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Abstract

Motivation: Concept recognition in biomedical text is an important yet challenging task. The two main
approaches to recognize concepts in text are dictionary-based approaches and supervised machine
learning approaches. While dictionary-based approaches fail in recognising new concepts and variations
of existing concepts, supervised methods require sufficiently large annotated datasets which are expensive
to obtain. Methods based on distant supervision have been developed to use machine learning without
large annotated corpora. However, for biomedical concept recognition, these approaches do not yet
exploit the context in which a concept occurs in literature, and they do not make use of prior knowledge
about dependencies between concepts.

Results: We developed BORD, a Biomedical Ontology-based method for concept Recognition using
Distant supervision. BORD utilises context from corpora which are lexically annotated using labels and
synonyms from the classes of a biomedical ontology for model training. Furthermore, BORD utilises the
ontology hierarchy for normalising the recognised mentions to their concept identifiers. We show how our
method improves the performance of state of the art methods for recognising disease and phenotype
concepts in biomedical literature. Our method is generic, does not require manually annotated corpora,
and is robust to identify mentions of ontology classes in text. Moreover, to the best of our knowledge, this
is the first approach utilising the ontology hierarchy for concept recognition.

Availability: BORD is publicly available fromhttps://github.com/bio-ontology—-research—group/
BORD

Contact: robert.hoehndorf@kaust.edu.sa

1 Introduction due to the use of ambiguous entities, abbreviations, synonymous entities,

Biomedical concept recognition is a language processing task that refers nested structures, and lexically variable description due to the use of natural

to extracting and normalising the mentions of biomedical concepts from
text to structured resources such as ontologies. Automatic assignment of
biomedical ontology concepts in unstructured text is a challenging task

language. Accurately recognising concepts in text facilitates the use of
knowledge found in the literature in textual format for further analysis and
various tasks. More specifically, linking literature and ontologies facilitates
accessing, analysing and processing data efficiently. Furthermore, it
enables performing downstream text mining tasks such as relationship
extraction between the recognised entities, expansion of ontologies with
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the recognised new concept names and synonyms, as well as information
retrieval for entities of interest.

Methods for concept recognition usually rely on lexical dictionary-
based or supervised machine learning approaches. Lexical approaches
such as the NCBO (National Center for Biomedical Ontology) annotator
(Jonquet et al., 2009), ZOOMA (Kapushesky et al., 2011), and the
OBO (Open Biological and Biomedical Ontologies) annotator (Taboada
et al., 2014) are not able to recognise new concepts and cannot detect all
variations of expressions since their scope is limited to the lexical variations
in the dictionaries. On the other hand, although supervised learning
approaches have been applied on a wide range of biomedical concepts such
as genes/proteins (Wei et al., 2015) and diseases (Leaman et al., 2013),
they usually require large, manually annotated corpora which are not easily
obtainable. The available labeled corpora are often insufficient to obtain a
supervised model that can generalise to concepts uncovered by the labeled
corpora. To address this, more recently, several distant-supervision based
approaches have been proposed for concept recognition. In the distant
supervision learning scheme, labels are learned based on a weakly labeled
training set, i.e., obtained from an imprecise source (e.g., annotations
generated by using rules or vocabularies). For example, PhenoTagger (Luo
et al., 2021b) is a hybrid method that relies on a dictionary and a distantly
supervised model trained only on the dictionary names, synonyms and
their lemmas (the base form of a word found in a dictionary) to recognise
concepts in text. Altogether, existing concept recognition methods utilise
lexical signals, no or limited contextual information from relatively small
labeled corpora. The contextual information found surrounding entities in
text could also help guide the learning process and recognising concepts
in text. However, existing methods leave the context in which concept are
mentioned under-exploited. Furthermore, concepts are often structured
hierarchically, in particular when the concepts are part of an ontology.
However, existing concept recognition and normalisation methods rarely
exploit this hierarchy to improve the concept recognition and normalisation
process.

Here, we address two main research questions related to concept
recognition and normalisation. The first question asks whether the context
in which concepts are mentioned in text can be used without explicitly
generating training corpora to develop a concept recognition method; for
this purpose, we will exploit a distant supervision approach where training
data is generated using lexical rules. The second question asks whether
prior knowledge of hierarchical relations between concepts can be utilised
to improve the performance of concept normalisation; to answer the second
question, we develop an approach where information about super-concepts
guides the concept normalisation, in particular when concepts are only
partially matched.

