

1
2
3 **A novel triptolide analog downregulates NF-κB and induces**
4 **mitochondrial apoptosis pathways in human pancreatic cancer**
5
6

7 Qiaomu Tian^{1#}, Peng Zhang^{2#}, Yihan Wang¹, Youhui Si¹, Dengping Yin¹, Christopher R Weber³,
8 Melissa L Fishel⁴, Karen E Pollok⁴, Bo Qiu², Fei Xiao², Anita S Chong^{1*}
9
10

11 ¹Department of Surgery, The University of Chicago, Chicago, IL
12 ²Cinkate Pharmaceutical Corp, ZhangJiang District, Shanghai
13 ³Department of Pathology, The University of Chicago, Chicago, IL
14 ⁴Department of Pediatrics, Indiana University, Indianapolis, IN
15
16
17
18
19

20 #These authors contributed equally
21
22 *To whom correspondence should be addressed:
23 Anita S. Chong, PhD
24 Professor, Section of Transplantation
25 Department of Surgery
26 The University of Chicago
27 5841 S. Maryland Ave
28 Chicago, IL60637
29 Email: achong@uchicago.edu
30 Tel: (773) 702-5521
31

32 **Abstract**

33

34 **Background** Pancreatic cancer is the seventh leading cause of cancer-related death worldwide, and
35 despite advancements in disease management, the 5-year survival rates stands at only 9%.
36 Triptolides have potent anti-tumor activity against different types of cancers, including pancreatic
37 cancer, however poor solubility and toxicity limit their translation into clinical use.

38 **Methods** We synthesized a novel pro-drug of triptolide, (*E*)-19-[(1'-benzoyloxy-1'-phenyl)-
39 methyldene]-Triptolide (CK21), and formulated into an emulsion for *in vitro* and *in vivo* testing in rats
40 and mice, and using human pancreatic cancer cell lines and patient-derived pancreatic tumor
41 organoids. A time-course transcriptomic profiling of tumor organoids treated with CK21 *in vitro* was
42 conducted to define its mechanism of action, as well as transcriptomic profiling at a single time point
43 post-CK21 administration *in vivo*.

44 **Findings** Intravenous administration of emulsified CK21 resulted in the stable release of triptolide,
45 and potent anti-proliferative effects on human pancreatic cancer cell lines and patient-derived
46 pancreatic tumor organoids *in vitro*, and with minimal toxicity *in vivo*. Time course transcriptomic
47 profiling of tumor organoids treated with CK21 *in vitro* revealed <10 differentially expressed genes
48 (DEGs) at 3 h and ~8,000 DEGs at 12 h. Overall inhibition of general RNA transcription was observed,
49 and Ingenuity pathway analysis together with functional cellular assays confirmed inhibition of the NF-
50 kB pathway, increased oxidative phosphorylation and mitochondrial dysfunction, leading ultimately to
51 increased reactive oxygen species (ROS) production, reduced B-cell-lymphoma protein 2 (BCL2)
52 expression, and mitochondrial-mediated tumor cell apoptosis.

53 **Interpretation** CK21 is a novel pro-drug of triptolide that exerts potent anti-proliferative effects on
54 human pancreatic tumors by inhibiting the NF- κ B pathway, leading ultimately to mitochondrial-
55 mediated tumor cell apoptosis.

56 **Funding** The study of the anti-tumor efficacy of CK21 supported in part by a research grant from
57 Cinkate Pharmaceutical Corp; the funders had no role in the study design, interpretation or decision
58 to publish. Patient-derived pancreatic tumor organoids were a generous gift from the Organoid and
59 Primary Culture Research Core at University of Chicago.

60 **Key Words:** Triptolide, pancreatic cancer, apoptosis

61 Introduction

62

63 Pancreatic cancer is the seventh leading cause of cancer related deaths globally and the third
64 leading in the United States, and has the lowest 5-year survival rate (2-9%) among all the cancers¹.
65 Pancreatic ductal adenocarcinoma accounts for >90% of all pancreatic cancer cases, and poor
66 outcomes have been attributed to late diagnoses when the cancer is at advance stages², where the
67 majority of cases are accompanied with distant metastasis^{3,4} and when most patients are not eligible
68 for resection⁵. Fluorouracil, and gemcitabine are FDA approved as adjuvant chemotherapy after
69 pancreatic cancer resection⁶, FOLFIRINOX, Abraxane with gemcitabine represent first-line
70 chemotherapy for patients with metastatic pancreatic cancer⁷⁻⁹. For patients with resectable disease
71 followed by adjuvant chemotherapy, anticipated median overall survival is 54.4 months, however, for
72 patients with advanced unresectable disease, the survival benefit with multiagent chemotherapy is
73 only 2-6 months².

74

75 The Chinese herb, *Tripterygium wilfordii* hook F (Thunder God vine), has anti-inflammatory,
76 immunosuppressive, contraceptive, and anti-tumor activities, and has been used for centuries as
77 traditional Chinese medicine for treating rheumatoid arthritis and lupus. In 1972, Morris *et al.*
78 extracted triptolide from *T. wilfordii* and characterized it as a structurally unique diterpene triepoxide,
79 with potential anti-leukemic properties¹⁰. Subsequently, triptolide was shown to have anti-tumor
80 effects in pre-clinical mouse models of breast cancer^{11,12}, cholangiocarcinoma¹³, osteosarcoma¹⁴,
81 lung cancer^{15,16}, acute myeloid leukemia^{17,18}, ovarian cancer^{19,20}, prostate cancer²¹, gastric cancer²²,
82 colon cancer²³, and pancreatic cancer^{24,25}. Multiple mechanisms have been proposed for triptolide-
83 induced antitumor activity, including inhibition of NF-κB²⁶, and HSP70²⁷. Notably, Titov *et al.* reported
84 that triptolide binds covalently to human XPB (ERCC3) and inhibits its DNA-dependent ATPase
activity, leading to the inhibition of RNA polymerase II-mediated transcription and nucleotide excision

85 repair²⁸. However, it is unclear how this non-specific inhibition of an essential transcription factor
86 could exert selectivity against tumors.

87 While triptolide is a promising anti-cancer drug, poor solubility and toxicity have limited its
88 clinical development, and a number of analogs of triptolide have been developed for improved clinical
89 performance^{29,30}. In Phase I clinical studies, a soluble analog PG490-88/F60008³¹ resulted in
90 significant toxicity and had high interindividual variability in pharmacokinetic studies, thus stopping
91 further development. Minnelide³² is another analog with superior solubility and potent anti-tumor
92 1activity in multiple preclinical cancer models. Phase I clinical trial (ClinicalTrials.gov Identifier:
93 NCT03129139) showed significant activity in highly refractory metastatic pancreatic cancer, and it is
94 currently in a Phase II open label trial (ClinicalTrials.gov ID NCT03117920).

95 In this study, we synthesized a novel pro-drug of triptolide, CK21, by decorating the C-19 with
96 a C-C double bond to generate (*E*)-19-[(1'-benzoyloxy-1'-phenyl)-methylidene]-Triptolide, formulated
97 it into an emulsion, and investigated its efficacy and mode of action. We report that CK21 inhibited the
98 *in vitro* proliferation of multiple pancreatic cancer cell lines, was effective at eliminating large
99 pancreatic tumors in heterotopic and orthotopic xenograft animal models with minimal toxicity, and
100 confirmed the efficacy of CK21 against multiple patient-derived pancreatic tumor organoids *in vitro*
101 and *in vivo*. We performed transcriptome analysis on the pancreatic organoid response to CK21 *in*
102 *vitro*, and on the *in vivo* response of pancreatic tumors to CK21. We identified that CK21 reducing
103 overall transcription, inhibited the NF-κB pathway, induced mitochondria dysfunction, and ultimately,
104 mitochondrial-mediated apoptosis was identified as the likely mechanism for the anti-tumor activity of
105 CK21.

