paperpile.com/b/uOU5tf/i89s
http://paperpile.com/b/uOU5tf/i89s
http://paperpile.com/b/uOU5tf/TMjI
http://paperpile.com/b/uOU5tf/TMjI
http://paperpile.com/b/uOU5tf/TMjI
http://paperpile.com/b/uOU5tf/UCj0
http://paperpile.com/b/uOU5tf/bWZq
http://paperpile.com/b/uOU5tf/bWZq
http://paperpile.com/b/uOU5tf/bWZq
http://dx.doi.org/10.1200/jco.2009.23.5556
http://paperpile.com/b/uOU5tf/zblA
http://paperpile.com/b/uOU5tf/zblA
http://paperpile.com/b/uOU5tf/qjhK
http://paperpile.com/b/uOU5tf/qjhK
http://paperpile.com/b/uOU5tf/qjhK
https://doi.org/10.1101/2023.02.16.528831
http://creativecommons.org/licenses/by-nd/4.0/


22 

http://dx.doi.org/10.3390/jcm10215127 645 

32.  Bonollo F, Thalmann GN, Julio MK, Karkampouna S. The Role of Cancer-Associated 646 
Fibroblasts in Prostate Cancer Tumorigenesis [Internet]. Cancers. 2020. page 1887. 647 
Available from: http://dx.doi.org/10.3390/cancers12071887 648 

33.  Jeong S-H, Kwak C. Immunotherapy for prostate cancer: Requirements for a successful 649 
regime transfer [Internet]. Investigative and Clinical Urology. 2022. page 3. Available from: 650 
http://dx.doi.org/10.4111/icu.20210369 651 

34.  Jeong S-H, Kwak C. Immunotherapy for prostate cancer: Requirements for a successful 652 
regime transfer [Internet]. Investigative and Clinical Urology. 2022. page 3. Available from: 653 
http://dx.doi.org/10.4111/icu.20210369 654 

35.  Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ. CCL2 and Interleukin-6 Promote 655 
Survival of Human CD11b Peripheral Blood Mononuclear Cells and Induce M2-type 656 
Macrophage Polarization [Internet]. Journal of Biological Chemistry. 2009. page 34342–657 
54. Available from: http://dx.doi.org/10.1074/jbc.m109.042671 658 

36.  Martori C, Sanchez-Moral L, Paul T, Pardo JC, Font A, de Porras VR, et al. Macrophages 659 
as a Therapeutic Target in Metastatic Prostate Cancer: A Way to Overcome 660 
Immunotherapy Resistance? [Internet]. Cancers. 2022. page 440. Available from: 661 
http://dx.doi.org/10.3390/cancers14020440 662 

37.  Thomas MU, Messex JK, Dang T, Abdulkadir SA, Jorcyk CL, Liou G-Y. Macrophages 663 
expedite cell proliferation of prostate intraepithelial neoplasia through their downstream 664 
target ERK. FEBS J. 2021;288:1871–86. 665 

38.  Pencik J, Schlederer M, Gruber W, Unger C, Walker SM, Chalaris A, et al. STAT3 666 
regulated ARF expression suppresses prostate cancer metastasis. Nat Commun. 667 
2015;6:7736. 668 

39.  Tuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR. Reactive stroma in 669 
human prostate cancer: induction of myofibroblast phenotype and extracellular matrix 670 
remodeling. Clin Cancer Res. 2002;8:2912–23. 671 

40.  Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of 672 
tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51. 673 

41.  Fahmy O, Alhakamy NA, Rizg WY, Bagalagel A, Alamoudi AJ, Aldawsari HM, et al. 674 
Updates on Molecular and Biochemical Development and Progression of Prostate 675 
Cancer. J Clin Med Res [Internet]. 2021;10. Available from: 676 
http://dx.doi.org/10.3390/jcm10215127 677 

42.  Wang Z, Butner JD, Kerketta R, Cristini V, Deisboeck TS. Simulating cancer growth with 678 
multiscale agent-based modeling. Semin Cancer Biol. 2015;30:70–8. 679 

