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Introduction
Somatic mutations gradually accumulate in each cell 
during life, which can contribute to the development 
of age-related diseases, such as cancer1–3. Due to 
the stochastic nature of mutation accumulation, each 
cell contains a unique set of somatic variants. Am-
plification of the genome of a single cell is required 
to obtain sufficient DNA for WGS. One approach for 
this is to catalogue mutations in clonal structures that 
exist in tissues in vivo4 or after clonally expanding 
single cells isolated from tissues in vitro5,6. However, 
these approaches can only be applied to cells that 
have the capacity to clonally expand such as stem 
cells, precluding analyses of many diseased and/or 
post-mitotic differentiated cell types7. Examples of 
these are hematopoietic stem and progenitor cells 
(HSPCs) of patients with Fanconi anemia (FA), who 
suffer from progressive bone marrow failure and are 
predisposed to cancer due to an inherited deficiency 
of DNA repair8–10. Much of the research into the mu-
tagenic processes in FA HSPCs has been performed 
using mouse models11–13, because primary HSPCs 
of human patients with FA are difficult to culture and 
clonally expand in vitro14,15.

An alternative method to clonal expansion is 
the use of whole genome amplification (WGA) tech-
niques to directly amplify DNA of single cells in enzy-
matic reactions. However, single-cell WGA technol-
ogies have traditionally been hindered by technical 
limitations due to uneven and erroneous amplification 
of the genome, leading to artificial mutations, noise 
in copy number profiles and missing mutations due 
to allelic dropout16. Recently, a novel WGA method, 
called primary template-directed amplification (PTA), 
was developed, which contains several critical im-
provements over the traditionally used multiple dis-
placement amplification (MDA) protocol17. Although 
the amplification biases and allelic dropout rates of 
PTA are remarkably low, it still generates hundreds to 
thousands of false positive single base substitutions 
and indels in each amplification reaction17,18. Bioin-
formatic approaches, such as linked-read analysis 
(LiRA) and SCAN2, have been developed to filter 
and analyze WGS data of WGA samples18,19. How-
ever, these tools still have low detection sensitivi-
ties (~10-40%) and therefore most true variants are 
missed18,19. Additionally, while PTA has the potential 
to enable structural variant (SV) detection in single 
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Abstract
Detection of somatic mutations in single cells has been severely hampered by technical lim-
itations of whole genome amplification. Novel technologies including primary template-di-
rected amplification (PTA) significantly improved the accuracy of single-cell whole genome 
sequencing (WGS), but still generate hundreds of artefacts per amplification reaction. We de-
veloped a comprehensive bioinformatic workflow, called the PTA Analysis Toolkit (PTATO), 
to accurately detect single base substitutions, small insertions and deletions (indels) and 
structural variants in PTA-based WGS data. PTATO includes a machine learning approach 
to distinguish PTA-artefacts from true mutations with high sensitivity (up to 90% for base 
substitution and 95% for indels), outperforming existing bioinformatic approaches. Using 
PTATO, we demonstrate that many hematopoietic stem and progenitor cells of patients with 
Fanconi anemia, which cannot be analyzed using regular WGS technologies, have normal 
somatic single base substitution burdens, but increased numbers of deletions. Our results 
show that PTATO enables studying somatic mutagenesis in the genomes of single cells with 
unprecedented sensitivity and accuracy. 
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cells, current tools are not optimized for PTA-based 
single-cell WGS data.
	 Here, we developed the PTA Analysis Toolbox 
(PTATO), which uses a machine learning model to 
accurately filter artefacts from PTA-based WGS data 
and is optimized for SV detection. We demonstrate 
the applicability of PTATO by analyzing the genomes 
of normal HSPCs of FA patients and show that, sim-
ilar to current FA mouse models, these cells have an 
increased somatic deletion burden.

Results
Training a random forest model to filter PTA ar-
tefacts
The artefacts generated by PTA have been shown 
to follow a specific, non-random 96-trinucleotide mu-
tational profile in WGS data17,18. We hypothesized 
that we could use a machine learning approach to 
distinguish PTA artefacts from true positive variants 
based on multiple genomic features (Figure 1a). For 
this, we trained a random forest (RF) model, which 
we previously showed to be highly effective in attrib-
uting individual mutations to a specific mutational 
process20. To generate a confident set of true positive 
somatic variants for training of the classifier, we se-
quenced samples of patients with acute myeloid leu-
kemia (AML) and cell lines using regular bulk WGS 
as well as single-cell WGS after PTA (Figure 1b and 
Supplementary Table S1). Somatic variants that were 
shared between the bulk and single-cell sequenced 
samples were used as high confidence true variants. 
To obtain a high confidence set of PTA artefacts for 
training, we used PTA-based WGS of umbilical cord 
blood-derived HSPCs. Most of the unique somat-
ic variants in these cells will be PTA artefacts, be-
cause HSPCs at birth only harbor 20-50 somatic mu-
tations21–23. In total, 756 PTA artefacts and 756 true 
positive single base substitutions were used to train 
the random forest model (Figure 1b). To train the RF 
model, we used a variety of genomic features, such 
as the level of allelic imbalance of the region the vari-
ant is located in, the 10-basepair (bp) sequence con-
text around the variant, the distance to the nearest 
gene and replication timing (Figure 1c). 

The RF model calculates a probability score 
that a candidate variant is a PTA artefact. As the PTA 
efficiency can vary between samples17, a sample-spe-
cific cutoff needs to be set above which variants are 
classified as artefacts. To set an optimal cut-off for 
each sample, we applied two complementary meth-
ods (Figure 1a and Figure S1a-e). First, PTATO uses 
a linked read analysis, which is a method to detect 
artefacts with high specificity, but low sensitivity19, 
to classify the small subset of somatic variants that 
can be linked to informative germline variants as true 
or false positive. Next, it takes the PTA probability 
scores for all the variants classified by the linked read 
analysis and calculates precision-recall curves to de-

termine the optimal cutoff to discriminate these two 
groups (Figure S1c,d). Although this method works 
well to determine an optimal PTA probability cutoff for 
most samples, we noted that for some samples ac-
curate precision-recall curves could not be generated 
because these samples have too few informative true 
variants (Figure S1c,d). Therefore, we included a 
second method which calculates mutational spectra 
at varying PTA probabilities and determines the co-
sine similarities between these spectra. Subsequent-
ly, the cutoff is calculated by hierarchical clustering to 
separate one cluster with similar mutational spectra 
and low probability scores (containing true variants) 
from a cluster of high probability scores (containing 
artefacts) (Figure S1e). The RF model was predicted 
to distinguish artefacts from true positive variants rel-
atively well with an out-of-bag error rate of 0.264 and 
an area-under-the-curve for precision-recall rates of 
0.79 for single base substitutions (Figure 1d and Fig-
ure S1f). Importantly, the 96-trinucleotide mutational 
spectra of the variants predicted to be false or true 
variants were nearly the same as the profiles of the 
input PTA artefacts or true positive variants, respec-
tively (Figure 1e,f).
	 Compared to the base substitution artefacts, 
the indel artefacts caused by PTA follow an even 
more specific pattern, which is mainly characterized 
by C- or T-insertions at long homopolymers (repeats 
of the same nucleotide) (Figure 1g,h)18. We found 
that exclusively filtering indel artefacts that are re-
currently called in multiple unrelated individuals and 
filtering insertions at long (5bp+) homopolymers was 
even more effective than training a RF model for in-
del filtering (Figure S2a,b). Indeed, this former ap-
proach removed most indel artefacts, leading to indel 
burdens and patterns that were comparable between 
those found in bulk and PTA-based WGS data (Fig-
ure 1g,h). Thus, these initial validations demonstrate 
that PTATO can accurately discriminate true and 
false positive base substitutions as well as indels 
using machine learning classification and filtering 
based on recurrence, respectively.