106 **Methods**

107 **Study design overview**

108 We synthesized a novel pro-drug of triptolide, CK21, and formulated it into an emulsion. We
109 tested the efficacy of CK21 *in vitro* using cell proliferation assays and multiple pancreatic cancer cell
110 lines, and *in vivo* in heterotopic and orthotopic xenograft mouse models. We also tested the efficacy
111 of CK21 against multiple patient-derived pancreatic tumor organoids *in vitro* and *in vivo*. We
112 performed transcriptome analysis on the pancreatic organoid response to CK21 *in vitro*, and on the *in*
113 *vivo* response of pancreatic tumors to CK21. This analysis identified the ability of CK21 to reduce
114 overall transcription, inhibit the NF- κ B pathway, induce mitochondria dysfunction, and ultimately,
115 mitochondrial-mediated apoptosis. We confirmed inhibition of NF- κ B expression and translocation in
116 pancreatic cell lines using imaging flow cytometry, Western blotting and RT-PCR.

117 **Ethics statement and study approval**

118 All animal experiments were approved by the Institutional Animal Care and Use Committee at
119 the University of Chicago, and adhered to the standards of the NIH Guide for the Care and Use of
120 Laboratory Animals. Pancreatic tumors from patients with pancreatic ductal adenocarcinoma were
121 collected under University of Chicago IRB12-1108 and IRB13-1149.

122 **Reagents**

123 Human pancreatic tumor cell lines were obtained from commercial sources. Human tumor
124 organoids were obtained from patients with pancreatic ductal adenocarcinoma, confirmed to be tumor
125 based on pathologic assessment, and developed into organoid culture according to established
126 protocols³⁹. Luciferase-transfected AsPC-1 tumors³⁴, and mouse tumors from genetically KPC mice
127 that spontaneously develop pancreatic cancer⁴⁷ have been previously described. CK21 was
128 synthesized as described below. All other reagents listed in the Key Resources Table were validated
129 by the manufacturer.

130 **Synthesis and formulation of CK21**

131 Under nitrogen protection, a mixture of triptolide (1.8 g, 5 mmol) and anhydrous
132 tetrahydrofuran (250 mL) was cooled to -20 °C, and lithium 2,2,6,6-tetramethylpiperidine in
133 tetrahydrofuran/toluene (7.5 mL, 2.0M, 15 mmol) was added dropwise. After stirring for 30 min,
134 benzoyl chloride (1.05 mL, 7.5 mmol) was added dropwise and reacted for 1 h, followed again with
135 benzoyl chloride (7.5 mmol) and reacted for another 2 h. The reaction was quenched by adding
136 aqueous sodium carbonate (10%), and the mixture was extracted with ethyl acetate (250 mL×3). The
137 organic phases were combined, dried over anhydrous sodium sulfate, and concentrated under
138 reduced pressure. The crude product was separated and purified by silica gel chromatography
139 (dichloromethane: ethyl acetate = 2:1), and the target product (white solid, 2.55 g, yield 90%) was
140 collected and further recrystallized in a mixed organic solvent (dichloromethane/hexane) to obtain a
141 final product (2.13 g, yield 85%, purity >99% by UPLC).

142 CK21 was dissolved in medium chain triglycerides (MCT) at 90°C under nitrogen. PC-98T,
143 DSPE-MPEG2000 and glycerol were dissolved in water to form the water phase. The oil phase was
144 dispersed at room temperature in the water phase with high-speed shear mixing (FAS90-22, FLUKO)
145 at 2,800 rpm for 30 min. The pH was adjusted to 4-7, and volume was made up to 100% with water.
146 The final emulsion was obtained by high-pressure homogenization using microfluidizer (M-7125-20K,
147 MFIC) at 10,000 psi for one cycle and at 18,000 psi for two cycles. Finally, the emulsion was sealed
148 in vials (5 mL: 1.5 mg) after flushing with nitrogen gas and autoclaved at 121°C for 15 min.

149 **Characterization of CK21 compound**

150 ¹H NMR (Bruker, 400MHz, CDCl₃): δ 8.25 (dd, J = 1.6 Hz, 8.0 Hz, 2H), 7.76 (dd, J = 1.6 Hz,
151 8.4 Hz, 2H), 7.67 (m, 1H), 7.58 (t, J = 7.2 Hz, 2H), 7.43~7.38 (m, 3H), 3.80 (d, J = 3.2 Hz, 1H), 3.39
152 (d, J = 2.8 Hz, 1H), 2.98 (d, J = 10 Hz, 1H), 2.75~2.69 (m, 1H), 2.63~2.58 (m, 1H), 2.56 (d, J = 6.4 Hz,
153 1H), 2.53 (d, J = 10 Hz, 1H), 2.40~2.32 (m, 2H), 2.21~2.14 (m, 1H), 1.88 (dd, J = 14.0 Hz, 13.2 Hz,
154 1H), 1.55~1.52 (m, 1H), 1.18~1.11 (m, 1H), 1.15 (s, 3H), 0.92 (d, J = 7.2 Hz, 3H), 0.82 (d, J = 6.8 Hz,

155 3H); ¹³C NMR (Bruker, 100 MHz, CDCl₃): δ168.1, 164.5, 150.3, 142.2, 134.4, 133.5, 131.9, 130.5,
156 129.9, 129.2, 128.9, 128.6, 128.1, 128.0, 72.8, 65.8, 65.3, 60.7, 60.0, 56.5, 53.7, 40.7, 36.7, 29.3,
157 27.9, 24.6, 17.8, 17.6, 16.7, 15.0.

158 Mass Spectrometry (AGILENT, ESI+): Calculated for C₃₄H₃₂O₈[M]: 568.62, found 569.22
159 [M⁺H]⁺ and 591.21 [M⁺Na]⁺.

160 CK21 crystals were obtained by careful evaporation of a mixture of CK21 in combined solvent
161 of dichloromethane and hexane at room temperature. A crystal with size of 0.10×0.03×0.02 mm was
162 chosen to be scanned at X-ray diffraction. Data collection was carried out using a Bruker D8 Venture
163 diffractometer with graphite mono-chromated Ga K α radiation ($\lambda = 1.34139 \text{ \AA}$) at 296 K. Structures
164 were solved by direct methods using the SHELXS program and refined with the SHELXL program
165 (Bruker).

166 **Pharmacokinetic study of CK21**

167 CK21 emulsion (0.3 mg/mL) was injected intravenously into fasted SD rats at a dose of 3
168 mg/kg for males and 1.5 mg/kg for females. At designed timepoints, 60 μ L blood samples were
169 collected, protein precipitated and centrifuged at 13000 rpm for 10 min, 4°C. 5 μ L of the supernatant
170 was injected for LC-MS/MS (Q-Trap 6500) analysis. The PK data were calculated using Phoenix
171 WinNonlin 6.3.