43.  Norton K-A, Gong C, Jamalian S, Popel AS. Multiscale Agent-Based and Hybrid Modeling 680 
of the Tumor Immune Microenvironment. Processes (Basel) [Internet]. 2019;7. Available 681 
from: http://dx.doi.org/10.3390/pr7010037 682 

44.  Lazar DC, Cho EH, Luttgen MS, Metzner TJ, Uson ML, Torrey M, et al. Cytometric 683 
comparisons between circulating tumor cells from prostate cancer patients and the 684 
prostate-tumor-derived LNCaP cell line [Internet]. Physical Biology. 2012. page 016002. 685 
Available from: http://dx.doi.org/10.1088/1478-3975/9/1/016002 686 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.16.528831doi: bioRxiv preprint 

http://dx.doi.org/10.3390/jcm10215127
http://paperpile.com/b/uOU5tf/ObIa
http://paperpile.com/b/uOU5tf/ObIa
http://paperpile.com/b/uOU5tf/ObIa
http://dx.doi.org/10.3390/cancers12071887
http://paperpile.com/b/uOU5tf/OyFc
http://paperpile.com/b/uOU5tf/OyFc
http://dx.doi.org/10.4111/icu.20210369
http://paperpile.com/b/uOU5tf/q38S
http://paperpile.com/b/uOU5tf/q38S
http://dx.doi.org/10.4111/icu.20210369
http://paperpile.com/b/uOU5tf/TWOQ
http://paperpile.com/b/uOU5tf/TWOQ
http://paperpile.com/b/uOU5tf/TWOQ
http://paperpile.com/b/uOU5tf/TWOQ
http://dx.doi.org/10.1074/jbc.m109.042671
http://paperpile.com/b/uOU5tf/diEm
http://paperpile.com/b/uOU5tf/diEm
http://paperpile.com/b/uOU5tf/diEm
http://paperpile.com/b/uOU5tf/diEm
http://dx.doi.org/10.3390/cancers14020440
http://paperpile.com/b/uOU5tf/FIF2
http://paperpile.com/b/uOU5tf/FIF2
http://paperpile.com/b/uOU5tf/FIF2
http://paperpile.com/b/uOU5tf/Fwzn
http://paperpile.com/b/uOU5tf/Fwzn
http://paperpile.com/b/uOU5tf/Fwzn
http://paperpile.com/b/uOU5tf/iTTc
http://paperpile.com/b/uOU5tf/iTTc
http://paperpile.com/b/uOU5tf/iTTc
http://paperpile.com/b/uOU5tf/0ILv
http://paperpile.com/b/uOU5tf/0ILv
http://paperpile.com/b/uOU5tf/GW5h
http://paperpile.com/b/uOU5tf/GW5h
http://paperpile.com/b/uOU5tf/GW5h
http://paperpile.com/b/uOU5tf/GW5h
http://dx.doi.org/10.3390/jcm10215127
http://paperpile.com/b/uOU5tf/RfPi
http://paperpile.com/b/uOU5tf/RfPi
http://paperpile.com/b/uOU5tf/p17q
http://paperpile.com/b/uOU5tf/p17q
http://paperpile.com/b/uOU5tf/p17q
http://dx.doi.org/10.3390/pr7010037
http://paperpile.com/b/uOU5tf/Z872M
http://paperpile.com/b/uOU5tf/Z872M
http://paperpile.com/b/uOU5tf/Z872M
http://paperpile.com/b/uOU5tf/Z872M
http://dx.doi.org/10.1088/1478-3975/9/1/016002
https://doi.org/10.1101/2023.02.16.528831
http://creativecommons.org/licenses/by-nd/4.0/


23 

45.  Robinson S. Prostate Volume, Size Does Matter. Growth Dynamics of the Acini and the 687 
Stroma using a “Prostatocrit” Model [Internet]. JOJ Urology & Nephrology. 2018. Available 688 
from: http://dx.doi.org/10.19080/jojun.2018.05.555653 689 

