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Abstract

Detection of somatic mutations in single cells has been severely hampered by technical lim-
itations of whole genome amplification. Novel technologies including primary template-di-
rected amplification (PTA) significantly improved the accuracy of single-cell whole genome
sequencing (WGS), but still generate hundreds of artefacts per amplification reaction. We de-
veloped a comprehensive bioinformatic workflow, called the PTA Analysis Toolkit (PTATO),
to accurately detect single base substitutions, small insertions and deletions (indels) and
structural variants in PTA-based WGS data. PTATO includes a machine learning approach
to distinguish PTA-artefacts from true mutations with high sensitivity (up to 90% for base
substitution and 95% for indels), outperforming existing bioinformatic approaches. Using
PTATO, we demonstrate that many hematopoietic stem and progenitor cells of patients with
Fanconi anemia, which cannot be analyzed using regular WGS technologies, have normal
somatic single base substitution burdens, but increased numbers of deletions. Our results
show that PTATO enables studying somatic mutagenesis in the genomes of single cells with

unprecedented sensitivity and accuracy.

Introduction

Somatic mutations gradually accumulate in each cell
during life, which can contribute to the development
of age-related diseases, such as cancer'3. Due to
the stochastic nature of mutation accumulation, each
cell contains a unique set of somatic variants. Am-
plification of the genome of a single cell is required
to obtain sufficient DNA for WGS. One approach for
this is to catalogue mutations in clonal structures that
exist in tissues in vivo* or after clonally expanding
single cells isolated from tissues in vitro®®. However,
these approaches can only be applied to cells that
have the capacity to clonally expand such as stem
cells, precluding analyses of many diseased and/or
post-mitotic differentiated cell types’. Examples of
these are hematopoietic stem and progenitor cells
(HSPCs) of patients with Fanconi anemia (FA), who
suffer from progressive bone marrow failure and are
predisposed to cancer due to an inherited deficiency
of DNA repair®'°, Much of the research into the mu-
tagenic processes in FAHSPCs has been performed
using mouse models'-"®, because primary HSPCs
of human patients with FA are difficult to culture and
clonally expand in vitro™s.

An alternative method to clonal expansion is
the use of whole genome amplification (WGA) tech-
niques to directly amplify DNA of single cells in enzy-
matic reactions. However, single-cell WGA technol-
ogies have traditionally been hindered by technical
limitations due to uneven and erroneous amplification
of the genome, leading to artificial mutations, noise
in copy number profiles and missing mutations due
to allelic dropout'®. Recently, a novel WGA method,
called primary template-directed amplification (PTA),
was developed, which contains several critical im-
provements over the traditionally used multiple dis-
placement amplification (MDA) protocol'. Although
the amplification biases and allelic dropout rates of
PTA are remarkably low, it still generates hundreds to
thousands of false positive single base substitutions
and indels in each amplification reaction'”'®. Bioin-
formatic approaches, such as linked-read analysis
(LIRA) and SCAN2, have been developed to filter
and analyze WGS data of WGA samples'®'®. How-
ever, these tools still have low detection sensitivi-
ties (~10-40%) and therefore most true variants are
missed'®'9. Additionally, while PTA has the potential
to enable structural variant (SV) detection in single
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cells, current tools are not optimized for PTA-based
single-cell WGS data.

Here, we developed the PTA Analysis Toolbox
(PTATO), which uses a machine learning model to
accurately filter artefacts from PTA-based WGS data
and is optimized for SV detection. We demonstrate
the applicability of PTATO by analyzing the genomes
of normal HSPCs of FA patients and show that, sim-
ilar to current FA mouse models, these cells have an
increased somatic deletion burden.

Results

Training a random forest model to filter PTA ar-
tefacts

The artefacts generated by PTA have been shown
to follow a specific, non-random 96-trinucleotide mu-
tational profile in WGS data''®. We hypothesized
that we could use a machine learning approach to
distinguish PTA artefacts from true positive variants
based on multiple genomic features (Figure 1a). For
this, we trained a random forest (RF) model, which
we previously showed to be highly effective in attrib-
uting individual mutations to a specific mutational
process?. To generate a confident set of true positive
somatic variants for training of the classifier, we se-
quenced samples of patients with acute myeloid leu-
kemia (AML) and cell lines using regular bulk WGS
as well as single-cell WGS after PTA (Figure 1b and
Supplementary Table S1). Somatic variants that were
shared between the bulk and single-cell sequenced
samples were used as high confidence true variants.
To obtain a high confidence set of PTA artefacts for
training, we used PTA-based WGS of umbilical cord
blood-derived HSPCs. Most of the unique somat-
ic variants in these cells will be PTA artefacts, be-
cause HSPCs at birth only harbor 20-50 somatic mu-
tations?'-2%. In total, 756 PTA artefacts and 756 true
positive single base substitutions were used to train
the random forest model (Figure 1b). To train the RF
model, we used a variety of genomic features, such
as the level of allelic imbalance of the region the vari-
ant is located in, the 10-basepair (bp) sequence con-
text around the variant, the distance to the nearest
gene and replication timing (Figure 1c).

The RF model calculates a probability score
that a candidate variant is a PTA artefact. As the PTA
efficiency can vary between samples'’, a sample-spe-
cific cutoff needs to be set above which variants are
classified as artefacts. To set an optimal cut-off for
each sample, we applied two complementary meth-
ods (Figure 1a and Figure S1a-e). First, PTATO uses
a linked read analysis, which is a method to detect
artefacts with high specificity, but low sensitivity',
to classify the small subset of somatic variants that
can be linked to informative germline variants as true
or false positive. Next, it takes the PTA probability
scores for all the variants classified by the linked read
analysis and calculates precision-recall curves to de-

termine the optimal cutoff to discriminate these two
groups (Figure S1c,d). Although this method works
well to determine an optimal PTA probability cutoff for
most samples, we noted that for some samples ac-
curate precision-recall curves could not be generated
because these samples have too few informative true
variants (Figure S1c,d). Therefore, we included a
second method which calculates mutational spectra
at varying PTA probabilities and determines the co-
sine similarities between these spectra. Subsequent-
ly, the cutoff is calculated by hierarchical clustering to
separate one cluster with similar mutational spectra
and low probability scores (containing true variants)
from a cluster of high probability scores (containing
artefacts) (Figure S1e). The RF model was predicted
to distinguish artefacts from true positive variants rel-
atively well with an out-of-bag error rate of 0.264 and
an area-under-the-curve for precision-recall rates of
0.79 for single base substitutions (Figure 1d and Fig-
ure S1f). Importantly, the 96-trinucleotide mutational
spectra of the variants predicted to be false or true
variants were nearly the same as the profiles of the
input PTA artefacts or true positive variants, respec-
tively (Figure 1e,f).

