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Abstract

The advent of novel methods in mass spectrometry-based proteomics allows
for the identification of biomarkers and biological pathways which are crucial
for the understanding of complex diseases. However, contemporary analytical
methods often omit essential information, such as protein abundance and pro-
tein co-regulation, and therefore miss crucial relationships in the data. Here, we
introduce a generalized workflow that incorporates proteins, their abundances,
and associated pathways into a deep learning-based methodology to improve
biomarker identification and pathway analysis through the creation and inter-
pretation of biologically informed neural networks (BINNs). We successfully
employ BINNs to differentiate between two subphenotypes of septic acute kid-
ney injury (AKI) and COVID-19 from the plasma proteome and utilize feature
attribution-methods to introspect the networks to identify which proteins and
pathways are important for distinguishing between subphenotypes. Compared to
existing methods, BINNs achieved the highest predictive accuracy and revealed
that metabolic processes were key to differentiating between septic AKI subphe-
notypes, while the immune system was more important to the classification of
COVID-19 subphenotypes. The methodology behind creating, interpreting, and
visualizing BINNs were implemented in a free and open source Python-package:
https://github.com/InfectionMedicineProteomics/BINN.


https://github.com/InfectionMedicineProteomics/BINN
https://doi.org/10.1101/2023.02.16.528807
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.16.528807; this version posted February 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1 Introduction

The continuous technological advancements in mass spectrometry based proteomics has
the enabled the quantification of hundreds to thousands of proteins in clinical samples
extending its reach in biomedical and clinical research [1, 2]. The increasing ability
to rapidly analyze a large number of clinical samples provides new opportunities to
profile complex biological systems and bridge the gap between translational and clini-
cal research through the investigation of disease mechanisms and the identification of
biomarkers. These advances are of interest for many disease areas, such as the study
of infectious diseases where the identification of distinct clinical and molecular subphe-
notypes may impact the development of new treatment regimes. Subphenotypes are
typically identified using clinical parameters based on the presented severity of different
symptoms of the disease and are difficult to distinguish. Previous work has proposed
clinical subphenotypes for COVID-19 [3, 4, 5, 6] and sepsis [7, 8, 9], but the devel-
opment of targeted treatments for the different subphenotypes remains challenging as
the underpinning molecular mechanisms are poorly characterized. To understand these
molecular mechanisms, it is therefore critical to analyze the proteins and associated
biological pathways of a disease to support the development of precision treatments
and provide the best patient care possible.

Currently, a common strategy to identify candidate diagnostic and prognostic biomark-
ers are based on significantly differentially expressed (DE) proteins between subpheno-
types. Substantial research has been conducted on how to optimize DE detection algo-
rithms [10, 11, 12, 13, 14], but the process of selecting proteins for further investigation
remains unstandardized. In most cases, proteins that pass a p-value and fold-change
threshold are considered the most informative, but these thresholds are rule based and
potentially eliminate important biological signal. To understand the systemic impact
of DE proteins, it is also pertinent to identify which pathways are enriched based on
the difference in abundance of the DE proteins. Several tools and databases have been
developed to automate this process and to select the most significant pathways based
on the proteins that have been identified in DE analysis [15, 16, 17]. Commonly, the
significance of a pathway is determined by counting the number of DE proteins that
are connected to the pathway in a database and calculating a p-value based on these
connections. This type of analysis typically omits crucial information such as protein
abundance, protein co-expression, and pathway co-regulation, and selects the most in-
teresting pathways using p-value cut-offs.

To mitigate these limitations, increasing efforts have been directed towards incor-
porating machine learning methods into proteomics workflows to improve the study of
disease mechanisms and biomarker discovery [18, 19, 20]. Recent advances in the field
of machine learning have allowed deep neural networks to thrive in domains of high di-
mensionality where complex networks can learn representations of features without the
need for feature selection algorithms [21]. However, complex machine learning models,
such as deep neural networks, suffer from a lack of interpretability, and although they
provide greater predictive power than their more interpretable linear counterparts, this
questions the utility of such methods. Research in the field of explainable artificial
intelligence (xAI) has resulted in methods which allow for the interpretation of com-
plex models by calculating the importance of each feature to the output of the model
[22, 23, 24]. To further improve interpretability, biologically informed neural networks
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(BINNS) establish connections between their layers based on biological processes [25, 26]
and thus generalize to unseen data more effectively [27].