46.  Skvortsov S, Skvortsova I-I, Tang DG, Dubrovska A. Concise Review: Prostate Cancer 690 
Stem Cells: Current Understanding. Stem Cells. 2018;36:1457–74. 691 

47.  Packer JR, Maitland NJ. The molecular and cellular origin of human prostate cancer. 692 
Biochim Biophys Acta. 2016;1863:1238–60. 693 

48.  Liu A, Wei L, Gardner WA, Deng C-X, Man Y-G. Correlated alterations in prostate basal 694 
cell layer and basement membrane. Int J Biol Sci. 2009;5:276–85. 695 

49.  Ojalill M, Virtanen N, Rappu P, Siljamäki E, Taimen P, Heino J. Interaction between 696 
prostate cancer cells and prostate fibroblasts promotes accumulation and proteolytic 697 
processing of basement membrane proteins. Prostate. 2020;80:715–26. 698 

50.  Farhood B, Najafi M, Mortezaee K. Cancer-associated fibroblasts: Secretions, 699 
interactions, and therapy. J Cell Biochem. 2019;120:2791–800. 700 

51.  Cess CG, Finley SD. Multi-scale modeling of macrophage-T cell interactions within the 701 
tumor microenvironment. PLoS Comput Biol. 2020;16:e1008519. 702 

52.  Fang L-Y, Izumi K, Lai K-P, Liang L, Li L, Miyamoto H, et al. Infiltrating macrophages 703 
promote prostate tumorigenesis via modulating androgen receptor-mediated CCL4-704 
STAT3 signaling. Cancer Res. 2013;73:5633–46. 705 

53.  Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix 706 
remodelling in tumour progression and metastasis. Nat Commun. 2020;11:5120. 707 

54.  Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L, et al. Reciprocal activation 708 
of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-709 
mesenchymal transition and cancer stemness. Cancer Res. 2010;70:6945–56. 710 

55.  Cioni B, Zaalberg A, van Beijnum JR, Melis MHM, van Burgsteden J, Muraro MJ, et al. 711 
Androgen receptor signalling in macrophages promotes TREM-1-mediated prostate 712 
cancer cell line migration and invasion. Nat Commun. 2020;11:4498. 713 

56.  Liu A, Wei L, Gardner WA, Deng C-X, Man Y-G. Correlated alterations in prostate basal 714 
cell layer and basement membrane. Int J Biol Sci. 2009;5:276–85. 715 

57.  Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–716 
98. 717 

58.  Ghajar CM, Correia AL, Bissell MJ. The Role of the Microenvironment in Tumor Initiation, 718 
Progression, and Metastasis [Internet]. The Molecular Basis of Cancer. 2015. page 239–719 
56.e5. Available from: http://dx.doi.org/10.1016/b978-1-4557-4066-6.00016-0 720 

59.  Norton K-A, Jin K, Popel AS. Modeling triple-negative breast cancer heterogeneity: 721 
Effects of stromal macrophages, fibroblasts and tumor vasculature. J Theor Biol. 722 
2018;452:56–68. 723 

60.  Kather JN, Poleszczuk J, Suarez-Carmona M, Krisam J, Charoentong P, Valous NA, et 724 
al. In Silico Modeling of Immunotherapy and Stroma-Targeting Therapies in Human 725 
Colorectal Cancer [Internet]. Cancer Research. 2017. page 6442–52. Available from: 726 
http://dx.doi.org/10.1158/0008-5472.can-17-2006 727 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.16.528831doi: bioRxiv preprint 