Validation of the random forest model
To further test the performance of PTATO on samples 
that were not used in the training set, we inactivated 
the FANCC and MSH2 genes in the human AHH-1 
lymphoblast cell line using CRISPR/Cas9 gene ed-
iting (Figure S3a-c). Inactivation of these genes and 
their associated DNA repair pathways has been 
shown to induce various specific base substitution 
and indel signatures24–26, enabling us to test the per-
formance of PTATO on a variety of mutational out-
comes. We performed several sequential clonal steps 
followed by regular bulk and single-cell PTA-based 
WGS to characterize the in vitro accumulation of mu-
tations in these cells (Figure 2a and Supplementary 
Table S2). Bulk WGS of the subclones was used as 
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a control, which showed that the wildtype, FANCC-/- 
and MSH2-/- AHH1 clones acquire respectively 10.6, 
10.5 and 52.6 base substitutions and 1.02, 1.12 and 
91.1 indels per day in culture on average (Figure S4a 
and Figure 5a). The standard somatic variant calling 
pipeline (Methods) without PTATO filtering detected a 
1.37-1.86 fold higher base substitution rate and a 12-
29 fold higher indel rate in the PTA-amplified wildtype 

and FANCC-/- samples compared to the subclones 
analyzed by bulk WGS (Figure 2b,c, Figure S4b and 
Figure 5b-c). PTATO removed most excess muta-
tions, leading to similar mutation rates between the 
bulk WGS-analyzed subclones and the PTA samples 
(Figure 2b,c, Figure S4a-b and Figure S5a-c). Filter-
ing by PTATO also improved the similarity between 
the mutational profiles of the PTA-amplified samples 
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Figure 1. Accurate filtering of PTA artefacts using machine learning and recurrency filtering. a, Outline of the PTATO workflow to classify 
candidate base substitutions as true variants or PTA artefacts. The trained PTATO RF model calculates the probability that each variant is a PTA 
artefact. Subsequently it uses a linked read analysis and cosine similarity calculations to determine a sample-specific probability cutoff. b, 
Overview of the samples and variants (with their linked read classifications) that are used as PTA artefacts or true variants to train the RF model. 
Numbers above the bars indicate the number of variants per sample that could be analyzed by the linked read approach. c, Importance of the top 
10 features used by the RF model to distinguish true variants from PTA artefacts. POS indicates the genomic position in base pairs relative to the 
mutation (m = minus, p = plus). d, Precision-recall curve showing the performance of the random forest using all input variables on the out-of-bag 
training data for different probability cutoffs. e, The 96-trinucleotide mutational spectra of the base substitutions that were used as PTA artefact or 
true positive input for training the RF model (left) and the profiles of the base substitutions that were classified as true or false by the model during 
cross-validation (right). f, Heatmap showing the cosine similarities between the base substitutions used in the training set and the base substitu-
tions classified during cross-validation and the previously defined mutational signature of PTA artefacts. g, Spectra of indels detected in bulk WGS 
data of AML blasts (top) or before (center) and after (bottom) PTATO filtering of PTA-based WGS data of a HSPC of the same individual. h, 
Numbers and types of indels detected before (top) and after (bottom) PTATO filtering. MH, microhomology.
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and the profiles of the corresponding bulk WGS-an-
alyzed subclones (Figure 2d, Figure S4c-g and Fig-
ure S5d-e). As shown for the MSH2-/- cell sequenced 
after PTA, PTATO can also accurately remove PTA 
artefacts from samples with low amplification quality, 
although the sensitivity to detect true variants is re-
duced due to uneven coverage of the genome (Fig-
ure 2b-g, Figure S4 and Figure S5).
	 The somatic variants detected in the (sub)
clones should also be present in the corresponding 
PTA-amplified samples derived from those (sub)
clones and thereby form a reliable set of true positive 
variants. Between 45-69% of the base substitutions 
and 31-56% of the indels that were detected in the 
(sub)clones were also reported in the PTA-amplified 
cells after PTATO filtering (Figure 2f,g). The clonal 
variants absent in the PTA-amplified cells were main-
ly missed due to low coverage and allelic dropout, 

predominately indicating a limitation of the PTA re-
action instead of incorrect filtering by PTATO (Figure 
2f,g). Importantly, only 10-16% of the base substitu-
tions and 5-27% of the indels found in both the (sub)
clones and the PTA-amplified cells were classified as 
a PTA artefact by PTATO, showing that PTATO has a 
mean sensitivity of 86.8% in discriminating true sin-
gle base substitutions from artefacts (Figure 2f,g). In 
comparison, SCAN2, a recently developed genotyper 
for PTA single-cell WGS data18, reported on average 
only 48.8% of the callable variants shared between 
these PTA-amplified cells and bulk WGS-analyzed 
(sub)clones (~78% less than PTATO). This finding 
is in line with the ~46% sensitivity reported for this 
tool18. Indels could not be assessed by SCAN2 for 
these samples, because it required more PTA sam-
ples to build a cross-sample filter list.

We further validated the performance of 
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Figure 2. Filtering by PTATO enables accurate analyses of somatic mutation patterns and burdens. a, Schematic overview of the clonal 
steps performed for the three types of clonal cell lines generated in this study. Numbers indicate the days (d) in culture between the single cell 
sorts, which are used to calculate mutation rates for each cell line. b, Accumulation of base substitutions per sample since the first clonal step. 
The circles and diamonds indicate the number of base substitutions detected in the PTA samples before and after PTATO filtering, respectively. 
c, Observed versus expected number of base substitutions (left) and indels (right) in the PTA samples before (orange) and after (green) filtering 
by PTATO. d, Heatmap showing the cosine similarities between the 96-trinucleotide profiles of the unique base substitutions before PTATO 
filtering (RAW), after PTATO filtering, after SCAN2 calling or the mutations removed by PTATO (FAIL) and the profiles of the subclones analyzed 
by bulk WGS or the previously defined PTA artefact signature. e, Heatmap showing the cosine similarities between the profiles of the unique 
indels before PTATO filtering (RAW), after PTATO filtering or the mutations removed by PTATO (FAIL) and the indel profiles of the subclones 
analyzed by bulk WGS or the list of recurrent indels used for filtering. f-g, Fractions of base substitutions (f) and indels (g) present in the subclones 
that are also detected (PASS) in the PTA samples originating from these subclones by PTATO or SCAN2 (SCAN2 could not be used to study 
indels in these samples). Bottom panels show the base substitutions (f) and indels (g) after excluding the variants with low coverage (LOW_COV), 
low genotype quality (LOW_QC) or undetected variants (ABSENT). Few shared variants are (mis)classified as artefact (FAIL) in the PTA samples.
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PTATO by applying it to a previously published PTA-
based WGS dataset of human umbilical cord blood 
cells that were treated with a vehicle (VHC) control 
or with different dosages of the mutagens D-mannitol 
(MAN) or N-ethyl-N-nitrosourea (ENU)17. Mutational 
signature analysis showed that filtering by PTATO re-
moved most variants associated with the mutational 
signature of PTA artefacts, while keeping most single 
base substitutions associated with signature SBS5 
and/or the ENU-associated signature27 (Figure S6). 
These validations show that PTATO can effective-
ly filter single base substitutions and indel artefacts 
from PTA-based WGS data from different sources, 
enabling accurate analyses of somatic mutational 
burdens, patterns, and signatures in single cells.

