

1 Prolonged *in-vivo* tracking of vitreous fluid and its early diagnostic 2 imaging biomarkers for cancer growth

3 Mayank Goswami[†] Snehlata Shakya^{1,2}, Pengfei Zhang^{3,4}

4 ¹*Divyadrishti Imaging Laboratory, Department of Physics, Indian Institute of Technology Roorkee,*
5 *Roorkee, Uttarakhand-247667, India.*

6 ²*Department of clinical physiology, Lund University, Skåne University Hospital, Skåne, Sweden.*

7 ³*UC Davis EyePod Imaging Laboratory, University of California Davis, Davis, CA 95616 USA.*

8 ⁴*Dalian University of Technology, Ganjingzi, Dalian, Liaoning, China, 116024*

9 E-mail: [†]Mayank.goswami@ph.iitr.ac.in

11 **Abstract**

12 Purpose: Estimation of a correlation between cells in vitreous humour and growth in glioblastoma
13 xenografts.

14 Methods: Streams of cells in vitreous humor are observed in optical coherence tomography
15 (OCT) imaging data of animal (NSGS and Athymic Nude-Foxn1^{nu}) eyes (34 in total) subjected
16 to xenograft growth study, *in-vivo*. The cancer disease model is studied with and without
17 nanodrug-based treatment protocols.

18 Results: The presence of CD8+ and CD4+ is reported inside the tumor using the same data
19 earlier. The transition of these cells is shown to take place from the optic nerve via the vitreous
20 into the nerve fiber layer (NFL) at tumor locations and xenograft -related injuries. Functional
21 analysis of dense temporal imaging series (varying from 28 to more than 100 days) reveals a
22 mild correlation between the volumetric growth of the tumor with the density of these cells,
23 quantitatively and qualitatively.

24 The cross-correlation analysis indicates imaging assisted photodynamic treatment protocol
25 perform relatively better if started with certain delay. Doxorubicin treatment to Nu/Nu Male
26 and NSGS female transforms mild weak negative correlation into mild weak positive
27 correlation.

28 Conclusions: The plots indicate that the mix of the cells in vitreous humor are effectively
29 dominated by immunosuppressor cytotoxic component.

30
31 Translational Relevance: We propose that the vitreous cell density can be used as imaging
32 biomarker helpful for clinicians in early diagnosis and treatment planning of similar disease
33 models. The limitation of this work is that high resolution OCT systems and data-dependent
34 image segmentation methods are required.

35
36 **Keywords:** Imaging biomarkers, Cancer diagnostics, Immune cell infiltration, and
37 experimental vision research.

38 **1. Introduction**

40 **1.1. Cells in vitreous humor:**

41 The vitreous solutes profile depends upon age, origin (the retina, ciliary body, lens, retinal
42 pigmented epithelium (RPE), or systemic circulation), or ocular pathology^{1,2}. Vitreous'
43 biochemical properties of a healthy eye inhibit cellular migration and proliferation³.

45 In a normal eye, irrespective of genotype of a mouse hyalocytes and microglia are already
46 present inside vitreous cortex just above the internal limiting membrane (ILM) but in relatively
47 negligible density. The innate and adaptive immune response, despite existing immune
48 privilege, may induce or suppress infiltration⁴ of cytotoxic lymphocytes (large granular natural
49 killer (NK) cells^{5,6}, reactive T cells, malignant B cells and associated cytokines arrays),
50 myeloid cells^{6,7}, phagocytes (stromal cells, monocytes, histiocytes⁸ and macrophages and
51 associated cytokines), reactive oxygen species(ROS), metabolite, various growth factors, and
52 neutrophils (defensins)^{9,10} and leukocytes¹¹. The mutual interaction of these co-existing cells
53 may dysregulate each others' individual effect around the tumor microenvironment. For
54 example, immunosuppressive cell such as regulatory T cells and myeloid cells are shown to
55 inhibit NK cells' immuno surveillance and immune effector T-cells' cytotoxicity⁶, in-vitro.

56 Proteomics analysis can categorize more than 1000 different proteins in vitreous, associating
57 certain proteins with a specific ocular disease as a biomarker². Very few in-vivo studies have
58 shown the rare presence of any of these cells in vitreous humor in natural or disease induced
59 conditions⁵.

60 1.2. Etiology:

61 Early diagnosis and etiology (infectious or non-infectious) of acute retinal necrosis (ARN),
62 especially severe cases of posterior uveitis or retinitis and several other ocular diseases, is not
63 easy. It is partly due to ambiguous ophthalmoscopic appearances¹²⁻¹⁴. Diagnosis of ocular
64 reticulum cell sarcoma and myopic choroidal neovascularization, etc., similar to ARN, involves
65 analysis of immunoglobulins from intraocular fluids^{15,16}. The pathological reason for a visible
66 increase in vitreous protein concentration, one of the symptoms, can either be inflammation
67 (due to infection, injury, or an autoimmune or inflammatory disease) or from the breakdown
68 of the blood-ocular barrier^{11,17-20}. Vitreous diagnosis helps in studying neoplastic diseases and
69 retinal vasculopathy (for example, diabetic retinopathy)²¹. Cells of noninflammatory origin are
70 studied to investigate uveitis masquerade syndrome (UMS)²². Mast cells are also observed in
71 the optic nerve parenchyma with recent severe trauma²³.

72 For involved analysis, dense time series of direct images may provide better insight. It may,
73 however, not be practically possible to acquire in the clinical environment. Foremost, it
74 requires non-invasive techniques and a good patient follow-up. Ethically, the priority to
75 implement treatment (for swift patient recovery) suppresses any chance of tracking the natural
76 and very slow-progressing symptoms of ocular diseases.

77 Laboratory experiments using an apt animal disease model may supplement such desirable
78 analysis with the added advantage of the possibility of obtaining images with higher temporal
79 resolution²⁴. Ocular xenografts, or drugs (for example, streptozotocin for diabetic retinopathy)
80 are used for artificial disease induction. Xenograft allows patient-derived contrast-enhanced
81 tissue/cells implantation locally, with relatively better efficiency. However, it is an invasive
82 procedure. Performed once, it can be utilized to supplement in-vivo, non-invasive studies.
83 Xenograft injection (to the retina) for induction or exudation (of vitreous humor) for ex-vivo
84 analysis is a delicate process and requires expertise. It may cause minor puncturing injuries,
85 triggering the inherent biological response mechanism²⁵.

86 1.3. Diagnostics

87 Vitreous protein analysis can be either performed using Ex-vivo and/or In-Vivo diagnostics,
88 both having their own limitations. Ethical issues may pose a constraint against humor sampling
89 for proteomic analysis or saving ocular images to misutilize later for biometrics frauds/identity
90 theft.

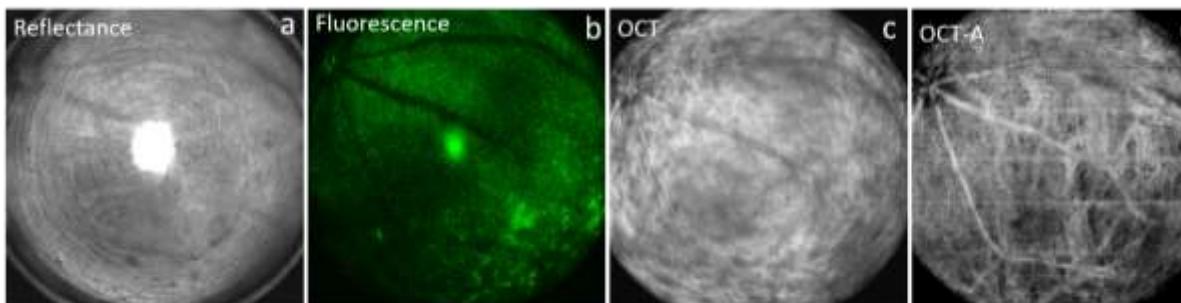
91 1.3.1. Invasive / Ex-Vivo Diagnostics:

92 Although vitreous biomarkers of primary vitreoretinal lymphoma are developed and for uveal
93 melanoma, reports are promising, but diagnosis depends on proper handling of the specimens,
94 methods of aspiration, concentration, fixation, and staining²¹. The immune response of the
95 infiltrating immunoglobulins (clinical and animal models, both) is studied using flow
96 cytometry and immunohistochemistry (IHC) techniques²⁶. Exudation of the vitreous humor
97 (from undiluted aqueous humor) requires pars plana vitrectomy/anterior chamber tap/vitreous
98 aspiration tap^{12,27}. Polymerase chain reactions (PCR) and Goldmann–Witmer coefficient
99 (GWC) are a few referred diagnostic techniques that assess the intraocular fluid^{12,14,18,28}.
100 However, sensitivity to detect specific infections by such tests varies in wide ranges, 46-90%
101 and 25-90% for PCR and GWC, respectively¹². Flow cytometry analysis, western blotting, and
102 conventional histological studies are other alternatives^{11,29,30}. liquid chromatography-tandem
103 mass spectrometry (LC-MS/MS) is used to differentiate the vitreous protein profile¹. Several
104 other tests are also described here². LASER scanning cytometry and liquid-based cytology also
105 have found utility in cell imaging and analysis.

106 Sometimes multiple tests are desirable as several patient characteristics (such as patient's age)
107 affect the choice. More than one such test may not be possible same time due to the relatively
108 lower aqueous humor volume. Multiple extractions via invasive procedures may involve
109 complications²⁵. The exudation is a complex microsurgical procedure, especially of the
110 vitreous cortex. It may be time-consuming and fraught with ethical issues. The ex-vivo analysis
111 thus most of the time only facilitates a one-time analysis option. Several clinical studies suffer
112 from poor temporal resolution as the multiple procedures are discouraged. Moreover, invasive
113 tests affect the natural microenvironment and cell dynamics producing inaccurate conclusions.
114 Localizing cells in the vitreous body using an invasive method is reported Accuracy in less as
115 the organ shrivels during the fixation⁴.

116 1.3.2. In-vivo Non-Invasive Diagnostics:

117 Optical imaging-based non-invasive techniques, namely: LASER Speckle Imaging (LSI) and
118 Fluorescence Correlation Spectroscopy (FCS), are used to explore the dynamic features of
119 subcellular components, cellular motility, cell infiltrations/migrations during
120 inflammation^{11,31,32}.


121 A combined approach using Raman and Holographic microscopy analysis is reported to
122 identify and discriminate the cell populations of CD4+ T cells, monocytes, and B cells³³.

123 Fundus and scanning LASER ophthalmoscope (SLO) imaging (Fig. 1(a)) is abundantly used
124 as an affordable alternative and non-invasive tool in both clinical and laboratory applications.
125 It, however, requires contrast enhancement tags (Fig. 1(b)) or may depend on autofluorescence.
126 It gives 2D enface images with image quality significantly depending on optical vitreous
127 transparency. A clinical study is reported observing the transition of cells and other sub-cellular
128 components in-between retinal layers using microscopy³⁴.

129 Optical coherence tomography (OCT) imaging (Fig. 1(c)) is used for similar reporting with
130 relatively better spatial resolution and acquiring speed^{16,35}.

131 Multiple features of OCT have also been used for investigating inflammatory cells for cell
132 sorting in the aqueous chamber as an ex-vivo tool(36,37) and identifying and quantifying
133 macrophages in coronary artery plaque and *in-vivo* immune cell migration^{36,37}. Studies also
134 reported that OCT could be used to visualize immune cells and evaluate cellular characteristics
135 and dynamics through rodent models^{35,38}. Similar cellular structures are reported in humans³⁹.

136 Optical coherence tomographic-angiography (OCT-A) or phase variance OCT (PV-OCT)
137 provides blood vascular 3D maps with a micron-order spatial resolution^{24,36}. The
138 combined/multi-spectrum (SLO-OCT-OCT-A) animal images (shown in Figs. 1(a-d)) provides
139 effective co-localization of 3D ocular structures with 2D fundus enface images. OCT images
140 offer a good match with conventional histological studies⁴⁰.

Figure 1. Enface Images of a mouse from a combined OCT animal imaging system. Reflectance and fluorescence are direct fundus images without and with filters. OCT and OCT-A are corresponding images obtained at the same instance.

141
142 A study about the artificial retinal detachment(RD) model has reported that monocytes
143 (extravasated from the vasculature and vitreous surface of the retina) as primary immune cell-
144 mediated cytokine storm⁴¹ causing Interleukin-6 (IL6) signaling in vitreous humor while
145 microglia remained un-effected. One study showed the presence of microglia and hyalocytes
146 distribution using OCT imaging⁴². An in-vivo study (supported by immunohistochemistry and
147 flow cytometry analysis) has revealed infiltration of CD11b⁺ CD45⁺ myeloid cells during
148 photoreceptor cell death (induction model in mouse) across retinal vessels within 48 hours of
149 photoreceptor degeneration⁷.

150

151 1.4. Other frontiers:

152 Besides needing to record the dense time-dependent cellular activities, several necessary
153 advancements are under development in the field of functional image processing for disease-
154 specific feature segmentation. Several semi-automatic and automatic soft tools are reported<sup>43-
155 47</sup>. Methods to segment retinal layers are well established except for describing the estimation
156 of average Cell counts in vitreous humor in the vitreous region.

157

158 1.5. Motivation:

159 The previously published data shows the treatment efficiency of nano doxorubicin on the
160 murine tumor model²⁴. The histopathological analysis shows the existence of CD8+ (an
161 antiviral cytotoxic T-Cell) reported inside the retina alongside the growth of glioblastoma
162 xenograft. The consistent presence of cellular bodies in the vitreous fluid is observed in
163 respective OCT data. The cell motility and density varied with the tumor growth relative to the
164 healthy retina. We present an exploration of the dynamics of these particles quantified along
165 with the tumor progression using the same data set. Primarily, we would want investigation
166 here that if the existence of a cellular body in vitreous fluid: (a) is entirely due to injury caused
167 by the xenograft process and disappears while the retina heals, (b) supports the healing process
168 of the retina, and (c) can be correlated with the growth of the tumor. We also like to explore if
169 the cellular bodies are spewed from the site of injury or tumor or entering from the vitreous
170 fluid into the retina. Functional OCT imaging data is used to estimate the average Cell count
in vitreous humor as the main characterization parameter.

171 The following sections explain methods (in brief) to carry out this study, followed by
172 qualitative analysis, results, and involved discussion.