We developed BORD as a generic concept recognition and
normalisation method which does not require manually annotated corpora
and is competitively able to identify mentions of concepts in text, in
particular when the concepts are part of an ontology. BORD exploits
both the lexical and contextual components of the concept mentions in
text. To this end, BORD uses a dictionary constructed from the labels and
synonyms of concepts to pre-annotate mentions of concepts in biomedical
text. We then use these mentions in the text as weak (noisy) labels to train a
language model (Lee et al., 2020). To map the identified mentions in text
to their concept identifiers, we developed a normalisation method that is
inspired by the reciprocal best match approach but extended to incorporate
hierarchical information. We applied BORD to the tasks of recognising
phenotype and disease concepts based on the Human Phenotype Ontology
(HPO) (Kohler et al., 2018) and the MEDIC vocabulary (Davis et al.,
2012a). We evaluated BORD on two curated datasets covering diseases
(Dogan et al., 2014) and phenotypes (Mohan and Li, 2019). Our results
show that BORD outperforms state-of-the-art methods for recognising and
normalising disease and phenotype concepts in text.

Table 1. Distribution of abstracts and annotations in the benchmark

corpora

Corpus Abstracts Annotations
NCBI-disease training 593 5146
NCBI-disease development 100 788
NCBI-disease test 100 960
MedMentions—phenotype training 1291 6772
MedMentions—phenotype development 428 2287
MedMentions—phenotype test 405 2190
MedMentions—disease test 879 3726

Phenotypes are mapped to HPO; Diseases are mapped to MESH or
OMIM

2 Materials and Methods
2.1 Ontologies and benchmark corpora

We generated and used two dictionaries to annotate abstracts from Medline
(NCBI, 1996b). The first dictionary covers disease concepts and the second
dictionary covers phenotype concepts. We used MEDIC, (downloaded
on 1/March/2022) and the Disease Ontology (DO) (downloaded on
15/April/2022), for the disease concepts; DO is an ontology from the Open
Biomedical Ontologies (OBO) (Schriml ef al., 2018), whereas MEDIC is
a vocabulary of disease terms represented in the Web Ontology Language
(OWL) (Davis et al., 2012b). We used the Human Phenotype Ontology
(HPO) (Kohler et al., 2018) (downloaded on 5/Jan/2022) to generate the
phenotype dictionary. For each of the dictionaries, we obtained the name
and synonyms of each concept and further included the plural form of each
entry (see Section 2.3 for further details).

To evaluate BORD, we used two benchmark corpora; the NCBI-
Disease Corpus (Dogan et al.,2014) and the MedMentions Corpus (Mohan
and Li, 2019). We used the version of the NCBI-disease Corpus (Luo et al.,
2021a) released by Luo et al. (Luo et al., 2021b) where the concepts are
mapped to the Medical Subject Headings (MESH) (NCBI, 1996a) or the
Online Mendelian Inheritance in Man (OMIM) catalog (Amberger et al.,
2014).

MedMentions is a large corpus annotated by an extensive set of
Unified Medical Language System (UMLS) concepts. We selected the
abstracts with phenotype annotations from MedMentions and named this
the MedMentions—phenotype Corpus. We used UMLS-to-HPO mappings
from UMLS (14,708 distinct HPO concepts are mapped to at least one
UMLS concept) to obtain the HPO codes of the phenotype annotations.
Table 1 shows the distribution of the abstracts and annotations in the two
benchmark corpora.

We used Medline (NCBI, 1996b) as a literature resource to train
our models. To select abstracts, we used an in-house index covering
32,923,095 Medline records (downloaded on Dec-15-2021) generated
using Elasticsearch (Elastic and Swiftype, 2010) for abstracts and titles
(Uludag, 2021).

2.2 BORD system overview

The BORD system, depicted in Figure
the training phase and the prediction phase. An ontology contains a

1, consists of two phases;

controlled vocabulary expressed in an ontology representation language
(Bodenreider, 2008). In the training phase, we first extract the vocabulary;
more specifically all concept labels (names) and synonyms from a given
ontology (MEDIC, DO, and HPO in our case) to form our initial dictionary.
‘We then expand the vocabulary by generating the plural form of each term.
Second, we use the dictionary to lexically annotate the literature creating a
weakly annotated dataset. We then use the dataset to train a deep learning
model (BioBERT (Lee et al., 2019)) . In the test (prediction) phase, we use
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Training phase Test phase PMID:27237609

Dietary antioxidants may play an important role in the prevention of

HP:0000938 HP:0020110 HP:0025464

abstracts

/ AN bone loss and associated fractures by reducing levels of axidative stress.
Indeved PubMed fortes and i \ 1 /