http://paperpile.com/b/uOU5tf/9ojge
http://paperpile.com/b/uOU5tf/9ojge
http://paperpile.com/b/uOU5tf/9ojge
http://dx.doi.org/10.19080/jojun.2018.05.555653
http://paperpile.com/b/uOU5tf/ytsZ
http://paperpile.com/b/uOU5tf/ytsZ
http://paperpile.com/b/uOU5tf/EgjY
http://paperpile.com/b/uOU5tf/EgjY
http://paperpile.com/b/uOU5tf/lASj
http://paperpile.com/b/uOU5tf/lASj
http://paperpile.com/b/uOU5tf/4Plf
http://paperpile.com/b/uOU5tf/4Plf
http://paperpile.com/b/uOU5tf/4Plf
http://paperpile.com/b/uOU5tf/9XIi
http://paperpile.com/b/uOU5tf/9XIi
http://paperpile.com/b/uOU5tf/yf5g
http://paperpile.com/b/uOU5tf/yf5g
http://paperpile.com/b/uOU5tf/BUBa
http://paperpile.com/b/uOU5tf/BUBa
http://paperpile.com/b/uOU5tf/BUBa
http://paperpile.com/b/uOU5tf/Ak6J
http://paperpile.com/b/uOU5tf/Ak6J
http://paperpile.com/b/uOU5tf/gbeP
http://paperpile.com/b/uOU5tf/gbeP
http://paperpile.com/b/uOU5tf/gbeP
http://paperpile.com/b/uOU5tf/2DMY
http://paperpile.com/b/uOU5tf/2DMY
http://paperpile.com/b/uOU5tf/2DMY
http://paperpile.com/b/uOU5tf/aUJ0
http://paperpile.com/b/uOU5tf/aUJ0
http://paperpile.com/b/uOU5tf/T9dM
http://paperpile.com/b/uOU5tf/T9dM
http://paperpile.com/b/uOU5tf/ikix
http://paperpile.com/b/uOU5tf/ikix
http://paperpile.com/b/uOU5tf/ikix
http://dx.doi.org/10.1016/b978-1-4557-4066-6.00016-0
http://paperpile.com/b/uOU5tf/VIUj
http://paperpile.com/b/uOU5tf/VIUj
http://paperpile.com/b/uOU5tf/VIUj
http://paperpile.com/b/uOU5tf/hA5q
http://paperpile.com/b/uOU5tf/hA5q
http://paperpile.com/b/uOU5tf/hA5q
http://paperpile.com/b/uOU5tf/hA5q
http://paperpile.com/b/uOU5tf/hA5q
http://dx.doi.org/10.1158/0008-5472.can-17-2006
https://doi.org/10.1101/2023.02.16.528831
http://creativecommons.org/licenses/by-nd/4.0/


24 

61.  Kather JN, Charoentong P, Suarez-Carmona M, Herpel E, Klupp F, Ulrich A, et al. High-728 
Throughput Screening of Combinatorial Immunotherapies with Patient-Specific Models of 729 
Metastatic Colorectal Cancer. Cancer Res. 2018;78:5155–63. 730 

62.  Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An 731 
Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival 732 
Outcome Analytics. Cell. 2018;173:400–16.e11. 733 

63.  Lapuente-Santana Ó, van Genderen M, Hilbers PAJ, Finotello F, Eduati F. Interpretable 734 
systems biomarkers predict response to immune-checkpoint inhibitors. Patterns (N Y). 735 
2021;2:100293. 736 

64.  Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang T-H, et al. The Immune 737 
Landscape of Cancer. Immunity. 2019;51:411–2. 738 

65.  Sturm G, Finotello F, Petitprez F, Zhang JD, Baumbach J, Fridman WH, et al. 739 
Comprehensive evaluation of transcriptome-based cell-type quantification methods for 740 
immuno-oncology. Bioinformatics. 2019;35:i436–45. 741 

66.  Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al. Correction to: 742 
Molecular and pharmacological modulators of the tumor immune contexture revealed by 743 
deconvolution of RNA-seq data. Genome Med. 2019;11:50. 744 

67.  Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous enumeration 745 
of cancer and immune cell types from bulk tumor gene expression data. Elife [Internet]. 746 
2017;6. Available from: http://dx.doi.org/10.7554/eLife.26476 747 

68.  Cancer Genome Atlas Research Network. The Molecular Taxonomy of Primary Prostate 748 
Cancer. Cell. 2015;163:1011–25. 749 

69.  Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of 750 
tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51. 751 