Compared to the base substitution artefacts,
the indel artefacts caused by PTA follow an even
more specific pattern, which is mainly characterized
by C- or T-insertions at long homopolymers (repeats
of the same nucleotide) (Figure 1g,h)®. We found
that exclusively filtering indel artefacts that are re-
currently called in multiple unrelated individuals and
filtering insertions at long (5bp+) homopolymers was
even more effective than training a RF model for in-
del filtering (Figure S2a,b). Indeed, this former ap-
proach removed most indel artefacts, leading to indel
burdens and patterns that were comparable between
those found in bulk and PTA-based WGS data (Fig-
ure 1g,h). Thus, these initial validations demonstrate
that PTATO can accurately discriminate true and
false positive base substitutions as well as indels
using machine learning classification and filtering
based on recurrence, respectively.

Validation of the random forest model

To further test the performance of PTATO on samples
that were not used in the training set, we inactivated
the FANCC and MSH2 genes in the human AHH-1
lymphoblast cell line using CRISPR/Cas9 gene ed-
iting (Figure S3a-c). Inactivation of these genes and
their associated DNA repair pathways has been
shown to induce various specific base substitution
and indel signatures?*-2%, enabling us to test the per-
formance of PTATO on a variety of mutational out-
comes. We performed several sequential clonal steps
followed by regular bulk and single-cell PTA-based
WGS to characterize the in vitro accumulation of mu-
tations in these cells (Figure 2a and Supplementary
Table S2). Bulk WGS of the subclones was used as
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Figure 1. Accurate filtering of PTA artefacts using machine learning and recurrency filtering. a, Outline of the PTATO workflow to classify
candidate base substitutions as true variants or PTA artefacts. The trained PTATO RF model calculates the probability that each variant is a PT#
artefact. Subsequently it uses a linked read analysis and cosine similarity calculations to determine a sample-specific probability cutoff. b
Overview of the samples and variants (with their linked read classifications) that are used as PTA artefacts or true variants to train the RF model
Numbers above the bars indicate the number of variants per sample that could be analyzed by the linked read approach. ¢, Importance of the tor
10 features used by the RF model to distinguish true variants from PTA artefacts. POS indicates the genomic position in base pairs relative to the
mutation (m = minus, p = plus). d, Precision-recall curve showing the performance of the random forest using all input variables on the out-of-bac
training data for different probability cutoffs. e, The 96-trinucleotide mutational spectra of the base substitutions that were used as PTA artefact ol
true positive input for training the RF model (left) and the profiles of the base substitutions that were classified as true or false by the model during
cross-validation (right). f, Heatmap showing the cosine similarities between the base substitutions used in the training set and the base substitu-
tions classified during cross-validation and the previously defined mutational signature of PTA artefacts. g, Spectra of indels detected in bulk WGE
data of AML blasts (top) or before (center) and after (bottom) PTATO filtering of PTA-based WGS data of a HSPC of the same individual. h
Numbers and types of indels detected before (top) and after (bottom) PTATO filtering. MH, microhomology.

a control, which showed that the wildtype, FANCC™"
and MSH2" AHH1 clones acquire respectively 10.6,
10.5 and 52.6 base substitutions and 1.02, 1.12 and
91.1 indels per day in culture on average (Figure S4a
and Figure 5a). The standard somatic variant calling
pipeline (Methods) without PTATO filtering detected a
1.37-1.86 fold higher base substitution rate and a 12-
29 fold higher indel rate in the PTA-amplified wildtype

and FANCC’ samples compared to the subclones
analyzed by bulk WGS (Figure 2b,c, Figure S4b and
Figure 5b-c). PTATO removed most excess muta-
tions, leading to similar mutation rates between the
bulk WGS-analyzed subclones and the PTA samples
(Figure 2b,c, Figure S4a-b and Figure S5a-c). Filter-
ing by PTATO also improved the similarity between
the mutational profiles of the PTA-amplified samples
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Figure 2. Filtering by PTATO enables accurate analyses of somatic mutation patterns and burdens. a, Schematic overview of the clonal
steps performed for the three types of clonal cell lines generated in this study. Numbers indicate the days (d) in culture between the single cell
sorts, which are used to calculate mutation rates for each cell line. b, Accumulation of base substitutions per sample since the first clonal step.
The circles and diamonds indicate the number of base substitutions detected in the PTA samples before and after PTATO filtering, respectively.
¢, Observed versus expected number of base substitutions (left) and indels (right) in the PTA samples before (orange) and after (green) filtering
by PTATO. d, Heatmap showing the cosine similarities between the 96-trinucleotide profiles of the unique base substitutions before PTATO
filtering (RAW), after PTATO filtering, after SCAN2 calling or the mutations removed by PTATO (FAIL) and the profiles of the subclones analyzed
by bulk WGS or the previously defined PTA artefact signature. e, Heatmap showing the cosine similarities between the profiles of the unique
indels before PTATO filtering (RAW), after PTATO filtering or the mutations removed by PTATO (FAIL) and the indel profiles of the subclones
analyzed by bulk WGS or the list of recurrent indels used for filtering. f-g, Fractions of base substitutions (f) and indels (g) present in the subclones
that are also detected (PASS) in the PTA samples originating from these subclones by PTATO or SCAN2 (SCAN2 could not be used to study
indels in these samples). Bottom panels show the base substitutions (f) and indels (g) after excluding the variants with low coverage (LOW_COV),
low genotype quality (LOW_QC) or undetected variants (ABSENT). Few shared variants are (mis)classified as artefact (FAIL) in the PTA samples.

and the profiles of the corresponding bulk WGS-an-
alyzed subclones (Figure 2d, Figure S4c-g and Fig-
ure S5d-e). As shown for the MSH2" cell sequenced
after PTA, PTATO can also accurately remove PTA
artefacts from samples with low amplification quality,
although the sensitivity to detect true variants is re-
duced due to uneven coverage of the genome (Fig-
ure 2b-g, Figure S4 and Figure S5).

The somatic variants detected in the (sub)
clones should also be present in the corresponding
PTA-amplified samples derived from those (sub)
clones and thereby form a reliable set of true positive
variants. Between 45-69% of the base substitutions
and 31-56% of the indels that were detected in the
(sub)clones were also reported in the PTA-amplified
cells after PTATO filtering (Figure 2f,g). The clonal
variants absent in the PTA-amplified cells were main-
ly missed due to low coverage and allelic dropout,

predominately indicating a limitation of the PTA re-
action instead of incorrect filtering by PTATO (Figure
2f,g). Importantly, only 10-16% of the base substitu-
tions and 5-27% of the indels found in both the (sub)
clones and the PTA-amplified cells were classified as
a PTA artefact by PTATO, showing that PTATO has a
mean sensitivity of 86.8% in discriminating true sin-
gle base substitutions from artefacts (Figure 2f,g). In
comparison, SCAN2, a recently developed genotyper
for PTA single-cell WGS data', reported on average
only 48.8% of the callable variants shared between
these PTA-amplified cells and bulk WGS-analyzed
(sub)clones (~78% less than PTATO). This finding
is in line with the ~46% sensitivity reported for this
tool'. Indels could not be assessed by SCAN2 for
these samples, because it required more PTA sam-
ples to build a cross-sample filter list.