Here, we demonstrate the utility of BINNs to develop highly accurate predictive
models that enhance blood-based proteomics biomarker identification while providing
greater insight into the underlying biology of a system. We apply our method to analyze
proteomic differences in blood plasma between subphenotypes in sepsis induced acute
kidney injury (AKI) and COVID-19. The two subphenotypes of septic AKI were previ-
ously established using clinical and molecular parameters using latent class analysis [28].
Similarly, the COVID-19 subphenotypes were based on varying levels of severity, where
patients in need of assisted mechanical ventilation comprise the more severe subpheno-
type [29]. The annotations from these predictive models were used to select potential
diagnostic biomarker panels to augment the parameters used to stratify the subpheno-
types from the above datasets while providing a molecular explanation for their physical
manifestation. We also demonstrate how BINNs can be used for intelligent pathway
analysis to extract the most important pathways in a biological system. Overall, the in-
herent interpretability of BINNs lend to their potential to investigate complex biological
systems in a more comprehensive manner and to enhance the potential of biomarker
discovery in mass spectrometry-based proteomics. A generalizable and user friendly
software package for the creation and analysis of annotated sparse BINNs is open source
and freely available at https://github.com/InfectionMedicineProteomics/BINN.
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2 Results

Currently, common proteomics-based biomarker identification and biological pathway
analyses are based on arbitrary thresholds which omits important relationships in
datasets, and therefore lack the comprehensiveness which is required when analyzing
complex biological systems. Here, we apply a deep learning-based methodology which
utilizes the Reactome pathway database [16] to incorporate biological relationships in a
biologically informed neural network (BINN), allowing for a unified analysis of biomark-
ers, biological pathways, and processes. The Reactome database contains information
about relationships of biological entities, and its underlying graph is manipulated to fit a
sequential neural network-like structure, resulting in a sparse architecture where nodes
are annotated with a protein, biological pathway, or biological process. We create and
employ BINNs on two proteomic datasets, distinguishing between two subphenotypes
of septic akute kidney injury (AKI) and COVID-19. The BINNs are fed the proteomic
content of samples and thereby trained to classify the subphenotypes, whereafter they
are interpreted using Shapley Additive Explanations (SHAP) [22], eventually allowing
for the identification of important proteins and pathways (figure 1).

2.1 Construction of biologically informed neural networks

As a starting point, proteomics plasma-data from patients suffering from septic AKI
and COVID were analyzed to generate datasets for the respective disease. Septic AKI
has previously been classified into two subphenotypes of varying severity by latent class
analysis of various clinical markers [28]. 142 samples in the sepsis-dataset were stratified
to one of the two subphenotypes, where 60 were classified as subphenotype 1 and 82
as subphenotype 2. Similarly, patients may suffer from varying degree of COVID-19,
which has generated a scale defined by the World Health Organization to classify the
severity of exhibited symptoms. According to this scale, patients requiring mechanical
assistance for ventilation (WHO scale 6-7) are categorized as extremely severe, whereas
patients able to breath by themselves as less severe, resulting in two subphenotypes
of COVID-19. The COVID-dataset contained a total of 687 samples, where 406 were
graded as very severe (WHO scale 6-7) and 281 as less severe (WHO scale <6). The
proteomic content of the datasets differed, as 728 proteins were identified in the septic
AKI dataset, as compared to the shallower proteome of the COVID-cohort containing
173 proteins.

The datasets were used in combination with the Reactome pathway database [16] to
create and train BINNs. As mentioned, the Reactome database contains information
about relationships of biological entities, such as molecules, pathways and high-level
processes, and does not follow a sequential structure. The underlying graph is therefore
subsetted and layerized to fit a sequential neural network-like structure, whereafter it
is translated to a sparse neural network architecture, where nodes are annotated with
a protein, biological pathway, or biological process - hence biologically informed neural
networks. The proteomic content of a sample is passed to the input layer of the network,
and the following layers map it to biological processes of increasing level of abstraction -
finally ending up in high level processes such as immune system, disease, metabolism etc.
The annotated and sparse nature of the network makes it well-suited for introspection
and interpretation, as demonstrated by Elmarakeby et al. [25]. The algorithm which
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uses a graph and a subset of entities to create a sparse sequential neural network was
generalized and implemented in the PyTorch-framework in Python, and is publicly
available at GitHub: https://github.com/InfectionMedicineProteomics/BINN.
Networks for the respective disease were generated with four hidden layers each, and
differed in architecture due to the discrepancy in the depth of the proteomes of the two
datasets - the COVID-BINN being much smaller than the sepsis-BINN (supplementary
7). Due to their sparse nature, the resulting networks are small - containing trainable
parameters in the thousands (sepsis-BINN: 6.7 k, COVID-BINN: 1.6 k trainable pa-
rameters between hidden layers), as compared to millions which is the case for most
contemporary complex deep learning models. The BINNs were trained to identify the
subphenotypes of septic AKI and COVID respectively, as outlined above.