172 **Human pancreatic cancer cell lines and organoids**

173 Human pancreatic cancer cell line, AsPC-1, was cultured in RPMI with 10% fetal bovine serum
174 (FBS), 1% L- Glutamine, and 1% penicillin streptomycin(P/S). Panc-1 was cultured in DMEM with 10%
175 FBS and 1% P/S. Both AsPC-1 and Panc-1 were purchased from ATCC.

176 Pancreatic tumors from patients with pancreatic ductal adenocarcinoma were collected under
177 IRB12-1108 and IRB13-1149, confirmed to be tumor based on pathologic assessment, and
178 developed into organoid culture according to established protocols³⁹. Four different organoids,
179 U0118-8, U049MAI, U114SOK, and U123M15-T, were investigated. For the optimal culture, derived

180 organoids were embedded in growth factor reduced Matrigel and cultured in Intesticul™ complete
181 media, supplemented with A83-01, fibroblast growth factor 10, gastrin I, N-acetyl-L-cysteine,
182 nicotinamide, and B27 supplement, primocin. Tocris Y-27632 dihydrochloride, a selective p160
183 ROCK inhibitor, was added when thawing the organoids³⁹.

184 ***In vitro* proliferation assay**

185 AsPC-1, Panc-1 and tumor organoids were seeded in 96-well plates and cultured with the
186 indicated concentrations of CK21, or Gemcitabine. CK21 was prepared by dissolving in DMSO and
187 diluting with PBS. At selected times, 20 µL of CellTiter 96® AQueous One solution was added into
188 the 96-well plate, and then incubated at 37°C for 2 hours. The absorbance was read at 490 nm using
189 Spectra Max® i3X (Molecular Devices).

190 **Mice and xenograft**

191 All animal work that described in this study were approved by the Institutional Animal Care and
192 Use Committee (ACUP72467, ACUP72527). Female or male athymic nude-Foxn1^{nu} mice age from 6
193 to 8 weeks were purchased from Envigo. AsPC-1 or Panc-1 cells were subcutaneously implanted in
194 the scruff of a nude mice at 5×10^6 cells/mice. Mice were treated with different dosages of CK21 daily
195 by intraperitoneal injection. Blank emulsion was provided to the no treatment group. Gemcitabine was
196 also provided to mice at 75 mg/kg once a week as a positive control. The effect of CK21 with another
197 human pancreatic tumor cell line, Panc-1, was also evaluated in the subcutaneous model. The
198 U049MAI organoid was used to test the efficacy of CK21 in the same way.

199 Tumor size was recorded weekly and calculated by $1/2 \times L \times W^2$. L was the length of the tumor;
200 W was the width of the tumor. Weight of mice were monitored once a week. At the end of the
201 experiment, mice were sacrificed by cervical dislocation. Liver, kidney, pancreas, as well as tumor
202 tissue were harvested and fixed in 10% formalin. Haemotoxylin and Eosin (H&E), terminal
203 deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were performed on respective

204 tissues. All the slides were scanned using ScanScope XT slide scanner and analyzed using Aperio
205 eSlideManager.

206 **Orthotopic Tumor Model with Transfected AsPC-1**

207 Luciferase-transfected AsPC-1³⁴ (1×10^6 /mouse) was injected into the tail of the pancreas, and
208 one week of tumor implantation, CK21 was provided at 3 mg/kg daily for the treatment group. In the
209 no treatment group, blank emulsion was provided. During the four weeks of treatment, mice were
210 administrated with D-luciferin (Perkin Elmer) and subjected to Xenogen bioluminescence imaging
211 weekly.

212 **Immunomodulation of CK21 at a spontaneous rejection mice model**

213 Murine pancreatic cancer cell lines were derived from KPC mice, which are spontaneously
214 developing pancreatic cancer⁴⁷. KPC-960 were developed from KPC mice with a mixed background
215 of B6×129, and were subcutaneously implanted into female, naïve B6×129 mice at 5×10^6 cells/mice.
216 After spontaneous rejection, mice were rested for 2 weeks and then challenged with KPC-960 cells at
217 5×10^6 cells/mice. A dosage of 3 mg/kg of CK21 was provided daily starting at day 5 or day 7. For
218 evaluation of CK21 on memory response, mice that rejected the tumors without any CK21 treatment
219 were rested for 2 weeks and then received a second tumor challenge and 3 mg/kg of CK21 daily,
220 starting at day 3.

221 Mice that rejected the KPC-960 tumor were sacrificed, splenocytes were collected and ex-vivo
222 specific cytotoxic assay performed. Specifically, target cells KPC-960 and negative control KC-6141
223 were labeled at 10:1 concentration of carboxyfluorescein succinimidyl ester (CFSE) respectively. Two
224 cell lines were then mix at 1:1 ratio and cultured with harvested splenocytes at 1:1, 1:5, 1:10, 1:20,
225 and 1:50 ratios. After overnight co-culture, cells were subjected to flow cytometry (BD™ LSR II) to
226 quantify relative cytotoxicity

227 **Transcriptome analysis of CK21 treated patient-derived organoids**

228 Two organoids, U049MAI, U123M15-T, were cultured with CK21 at 50 nM for 3 hours, 6 hours,
229 9 hours and 12 hours. Total RNA was extracted using a RNeasy® Plus Mini Kit (Qiagen), and total
230 RNA quantified using the 2100 Bioanalyzer (Agilent). Samples with a RIN >8 was outsourced to
231 Novogene for library construction and sequencing (Illumina Platform (PE150)) with 20 M raw
232 reads/sample. The reads were mapped to the Homosapien genome (GRCh38) using STAR software
233 with ≥95% mapping rate. Differential expression analysis was performed using DESeq2 package in
234 R⁶⁴. Molecular and cellular function analysis and pathway enrichment was analyzed using Ingenuity
235 Pathway Analysis software (Qiagen). Duplicate samples were prepared for each condition.

236 *In vivo* RNA seq was also performed on orthotropic, luciferase-transfected AsPC-1 tumors.
237 Specifically, luciferase transfected AsPC-1 was implanted into pancreas, and after one week, mice
238 were treated with CK21 at 3 mg/kg for 3 days. Tumor tissues were then resected and RNA seq was
239 performed. Quadruplicate samples were prepared for each condition.

240 **Imaging Flow cytometry**

241 AsPC-1, Panc-1 were cultured with 50 nM CK21 for 24 hours and 48 hours. Cells were fixed
242 with 4% paraformaldehyde, and incubated overnight in cocktail of antibody (DPA1, anti-p65)
243 containing 0.1% Triton X-100. Stained cells were subjected to imaging flow cytometry (Amnis®
244 ImageStream®X Mk II) and images analyzed using IDEAS^R software. Specifically, the 'Similarity'
245 feature in IDEAS^R indicates the spatial relationship between the p65 and nuclei. Low similarity scores
246 exhibit a predominant cytoplasmic distribution of p65, whereas high similarity scores indicate a
247 predominant nuclear distribution of p65.