We further validated the performance of
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Figure 3. PTATO detects normal single base substitution burdens in most human FA HSPCs. a, Correlation of the number of single base
substitutions per HSPC genome of healthy donors (gray points) and patients with FA. Linear mixed modelling showed that healthy HSPCs
accumulate base substitutions in a linear fashion with age?'?2. The 95% confidence interval and the prediction interval of the model are indicated
by the dark gray and light gray shading, respectively. b, Ratios between the observed and expected number of base substitutions per genome
(sorted on age) based on extrapolation of the age linear mixed model. To match the ages of the patients with FA, only 12 HSPCs of four healthy
donors (HSCT1-4, ages 7 to 14) are included in this and following panels. Adjusted P-values indicate multiple testing corrected significant
differences (padj<0.05) between three FA patients and the age-matched healthy donors (Bonferroni-corrected Wilcoxon Mann—Whitney test). c
Mutation spectra showing the relative contribution of each base substitution type in the genomes of the donors. Numbers above the bar indicate
the total number of base substitutions found in the samples from each individual. d, The averaged 96-trinucleotide mutational profiles of the
HSPCs of the four healthy individuals (HSCT1-4), the patients with mutations in FANCA or FANCC (PMCFANCO01, PMCFANCO03, PMCFANCO6,
PMCFANCO08), and the patient with mutations in BRCA2 (PMCFANCO02). e, Contribution of base substitution mutational signatures commonly
found in blood cells to each FA sample or healthy individual (averaged). Horizontal black lines indicate the expected number of base substitutions
based on age. Samples sequenced with bulk WGS are indicated by an asterisk. f, Cosine similarities between the mean 96-trinucleotide mutation-
al profiles of the HSPCs of FA patients with the profiles of the healthy HSPCs from the four age-matched donors and the mutational signatures.

PTATO by applying it to a previously published PTA-
based WGS dataset of human umbilical cord blood
cells that were treated with a vehicle (VHC) control
or with different dosages of the mutagens D-mannitol
(MAN) or N-ethyl-N-nitrosourea (ENU)'". Mutational
signature analysis showed that filtering by PTATO re-
moved most variants associated with the mutational
signature of PTA artefacts, while keeping most single
base substitutions associated with signature SBS5
and/or the ENU-associated signature® (Figure S6).
These validations show that PTATO can effective-
ly filter single base substitutions and indel artefacts
from PTA-based WGS data from different sources,
enabling accurate analyses of somatic mutational
burdens, patterns, and signatures in single cells.

Unaltered patterns of indels in most HSPCs of pa-
tients with FA

To study the consequences of inactivation of the FA
pathway in human HSPCs in vivo, we aimed to an-
alyze the genomes of single HSPCs of multiple indi-
viduals with FA. However, although we flow sorted at
least 200 single HSPCs from six patients for in vitro
clonal expansion, only for two patients a limited num-
ber of clones (one and eight, respectively) expand-

ed to a size large enough for bulk WGS, underlining
the need for direct single-cell WGS. Therefore, we
used PTA followed by PTATO analysis to study the
genomes of single HSPCs derived from bone marrow
aspirates of five different individuals with FA (Table
1). In addition, we analyzed the genomes of bulk AML
blasts and three PTA-amplified (pre-)leukemic stem
cells from a patient with FA (IBFM35) who developed
AML after a failed hematopoietic stem cell transplan-
tation.

First, we compared the PTATO-filtered base
substitutions detected in the HSPCs of individuals
with FA with previously generated WGS data of 34
clonally expanded HSPCs of 11 healthy donors?"22.
This comparison showed that most of the FA HSPCs
had similar somatic single base substitution burdens,
patterns and signatures as HSPCs of healthy individ-
uals (Figure 3 and Figure S7). Patient PMCFANCO02,
whose FAwas caused by biallelic germline variants in
the FANCD1/BRCAZ2 gene, and AML patient IBFM35
formed exceptions with respectively threefold and
twofold higher somatic base substitution burden than
expected for their age (Figure 3a,b). The elevated
mutation burden in PMCFANCO02 is mostly caused by
base substitutions characterized by signature SBS3,
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Table 1: FA patient characteristics at moment of bone marrow puncture

Individual Age Affected | FA driver mutations HSC Bone Hematological Cytogenetic
(years) | FA gene clones | marrow status aberrations
cellularity
PMCFANCO1* | 7.9-8.4 | FANCC c.67delG;c.67delG 1 Moderate/ | Normal/Mild cyto- None
Low penia
PMCFANCO02 15.9 FANCD1/ | ¢.5213_5216delCTTA; 8 Moderate Normal None
BRCA2 €.9302T>G
PMCFANCO03 15 FANCA ¢.1361_1370delCCTCCTTTGG; 0 Low Mild cytopenia None
¢.1361_1370delCCTCCTTTGG
PMCFANCO06 17 FANCA c.67delG;c.67delG Moderate Normal None
PMCFANCO08 10.3 FANCA c.2151+1dup;c.2121delC Moderate Mild cytopenia None
IBFM35 14.8 FANCA €.3639delT; ND AML NA
€.3639delT
Bone marrow aspirates irom PMCFANCOT were collected at two different time points.
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Figure 4. Small insertions and deletions in HSPCs of patients with FA. a, Correlation of the number of single base substitutions per HSPC
genome of healthy donors (gray points) and patients with FA. Linear mixed modelling showed that healthy HSPCs accumulate indels in a linear
fashion with age?'?2. The 95% confidence interval and the prediction interval of the model are indicated by the dark gray and light gray shading,
respectively. b, Ratios between the observed and expected number of indels per genome (sorted on age) based on extrapolation of the age linear
mixed model. To match the ages of the patients with FA, only 12 HSPCs of four healthy donors (HSCT1-4, ages 7 to 14) are included in this and
following panels. P-values indicate multiple testing corrected significant differences (padj<0.05) between three FA patients and the age-matched
healthy donors (Bonferroni-corrected Wilcoxon Mann—Whitney test). ¢, Indel spectra showing the relative contribution of the main indel types in
the genomes of the donors. Numbers above the bar indicate the total number of indels found in the samples from each individual (without extrapo-
lation). d, Total indel profiles of the HSPCs of the four healthy individuals (HSCT1-4), the patients with mutations in FANCA or FANCC (PMC-
FANCO01, PMCFANCO03, PMCFANCO06, PMCFANCO08), and the patient with mutations in BRCA2 (PMCFANCO02).

which is associated with homologous recombination
deficiency®?°, and which is barely detected in the
other FA patients (Figure 3c-f).