2.2 Method comparison

To investigate whether machine learning methods were suitable for the stratification
of septic AKI and COVID-19-subphenotypes, the BINNs were benchmarked against a
support vector machine with radial-basis function kernel, k-nearest neighbour, a random
forest, and two boosted trees (LightGBM and XGBoost). Evaluation was performed
on the complete datasets using k-fold cross-validation. All machine learning methods
achieved AUC-scores of >0.75, but the BINNs resulted in the best performances (ROC-
AUC ': 0.9940.00 and 0.95+0.01, PR-AUC 2: 0.9940.00 and 0.9640.01) on the septic
AKI and COVID-dataset respectively (figure 2A,B). Both BINNs achieved a high true
positive and true negative rate (sepsis: 94 4 2%, 100 + 0%, COVID: 87 + 2%, 92 + 1%)
(figure 2C). Additionally, both the sepsis and the COVID-BINN attained the highest
precision and recall-rates out of all methods, achieving a precision of: 0.99+0.020, 0.87+
0.011, and recall of: 1.0 £ 0.0, 0.88 4 0.022 respectively.

2.3 Interpretation

To identify which proteins, pathways and biological processes were important for the
classifications, the trained BINNs were interpreted using SHAP [22]. SHAP is a feature
attribution method which estimates the Shapley values (contribution) of each node
in the network to the prediction. The node importance can be likened to how much
worse predictions were to become after the removal of the said node. SHAP values were
adjusted using the logarithm of the number of nodes in the reachable subgraph of a given
node to account for the level of connectivity and to remove any biases associated with
highly connected nodes (see supplementary methods and 10). The node importances
of the complete networks were visualized in Sankey diagrams in figure 3. Nodes which
were given a high SHAP value in the sepsis-BINN were largely related to metabolic
processes, such as lipid metabolism and those related to PPAR-a [30], whereas the
COVID-BINN places more importance on nodes related to the immune system and
cell death. The emphasis on metabolic processes in the sepsis-BINN supports the
view of sepsis as a condition with large systemic effects on metabolism, homeostasis
and not solely the immune system [31, 32]. In the case for differentiating between
COVID severities, processes relating to immune system (driven by innate immunity),

! Area under the receiver operating characteristic curve
2Area under the precision-recall curve


https://github.com/InfectionMedicineProteomics/BINN
https://doi.org/10.1101/2023.02.16.528807
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.16.528807; this version posted February 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

metabolism of proteins, and programmed cell death, seemed to be the most important
factors.

2.3.1 BINN-enhanced biomarker identification

The first layers of the BINNs contain the proteomic content, and to investigate whether
proteins deemed important for the classification by the BINNs could be considered as
potential biomarkers, the top-ranking proteins by SHAP value were subject to further
investigation. For comparison, a measure of differential expression, the DE-score, was
devised as a means of standardizing differential expression analysis. The DE-score is
calculated by scaling the logarithmized fold change and p-value and computing their
Pythagorean sum. Proteins which most significantly differ between two groups will
therefore be given a high DE-score (equation 3, supplementary 8). Hierarchical cluster-
ing using Ward’s minimum variance method was performed on the protein quantities
of the top 20 proteins identified by SHAP and by DE-score in both the sepsis and
COVID-BINNS.

Several of the top-ranking proteins in the sepsis-BINN were known biomarkers for
inflammation and have been documented to be altered during severe sepsis, such as
CD14 [33, 34|, FA10 [35], H4 [36], and OSTP [37], however, proteins related to metabolic
processes, such as apolipoproteins (APOB, APOA1, APOA2 and APOA4) were also
identified. Notably, these were not included in the top-ranking proteins by DE-score
and wouldn’t be identified with classical differential expression analysis. Clustering
on the proteins identified by SHAP resulted in a Rand-index of 0.765, outperforming
the clustering on proteins ranked by DE-score which achieved a Rand-index of 0.716
(7.0% increase). Similarly, many of the most important proteins in the COVID-BINN
have also been identified as biomarkers for the distinction between moderately and
critically ill COVID-patients, such as GELS and ZA2G [38]. In the case for COVID,
the differential expression analysis resulted similar proteins and results as the BINN,
resulting in Rand-indexes of 0.645 and 0.663 respectively when performing hierarchical
clustering (2.7% increase).

Markedly, the proteins with the highest SHAP value are not the most significantly
differentially expressed or exhibit the highest fold change (see supplementary 9). This
suggests that some proteins are considered important because of which pathways they
are connected to, or due to their co-regulation with other proteins, and would likely
have been discarded in typical analyses. Naturally, the proteins selected by DE-score
differed in relative abundance, although the interpretable machine learning-centered
method outperformed differential expression analysis in finding proteins which clustered
to the subphenotypes. Clustermaps and plots showcasing the relative abundance of the
identified proteins by SHAP can be seen in figure 4, and similar plots in the case of
differential expression analysis can be seen in supplementary 6.

