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Abstract

Motivation: Concept recognition in biomedical text is an important yet challenging task. The two main

approaches to recognize concepts in text are dictionary-based approaches and supervised machine

learning approaches. While dictionary-based approaches fail in recognising new concepts and variations

of existing concepts, supervised methods require sufficiently large annotated datasets which are expensive

to obtain. Methods based on distant supervision have been developed to use machine learning without

large annotated corpora. However, for biomedical concept recognition, these approaches do not yet

exploit the context in which a concept occurs in literature, and they do not make use of prior knowledge

about dependencies between concepts.

Results: We developed BORD, a Biomedical Ontology-based method for concept Recognition using

Distant supervision. BORD utilises context from corpora which are lexically annotated using labels and

synonyms from the classes of a biomedical ontology for model training. Furthermore, BORD utilises the

ontology hierarchy for normalising the recognised mentions to their concept identifiers. We show how our

method improves the performance of state of the art methods for recognising disease and phenotype

concepts in biomedical literature. Our method is generic, does not require manually annotated corpora,

and is robust to identify mentions of ontology classes in text. Moreover, to the best of our knowledge, this

is the first approach utilising the ontology hierarchy for concept recognition.

Availability: BORD is publicly available fromhttps://github.com/bio-ontology-research-group/

BORD

Contact: robert.hoehndorf@kaust.edu.sa

1 Introduction

Biomedical concept recognition is a language processing task that refers

to extracting and normalising the mentions of biomedical concepts from

text to structured resources such as ontologies. Automatic assignment of

biomedical ontology concepts in unstructured text is a challenging task

due to the use of ambiguous entities, abbreviations, synonymous entities,

nested structures, and lexically variable description due to the use of natural

language. Accurately recognising concepts in text facilitates the use of

knowledge found in the literature in textual format for further analysis and

various tasks. More specifically, linking literature and ontologies facilitates

accessing, analysing and processing data efficiently. Furthermore, it

enables performing downstream text mining tasks such as relationship

extraction between the recognised entities, expansion of ontologies with
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the recognised new concept names and synonyms, as well as information

retrieval for entities of interest.

Methods for concept recognition usually rely on lexical dictionary-

based or supervised machine learning approaches. Lexical approaches

such as the NCBO (National Center for Biomedical Ontology) annotator

(Jonquet et al., 2009), ZOOMA (Kapushesky et al., 2011), and the

OBO (Open Biological and Biomedical Ontologies) annotator (Taboada

et al., 2014) are not able to recognise new concepts and cannot detect all

variations of expressions since their scope is limited to the lexical variations

in the dictionaries. On the other hand, although supervised learning

approaches have been applied on a wide range of biomedical concepts such

as genes/proteins (Wei et al., 2015) and diseases (Leaman et al., 2013),

they usually require large, manually annotated corpora which are not easily

obtainable. The available labeled corpora are often insufficient to obtain a

supervised model that can generalise to concepts uncovered by the labeled

corpora. To address this, more recently, several distant-supervision based

approaches have been proposed for concept recognition. In the distant

supervision learning scheme, labels are learned based on a weakly labeled

training set, i.e., obtained from an imprecise source (e.g., annotations

generated by using rules or vocabularies). For example, PhenoTagger (Luo

et al., 2021b) is a hybrid method that relies on a dictionary and a distantly

supervised model trained only on the dictionary names, synonyms and

their lemmas (the base form of a word found in a dictionary) to recognise

concepts in text. Altogether, existing concept recognition methods utilise

lexical signals, no or limited contextual information from relatively small

labeled corpora. The contextual information found surrounding entities in

text could also help guide the learning process and recognising concepts

in text. However, existing methods leave the context in which concept are

mentioned under-exploited. Furthermore, concepts are often structured

hierarchically, in particular when the concepts are part of an ontology.

However, existing concept recognition and normalisation methods rarely

exploit this hierarchy to improve the concept recognition and normalisation

process.

Here, we address two main research questions related to concept

recognition and normalisation. The first question asks whether the context

in which concepts are mentioned in text can be used without explicitly

generating training corpora to develop a concept recognition method; for

this purpose, we will exploit a distant supervision approach where training

data is generated using lexical rules. The second question asks whether

prior knowledge of hierarchical relations between concepts can be utilised

to improve the performance of concept normalisation; to answer the second

question, we develop an approach where information about super-concepts

guides the concept normalisation, in particular when concepts are only

partially matched.