Ontology

Dictionary
congtruction
(Names,
Synonys,

plurals) Fig. 2. Sample phenotype concept recognition

TERER concepts. We found 16,307 distinct phenotype names/synonyms belonging

t0 6,962 classes from HPO in at least one Medline record by searching the

indexed literature. These concepts are covered by 74,087 distinct Medline
abstracts/titles, and we used them as our training set for phenotypes. We
found 35,333 distinct disease names/synonyms linked to 8,400 distinct
concepts from MEDIC and DO in at least one Medline records. These
concepts are covered by 187,462 distinct Medline abstracts/titles that we

Fig. 1. BORD System overview used as our training set for disease concepts.

2.5 Concept Recognition

the BORD model to identify the ontology concepts from the biomedical We addressed the concept recognition task with two subtasks; Named

texts. Next, we map the identified mentions to their corresponding Entity Recognition (NER) and Named Entity Normalisation (NEN). NER

identifier in the ontology using an ontology-based normalisation approach. refers to identifying borders of entity mentions in text (e.g., disease

and phenotype mentions). NEN refers to linking identified entities in
2.3 Dictionary generation text to the concepts defined in ontologies or databases. Figure 2 depicts

the phenot NER and NEN task 1 t i th
To generate our dictionary, first, we downloaded the ontologies and ¢ phenotype an asks on a sample sentence rom the

MedMentions—phenotype test dataset. NER is d with finding th
extracted the names and synonyms of all concepts. Second, we filtered out edvientions—pienolype fest catasel 1s concetmed Wit InCAING e

words highlighted in red (“bone loss”, fractures, “oxidative stress”), while

the possible ambiguous names which are often stop words, short names (1 . . . . . .
NEN is used to identify the HP identifiers pointed by the arrows.

or 2 character long) and names shared by two different concepts from the

dictionary. Filtering out ambiguous names is a common practice used in

text mining workflows which rely on lexical matches. We used the Natural 2.5.1 Named entity recognition using distant supervision

Language Toolkit (NLTK) stop words (Brigadir, 2019) and filtered out We used distant supervision to train a model by using BioBERT to

any exact match with the names/synonyms in MEDIC, DO and HPO recognise disease and phenotype mentions in text. BioBERT is a domain-

In MEDIC, DO, and HPO, we did not find any match with the list of specific language model; a BERT (Devlin er al, 2019) pre-trained
stop words. We also filtered out the names/synonyms having less than 3 model based on large-scale biomedical corpora. BERT (Bidirectional
Encoder Representations from Transformers) (Devlin et al., 2019) is a
contextualized word representation model trained using masked language

modeling. It provides self-supervised deep bidirectional representations

characters to avoid false positives. Additionally, for the generation of the
dictionary for diseases, we filtered out all the disease names which exactly
match with protein names/synonyms from the HUGO Gene Nomenclature

Committee (HGNC) Database (Tweedie ef al., 2020). Third, we generated from unlabeled text by jointly conditioning on both left and right contexts.
The pre-trained BERT model can be fine-tuned with an additional output

the plural form of each name/synonym by using the Inflect Python module
layer to generate models for various desired NLP tasks. BERT has

(Dyson, 2022). For example, the module generates “malformations of

lip” (HP:0000159) for the given multi-word term, “malformation of lip”. been widely used in Natural Language Processing and text mining. We

Our final disease dictionary covers 244,903 disease names and synonyms used simpletransformers (Rajapakse, 2019) which provides a wrapper

of 29,374 distinct concepts from MEDIC and DO. The final phenotype model to distantly supervise BORD’s entity recognition component. More
specifically, the wrapped model is used to fine-tune BERT models by

adding a token-level classifier on top that classifies tokens into one of
the output classes which are I-O-B (Inside-Outside-Beginning). In the

dictionary covers 79,010 phenotype names and synonyms of 14,631
distinct concepts from HPO.

training phase, our model is initialised with weights from BioBERT-Base

2.4 Training dataset construction vl.l (https://github.com/dmis-lab/biobert) and then fine-
To generate the training set for distant supervision, first, we retrieved the tuned on the disease and phenotype concept recognition task using our
relevant literature by searching the indexed Medline for the exact match of training corpora.

each name/synonym from the dictionaries. We retrieved the top 5 Medline

abstracts/titles hits per concept that is identified based on the default Elastic 2.5.2 Unsupervised entity normalisation