248 **Western blotting**

249 AsPC-1, Panc-1, U049MAI, or U123M15-T were cultured with 50 nM CK21 for 24 hours. Cells
250 then were collected, washed, and lysate for 10 min on ice. Protein concentration of each sample was
251 detected following the protocol of Pierce™ Detergent Compatible Bradford Assay. Total of 20 µg
252 denatured protein was then loaded into each lane of NuPAGE™ Bis-Tris Gel and run using Mini Gel

253 Tank (Invitrogen). Gels were transferred to 0.45 μ m InvitrolonTM PVDF membrane using Mini Blot
254 Module (Invitrogen). Membranes were blocked in 5% BSA overnight at 4°C. Membranes were then
255 incubated overnight at 4°C with primary antibodies, including anti-DDIT4, anti-BCL2, anti-Caspase3,
256 or anti- β -actin. Secondary goat anti-rabbit H&L IgG (HRP) was then incubated for one hour at room
257 temperature. Finally, the chemiluminescent signal was enhanced by with SuperSignalTM West Pico
258 PLUS Chemiluminescent Substrate, and protein expression was detected using AzureTM Biosystems
259 600.

260 RT-qPCR

261 Predesigned primers were purchased from Integrated DNA Technologies, which included
262 XBP1 (Hs.PT.58.1903847), GADD45B (Hs.PT.58.19897476.gs), MYC (Hs.PT.58.26770695), GUSB
263 (Hs.PT.58v.27737538), VAMP1 (Hs.PT.58.26743095), POLR2A (Hs.PT.58.14390640), XIAP
264 (Hs.PT.56a.23056448), DDIT4 (Hs.PT.58.38843854.g), ACTB (Hs.PT.56a.19461448.g) for human
265 tumor organoid samples. DDIT4 (Mm.PT.58.43159110.g), GUSB (Mm.PT.39a.22214848), MYC
266 (Mm.PT.58.13590978), GADD45B (Mm.PT.58.10699383.g), ACTB (Mm.PT.39a.22214843.g), XIAP
267 (Mm.PT.56a.5536843), XBP1 (Mm.PT.58.30961962) for mouse pancreatic tumor cell line samples.

268 U049MA1 or U123M15-T were cultured with 50 nM CK21 for 24 hours, total RNA was extracted
269 with an RNeasy[®] Plus Mini Kit (Qiagen) and quantified using Nanodrop 1000 spectrophotometer
270 (Thermo Fisher). RNA of each sample was reverse transcribed into cDNA using High capacity cDNA
271 reverse transcription kit (Applied Biosystems). RT-qPCR were run on QuantStudio 3 (Applied
272 Biosystems) using PowerUpTM SYBRTM green master mix with specific primers. RT-qPCR of murine
273 pancreatic cancer cell lines, KC-6141 and KPC-961, were prepared in the same way.

274 Statistical analysis

275 Data are presented as means \pm standard error (SEM). Statistical analyses were performed
276 using GraphPad Prism software. Differences between groups were analyzed using unpaired t-tests,
277 one-way or two-way ANOVA with post-hoc tests, as indicated in the figure legends.

278

279

Results

280 Novel modified triptolide, CK21, show improved pharmacokinetics

281 We designed a new modification strategy to triptolide to generate CK21, by decorating the C-
282 19 with a C-C double bond to generate (*E*)-19-[(1'-benzoyloxy-1'-phenyl)-methylidene]-Triptolide
283 (Fig1.a). Briefly, a mixture of triptolide (1.8 g, 5 mmol) with anhydrous tetrahydrofuran (250 mL) was
284 kept at -25°C~20°C under nitrogen protection. Benzoyl chloride (1.05 mL, 7.5 mmol) and Lithium
285 2,2,6,6-tetramethylpiperidine in tetrahydrofuran/toluene (7.5mL, 2.0M, 15mmol) were then added
286 dropwise to produce an intermediate compound, IM464. After 1 h, addition of benzoyl chloride and
287 lithium 2,2,6,6-tetramethylpiperidine was repeated, and the reaction was quenched by adding
288 aqueous sodium carbonate (6%). Following concentration under reduced pressure, the crude product
289 was separated and purified by silica gel chromatography, and the target product collected and further
290 recrystallized in methylene chloride/hexane to obtain CK21 that was used in the *in vitro* studies. Using
291 ¹H NMR, ¹³C NMR and mass spectrometry, we confirmed the structure of CK21, and the absolute
292 configuration of CK21 was established by single crystal X-ray diffraction (Fig1.b). We then formulated
293 CK21 with medium chain triglycerides, phospholipids, glycerol, and DSPE-MPEG2000 (Fig1.c) to
294 produce a CK21 emulsion (Fig1.d) that was used in the *in vivo* studies.

295

296

297

298

299

300

301

302

To examine the conversion of CK21 into triptolide *in vivo*, and to establish pharmacokinetics
and to avoid toxicity, we intravenously administrated 3 mg/kg or 1.5 mg/kg CK21 into Sprague
Dawley male or female rats, and the concentration of CK21 and triptolide in the plasma quantified.
CK21 had a $T_{1/2}$ of 1.3 h and 0.225 h for male and female rats respectively. Released triptolide
reached T_{max} at 0.25 and 0.75 h with a C_{max} of 78.3 and 81.9 nM respectively for male and female
rats. A stable release of triptolide 30 nM to 80 nM was observed for up to 2 hours (Fig.1e), and we
hypothesized may mitigate the toxicity observed with other triptolide derivatives, which exhibit a spike
release³¹. Finally, we observed that *in vitro* incubation of the human pancreatic cancer cell lines,

303 AsPC-1, and Panc-1, with CK21 at 5-100 nM for 24, 48 and 72 h resulted in a dose-and time-
304 dependent inhibition of cell proliferation (Fig.1f).

305 A comparison of CK21 and triptolide (TP) revealed that they had similar IC50 (μM) when tested
306 in vitro using a cell viability assay with different cancer cell lines and human fibroblasts (Fig.s1).
307 However, the in vivo toxicity of TP in mice was significantly higher than CK21 in vivo (supplement
308 Fig.s2).

309

310 **CK21 inhibits AsPC-1 and Panc-1 proliferation *in vitro* and tumor growth *in vivo***

311

312 To evaluate the efficacy of CK21 pro-drug *in vivo*, we developed a xenograft model where
313 AsPC-1 tumors were subcutaneously implanted into female nude mice (Fig.2a). Daily treatment with
314 CK21 at all doses tested (1.25, 2.5, 3 and 5 mg/kg) significantly inhibited AsPC-1 tumor growth
315 (Fig.2c). Higher dosages of CK21 at 3 mg/kg or 5 mg/kg daily completely eliminated the tumor after
316 28 days of treatment (Fig.2b). After 28 days of CK21 treatment, no mice demonstrated tumor relapse
317 during the subsequent 6-month follow-up observation (supplement Fig.s3).

318

319 No significant weight loss was detected when female mice were treated with \leq 3 mg/kg CK21,
320 compared to the control (no treatment) group (Fig.2d). In contrast, mice exhibited severe weight loss
321 with 5 mg/kg CK21. To further confirm the lack of toxicity of CK21 (3 mg/kg), we performed H&E and
322 TUNEL staining to detect cell apoptosis on the kidney, liver, and pancreas of mice after 28 days
323 treatment. We observed no toxicity in the kidney, liver, and pancreas tissues after 28 days of
324 treatment (Fig.2e); in contrast, after 14 days of CK21 treatment, AsPC-1 tumors showed a 5-fold
325 increase of TUNEL-positive staining compared to the no Rx group (Figs.2f&g). Thus, we concluded
326 that CK21 given at 3 mg/kg daily exhibited high efficacy and minimal toxicity, and this dose was
employed for the remaining of study. In a second subcutaneous xenograft model with the Panc-1

327 tumor cell line, 3 mg/kg daily of CK21 also resulted in significant inhibition of tumor growth
328 (supplement Fig.s4).