70.  Norton K-A, Popel AS. An agent-based model of cancer stem cell initiated avascular 752 
tumour growth and metastasis: the effect of seeding frequency and location. J R Soc 753 
Interface. 2014;11:20140640. 754 

71.  Skvortsov S, Skvortsova I-I, Tang DG, Dubrovska A. Concise Review: Prostate Cancer 755 
Stem Cells: Current Understanding. Stem Cells. 2018;36:1457–74. 756 

72.  Zhang K, Guo Y, Wang X, Zhao H, Ji Z, Cheng C, et al. WNT/β-Catenin Directs Self-757 
Renewal Symmetric Cell Division of hTERT Prostate Cancer Stem Cells. Cancer Res. 758 
2017;77:2534–47. 759 

73.  Zhou J, Wang H, Cannon V, Wolcott KM, Song H, Yates C. Side population rather than 760 
CD133 cells distinguishes enriched tumorigenicity in hTERT-immortalized primary 761 
prostate cancer cells [Internet]. Molecular Cancer. 2011. Available from: 762 
http://dx.doi.org/10.1186/1476-4598-10-112 763 

74.  Packer JR, Maitland NJ. The molecular and cellular origin of human prostate cancer. 764 
Biochim Biophys Acta. 2016;1863:1238–60. 765 

75.  Montironi R, Mazzucchelli R, Lopez-Beltran A, Cheng L, Scarpelli M. Mechanisms of 766 
disease: high-grade prostatic intraepithelial neoplasia and other proposed preneoplastic 767 
lesions in the prostate. Nat Clin Pract Urol. 2007;4:321–32. 768 

76.  Casarin S, Dondossola E. An agent-based model of prostate Cancer bone metastasis 769 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.16.528831doi: bioRxiv preprint 

http://paperpile.com/b/uOU5tf/kqmG
http://paperpile.com/b/uOU5tf/kqmG
http://paperpile.com/b/uOU5tf/kqmG
http://paperpile.com/b/uOU5tf/9E4a1
http://paperpile.com/b/uOU5tf/9E4a1
http://paperpile.com/b/uOU5tf/9E4a1
http://paperpile.com/b/uOU5tf/idU4W
http://paperpile.com/b/uOU5tf/idU4W
http://paperpile.com/b/uOU5tf/idU4W
http://paperpile.com/b/uOU5tf/1wOiY
http://paperpile.com/b/uOU5tf/1wOiY
http://paperpile.com/b/uOU5tf/Ldoso
http://paperpile.com/b/uOU5tf/Ldoso
http://paperpile.com/b/uOU5tf/Ldoso
http://paperpile.com/b/uOU5tf/1NQhF
http://paperpile.com/b/uOU5tf/1NQhF
http://paperpile.com/b/uOU5tf/1NQhF
http://paperpile.com/b/uOU5tf/5CHjb
http://paperpile.com/b/uOU5tf/5CHjb
http://paperpile.com/b/uOU5tf/5CHjb
http://dx.doi.org/10.7554/eLife.26476
http://paperpile.com/b/uOU5tf/C7UI
http://paperpile.com/b/uOU5tf/C7UI
http://paperpile.com/b/uOU5tf/XSeD
http://paperpile.com/b/uOU5tf/XSeD
http://paperpile.com/b/uOU5tf/ZKFW
http://paperpile.com/b/uOU5tf/ZKFW
http://paperpile.com/b/uOU5tf/ZKFW
http://paperpile.com/b/uOU5tf/I0LR
http://paperpile.com/b/uOU5tf/I0LR
http://paperpile.com/b/uOU5tf/5LBS
http://paperpile.com/b/uOU5tf/5LBS
http://paperpile.com/b/uOU5tf/5LBS
http://paperpile.com/b/uOU5tf/AuVq
http://paperpile.com/b/uOU5tf/AuVq
http://paperpile.com/b/uOU5tf/AuVq
http://paperpile.com/b/uOU5tf/AuVq
http://dx.doi.org/10.1186/1476-4598-10-112
http://paperpile.com/b/uOU5tf/fVCd
http://paperpile.com/b/uOU5tf/fVCd
http://paperpile.com/b/uOU5tf/0jf6y
http://paperpile.com/b/uOU5tf/0jf6y
http://paperpile.com/b/uOU5tf/0jf6y
http://paperpile.com/b/uOU5tf/DLuat
https://doi.org/10.1101/2023.02.16.528831
http://creativecommons.org/licenses/by-nd/4.0/