2.3.2 BINN-enhanced pathway analysis

Since pathways and processes are integrated into the structure of the BINNSs, a sub-
set of pathways may be extracted from the graph underlying the BINN for pathway
analysis. One may investigate pathways originating from a certain protein or pathway
to see which pathways the node influences, and in turn, which it is influenced by. As
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mentioned, CD14 was identified as one of the most important proteins in the sepsis-
BINN, and have many known implications in the immune response in general, as well
as specifically in the course of sepsis [33, 34]. In figure 5A, CD14 has therefore been
selected in the sepsis-BINN and the downstream pathways and processed visualized.
In the network, CD14 funnels most of its importance through caspase activation and
TLR associated diseases, and eventually to disease, immune system and programmed
cell death.

Lipoproteins and lipoprotein metabolism are subject to major clinically relevant
alterations during sepsis [32], and indeed many lipoproteins and related pathways and
processes were identified in the sepsis-BINN, as described above. When inspecting the
subgraph upstream from plasma lipoprotein remodeling, LDL remodeling and APOB,
APOA1, APOA2 and APOA4 can be identified as the most important sub-process and
proteins respectively (figure 5B).

GELS has been identified to play an important role in various physiological condi-
tions, diseases and inflammatory processes [39], and was identified as one of the most
important proteins in the COVID-BINN. After inspection of the subgraph originating
from GELS, we identify that it contributes mostly to apoptotic cleavage of proteins and
neutrophil degranulation - processes which eventually contribute to programmed cell
death and the immune system. Both neutrophil degranulation [40] and programmed
cell death [41] have been found to be pivotal in the course of severe COVID-19.

Pathway analysis plays a key role in understanding complex biological systems, and
is naturally closely tied to proteomic content. To compare the integrated pathway
analysis utilizing BINNs with common contemporary methods, pathway analysis with
Metascape was performed [15]. This resulted in largely the same set of pathways ranking
highly in both datasets, a majority of which are related to the inflammatory response
(supplementary 11). Utilizing the interpretable nature of the BINNs and querying
their underlying graphs allowed us to find important pathways and relationships which
wouldn’t have been discovered using many contemporary methods, highlighting the
advantages of the BINNs for custom pathway analysis.
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3 Discussion

We present and apply a generalized workflow utilizing biologically informed neural net-
works (BINNs) and feature attribution methods for biomarker discovery and pathway
analysis in a discovery proteomics setting. Although the BINNs are sparse and have
few trainable parameters, they accurately predicted degrees of severity in both septic
AKI and COVID-19 from the plasma proteome alone. The sparse and informed nature
of the BINN incorporates biological pathways and processes into its architecture, tailor-
ing it for introspection. Further, biological relationships which are typically overlooked
in common methods are captured in the network, and therefore highly relevant infor-
mation is incorporated into the analysis. Ultimately, this allows for a comprehensive
analysis of proteomic data in a single unified method.

Interpreting the BINNs trained to predict different subphenotypes of septic AKI and
COVID-19 identified several relevant biomarkers and pathways which wouldn’t have
been identified using common methods of differential expression and pathway analysis.
Furthermore, it highlighted key differences between the two diseases, as proteins and
processes related to metabolism and disease were considered highly important in the
sepsis-BINN, whereas the COVID-BINN favoured proteins and processes related to
mmaunity.

Biomarker disovery in the context of BINNs is performed by calculating the feature
importance of the initial layer of the network. Several of the most important proteins in
the sepsis and COVID-BINNs were known biomarkers of the respective disease, however,
they differed from the most differentially expressed proteins. Important proteins were
not necessarily the most significantly differentially expressed (supplementary 9). The
two methods may therefore be seen as complementary, and both may provide value to an
analysis. Whereas differential expression analysis is guaranteed to provide proteins with
a high fold change and low p-value, as this is the selection criteria, a BINN will provide
the proteins which are important in a classification context when taking biological
processes into account.

The major strength of BINNs lies in their embedding of pathway analysis into
the architecture as the graph underlying the trained network can be extracted and
subsetted to identify influential nodes in the subgraphs. This enables the investigation
of downstream pathways from a given protein to understand the extent of its impact in
the network. Similarly, the proteins and pathways upstream from a given node can be
extracted to identify the extent of their influence. Comparatively, this provides a major
improvement to how generic pathway analysis is commonly performed in proteomic
research, where proteins associated with pathways are counted and the pathway with
the most connections is considered the most relevant.