We developed BORD as a generic concept recognition and

normalisation method which does not require manually annotated corpora

and is competitively able to identify mentions of concepts in text, in

particular when the concepts are part of an ontology. BORD exploits

both the lexical and contextual components of the concept mentions in

text. To this end, BORD uses a dictionary constructed from the labels and

synonyms of concepts to pre-annotate mentions of concepts in biomedical

text. We then use these mentions in the text as weak (noisy) labels to train a

language model (Lee et al., 2020). To map the identified mentions in text

to their concept identifiers, we developed a normalisation method that is

inspired by the reciprocal best match approach but extended to incorporate

hierarchical information. We applied BORD to the tasks of recognising

phenotype and disease concepts based on the Human Phenotype Ontology

(HPO) (Köhler et al., 2018) and the MEDIC vocabulary (Davis et al.,

2012a). We evaluated BORD on two curated datasets covering diseases

(Doğan et al., 2014) and phenotypes (Mohan and Li, 2019). Our results

show that BORD outperforms state-of-the-art methods for recognising and

normalising disease and phenotype concepts in text.

Table 1. Distribution of abstracts and annotations in the benchmark

corpora

Corpus Abstracts Annotations

NCBI–disease training 593 5146

NCBI–disease development 100 788

NCBI–disease test 100 960

MedMentions–phenotype training 1291 6772

MedMentions–phenotype development 428 2287

MedMentions–phenotype test 405 2190

MedMentions–disease test 879 3726

Phenotypes are mapped to HPO; Diseases are mapped to MESH or

OMIM

2 Materials and Methods

2.1 Ontologies and benchmark corpora

We generated and used two dictionaries to annotate abstracts from Medline

(NCBI, 1996b). The first dictionary covers disease concepts and the second

dictionary covers phenotype concepts. We used MEDIC, (downloaded

on 1/March/2022) and the Disease Ontology (DO) (downloaded on

15/April/2022), for the disease concepts; DO is an ontology from the Open

Biomedical Ontologies (OBO) (Schriml et al., 2018), whereas MEDIC is

a vocabulary of disease terms represented in the Web Ontology Language

(OWL) (Davis et al., 2012b). We used the Human Phenotype Ontology

(HPO) (Köhler et al., 2018) (downloaded on 5/Jan/2022) to generate the

phenotype dictionary. For each of the dictionaries, we obtained the name

and synonyms of each concept and further included the plural form of each

entry (see Section 2.3 for further details).

To evaluate BORD, we used two benchmark corpora; the NCBI–

Disease Corpus (Doğan et al., 2014) and the MedMentions Corpus (Mohan

and Li, 2019). We used the version of the NCBI–disease Corpus (Luo et al.,

2021a) released by Luo et al. (Luo et al., 2021b) where the concepts are

mapped to the Medical Subject Headings (MESH) (NCBI, 1996a) or the

Online Mendelian Inheritance in Man (OMIM) catalog (Amberger et al.,

2014).

MedMentions is a large corpus annotated by an extensive set of

Unified Medical Language System (UMLS) concepts. We selected the

abstracts with phenotype annotations from MedMentions and named this

the MedMentions–phenotype Corpus. We used UMLS-to-HPO mappings

from UMLS (14,708 distinct HPO concepts are mapped to at least one

UMLS concept) to obtain the HPO codes of the phenotype annotations.

Table 1 shows the distribution of the abstracts and annotations in the two

benchmark corpora.

We used Medline (NCBI, 1996b) as a literature resource to train

our models. To select abstracts, we used an in-house index covering

32,923,095 Medline records (downloaded on Dec-15-2021) generated

using Elasticsearch (Elastic and Swiftype, 2010) for abstracts and titles

(Uludag, 2021).

2.2 BORD system overview

The BORD system, depicted in Figure 1, consists of two phases;

the training phase and the prediction phase. An ontology contains a

controlled vocabulary expressed in an ontology representation language

(Bodenreider, 2008). In the training phase, we first extract the vocabulary;

more specifically all concept labels (names) and synonyms from a given

ontology (MEDIC, DO, and HPO in our case) to form our initial dictionary.

We then expand the vocabulary by generating the plural form of each term.

Second, we use the dictionary to lexically annotate the literature creating a

weakly annotated dataset. We then use the dataset to train a deep learning

model (BioBERT (Lee et al., 2019)) . In the test (prediction) phase, we use
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Fig. 1. BORD System overview

the BORD model to identify the ontology concepts from the biomedical

texts. Next, we map the identified mentions to their corresponding

identifier in the ontology using an ontology-based normalisation approach.