Unaltered patterns of indels in most HSPCs of pa-
tients with FA
To study the consequences of inactivation of the FA 
pathway in human HSPCs in vivo, we aimed to an-
alyze the genomes of single HSPCs of multiple indi-
viduals with FA. However, although we flow sorted at 
least 200 single HSPCs from six patients for in vitro 
clonal expansion, only for two patients a limited num-
ber of clones (one and eight, respectively) expand-

ed to a size large enough for bulk WGS, underlining 
the need for direct single-cell WGS. Therefore, we 
used PTA followed by PTATO analysis to study the 
genomes of single HSPCs derived from bone marrow 
aspirates of five different individuals with FA (Table 
1). In addition, we analyzed the genomes of bulk AML 
blasts and three PTA-amplified (pre-)leukemic stem 
cells from a patient with FA (IBFM35) who developed 
AML after a failed hematopoietic stem cell transplan-
tation. 
	 First, we compared the PTATO-filtered base 
substitutions detected in the HSPCs of individuals 
with FA with previously generated WGS data of 34 
clonally expanded HSPCs of 11 healthy donors21,22. 
This comparison showed that most of the FA HSPCs 
had similar somatic single base substitution burdens, 
patterns and signatures as HSPCs of healthy individ-
uals (Figure 3 and Figure S7). Patient PMCFANC02, 
whose FA was caused by biallelic germline variants in 
the FANCD1/BRCA2 gene, and AML patient IBFM35 
formed exceptions with respectively threefold and 
twofold higher somatic base substitution burden than 
expected for their age (Figure 3a,b). The elevated 
mutation burden in PMCFANC02 is mostly caused by 
base substitutions characterized by signature SBS3, 
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Figure 3. PTATO detects normal single base substitution burdens in most human FA HSPCs. a, Correlation of the number of single base 
substitutions per HSPC genome of healthy donors (gray points) and patients with FA. Linear mixed modelling showed that healthy HSPCs 
accumulate base substitutions in a linear fashion with age21,22. The 95% confidence interval and the prediction interval of the model are indicated 
by the dark gray and light gray shading, respectively. b, Ratios between the observed and expected number of base substitutions per genome 
(sorted on age) based on extrapolation of the age linear mixed model. To match the ages of the patients with FA, only 12 HSPCs of four healthy 
donors (HSCT1-4, ages 7 to 14) are included in this and following panels. Adjusted P-values indicate multiple testing corrected significant 
differences (padj<0.05) between three FA patients and the age-matched healthy donors (Bonferroni-corrected Wilcoxon Mann–Whitney test). c, 
Mutation spectra showing the relative contribution of each base substitution type in the genomes of the donors. Numbers above the bar indicate 
the total number of base substitutions found in the samples from each individual. d, The averaged 96-trinucleotide mutational profiles of the 
HSPCs of the four healthy individuals (HSCT1-4), the patients with mutations in FANCA or FANCC (PMCFANC01, PMCFANC03, PMCFANC06, 
PMCFANC08), and the patient with mutations in BRCA2 (PMCFANC02). e, Contribution of base substitution mutational signatures commonly 
found in blood cells to each FA sample or healthy individual (averaged). Horizontal black lines indicate the expected number of base substitutions 
based on age. Samples sequenced with bulk WGS are indicated by an asterisk. f, Cosine similarities between the mean 96-trinucleotide mutation-
al profiles of the HSPCs of FA patients with the profiles of the healthy HSPCs from the four age-matched donors and the mutational signatures.
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which is associated with homologous recombination 
deficiency28,29, and which is barely detected in the 
other FA patients (Figure 3c-f).
	 Subsequently, we compared the somatic in-
del accumulation between HSPCs of patients with 
FA and healthy bone marrow donors. The FA HSPCs 
showed relatively high indel burdens, but only pa-
tients PMCFANC02 (FANCD1/BRCA2) and IBFM35 
had a significantly increased indel burden compared 
to healthy HSPCs (even in their bulk-sequenced 
clones and leukemic blasts) (Figure 4a,b). These rel-

atively high indel burdens in FA HSPCs did not seem 
to be caused by a specific type of indel (Figure 4c,d). 
These findings, which are in line with observations in 
FA mouse models12 and FA cell lines24, confirm that 
PTATO-based filtering of PTA-based WGS data can 
be used to accurately study somatic mutations in sin-
gle cells that cannot be clonally expanded in vitro.
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Figure 4. Small insertions and deletions in HSPCs of patients with FA. a, Correlation of the number of single base substitutions per HSPC 
genome of healthy donors (gray points) and patients with FA. Linear mixed modelling showed that healthy HSPCs accumulate indels in a linear 
fashion with age21,22. The 95% confidence interval and the prediction interval of the model are indicated by the dark gray and light gray shading, 
respectively. b, Ratios between the observed and expected number of indels per genome (sorted on age) based on extrapolation of the age linear 
mixed model. To match the ages of the patients with FA, only 12 HSPCs of four healthy donors (HSCT1-4, ages 7 to 14) are included in this and 
following panels. P-values indicate multiple testing corrected significant differences (padj<0.05) between three FA patients and the age-matched 
healthy donors (Bonferroni-corrected Wilcoxon Mann–Whitney test). c, Indel spectra showing the relative contribution of the main indel types in 
the genomes of the donors. Numbers above the bar indicate the total number of indels found in the samples from each individual (without extrapo-
lation). d, Total indel profiles of the HSPCs of the four healthy individuals (HSCT1-4), the patients with mutations in FANCA or FANCC (PMC-
FANC01, PMCFANC03, PMCFANC06, PMCFANC08), and the patient with mutations in BRCA2 (PMCFANC02).