329 Orthotopic tumor mouse models are generally preferred over heterotopic subcutaneously-
330 located pancreatic tumors because they offer tissue site-specific pathology, allow studies of
331 metastasis, and are deemed more clinically relevant³³, while the development of pancreatic tumors
332 expressing luciferase/fluorescent proteins has facilitated the longitudinal monitoring of orthotopically
333 located pancreatic tumors³⁴. We next evaluated the efficacy of CK21 in an orthotopic xenograft
334 model, using luciferase-transfected AsPC-1 implanted into the pancreas of nude mice and allowing
335 the tumor to develop for 1-2 weeks before initiating CK21 treatment. The presence and size of the
336 tumor were monitored weekly by quantifying the bioluminescence intensity (Fig.2h), and overall, a 10
337 to 15-fold reduction in bioluminescence intensity was observed in mice that received CK21 compared
338 to untreated controls (Fig.1i). In addition, no mice died in the CK21 treatment group, whereas 5 out of
339 11 animals were sacrificed in the no Rx group due to the large tumor size while the experiment was
340 ongoing (Fig.2j). Finally, we noted that while most of the untreated mice develop metastatic disease
341 by the end of the experiment (Fig.2h), the CK21 treated mice did not.

342 **Delayed CK21 therapy inhibits growth of tumors that escaped earlier therapies**

343 The mortality of pancreatic tumors is often due to late detection when the tumor is at an
344 advanced stage. To evaluate the efficacy of CK21 against late-stage tumors, CK21 treatment was
345 initiated only after subcutaneous AsPC-1 tumors reached a large size of ~900 mm² (Fig.3a). Despite
346 this delay in the initiation of treatment, CK21 was able to completely reduce the size of AsPC-1
347 tumors after 28 days of treatment, with all mice showing a significant response (Fig.3b).

348 Gemcitabine is a standard of care medication for pancreatic cancer in the clinic², therefore we
349 next tested whether gemcitabine in combination with CK21 might offer improved efficacy. We treated
350 mice for 4 weeks with suboptimal doses of CK21 (3 mg/kg, 3 days/wk) and gemcitabine (25 mg/kg, 3
351 days/wk), with each drug given on alternate days to avoid toxicity (Fig.3c). The combination therapy

352 did not show improved inhibition of AsPC-1 growth compared to CK21 monotherapy (Fig.3d), and
353 indeed failed to induce complete regression of AsPC-1 tumors. In mice where tumors were detectable
354 after 28 days treatment with CK21 or gemcitabine monotherapy, or combination therapy, we tested
355 whether switching to CK21 (3 mg/kg) daily treatment (Fig.3e) was able to induce tumor regression.
356 We observed that irrespective of whether mice failed CK21 (3x/wk) or gemcitabine monotherapy, or
357 combination therapy, switching to daily CK21 monotherapy for 28 days induced significant tumor
358 regression (Fig.3e).

359 **Transcriptome analysis of patient-derived organoids revealed early down-regulation of DDIT4
360 and XBP1 by CK21**

361 It is now recognized that 3-D patient-derived organoids offer a better recapitulation of the
362 heterogeneous, architectural, morphologic and genetic features of patient pancreatic tumor,
363 compared to long-term established 2-D monolayer cell lines³⁵⁻³⁸. We therefore investigated four
364 organoids derived from different pancreatic cancer patients³⁹, UC12-0118-8, U049MAI, U123SOK,
365 and U123M15-T, and tested the susceptibility to CK21 *in vitro* and *in vivo*. Details of the origin,
366 mutations of these organoids were described in supplement Fig.s5. We observed that 72 hours of *in*
367 *vitro* incubation with CK21 (25 nM) significantly inhibited UC12-0118-8, U049MAI, and U123SOK
368 growth, and CK21 (50 nM) significantly inhibited proliferation of all four organoids (Fig.4a). In addition,
369 we were able to propagate U049MAI as a slower-growing subcutaneous tumor in nude mice.
370 Treatment with CK21 (3 mg/kg, daily) for 28 days, also significantly reduced U049MAI tumor growth
371 compared to the untreated control group (Fig.4b).

372 Because pancreatic tumor organoids better preserve the genetic signatures than pancreatic
373 tumor cell lines, we performed a time-course RNA-seq of U049MAI and U123M15-T treated with
374 CK21 for 3, 6, 9 and 12 hours. We hypothesized that the early time points might reveal the initiating
375 mechanism of action that result ultimately in the control of tumor growth; indeed, the number of
376 differentially expressed genes (DEGs) significantly increased with prolonged CK21 treatment, from

377 less than 10 DEGs at 3 h up to 8,000 DEGs at 12 h (Fig.4c & Supplement Fig.s6). We identified the
378 genes that were differentially expressed at early time points and continuously upregulated or
379 downregulated at later time points (Fig.4d), and confirmed with qPCR, of a significant downregulation
380 of DDIT4, MYC, XBP1 and XIAP, as well as a significant upregulation of POLR2A, GADD45 and
381 VAMP1(Fig.4e). We also performed transcriptome analysis on the AsPC-1 tumor, orthotopically
382 implanted in the pancreas for 7 days and then treated by CK21 for three days. CK21 induced a
383 similar DEG expression profile as *in vitro* treated organoids, with downregulated DDIT4 and XBP1, as
384 well as upregulated POLR2A (Fig.4g).

385 DDIT4 was one of the genes consistently and strongly downregulated by CK21 in both
386 organoids and AsPC-1, with significant effects observed as early as 3 hours of CK21 treatment *in*
387 *vitro* and at day 3 *in vivo*. At the protein level, we also observed a significant decrease of DDIT4
388 expression after CK21 treatment of 24 hours (Supplement Fig.s7). Interestingly, DDIT4 has been
389 identified as a prognosis marker and highly expressed in pancreatic tumors⁴⁰, prompting the
390 investigation into whether DDIT4 inhibition might be the triggering mechanism of action and thus
391 serve as a predictive biomarker for CK21 sensitivity. However, knock-down of DDIT4 in Panc-1 only
392 induced very modest *in vitro* susceptibility to CK21, and the overexpression of DDIT4 in AsPC-1 didn't
393 result a difference to CK21 response (Supplement Fig.s8). Furthermore, in two mouse pancreatic
394 tumor cell lines derived from genetically modified KC or KPC mice that were only modestly sensitive
395 to CK21 treatment (Supplement Fig.s9), DDIT4 as well as other early responder genes showed
396 strong alterations in expression profiles comparable to tumors that were more sensitive to CK21
397 (Supplement Fig.s10). Therefore, these early responder genes are not likely to be essential mediators
398 leading to tumor susceptibility to CK21.

399 **400 Ingenuity pathway analysis of patient-derived organoids reveal down-regulation of the NF-κB
signaling pathway by CK21**

401 At the later timepoint of 12 h after CK21 treatment, both U049MAI and U123M15-T had over
402 8,000 DEGs compared to the no Rx group (Figs.5a&b). We then used Ingenuity pathway analysis
403 (IPA, Qiagen) on the DEGs to identify the major molecular and cellular functions that were
404 significantly affected by CK21 treatment (Fig.5c). First, CK21 treatment was predicted to inhibit RNA
405 and DNA transcription, expression of RNA, and transactivation of RNA transcription in both organoids;
406 this observation corroborates a previous report on the ability of triptolide to inhibit RNA transcription²⁸.
407 In addition, DEGs induced by CK21 were enriched for inhibition of cell proliferation and cell survival,
408 and for inducing apoptosis and tumor cell necrosis. These observations collectively are consistent
409 with TUNEL-positive staining of ASPC-1 with CK21 treatment *in vivo*, and support the conclusion that
410 induction of cell apoptosis is the mechanism for the anti-tumor activity of CK21.