2.3 Dictionary generation

To generate our dictionary, first, we downloaded the ontologies and

extracted the names and synonyms of all concepts. Second, we filtered out

the possible ambiguous names which are often stop words, short names (1

or 2 character long) and names shared by two different concepts from the

dictionary. Filtering out ambiguous names is a common practice used in

text mining workflows which rely on lexical matches. We used the Natural

Language Toolkit (NLTK) stop words (Brigadir, 2019) and filtered out

any exact match with the names/synonyms in MEDIC, DO and HPO.

In MEDIC, DO, and HPO, we did not find any match with the list of

stop words. We also filtered out the names/synonyms having less than 3

characters to avoid false positives. Additionally, for the generation of the

dictionary for diseases, we filtered out all the disease names which exactly

match with protein names/synonyms from the HUGO Gene Nomenclature

Committee (HGNC) Database (Tweedie et al., 2020). Third, we generated

the plural form of each name/synonym by using the Inflect Python module

(Dyson, 2022). For example, the module generates “malformations of

lip” (HP:0000159) for the given multi-word term, “malformation of lip”.

Our final disease dictionary covers 244,903 disease names and synonyms

of 29,374 distinct concepts from MEDIC and DO. The final phenotype

dictionary covers 79,010 phenotype names and synonyms of 14,631

distinct concepts from HPO.

2.4 Training dataset construction

To generate the training set for distant supervision, first, we retrieved the

relevant literature by searching the indexed Medline for the exact match of

each name/synonym from the dictionaries. We retrieved the top 5 Medline

abstracts/titles hits per concept that is identified based on the default Elastic

Search Engine relevance scoring settings (TF-IDF based scoring). Second,

we used the dictionaries and annotated the downloaded abstracts lexically

and converted the annotations to the I-O-B format (a common format

for tagging tokens in a chunking task) (Ramshaw and Marcus, 1995) by

using spaCy (Honnibal and Montani, 2017). Finally, we obtained two

corpora; one for the disease concepts and the other for the phenotype

Dietary antioxidants may play an important role in the prevention of 
bone lossand associated fracturesby reducing levels of oxidative stress.

HP:0000938 HP:0020110 HP:0025464

PMID:27237609

Fig. 2. Sample phenotype concept recognition

concepts. We found 16,307 distinct phenotype names/synonyms belonging

to 6,962 classes from HPO in at least one Medline record by searching the

indexed literature. These concepts are covered by 74,087 distinct Medline

abstracts/titles, and we used them as our training set for phenotypes. We

found 35,333 distinct disease names/synonyms linked to 8,400 distinct

concepts from MEDIC and DO in at least one Medline records. These

concepts are covered by 187,462 distinct Medline abstracts/titles that we

used as our training set for disease concepts.

2.5 Concept Recognition

We addressed the concept recognition task with two subtasks; Named

Entity Recognition (NER) and Named Entity Normalisation (NEN). NER

refers to identifying borders of entity mentions in text (e.g., disease

and phenotype mentions). NEN refers to linking identified entities in

text to the concepts defined in ontologies or databases. Figure 2 depicts

the phenotype NER and NEN tasks on a sample sentence from the

MedMentions–phenotype test dataset. NER is concerned with finding the

words highlighted in red (“bone loss”, fractures, “oxidative stress”), while

NEN is used to identify the HP identifiers pointed by the arrows.

2.5.1 Named entity recognition using distant supervision

We used distant supervision to train a model by using BioBERT to

recognise disease and phenotype mentions in text. BioBERT is a domain-

specific language model; a BERT (Devlin et al., 2019) pre-trained

model based on large-scale biomedical corpora. BERT (Bidirectional

Encoder Representations from Transformers) (Devlin et al., 2019) is a

contextualized word representation model trained using masked language

modeling. It provides self-supervised deep bidirectional representations

from unlabeled text by jointly conditioning on both left and right contexts.

The pre-trained BERT model can be fine-tuned with an additional output

layer to generate models for various desired NLP tasks. BERT has

been widely used in Natural Language Processing and text mining. We

used simpletransformers (Rajapakse, 2019) which provides a wrapper

model to distantly supervise BORD’s entity recognition component. More

specifically, the wrapped model is used to fine-tune BERT models by

adding a token-level classifier on top that classifies tokens into one of

the output classes which are I-O-B (Inside-Outside-Beginning). In the

training phase, our model is initialised with weights from BioBERT-Base

v1.1 (https://github.com/dmis-lab/biobert) and then fine-

tuned on the disease and phenotype concept recognition task using our

training corpora.