173 2. Materials and Methods

174 2.1. Small animal husbandry

175 Mice of two genotypes (a) athymic nude-foxn1^{nu} or Nu/Nu (12 male and 5 female) and (b)
176 immune suppressed NOD.Cg-Prkd^{scid}Il2rg^{tm1Wjl}/Tg or NSGS (4 female) of 6-8 weeks of ages
177 kept on a 12:12 light cycle are used^{48,49}. Tumor growth data is borrowed from earlier published
178 work^{24,50}. Nu/Nu are implanted with glioblastoma cells and NSGS are implanted with Patient
179 derived xenograft (PDX) cells.

180 2.2. Xenograft preparation and transplantation

181 All the cell culture protocols and the methodology of xenograft glioblastoma tumor cell
182 (U87MG-GFP) preparation for transplantation are already reported²⁴. Ocular transplantation of
183 xenografts between the retinal pigment epithelium (RPE) and the retinal cells was carried out
184 using the method of Matsumoto et al.⁵¹. Mice with retinal holes or sub-retinal or vitreous
185 hemorrhages were excluded from the study.

186 2.3. Imaging-assisted Nano drug treatment

187 Total of 34 animal eyes are followed. Each animal (starting of experiment when aged between
188 5-6 weeks old) was followed from 5th day before (as baseline) till the end of the treatment
189 protocol. The Nano drug samples consisting of porphyrin-PEG-doxorubicin termed as
190 'nanodox' were prepared according to Li et al. and administered as reported⁵². Prior to imaging,
191 all the necessary animal handling procedures are taken to keep the mice ready. The optical
192 features and parametric settings of the multimodal imaging systems, Optical coherence
193 tomography (OCT), and scanning laser ophthalmoscopy (SLO) are described in detail⁵³.

194 2.4. Immunohistochemistry and quantitative data

195 Histological studies still remain the efficient biological assay for the confirmation and extended
196 *in vivo* investigation of the tumor. All the protocols followed for conducting histopathology
197 and flow analysis are similarly reported. A few of the available histological results of the
198 processed data are used in the discussion section. Tissue transformation due to immune cells
199 infiltration into the tumor through flow cytometry analysis is also studied²⁴.

200 2.5. Cell identification by the deep learning algorithm

201 The flowchart is shown in Figure 2. Each OCT Volume data contains 359 B-Scan. Entire data
202 set contains total 537064 (359 x 34 (eyes) x 44 (imaging days on-average per eye)) B-Scans.
203 Each volume of data went under the pre-processing stage for registering the data on the same
204 level, contrast stretching (to reduce Tyndall scattering), and resizing / rescaling¹⁷. Afterward,
205 10K images were manually annotated for the presence of cells (in vitreous fluid) and NFL.
206 Cells above the NFL are easily visible relative to those cells which migrated inside the retinal
207 layers.

208

209 The annotated data is used to train a deep
210 learning-based hybrid model (U-
211 net+ResNET50)⁴⁶. The trained model with
212 acceptable performance (Dice Coeff. equals
213 0.893) is used for locating the cells in all eyes.
214 A single cell having a size larger than the Z
215 resolution of a single B-Scan is present in more
216 than one B-Scan slice. The counting algorithm
217 may count it more than once. The failure to
218 merge all pieces of a single cell from slices can
219 be removed if counting is also performed by an
220 AI algorithm using manually trained data.
221 However, for experts, identifying the number of
222 cells during the annotation, if they are clumped,
223 is impossible. It can only be done by dividing
224 the volume of the clump (of more than one cell:
225 a cell molecule) by the volume of a single cell.
226 In another approach, cells are encapsulated in
227 respective voxels (size 10-20 microns)⁵⁴. It,
228 however, has shown minor differences as
229 compared to the previous method. The
230 overestimation (if any) would be present
231 throughout the data; thus, it is assumed that it
232 will not affect the estimation.

233 Classical linear regression (with the best fit)
234 estimates the possible correlation between cell
235 density with normalized volumetric tumor
236 growth w.r.t gender and genotype. The extracted and segmented components were augmented
237 using the generalized MATLAB™ code for 3D visualization. Co-localization and validation
238 of 2D B-scan and 3D images with the histology data are done. Finally, the results were analyzed
239 and discussed.

240

241 3. Results

242 3.1. Immunoglobulin cells, retinal tissues, or collagen fibrils:

243 Standard baseline imaging revealed presence of cells (having relatively faint brightness to other
244 structure) before xenograft. [Figures S1 and S2](#) shows few BScans (on several retinal
245 axial/transverse planes/cross-section) are few of the example. The close observation indicates
246 the proximity of cells with blood vessels in ILM. The dynamics shown in [Movie M0](#) inspires
247 to think that stream of cells is originating from these blood vessels and communicating to each
248 other via vitreous humor. These thick blood vessels in ILM are also connected to optical cord.

249 Micron resolution (2 microns) ocular OCT imaging data (in 3D) may help visualize the viscous
250 humor structures above the retinal surface map, as shown in Figure 3. The discrete nature of
251 these structures indicates dissimilarities with collagen fibrils, vitreous detachment, or hyaloid
252 canal^{55,56}. These structures appear to be more like air pockets⁵⁷. Oval shape surface of red
253 blood cells (RBC), and other similar molecules, migrating between retinal layers or moving
254 inside blood vessels, can be perceived in corresponding OCT-A data (shown in Fig. 3h). It also

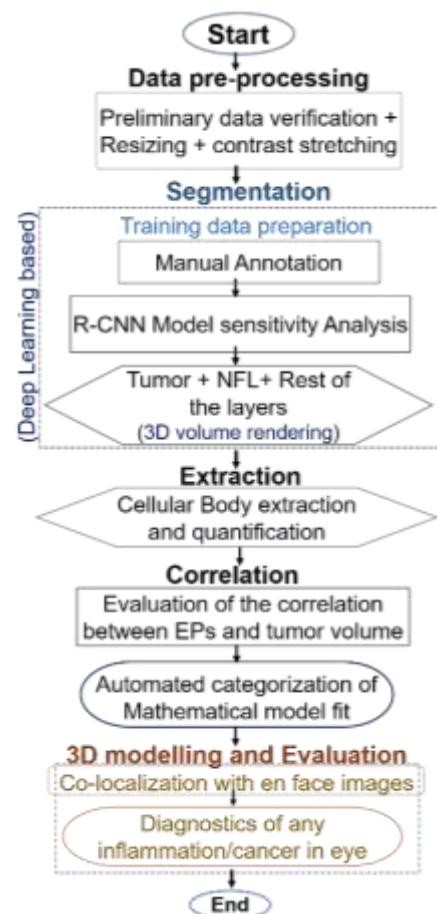
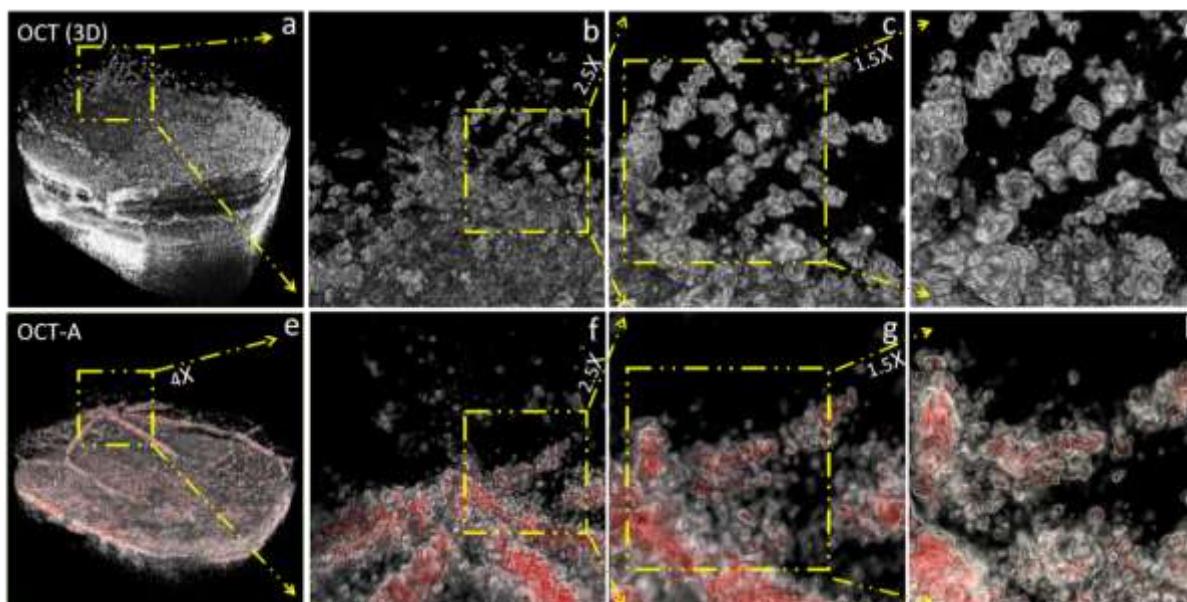



Figure 2: Flow diagram showing the methodology of Image processing and data analysis

255 shows each molecule contains a sheathing layer (shown in a fake white color scheme). We
256 believe it is due to the presence of intermolecular plasma fluid^{58,59}.

257 The 3D surface map, visible in OCT but not in OCT-A, may help define immunoglobulin cells
258 (in vitreous fluid). If OCT-A images do not show the presence of molecules whereas OCT
259 shows, these molecules are considered immunoglobulin cells (only above the NFL). Few cases
260 can be observed by visually comparing respective figures (row-wise Figs. 3a-3d and Figs. 3e-
261 3h). A supplementary [figure S3](#) shows a composite figure (Fig. 3c merged/overlapped with
262 Fig. 3g), highlighting the existence and absence of structures seen in OCT and OCT-A images.

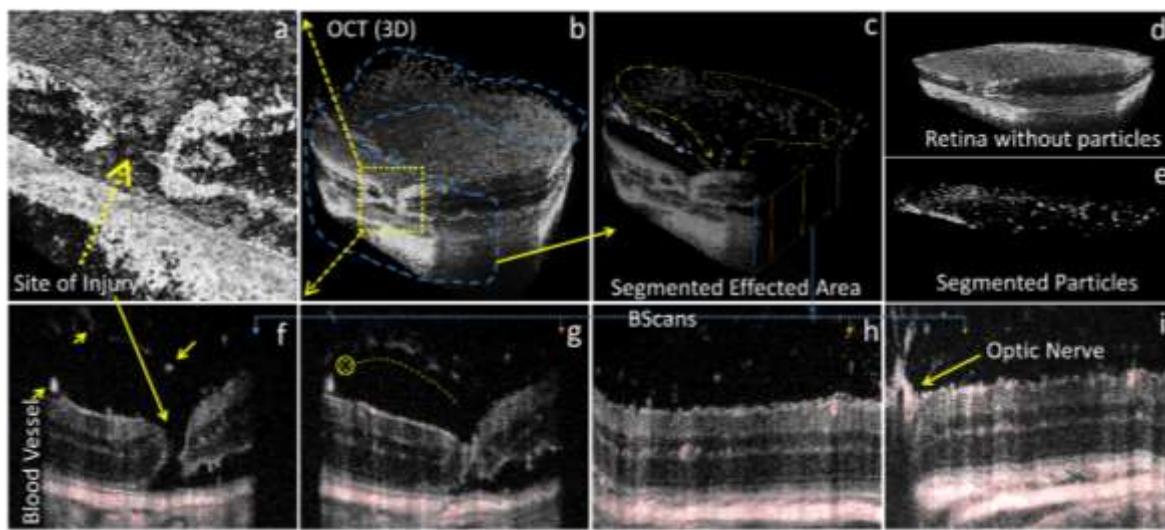


Figure 3: Micro resolution 3D OCT and OCT-A images. After xenograft, the OCT shows a significant presence of cells floating in vitreous fluid, and OCT-A shows an oval shape of red blood cells. (a, e) Retina Volume OCT and OCT-A, (b-d) respective zoom section showing the discrete structures at the optic nerve and surrounding in OCT, (f-g) shows blood vessels using fake red and white color scheme, (h) oval shape red blood cells shown covered what appears to be with white plasma sheath.

263

264 3.2. Qualitative evaluation of cells migration after xenograft:

265 We note that the field of view (53^0) of the imaging system is able to capture a limited section
266 of the retina. The data shown in Figures 1, 3, and 4 is of an athymic mouse taken after the
267 second day of xenograft. The site of injury made by a needle is clearly visible (Figs. 4a) with
268 a rhegmatogenous detachment (right top part of the sclera). Right before the xenograft, it was
269 not present; thus, its origin is more likely due to traction created in vitreous humor by the
270 needle's exertion against its adherence to the retina⁵⁷. Figure 4c shows a few stacks (3D)
271 belonging to the site of injury and distribution of immunoglobulin cells on the top of the retina.
272 The same distribution is shown with and without retina in Figs. 4d and 4e. Figure 4d shows the
273 segmented retina (upper layer NFL till the end of sclera) and all the molecules above it. The B-
274 Scan stacks from the front site of the injury till the end of the retina are shown in Figs. 4f - 4i
275 to highlight the 2D distribution of these cells. The pathway/trajectory (highlighted in Figs. 4a
276 - 4c) of the stream transporting these molecules can also provide a clue about their origin. It is
277 described earlier that these cells may have amoeboid movement⁴.

Figure 4: Segmentation of OCT data to estimate immunoglobulin cells density in vitreous fluid; (a) showing the site of injury, (b) full 3D volume, (c) the segmented affected area showing two channelsstreams of particles, dense at optic nerve end, one towards the site of injury another towards the detached retina, (d) separate sections of the retina and segmented particles, (f-i) B Scan showing site of injury along with detachment, detachment only, a healthy retina and section cut containing optic nerve. (f) shows particles in fading and bright spots showing fading are in another Y plane traveling inside. The red tint in Fig. 4 (f-i) indicates OCT-A overlapped with OCT.

278

279 These floating molecules can either be the dislodged tissues (from the upper layer of the retina)
280 being spewed from or immunoglobulin cells either leaking from or entering the injury and
281 detachment spots (Fig. 4a). The dislodged retinal tissues (from the retinal surface) may have at
282 least few blood cells attached thus expected to remain visible in OCT-A images as well.
283 However, the density of particles in streams of molecules is relatively higher in OCT images
284 as compared to the corresponding OCT-A images ([Movie M1](#)) and Figure3. It indicates that by
285 the time of imaging, the particles in the vitreous have lost their driving mechanisms to move,
286 especially red blood cells. On successive days, these OCT-A images show a similar absence
287 on corresponding spots.