Table 1: FA patient characteristics at moment of bone marrow puncture
Individual Age 

(years)
Affected 
FA gene

FA driver mutations HSC 
clones

Bone 
marrow 
cellularity

Hematological 
status

Cytogenetic 
aberrations

PMCFANC01* 7.9-8.4 FANCC c.67delG;c.67delG 1 Moderate/
Low

Normal/Mild cyto-
penia

None

PMCFANC02 15.9 FANCD1/
BRCA2

c.5213_5216delCTTA;
c.9302T>G

8 Moderate Normal None

PMCFANC03 15 FANCA c.1361_1370delCCTCCTTTGG; 
c.1361_1370delCCTCCTTTGG

0 Low Mild cytopenia None

PMCFANC06 17 FANCA c.67delG;c.67delG 0 Moderate Normal None

PMCFANC08 10.3 FANCA c.2151+1dup;c.2121delC 0 Moderate Mild cytopenia None

IBFM35 14.8 FANCA c.3639delT;
c.3639delT

0 ND AML NA

* Bone marrow aspirates from PMCFANC01 were collected at two different time points.
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Accurate detection of structural variants in PTA-
based sequencing data
It has been shown that HSPCs of FA mouse models 
and squamous cell carcinomas of human patients 
with FA have high burdens of somatic structural vari-
ants (SVs)12,30. Existing bioinformatic tools for sin-
gle-cell WGS are usually limited to the detection of 
copy number changes based on read depth31 and 
we found that more comprehensive SV calling pipe-
lines for bulk WGS data detect many false positive 
variants in PTA-based data (Figure 5a and Figure 
S8). To study somatic SVs in the HSPCs of the pa-

tients with FA, we needed to optimize an SV calling 
and filtering approach specifically designed for PTA-
based WGS data. We used the WGS data of the pa-
tient with AML (IBFM35), for who we also have bulk 
WGS data of AML blasts confirming the presence of 
different types of SVs, to optimize the SV filtering ap-
proach (Figure 5a). PTATO integrates calling of SVs 
by GRIDSS32 and COBALT33 based on read depth, 
B-allele frequencies, split reads and discordant read 
pairs followed by various normalization and filtering 
steps tailored for PTA-based WGS data (Figure 5b, 
Figure S8 and Methods). This approach enables ac-
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Figure 5. SV filtering by PTATO reveals an increased deletion burden in HSPCs of patients with FA. a, Circos plots showing copy number 
variants (CNVs) and balanced SVs in a PTA (left/center) and bulk WGS sample (right) of patient IBFM35. The standard SV calling pipeline for bulk 
WGS generates hundreds of false positive calls in PTA samples (left), most of which are removed by PTATO filtering (center), leading to similar 
SV profiles as a sample sequenced by bulk WGS (right panel). b, Schematic overview of the SV calling and filtering strategy tailored for 
PTA-based WGS data implemented in the PTATO pipeline. c, Copy number plots (100kb windows) of the AML-bulk sample analyzed by the 
bulk-WGS SV calling pipeline and three PTA samples analyzed by PTATO. d, Deviation of allele frequency (DAF) plots (100kb windows) of the 
AML-bulk sample and three PTA samples. The DAF depicts the absolute difference between 0.5 (perfect heterozygosity) and the actual allele 
frequency of a germline variant. e, Number of SVs (>10kb in size) that are present in the HSPCs and present (“Overlapping”) or absent (“Addition-
al”) in the AML-bulk, or present in the bulk but absent in the HSPCs (“Missing”). f, Number of deletions (>25bp) detected by GRIDSS and PTATO 
in genomes of HSPCs of FA patients or healthy donors (including 5 cord blood samples sequenced after PTA). Numbers shown above the bars 
indicate the number of individuals per group. The P-value was calculated by Wilcoxon Mann–Whitney test. g, Size (in bp) of each detected 
deletion in HSPCs of healthy donors and patients with FA (no significant difference Wilcoxon Mann–Whitney test). Numbers above the boxes 
indicate the total amount of deletions per group. h, Distribution of the sizes of deletions in human and mice12 HSPCs with different genetic 
backgrounds. 
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curate detection of most SVs that were present in the 
AML bulk sample while reducing the number of false 
positive calls (Figure 5c). Several SVs present in the 
leukemic blasts are not detected in the HSPCs, sug-
gesting that these HSPCs are non- or pre-leukemic 
cells (Figure 5c).
	 After optimization of SV detection in PTA-
based WGS data, we looked for the presence of so-
matic SVs in the HSPCs of the other patients with 
FA. We did not observe any large chromosomal ab-
normalities or translocations (Figure S9). However, 
we observed 13 deletions with read depth, B-allele 
frequency (if overlapping germline variants) and split 
read/discordant read pair support in the 10 cells with 
sufficient quality ranging from 41 to 29850bp (Figure 
5f-h and Supplementary Table S3). The deletions 
were detected in both the PTA-amplified HSPCs as 
well as the clonally expanded HSPCs, indicating that 
the detected deletions are probably not artefacts. Ad-
ditionally, we rarely observed deletions larger than 
100bp in the healthy HSPCs sequenced after clonal 
expansion or PTA, further supporting that there is an 
increased burden of deletions in HSPCs of FA pa-
tients (Figure 5f-h). 

Discussion
The introduction of PTA greatly improved the accura-
cy of single-cell WGA, leading to rapid adoption in the 
field17,18,34–36. However, bioinformatic tools making op-
timal use of the potential of PTA have been lacking. 
To address this, we developed the PTATO pipeline 
that can accurately distinguish true positive single 
base substitutions, indels and SVs from false positive 
artefacts in PTA-based WGS data. The main benefit 
of PTATO over other tools, in addition to SV filtering, 
is the relatively high sensitivity of 86.8% (~78% high-
er than SCAN2) to distinguish true base substitutions 
from artefacts. This means that less extrapolation is 
required to estimate the true somatic mutation bur-
den in cells, which may be especially important for 
driver mutation detection and retrospective lineage 
tracing experiments. The RF model included in PTA-
TO can be easily retrained if the mutational profiles 
that are studied are markedly different from the pro-
files of blood cells that we studied here, making it a 
flexible tool.
	 We demonstrated the performance of PTATO 
by analyzing the genomes of single HSPCs of pa-
tients with FA, which could not be clonally expand-
ed in vitro for bulk WGS. This analysis showed that 
most HSPCs of patients with FA have similar somatic 
mutations burdens as HSPCs of healthy donors, but 
with an increased number of deletions. These re-
sults are in line with findings in mouse models and 
cell lines of FA12,24. The increased deletion burden 
suggests an increased occurrence of double strand-
ed breaks and/or incorrect repair of these breaks in 
FA HSPCs, which fits with the molecular functions 

of the FA DNA repair pathway8. It is likely that there 
is selection against HSCs with more genomic rear-
rangements without the necessary driver mutations 
to survive, leading to a gradual depletion of such 
HSCs in FA patients. The analyzed HSPCs of one 
FA patient with germline FANCD2/BRCA2 mutations 
showed strongly elevated somatic mutation rates, 
which is consistent with the broader role of BRCA2 
independent of the FA DNA repair pathway37. This 
also highlights that the phenotypic heterogeneity be-
tween FA patients may be accompanied by genomic 
heterogeneity in HSPCs between patients38. Further 
studies including larger patient cohorts are required 
to characterize this genomic heterogeneity, which is 
likely dependent on the causative germline mutations 
and disease progression stage. 