Subsequently, we compared the somatic in-
del accumulation between HSPCs of patients with
FA and healthy bone marrow donors. The FA HSPCs
showed relatively high indel burdens, but only pa-
tients PMCFANCO02 (FANCD1/BRCAZ2) and IBFM35
had a significantly increased indel burden compared
to healthy HSPCs (even in their bulk-sequenced
clones and leukemic blasts) (Figure 4a,b). These rel-

atively high indel burdens in FA HSPCs did not seem
to be caused by a specific type of indel (Figure 4c,d).
These findings, which are in line with observations in
FA mouse models'? and FA cell lines?*, confirm that
PTATO-based filtering of PTA-based WGS data can
be used to accurately study somatic mutations in sin-
gle cells that cannot be clonally expanded in vitro.
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Figure 5. SV filtering by PTATO reveals an increased deletion burden in HSPCs of patients with FA. a, Circos plots showing copy number
variants (CNVs) and balanced SVs in a PTA (left/center) and bulk WGS sample (right) of patient IBFM35. The standard SV calling pipeline for bulk
WGS generates hundreds of false positive calls in PTA samples (left), most of which are removed by PTATO filtering (center), leading to similar
SV profiles as a sample sequenced by bulk WGS (right panel). b, Schematic overview of the SV calling and filtering strategy tailored for
PTA-based WGS data implemented in the PTATO pipeline. ¢, Copy number plots (100kb windows) of the AML-bulk sample analyzed by the
bulk-WGS SV calling pipeline and three PTA samples analyzed by PTATO. d, Deviation of allele frequency (DAF) plots (100kb windows) of the
AML-bulk sample and three PTA samples. The DAF depicts the absolute difference between 0.5 (perfect heterozygosity) and the actual allele
frequency of a germline variant. e, Number of SVs (>10kb in size) that are present in the HSPCs and present (“Overlapping”) or absent (“Addition-
al”) in the AML-bulk, or present in the bulk but absent in the HSPCs (“Missing”). f, Number of deletions (>25bp) detected by GRIDSS and PTATO
in genomes of HSPCs of FA patients or healthy donors (including 5 cord blood samples sequenced after PTA). Numbers shown above the bars
indicate the number of individuals per group. The P-value was calculated by Wilcoxon Mann-Whitney test. g, Size (in bp) of each detected
deletion in HSPCs of healthy donors and patients with FA (no significant difference Wilcoxon Mann—Whitney test). Numbers above the boxes
indicate the total amount of deletions per group. h, Distribution of the sizes of deletions in human and mice' HSPCs with different genetic
backgrounds.

Accurate detection of structural variants in PTA-
based sequencing data

It has been shown that HSPCs of FA mouse models
and squamous cell carcinomas of human patients
with FA have high burdens of somatic structural vari-
ants (SVs)'230, Existing bioinformatic tools for sin-
gle-cell WGS are usually limited to the detection of
copy number changes based on read depth3' and
we found that more comprehensive SV calling pipe-
lines for bulk WGS data detect many false positive
variants in PTA-based data (Figure 5a and Figure
S8). To study somatic SVs in the HSPCs of the pa-

tients with FA, we needed to optimize an SV calling
and filtering approach specifically designed for PTA-
based WGS data. We used the WGS data of the pa-
tient with AML (IBFM35), for who we also have bulk
WGS data of AML blasts confirming the presence of
different types of SVs, to optimize the SV filtering ap-
proach (Figure 5a). PTATO integrates calling of SVs
by GRIDSS?*? and COBALT?®*? based on read depth,
B-allele frequencies, split reads and discordant read
pairs followed by various normalization and filtering
steps tailored for PTA-based WGS data (Figure 5b,
Figure S8 and Methods). This approach enables ac-
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curate detection of most SVs that were present in the
AML bulk sample while reducing the number of false
positive calls (Figure 5c). Several SVs present in the
leukemic blasts are not detected in the HSPCs, sug-
gesting that these HSPCs are non- or pre-leukemic
cells (Figure 5c).

After optimization of SV detection in PTA-
based WGS data, we looked for the presence of so-
matic SVs in the HSPCs of the other patients with
FA. We did not observe any large chromosomal ab-
normalities or translocations (Figure S9). However,
we observed 13 deletions with read depth, B-allele
frequency (if overlapping germline variants) and split
read/discordant read pair support in the 10 cells with
sufficient quality ranging from 41 to 29850bp (Figure
5f-h and Supplementary Table S3). The deletions
were detected in both the PTA-amplified HSPCs as
well as the clonally expanded HSPCs, indicating that
the detected deletions are probably not artefacts. Ad-
ditionally, we rarely observed deletions larger than
100bp in the healthy HSPCs sequenced after clonal
expansion or PTA, further supporting that there is an
increased burden of deletions in HSPCs of FA pa-
tients (Figure 5f-h).

Discussion

The introduction of PTA greatly improved the accura-
cy of single-cell WGA, leading to rapid adoption in the
field'"18:34-3¢ However, bioinformatic tools making op-
timal use of the potential of PTA have been lacking.
To address this, we developed the PTATO pipeline
that can accurately distinguish true positive single
base substitutions, indels and SVs from false positive
artefacts in PTA-based WGS data. The main benefit
of PTATO over other tools, in addition to SV filtering,
is the relatively high sensitivity of 86.8% (~78% high-
er than SCAN2) to distinguish true base substitutions
from artefacts. This means that less extrapolation is
required to estimate the true somatic mutation bur-
den in cells, which may be especially important for
driver mutation detection and retrospective lineage
tracing experiments. The RF model included in PTA-
TO can be easily retrained if the mutational profiles
that are studied are markedly different from the pro-
files of blood cells that we studied here, making it a
flexible tool.

We demonstrated the performance of PTATO
by analyzing the genomes of single HSPCs of pa-
tients with FA, which could not be clonally expand-
ed in vitro for bulk WGS. This analysis showed that
most HSPCs of patients with FA have similar somatic
mutations burdens as HSPCs of healthy donors, but
with an increased number of deletions. These re-
sults are in line with findings in mouse models and
cell lines of FA'224 The increased deletion burden
suggests an increased occurrence of double strand-
ed breaks and/or incorrect repair of these breaks in
FA HSPCs, which fits with the molecular functions

of the FA DNA repair pathway?. It is likely that there
is selection against HSCs with more genomic rear-
rangements without the necessary driver mutations
to survive, leading to a gradual depletion of such
HSCs in FA patients. The analyzed HSPCs of one
FA patient with germline FANCD2/BRCAZ2 mutations
showed strongly elevated somatic mutation rates,
which is consistent with the broader role of BRCA2
independent of the FA DNA repair pathway®. This
also highlights that the phenotypic heterogeneity be-
tween FA patients may be accompanied by genomic
heterogeneity in HSPCs between patients®. Further
studies including larger patient cohorts are required
to characterize this genomic heterogeneity, which is
likely dependent on the causative germline mutations
and disease progression stage.