2.5.2 Unsupervised entity normalisation

We normalised the tagged mentions of concepts by developing and using

a method inspired by the Reciprocal Best Match (RBM) algorithm (Ward

and Moreno-Hagelsieb, 2014). To this end, we used the dictionaries

constructed according to 2.3, expanded them with lemmas, and further

tokenised each name and synonym in the dictionaries to allow flexible

matches. We subsequently matched the mentions obtained from the NER
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part to the names and synonyms in the dictionaries. We retrieved concept

IDs for any concept that matches at least one token with the NER mentions

and considered them as candidates. We assigned these candidates scores

according to our RBM algorithm with the edit distance acting as the

similarity measure as shown in Algorithm 1. Our aim is to find the best

match for each mention token in the candidate tokens, if possible. The

edit distance threshold dictates whether two tokens should be matched

according to their lexical similarity.

Algorithm 1 RBM

Input: List of mention tokensmention, list of candidate tokens cand,

edit distance threshold thr

Output: Number of matched tokens mt

1: mt = 0

2: for mtoken in mention do

3: best_score, token =∞, cand[0]

4: for ctoken in cand do

5: distance = edit_distance(mtoken, ctoken)

6: if distance < thr & distance < best_score then

7: best_score = distance

8: token = ctoken

9: if best_score <∞ then

10: mt = mt+ 1

11: cand = cand− token ⊲ Delete the matched token

12: return mt

After matching tokens, we scored candidates based on two measures:

Mention Matching Ratio (MMR), and Candidate Matching Ratio (CMR).

MMR is the ratio of matched tokens between the candidate and the mention

over the total number of tokens in the mention.

MMR(mention, cand) =
RBM(mention, cand, thr)

Total number of tokens in mention
(1)

CMR is the ratio of matched tokens over the total number of tokens in the

candidate.

CMR(mention, cand) =
RBM(mention, cand, thr)

Total number of tokens in cand
(2)

We obtained threshold values for the best performing MMR, CMR and edit

distance for normalisation based on a grid search on the lexically annotated

development sets. We varied both MMR and CMR [0.5,1] with a step of

0.1. Similarly, we varied the edit distance difference between [0.5,0] with

a step of 0.1. The edit distance here represents how dissimilar we allow the

matched tokens to be; the less, the more strictly similar they need to be.

For ontology-based normalisation of MedMentions-phenotypes, we found

that the best performing threshold values were: MMR=0.5, CMR=0.8,

edit distance=0.1. For ontology-based normalisation of NCBI-diseases,

we found that the best performing threshold values were: MMR=0.8,

CMR=0.8, edit distance=0.1. It is important to note that beyond 0.5

thresholds, our normalisation performance is highly stable with multiple

settings yielding the same results. Essentially, these two measures allow us

to determine whether the number of matched tokens between the mention

and the candidate is sufficient to predict the candidate. We declared the

candidate of maximum score that passes these thresholds as a predicted

concept ID for their its mention, if any.

Figure 4 depicts our normalisation method on a sample. First, we

tokenise the mention “Hashimoto thyroiditis” into “Hashimoto” and

“thyroiditis” then look up each token in the dictionary. Second, we retrieve

any concept that matches at least one token from the mention as a candidate.

We find two candidates: “Hashimoto thyroiditis” and “thyroiditis”. Third,

Identified mention via BioBERT

Tokenize

Score each item using RBM

Extract candidates using 

dictionary on each token

HP:x HP:y . . . HP:z HP:j

Hashimoto thyroiditis 

Hashimoto thyroiditis

MMR

CMR

½

½

½

�

. . . ½
1

1

¾

Concept 

ID

HP:x HP:y . . . HP:z HP:j

Fig. 3. Normalisation method

Tokenized mention

Mention

Matched tokens

Scored tokens

Hashimoto thyroiditis 

Hashimoto thyroiditis

HP:0000872 HP:0100646

Hashimoto 

thyroiditis

Thyroiditis

HP:0000872 HP:0100646

MMR = 2/2 

CMR = 2/2

MMR = 1/2

CMR = 1

Fig. 4. Example of normalisation

we score these candidates such that each token from the mention is matched

to a token in a given candidate. In the example, the “Hashimoto thyroiditis”

candidate has a MMR of 2/2 because two of the mention tokens matched

to the two tokens in the candidate. Similarly, it has a CMR of 2/2 because

the two tokens of the candidates were successfully matched to the mention

tokens.