We showed that our PTATO filtering approach 
improves the usability of PTA, further narrowing the 
gap in data quality between single-cell WGS and reg-
ular bulk WGS. This will be especially important for 
the genomic analyses of cells that cannot be clonal-
ly expanded for regular WGS, such as diseased or 
differentiated cells. The accurate characterization of 
single-cell whole genomes by PTA followed by PTA-
TO analysis enables the study of ongoing mutational 
processes in tissues and cancers, because this com-
bined approach is not limited to analysis of relatively 
early, clonal mutations like regular bulk WGS39. We 
foresee that such single-cell genome analyses made 
possible by PTATO will yield an unprecedented view 
of tumor heterogeneity and cancer evolution. 
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Methods
Human bone marrow and umbilical cord blood 
samples
Bone marrow samples were obtained from the bio-
bank of the Princess Máxima Center for Pediatric 
Oncology with ethical approval under proposal PM-
CLAB2018-007 and PMCLAB2019-027. Written in-
formed consents from the included individuals were 
obtained by the Princess Máxima Center. The use of 
material for this study was approved by the Biobank 
and Data Access Committee of the Princess Máxi-
ma Center. The umbilical cord blood sample of donor 
CB15 was obtained via the University Medical Center 
Utrecht (UMCU). The collection of cord blood sam-
ples was approved by the Biobank Committee of the 
UMCU (protocol number 19-737). Informed consent 
for these samples was obtained by the UMCU. The 
samples from IBFM26 and IBFM35 were obtained 
from the German Society of Pediatric Oncology and 
Hematology (GPOH), who also obtained informed 
consent from these individuals.

Flow cytometry and primary cell culture
Lin− CD34+ HSPCs were single-cell sorted by fluores-
cence-activated cell sorting (FACS) on an SH800S 
Cell Sorter (Sony) for clonal expansion or PTA. The 
following antibodies were used for staining: CD34-
BV421 (clone 561, 1:20), lineage (CD3/CD14/CD19/
CD20/CD56)-FITC (clones UCHT1, HCD14, HIB19, 
2H7, HCD56, 1:20), CD38-PE (clone HIT2, 1:50), 
CD90-APC (clone 5E10, 1:200) and CD45RA-Per-
CP/Cy5.5 (clone HI100, 1:20). AML blasts were se-
lected based on diagnostic immunophenotyping data 
if available. In most cases, these blasts were CD33, 
CD38, and/or CD34 positive. All FACS antibodies 
were obtained from BioLegend.
	 HSPCs sorted for clonal expansion were cul-
tured in HSPC culture medium for 4 to 7 weeks at 
37°C in 5% CO2 before collection. HSPC culture me-
dium consisted of StemSpan SFEM medium (STEM-
CELL Technologies) supplemented with SCF (100 
ng/ml), FLT3 ligand (100 ng/ml), IL6 (20 ng/ml), IL3 
(10 ng/ml), TPO (50 ng/ml), UM729 (500 nmol/l), and 
Stemregenin (750 nmol/l). Additionally, mesenchymal 
stromal cells (MSCs) were cultured from a fraction of 
bone marrow aspirates by plating cells in 12-well cul-
ture dishes with DMEM-F12 medium (Thermo Fisher 
Scientific) supplemented with 10% fetal bovine se-
rum. The medium was refreshed every other day to 
remove nonadherent cells, and MSCs could be har-
vested when confluent (after approximately 2 to 3 
weeks).

Generation of gene knockouts in AHH-1 cell lines
Human B-lymphocyte AHH-1 (CRL-8146) cells were 
purchased from ATCC. Cells were cultured in RPMI 
1640 GlutaMAX medium (Thermo Fisher Scientif-
ic) supplemented with 1% Penicillin-Streptomycin 

(Thermo Fisher Scientific) and 10% horse serum 
(Thermo Fisher Scientific). Guide RNAs (FANCC: 
5’-GCAAGAGATGGAGAAGTGTA-3’ and MSH2: 
5’-GTGCCTTTCAACAACCGGTTG-3’) were cloned 
into pSpCas9(BB)-2A-GFP (PX458) vector (Ad-
dgene#48138). AHH-1 cells were transfected using 
Lipofectamine 2000 (Thermo Fisher Scientific). One 
to two days after transfection, GFP-positive transfect-
ed cells were single-cell sorted for clonal expansion 
on a SH800S Cell Sorter (Sony), which was also 
used for subsequent clonal steps. 

MSH2 inactivation was confirmed using west-
ern blot, Sanger sequencing and WGS. The follow-
ing antibodies were used for western blotting: rabbit 
anti-MSH2 (D24B5, 1:2000, Cell Signaling Technol-
ogy) and mouse anti-α-Tubulin (T5168, 1:5000, Sig-
ma-Aldrich). Anti-rabbit IgG IRDye 800CW (1:10000, 
Li-Cor) and anti-mouse IgG IRDye 680RD (1:10000, 
Li-Cor) were used as secondary antibodies. Western 
blots were imaged on an Odyssey DLx imaging sys-
tem (Li-Cor). 

FANCC inactivation was validated by Sanger 
sequencing, WGS and MMC sensitivity assay. For the 
MMC assay, 5000 cells were plated per well (96-well 
plates) containing 100ml medium supplemented with 
different concentrations (0, 5, 10, 50, 100, 500 and 
100 nM) of MMC (Sigma-Aldrich) in triplicate. After 
5 days of incubation, cell survival was measured us-
ing the CellTiter-Glo Luminescent Cell Viability Assay 
(Promega) according to the manufacturer’s protocol. 

For the MSH2-/- clonal line, two additional 
consecutive clonal steps were performed (after 48 
and 36 days in culture, respectively), and single cells 
were sorted for PTA 47 days after the third clonal 
step (Figure 2a). For the FANCC-/- clonal line, a sec-
ond clonal step was performed 58 days after the first 
clonal step, and PTA was performed 56 days after 
the second clonal step (Figure 2a). Four clonal lines 
were generated for the wildtype cells (Figure 2a). 
From these four clones, two underwent an addition-
al clonal step (43 and 69 days after the first clonal 
step) and two were single cell sorted for PTA (84 and 
87 days after the clonal step). Cells were harvested 
for DNA extraction when (sub-)clonal lines were suf-
ficiently expanded after single cell sorts.

PTA, DNA isolation and WGS
PTA was performed using the ResolveDNA Whole 
Genome Amplification Kit (BioSkryb Genomics) ac-
cording to the manufacturer’s protocol. Instead of 10 
minutes cell lysis on ice as indicated in the protocol, 
lysis was performed by 5 minutes incubation on ice 
followed by 5 minutes incubation at room tempera-
ture to maximize DNA denaturation as previously 
described34. DNA samples from bulk AML and bulk 
MSCs (for germline control) were isolated using the 
DNeasy DNA Micro Kit (QIAGEN) or DNeasy Blood 
& Tissue Kit (QIAGEN) according to the manufac-
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turer’s instructions. WGS libraries were generated 
using standard protocols (Illumina). Libraries were 
sequenced to 15-30x genome coverage (2x150bp) 
on an Illumina NovaSeq 6000 system at the Hartwig 
Medical Foundation (Amsterdam, the Netherlands).