25 

progression and response to Radium223. BMC Cancer. 2020;20:605. 770 

77.  Anderberg C, Pietras K. On the origin of cancer-associated fibroblasts. Cell Cycle. 771 
2009;8:1461–2. 772 

78.  Brawer MK. Prostatic intraepithelial neoplasia: an overview. Rev Urol. 2005;7 Suppl 773 
3:S11–8. 774 

79.  Lynch SM, McKenna MM, Walsh CP, McKenna DJ. miR-24 regulates CDKN1B/p27 775 
expression in prostate cancer. Prostate. 2016;76:637–48. 776 

80.  Xu J, Langefeld CD, Zheng SL, Gillanders EM, Chang B-L, Isaacs SD, et al. Interaction 777 
effect of PTEN and CDKN1B chromosomal regions on prostate cancer linkage. Hum 778 
Genet. 2004;115:255–62. 779 

81.  Di Mitri D, Mirenda M, Vasilevska J, Calcinotto A, Delaleu N, Revandkar A, et al. Re-780 
education of Tumor-Associated Macrophages by CXCR2 Blockade Drives Senescence 781 
and Tumor Inhibition in Advanced Prostate Cancer. Cell Rep. 2019;28:2156–68.e5. 782 

82.  Kumar V, Cheng P, Condamine T, Mony S, Languino LR, McCaffrey JC, et al. CD45 783 
Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes 784 
Tumor-Associated Macrophage Differentiation. Immunity. 2016;44:303–15. 785 

83.  Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their 786 
relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17:559–72. 787 

84.  Soulitzis N, Karyotis I, Delakas D, Spandidos DA. Expression analysis of peptide growth 788 
factors VEGF, FGF2, TGFB1, EGF and IGF1 in prostate cancer and benign prostatic 789 
hyperplasia. Int J Oncol. 2006;29:305–14. 790 

85.  Franco OE, Shaw AK, Strand DW, Hayward SW. Cancer associated fibroblasts in cancer 791 
pathogenesis. Semin Cell Dev Biol. 2010;21:33–9. 792 

86.  Zhu M-L, Kyprianou N. Androgen receptor and growth factor signaling cross-talk in 793 
prostate cancer cells. Endocr Relat Cancer. 2008;15:841–9. 794 

87.  West J, Robertson-Tessi M, Anderson ARA. Agent-based methods facilitate integrative 795 
science in cancer. Trends Cell Biol [Internet]. 2022; Available from: 796 
http://dx.doi.org/10.1016/j.tcb.2022.10.006 797 

88.  Dennis LK, Lynch CF, Torner JC. Epidemiologic association between prostatitis and 798 
prostate cancer. Urology. 2002;60:78–83. 799 

89.  Giri VN, Morgan TM, Morris DS, Berchuck JE, Hyatt C, Taplin M-E. Genetic testing in 800 
prostate cancer management: Considerations informing primary care. CA Cancer J Clin. 801 
2022;72:360–71. 802 

90.  Fontana F, Anselmi M, Limonta P. Molecular mechanisms and genetic alterations in 803 
prostate cancer: From diagnosis to targeted therapy. Cancer Lett. 2022;534:215619. 804 

91.  Narayan V, Barber-Rotenberg JS, Jung I-Y, Lacey SF, Rech AJ, Davis MM, et al. PSMA-805 
targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant 806 
prostate cancer: a phase 1 trial. Nat Med. 2022;28:724–34. 807 