Using ontology hierarchy for entity normalisation Due to the NER

model recognizing entities partially in a subset of cases, some important

information that guide the identification of the most specific class might

be missing. Moreover, sometimes information that support a more specific

class are not directly part of the mention but are rather mentioned

somewhere else in the abstract. These two cases make mapping mentions

to their direct concepts in ontologies challenging. We address these issues

by exploiting the ontology structure in the mapping process as shown in

Algorithm 2. For this purpose, if no candidate concept meets the thresholds

for the MMR and CMR scores, we retain classes that have a CMR of 1.

These are classes that exactly match only a part of the mention. We call

such classes as general classes. For each such general class, we keep track

of the tokens which were not matched with it, i.e. remaining tokens. We

then consider the children of the general classes as candidates to match with

the remaining tokens. If no children meet the MMR and CMR thresholds,

we predict the general classes instead.

For example, the mention “neuroendocrine carcinoma of the breast”

captured by the NER part, does not pass the MMR and CMR thresholds for

any candidate. However, it matches the parent class HP:0003002 “Breast

carcinoma”. Although we cannot find any child candidate that matches the

remaining tokens “neuroendocrine”, we predict the parent class to be of

coarser granularity.
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Algorithm 2 BORD normalisation

Input: Concept mention mention, ontology ont, chosen thresholds

cmrthr and mmrthr, edit distance threshold thr

Output: Concept IDs predictions

1: cands← candidates(mention)

2: predictions, general← [ ], [ ]

3: for cand in cands do

4: if CMR(mention, cand, thr) ≥ cmrthr &

MMR(mention, cand, thr) ≥ mmrthr then

5: predictions← cand

6: else if CMR(mention, cand) = 1 then

7: general← cand

8: if predictions 6= φ then

9: return predictions

10: for g in general do

11: for c in children(g) do

12: rem = mention− g ⊲ rem is the remaining tokens in

mention that did not match with g

13: if CMR(rem, c, thr) ≥ cmrthr & MMR(rem, c, thr) ≥

mmrthr then

14: predictions← c

15: if predictions = φ then

16: predictions← general

17: return predictions

3 Results

We applied BORD on three separate corpora covering phenotype and

disease concepts; MedMentions–phenotype, MedMentions–disease, and

NCBI–disease. We reported our NER and NEN results using the Precision,

Recall and F-score metrics. We compared BORD’s performance against

two state-of-the-art methods: Supervised model (BioBERT for NER and

our normalisation for NEN) and distantly-supervised PhenoTagger. To

compare against PhenoTagger, we trained the PhenoTagger disease model

using their GitHub recommendations as no trained disease model was

available. We used two types of evaluation: strict and relaxed. In the

strict scheme, we only consider as true positives predictions that match

the curated annotation boundaries perfectly, i.e., predictions having the

same starting and ending indices as the curated annotations. In the relaxed

scheme, we consider any partial overlap between the prediction and the

curated annotations to be a true positive, i.e., they are positives whenever

the indices of the prediction and the curated annotations overlap.

3.1 Context enhances NER performance

We examined BORD and several state-of-the art methods in NER to answer

the first research question regarding the potential of context to improve

the performance. These methods are: supervised BioBERT trained using

small curated datasets, PhenoTagger which is trained by using labels

and synonyms without context, and our unsupervised dictionary. Table

2 presents the performance of BORD and the aforementioned state-of-

the-art methods in phenotype NER on the MedMentions–phenotype test

dataset. With the inclusion of context at a large scale, BORD achieved the

highest F1-score compared with all other methods.

We investigated if the use of context can help in recognising

other concepts. To that end, we reported our model’s performance in

detecting disease concepts on the NCBI–disease and MedMentions–

disease test datasets in Table 3. Our results showed that supervised

BioBERT performed the best on NCBI–disease because concepts are

highly conserved in this dataset. To fairly compare the performance of

Table 2. NER Performance on phenotype concepts (MedMentions–phenotype

test set)

Strict Relaxed

Method P R F1 P R F1

BORD 0.595 0.736 0.658 0.649 0.802 0.717

BORD (Weak MM) 0.596 0.589 0.593 0.663 0.655 0.659

Supervised BioBERT 0.570 0.734 0.642 0.613 0.788 0.690

Dictionary 0.446 0.676 0.540 0.510 0.757 0.609

PhenoTagger 0.480 0.716 0.575 0.544 0.809 0.650

methods, we carried out further evaluation on the MedMentions–disease

dataset. BORD achieved the highest F1-score on MedMentions–disease

showing its advantage of using context at a large scale.