411 We used IPA pathway enrichment analysis to further identify the canonical signaling/metabolic
412 pathways regulated by CK21 that might lead to tumor cell apoptosis (Figs.5d&e). Interestingly, in both
413 organoids, EIF2 signaling, oxidative phosphorylation and mitochondrial dysfunction were the major
414 pathways highly upregulated by CK21, whereas the NF-κB, TGF-β and telomerase signaling
415 pathways were significantly downregulated at the 12 h treatment timepoint. In addition, at 9-hour
416 timepoint, NF-κB was already significantly downregulated and oxidative phosphorylation as well as
417 EIF2 signaling pathway were significantly upregulated (supplement Fig.s11). Collectively, these
418 observations suggest that CK21 may be inhibiting NF-κB activity and inducing mitochondrial-
419 mediated tumor cell apoptosis.

420 **CK21 inhibits expression of NF-κB p65 and translocation to nuclei**

421 NF-κB plays a major role in the regulation of immune, inflammatory response and cell
422 proliferation⁴¹. In normal cells, NF-κB is activated by appropriate stimuli and then returns to its
423 inactive state. In tumor cells, particularly in pancreatic cancer cells, NF-κB becomes constitutively
424 activated and has an anti-apoptotic function^{42,43}. After 12 h treatment with CK21, the genes (CHUK,

425 IKBKB and RELA) encoding the key regulators of the NF- κ B pathway, IKK α , IKK β and p65, were
426 significantly downregulated in both organoids (Fig.6a).

427 To confirm the transcriptional findings that CK21 downregulates the NF- κ B pathway, we
428 stained the nuclei and p65 of AsPC-1 and Panc-1 with different fluorophores to visually determine
429 their cellular location; similarity in the spatial localization between p65 and nuclei represents the
430 translocation of NF- κ B to nuclei (Fig.6b). In the no Rx group, p65 staining had a high similarity with
431 nuclei staining, corresponding with constitutive nuclear localization of NF- κ B in pancreatic cancer
432 cells. After treatment with CK21 for 24 or 48 hours, both cell lines exhibited significantly lower
433 expression of p65, consistent with RNA-seq analysis (Fig.6c). In addition, we observed reduced
434 similarity of p65 and nuclei, indicating significantly reduced translocation of NF- κ B to the nuclei in the
435 presence of CK21 (Figs.6d&e). Taken together, the data demonstrate that CK21 inhibits NF- κ B
436 expression and translocation, which we hypothesize results in increased susceptibility tumor cell
437 apoptosis.

438 **CK21 induces reactive oxidative species and mitochondrial mediated apoptosis**

439 The expression of genes encoding five mitochondrial respiratory chain complexes were
440 significantly increased in pancreatic tumor organoids treated with CK21(Fig.6f), consistent with
441 dysregulated mitochondrial function and increased susceptibility to mitochondrial-mediated
442 apoptosis⁴⁴. Because mitochondrial mediated apoptosis is often stimulated by oxidative stress, we
443 first tested whether CK21 induced reactive oxidative species (ROS) in AsPC-1 and Panc-1 pancreatic
444 tumor cell lines. In both cell lines, a trend towards an increase in ROS was observed as early as 8
445 hours after CK21 treatment, and a significant increase in ROS generation after 24 hours of culture
446 with CK21 (Fig.6g). These observations raise the possibility that increased ROS production may
447 trigger mitochondrial outer membrane permeabilization and release of pro-apoptotic mitochondrial
448 proteins into the cytoplasm⁴⁴.

449 The B-cell-lymphoma protein 2 (BCL2) family of proteins play critical roles in regulating the

450 mitochondrial pathway of apoptosis, and BCL2 functions as a critical anti-apoptotic survival protein⁴⁵.

451 To test whether BCL2 protein is reduced in CK21-treated cells, we quantified BCL2 protein

452 expression by Western blotting. We observed that BCL2 was significant decreased in both AsPC-1

453 and Panc-1 cell lines, and in U049MA1, after 24 hours of CK21 culture (Fig.6h).

454 Because most apoptotic pathways lead to the activation of cysteine-dependent aspartate-

455 specific proteases, and ultimately to cleaved effector caspases such as caspases-3, -6 and -7⁴⁵, we

456 probed for cleaved caspase-3 in pancreatic tumors incubated with CK21. For Panc-1 and both

457 pancreatic tumor organoids, cleaved caspase-3 was detected after 24 hours of culture with CK21

458 (Fig.6i) by Western blotting. We also confirmed increased caspase-3/7 in Panc-1 by flow cytometry

459 (supplement Fig.s12). Interesting, cleaved caspase-3/7 was not detected in AsPC-1 after CK21

460 treatment, suggesting that apoptosis of these tumor cells may be explained by the involvement of

461 other effector caspases or proteases. Collectively, these data point to CK21 downregulating the NF-

462 kB pathway, promoting ROS production and mitochondrial-mediated tumor cell apoptosis.

463 **CK21 showed minimal immunosuppression in a spontaneous tumor rejection model**

464 A number of studies have reported on the immunosuppressive activity of triptolide⁴⁶, thus

465 raising the potential concern that CK21 may inhibit the development of anti-tumor immune responses

466 and prevent long-term tumor control. Indeed, although the analyses were conducted on CK21 treated

467 tumor cells, IPA analysis indicated that CK21 inhibited lymphopoiesis, leukopoiesis and T cell

468 development, consistent with potential immunosuppressive activity. To address this concern, we

469 utilized a mouse KPC-960 pancreatic ductal-like tumor model derived from pancreatic tumors that

470 spontaneously arose in KPC (Kras^{G12D/+}Trp53^{R172H/+}Pdx1-Cre) B6.129 mice⁴⁷ (Fig.7a). Upon

471 subcutaneous implantation into B6.129 immunocompetent hosts, KPC-960 grew to a maximum tumor

472 size by day 7 and then approximately 70% KPC-960 tumors were spontaneously rejected by day 14-

473 17 post-implantation (Fig.7b). This contrasted with tumor formation in similar B6.129 host in Torres et

474 al.⁴⁷, we speculate that rejection of the KPC-960 tumor may be driven increased number of passages
475 that resulted in the accumulation of mutations and/or to antigenic drift in the B6.129 hosts. To test
476 whether CK21 could prevent the spontaneous regression of KPC-960, CK21 (3 mg/kg daily) therapy
477 was initiated on day 5 or 7 post-implantation. We observed no statistically significant inhibition of
478 tumor regression when CK21 treatment was started on day 5 or 6 post-implantation (Figs.7c&d)
479 suggesting that the immunosuppressive activity of CK21 on established primary immune responses is
480 minimal. The reason for the resistance to CK21 is not known and is the subject of future
481 investigations.