The performances of the BINNs relative to other machine learning methods differed
between the datasets, as the performance of the COVID-BINN was comparable to
other methods, while the sepsis-BINN outperformed other methods (figure 2). This is
likely due to the combination of a higher dimensionality and smaller cohort-size of the
sepsis dataset, suggesting that the BINNs are able to represent the feature space more
accurately in complex datasets given fewer examples as compared to shallower learning-
methods. Beyond performance, the varying proteome depths may also have implications
on the conclusions drawn after interpreting the networks, as the underlying proteomes
influences their architectures. Such effects should be kept in mind when comparing


https://doi.org/10.1101/2023.02.16.528807
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.16.528807; this version posted February 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

networks, as was done when identifying metabolic processes to be more important in
the sepsis-BINN than the COVID-BINN.

It was found that hyperparameter-configuration had a significant influence on the
distribution of importance in the network. Specifically, prolonged training durations
resulted in a dependency on combinations of low abundance features such as antibodies,
which although improved classification accuracy, are of less biological interest in this
context. The BINN is highly dependent on the quality of the underlying graph, the
dataset as well as the overlap with the dataset. Proteins which are not mapped to events
in the Reactome pathway database are discarded in the analysis, and for small datasets
the reduction in features may be detrimental. Unsupervised learning methods aimed
at classifying nodes such as BIONIC [42] may be utilized to generate comprehensive
networks encompassing a large majority of the proteome which could be used to generate
BINNs. However, defining and annotating processes and pathways is still a manual
and laborious task limiting the size of the BINNs. Our implementation is agnostic
to the underlying graph and inputs used for the creation of the network, allowing for
e.g., genomic or metabolomic data to be used in combination with different pathway
repositories such as KEGG [43], GeneOntology [44, 45], or a custom curated set of
pathways, to generate BINNs.

In summary, we demonstrate how BINNs can be trained, interpreted and visualized
to provide a comprehensive analysis of proteomic datasets. The methodology behind
the creation, analysis and visualization of interpreted BINNs has been generalized and
is publicly available, opening up possibilities for further analyses and development in
the realm of machine learning in discovery proteomics.
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4 Method

4.1 Data

Blood-plasma from patients suffering from septic AKI and COVID-19 were gathered
and analyzed elsewhere, whereafter the resulting proteomic datasets were uploaded
to proteomeXchange [46] and made publicly available [47, 29]. The COVID-19 dataset
consisting of the raw data matrix of quantified precursors and design matrix with patient
annotations were downloaded from PRIDE (PXD025752)[48] and re-analyzed. The
original study reports two cohorts from different hospitals whereof the samples gathered
at Charité containing 687 samples was used here. The raw mass spectrometry files and
spectral library for the septic AKI dataset were downloaded from PRIDE (PXD038394)
and analyzed with an adapted version of the DIAnRT workflow[49] using GPS[47] for
validation. Using OpenSwath (v. 2.6)[50], a first iteration of sub-optimal retention
time alignment is performed followed by validation and refined retention time alignment
using the highest scoring quantified precursors for each run. This process is repeated
3 times, with strict retention time alignment and mass correction on the final iteration
followed by false discovery rate control at the global peptide and protein levels to
generate a quantitative matrix.

4.2 Data processing

The septic AKI and COVID-19 datasets were processed in the same manner using the
open source python package DPKS (https://github.com/InfectionMedicineProteomics/
DPKS). The quantitative matrices were filtered to remove decoys and precursors that
did not pass a 1% false discovery rate control at the global peptide and protein levels.
Samples were then mean-normalized to remove any bias in the data and proteins were
quantified using a python implementation of the relative quantification ig-algorithm
[51]. Differential expression analysis was performed between each group of each dataset
for proteins quantified in a minimum of 3 samples per group using linear models and
multiple testing correction with DPKS. For input into the BINN, only proteins consid-
ered in the differential analyses were used as input, and missing values were imputed
as 0.

4.3 BINN

The BINN was first introduced as P-NET by Elmarakeby et al. [25], and the archi-
tecture and methodology closely resemble the one they presented. Here, however, we
introduce a generalized methodology as demonstrated in the context of proteomics anal-
ysis and present further applications of the informed network. The BINN is a sequential
sparse feed-forward neural network which is generated using an underlying graph. The
underlying graph used in this study is that of the Reactome pathway database [16]
and contains information about relationships of biological entities, such as molecules,
pathways and high-level processes. The graph is processed and layerized before it is
translated into neural network in the PyTorch framework [52]. The generalized algo-
rithm underlying the creation of a BINN from the Reactome pathway database was
implemented as a Python-package:
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1. Subset the Reactome pathways database (directed graph) using the union of pro-
teins by adding the parental pathway, starting at the protein level, until the
highest level of nodes is reached (nodes with out degree= 0).

2. Generate a network from the subsetted pathways and add an output node con-
nected to the highest level of nodes. The number of output nodes correspond to
the number of classes the network is set to predict.