Search Engine relevance scoring settings (TF-IDF based scoring). Second, ‘We normalised the tagged mentions of concepts by developing and using
we used the dictionaries and annotated the downloaded abstracts lexically a method inspired by the Reciprocal Best Match (RBM) algorithm (Ward
and converted the annotations to the I-O-B format (a common format and Moreno-Hagelsieb, 2014). To this end, we used the dictionaries
for tagging tokens in a chunking task) (Ramshaw and Marcus, 1995) by constructed according to 2.3, expanded them with lemmas, and further
using spaCy (Honnibal and Montani, 2017). Finally, we obtained two tokenised each name and synonym in the dictionaries to allow flexible

corpora; one for the disease concepts and the other for the phenotype matches. We subsequently matched the mentions obtained from the NER
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part to the names and synonyms in the dictionaries. We retrieved concept
IDs for any concept that matches at least one token with the NER mentions
and considered them as candidates. We assigned these candidates scores
according to our RBM algorithm with the edit distance acting as the
similarity measure as shown in Algorithm 1. Our aim is to find the best
match for each mention token in the candidate tokens, if possible. The
edit distance threshold dictates whether two tokens should be matched
according to their lexical similarity.

Algorithm 1 RBM
Input: List of mention tokens mention, list of candidate tokens cand,
edit distance threshold thr
Output: Number of matched tokens mt
I:mt=0
2: for mtoken in mention do

best_score, token = 0o, cand|0]
for ctoken in cand do
distance = edit_distance(mtoken, ctoken)
if distance < thr & distance < best_score then
best_score = distance
token = ctoken

A AR

if best_score < oo then
10: mt =mt+ 1
11: cand = cand — token > Delete the matched token

12: return mt

After matching tokens, we scored candidates based on two measures:
Mention Matching Ratio (MMR), and Candidate Matching Ratio (CMR).
MMR is the ratio of matched tokens between the candidate and the mention
over the total number of tokens in the mention.

RBM(mention, cand, thr)
Total number of tokens in mention

MMR (mention, cand) =

CMR is the ratio of matched tokens over the total number of tokens in the
candidate.

RBM(mention, cand, thr)

CMR(mention, cand) = -
Total number of tokens in cand

(@)

We obtained threshold values for the best performing MMR, CMR and edit
distance for normalisation based on a grid search on the lexically annotated
development sets. We varied both MMR and CMR [0.5,1] with a step of
0.1. Similarly, we varied the edit distance difference between [0.5,0] with
astep of 0.1. The edit distance here represents how dissimilar we allow the
matched tokens to be; the less, the more strictly similar they need to be.
For ontology-based normalisation of MedMentions-phenotypes, we found
that the best performing threshold values were: MMR=0.5, CMR=0.8,
edit distance=0.1. For ontology-based normalisation of NCBI-diseases,
we found that the best performing threshold values were: MMR=0.8,
CMR=0.8, edit distance=0.1. It is important to note that beyond 0.5
thresholds, our normalisation performance is highly stable with multiple
settings yielding the same results. Essentially, these two measures allow us
to determine whether the number of matched tokens between the mention
and the candidate is sufficient to predict the candidate. We declared the
candidate of maximum score that passes these thresholds as a predicted
concept ID for their its mention, if any.

Figure 4 depicts our normalisation method on a sample. First, we
tokenise the mention “Hashimoto thyroiditis” into “Hashimoto” and
“thyroiditis” then look up each token in the dictionary. Second, we retrieve
any concept that matches at least one token from the mention as a candidate.
We find two candidates: “Hashimoto thyroiditis” and “thyroiditis”. Third,

Identified mention via BioBERT Hashimoto thyroiditis

Tokenize Hashimoto thyroiditis
Extract candidates using HPox | HPy |- ’ : HP:z | HPY
dictionary on each token
MMR | % % . . . v |
CMR kA Y 1 Y
Score each item using RBM  [coco [1px | mpsy |- . . HP:z | HP;j
D

Fig. 3. Normalisation method

Mention Hashimoto thyroiditis

Tokenized mention Hashimoto thyroiditis
HP:0000872 HP:0100646
Matched tokens Hashimoto Thyroiditis
thyroiditis
HP:0000872 HP:0100646
Scored tokens MMR = 2/2 MMR = 1/2
CMR =2/2 CMR =1

Fig. 4. Example of normalisation

we score these candidates such that each token from the mention is matched
to atoken in a given candidate. In the example, the “Hashimoto thyroiditis”
candidate has a MMR of 2/2 because two of the mention tokens matched
to the two tokens in the candidate. Similarly, it has a CMR of 2/2 because
the two tokens of the candidates were successfully matched to the mention
tokens.