482 In mice that cleared KPC-960 tumors were rested for 2 weeks without treatment and then
483 challenged with a second KPC-960 tumor (Fig.7a); a more rapid tumor clearance was observed
484 (Fig.7e). When CK21 treatment was initiated on day 3 of second tumor implantation, no significant
485 change in the kinetics of tumor regression was observed compared to untreated controls (Fig.7f). In
486 addition, mice that rejected the first KPC-960 tumors while receiving CK21 were rested and re-
487 challenged with a second KPC-960 tumor. All the mice, including that did not receive CK21, were
488 able to reject the tumor completely (Fig.7g). These observations further demonstrate CK21 did not
489 inhibit the development of memory or recall anti-tumor responses.

490 Finally, to evaluate the quality of tumor-specific T cells after CK21 treatment, we performed an
491 *ex vivo* tumor killing assay. Splenocytes were harvested from untreated mice that had rejected tumors,
492 or mice that had received CK21-treatment after 1° or 2° tumor implantation and cultured with KPC-
493 960 or a control KPC-6141 tumor *ex vivo* (Fig.7h). Splenocytes from mice treated with CK21 exhibited
494 comparable killing of KPC-960 as splenocytes from untreated mice (Fig.7i). Collectively these data
495 suggest that despite potent anti-tumor activity, CK21 was minimally immunosuppressive.

496

497

498

Discussion

499

Toxicity is the key challenge for using triptolide and its derivatives for its use as an anti-tumor

500

agent in the clinic. Hepatotoxicity, reproductive toxicity, and nephrotoxicity have been identified as the

501

major side effects for triptolide⁴⁸. In addition, sex differences have been observed, where the female

502

rats showed more toxicity under the same dosage of triptolide⁴⁹. Cytochrome P450s (CYP) is

503

essential for the metabolism of triptolide and CYP3A2, a male-predominant form in rats, may

504

contribute to the sex-related differences⁵⁰. Similar sex differences were also observed for CK21,

505

where half the dose of CK21 in female rats had a similar triptolide exposure in plasma as male rats

506

(Fig.1e), and the maximum tolerated dose (MTD) of CK21 was 3 mg/kg/dose for female rats and 6

507

mg/kg/dose for male rats (supplement Fig.s13). Consistent with the MTD of CK21 being different for

508

male/female rats, we observed comparable efficacy of CK21 at 3 mg/kg in female mice (Fig.2c), and

509

at 1.5 mg/kg in male mice (supplement Fig.s14). Whether these sex difference in triptolide

510

metabolism will affect dosing in the clinic will have to be investigated in Phase I clinical trials.

511

Nevertheless, despite sex difference, stable exposure of triptolide upon conversion from CK21

512

resulted in significantly mitigated toxicity, compared to other analogs such as F60008 that showed a

513

steep release of triptolide which, we speculate, would lead to triptolide overexposure and severe

514

toxicity observed in Phase 1 trials³¹. Another triptolide analog, MRx102 had a MTD of 3 mg/kg/dose

515

for the female rats and 4.5 mg/kg/dose for the male rats⁵¹. Under the pharmacokinetic profile of CK21,

516

we were able to dose the female athymic nude mice up to 5 mg/kg/day for 28 days with tolerable

517

weight loss (Fig.2d), and at 3 mg/kg/day, where CK21 showed potent efficacy and no obvious toxicity

518

(Figs.2c-e).

519

We used rigorous time-course transcriptomic profiling of pancreatic tumors response to CK21

520

to identify its mechanism of action on patient-derived pancreatic tumor organoids. Overall, the effect

521

of CK21 corresponded to the major reported anti-tumor functions of triptolide, namely transcription

522

inhibition and apoptosis induction. Triptolide was reported by Tivov *et al.* to covalently bind to XPB, a

523 subunit of the transcription factor TFIIH, resulting in the inhibition of its DNA-dependent ATPase
524 activity, RNA polymerase II (Pol II)-mediated transcription and likely nucleotide excision repair²⁸.
525 Chen *et al.* further confirmed that triptolide functioned as a XPB/TFIIH inhibitor to limit promoter-
526 proximal Pol II transcription initiation, resulting in decreased Pol II levels as early as 2 hours of
527 treatment⁵². Likewise, our transcriptome analyses revealed broad downregulation of transcription and
528 transactivation of RNA after 12 h CK21 treatment (Fig.5c). Furthermore, as early as 6 h of treatment,
529 we observed a significant downregulation of a number of critical transcription factors, including XBP1
530 and ZNF628 (Fig.4d), which may mediate the broad inhibition of RNA and DNA transcription, as well
531 as of RNA transactivation and expression observed at 12 h post-CK21 treatment (Fig.5c). Inhibition of
532 RNA transcription and blockade of RNA synthesis can potentially lead to programmed cell death. For
533 example, Santo *et al.* used a cyclin-dependent kinase inhibitor to inhibit Pol II phosphorylation and
534 observed induction of apoptosis in myeloma cells⁵³. Cai *et al.* also suggested inhibition of Pol II
535 expression and phosphorylation resulted reduced expression of Mcl-1 and X-linked inhibitors of
536 apoptosis (XIAP)⁵⁴. Similarly, Carter *et al.* reported that tumor cell apoptosis induced by triptolide was
537 accompanied by decrease of XIAP levels¹⁸. Consistent with Carter *et al.* we also observed a
538 significant decrease of XIAP expression after CK21 treatment of two human pancreatic organoids *in*
539 *vitro*, and of orthotopically transplanted AsPC-1 tumors *in vivo* (Figs.4d, f, g).

540 Our analysis of enriched signaling/metabolic pathways (Figs.5d&e) predicted the downstream
541 effects of CK21's inhibition of general transcription that might lead to tumor cell apoptosis. As a
542 potential consequence of transcription inhibition, genes for the key regulators of NF-κB pathway, such
543 as CHUK, IKBKB and RELA, were significantly downregulated in both organoids (Fig.6a&supplement
544 Fig.s13). We also observed decreased p65 expression on a protein level and reduced translocation of
545 the NF-κB complex to the nucleus (Figs.6b-e). Therefore, activation of the NF-κB pathway was
546 significantly inhibited after treatment with CK21. In addition to promoting cell proliferation and immune
547 responses⁴¹, NF-κB also plays a role in controlling mitochondrial dynamics and cell apoptosis⁵⁵.

548 Pazarentzos *et al.* demonstrated the localization of I κ B α on the outer membrane of mitochondrial
549 functions to inhibit apoptosis, especially in the tumor cells⁵⁶. Liu *et al.* indicated the inhibition of NF- κ B
550 alone can induce the release of cytochrome C from mitochondria⁵⁷. In our study, we observed a
551 significant downregulation of NFKBIA, which encodes I κ B α , in both organoids after CK21 treatment
552 (Fig.6a& supplement Fig.s15). In addition, we also observed that the expression of genes encoding
553 five mitochondrial respiratory chain complexes was significantly increased in pancreatic tumor
554 organoids treated with CK21(Fig.6f). Collectively these data suggest a downstream effect of CK21 is
555 promotion of dysregulated mitochondrial function and subsequently, increased susceptibility to
556 mitochondrial-mediated intrinsic apoptosis⁴⁴.