We showed that our PTATO filtering approach
improves the usability of PTA, further narrowing the
gap in data quality between single-cell WGS and reg-
ular bulk WGS. This will be especially important for
the genomic analyses of cells that cannot be clonal-
ly expanded for regular WGS, such as diseased or
differentiated cells. The accurate characterization of
single-cell whole genomes by PTA followed by PTA-
TO analysis enables the study of ongoing mutational
processes in tissues and cancers, because this com-
bined approach is not limited to analysis of relatively
early, clonal mutations like regular bulk WGS%*. We
foresee that such single-cell genome analyses made
possible by PTATO will yield an unprecedented view
of tumor heterogeneity and cancer evolution.
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Methods

Human bone marrow and umbilical cord blood
samples

Bone marrow samples were obtained from the bio-
bank of the Princess Maxima Center for Pediatric
Oncology with ethical approval under proposal PM-
CLAB2018-007 and PMCLAB2019-027. Written in-
formed consents from the included individuals were
obtained by the Princess Maxima Center. The use of
material for this study was approved by the Biobank
and Data Access Committee of the Princess Maxi-
ma Center. The umbilical cord blood sample of donor
CB15 was obtained via the University Medical Center
Utrecht (UMCU). The collection of cord blood sam-
ples was approved by the Biobank Committee of the
UMCU (protocol number 19-737). Informed consent
for these samples was obtained by the UMCU. The
samples from IBFM26 and IBFM35 were obtained
from the German Society of Pediatric Oncology and
Hematology (GPOH), who also obtained informed
consent from these individuals.

Flow cytometry and primary cell culture

Lin~- CD34* HSPCs were single-cell sorted by fluores-
cence-activated cell sorting (FACS) on an SH800S
Cell Sorter (Sony) for clonal expansion or PTA. The
following antibodies were used for staining: CD34-
BV421 (clone 561, 1:20), lineage (CD3/CD14/CD19/
CD20/CD56)-FITC (clones UCHT1, HCD14, HIB19,
2H7, HCD56, 1:20), CD38-PE (clone HIT2, 1:50),
CD90-APC (clone 5E10, 1:200) and CD45RA-Per-
CP/Cy5.5 (clone HI100, 1:20). AML blasts were se-
lected based on diagnostic immunophenotyping data
if available. In most cases, these blasts were CD33,
CD38, and/or CD34 positive. All FACS antibodies
were obtained from BioLegend.

HSPCs sorted for clonal expansion were cul-
tured in HSPC culture medium for 4 to 7 weeks at
37°C in 5% CO, before collection. HSPC culture me-
dium consisted of StemSpan SFEM medium (STEM-
CELL Technologies) supplemented with SCF (100
ng/ml), FLT3 ligand (100 ng/ml), IL6 (20 ng/ml), IL3
(10 ng/ml), TPO (50 ng/ml), UM729 (500 nmol/l), and
Stemregenin (750 nmol/l). Additionally, mesenchymal
stromal cells (MSCs) were cultured from a fraction of
bone marrow aspirates by plating cells in 12-well cul-
ture dishes with DMEM-F12 medium (Thermo Fisher
Scientific) supplemented with 10% fetal bovine se-
rum. The medium was refreshed every other day to
remove nonadherent cells, and MSCs could be har-
vested when confluent (after approximately 2 to 3
weeks).

Generation of gene knockouts in AHH-1 cell lines
Human B-lymphocyte AHH-1 (CRL-8146) cells were
purchased from ATCC. Cells were cultured in RPMI
1640 GlutaMAX medium (Thermo Fisher Scientif-
ic) supplemented with 1% Penicillin-Streptomycin

(Thermo Fisher Scientific) and 10% horse serum
(Thermo Fisher Scientific). Guide RNAs (FANCC:
5-GCAAGAGATGGAGAAGTGTA-3' and MSH2:
5-GTGCCTTTCAACAACCGGTTG-3’) were cloned
into pSpCas9(BB)-2A-GFP (PX458) vector (Ad-
dgene#48138). AHH-1 cells were transfected using
Lipofectamine 2000 (Thermo Fisher Scientific). One
to two days after transfection, GFP-positive transfect-
ed cells were single-cell sorted for clonal expansion
on a SH800S Cell Sorter (Sony), which was also
used for subsequent clonal steps.

MSH2 inactivation was confirmed using west-
ern blot, Sanger sequencing and WGS. The follow-
ing antibodies were used for western blotting: rabbit
anti-MSH2 (D24B5, 1:2000, Cell Signaling Technol-
ogy) and mouse anti-a-Tubulin (T5168, 1:5000, Sig-
ma-Aldrich). Anti-rabbit IgG IRDye 800CW (1:10000,
Li-Cor) and anti-mouse IgG IRDye 680RD (1:10000,
Li-Cor) were used as secondary antibodies. Western
blots were imaged on an Odyssey DLx imaging sys-
tem (Li-Cor).

FANCC inactivation was validated by Sanger
sequencing, WGS and MMC sensitivity assay. For the
MMC assay, 5000 cells were plated per well (96-well
plates) containing 100ul medium supplemented with
different concentrations (0, 5, 10, 50, 100, 500 and
100 nM) of MMC (Sigma-Aldrich) in triplicate. After
5 days of incubation, cell survival was measured us-
ing the CellTiter-Glo Luminescent Cell Viability Assay
(Promega) according to the manufacturer’s protocol.

For the MSH2" clonal line, two additional
consecutive clonal steps were performed (after 48
and 36 days in culture, respectively), and single cells
were sorted for PTA 47 days after the third clonal
step (Figure 2a). For the FANCC clonal line, a sec-
ond clonal step was performed 58 days after the first
clonal step, and PTA was performed 56 days after
the second clonal step (Figure 2a). Four clonal lines
were generated for the wildtype cells (Figure 2a).
From these four clones, two underwent an addition-
al clonal step (43 and 69 days after the first clonal
step) and two were single cell sorted for PTA (84 and
87 days after the clonal step). Cells were harvested
for DNA extraction when (sub-)clonal lines were suf-
ficiently expanded after single cell sorts.

PTA, DNA isolation and WGS

PTA was performed using the ResolveDNA Whole
Genome Amplification Kit (BioSkryb Genomics) ac-
cording to the manufacturer’s protocol. Instead of 10
minutes cell lysis on ice as indicated in the protocol,
lysis was performed by 5 minutes incubation on ice
followed by 5 minutes incubation at room tempera-
ture to maximize DNA denaturation as previously
described3*. DNA samples from bulk AML and bulk
MSCs (for germline control) were isolated using the
DNeasy DNA Micro Kit (QIAGEN) or DNeasy Blood
& Tissue Kit (QIAGEN) according to the manufac-
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turer’s instructions. WGS libraries were generated
using standard protocols (lllumina). Libraries were
sequenced to 15-30x genome coverage (2x150bp)
on an lllumina NovaSeq 6000 system at the Hartwig
Medical Foundation (Amsterdam, the Netherlands).