WGS read alignment and variant calling
WGS reads were mapped against the human refer-
ence genome (GRCh38) using the Burrows-Wheel-
er Aligner (v0.7.17) mapping tool with settings ‘bwa 
mem –c 100 –M’ 40. Sequence reads were marked 
for duplicates using Sambamba v0.6.8. Realignment 
was performed using the Genome Analysis Toolkit 
(GATK) (v4.1.3.0)41. A description of the complete 
data analysis pipeline is available at https://github.
com/ToolsVanBox/NF-IAP (v1.3.0). Raw variants 
were called in multi-sample mode by using the GATK 
HaplotypeCaller and GATK-Queue with default set-
tings and additional option ‘EMIT_ALL_CONFI-
DENT_SITES’. The quality of variant and reference 
positions was evaluated by using GATK VariantFil-
tration with options: “--filter-expression ‘QD < 2.0’ 
--filter-expression ‘MQ < 40.0’ --filter-expression 
‘FS > 60.0’ --filter-expression ‘HaplotypeScore > 
13.0’ --filter-expression ‘MQRankSum < -12.5’ --fil-
ter-expression ‘ReadPosRankSum < -8.0’ --filter-ex-
pression ‘MQ0 >= 4 && ((MQ0 / (1.0 * DP)) > 0.1)’ 
--filter-expression ‘DP < 5’ --filter-expression ‘QUAL 
< 30’ --filter-expression ‘QUAL >= 30.0 && QUAL 
< 50.0’ --filter-expression ‘SOR > 4.0’ --filter-name 
‘SNP_LowQualityDepth’ --filter-name ‘SNP_Map-
pingQuality’ --filter-name ‘SNP_StrandBias’ --fil-
ter-name ‘SNP_HaplotypeScoreHigh’ --filter-name 
‘SNP_MQRankSumLow’ --filter-name ‘SNP_Read-
PosRankSumLow’ --filter-name ‘SNP_HardToVali-
date’ --filter-name ‘SNP_LowCoverage’ --filter-name 
‘SNP_VeryLowQual’ --filter-name ‘SNP_LowQual’ 
--filter-name ‘SNP_SOR’ -cluster 3 -window 10”.

Processing PTA data from external sources
Single-cell PTA-based WGS data (sra files) from 
cord blood tissue17 were downloaded from the Se-
quence Read Archive (accession code SRP178894) 
and extracted into bam files using the prefetch and 
sam-dump tools of the sratoolkit (v2.9.2)42. Samtools 
view (v1.3) was then used with the “-bf 1” argument 
to select for the paired reads and Picard SamTo-
Fastq (v2.24.1) was used with the “RG_TAG=ID” and 
“OUTPUT_PER_RG=true” arguments to generate 
fastq files40,43. Seqkit replace (v2.2.0) was used to 
add a sample id to each read name, because they 
only consisted of a single read number and a number 
indicating whether it is the first or second read in the 
pair44. Read alignment and variant calling were then 
performed as described above. 

PTATO Nextflow implementation
PTATO was implemented in nextflow (v21.10.6.5661). 

Submodules are containerized and automatically 
downloaded by a container engine, allowing for an 
easy installation. Singularity (v3.8.7-1.el7) was used 
for this manuscript, though Docker will also work with 
a small change to the config. 

PTATO resources
Next to the sample specific inputs, several general 
resource files were also used to run PTATO, which 
are listed in PTATO’s “resources.config” file. To make 
PTATO easy to install and more reproducible, these 
resource files are included with downloads of PTA-
TO. First, the fasta file and accompanying indexes 
of the hg38 version of the human reference genome 
were downloaded from GATK (https://gatk.broadin-
stitute.org/hc/en-us/articles/360035890811). The 
input files necessary for the COBALT, GRIDSS2, 
and GRIPSS tools were downloaded from the 
Hartwig Medical Foundation (https://nextcloud.
hartwigmedicalfoundation.nl/s/LTiKTd8XxBqwa-
iC?path=%2FHMFTools-Resources)32,33,45. A text file 
containing the centromere locations was download-
ed from the UCSC (https://genome.ucsc.edu/cgi-bin/
hgTables?hgsid=1424951119_QTS0nx5NshNSys-
pI7KDoJbVh9tci&clade=mammal&org=Human&d-
b=hg38&hgta_group=map&hgta_track=cen-
tromeres&hgta_table=0&hgta_regionType=ge-
nome&position=chrX%3A15%2C560%2C138-15%
2C602%2C945&hgta_outputType=primaryTable&h-
gta_outFileName=)46. A text file with the genom-
ic coordinates of cytobands was also downloaded 
from the UCSC (https://genome.ucsc.edu/cgi-bin/
hgTables?hgsid=1424951119_QTS0nx5NshN-
SyspI7KDoJbVh9tci&clade=mammal&org=Hu-
man&db=hg38&hgta_group=map&hgta_track=-
cytoBand&hgta_table=0&hgta_regionType=ge-
nome&position=chrX%3A15%2C560%2C138-15%
2C602%2C945&hgta_outputType=primaryTable&h-
gta_outFileName=). A bed file with the genomic co-
ordinates of simple repeats was downloaded from 
the UCSC for hg19 (http://genome.ucsc.edu/cgi-bin/
hgTables?db=hg19&hgta_group=rep&hgta_track=-
simpleRepeat&hgta_table=simpleRepeat). A bed file 
with the genomic coordinates of gene bodies was 
downloaded from Ensembl for hg1947. A bed file with 
replication timing data was generated as described 
previously6. Files for which hg19 versions were 
downloaded were converted to hg38 using UCSCs 
LiftOver tool46. Shapeit maps for hg38 were included 
with Shapeit (v4.2.2)48. Shapeit reference haplotype 
vcf files were downloaded from the 1000 genomes 
project (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
data_collections/1000G_2504_high_coverage/work-
ing/20201028_3202_phased/).

Somatic base substitution and indel filtering
The PTATO pipeline uses a multi-sample VCF and 
sample-specific bam files as input. The somatic vari-
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ant filtering tool SMuRF (https://github.com/ToolsVan-
Box/SMuRF), which is included in the PTATO pipe-
line, was used to remove germline and low-quality 
variants by applying several filters as described pre-
viously6. Briefly, candidate somatic variants were in-
cluded if they passed the following filters: no evidence 
in a paired bulk WGS control sample from the same 
individual; passed by VariantFiltration with a GATK 
phred-scaled quality score ≥ 100; base coverage of 
at least 10 (samples with ~30X genome coverage) 
or 5 (samples  with ~15X genome coverage) in the 
PTA and paired control sample; a mapping quality 
(MQ) score of >55; and absence of the variant in a 
panel of unmatched normal human genomes. Addi-
tionally, heterozygous and homozygous base substi-
tutions with a GATK genotype score (GQ) lower than 
99 or 10, respectively, were removed. Indels with a 
GQ score lower than 99 in both PTA or paired control 
sample were removed. Somatic variants with a vari-
ant allele frequency of <0.2 were removed.

Variant calling and filtering by SCAN2 was 
performed using standard settings (including the sig-
nature-based rescue step) as described in the manu-
al (https://github.com/parklab/SCAN2/wiki )18.