288

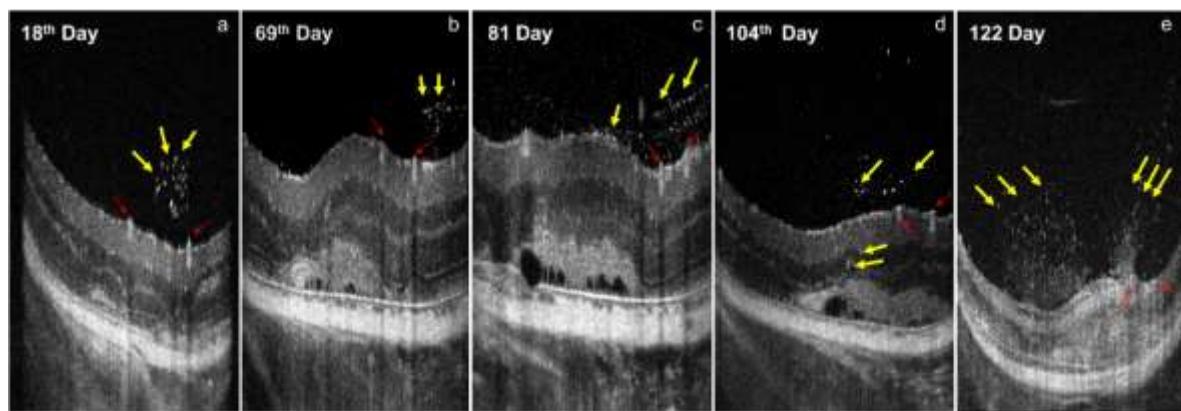
289 There can only be one possibility for these streams to transport the retinal tissues, spewing
290 inside out. Also, the stream must remain till the injury is not healed. However, these cells (lower
291 in density) are found well before xenograft. [Figure S3](#) and [Movie M2](#) (supplementary file)
292 show that stream of cells is connected between the optical cord and other blood vessels near to
293 ILM inside the vitreous cortex only. This data is taken before xenografting the tumor cells in
female Nu/Nu mice. Table 1 provides the details.

294

295 The stream of molecules (clumped cells) is seen in OCT images right after the xenograft session
296 (images taken after 5th day), strangely connecting the site of injury to the untouched optic nerve
297 head, which is far away from the location of the needle. The bright molecules are in the very
298 plane of B-Scan and what appears to be fading (as we move from the site of injury towards the
299 optic nerve) are in deep Z planes (Figs. 4f-4i). The corresponding 3D distribution is shown in
300 Figs. 3b and 4b. The spread of molecules (between the optic nerve and the site of injury) is into
301 two distinct channels. The centre part near to the optic nerve appears to be in a crown-like
302 shape. We also note, in this data, right after the xenograft, the retina shows slight detachment
303 (right top part of the sclera). The second channel is seen to be associated with it or has risen in
304 symmetry due to vitreous gel dynamics. In other datasets, this second channel is not visible;
thus, the later argument seems less plausible.

305 The density of the floating molecules is higher at the optic nerve side (figs. 3a-3d). The spread
306 indicates that these molecules are segregating away from the optic nerve. It may be possible
307 that tissues originating from the site of injury and detachment are driven towards the optics
308 nerve due to vitreous fluid dynamics as the head of the cord is protruding out⁶⁰. The viscosity
309 of humor is relatively high at the edges than at the center.

310 We note that the path to clear/flush out the fluid, however, is not towards the optic nerve.
311 Physiologically the major ocular blood supply is via the choroid towards the optic nerve.
312 Alternatively, these molecules are in the bloodstream, flowing via choroid towards the optic
313 nerve and then targeting the injured site by traveling all the way from the optical nerve opening
314 to the site of injury. The latter argument seems least likely as the optic may not have any natural
315 opening to release the molecules into vitreous fluid and is not injured during xenograft either.


316 The presence of these cells in relatively healthy retina / before xenograft also supports the claim
317 that these are predominantly the immunoglobulin cells being released for the site of injuries
318 from the optics nerve, mainly. It is reported earlier that the optic nerve is an active infiltration
319 site of the inflammatory cell⁶¹⁻⁶³.
320

321 3.3. Tumor Growth and cell density

322 Once the injury (if present due to xenograft) heals and the tumor proliferates, some of these
323 bright particle-like structures / cells in vitreous humor are seen (in time series of direct OCT
324 images) moving in streams while their distance gets shorten with respect to ILM. Figure 5
325 shows one particular example taken from a Nu/Nu male mouse that lived more than 100 days.
326 Fig 5(a) shows a small tumor volume (13.5 / 359 (total B-Scans) cancer cells/volume (μ l)) and
327 a significant accumulation of cells thick yellow arrows) in vitreous fluid. As time progressed,
328 the density of cells in vitreous fluid varied, and so as the size of the tumor (167 / 359 (total B-
329 Scans) cancer cells/volume (μ l)) in this B-Scan. The density increased further, and multiple
330 streams are observed in Fig. 5(c). This particular retina is subjected to nanodox treatment after
331 100 days, which affects the tumor volume. Initially, the cancer cell number and tumor volume
332 decreased²⁴. At the end of the treatment sessions, cancer cell density is found to be negligible
333 (verified by histopathology results shown in the last section of this paper). Figure 5(d)) shows
334 that after treatment, cell density relatively decreased. Figure 5(e) shows a bloated retinal
335 surface with a large population of vitreous cells. In one of the reported works, the
336 transformation of this tumor into a cyst is proposed⁴⁶. One minor observation following this
337 time series is that most of the time distribution of these cells remains in the vicinity of two
338 blood vessels. These two blood vessels (marked by thin red arrows) are also taken as a point
339 of reference to locate the same B-Scan every time. Supplementary [figure S3](#) is provided with
340 3D images carrying in-depth visualization. The 3D cell dynamics is described and depicted in
341 [fig. S4](#).

342 3.4. Immune cells: A natural prognostic biomarker for early diagnosis

343 OCT images including all possible cases: (a) eye in healthy condition with and without the
344 presence of the cellular body, (b) before and immediately after xenograft injury, (c) several
345 days after xenograft with and without nano-dox treatment are analysed, and presented now.
346 The eyes having Cells in vitreous humor below this threshold value (when Tumor Volume is
347 zero, i.e., before xenograft) are considered healthy. The data in Tables 1 and 2 contains average
348 values of all cases, i.e., with and without treatment. [Figures S5](#) and [S6](#) contain full data. The
349 study lacks NSGS Male mice data.

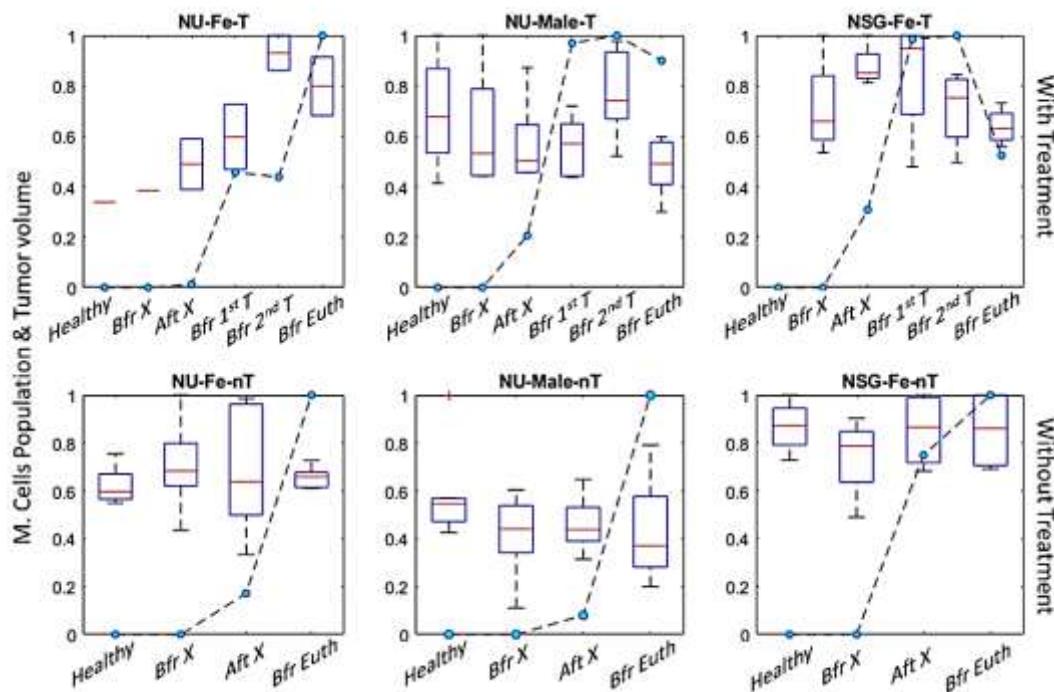
Figure 5: Successive tracking (of same retinal axial /cross-sectional location) of cells in vitreous humor vs. tumor growth shown in the B-scan timeline; (a) cells at the site of inflammation after 18 days of xenograft with small tumor at this B-Scan Slice, (b) relatively few immune cells after 69th days as the tumor got bigger, (c) tumor detachment at multiple sites after significant growth with multiple cell streams, (d) some of the cells entering inside the retina towards tumor and (e) immune cells infiltration into tumor after 122 days. Yellow thick arrows are markers for cells, and thin arrows (in red) are the point at blood vessels as landmarks showing all B-Scans are taken approximately on the same location.

350 The average cell count in vitreous humor/density value in healthy mice eye (before xenograft)
 351 is not zero for NSGS and Nu/Nu female mice and is found to be almost equal. The number of
 352 cells after the xenograft process increased in all cohorts, irrespective of the initial number of
 353 cells injected. The cell population decreased between xenografts till the first treatment is
 354 applied, and the tumor volume increased. The cell population decreased further between the
 355 first and second treatments in the case of the NSGS Female cohort. However, for Nu/Nu, this
 356 value increased, showing the only difference. As the multiple treatment sessions are conducted
 357 right before euthanizing, the cell population became comparable (never went lower) to values
 358 of healthy mice conditions for the female cohort. For the male cohort, the cell population right
 359 before euthanizing became lower than it was before xenograft. The tumor volume decreased
 360 for the treatment cohort but increased for the cohort that is given no treatment. The next section
 361 explores an exhaustive time-independent correlation between gender, genotype, and cell
 362 population with tumor volume. Figure 6 shows the mean, max, and minimum values along with
 363 overlapped tumor volumes, giving further confidence and the need to look for any possible
 364 correlations.

365 *Table 1 NSGS*

Condition	Cases with Treatment			Cases without Treatment		
	M	F (4)		M	F (4)	
		VH. Cells ($\times 10^6$)	Tumor Vol.		VH. Cells ($\times 10^6$)	Tumor Vol.
Before Xenograft	x	3.735	0	x	3.113	0
After Xenograft	x	4.683	3.142	x	3.599	10.472
Before 1 st Treat	x	4.466	10.038	x	x	x
Before 2 nd Treat	x	3.768	10.188	x	x	x
Before Euthanizing	x	3.391	5.343	x	3.563	13.971

366 *VH. Cells: Average Cell counts in the vitreous humor, x: data was not available

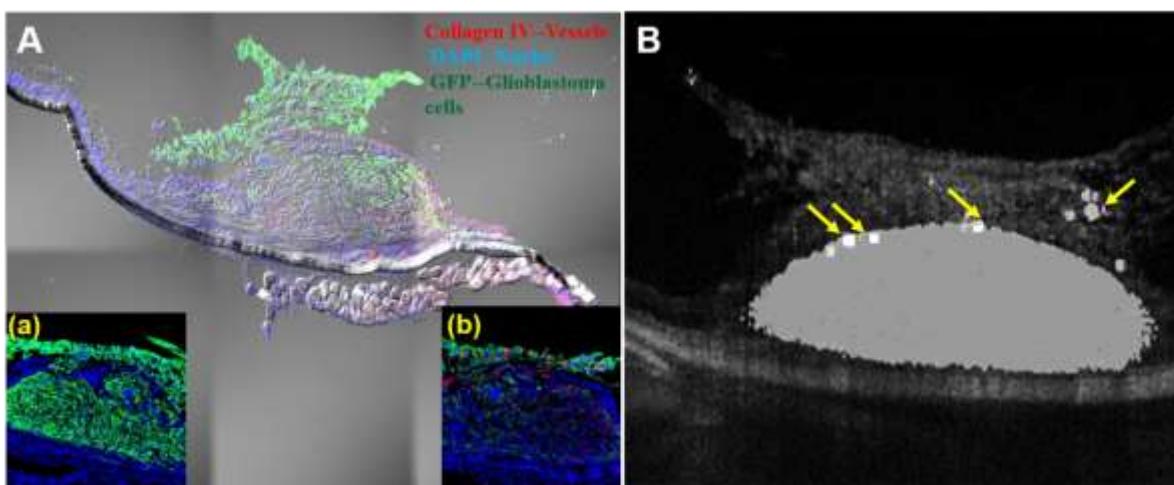

367

368 Table 2 *Nu/Nu*

Condition	Cases with Treatment				Cases without Treatment			
	M (7)		F (2)		M (12)		F (5)	
	VH. Cells (x10 ⁶)	Tumor Vol.	VH. Cell (x10 ⁶)	Tumor Vol.	VH. Cell (x10 ⁶)	Tumor Vol.	VH. Cell (x10 ⁶)	Tumor Vol.
Before Xenograft	2.684	0	1.302	0	2.507	0	2.596	0
After Xenograft	2.917	10.47	1.656	1.047	2.774	7.54	2.887	25.55
Before 1 st Treat	2.621	49.35	1.587	39.173	x	x	x	x
Before 2 nd Treat	3.579	50.88	3.150	37.608	x	x	x	x
Before Euthanizing	2.235	45.84	2.704	85.694	2.542	94.53	2.728	149.01

369

*VH. Cells: Average Cell counts in the vitreous humor, x: data was unavailable.


370 **Figure 6:** Normalized Average counts Cells in vitreous humor / Population (box plot) and Tumor Volume (plot
371 with blue marker) at different stages (i.e., Healthy, before and after xenograft, before 1st and 2nd treatment, and
372 finally before euthanizing) in *Nu / Nu* and NSGS female and male mice subjected to treatment and without
373 treatment protocols. The average Cell Population follows the trend in growth in Tumor volume.