92.  Peng S, Hu P, Xiao Y-T, Lu W, Guo D, Hu S, et al. Single-Cell Analysis Reveals EP4 as 808 
a Target for Restoring T-Cell Infiltration and Sensitizing Prostate Cancer to 809 
Immunotherapy. Clin Cancer Res. 2022;28:552–67. 810 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.16.528831doi: bioRxiv preprint 

http://paperpile.com/b/uOU5tf/DLuat
http://paperpile.com/b/uOU5tf/cjpkE
http://paperpile.com/b/uOU5tf/cjpkE
http://paperpile.com/b/uOU5tf/K5LJB
http://paperpile.com/b/uOU5tf/K5LJB
http://paperpile.com/b/uOU5tf/QSBnI
http://paperpile.com/b/uOU5tf/QSBnI
http://paperpile.com/b/uOU5tf/OYtCy
http://paperpile.com/b/uOU5tf/OYtCy
http://paperpile.com/b/uOU5tf/OYtCy
http://paperpile.com/b/uOU5tf/jyzaW
http://paperpile.com/b/uOU5tf/jyzaW
http://paperpile.com/b/uOU5tf/jyzaW
http://paperpile.com/b/uOU5tf/I8H7b
http://paperpile.com/b/uOU5tf/I8H7b
http://paperpile.com/b/uOU5tf/I8H7b
http://paperpile.com/b/uOU5tf/3Qywd
http://paperpile.com/b/uOU5tf/3Qywd
http://paperpile.com/b/uOU5tf/dTrb7
http://paperpile.com/b/uOU5tf/dTrb7
http://paperpile.com/b/uOU5tf/dTrb7
http://paperpile.com/b/uOU5tf/KlS6t
http://paperpile.com/b/uOU5tf/KlS6t
http://paperpile.com/b/uOU5tf/BXfFm
http://paperpile.com/b/uOU5tf/BXfFm
http://paperpile.com/b/uOU5tf/kUYw
http://paperpile.com/b/uOU5tf/kUYw
http://dx.doi.org/10.1016/j.tcb.2022.10.006
http://paperpile.com/b/uOU5tf/cmuz
http://paperpile.com/b/uOU5tf/cmuz
http://paperpile.com/b/uOU5tf/XFN8
http://paperpile.com/b/uOU5tf/XFN8
http://paperpile.com/b/uOU5tf/XFN8
http://paperpile.com/b/uOU5tf/2gZA
http://paperpile.com/b/uOU5tf/2gZA
http://paperpile.com/b/uOU5tf/jKCx
http://paperpile.com/b/uOU5tf/jKCx
http://paperpile.com/b/uOU5tf/jKCx
http://paperpile.com/b/uOU5tf/XV8n
http://paperpile.com/b/uOU5tf/XV8n
http://paperpile.com/b/uOU5tf/XV8n
https://doi.org/10.1101/2023.02.16.528831
http://creativecommons.org/licenses/by-nd/4.0/


26 

93.  Cesaro G, Milia M, Baruzzo G, Finco G, Morandini F, Lazzarini A, et al. MAST: a hybrid 811 
Multi-Agent Spatio-Temporal model of tumor microenvironment informed using a data-812 
driven approach. Bioinform Adv. 2022;2:vbac092. 813 

94.  Lao BJ, Kamei DT. Investigation of cellular movement in the prostate epithelium using an 814 
agent-based model. J Theor Biol. 2008;250:642–54. 815 

 816 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.16.528831doi: bioRxiv preprint 

http://paperpile.com/b/uOU5tf/dKDL
http://paperpile.com/b/uOU5tf/dKDL
http://paperpile.com/b/uOU5tf/dKDL
http://paperpile.com/b/uOU5tf/yg1e8
http://paperpile.com/b/uOU5tf/yg1e8
https://doi.org/10.1101/2023.02.16.528831
http://creativecommons.org/licenses/by-nd/4.0/

	Margot Passier1, Maisa van Genderen1, Anniek Zaalberg2, Jeroen Kneppers2, Elise Bekers3, Andries M Bergman2,4†, Wilbert Zwart1,2,5,†, Federica Eduati1,5,†
	Conflict of Interest