Allelic imbalance analysis
Before modelling allelic imbalances, variants on 
each chromosome were phased separately using 
SHAPEIT (v4.2.2), with the raw vcf file containing all 
variants as its input48. Additionally, the “sequencing” 
argument was used, SHAPEIT maps for the relevant 
reference genome were supplied to the map argu-
ment and a vcf with reference haplotypes was sup-
plied to the reference argument. 

For each candidate somatic variant, first all 
phased germline variants within 200,000 bp are se-
lected to model allelic imbalance. To ensure only het-
erozygous germline variants are used, all variants 
that are not heterozygous in the bulk sample or do 
not have a dbSNP reference number were removed. 
After removing all germline variants that were not 
heterozygous in the sample, the allele depths of all 
variants phased to the second allele were swapped 
and the b-allele frequencies were calculated. Next, 
the b-allele frequencies were fitted with a locally 
weighted least squares regression, which was used 
to predict the b-allele frequency of the candidate so-
matic variant. This regression was performed using 
the loess R-function with a degree of 2 and using the 
total allele depth of each variant as weights. Next, 
a binomial test was performed in R using both the 
predicted and observed b-allele frequency as well as 
the total allele depth of the candidate variant, to de-
termine whether the observed allele frequency of the 
candidate variant matched the surrounding germline 
variants. The log of the p-value from the allelic imbal-
ance was then used for subsequent steps.

Selection of sequence context features
For each candidate somatic variant, the surrounding 
10bp sequence context and mutation type were re-
trieved using functions modified from the Mutation-
alPatterns R-package49. The “closest” function from 
bedtools (v2.30.0) was used to identify the genes and 
simple repeat regions closest to the position of each 
candidate variant50. Bedtools merge (with arguments 
“-d -1 -o min”) was used to ensure that each mutation 
is linked to only one feature of each feature list. To 
identify the transcriptional strand bias and replication 
timing for each somatic mutation, bedtools was used 
with the “intersect” argument. Some mutations were 
linked to multiple overlapping gene annotations. For 
the transcriptional stand bias this was solved by us-
ing bedtools with the “merge -d -1 -o distinct” argu-
ments to check if a variant was present in the plus 
strand, minus strand or both. For the replication tim-
ing bedtools was used with the “merge -d -1 -o me-
dian” arguments to merge mutations that are present 
in multiple genes. Next, to merge the gene body, sim-
ple repeat, transcriptional strand bias, and replication 
timing features for each variant, bedtools was used 
with the “intersect” argument, after which the variants 
were merged using bedtools with the “merge -d -1 -o 
unique” arguments.

Linked read analysis using read-backed phasing
For each heterozygous candidate somatic variant, 
all sequencing reads overlapping the position of the 
variant were extracted from the sample’s bam file. 
Additionally, all heterozygous germline variants with-
in the area spanned by the reads are extracted from 
the original input vcf. Next, for each germline variant 
each read that spans both the germline and somatic 
variant is checked. Each read that contains either the 
alternative alleles for both the germline and somatic 
variant or the reference alleles for both the germline 
and somatic variant is counted as a cis read. Other 
reads are counted as trans reads. If a candidate is 
real, then it would be expected that almost all reads 
are either cis or trans. Whether the variants are cis, 
trans, or mixed is then calculated based on a Bayes-
ian likelihood score similar to the one used by SV-
Typer51. The likelihood scores of the three options 
are then combined into a single Phred-scaled quality 
score. Candidate variants with a score of <100, be-
tween 100-1000 and >1000 were considered to be 
false positive, uncertain or true variants, respectively. 

Random forest training 
To obtain a set of true positive variants for training 
the RF model, base substitutions were selected that 
were detected in PTA samples of IBFM26, IBFM35, 
PB10268 and PMCAHH1-FANCCKO and also in bulk 
WGS-analyzed samples from the same individuals 
(Figure 1b and Supplementary Table S1). Somatic 
base substitutions with a linked read analysis score 
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below 1 in these samples were included in the set 
of artefacts. Variants that were shared between PTA 
and bulk WGS samples and also had a linked read 
analysis score of less than 1 were excluded from both 
the true positive and the artifact datasets. Variants 
overlapping with copy number variants and regions 
of loss-of-heterozygosity in samples of IBFM26, 
IBFM35 and PMCAHH1-FANCCKO were excluded 
from training. Additionally, unique base substitutions 
detected in three umbilical cord blood HSPCs of do-
nor PMCCB15 analyzed by PTA were considered ar-
tifacts, as the number of true mutations in the cord 
bloods is expected to be very low (20-50)21. Finally, 
the number of base substitutions in the artefact set 
was subsampled to be the same as the number of 
base substitutions in true positive set to result in a 
better class balance. 
	 A random forest was trained on the previously 
described features with the randomForest (v 4.7-1) R 
package supplying the “mtry” argument with a value 
of 4. For some variants no p-value for the allelic im-
balance or no replication timing value could be calcu-
lated, therefore they were excluded from the training. 
Instead, two more random forests were trained that 
did include these variables. One without the allelic 
imbalance variable and one without both this variable 
and the replication timing variable.

Candidate variant classification by PTATO
For each candidate somatic base substitution, 

PTATO’s RF model calculated a probability score to 
predict if a variant is a PTA artefact. A higher score 
indicates a higher probability that a variant is an arte-
fact according to the RF. Subsequently, two methods 
were used to determine a sample-specific cutoff val-
ue (variants above the cutoff were considered to be 
artefacts). 

First, for each sample a group of likely true 
positive variants and a group of likely artefacts were 
selected by taking the variants with either a high 
(>=1000) or low (<1) linked read analysis score. 
These variants classified by the linked read analy-
sis were used to validate the performance of the RF 
model. Precision and recall were calculated for a 
range of prediction score cutoff values (between 0 
and 1 with increments of 0.01). The optimal linked 
read analysis cutoff was determined by taking the in-
sersection of the precision-recall curves.

Second, a range of different cutoff values 
(from 0.1 to 0.8 with increments of 0.025) was taken 
and for each of these cutoffs the variants with a prob-
ability score below the cutoff were selected (leading 
to 29 groups of mutations). For all these 29 groups 
of mutations, a 96-trinucleotide mutation matrix was 
calculated using MutationalPatterns. Subsequently, 
the cosine similarities between all those groups were 
calculated using the calc_cosim_mutmat() function 
from MutationalPatterns. Hierarchical clustering 

of the cosine similarities was performed using the 
hclust() function in R (Euclidean distance with com-
plete linkage) to generate two clusters: one cluster 
with low PTA probability cutoffs (and mostly true pos-
itives) and one cluster with relatively high cutoffs (and 
mostly false positives). The highest cutoff value in the 
cluster with true positives was taken as the cosine 
similarity cutoff.

Finally, the linked read analyses cutoff and 
cosine similarity cutoff were merged into a final cutoff 
that was used to classify variants as true or false pos-
itive. This was done by taking the mean of both cut-
offs, or by only selecting the cosine similarity cutoff if 
the highest precision-recall value of the linked read 
analysis cutoff was below 0.7 (for example in case 
there were too few variants classified by the linked 
read analysis).