Using ontology hierarchy for entity normalisation Due to the NER
model recognizing entities partially in a subset of cases, some important
information that guide the identification of the most specific class might
be missing. Moreover, sometimes information that support a more specific
class are not directly part of the mention but are rather mentioned
somewhere else in the abstract. These two cases make mapping mentions
to their direct concepts in ontologies challenging. We address these issues
by exploiting the ontology structure in the mapping process as shown in
Algorithm 2. For this purpose, if no candidate concept meets the thresholds
for the MMR and CMR scores, we retain classes that have a CMR of 1.
These are classes that exactly match only a part of the mention. We call
such classes as general classes. For each such general class, we keep track
of the tokens which were not matched with it, i.e. remaining tokens. We
then consider the children of the general classes as candidates to match with
the remaining tokens. If no children meet the MMR and CMR thresholds,
we predict the general classes instead.

For example, the mention “neuroendocrine carcinoma of the breast”
captured by the NER part, does not pass the MMR and CMR thresholds for
any candidate. However, it matches the parent class HP:0003002 “Breast
carcinoma”. Although we cannot find any child candidate that matches the
remaining tokens “neuroendocrine”, we predict the parent class to be of
coarser granularity.
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Algorithm 2 BORD normalisation

Input: Concept mention mention, ontology ont, chosen thresholds

cmrgy and mmiry,, edit distance threshold thr

Output: Concept IDs predictions

1: cands < candidates(mention)

2: predictions, general < [1,[]

3: for cand in cands do

4. if CMR(mention,cand,thr) >
MMR(mention, cand, thr) > mmry, then

CMTthr &

5 predictions < cand

6 else if CMR(mention, cand) = 1 then

7: general < cand

8: if predictions # ¢ then

9 return predictions

10: for g in general do

11:  for cin children(g) do

12: rem = mention — g > rem is the remaining tokens in
mention that did not match with g

13: if CMR(rem, c,thr) > cmry, & MMR(rem, c, thr) >
mmry, then

14: predictions < ¢

15: if predictions = ¢ then

16:  predictions < general

17: return predictions

3 Results

We applied BORD on three separate corpora covering phenotype and
disease concepts; MedMentions—phenotype, MedMentions—disease, and
NCBI-disease. We reported our NER and NEN results using the Precision,
Recall and F-score metrics. We compared BORD’s performance against
two state-of-the-art methods: Supervised model (BioBERT for NER and
our normalisation for NEN) and distantly-supervised PhenoTagger. To
compare against PhenoTagger, we trained the PhenoTagger disease model
using their GitHub recommendations as no trained disease model was
available. We used two types of evaluation: strict and relaxed. In the
strict scheme, we only consider as true positives predictions that match
the curated annotation boundaries perfectly, i.e., predictions having the
same starting and ending indices as the curated annotations. In the relaxed
scheme, we consider any partial overlap between the prediction and the
curated annotations to be a true positive, i.e., they are positives whenever
the indices of the prediction and the curated annotations overlap.

3.1 Context enhances NER performance

‘We examined BORD and several state-of-the art methods in NER to answer
the first research question regarding the potential of context to improve
the performance. These methods are: supervised BioBERT trained using
small curated datasets, PhenoTagger which is trained by using labels
and synonyms without context, and our unsupervised dictionary. Table
2 presents the performance of BORD and the aforementioned state-of-
the-art methods in phenotype NER on the MedMentions—phenotype test
dataset. With the inclusion of context at a large scale, BORD achieved the
highest F1-score compared with all other methods.

We investigated if the use of context can help in recognising
other concepts. To that end, we reported our model’s performance in
detecting disease concepts on the NCBI-disease and MedMentions—
disease test datasets in Table 3. Our results showed that supervised
BioBERT performed the best on NCBI-disease because concepts are
highly conserved in this dataset. To fairly compare the performance of

Table 2. NER Performance on phenotype concepts (MedMentions—phenotype
test set)

Strict Relaxed
Method P R F1 P R F1
BORD 0.595 0.736 0.658 0.649 0.802 0.717

BORD (Weak MM)  0.596 0.589 0.593 0.663 0.655 0.659
Supervised BioBERT 0.570 0.734 0.642 0.613 0.788 0.690
0.446 0.676 0.540 0.510 0.757 0.609
0.480 0.716 0.575 0.544 0.809 0.650

Dictionary
PhenoTagger

methods, we carried out further evaluation on the MedMentions—disease
dataset. BORD achieved the highest F1-score on MedMentions—disease
showing its advantage of using context at a large scale.