374

3.5. Histopathological studies

375 Histopathology of mice eyes are investigated for confirmatory evidence of the tumor
376 microenvironment *in vivo* and extended biological information. Figure 7 shows the results of
377 the same animal that is used in Figure 5. Selected data where the experiment prolonged for the
378 maximum number of days has been used and compared with the histological data. Figure. 7
379 represented the qualitative evaluation of invasive and non-invasive imaging, which shows the
380 *in vivo* identification of immune cells due to inflammation with its maximum tumor growth (in
381 the left eye) that grows out of the thin retina.

383 The tumor is immediately identified from the cryosections (Fig. 7(A)) and imaged using
384 confocal microscopy used to assess the changes in the physiological features. Tumor
385 neovascularization indicates the blood vessels intrinsic to the tumor-associated with choroid
386 vasculature. Thus, the neovasculature was corroborated through collagen IV staining (Figure.
387 7). It also revealed the normal retinal layering and the tumor grown between the retinal tissues
388 tagged with GFP and DAPI fluorescent markers for differentiation. In addition, we also
389 observed the most important features of inflammatory signals of CD8+ cell surface markers
390 (very high immune cells) infiltrated onto the tumor cluster of the left eye (Fig. 7Ab).
391 Unfortunately, there are no CD4+ markers found in Figure 7Aa. These are co-receptors for T-
392 cell receptors found in monocytes, macrophages, dendritic cells, and helper T-cells. Besides,
393 the histopathological studies are also correlated with the processed data and support the
394 proposed scientific claim. However, in the case of the right eye, the tumor disappeared due to
395 retinal atrophy, and its histological result is shown in the supplementary section, [Figure S8](#).
396 The invasive imaging result is compared with the non-invasive *in vivo* image, which confirms
397 the similarity and also observed the immune cells infiltrated onto the bulk tumor cluster
398 illustrated in Fig.7B.

Figure 7. Visualization of immune biomarkers by invasive and non-invasive methods. **A.** Invasive imaging via confocal microscopy: Histopathological analysis of Athymic nude-foxnlu (Nu/Nu) mice (left eye) showing the infiltration of CD8+ cell surface markers onto tumor and the laser burned retina. The magnified confocal micrographs of dye-stained cellular components are shown in the inset of Figure 6A. Figure 6Aa shows the absence of CD4+ cell surface markers, and Figure 6Ab shows the infiltration of the CD8+ markers confirmed by the flow cytometry analysis. The right eye shows no tumor growth, (Both eyes are sacrificed and performed histology experiments). **B.** Non-invasive imaging of the same left eye using optical coherence tomography (OCT) illustrated the immune cell infiltration indicated by arrow symbols. (*OCT imaging was done before the histological analysis*).

399 **3.6. Relation between particle density with xenografted glioblastoma volume**
400 Normalized cell counts in Vitreous humor (VH. Cell) and volume of a tumor with respect to
401 days after xenograft are plotted in Figs. [S5](#) and [S6](#). The inclusive correlation study suggested
402 that the immune cell generation has been influenced by the tumor growth progression, which
403 is associated with and supports the hypothesis. Further, the evaluation was done by separating
404 the data sets into exclusively non-treated ones and the treated data sets. It is to be noted that
405 few xenograft eye models are lately treated using 'nanodox' (nanodrug of doxorubicin) during
406 the experiment. The treated data sets are further divided into two regions, before treatment, and
407 after treatment. These two regions explicitly give information on the change in the

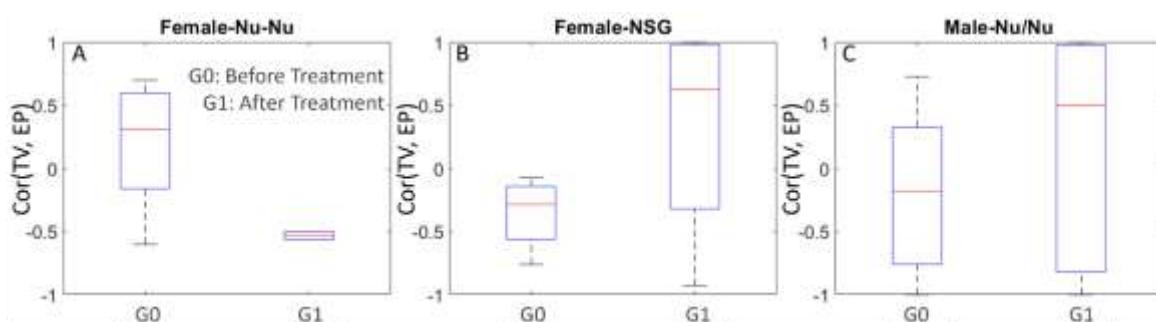
408 mathematical expression of the data sets before and after treatment without considering gender
409 and genotype.

410

411 3.6.1. Visual Comparison of plots

412 Alternatively using cross-correlation or simple correlation analysis one can visually observe
413 by plots. Figures S4(c) and S5(c) show vitreous cells and tumor volume w.r.t time.

414 For Nu/Nu female mice without any treatment protocol, the relationship between cell and
415 tumor volume is proportional for all 7 cases. For 5 out of 7 cases both parameters increased.
416 Nu/Nu female treatment cases are sparse in number and are considered inconclusive here.

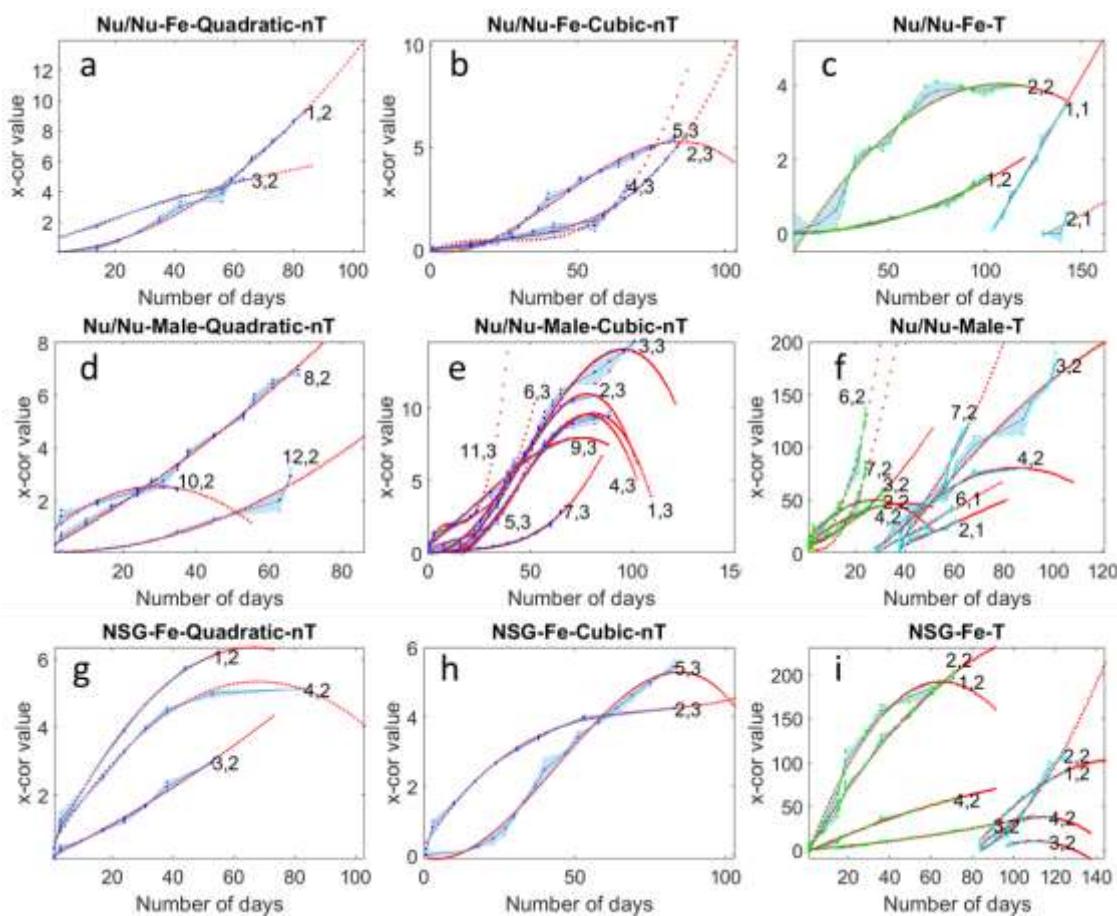

417 For Nu/Nu male mice cohort without any treatment, the relationship is proportional for 8 out
418 of 20 cases, inverse proportional for remaining cases. However, the cases with inverse
419 proportionality could only survive for relatively less duration (less than 25 days). During the
420 treatment this relationship got converted into proportionality as the tumor volume and cell
421 density decreased.

422 For NSGS female mice without any treatment protocol the relationship between these two
423 quantities is inversely proportional for 5 out of 8 cases, and flat in remaining 3. Where the
424 tumor volume increased around day 20 and suddenly decreased significantly afterwards (even
425 without treatment) in 4 out of those 5 inverse proportional cases, the cells density increased
426 with time in these cases. The observation is reported earlier^{64,65}. When treatment is introduced
427 the cell density as well volume, both parameters decreased in 3 out of 4 cases.

428

429 3.6.2. Correlation after considering gender and genotype

430 Collective information is summarized in Figure 8. Boxplot of correlation between cell density
431 values of NSGS, Nu/Nu male and female before and after treatment is shown. The trend shows
432 (Figs. 8A) a weak positive relationship between cell density and tumor growth for Female
433 Nu/Nu with a median correlation value of 0.3. A weak correlation with a value of -0.29 is
434 estimated for NSGS female mice. For male Nu/Nu mice, this relationship is even weaker,
435 having a median correlation value of -0.18 (Fig. 8C). The treatment, however, has inverted the
436 depicted relation for all three categories towards mild-strong relations. The Female NSGS and
437 Male Nu/Nu mice cohort show a positive correlation with 0.63 and 0.5 median values,
438 respectively. The data, although, shows significant variation. It may own to the fact that all
439 these mice are injected with different amounts of tumor cells. Weirdly, but for Female Nu/Nu
440 mice (only 2 cases combined), the median correlation value effectively becomes -0.53.


Figure 8: Correlation (overall average including all mice of same genotype) between cell density value and tumor volume; **A.** shows Female Nu/Nu cases before, and after treatment, **B.** shows female NSGS mouse data, and **C.** shows male mouse data.

441 3.6.3. Cross-Correlation

442 A numerical investigation provides a cross-correlation between immunosurveillance factors
443 and with tumor growth model⁶⁶. Cross-correlation values are estimated to measure the
444 similarity and coherence along with time-dependency between normalized tumor volume
445 growth and normalized vitreous cell density.

446 Figure 9 depicts these cross-correlation values (x-cor values) plotted with respect to the number
447 of days from beginning to end. The first, second, and third row show the data of Nu/Nu Female,
448 Nu/Nu Male, and NSGS Female, respectively. First two columns in each row (Figs. 9(a), (b),
449 (d), (e), (g), and (h)) belongs to cases without treatment. The last column (Figs. 9(c), (f), and
450 (i)) is of treated cases. The fitted curve to the x-cor values is plotted in red dot marker along
451 with original values in blue dot marker. The shaded region depicts an error in the fitting. The
452 figures are categorized according to the optimal degrees/order (linear/1st, quadratic/2nd, and
453 cubic/3rd) of the fitted polynomial. The curve fitting using a higher degree often leads to the
454 approximation or generalized results lacking the true characteristics of the functions and hence
455 avoided. The first column contains data that has the least root mean square error (as a goodness
456 of fit) for 2nd order polynomial termed genotype-gender-quadratic-nT. Similarly, the second
457 column contains the third order. Only Nu/Nu males have few data fitted best in first-order linear
458 polynomials (shown in the supplementary file as [Figure S7](#)). None of the data fitted better for
459 a higher degree than three. The last column, data (treated cases), has non-continued graphs.
460 Although these are from the same animal, but break signifies the start of the treatment protocol.
461 The graph in green contains data till the tumor was allowed to grow without any treatment.
462 Each graph is indexed using two indices. The first index refers to the serial/tag or identification
463 number of the respective genotype. The second index refers to the degree of the polynomial.
464 The indexed scheme is used to illustrate that after treatment order of fit of cross-correlation
465 between vitreous humor cell density and tumor volume may change. For example, Fig 9(f) plot
466 tagged as the 2nd order (6,2) transformed into a linear relationship (6,1). Male Nu/Nu untreated,
467 including right before treatment cross-correlation, have eight mice data, all second-order
468 polynomial fits, and nine third-order polynomial fits. It indicates that as the mouse aged and
469 the days progressed after xenograft, for 8 (second-order polynomial cases) mice, the tumor
470 volume and with the number of vitreous cells followed the same non-linear pattern (inverted
471 parabola). This point can be verified by Fig. [S5](#) (b8). Observing the inverted parabolic graphs
472 in the figure below, it appears that the rate of cross-correlation peaks around 75 days,
473 irrespective of the genotype and gender. Similarly, in the rest of the parabolic cases, this rate
474 shoots around 50 days. The treatment effect shows transforming cases having second-order
475 cross-correlation relation into linear relation for Nu/Nu females if introduced fairly late (~100
476 days); otherwise, only the pattern changed from upward parabolic into an inverted downwards
477 parabolic pattern keeping the degree same. Close observation of Figs 9, [S5](#), and [S6](#) reveals that
478 cross-correlation value fit of 1st order has inverse proportionality, and for higher order, this
479 relation is proportional in nature. The model transformation is found 100% in the case of Nu/Nu
480 Female (however, data is relatively sparse as only two cases are presented) than in the case of
481 Nu/Nu Male (2 out of 5). In the case of NSGS, this transformation is not seen in any of the 4
482 cases.

483

Figure 9. Cross-correlation values between normalized tumor volume and normalized vitreous cell density with respect to the number of days after xenograft. The blue dots represent cross-correlation values, and the red dots represent the fitted curve. Figs. 9(a)-9(c) is Nu/Nu Female; Figs. 9(d)-9(f) Nu/Nu Male; Figs. 9(g)-9(i) is NSGS Female data is used. The third column depicts data before treatment and after treatment. Each graph is indexed with a cage tag of the mouse and the order/degree of the polynomial used to fit the data. After treatment degree of polynomial decreases if treatment starts with a certain delay. The shaded region represents the error in the fitting.