Indel filtering
Candidate indels were filtered based on recurrency 
in multiple unrelated individuals. Raw indel calls from 
31 PTA-based WGS samples from four unrelated 
individuals were merged into one vcf using bcftools 
(v1.9). Indels detected in samples from at least two 
different individuals were included in the PTATO in-
del exclusion vcf file. Candidate indels present in the 
exclusion vcf file are removed from test samples. Ad-
ditionally, insertions in 5bp+ homopolymers were re-
moved. For this, MutationalPatterns was used to de-
termine the indel type and sequence context around 
candidate indels. 

Mutation burden and signature analysis
The mutational patterns and signature analyses were 
performed using MutationalPatterns (v3.6.0)49. Mu-
tational signatures were used from COSMIC (v3.2) 
as well as the previously described HSPC, PTA, and 
ENU signatures18,21,27,52. Figures were made using 
ggplot2 (v3.4.0)53.

CallableLoci from GATK v3.8.1 (with param-
eters --minBaseQuality 10 --minMappingQuality 10 
--minDepth 8 --minDepthForLowMAPQ 10 --max-
Depth 100) was used to determine the fraction of the 
sequenced genome that had sufficient coverage and 
quality for variant calling. Variants not overlapping 
with the callable regions determined by CallableLoci 
were excluded. Subsequently, all remaining variants 
on autosomal chromosomes were counted. To obtain 
the mutation burden, the mutation count was extrap-
olated by dividing it by the fraction of the genome that 
was surveyed (determined by CallableLoci), as previ-
ously described6. 

A linear mixed-effects model was used to cor-
relate the mutation burden in HSPCs from healthy 
donors and the age of the donors as previously de-
scribed22. This model was used to calculate the ex-
pected mutation burdens for the specific ages of the 
patients. The 95% confidence and 95% prediction 
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intervals were calculated using the R package ggef-
fects (v1.1.0)54.

Normalization of copy number ratios for SV de-
tection
GC-normalized read depth per 1000 basepair ge-
nomic window was calculated by COBALT (v1.11)33. 
A coverage panel-of-normals (PON) was generated 
by merging COBALT ratio files of 12 copy number 
neutral PTA samples. The total read counts from all 
windows of each sample were first normalized so 
that every sample has the same total amount of read 
counts. Subsequently, the mean readcount per bin 
over all normal samples in the PON was calculat-
ed. PTATO uses the coverage PON file to smoothen 
PTA-specific coverage fluctuations. First, the total 
read depth in a test sample is normalized to the same 
total amount of read counts in the coverage PON. 
Subsequently, the read counts in each window are 
divided by the mean read counts in the same window 
in the PON. Additionally, the bottom and top 1% out-
lier windows in the PON file and the windows located 
within 1Mb distance of centromeres and telomers are 
excluded from the analysis.
	 The smoothened read counts were subse-
quently binned in 100kb windows. The copynumber 
(v1.34.0) R-package with parameter “gamma=100” 
was used to segment the median read count data in 
both the 100kb and 1kb windows55. The segments 
based on the 100kb resolution were used as raw 
copy number segments. The start and end coordi-
nates of these raw copy number segments were 
fine mapped by taking the start and end coordinates 
of overlapping 1kb window-based segments. Fine 
mapped segments with a copy number ratio of <1.5 
were considered to be copy number losses and seg-
ments with ratios >2.5 were considered to be copy 
number gains.

Deviation of allele frequency calculations
Variant allele frequencies (VAF) of germline variants 
can be noisy in PTA-based WGS data due to uneven 
genome amplification, which impedes accurate copy 
number variant detection based on raw B-allele fre-
quencies. To reduce noise due to uneven amplifica-
tion, the VAFs of germline base substitutions were 
first binned in 100kb windows instead of taking sep-
arate B-allele frequencies of each individual variant. 
To determine a mean allele frequency for multiple 
variants in a bin, the deviation of allele frequency 
(DAF) was calculated by taking the absolute value 
after subtracting the VAF of each variant from 0.5 
(which is the expected VAF for a perfectly amplified 
and sequenced germline variant). Thus, each variant 
has a DAF between 0 (corresponding to a VAF of 0.5) 
and 0.5 (corresponding to a VAF of 0 or 1). Subse-
quently, all DAF values of germline base substitutions 
are binned in 100kb genomic regions and the mean 

DAF for each region is calculated. The copynumber 
R-package with parameter “gamma=100” was used 
to segment the 100kb bins in crude DAF regions. 
These crude segments were fine mapped by adjust-
ing the start and end coordinates of the segments to 
the positions of the nearest germline SNVs (within 
200kb distance of the segment) with similar DAFs as 
the segment. Segments with a DAF of more than 0.4 
(corresponding to VAF < 0.1 or > 0.9) were consid-
ered to be loss of heterozygosity regions. Segments 
with a DAF between 0.16 and 0.4 (corresponding to 
VAFs between 0.1 to 0.32 or 0.64 to 0.9) were con-
sidered to be regions with copy number gains. 

SV breakend calling and filtering
Somatic SV breakends were called by GRIDSS 
v2.13.2 and prefiltered by GRIPSS v1.9 using a cor-
responding bulk-sequenced germline control32. The 
GRIPSS-filtered somatic breakends of 15 PTA-based 
samples of four unrelated individuals were merged 
using bedtools merge (v2.30.0). Breakend positions 
occurring within 2000bp of each other in multiple of 
these individuals were included in a breakend PON. 
Candidate breakends in other samples overlapping 
with the regions in the breakend PON were removed. 
Subsequently the normalized coverage and DAF of 
the SV candidates was calculated. Breakends of du-
plications were filtered if the DAF was less than 0.18 
and/or the copy number ratio was <2.5. Breakends of 
deletions were filtered if the DAF was less than 0.4 
and/or the copy number ratio was >1.5. Breakends 
with a coverage of more than 100 were also excluded 
for samples with a targeted genome coverage of 15x 
as many artefacts occur in these regions with excess 
coverage. Inversions were filtered if they only have 
one breakpoint junction instead of two. Additionally, 
all inversions less than 1kb in size were removed. 
Inter-chromosomal events were also filtered if they 
only have one breakpoint junction (instead of two), 
unless they were situated less than 100kb from a 
copy number variant. This exception rescues unbal-
anced translocations.

Integration of coverage, allele frequencies and 
structural variant breakends
The coverage segments, DAF segments, and break-
ends of SV candidates were intersected to create the 
final list of filtered structural variants. Copy number 
changes were required to have both coverage and 
DAF support, but not necessarily breakend support, 
as many CNVs have start and/or end positions within 
repeat regions that are difficult to capture with PTA 
and/or short-read sequencing. Regions with a DAF 
>0.4 (corresponding to VAFs of <0.1 and >0.9) with-
out coverage support (copy number >1.5) were con-
sidered to be loss-of-heterozygosity regions. ggplot2 
and Circos (v0.69-9) were used for to visualize struc-
tural variants and karyograms56.
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Data and code availability
Source code and manual for PTATO are available at 
https://github.com/ToolsVanBox/PTATO/
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