Table 3. NER Performance on disease concepts

Strict Relaxed

Method P R F1 P R F1

NCBI–disease

BORD 0.791 0.582 0.671 0.951 0.698 0.805

BORD (Weak NCBI) 0.819 0.570 0.672 0.972 0.675 0.797

Supervised BioBERT 0.839 0.886 0.862 0.916 0.958 0.937

Dictionary 0.526 0.519 0.523 0.788 0.742 0.765

PhenoTagger 0.676 0.606 0.639 0.883 0.770 0.822

MedMentions–disease

BORD 0.608 0.689 0.646 0.652 0.740 0.693

BORD (Weak NCBI) 0.657 0.558 0.604 0.723 0.616 0.665

Supervised BioBERT 0.510 0.669 0.579 0.580 0.770 0.66

Dictionary 0.473 0.638 0.543 0.541 0.723 0.619

PhenoTagger 0.502 0.718 0.591 0.566 0.803 0.664

To investigate whether the amount of context affects the performance,

we observed the effect of varying the training set size of BORD. To

this end, we weakly labeled the training sets of NCBI and MedMentions

(smaller size with fewer contexts) and used them to train BORD (Weak

MedMentions/NCBI). Results showed that a version of BORD that is

trained on a larger amount of context outperformed BORD on less context

(Weak MedMentions/NCBI) (Tables 2 and 3).

3.2 Ontology enhances NEN performance

To answer the second research question of whether the ontology can

help guide the normalisation of mentions to ontology concepts, we

compared BORD which uses ontology-based normalisation (see Tables

4 and 5) against other state-of-the-art methods. These methods include

PhenoTagger and the dictionaries that we created. PhenoTagger maps

mentions to ontology concepts through its model which is distantly

supervised directly on the ontology class labels and synonyms. The

dictionaries map mentions to ontologies through exact match. Results show

that BORD, which uses an unsupervised normalisation that utilises the

ontology hierarchy, achieved the highest F1-score on the phenotypes (Table

4). On the disease concepts, BORD or BORD(weak NCBI) outperformed

the other methods in terms of F1-score (Table 5), demonstrating that our

method improves concept normalisation.

The discrepancy in the performances between BORD and BORD

(weak NCBI) is more evident on the MedMentions–disease dataset than
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on the NCBI–disease data. This observation can be explained due to the

highly conserved mentions in the test and training splits of the NCBI–

disease dataset which helps to achieve competitive performance in NER

even with a small amount of context usage (BORD (weak NCBI)).

Table 4. NEN Performance on phenotype concepts (MedMentions–phenotype

test set)

Strict Relaxed

Method P R F1 P R F1

BORD 0.587 0.726 0.649 0.621 0.769 0.687

BORD (Weak MM) 0.592 0.585 0.588 0.620 0.613 0.616

Dictionary 0.413 0.485 0.444 0.531 0.616 0.570

PhenoTagger 0.472 0.704 0.565 0.504 0.753 0.604

Table 5. NEN Performance on disease concepts

Strict Relaxed

Method P R F1 P R F1

NCBI–disease

BORD 0.734 0.541 0.623 0.802 0.591 0.680

BORD (Weak NCBI) 0.768 0.534 0.630 0.828 0.576 0.679

Dictionary 0.482 0.485 0.484 0.5472 0.550 0.548

PhenoTagger 0.631 0.566 0.596 0.719 0.641 0.678

MedMentions–disease

BORD 0.588 0.666 0.624 0.608 0.689 0.646

BORD (Weak NCBI) 0.638 0.542 0.586 0.666 0.566 0.612

Dictionary 0.431 0.587 0.497 0.451 0.615 0.520

PhenoTagger 0.484 0.693 0.570 0.515 0.736 0.606

3.3 Error Analysis

We manually analysed errors introduced by our ontology-based NEN and

NER methods to gain more insights on the method that we developed. For

this purpose, we randomly selected 20 False Positive (FP) and 20 False

Negative (FN) annotations for the NER and NEN tasks separately from the

NCBI–disease and MedMentions–phenotype test datasets. Table 6 shows

the results from our analysis on the FP samples.

In the NER results, we found that all of the phenotype (20) and

13 out of 20 disease annotations that were FPs were actually True

Positives (TPs), but they were not annotated in the curated datasets.