484

485 4. Discussion

486 The immunoglobulins test revealed that IgG and IgM scores of female Nu/Nu nude mice
487 remain slightly higher than male Nu/Nu nude mice⁶⁷. Haematology results show that female
488 Nu/Nu mouse has more Lymphocytes ($\alpha\beta$ TCR and other) than male Nu/Nu mouse as age
489 progresses⁶⁸. As compared to the Nu/Nu nude mouse, the NSGS mouse does not have B Cells.
490 While innate immunity remains impaired in both genotypes, *NK activity in NSGS remains*
491 *impaired*, whereas, in Nu/Nu, NK cell density increases with age^{69,70}. We note that these
492 findings are not specifically estimated for vitreous humour. Immunophenotypic analysis
493 showed that 10 micron hyalocytes in rat vitreous has tissue macrophages function⁷¹. Post-
494 chemotherapy test such as Granulocyte-colony stimulating factor (GCSF) treatment increased
495 the number of nonclassical and blood monocytes, and neutrophils in NSGS mice, however does
496 not provide the best environment for the generation of human myeloid cells⁴⁸. It is also shown
497 that doxorubicin eliminates the myeloid-derived suppressor cells and enhances the capacity of
498 B Cells to activate T cells by enhancing the CD8+ T-cell proliferation and CD4+ Cells
499 responses, which were found in histopathology analysis of the our data set⁷². Tumor growth
500 depends upon effector (for example NK cells) to suppressor cell ratios (including myeloid
501 cells)⁷³. At this point, we would like to recall the observation of significant natural presence of
502 the cells, perhaps hyalocytes, in healthy retinal conditions. The already reported evidence of

503 their function include regulation of the vitreous cavity immunology, and modulation of
504 inflammation (74). These last two observations inspire to investigate hyalocytes function as
505 immunosuppressor cells. Due to dynamic nature of this study, it could be mix of cell types.
506 Overall, the presented analysis indicates that, most likely, the observed vitreous body cells are
507 effectively, immunosuppressor cells (Treg or myeloid-derived suppressor cells), as reported
508 earlier^{7,41}.

509 In brief, it is safe to say that an explicit shift in the order/polarity of the model after treatment
510 is corroborated by the affected immune response. In addition, the nanodrug treatment further
511 provides a synergistic immune response along with the innate response. In a nutshell, the
512 mathematical correlation and cross-correlation between the cell growth pattern and the tumor
513 volume provide quantitative and significant biological information on xenograft glioblastoma
514 treatment. This critical evaluation may assist biomedical scientists/physicians in the early
515 diagnosis of any carcinoma and devise therapeutic strategies for treatment by the visualization
516 of these cells in the vitreous humor.

517 5. Conclusions

518 The present work utilizes automated AI-based segmentation methods to estimate vitreous body
519 cells above the nerve fiber layer (NFL), which facilitated their 3D co-localization with tumor,
520 along with mathematical cross-correlation and correlation. Further, the cell dynamics along the
521 tumor are also depicted, and its infiltration into the tumor cluster is also co-localized using 2D
522 and 3D ocular constructs. In addition, the processed data has been compared with the
523 histopathology analysis for confirmatory evidence. As the tumor volume and vitreous body
524 cells density is shown to be mutually cross correlated, it is safe to say that this relation would
525 represent effector to suppressor cell ratio as well. It thus can be considered as a biomarker for
526 tracking cancer growth in early stages especially owing to the fact that these cells are present
527 in vitreous humor before xenograft.

528 This work is a combination of cancer biology and the application of programming for the
529 visualization and quantification of immune cells. In a nutshell, this work developed a
530 generalized rapid method that could be an appropriate vitreous biomarker for early diagnosis
531 of inflammation-related disease and ocular cancer.

532 6. Declarations

533 Ethics approval and consent to participate

534 Animals were cared for and handled in accordance with National Institutes of Health Guidelines
535 for the care and use of experimental animals and protocols approved by the Institutional Animal
536 Care and Use Committee of the University of California, Davis between Feb. 2015 till August 2016.

537 Consent for publication

538 Every person has given permission to use their images in this article.

539 Availability of data and materials

540 The data will be made available on request.

541 Competing interests:

542 The authors declare no conflict of interest and Competing interest.

543 **Funding**

544 IMPRINT 2 scheme, Project number: IMP/2018/001045, Government of India, and NCI U01
545 CA198880.

546 **Acknowledgments:**

547 MG is thankful to the Department of Science and Technology-Science & Engineering Research
548 Board (DST-SERB) under IMPRINT 2 scheme, Project number: IMP/2018/001045,
549 Government of India. MG is thankful to Dr. Rajkumar Sadasivam, and Dr. Khushboo Gulati
550 for having discussions. MG is also thankful to EyePod, UC Davis for reanalyse the data set.

551 **CRedit authorship contribution statement**

552 MG: Methodology, Data Acquisition, Investigation, Software, Writing, Visualization, funding;
553 SS: Investigation, Software, HW: Histopathology, PZ: Data Acquisition, RZ: Investigation,
554 funding.

555

556 **7. References**

- 557 1. Liu Y, Bouhenni RA, Dufresne CP, Semba RD, Edward DP. Differential Expression of Vitreous
558 Proteins in Young and Mature New Zealand White Rabbits. *PLoS One*. 2016;11(4):e0153560.
- 559 2. Monteiro JP, Santos FM, Rocha AS, Castro-de-Sousa JP, Queiroz JA, Passarinha LA, et al.
560 Vitreous humor in the pathologic scope: Insights from proteomic approaches. *PROTEOMICS –*
561 *Clin Appl* [Internet]. 2015 Feb 1;9(1–2):187–202. Available from:
562 <https://doi.org/10.1002/prca.201400133>
- 563 3. Chin AT, Baumal CR. Vitreous Imaging BT - Ocular Fluid Dynamics: Anatomy, Physiology,
564 Imaging Techniques, and Mathematical Modeling. In: Guidoboni G, Harris A, Sacco R, editors.
565 Cham: Springer International Publishing; 2019. p. 289–302. Available from:
566 https://doi.org/10.1007/978-3-030-25886-3_12
- 567 4. Hamburg A. Some Investigations on the Cells of the Vitreous Body. *Ophthalmologica*
568 [Internet]. 1959;138(2):81–107. Available from:
569 <https://www.karger.com/DOI/10.1159/000303618>
- 570 5. Sugita S, Makabe K, Iwasaki Y, Fujii S, Takahashi M. Natural Killer Cell Inhibition by HLA-E
571 Molecules on Induced Pluripotent Stem Cell–Derived Retinal Pigment Epithelial Cells. *Invest*
572 *Ophthalmol Vis Sci* [Internet]. 2018 Apr 2;59(5):1719–31. Available from:
573 <https://doi.org/10.1167/iovs.17-22703>
- 574 6. Gaggero S, Witt K, Carlsten M, Mitra S. Cytokines Orchestrating the Natural Killer-Myeloid Cell
575 Crosstalk in the Tumor Microenvironment: Implications for Natural Killer Cell-Based Cancer
576 Immunotherapy. *Front Immunol*. 2020;11:621225.
- 577 7. Ronning KE, Karlen SJ, Miller EB, Burns ME. Molecular profiling of resident and infiltrating
578 mononuclear phagocytes during rapid adult retinal degeneration using single-cell RNA
579 sequencing. *Sci Rep* [Internet]. 2019;9(1):4858. Available from:
580 <https://doi.org/10.1038/s41598-019-41141-0>
- 581 8. Rodriguez EF, Sepah YJ, Jang HS, Ibrahim M, Nguyen QD, Rodriguez FJ. Cytologic features in
582 vitreous preparations of patients with suspicion of intraocular lymphoma. *Diagn Cytopathol*.
583 2014 Jan;42(1):37–44.
- 584 9. Haynes RJ, McElveen JE, Dua HS, Tighe PJ, Liversidge J. Expression of human beta-defensins in
585 intraocular tissues. *Invest Ophthalmol Vis Sci*. 2000 Sep;41(10):3026–31.

586 10. Economopoulou M, Bdeir K, Cines DB, Fogt F, Bdeir Y, Lubkowski J, et al. Inhibition of
587 pathologic retinal neovascularization by alpha-defensins. *Blood*. 2005 Dec;106(12):3831–8.

588 11. Urbančič M, Kloboves Prevodnik V, Petrovič D, Globočnik Petrovič M. A flow cytometric
589 analysis of vitreous inflammatory cells in patients with proliferative diabetic retinopathy.
590 *Biomed Res Int*. 2013;2013:251528.

591 12. Errera MH, Goldschmidt P, Batellier L, Degorge S, Héron E, Laroche L, et al. Real-time
592 polymerase chain reaction and intraocular antibody production for the diagnosis of viral
593 versus toxoplasmic infectious posterior uveitis. *Graefe's Arch Clin Exp Ophthalmol* [Internet].
594 2011;249(12):1837–46. Available from: <https://doi.org/10.1007/s00417-011-1724-7>

595 13. Nguyen QD, Humphrey RL, Dunn JP, Humayun MS. Elevated Vitreous Concentration of
596 Monoclonal Immunoglobulin Manifesting as Schlieren in Juvenile Rheumatoid Arthritis–
597 Associated Uveitis. *Arch Ophthalmol* [Internet]. 2001 Feb 1;119(2):293–6. Available from:
598 <https://doi.org/10.1001/pubs.Ophthalmol.-ISSN-0003-9950-119-2-ecp90041>

599 14. Tran THC, Rozenberg F, Cassoux N, Rao NA, LeHoang P, Bodaghi B. Polymerase chain reaction
600 analysis of aqueous humour samples in necrotising retinitis. *Br J Ophthalmol* [Internet]. 2003
601 Jan 1;87(1):79 LP – 83. Available from: <http://bjo.bmjjournals.org/content/87/1/79.abstract>

602 15. Michelson JB, Michelson PE, Bordin GM, Chisari F V. Ocular Reticulum Cell Sarcoma:
603 Presentation as Retinal Detachment With Demonstration of Monoclonal Immunoglobulin
604 Light Chains on the Vitreous Cells. *Arch Ophthalmol* [Internet]. 1981 Aug 1;99(8):1409–11.
605 Available from: <https://doi.org/10.1001/archopht.1981.03930020283017>

606 16. Di Antonio L, Toto L, Mastropasqua A, Brescia L, Erroi E, Lamolinara A, et al. Retinal vascular
607 changes and aqueous humor cytokines changes after aflibercept intravitreal injection in
608 treatment-naïve myopic choroidal neovascularization. *Sci Rep*. 2018 Oct;8(1):15631.

609 17. Baarsma GS, Luyendijk L, Kijlstra A, de Vries J, Peperkamp E, Mertens DAE, et al. Analysis of
610 Local Antibody Productionin the Vitreous Humor of Patients With Severe Uveitis. *Am J*
611 *Ophthalmol* [Internet]. 1991;112(2):147–50. Available from:
612 <https://www.sciencedirect.com/science/article/pii/S0002939414766930>

613 18. Baarsma SG, Missotten TO, Kuijpers RW, Verjans GMGM. PCR and Goldmann–Witmer
614 Coefficient : Diagnostic Value in Uveitis of Suspected Infectious Origin . *Invest Ophthalmol Vis*
615 *Sci*. 2005 May 1;46(13):2383.

616 19. Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation: present and
617 future therapeutic targets. *Nat Immunol* [Internet]. 2005;6(12):1182–90. Available from:
618 <https://doi.org/10.1038/ni1275>

619 20. Sebag J. Imaging vitreous. *Eye (Lond)*. 2002 Jul;16(4):429–39.

620 21. Asencio-Duran M, Vallejo-Garcia JL, Pastora-Salvador N, Fonseca-Sandomingo A, Romano MR.
621 Vitreous diagnosis in neoplastic diseases. *Mediators Inflamm*. 2012;2012:930704.

622 22. Theodore FH. Conjunctival carcinoma masquerading as chronic conjunctivitis. *Eye Ear Nose*
623 *Throat Mon*. 1967 Nov;46(11):1419–20.

624 23. Levin LA, Albert DM, Johnson D. Mast cells in human optic nerve. *Invest Ophthalmol Vis Sci*.
625 1993 Oct 1;34(11):3147–53.

626 24. Goswami M, Wang X, Zhang P, Xiao W, Karlen SJ, Li Y, et al. Novel window for cancer
627 nanotheranostics: non-invasive ocular assessments of tumor growth and nanotherapeutic
628 treatment efficacy in vivo. *Biomed Opt Express* [Internet]. 2019;10(1):151–66. Available from:

629 http://www.osapublishing.org/boe/abstract.cfm?URI=boe-10-1-151

630 25. Marie-Louise J, Philippakis E, Darugar A, Tadayoni R, Dupas B. Occurrence rate of retinal
631 detachment after small gauge vitrectomy for idiopathic epiretinal membrane. *Eye (Lond)*.
632 2017 Sep;31(9):1259–65.

633 26. Karlen SJ, Miller EB, Wang X, Levine ES, Zawadzki RJ, Burns ME. Monocyte infiltration rather
634 than microglia proliferation dominates the early immune response to rapid photoreceptor
635 degeneration. *J Neuroinflammation [Internet]*. 2018;15(1):344. Available from:
636 <https://doi.org/10.1186/s12974-018-1365-4>

637 27. Sridhar MS, Sharma S, Gopinathan U, Rao GN. Anterior chamber tap: diagnostic and
638 therapeutic indications in the management of ocular infections. *Cornea*. 2002 Oct;21(7):718–
639 22.

640 28. Analytical Methods Committee AN 59. PCR – the polymerase chain reaction. *Anal Methods*
641 [Internet]. 2014;6(2):333–6. Available from: <http://dx.doi.org/10.1039/C3AY90101G>

642 29. Fekkar A, Bodaghi B, Touafek F, Le Hoang P, Mazier D, Paris L. Comparison of
643 immunoblotting, calculation of the Goldmann-Witmer coefficient, and real-time PCR using
644 aqueous humor samples for diagnosis of ocular toxoplasmosis. *J Clin Microbiol*. 2008
645 Jun;46(6):1965–7.