WGS read alignment and variant calling

WGS reads were mapped against the human refer-
ence genome (GRCh38) using the Burrows-Wheel-
er Aligner (v0.7.17) mapping tool with settings ‘bwa
mem —c 100 —M’ 4°. Sequence reads were marked
for duplicates using Sambamba v0.6.8. Realignment
was performed using the Genome Analysis Toolkit
(GATK) (v4.1.3.0)*'. A description of the complete
data analysis pipeline is available at https://github.
com/ToolsVanBox/NF-IAP (v1.3.0). Raw variants
were called in multi-sample mode by using the GATK
HaplotypeCaller and GATK-Queue with default set-
tings and additional option ‘EMIT_ALL_CONFI-
DENT_SITES’. The quality of variant and reference
positions was evaluated by using GATK VariantFil-
tration with options: “--filter-expression ‘QD < 2.0’
-filter-expression ‘MQ < 40.0° --filter-expression
‘FS > 60.0° -filter-expression ‘HaplotypeScore >
13.0" -filter-expression ‘MQRankSum < -12.5" -fil-
ter-expression ‘ReadPosRankSum < -8.0° --filter-ex-
pression ‘MQO >= 4 && (MQO / (1.0 * DP)) > 0.1)
-filter-expression ‘DP < 5’ --filter-expression ‘QUAL
< 30’ -filter-expression ‘QUAL >= 30.0 && QUAL
< 50.0’ --filter-expression ‘SOR > 4.0’ --filter-name
‘SNP_LowQualityDepth’ -filter-name ‘SNP_Map-
pingQuality’ --filter-name ‘SNP_StrandBias’ --fil-
ter-name ‘SNP_HaplotypeScoreHigh’ --filter-name
‘SNP_MQRankSumLow’ --filter-name ‘SNP_Read-
PosRankSumLow’ --filter-name ‘SNP_HardToVali-
date’ --filter-name ‘SNP_LowCoverage’ --filter-name
‘SNP_VeryLowQual’ --filter-name ‘SNP_LowQual’
-filter-name ‘SNP_SOR’ -cluster 3 -window 10”.

Processing PTA data from external sources
Single-cell PTA-based WGS data (sra files) from
cord blood tissue' were downloaded from the Se-
quence Read Archive (accession code SRP178894)
and extracted into bam files using the prefetch and
sam-dump tools of the sratoolkit (v2.9.2)*?. Samtools
view (v1.3) was then used with the “-bf 1” argument
to select for the paired reads and Picard SamTo-
Fastq (v2.24.1) was used with the “RG_TAG=ID" and
‘“OUTPUT_PER_RG=true” arguments to generate
fastq files*43. Seqkit replace (v2.2.0) was used to
add a sample id to each read name, because they
only consisted of a single read number and a number
indicating whether it is the first or second read in the
pair**. Read alignment and variant calling were then
performed as described above.

PTATO Nextflow implementation
PTATO was implemented in nextflow (v21.10.6.5661).

Submodules are containerized and automatically
downloaded by a container engine, allowing for an
easy installation. Singularity (v3.8.7-1.el7) was used
for this manuscript, though Docker will also work with
a small change to the config.

PTATO resources

Next to the sample specific inputs, several general
resource files were also used to run PTATO, which
are listed in PTATO’s “resources.config” file. To make
PTATO easy to install and more reproducible, these
resource files are included with downloads of PTA-
TO. First, the fasta file and accompanying indexes
of the hg38 version of the human reference genome
were downloaded from GATK (https://gatk.broadin-
stitute.org/hc/en-us/articles/360035890811). The
input files necessary for the COBALT, GRIDSS2,
and GRIPSS tools were downloaded from the
Hartwig Medical Foundation (https://nextcloud.
hartwigmedicalfoundation.nl/s/LTiKTd8XxBqwa-
iC?path=%2FHMFTools-Resources)3?3345, A text file
containing the centromere locations was download-
ed from the UCSC (https://genome.ucsc.edu/cgi-bin/
hgTables?hgsid=1424951119_QTS0nx5NshNSys-
pl7KDoJbVh9tci&clade=mammal&org=Human&d-
b=hg38&hgta_group=map&hgta_track=cen-
tromeres&hgta_table=0&hgta_regionType=ge-
nome&position=chrX%3A15%2C560%2C138-15%
2C602%2C945&hgta_outputType=primaryTable&h-
gta_outFileName=)*. A text file with the genom-
ic coordinates of cytobands was also downloaded
from the UCSC (https://genome.ucsc.edu/cqi-bin/
hgTables?hgsid=1424951119_QTSO0nx5NshN-
Syspl7KDoJbVh9tci&clade=mammal&org=Hu-
man&db=hg38&hgta_group=map&hgta_track=-
cytoBand&hgta_table=0&hgta_regionType=ge-
nome&position=chrX%3A15%2C560%2C138-15%
2C602%2C945&hgta_outputType=primaryTable&h-
gta_outFileName=). A bed file with the genomic co-
ordinates of simple repeats was downloaded from
the UCSC for hg19 (http://genome.ucsc.edu/cgi-bin/
hgTables?db=hg19&hgta_group=rep&hgta_track=-
simpleRepeat&hgta_table=simpleRepeat). A bed file
with the genomic coordinates of gene bodies was
downloaded from Ensembl for hg19*’. A bed file with
replication timing data was generated as described
previously®. Files for which hg19 versions were
downloaded were converted to hg38 using UCSCs
LiftOver tool*®. Shapeit maps for hg38 were included
with Shapeit (v4.2.2)*8. Shapeit reference haplotype
vcf files were downloaded from the 1000 genomes
project  (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
data_collections/1000G_2504_high_coverage/work-
ing/20201028 3202 _phased/).

Somatic base substitution and indel filtering
The PTATO pipeline uses a multi-sample VCF and
sample-specific bam files as input. The somatic vari-

12


https://doi.org/10.1101/2023.02.15.528636
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.15.528636; this version posted February 15, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

ant filtering tool SMuRF (https://github.com/ToolsVan-
Box/SMuRF), which is included in the PTATO pipe-
line, was used to remove germline and low-quality
variants by applying several filters as described pre-
viously®. Briefly, candidate somatic variants were in-
cluded if they passed the following filters: no evidence
in a paired bulk WGS control sample from the same
individual; passed by VariantFiltration with a GATK
phred-scaled quality score = 100; base coverage of
at least 10 (samples with ~30X genome coverage)
or 5 (samples with ~15X genome coverage) in the
PTA and paired control sample; a mapping quality
(MQ) score of >55; and absence of the variant in a
panel of unmatched normal human genomes. Addi-
tionally, heterozygous and homozygous base substi-
tutions with a GATK genotype score (GQ) lower than
99 or 10, respectively, were removed. Indels with a
GQ score lower than 99 in both PTA or paired control
sample were removed. Somatic variants with a vari-
ant allele frequency of <0.2 were removed.

Variant calling and filtering by SCAN2 was
performed using standard settings (including the sig-
nature-based rescue step) as described in the manu-
al (https://github.com/parklab/SCAN2/wiki )'®.