3. Starting at the output node, traverse the network backwards for N layers If reach-
ing a terminal node before N layers have been reached - add a copy of the previous
node. This implies that the path depth < N + 1.

4. Remove nodes which have not been traversed.

5. Finally, connect proteins to the final corresponding terminal nodes.

The constraints on the connectivity of the nodes renders the BINN tiny in compar-
ison to most contemporary architectures. In this study, two networks were generated,
originating from two different proteomics datasets: the first being analyzed blood-
plasma from patients suffering from septic AKI, and the second from patients suffering
from COVID-19. The sepsis and COVID-19 contained a total of 1203 and 174 proteins
respectively. All proteins were not present in the minimum requirement of 3 samples
per group or were not present in the Reactome database, reducing the final number of
proteins to 728 (septic AKI) and 127 (COVID-19). The Reactome pathway database
was downloaded 2022-07-14. When generating networks with 4 layers, this resulted in
6.7 thousand (septic AKI) and 1.6 thousand (COVID-19) trainable parameters between
the hidden layers in total (supplementary 7).

The network is constructed so that the lowest level of entities exists in the input-
layer, and the level of abstraction increases as the network is traversed towards the
output layer. The first layer (input layer) therefore contains the proteins, and are fed
the scaled protein abundances. Thereafter follows the lower-level biological pathways
from the Reactome database, such as requlation of the complement cascade. The final
layer contains information about high level biological processes, such as immune system,
hemostasis, disease and metabolism. The hidden linear layers are intercepted by tanh-
activation layers, as well as dropout layers and batch normalization.

The BINN is interpreted using SHAP [22]. SHAP is a feature attribution method
which computes the importance of a given feature to the outcome of the model. Similar
to LIME [24], SHAP applies a linear relationship in its explanation model. Further-
more, the properties of the feature importance values are equivalent to the properties of
the well-established Shapley values [53], which, in short, makes SHAP a feature attri-
bution method which estimates Shapley values with a linear explanation model. SHAP
provides a range of kernels which can be used for various models, one of which being
the Deep SHAP-kernel, which similar to DeepLift [23] can be applied to deep learning
models such as neural networks. In essence, Deep SHAP improves on the DeepLift
algorithm, by approximating the conditional expectations using a set of background
samples. Thereafter, the SHAP values can be approximated such that they sum to the
difference of the expected model output (based on the set of background samples) and
the current model output: f(z) — E(f(z)).
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Problems arise if one wants the node importance to be meaningful for all layers in a
sequential feed-forward neural network. This is because earlier nodes may completely
rely on later nodes, and may not be important by themselves. For the node importance
to reflect that which is both important in itself, and important in the context of the
complete network, fully connected output layers are placed after each hidden layer, and
the final prediction is computed as the average of all of the output layers. The output
from each output layer is passed through a o-activation function before being averaged.

N
Zlayer:O g (OutlayeT )
N

Nodes that are highly connected may be given an importance score which doesn’t
reflect its biological importance, but is an artefact of the architecture. Elmarakeby et
al. [25] used the graph informed function, f, to reduce bias that may be introduced by
over-annotation of certain nodes:

OUtfinal =

dtotn - dinn + doutn

S dyor, > j1+ 50
£(S,) = { ! . (1)

Sy, otherwise

Where d;,,, and d,,;, are the in degree and out degree of a given node, n. To motivate
the use of a bias reduction technique like this, we’d expect to see a correlation between
the node degree and importance value. We suggest that a more general measure of
node influence is the number of nodes in the complete subgraph defined by node n,
Ngg, . The outgoing and incoming edges may be seen as a proxy for the size of SG,,.
The connections in a fully connected graph grows exponentially with the number of
nodes, and log(Ngq, ) may therefore be an appropriate reduction factor. Calculating
the Pearson correlation coefficient for the mentioned graph informed measures and
the SHAP value shows that the Ngg, and log(Ngg,) indeed are the graph informed
functions that are most correlated with SHAP value, although this varies between layers
(supplementary 10). The adjusted node importances may therefore be calculated by:

Sn

S50 = TogNsa)

(2)

5 Training and evaluation

The generated datasets were scaled so that the distribution had a mean of 0 and vari-
ance of 1. The two generated BINNs were trained and evaluated on the respective
dataset using k-fold cross-validation (k = 3) alongside five machine learning models
(support vector machine with radial-basis function, K-nearest neighbor, random forest,
Light GBM and XGBoost). Their performances were evaluated using the area under
the receiver operator characteristic (ROC) curve and the area under the precision-recall
(PR) curve. The area under the curves were averaged across cross-validation runs. The
BINNs were trained until halted using early stopping and with similar hyperparemeter
configurations. The learning rate was initiated at 0.001, and decreased adaptively if
the validation loss plateaued. The networks seek to minimize the cross-validation error
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with an Adam-optimizer. A weight-decay (L2-penalty) of 0.001 is applied during train-
ing. Several measures were taken to mitigate the risk of over-fitting, such as the use of
drop-out, as well as the adaptive learning rate, training times, and penalties mentioned
above.