646 30. Kang H, Wei Y, Liu M, Yu D, Tao Y. Flow cytometric analysis of T lymphocytes and cytokines in
647 aqueous humor of patients with varicella zoster virus-mediated acute retinal necrosis. *BMC*
648 *Ophthalmol [Internet]*. 2021;21(1):193. Available from: <https://doi.org/10.1186/s12886-021-01951-1>

649

650 31. Kalchenko V V, Kuznetsov YL, Meglinski I V. Visualisation of blood and lymphatic vessels with
651 increasing exposure time of the detector. *Quantum Electron [Internet]*. 2013;43(7):679–82.
652 Available from: <http://dx.doi.org/10.1070/QE2013v043n07ABEH014953>

653 32. Phillips KG, Wang Y, Levitz D, Choudhury N, Swanzey E, Lagowski J, et al. Dermal reflectivity
654 determined by optical coherence tomography is an indicator of epidermal hyperplasia and
655 dermal edema within inflamed skin. Vol. 16, *Journal of biomedical optics*. 2011. p. 40503.

656 33. McReynolds N, Cooke FGM, Chen M, Powis SJ, Dholakia K. Multimodal discrimination of
657 immune cells using a combination of Raman spectroscopy and digital holographic
658 microscopy. *Sci Rep [Internet]*. 2017;7(1):43631. Available from:
659 <https://doi.org/10.1038/srep43631>

660 34. Paques M, Simonutti M, Augustin S, Goupille O, El Mathari B, Sahel JA. In vivo observation of
661 the locomotion of microglial cells in the retina. *Glia*. 2010 Nov;58(14):1663–8.

662 35. Saito M, Barbazetto IA, Spaide RF. Intravitreal cellular infiltrate imaged as punctate spots by
663 spectral-domain optical coherence tomography in eyes with posterior segment inflammatory
664 disease. *Retina*. 2013 Mar;33(3):559–65.

665 36. Kim B, Lee SH, Yoon CJ, Gho YS, Ahn GO, Kim KH. In vivo visualization of skin inflammation by
666 optical coherence tomography and two-photon microscopy. *Biomed Opt Express [Internet]*.
667 2015 Jul;6(7):2512–21. Available from: <http://opg.optica.org/boe/abstract.cfm?URI=boe-6-7-2512>

668

669 37. Di Vito L, Agozzino M, Marco V, Ricciardi A, Concardi M, Romagnoli E, et al. Identification and
670 quantification of macrophage presence in coronary atherosclerotic plaques by optical
671 coherence tomography. *Eur Hear Journal Cardiovasc Imaging*. 2015 Jul;16(7):807–13.

672 38. Fletcher EL. Contribution of microglia and monocytes to the development and progression of
673 age related macular degeneration. *Ophthalmic Physiol Opt J Br Coll Ophthalmic Opt.* 2020
674 Mar;40(2):128–39.

675 39. Jeon H, Kim J, Kwon S. OCT angiography of persistent hyaloid artery: a case report. *BMC*
676 *Ophthalmol* [Internet]. 2019;19(1):141. Available from: <https://doi.org/10.1186/s12886-019-1155-5>

678 40. Thouvenin ClementAU - Nahas, AmirAU - Fink, MathiasAU - Bocvara, ClaudeT1 - Full-Field
679 Optical Coherence Tomography as a Diagnosis Tool: Recent Progress with Multimodal
680 Imaging OA. No Title. Vol. 7, *Applied Sciences*. 2017.

681 41. Wang X, Miller EB, Goswami M, Zhang P, Ronning KE, Karlen SJ, et al. Rapid monocyte
682 infiltration following retinal detachment is dependent on non-canonical IL6 signaling through
683 gp130. *J Neuroinflammation* [Internet]. 2017;14(1):121. Available from:
684 <https://doi.org/10.1186/s12974-017-0886-6>

685 42. Castanos M V, Zhou DB, Linderman RE, Allison R, Milman T, Carroll J, et al. Imaging of
686 Macrophage-Like Cells in Living Human Retina Using Clinical OCT. *Invest Ophthalmol Vis Sci*
687 [Internet]. 2020 Jun 23;61(6):48. Available from: <https://doi.org/10.1167/iovs.61.6.48>

688 43. Can A, Shen H, Turner JN, Tanenbaum HL, Roysam B. Rapid automated tracing and feature
689 extraction from retinal fundus images using direct exploratory algorithms. *IEEE Trans Inf*
690 *Technol Biomed.* 1999;3(2):125–38.

691 44. Duan J, Tench C, Gottlob I, Proudlock F, Bai L. Automated segmentation of retinal layers from
692 optical coherence tomography images using geodesic distance. *Pattern Recognit* [Internet].
693 2017;72:158–75. Available from:
694 <https://www.sciencedirect.com/science/article/pii/S0031320317302650>

695 45. Kafieh R, Rabbani H, Kermani S. A review of algorithms for segmentation of optical coherence
696 tomography from retina. *J Med Signals Sens.* 2013 Jan;3(1):45–60.

697 46. Goswami M. Deep learning models for benign and malign ocular tumor growth estimation.
698 *Comput Med Imaging Graph* [Internet]. 2021;93:101986. Available from:
699 <https://www.sciencedirect.com/science/article/pii/S089561112100135X>

700 47. Larocca F, Chiu SJ, McNabb RP, Kuo AN, Izatt JA, Farsiu S. Robust automatic segmentation of
701 corneal layer boundaries in SDOCT images using graph theory and dynamic programming.
702 *Biomed Opt Express.* 2011 Jun;2(6):1524–38.

703 48. Coughlan AM, Harmon C, Whelan S, O'Brien EC, O'Reilly VP, Crotty P, et al. Myeloid
704 Engraftment in Humanized Mice: Impact of Granulocyte-Colony Stimulating Factor
705 Treatment and Transgenic Mouse Strain. *Stem Cells Dev.* 2016 Apr;25(7):530–41.

706 49. Dr. Leonard Shultz - The Jackson Laboratory. 005557 - NSG Strain Details [Internet]. [cited
707 2022 Oct 12]. Available from: <https://www.jax.org/strain/005557>

708 50. Wang X, Xiao W, Li Y, Zhang P, Goswami M, Zawadzki RJ, et al. Abstract 4226: The rodent eye
709 as a non-invasive window for understanding cancer nanotherapeutics. *Cancer Res* [Internet].
710 2016 Jul 15;76(14 Supplement):4226 LP – 4226. Available from:
711 http://cancerres.aacrjournals.org/content/76/14_Supplement/4226.abstract

712 51. Matsumoto H, Miller JW, Vavvas DG. Retinal detachment model in rodents by subretinal
713 injection of sodium hyaluronate. *J Vis Exp.* 2013 Sep;(79).

714 52. Li Y, Lin T yin, Luo Y, Liu Q, Xiao W, Guo W, et al. A smart and versatile theranostic

715 nanomedicine platform based on nanoporphyrin. *Nat Commun.* 2014;5(1):1–15.

716 53. Zhang P, Zam A, Jian Y, Wang X, Li Y, Lam KS, et al. In vivo wide-field multispectral scanning
717 laser ophthalmoscopy–optical coherence tomography mouse retinal imager: longitudinal
718 imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and
719 choroidal vasculature. *J Biomed Opt.* 2015;20(12):126005.

720 54. Guertin DA, Sabatini DM. Cell Size Control. In: eLS [Internet]. 2006. Available from:
721 <https://doi.org/10.1038/npg.els.0003359>

722 55. Fichard A, Kleman JP, Ruggiero F. Another look at collagen V and XI molecules. *Matrix Biol.*
723 1995 Jul;14(7):515–31.

724 56. Kling S, Torres-Netto EA, Abdshahzadeh H, Espana EM, Hafezi F. Collagen V insufficiency in a
725 mouse model for Ehlers Danlos-syndrome affects viscoelastic biomechanical properties
726 explaining thin and brittle corneas. *Sci Rep* [Internet]. 2021;11(1):17362. Available from:
727 <https://doi.org/10.1038/s41598-021-96775-w>

728 57. Repetto R, Dvoriashyna M. Mathematical Models of Vitreous Humour Dynamics and Retinal
729 Detachment BT - Ocular Fluid Dynamics: Anatomy, Physiology, Imaging Techniques, and
730 Mathematical Modeling. In: Guidoboni G, Harris A, Sacco R, editors. Cham: Springer
731 International Publishing; 2019. p. 303–25. Available from: https://doi.org/10.1007/978-3-030-25886-3_13

733 58. Merkle CW, Leahy C, Srinivasan VJ. Dynamic contrast optical coherence tomography images
734 transit time and quantifies microvascular plasma volume and flow in the retina and
735 choriocapillaris. *Biomed Opt Express.* 2016 Oct;7(10):4289–312.

736 59. Liu HC, Kijanka P, Urban MW. Optical coherence tomography for evaluating capillary waves in
737 blood and plasma. *Biomed Opt Express* [Internet]. 2020;11(2):1092–106. Available from:
738 <http://opg.optica.org/boe/abstract.cfm?URI=boe-11-2-1092>

739 60. HILDING AC. NORMAL VITREOUS, ITS ATTACHMENTS AND DYNAMICS DURING OCULAR
740 MOVEMENT. *AMA Arch Ophthalmol* [Internet]. 1954 Oct 1;52(4):497–514. Available from:
741 <https://doi.org/10.1001/archopht.1954.00920050499001>

742 61. Asavapanumas N, Ratelade J, Papadopoulos MC, Bennett JL, Levin MH, Verkman AS.
743 Experimental mouse model of optic neuritis with inflammatory demyelination produced by
744 passive transfer of neuromyelitis optica-immunoglobulin G. *J Neuroinflammation.* 2014
745 Jan;11:16.

746 62. Tezel G, Yang X, Luo C, Peng Y, Sun SL, Sun D. Mechanisms of immune system activation in
747 glaucoma: oxidative stress-stimulated antigen presentation by the retina and optic nerve
748 head glia. *Invest Ophthalmol Vis Sci.* 2007 Feb;48(2):705–14.

749 63. Tezel G, Edward DP, Wax MB. Serum autoantibodies to optic nerve head glycosaminoglycans
750 in patients with glaucoma. *Arch Ophthalmol (Chicago, Ill 1960).* 1999 Jul;117(7):917–24.

751 64. Wunderlich M, Chou FS, Link KA, Mizukawa B, Perry RL, Carroll M, et al. AML xenograft
752 efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human
753 SCF, GM-CSF and IL-3. Vol. 24, *Leukemia.* 2010. p. 1785–8.

754 65. Immunodeficient Mouse - Xenograft Host Comparisons | The Jackson Laboratory [Internet].
755 [cited 2022 Oct 16]. Available from: <https://www.jax.org/jax-mice-and-services/find-and-order-jax-mice/most-popular-jax-mice-strains/immunodeficient-mouse-and-xenograft-host-comparisons>

758 66. Zeng C, Zhou X, Tao S. Cross-correlation enhanced stability in a tumor cell growth model with
759 immune surveillance driven by cross-correlated noises. *J Phys A Math Theor* [Internet].
760 2009;42(49):495002. Available from: <http://dx.doi.org/10.1088/1751-8113/42/49/495002>

761 67. Vidal J. Differences of nu / + and nu / nu mice in some behaviors reflecting temperament
762 traits. *Physiol Behav* [Internet]. 1996;59(2):341–8. Available from:
763 <https://www.sciencedirect.com/science/article/pii/0031938495021353>

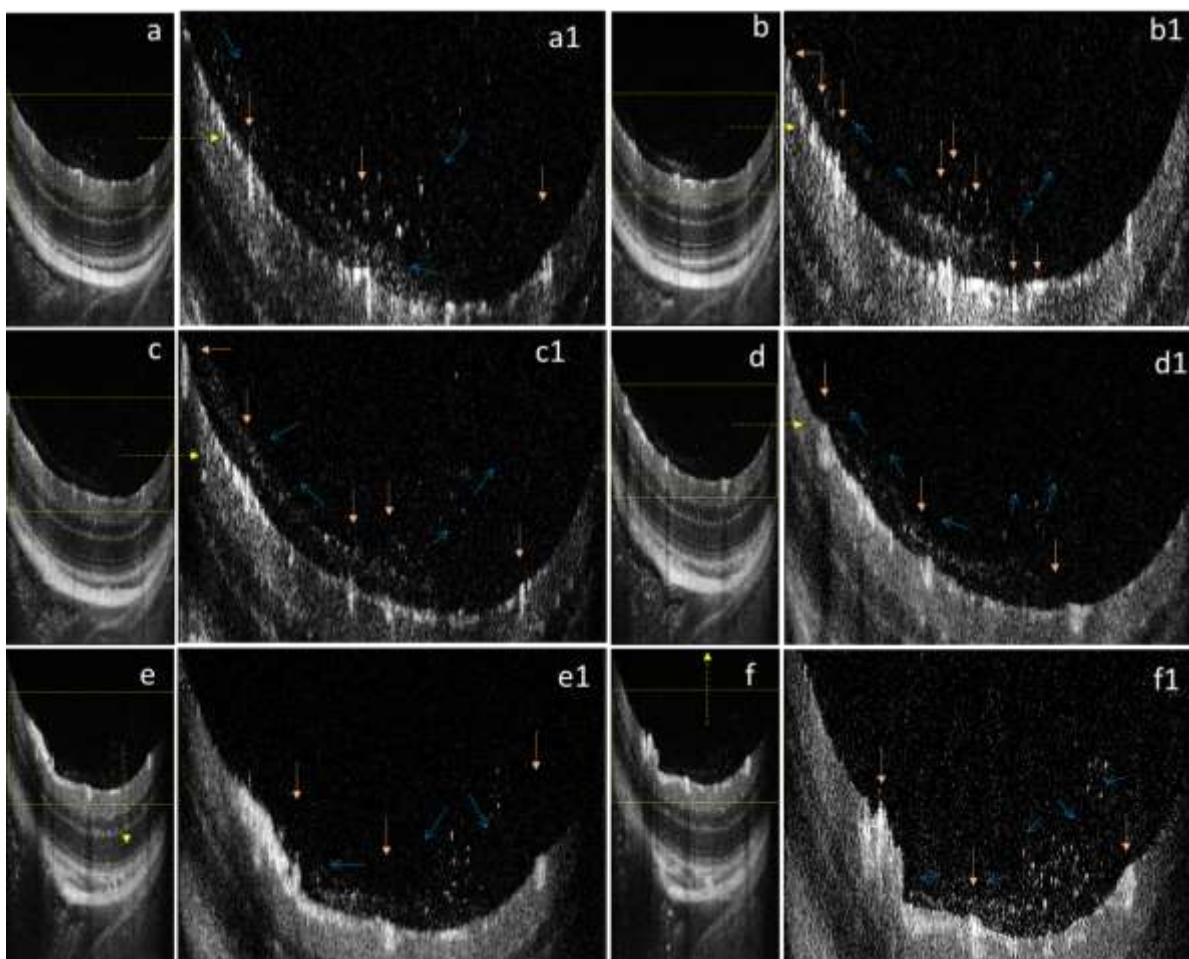
764 68. Athymic Nude Mice [Internet]. Envigo RMS Division,. [cited 2022 Oct 9]. Available from:
765 <https://insights.envigo.com/hubfs/resources/data-sheets/envigo-5193-131-leaflets-2016-nude-mouse-combination-a4-refs.pdf>

766 69. Puchalapalli M, Zeng X, Mu L, Anderson A, Hix Glickman L, Zhang M, et al. NSG Mice Provide a
767 Better Spontaneous Model of Breast Cancer Metastasis than Athymic (Nude) Mice. *PLoS One*
768 [Internet]. 2016 Sep 23;11(9):e0163521. Available from:
769 <https://doi.org/10.1371/journal.pone.0163521>

770 70. Nagatani M, Kodera T, Suzuki D, Igura S, Fukunaga Y, Kanemitsu H, et al. Comparison of
771 biological features between severely immuno-deficient NOD/Shi-scid Il2rg(null) and
772 NOD/LtSz-scid Il2rg(null) mice. *Exp Anim*. 2019 Nov;68(4):471–82.