For example, our model annotated the phenotype “high blood glucose”

(HP:0003074) in “Diabetic neuropathic pain and high blood glucose were

exhibited simultaneously ...” (PMID:27461472) which is not annotated

in the MedMentions–phenotype dataset. We found that the 7 FP disease

annotations were due to ambiguous disease and gene abbreviations. For

example, BORD annotated the abbreviation of “Wilms tumor 1” which is

“WT1” in “Products of steroidogenic factor 1 (SF-1) and Wilms tumor 1

(WT1) genes are essential for mammalian gonadogenesis prior to sexual

differentiation.” (PMID:9590178) as a disease name (Wilms tumor 1,

MESH ID:D009396) where “WT1” is a gene in this specific context.

In the NEN results, we found that 11 phenotype and 15 disease

mentions out of 20 FP annotations were actually TPs. These TPs

were due to the cases where BORD normalises the mention to their

corresponding classes in our dictionary by exact match but the mentions

are mapped to different broader/parent) concepts in the annotated datasets.

This is due to the used resources (e.g., MEDIC) having lexically

identical synonyms for different concepts. For example, “bipolar effective

disorder” in “Bipolar affective disorder (BPAD; manic-depressive illness)

is characterized by episodes of mania and/or hypomania interspersed with

periods of depression.” (PMID:9861003) is mapped to “major affective

disorder 2” (MESH:C564108) by our method because it has “bipolar

affective disorder” as an exact synonym. It is important to note that

MEDIC can share the same exact synonym across multiple classes; there

are eight classes (MESH:C567531, MESH:C567530, MESH:C567529,

MESH:C567075, MESH:C567074, MESH:C567073, MESH:C565111,

and MESH:C564108) sharing the “bipolar affective disorder” exact

synonym. On the other hand, it is annotated with “bipolar disorder”

(MESH:D001714) in the NCBI–disease Corpus. We found that the FPs

(9 phenotypes, 5 diseases) in NEN were introduced mainly due to partial

matches which can miss important tokens that are essential to find the

correct concept identifer. For example, “colorectal adenomas and/or

carcinoma” in “We have studied a set of 164 patients with multiple

colorectal adenomas and/or carcinoma” (PMID:9724771) is mapped

to “colorectal neoplasm” (MESH:D015179) in the NCBI–disease Gold

dataset. However, our method maps it to a broader concept, “carcinoma”

(MESH:D002277) since the NER model can capture only “carcinoma”

from the whole mention, “colorectal adenomas and/or carcinoma”.

Table 6. Error Analysis on False Positives

NER NEN

Dataset FP TP FP TP

MedMentions–phenotype 0 20 9 11

NCBI–disease 7 13 5 15

Table 7 shows the results from our analysis on the False Negative

samples. We found that all the FNs in the NER task were missed

since the BioBERT based NER model of BORD failed at capturing

the term variations in the text. For example, our model did not

recognise the phenotype “Reduces body Weight” in “A Novel Selective

Inhibitor [...] Reduces Body Weight in Diet -Induced Obese C57BL/6J

Mice” (PMID:27832159). This specific phenotype is mapped to two

alternative HPO classes which are “Decreased body weight” (HP:0004325)

and“Weight loss” (HP:0001824) by the curators of MedMentions–

phenotype Corpus. These two phenotype names from HPO are also

the names that we used to distantly supervised our BioBERT-based

NER model. Since these names are lexically different from the mention

“Reduces body Weight”, our NER model misses it.

The FN disease and phenotype samples that we analysed in the NEN

task should be also considered as FPs. Because our method captures those

annotations at the NER level correctly but maps them to different classes

compared to the curated labels. Hence, a given annotation is treated as

an FN (missed) according to the curated dataset but it is also an FP since

our method maps the mention to another class (compared to the curated

dataset) in the normalisation process.

3.4 Ablation studies

We further demonstrated the contribution of each component of our

method on the MedMentions–phenotype and the NCBI–disease datasets.

Because BORD can map mentions to broader classes in the ontology, we

consider a special type of evaluation named “ont-evaluation” in Table 8.

In this evaluation, we expanded the curated sets so that they include the

direct parents of the assigned classes. For instance, we allow “Alzheimer
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Table 7. Error Analysis on False Negatives

NER NEN

Dataset FN TP FN TP

MedMentions–phenotype 20 0 9 11

NCBI–disease 20 0 8 12

Disease” (MESH:D000544) and/or “Dementia” (MESH: D003704) to be

correct mappings to any mention of Alzheimer Disease.