When generating models for interpretation, the BINNs were trained on the complete
dataset, and never validated. In such cases, the adaptive learning rate is monitoring
the training loss instead of the validation loss. Training was halted when training loss
plateaued. The evaluation-time is dependent on the number of background samples
used and it is often necessary to use a subset of the dataset as background, however,
due to the relatively small number of samples in the dataset, the complete datasets
were used to evaluate E(f(z)).

5.1 Biomarker evaluation and pathway analysis

Proteins, pathways and processes deemed important for the network during classifica-
tion will be the ones that contribute greatly to correct predictions. The interpreted
network can therefore be introspected and used for biomarker evaluation and pathway
analysis. The proteins deemed important in the first layer can be extracted and com-
pared to the ones that are differentially expressed. To get a quantitative measure of
differential expression for a protein, p, the following expression was devised:

DE

p:

\/ FC, * N log(p — value,) 3)

max(FC)  min(log(p — value))

This normalizes the fold change (F'C') and log(p — value) and calculates the Eu-
clidean distance from origo (i.e., the Pythagorean sum). One can visualize this measure
as the distance from origo in a volcano plot with a standardized scale on the x and
y-axes (supplementary 8). The 20 proteins with the highest SHAP value and the high-
est DE-value were subject to hierarchical clustering using Ward’s minimum variance
method.