773 71. Qiao H, Hisatomi T, Sonoda KH, Kura S, Sassa Y, Kinoshita S, et al. The characterisation of
774 hyalocytes: the origin, phenotype, and turnover. *Br J Ophthalmol*. 2005 Apr;89(4):513–7.

775 72. Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, et al. Inflammation and tumor progression:
776 signaling pathways and targeted intervention. *Signal Transduct Target Ther* [Internet].
777 2021;6(1):263. Available from: <https://doi.org/10.1038/s41392-021-00658-5>


778 73. Lesokhin AM, Merghoub T, Wolchok JD. Myeloid-derived suppressor cells and the efficacy of
779 CD8(+) T-cell immunotherapy. *Oncoimmunology*. 2013 Feb;2(2):e22764.

780

781

782 8. Supplementary

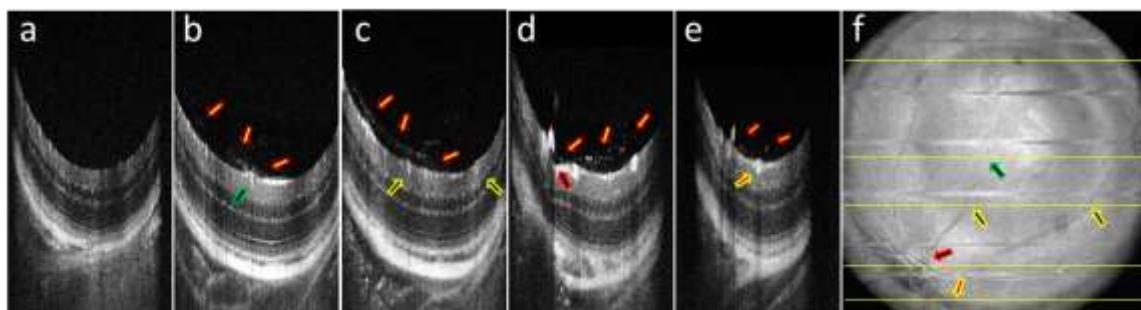

783 8.1 Vitreous Cells before xenograft in healthy mouse eye

Figure S1: Presence of Vitreous humor cells in healthy Nu/Nu Female Mouse *before Xenograft* in different positions. Figs. (a) – (f) are Bscans and (a1) – (f1) are respective portion containing ILM till Vitreous humor body (with necessary digital zoom). Figs (a1), (b1) shows relatively higher cell density to the proximity of blood vessels (marked with orange color vertical and horizontal arrows), may be acting as a source of these cells. These cells in form of stream (marked by blue thin arrows), are migratory in nature, stay near to the ILM. The migration w.r.t blood vessels indicates communication between several blood vessels via vitreous humor. Please refer to [Movie M0](#) for full data.

784

785 8.2 Stream of cells between the optical cord and other blood vessels

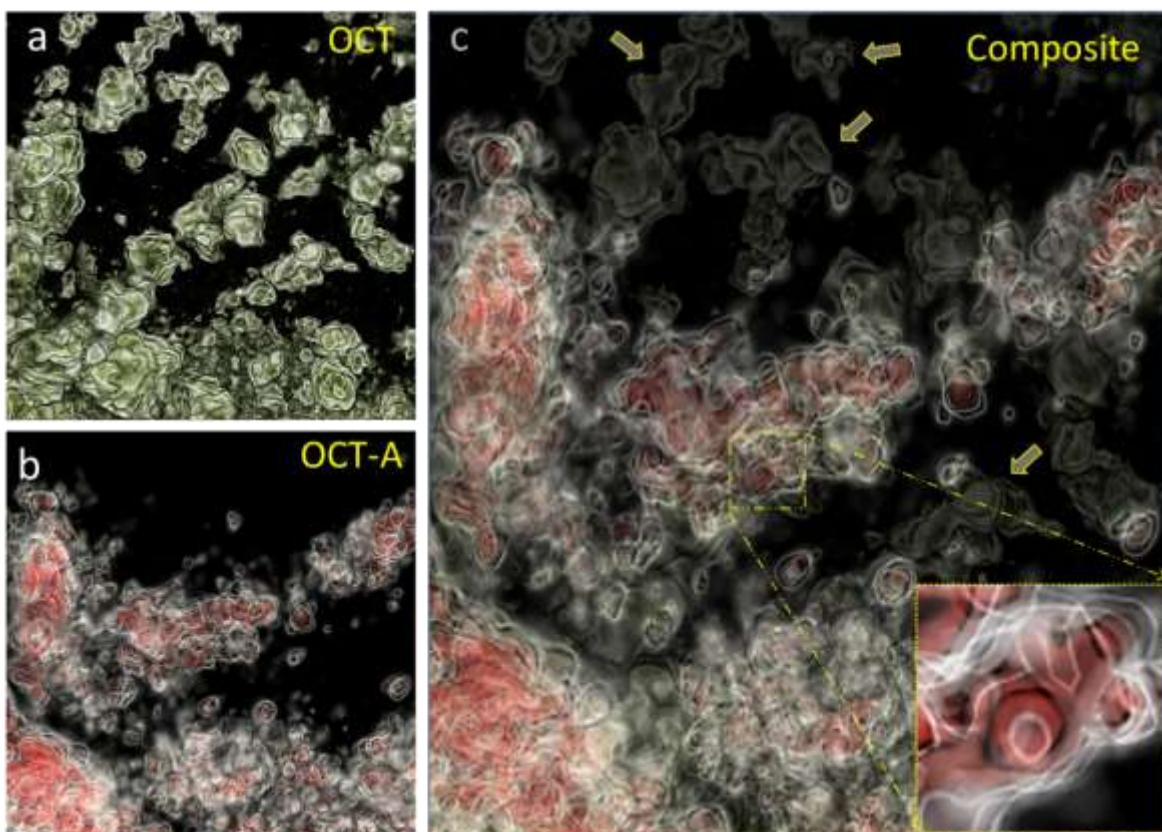


Figure S2. Presence of cells in Vitreous Humor of Nu/Nu Mice Female *before Xenograft*. Figs. S2 (a-e) shows B-Scan marked from top to bottom in En-Face shown in Fig. S2 (f). Yellow Arrows with red boundaries (in

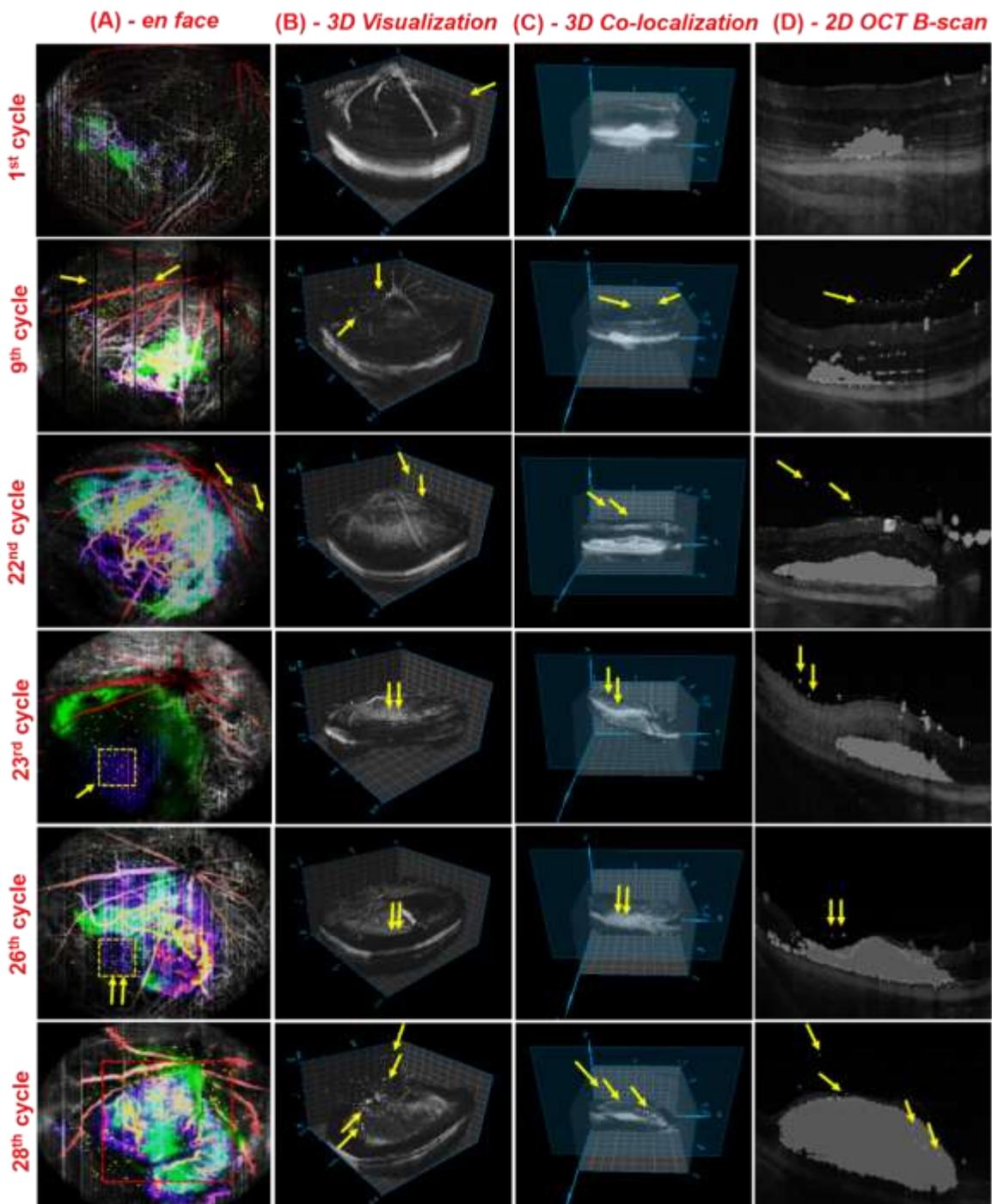
vitreous humor) shows the stream of cells in each image. Rest of the arrows (inside retina) shows origin of stream near to the blood vessels. These second set of arrows are marked in Enface with corresponding locations. [Movie M2](#) shows full healthy retinal OCT data. This composite image shows that stream of cells are connected between optical cord and other blood vessels near to ILM inside vitreous cortex only.

786

787 **8.3 Capability of imaging technique and cells in 3D**

Figure S3. Composite images highlight the presence and absence of structures relative to OCT (artificial green shade in this image) and OCT-A images, taken simultaneously. Figs. S3(a) and S3(b) slightly differ in projection angle. It indicates that specific structures missing in OCT-A were not experiencing a phase change, possibly due to negligible movement. The red part refers to the portion inside the blood vessel with motion. These structures (visible in OCT but not in OCT-A and marked using yellow arrows) Fig. S3(a) have discrete structures indicating they are not part of the retina but clumped cells. The donut shaped blood cell (~7 micron) shown in inset image in Fig. S3(c) shows capability of imaging technique providing a scale of immunoglobulin cells in vitreous humor.