Allelic imbalance analysis

Before modelling allelic imbalances, variants on
each chromosome were phased separately using
SHAPEIT (v4.2.2), with the raw vcf file containing all
variants as its input*®. Additionally, the “sequencing”
argument was used, SHAPEIT maps for the relevant
reference genome were supplied to the map argu-
ment and a vcf with reference haplotypes was sup-
plied to the reference argument.

For each candidate somatic variant, first all
phased germline variants within 200,000 bp are se-
lected to model allelic imbalance. To ensure only het-
erozygous germline variants are used, all variants
that are not heterozygous in the bulk sample or do
not have a dbSNP reference number were removed.
After removing all germline variants that were not
heterozygous in the sample, the allele depths of all
variants phased to the second allele were swapped
and the b-allele frequencies were calculated. Next,
the b-allele frequencies were fitted with a locally
weighted least squares regression, which was used
to predict the b-allele frequency of the candidate so-
matic variant. This regression was performed using
the loess R-function with a degree of 2 and using the
total allele depth of each variant as weights. Next,
a binomial test was performed in R using both the
predicted and observed b-allele frequency as well as
the total allele depth of the candidate variant, to de-
termine whether the observed allele frequency of the
candidate variant matched the surrounding germline
variants. The log of the p-value from the allelic imbal-
ance was then used for subsequent steps.

Selection of sequence context features

For each candidate somatic variant, the surrounding
10bp sequence context and mutation type were re-
trieved using functions modified from the Mutation-
alPatterns R-package*®. The “closest” function from
bedtools (v2.30.0) was used to identify the genes and
simple repeat regions closest to the position of each
candidate variant®®, Bedtools merge (with arguments
“-d -1 -0 min”) was used to ensure that each mutation
is linked to only one feature of each feature list. To
identify the transcriptional strand bias and replication
timing for each somatic mutation, bedtools was used
with the “intersect” argument. Some mutations were
linked to multiple overlapping gene annotations. For
the transcriptional stand bias this was solved by us-
ing bedtools with the “merge -d -1 -0 distinct” argu-
ments to check if a variant was present in the plus
strand, minus strand or both. For the replication tim-
ing bedtools was used with the “merge -d -1 -0 me-
dian” arguments to merge mutations that are present
in multiple genes. Next, to merge the gene body, sim-
ple repeat, transcriptional strand bias, and replication
timing features for each variant, bedtools was used
with the “intersect” argument, after which the variants
were merged using bedtools with the “merge -d -1 -o
unique” arguments.

Linked read analysis using read-backed phasing
For each heterozygous candidate somatic variant,
all sequencing reads overlapping the position of the
variant were extracted from the sample’s bam file.
Additionally, all heterozygous germline variants with-
in the area spanned by the reads are extracted from
the original input vcf. Next, for each germline variant
each read that spans both the germline and somatic
variant is checked. Each read that contains either the
alternative alleles for both the germline and somatic
variant or the reference alleles for both the germline
and somatic variant is counted as a cis read. Other
reads are counted as trans reads. If a candidate is
real, then it would be expected that almost all reads
are either cis or trans. Whether the variants are cis,
trans, or mixed is then calculated based on a Bayes-
ian likelihood score similar to the one used by SV-
Typer®'. The likelihood scores of the three options
are then combined into a single Phred-scaled quality
score. Candidate variants with a score of <100, be-
tween 100-1000 and >1000 were considered to be
false positive, uncertain or true variants, respectively.

Random forest training

To obtain a set of true positive variants for training
the RF model, base substitutions were selected that
were detected in PTA samples of IBFM26, IBFM35,
PB10268 and PMCAHH1-FANCCKO and also in bulk
WGS-analyzed samples from the same individuals
(Figure 1b and Supplementary Table S1). Somatic
base substitutions with a linked read analysis score

13


https://doi.org/10.1101/2023.02.15.528636
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.15.528636; this version posted February 15, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

below 1 in these samples were included in the set
of artefacts. Variants that were shared between PTA
and bulk WGS samples and also had a linked read
analysis score of less than 1 were excluded from both
the true positive and the artifact datasets. Variants
overlapping with copy number variants and regions
of loss-of-heterozygosity in samples of IBFM26,
IBFM35 and PMCAHH1-FANCCKO were excluded
from training. Additionally, unique base substitutions
detected in three umbilical cord blood HSPCs of do-
nor PMCCB15 analyzed by PTA were considered ar-
tifacts, as the number of true mutations in the cord
bloods is expected to be very low (20-50)2'. Finally,
the number of base substitutions in the artefact set
was subsampled to be the same as the number of
base substitutions in true positive set to result in a
better class balance.

Arandom forest was trained on the previously
described features with the randomForest (v4.7-1) R
package supplying the “mtry” argument with a value
of 4. For some variants no p-value for the allelic im-
balance or no replication timing value could be calcu-
lated, therefore they were excluded from the training.
Instead, two more random forests were trained that
did include these variables. One without the allelic
imbalance variable and one without both this variable
and the replication timing variable.

Candidate variant classification by PTATO

For each candidate somatic base substitution,
PTATO’s RF model calculated a probability score to
predict if a variant is a PTA artefact. A higher score
indicates a higher probability that a variant is an arte-
fact according to the RF. Subsequently, two methods
were used to determine a sample-specific cutoff val-
ue (variants above the cutoff were considered to be
artefacts).

First, for each sample a group of likely true
positive variants and a group of likely artefacts were
selected by taking the variants with either a high
(>=1000) or low (<1) linked read analysis score.
These variants classified by the linked read analy-
sis were used to validate the performance of the RF
model. Precision and recall were calculated for a
range of prediction score cutoff values (between 0
and 1 with increments of 0.01). The optimal linked
read analysis cutoff was determined by taking the in-
sersection of the precision-recall curves.

Second, a range of different cutoff values
(from 0.1 to 0.8 with increments of 0.025) was taken
and for each of these cutoffs the variants with a prob-
ability score below the cutoff were selected (leading
to 29 groups of mutations). For all these 29 groups
of mutations, a 96-trinucleotide mutation matrix was
calculated using MutationalPatterns. Subsequently,
the cosine similarities between all those groups were
calculated using the calc_cosim_mutmat() function
from MutationalPatterns. Hierarchical clustering

of the cosine similarities was performed using the
hclust() function in R (Euclidean distance with com-
plete linkage) to generate two clusters: one cluster
with low PTA probability cutoffs (and mostly true pos-
itives) and one cluster with relatively high cutoffs (and
mostly false positives). The highest cutoff value in the
cluster with true positives was taken as the cosine
similarity cutoff.

Finally, the linked read analyses cutoff and
cosine similarity cutoff were merged into a final cutoff
that was used to classify variants as true or false pos-
itive. This was done by taking the mean of both cut-
offs, or by only selecting the cosine similarity cutoff if
the highest precision-recall value of the linked read
analysis cutoff was below 0.7 (for example in case
there were too few variants classified by the linked
read analysis).