One can subset the graph underlying the BINNs to extract subgraphs originating
from, or incoming to, a certain node. The interpreted subgraph can be used for pathway
analysis to gain further understanding of the dataset. We implemented three ways to
subset the graph: downstream, upstream, and the combined downstream and upstream
(complete subgraph). In a downstream subgraph, the pathways originating from a
certain node is included, whereas in the case for an upstream subgraph, the nodes
eventually reaching a certain node are included. A complete subgraph can be seen as
the union of both the downstream and upstream subgraph.
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Figure 1: The complete workflow of analyzing proteomic data with biologically informed neural networks.
The plasma proteome from patients suffering from septic AKI and COVID-19 were gathered and analyzed elsewhere
[47, 29]. The data was downloaded and re-analyzed, resulting in datasets for the respective disease. The BINN is then
generated by subsetting the Reactome pathway database [16] on the proteomic content of the respective dataset, and
layerized to fit a sequential neural network-like structure. The protein quantities for each sample is used to train the
BINNSs to differentiate between two subphenotypes of COVID-19 and septic AKI respectively. Thereafter, the network
is interpreted using SHAP and the resulting feature importance values allow for biomarker identification and pathway
analysis. Created with BioRender.com.
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Figure 2: Performance of machine learning methods on the sepsis and COVID-datasets. The BINNs and five
other machine learning models (support vector machine with radial- basis function kernel, k-nearest neighbour, random
forest, LightGBM and XGBoost) were used to predict septic AKI and COVID-19 subphenotypes given the proteomic
content of samples. The models were trained and evaluated using k-fold cross validation. A) The mean ROC-curve
for the machine learning methods on the sepsis (upper) and COVID (lower). B) The mean PR~curve for the machine
learning methods on the sepsis (upper) and COVID (lower). C) The confusion matrices for the respective BINNs (upper:
sepsis, lower: COVID).
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Figure 3: Sankey diagram visualization of node importance in the complete sepsis and COVID-BINNSs. The
importance for each node was calculated layer-wise using SHAP and reduced by the level of connectivity, and represented
as the outgoing flow from the given node. Additionally, the nodes color reflects its relative importance, as darker nodes
are more important in a given layer. The top 10 most important nodes in each layers are showcased and labeled, whereas
the rest are gathered in the gray nodes at the bottom of the diagram (labeled ” Other connections”). Nodes that had no
connection to the labeled nodes (i.e., both originated and targeted unlabeled nodes) were discarded for the sake of better
visualization. A) The sepsis-BINN. Nodes related to metabolic processes, such as lipoprotein assembly, remodeling
and clearance and metabolism of vitamins and cofactors, and disease, such as infectious disease are considered important
in the sepsis-BINN. B) The COVID-BINN. In the COVID-BINN, processes related to immaunity, protein metabolism
and programmed cell death are dominating. This highlights a difference in the two networks, where subphenotypes of
septic AKI are distinguishable by metabolic processes, whereas differentiating between COVID-19 subphenotypes relies
more on pathways related to immunity.
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Figure 4: Clustering on the proteins with the highest SHAP values in the sepsis and COVID-datasets.
The most important proteins as determined by the BINNs were selected and subject to hierarchical clustering. A) A
clustermap showcasing the clustering based on the scaled protein abundances of the top 20 most important proteins in
the sepsis-BINN. The left-most column shows the subphenotype classification (subphenotype 2: red, subphenotype 1:
blue). Clustering was performed using Wards minimum variance method and Euclidean distances. The Rand-index for
the clustering was 0.765. B) The upper panel shows the protein quantity for the 10 most important proteins. The lower
panel shows which fraction of samples identified the given protein. C) Same as A but on the COVID-dataset. The
Rand-index for the clustering was 0.663. D) same as B but for the COVID-dataset.
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Figure 5: Custom pathway-analysis utilizing the interpreted BINNs. The graph underlying the interpreted
BINNs can be extracted and subsetted for custom pathway analysis. One may look down-stream, i.e., recovering the
subgraph originating from a specific protein. This showcases which pathways a protein will influence. One may also look
up-stream, which instead showcases what proteins and pathways contribute to a specific process. A) The down-stream
graph originating from CD14 in the sepsis-BINN. The most important contribution of CD14 is to caspase activation
via death receptors, MyD88 deficiency, and subsequently, disease and programmed cell death. B) The up-stream graph
originating from plasma lipoprotein remodeling. It’s most important contributor is LDL remodeling, HDL remodeling
and four apolipoproteins: APOB, APOA1, APOA4 and APOA2. C) The down-stream graph originating from GELS
in the COVID-BINN. GELS eventually connects to programmed cell death, sensory perception, immune system, and
metabolism of proteins where programmed cell death and immune system are the most important high-level processes
and sensory perception plays have little impact on the network.
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Figure 6: The most important proteins in the sepsis and COVID-BINNs by DE-score. The DE-score is
defined in equation 3. The most important proteins as defined by DE-score were selected and subject to hierarchical
clustering. A) A clustermap showcasing the clustering based on the scaled protein abundances of the top 20 proteins with
the highest DE-score in the sepsis dataset. The left-most column shows the subphenotype classification (subphenotype 2:
red, subphenotype 1: blue). Clustering was performed using Wards minimum variance method and Euclidean distances.
The Rand-index for the clustering was 0.716. B) The upper panel shows the protein quantity for the 10 proteins with
highest DE-score. The lower panel shows which fraction of samples identified the given protein. C) Same as A but on
the COVID-dataset. The Rand-index for the clustering was 0.645. D) same as B but for the COVID-dataset.
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Figure 7: Features of the network architecture for the networks generated using the proteomic content of
the sepsis and COVID-datasets. A) If the number of layers of the neural network surpasses the number of nodes
in a given pathway, a copy is induced of the final node. Naturally, the number of copies increases as the number of
hidden layers in the network increases. B) The number of trainable parameters in the network is in the thousands, and
increases with the number of layers. The COVID-BINN has fewer trainable parameters than the sepsis-BINN, due to
the lower number of proteins in the dataset. C) The number of nodes in the COVID-BINN when created with varying
number of layers. D) The number of nodes in the sepsis-BINN when created with varying number of layers.
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Figure 8: Visualization of the DE-score. To get a quantitative measure of level of differential expression, the DE-
score was devised. The score can be seen as the Euclidean distance from origo to a protein in the volcano plot.
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Figure 9: Volcano plots of the sepsis and COVID-dataset colored by DE and adjusted SHAP value. A) The
volcano plots for the sepsis dataset. B) The volcano plots for the COVID-dataset. Coloring the volcano plots by DE-
score (left) demonstrates how the most important proteins are selected by level of differential expression. When coloring
by SHAP value it becomes apparent that SHAP value and level of differential expression are not highly correlated, as
some proteins with low fold-change and high p-value are considered important for the BINNs.
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Figure 10: Correlation between graph features and SHAP value. Different graph attributes were correlated
against each other and against the SHAP value. A) The correlation between graph features and SHAP value for the
sepsis-BINN. B) The same but for the COVID-BINN. Nodes in a subgraph (Sq,log(Sqg)) has the strongest correlation
with SHAP value in most layers.
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Figure 11: Pathway analysis of the sepsis and COVID-dataset using Metascape. The proteomic content was
fed to Metascape [15] and the 20 pathways with the lowest p-value are shown. A) The top pathways identified in
the sepsis-dataset. B) The top pathways identified in the COVID-dataset. There is a large overlap in the pathways
and processes which are highlighted in the datasets, many of them relating to immunity and inflammation, such as the
complement cascade and the inflammatory response.
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