Filtering NER based on mappable candidates yielded a higher F1-

score than the raw predictions. Moreover, when we considered the special

“ont-evaluation”, we observed better normalisation performance. Namely,

the relaxed evaluation improved by 2% on MedMentions–phenotype.

On NCBI–disease the improvement is more evident as the overall F1-

score increased by 5%. These results suggest that our ontology-based

normalisation helps in resolving partial matches.

Table 8. Ablation

Strict Relaxed

Component P R F1 P R F1

MedMentions–phenotype

Raw NER 0.575 0.744 0.648 0.629 0.813 0.709

Filtered NER 0.595 0.736 0.658 0.649 0.802 0.717

NEN 0.587 0.726 0.649 0.621 0.769 0.687

NEN ont-evaluation 0.590 0.730 0.652 0.639 0.791 0.707

NCBI–disease

Raw NER 0.738 0.66 0.697 0.909 0.808 0.856

Filtered NER 0.791 0.582 0.671 0.951 0.698 0.805

NEN 0.734 0.541 0.623 0.802 0.591 0.680

NEN ont-evaluation 0.740 0.545 0.627 0.871 0.640 0.738

4 Discussion

Our main goal was to develop a method that can recognise concepts based

on a given ontology or vocabulary without the requirement of a manually

annotated corpora. To that end, we exploited textual context information

and ontology structure for concept recognition. We observed that utilising

the context via distant supervision improves NER performance. Although

this was evident in our phenotype recognition results (see Table 2), it

was not demonstrated on the NCBI–disease dataset. Investigation on these

datasets revealed that there is a high overlap (around 80%) between the

concepts in the training and testing sets. Hence, the model which was

trained on a restricted set of mentions (BORD (Weak NCBI)) achieved

similar performance as BORD in terms of F-score. However, when

we applied our method on the MedMentions–disease dataset, BORD

outperformed BORD (Weak NCBI). In addition, BORD which was trained

on the lexically annotated Medline abstracts consistently had higher

recall showing that it is more general and flexible to term variations.

Another lesson learned by switching the dataset for diseases from NCBI

to MedMentions is that BORD is more robust to changes in datasets and

can generalize better compared to PhenoTagger.

We also observed that including the ontology structure as background

knowledge provides a way to map partially matched mentions to close

classes in the ontology. In particular, partially captured mentions can miss

critical parts that guide the identification of the most specific concept.

In this case, our method normalises to a concept of a slightly coarser

granularity. This was evident in the ablation studies (NEN ont-evaluation)

when the direct parents were considered as true positives during evaluation.

Especially on the NCBI–disease dataset, we observed a substantial

discrepancy between the regular evaluation (NEN) and ontology-based

evaluation (NEN ont-evaluation). The MEDIC vocabulary was mainly

built by integrating OMIM terms into the MeSH hierarchy (Davis et al.,

2012a), which provides a vocabulary that is less structured than a standard

ontology.

Overall, while BORD outperformed two state-of-the-art methods

(supervised and distantly supervised) on the task of recognising phenotype

concepts, it achieved mixed results on disease concepts. This can be

explained by nature of the NCBI–disease dataset which has high overlap

between its test and training datasets. Furthermore, our manual error

analysis revealed that some false positives should in fact be true positives

in the curated datasets. This can be attributed to human curators missing

annotations due to unclear boundaries between disease and phenotype

concepts. We also found cases where the curators mapped concepts to

broader classes even when information for a more specific class was

available.

We identified several limitations in our work. BORD cannot identify

nested mentions as the trained BERT-based NER model operates on a

dataset represented in the standard I-O-B format. In addition, BORD also

shares BioBERT’s limitations in recognising name variations in text as

we observed through manual error analysis. Lastly, although BORD’s

normalisation is designed to be flexible to lexical variations, mentions that

are lexically distant from the curated concepts cannot be normalised. We

alleviated some of these cases through the incorporation of the ontology

structure.

5 Conclusion

We developed BORD, a Biomedical Ontology based method for concept

Recognition using Distant supervision. BORD is generic and can be

applied on any concept given an ontology or a vocabulary. Its main

advantage is its ability to utilise a weakly labeled dataset for training.

This allows BORD to be used for concepts where no curated corpora are

available. While the use of an ontology is highly recommended because

BORD uses the ontology hierarchy for concept recognition, it can still

be used given any vocabulary. BORD is freely available at https:

//github.com/bio-ontology-research-group/BORD.
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