Table 3. NER Performance on disease concepts

Strict Relaxed
Method P R F1 P R F1
NCBI-disease

BORD 0.791 0.582 0.671 0.951 0.698 0.805
BORD (Weak NCBI) 0.819 0.570 0.672 0.972 0.675 0.797
Supervised BioBERT  0.839 0.886 0.862 0.916 0.958 0.937
Dictionary 0.526 0.519 0.523 0.788 0.742 0.765
PhenoTagger 0.676 0.606 0.639 0.883 0.770 0.822

MedMentions—disease

BORD 0.608 0.689 0.646 0.652 0.740 0.693
BORD (Weak NCBI) 0.657 0.558 0.604 0.723 0.616 0.665
Supervised BioBERT  0.510 0.669 0.579 0.580 0.770 0.66

Dictionary 0.473 0.638 0.543 0.541 0.723 0.619
PhenoTagger 0.502 0.718 0.591 0.566 0.803 0.664

To investigate whether the amount of context affects the performance,
we observed the effect of varying the training set size of BORD. To
this end, we weakly labeled the training sets of NCBI and MedMentions
(smaller size with fewer contexts) and used them to train BORD (Weak
MedMentions/NCBI). Results showed that a version of BORD that is
trained on a larger amount of context outperformed BORD on less context
(Weak MedMentions/NCBI) (Tables 2 and 3).

3.2 Ontology enhances NEN performance

To answer the second research question of whether the ontology can
help guide the normalisation of mentions to ontology concepts, we
compared BORD which uses ontology-based normalisation (see Tables
4 and 5) against other state-of-the-art methods. These methods include
PhenoTagger and the dictionaries that we created. PhenoTagger maps
mentions to ontology concepts through its model which is distantly
supervised directly on the ontology class labels and synonyms. The
dictionaries map mentions to ontologies through exact match. Results show
that BORD, which uses an unsupervised normalisation that utilises the
ontology hierarchy, achieved the highest F1-score on the phenotypes (Table
4). On the disease concepts, BORD or BORD(weak NCBI) outperformed
the other methods in terms of F1-score (Table 5), demonstrating that our
method improves concept normalisation.

The discrepancy in the performances between BORD and BORD
(weak NCBI) is more evident on the MedMentions—disease dataset than
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on the NCBI-disease data. This observation can be explained due to the
highly conserved mentions in the test and training splits of the NCBI-
disease dataset which helps to achieve competitive performance in NER
even with a small amount of context usage (BORD (weak NCBI)).

Table 4. NEN Performance on phenotype concepts (MedMentions—phenotype
test set)

Strict Relaxed
Method P R F1 P R F1
BORD 0.587 0.726 0.649 0.621 0.769 0.687

BORD (Weak MM) 0.592 0.585 0.588 0.620 0.613 0.616
Dictionary 0413 0.485 0444 0.531 0.616 0.570
PhenoTagger 0.472 0.704 0.565 0.504 0.753 0.604

Table 5. NEN Performance on disease concepts

Strict Relaxed
Method P R F1 P R F1
NCBI-disease
BORD 0.734 0.541 0.623 0.802 0.591 0.680
BORD (Weak NCBI) 0.768 0.534 0.630 0.828 0.576 0.679
Dictionary 0.482 0.485 0.484 0.5472 0.550 0.548
PhenoTagger 0.631 0.566 0.596 0.719 0.641 0.678
MedMentions—disease
BORD 0.588 0.666 0.624 0.608 0.689 0.646
BORD (Weak NCBI) 0.638 0.542 0.586 0.666 0.566 0.612
Dictionary 0.431 0.587 0.497 0.451 0.615 0.520
PhenoTagger 0.484 0.693 0.570 0.515 0.736 0.606

3.3 Error Analysis

‘We manually analysed errors introduced by our ontology-based NEN and
NER methods to gain more insights on the method that we developed. For
this purpose, we randomly selected 20 False Positive (FP) and 20 False
Negative (FN) annotations for the NER and NEN tasks separately from the
NCBI-disease and MedMentions—phenotype test datasets. Table 6 shows
the results from our analysis on the FP samples.