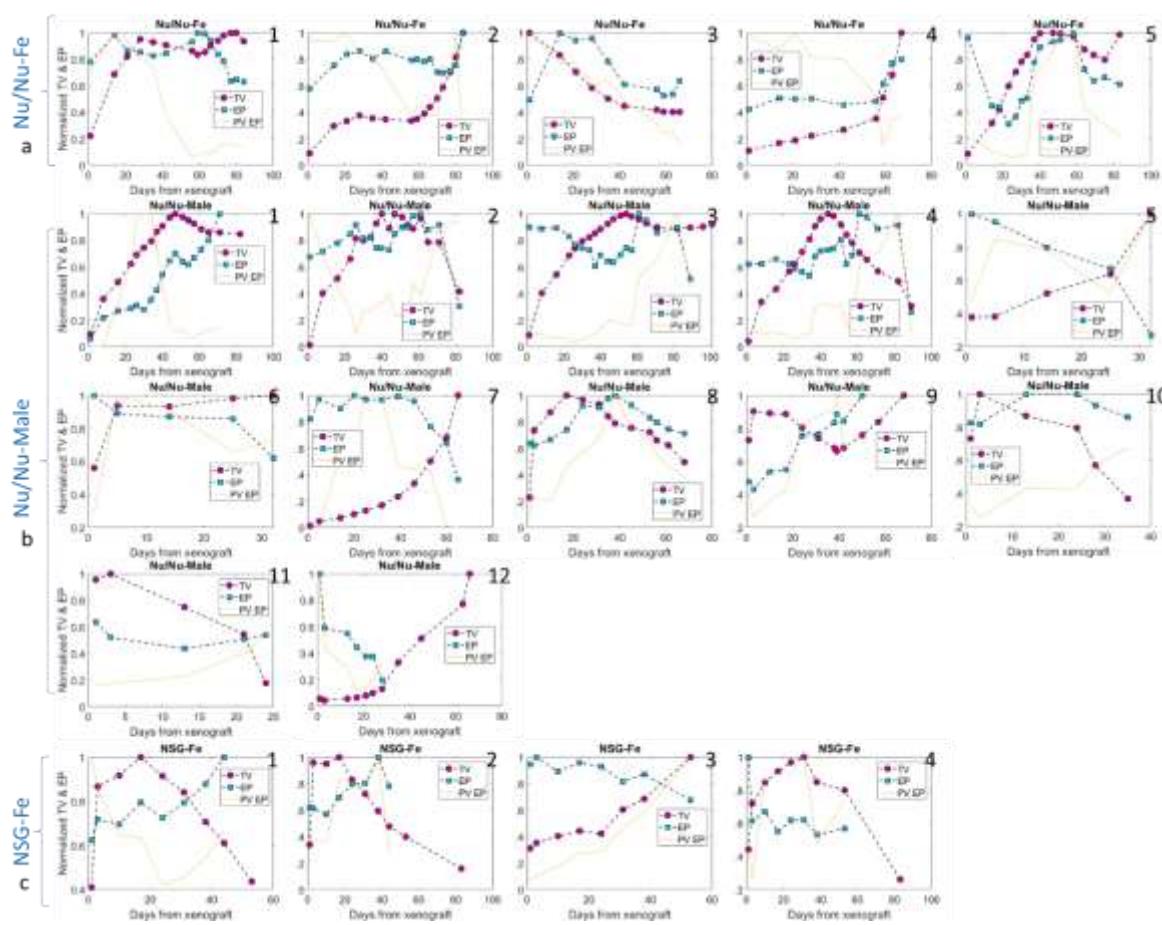
788


789 **8.4 Dynamics and infiltration of immune cells**

790 Three dimensional (3D) images of the retina were constructed to evaluate immune cell
791 migration, its infiltration, and tumor growth pattern (Figs. S4. (B) and S4. (C)). The immune
792 cells could be explicitly seen in the timeline 3D structures represented in column 2 of Figure
793 S4. (B). Subsequently, the dynamics of the immune cells can be identified and visualized in 3rd
794 column of Figure S4. (C). In brief, the timeline 3D images of Figure S4. (C) (column 3) clearly
795 indicated that on 1st cycle of imaging, the image was sliced at a certain distance from optic
796 nerve, whereas during the 9th cycle, the image segmentation was done at a different slice.
797 Similarly, the slicing varies because the location of the distribution of cells varies with time
798 due to kinetic motion and the pursuit of obtaining the exact morphology of cells.

799 This attributed that the location of the particles varies with the timeline images, which
800 further explained that immune cells are dynamic in nature. The above findings confirmed the
801 migration of immune cells along with the tumor growth. Figure. S4. (c) represented the 3D
802 sliced images of the immune cells (as elusive particles) showing the migration and infiltration
803 into the tumor over the timeline of random events that occurred in between 1 to 150 days. The
804 3D sliced images has been compared with OCT B-scan 2D images of Figure S4(D) indicated
805 the cross-section of the tumor with precise localization of infiltrating immune cells through the
806 XY plane. Also, the mapping analysis was done to visualize the immune cell generation and
807 its respective tumor behavioral pattern in the microenvironment. The mapping was shown in
808 *en face* images with different color schemes, i.e., dark red (immune cells), yellow (tumor
809 growth), and the rest of the layers (grey). The 3D constructed scheme for visualization
810 exclusively illustrated the immune cell generation, migration, and its corresponding tumor
811 growth. The constructs are represented in uniform angles for a clear vision of both immune
812 cells and tumors. This result suggested that the immune cells can be identified as prognostic
813 markers that initiate tumor growth, which could be used as a diagnostic biomarker for cancer
814 prediction.

815 8.4.1. 3D Visualization and Co-localization of immune cells


816 Multimodal imaging system OCT and SLO have been used for the *in vivo* investigation. The
817 acquired data are processed to evaluate the relationship between tumor growth pattern and the
818 presence of myeloid cells in the vitreous humor. Figure. S4. illustrated the timeline series of
819 the selective processed data set showing the ocular structure in different perspectives. Figure.
820 S4. (A) represented the *en face* real-time SLO images from 1st cycle to 28th cycle that are color
821 differentiated to identify the immune cells through the longitudinal section (aerial view). It
822 consists of tumor vasculature, choroid structure, and retinal vasculature. The tumor cluster was
823 co-localized using SLO GFP fluorescence superimposed into the choroid. The *en face* images
824 (First column) are overlaid with ocular components such as elusive particles (yellow), choroid,
825 tumor blood vessels, retinal vasculature, and the nerve fiber layer (NFL). Subsequently, the
826 processed OCT data are used to obtain 3D reconstructed greyscale images for visualization of
827 the immune cells and its infiltration into the tumor cluster (shown in 2nd column of Figure. S4.
828 (B)).

829

830 **Figure S4.** Representation of processed data set showing 3D Visualization and Co-localization of cells. A.
831 Overlay SLO *en face* images illustrating the color differentiated choroid, tumor vasculature, elusive particles and
832 nerve fiber layer (NFL), B. Timeline visualization of 3D constructed retinal structure with tumor growth
833 progression along with cell generation (indicated in white coloured particles in column B), C. Co-localization of
834 immune cell dynamics in 3-D retinal structure segmented at different Z-slices shown in Figure S4. C. (Each cycle
835 represents the particular day in which the OCT imaging was carried out during the study) D. XY 2D B-scan OCT
836 images showing the cell generation and dynamics in tumor microenvironment. (The cell dynamics is indicated
837 through yellow arrow marks in Figure S4. (D)).

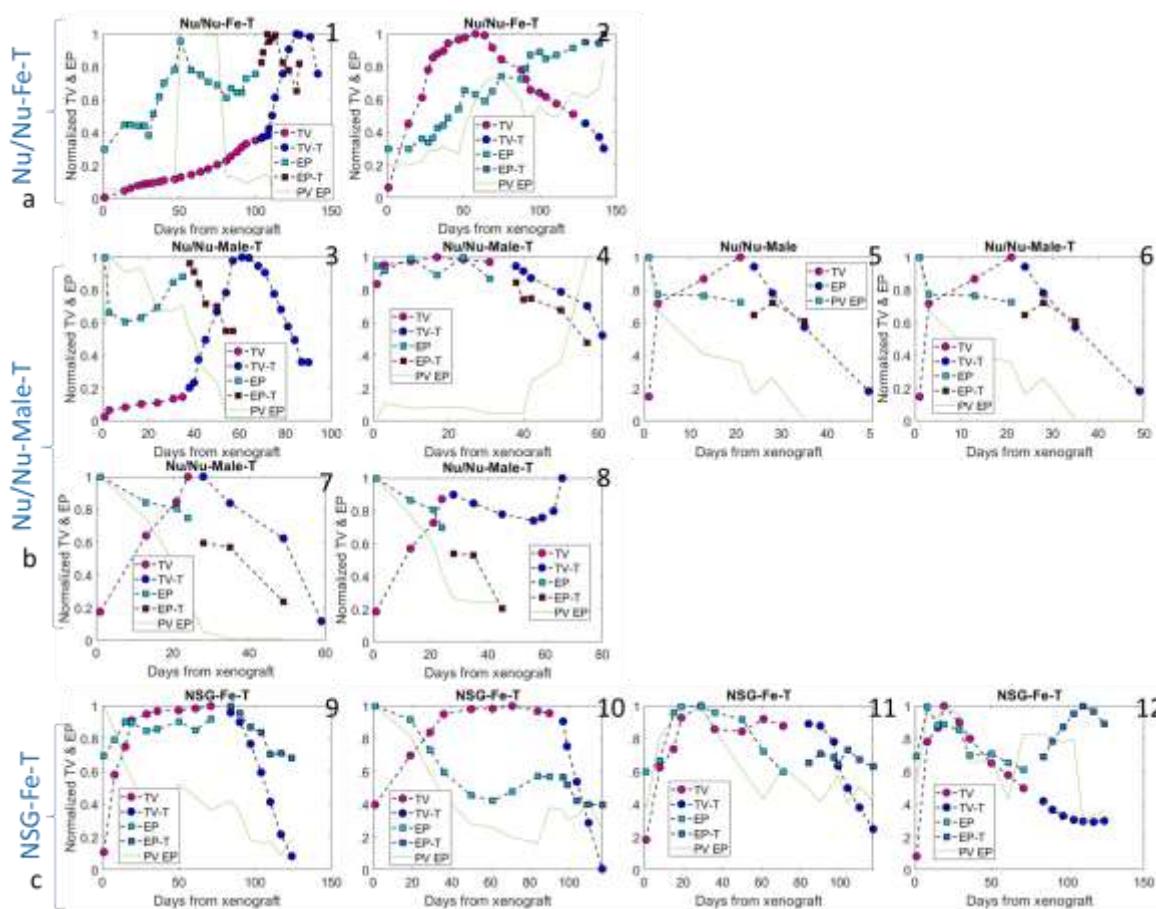

838 8.5 EP or VH. Cells vs. Days without treatment

Figure S5. Total Volume (TV) and Average Particle Density (EP or VH. Cells) vs. Days from xenograft plot. Fig. S5(a) in first row, Fig. S4(b) in center rows and Fig. S5(c) in last rows contains data plots of Nu/Nu Female, Nu/Nu Male and NSG Female mice cohort, respectively. None of the mouse in this figure is treated. Most of the graphs show almost a linear relation being followed between both of the parameters with few exceptions(2,10,12, 15, 18). These exceptions follow inverse linear relationship.

839

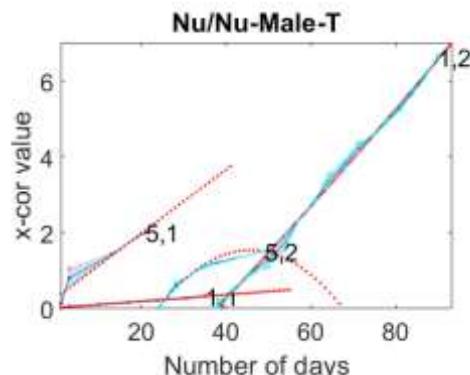

840 8.6 EP or VH. Cells vs. Days with treatment

Figure S6. Total Volume (TV) and Average Particle Density (EP or VH. Cells) vs. Days from xenograft plot. Fig. S6(a) in first row, Fig. S6(b) in center rows and Fig. S6(c) in last rows contains data plots of Nu/Nu Female, Nu/Nu Male and NSG Female mice cohort, respectively. All of the mice in this figure have gone under nanodox dynamic photodynamic imaging assisted treatment protocol. The color scheme for marker changes once the treatment data is plotted. Before treatment again almost a linear relation seems to exists between both of the parameters with few exceptions(8,10). After treatment inverse linear relation is shown in few cases (1, and 12).

841

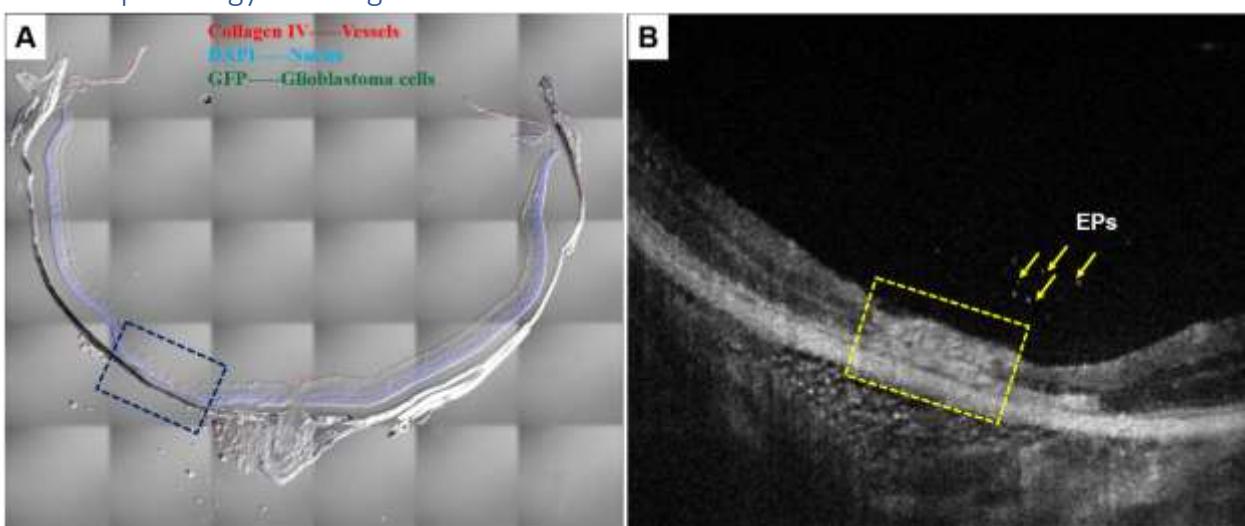

842 8.7 Cases with single degree Cross correlation fit

Figure S7. Cross correlation values between number of vitreous humor cells and tumor volume fit to polynomial of single degree (linear fit). The red markers are fitted values, dots in cyan color are original values and blue shade represent the error in fitting. The data belongs to Nu/Nu male mouse those have undergone the treatment protocol.

843

844 8.8 Histopathology showing cells

845

846 **Figure S8.** Qualitative analysis of invasive and non-invasive imaging. Invasive confocal microscopic analysis for
847 studying immunohistochemistry. **A.** Athymic nude-foxnlu mice (right eye), concentration - 250 cells/0.25 μ l,
848 with Nanoparticles Treatment (Nanodoxorubicin) and sacrificed on 05/11/2016. After treatment the tumor
849 disappeared with retina atrophy (region marked in dark blue). and Non-invasive OCT imaging of **B.** 2D B-scan
850 image of Athymic nude –foxnlu mice showing the visualization of cells in arrow and the condition of retinal
851 atrophy in XY plane.

852

853 Table ST1: Cells growth w.r.t. age/time

Cells			Function (if present)	Nu/Nu Female	Nu/Nu Male	NSGS Female(71)
L y m	T	Regulatory	Restrain NK cells	Increases significantly	Increases	Remains constant
p h o c y	N K	Mature/CD56 ^{dim}	Cytotoxic & anti-viral	Increases	Increases	Absent
		Immature/CD56 ^{bright}	Cytokine T helper cell, regulation			
t e s	B					Absent
	Neutrophils					Absent
Leukocytes						Absent
Monocytes						Absent
Microphagous			NK regulation			Defective
T suppressor						
Myeloid cells		Expressor	NK promoters			
		Suppressor	NK inhibitors			

854