Indel filtering

Candidate indels were filtered based on recurrency
in multiple unrelated individuals. Raw indel calls from
31 PTA-based WGS samples from four unrelated
individuals were merged into one vcf using bcftools
(v1.9). Indels detected in samples from at least two
different individuals were included in the PTATO in-
del exclusion vcf file. Candidate indels present in the
exclusion vcf file are removed from test samples. Ad-
ditionally, insertions in 5bp+ homopolymers were re-
moved. For this, MutationalPatterns was used to de-
termine the indel type and sequence context around
candidate indels.

Mutation burden and signature analysis

The mutational patterns and signature analyses were
performed using MutationalPatterns (v3.6.0)*°. Mu-
tational signatures were used from COSMIC (v3.2)
as well as the previously described HSPC, PTA, and
ENU signatures'®2':27:52 Figures were made using
ggplot2 (v3.4.0)%.

CallableLoci from GATK v3.8.1 (with param-
eters --minBaseQuality 10 --minMappingQuality 10
--minDepth 8 --minDepthForLowMAPQ 10 --max-
Depth 100) was used to determine the fraction of the
sequenced genome that had sufficient coverage and
quality for variant calling. Variants not overlapping
with the callable regions determined by CallableLoci
were excluded. Subsequently, all remaining variants
on autosomal chromosomes were counted. To obtain
the mutation burden, the mutation count was extrap-
olated by dividing it by the fraction of the genome that
was surveyed (determined by CallableLoci), as previ-
ously described®.

A linear mixed-effects model was used to cor-
relate the mutation burden in HSPCs from healthy
donors and the age of the donors as previously de-
scribed?. This model was used to calculate the ex-
pected mutation burdens for the specific ages of the
patients. The 95% confidence and 95% prediction
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intervals were calculated using the R package ggef-
fects (v1.1.0)%.

Normalization of copy number ratios for SV de-
tection

GC-normalized read depth per 1000 basepair ge-
nomic window was calculated by COBALT (v1.11)%.
A coverage panel-of-normals (PON) was generated
by merging COBALT ratio files of 12 copy number
neutral PTA samples. The total read counts from all
windows of each sample were first normalized so
that every sample has the same total amount of read
counts. Subsequently, the mean readcount per bin
over all normal samples in the PON was calculat-
ed. PTATO uses the coverage PON file to smoothen
PTA-specific coverage fluctuations. First, the total
read depth in a test sample is normalized to the same
total amount of read counts in the coverage PON.
Subsequently, the read counts in each window are
divided by the mean read counts in the same window
in the PON. Additionally, the bottom and top 1% out-
lier windows in the PON file and the windows located
within 1Mb distance of centromeres and telomers are
excluded from the analysis.

The smoothened read counts were subse-
quently binned in 100kb windows. The copynumber
(v1.34.0) R-package with parameter “gamma=100"
was used to segment the median read count data in
both the 100kb and 1kb windows®®. The segments
based on the 100kb resolution were used as raw
copy number segments. The start and end coordi-
nates of these raw copy number segments were
fine mapped by taking the start and end coordinates
of overlapping 1kb window-based segments. Fine
mapped segments with a copy number ratio of <1.5
were considered to be copy number losses and seg-
ments with ratios >2.5 were considered to be copy
number gains.

Deviation of allele frequency calculations

Variant allele frequencies (VAF) of germline variants
can be noisy in PTA-based WGS data due to uneven
genome amplification, which impedes accurate copy
number variant detection based on raw B-allele fre-
quencies. To reduce noise due to uneven amplifica-
tion, the VAFs of germline base substitutions were
first binned in 100kb windows instead of taking sep-
arate B-allele frequencies of each individual variant.
To determine a mean allele frequency for multiple
variants in a bin, the deviation of allele frequency
(DAF) was calculated by taking the absolute value
after subtracting the VAF of each variant from 0.5
(which is the expected VAF for a perfectly amplified
and sequenced germline variant). Thus, each variant
has a DAF between 0 (corresponding to a VAF of 0.5)
and 0.5 (corresponding to a VAF of 0 or 1). Subse-
quently, all DAF values of germline base substitutions
are binned in 100kb genomic regions and the mean

DAF for each region is calculated. The copynumber
R-package with parameter “‘gamma=100" was used
to segment the 100kb bins in crude DAF regions.
These crude segments were fine mapped by adjust-
ing the start and end coordinates of the segments to
the positions of the nearest germline SNVs (within
200kb distance of the segment) with similar DAFs as
the segment. Segments with a DAF of more than 0.4
(corresponding to VAF < 0.1 or > 0.9) were consid-
ered to be loss of heterozygosity regions. Segments
with a DAF between 0.16 and 0.4 (corresponding to
VAFs between 0.1 to 0.32 or 0.64 to 0.9) were con-
sidered to be regions with copy number gains.

SV breakend calling and filtering

Somatic SV breakends were called by GRIDSS
v2.13.2 and prefiltered by GRIPSS v1.9 using a cor-
responding bulk-sequenced germline control®2. The
GRIPSS-filtered somatic breakends of 15 PTA-based
samples of four unrelated individuals were merged
using bedtools merge (v2.30.0). Breakend positions
occurring within 2000bp of each other in multiple of
these individuals were included in a breakend PON.
Candidate breakends in other samples overlapping
with the regions in the breakend PON were removed.
Subsequently the normalized coverage and DAF of
the SV candidates was calculated. Breakends of du-
plications were filtered if the DAF was less than 0.18
and/or the copy number ratio was <2.5. Breakends of
deletions were filtered if the DAF was less than 0.4
and/or the copy number ratio was >1.5. Breakends
with a coverage of more than 100 were also excluded
for samples with a targeted genome coverage of 15x
as many artefacts occur in these regions with excess
coverage. Inversions were filtered if they only have
one breakpoint junction instead of two. Additionally,
all inversions less than 1kb in size were removed.
Inter-chromosomal events were also filtered if they
only have one breakpoint junction (instead of two),
unless they were situated less than 100kb from a
copy number variant. This exception rescues unbal-
anced translocations.

Integration of coverage, allele frequencies and
structural variant breakends

The coverage segments, DAF segments, and break-
ends of SV candidates were intersected to create the
final list of filtered structural variants. Copy number
changes were required to have both coverage and
DAF support, but not necessarily breakend support,
as many CNVs have start and/or end positions within
repeat regions that are difficult to capture with PTA
and/or short-read sequencing. Regions with a DAF
>0.4 (corresponding to VAFs of <0.1 and >0.9) with-
out coverage support (copy number >1.5) were con-
sidered to be loss-of-heterozygosity regions. ggplot2
and Circos (v0.69-9) were used for to visualize struc-
tural variants and karyograms®.
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Data and code availability
Source code and manual for PTATO are available at
https://github.com/ToolsVanBox/PTATO/
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