In the NER results, we found that all of the phenotype (20) and
13 out of 20 disease annotations that were FPs were actually True
Positives (TPs), but they were not annotated in the curated datasets.
For example, our model annotated the phenotype “high blood glucose”
(HP:0003074) in “Diabetic neuropathic pain and high blood glucose were
exhibited simultaneously ...” (PMID:27461472) which is not annotated
in the MedMentions—phenotype dataset. We found that the 7 FP disease
annotations were due to ambiguous disease and gene abbreviations. For
example, BORD annotated the abbreviation of “Wilms tumor 1”” which is
“WT1” in “Products of steroidogenic factor 1 (SF-1) and Wilms tumor 1
(WT1) genes are essential for mammalian gonadogenesis prior to sexual
differentiation.” (PMID:9590178) as a disease name (Wilms tumor 1,
MESH ID:D009396) where “WT1” is a gene in this specific context.

In the NEN results, we found that 11 phenotype and 15 disease
mentions out of 20 FP annotations were actually TPs. These TPs
were due to the cases where BORD normalises the mention to their
corresponding classes in our dictionary by exact match but the mentions

are mapped to different broader/parent) concepts in the annotated datasets.
This is due to the used resources (e.g., MEDIC) having lexically
identical synonyms for different concepts. For example, “bipolar effective
disorder” in “Bipolar affective disorder (BPAD; manic-depressive illness)
is characterized by episodes of mania and/or hypomania interspersed with
periods of depression.” (PMID:9861003) is mapped to “major affective
disorder 2” (MESH:C564108) by our method because it has “bipolar
affective disorder” as an exact synonym. It is important to note that
MEDIC can share the same exact synonym across multiple classes; there
are eight classes (MESH:C567531, MESH:C567530, MESH:C567529,
MESH:C567075, MESH:C567074, MESH:C567073, MESH:C565111,
and MESH:C564108) sharing the “bipolar affective disorder” exact
synonym. On the other hand, it is annotated with “bipolar disorder”
(MESH:D001714) in the NCBI-disease Corpus. We found that the FPs
(9 phenotypes, 5 diseases) in NEN were introduced mainly due to partial
matches which can miss important tokens that are essential to find the
correct concept identifer. For example, “colorectal adenomas and/or
carcinoma” in “We have studied a set of 164 patients with multiple
colorectal adenomas and/or carcinoma” (PMID:9724771) is mapped
to “colorectal neoplasm” (MESH:D015179) in the NCBI-disease Gold
dataset. However, our method maps it to a broader concept, “carcinoma’
(MESH:D002277) since the NER model can capture only “carcinoma”
from the whole mention, “colorectal adenomas and/or carcinoma”.

Table 6. Error Analysis on False Positives

NER NEN
FP TP FP TP

Dataset

MedMentions—phenotype 0 20 9 11
NCBI-disease 7 13 5 15

Table 7 shows the results from our analysis on the False Negative
samples. We found that all the FNs in the NER task were missed
since the BioBERT based NER model of BORD failed at capturing
the term variations in the text. For example, our model did not
recognise the phenotype “Reduces body Weight” in “A Novel Selective
Inhibitor [...] Reduces Body Weight in Diet -Induced Obese C57BL/6J
Mice” (PMID:27832159). This specific phenotype is mapped to two
alternative HPO classes which are “Decreased body weight” (HP:0004325)
and“Weight loss” (HP:0001824) by the curators of MedMentions—
phenotype Corpus. These two phenotype names from HPO are also
the names that we used to distantly supervised our BioBERT-based
NER model. Since these names are lexically different from the mention
“Reduces body Weight”, our NER model misses it.

The FN disease and phenotype samples that we analysed in the NEN
task should be also considered as FPs. Because our method captures those
annotations at the NER level correctly but maps them to different classes
compared to the curated labels. Hence, a given annotation is treated as
an FN (missed) according to the curated dataset but it is also an FP since
our method maps the mention to another class (compared to the curated
dataset) in the normalisation process.

3.4 Ablation studies

We further demonstrated the contribution of each component of our
method on the MedMentions—phenotype and the NCBI—disease datasets.
Because BORD can map mentions to broader classes in the ontology, we
consider a special type of evaluation named “ont-evaluation” in Table 8.
In this evaluation, we expanded the curated sets so that they include the
direct parents of the assigned classes. For instance, we allow “Alzheimer
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Table 7. Error Analysis on False Negatives

NER NEN
FN TP FN TP

Dataset

MedMentions—phenotype 20 0 9 11
NCBI-disease 20 0 8 12

Disease” (MESH:D000544) and/or “Dementia” (MESH: D003704) to be
correct mappings to any mention of Alzheimer Disease.

Filtering NER based on mappable candidates yielded a higher F1-
score than the raw predictions. Moreover, when we considered the special
“ont-evaluation”, we observed better normalisation performance. Namely,
the relaxed evaluation improved by 2% on MedMentions—phenotype.
On NCBI-disease the improvement is more evident as the overall F1-
score increased by 5%. These results suggest that our ontology-based
normalisation helps in resolving partial matches.

Table 8. Ablation

Strict Relaxed

Component P R Fl1 P R Fl

MedMentions—phenotype

Raw NER 0.575 0.744 0.648 0.629 0.813 0.709
Filtered NER 0.595 0.736 0.658 0.649 0.802 0.717
NEN 0.587 0.726 0.649 0.621 0.769 0.687

NEN ont-evaluation 0.590 0.730 0.652 0.639 0.791 0.707

NCBI-disease
Raw NER 0.738 0.66 0.697 0.909 0.808 0.856
Filtered NER 0.791 0.582 0.671 0.951 0.698 0.805

NEN 0.734 0.541 0.623 0.802 0.591 0.680

NEN ont-evaluation 0.740 0.545 0.627 0.871 0.640 0.738

4 Discussion

Our main goal was to develop a method that can recognise concepts based
on a given ontology or vocabulary without the requirement of a manually
annotated corpora. To that end, we exploited textual context information
and ontology structure for concept recognition. We observed that utilising
the context via distant supervision improves NER performance. Although
this was evident in our phenotype recognition results (see Table 2), it
was not demonstrated on the NCBI-disease dataset. Investigation on these
datasets revealed that there is a high overlap (around 80%) between the
concepts in the training and testing sets. Hence, the model which was
trained on a restricted set of mentions (BORD (Weak NCBI)) achieved
similar performance as BORD in terms of F-score. However, when
we applied our method on the MedMentions—disease dataset, BORD
outperformed BORD (Weak NCBI). In addition, BORD which was trained
on the lexically annotated Medline abstracts consistently had higher
recall showing that it is more general and flexible to term variations.
Another lesson learned by switching the dataset for diseases from NCBI
to MedMentions is that BORD is more robust to changes in datasets and
can generalize better compared to PhenoTagger.

We also observed that including the ontology structure as background
knowledge provides a way to map partially matched mentions to close

classes in the ontology. In particular, partially captured mentions can miss
critical parts that guide the identification of the most specific concept.
In this case, our method normalises to a concept of a slightly coarser
granularity. This was evident in the ablation studies (NEN ont-evaluation)
when the direct parents were considered as true positives during evaluation.
Especially on the NCBI-disease dataset, we observed a substantial
discrepancy between the regular evaluation (NEN) and ontology-based
evaluation (NEN ont-evaluation). The MEDIC vocabulary was mainly
built by integrating OMIM terms into the MeSH hierarchy (Davis et al.,
2012a), which provides a vocabulary that is less structured than a standard
ontology.

Overall, while BORD outperformed two state-of-the-art methods
(supervised and distantly supervised) on the task of recognising phenotype
concepts, it achieved mixed results on disease concepts. This can be
explained by nature of the NCBI-disease dataset which has high overlap
between its test and training datasets. Furthermore, our manual error
analysis revealed that some false positives should in fact be true positives
in the curated datasets. This can be attributed to human curators missing
annotations due to unclear boundaries between disease and phenotype
concepts. We also found cases where the curators mapped concepts to
broader classes even when information for a more specific class was
available.

We identified several limitations in our work. BORD cannot identify
nested mentions as the trained BERT-based NER model operates on a
dataset represented in the standard I-O-B format. In addition, BORD also
shares BioBERT’s limitations in recognising name variations in text as
we observed through manual error analysis. Lastly, although BORD’s
normalisation is designed to be flexible to lexical variations, mentions that
are lexically distant from the curated concepts cannot be normalised. We
alleviated some of these cases through the incorporation of the ontology
structure.

5 Conclusion

We developed BORD, a Biomedical Ontology based method for concept
Recognition using Distant supervision. BORD is generic and can be
applied on any concept given an ontology or a vocabulary. Its main
advantage is its ability to utilise a weakly labeled dataset for training.
This allows BORD to be used for concepts where no curated corpora are
available. While the use of an ontology is highly recommended because
BORD uses the ontology hierarchy for concept recognition, it can still
be used given any vocabulary. BORD is freely available at https:
//github.com/bio-ontology-research—-group/BORD.
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