557 As upstream regulators, BCL2 family proteins that reside or congregate on the surface of
558 mitochondria govern cell-intrinsic apoptosis⁵⁸. BCL2 family proteins have opposing functions: BCL2 is
559 anti-apoptotic and promotes cell proliferation⁵⁹ whereas BAX is pro-apoptotic⁶⁰. Under CK21
560 treatment, BCL2 expression in pancreatic cancer cells was significantly reduced (Fig.6h). Similar
561 observations were reported in leukemic cells¹⁸ and melanoma cells⁶¹ after treated with triptolide. The
562 expression of BCL2 and BAX regulates the equilibrium of mitochondrial membrane potential^{62,63}, thus
563 CK21 may tip such equilibrium towards permeabilization and release of apoptogenic molecules into
564 cytoplasm⁶³. Eventually, effector caspases, such as caspase 3, 6, and 7, are cleaved and activated to
565 induce apoptosis. In our study, we observed a significant increase of cleaved caspase 3 for Panc-1
566 and both pancreatic tumor organoids (Fig.6i). Finally, we noted subtle differences in the extent to
567 which Bcl2 is inhibited and Caspase 3 is activated following CK21 treatment of the two pancreatic
568 tumor cell lines and two patient-derived organoids; these observations underscore the notion that
569 broad inhibition of RNA transcription allows CK21 to leverage distinct vulnerabilities and pathways to
570 achieve apoptosis in different tumor cells.

571 Taken together, our study describes the development of a novel modified triptolide, CK21, with
572 improved pharmacokinetics, and efficacy for pancreatic tumor cell lines and patient-derived

573 pancreatic tumor organoids. Transcriptomic profiling of the organoids and verification of protein
574 expression collectively point to the induction of tumor cell apoptosis by CK21 is mediated by the
575 inhibition of general transcription, leading to downstream effects involving NF- κ B inhibition and
576 mitochondria dysfunction.

577 **Contributors**

578 QT designed and performed the majority of experiments, and YW performed additional reviewer-
579 requested experiments. YS assisted with RNA extraction for transcriptome analysis. DY performed
580 some of the initial *in vivo* experiments and survival surgeries on the orthotopic mouse models. MLF
581 and KEP generated and provided luciferase transfected AsPC-1. CRW provided patient-derived
582 pancreatic tumor organoids and reviewed histology slides. PZ, BQ and FX oversaw the synthesis,
583 characterization, PK studies of CK21, and comparison of CK21 with triptolide. PZ, XF, QT and ASC
584 verified the underlying data. QT generated the figures, performed bioinformatics and statistical
585 analyses of the data and wrote the paper. ASC and XF conceived the project, and ASC designed the
586 experiments and co-wrote the paper. All authors read, commented and approved on the manuscript.

587 **Declaration of Interests**

588 PZ and BQ were employees of Cinkate Pharmaceutical Corp. PZ and FX (CEO of Cinkate
589 Pharmaceutical Corp) are listed as inventors on Patent WO2018/019301A1, which covers the design
590 and use of CK21 for pancreatic cancer. ASC received consulting fees from Cinkate Pharmaceutical
591 Corp. No conflicts of interest, financial or otherwise, are declared by the other authors.

592 **Acknowledgements**

593 This research was supported in part by a research grant (to University of Chicago) from the Cinkate
594 Pharmaceutical Corp. We thank the Organoid and Primary Culture Research Core at University of
595 Chicago for the gift of patient-derived pancreatic tumor organoids, the Human Tissue Resource at
596 University of Chicago for tissue processing and staining, the Cytometry and Antibody Technology
597 Core for advising on flow cytometry and the Animal Resources Center at University of Chicago for
598 mouse husbandry services. Dr. Surinder K. Bartra (University of Nebraska Medical Center) provided
599 the mouse pancreatic tumor cell lines. Dr. Barbara Bailey and Dr. Helmut Hanenberg contributed to
600 the generation of the luciferase transfected AsPc-1. We also gratefully acknowledge Dr. Mary

601 Buschman and Ms. Kori Kirby for advising on organoid culture, Stephanie Shen for advising on
602 Western blotting, and Karin Peterson for training on mouse handling.

603 **Data sharing statement**

604 All data associated with this study are in the article or the Supplementary Materials. RNA-seq data
605 will be available on request from the corresponding author, and are deposited in NCBI GEO under
606 GSE225011.

607

608 **References**

- 609 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. *CA: A Cancer Journal for Clinicians* 2019; **69**(1): 7-34.
- 610 2. Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. *The Lancet* 2016; **388**(10039): 73-85.
- 611 3. Yachida S, Jones S, Bozic I, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. *Nature* 2010;
612 **467**(7319): 1114-7.
- 613 4. Sohn TA, Yeo CJ, Cameron JL, et al. Resected adenocarcinoma of the pancreas-616 patients: results, outcomes, and prognostic
614 indicators. *J Gastrointest Surg* 2000; **4**(6): 567-79.
- 615 5. Bilemoria KY, Bentrem DJ, Ko CY, Stewart AK, Winchester DP, Talamonti MS. National Failure to Operate on Early Stage
616 Pancreatic Cancer. *Annals of Surgery* 2007; **246**(2): 173-80.
- 617 6. Oettle H, Neuhaus P, Hochhaus A, et al. Adjuvant Chemotherapy With Gemcitabine and Long-term Outcomes Among Patients
618 With Resected Pancreatic Cancer. *JAMA* 2013; **310**(14): 1473.
- 619 7. Burris HA, 3rd, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for
620 patients with advanced pancreas cancer: a randomized trial. *J Clin Oncol* 1997; **15**(6): 2403-13.
- 621 8. Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. *N Engl J Med*
622 2013; **369**(18): 1691-703.
- 623 9. Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. *N Engl J Med* 2011;
624 **364**(19): 1817-25.
- 625 10. Kupchan SM, Court WA, Dailey RG, Gilmore CJ, Bryan RF. Tumor inhibitors. LXXIV. Triptolide and triptolide, novel antileukemic
626 diterpenoid triepoxides from *Tripterygium wilfordii*. *Journal of the American Chemical Society* 1972; **94**(20): 7194-5.

627 11. He J, Peng T, Peng Y, et al. Molecularly Engineering Triptolide with Aptamers for High Specificity and Cytotoxicity for Triple-
628 Negative Breast Cancer. *Journal of the American Chemical Society* 2020; **142**(6): 2699-703.

629 12. Li J, Liu R, Yang Y, et al. Triptolide-induced in vitro and in vivo cytotoxicity in human breast cancer stem cells and primary breast
630 cancer cells. *Oncology Reports* 2014; **31**(5): 2181-6.

631 13. Liu Q. Triptolide and its expanding multiple pharmacological functions. *International Immunopharmacology* 2011; **11**(3): 377-83.

632 14. Jiang C, Fang X, Zhang H, et al. Triptolide inhibits the growth of osteosarcoma by regulating microRNA-181a via targeting PTEN
633 gene in vivo and vitro. *Tumor Biology* 2017; **39**(4): 101042831769755.

634 15. Reno TA, Kim JY, Raz DJ. Triptolide Inhibits Lung Cancer Cell Migration, Invasion, and Metastasis. *The Annals of Thoracic
635 Surgery* 2015; **100**(5): 1817-25.

636 16. Song JM, Molla K, Anandharaj A, et al. Triptolide suppresses the in vitro and in vivo growth of lung cancer cells by targeting
637 hyaluronan-CD44/RHAMM signaling. *Oncotarget* 2017; **8**(16): 26927-40.

638 17. Carter BZ, Mak DH, Shi Y, et al. MRx102, a triptolide derivative, has potent antileukemic activity in vitro and in a murine model of
639 AML. *Leukemia* 2012; **26**(3): 443-50.

640 18. Carter BZ, Mak DH, Schober WD, et al. Triptolide induces caspase-dependent cell death mediated via the mitochondrial pathway
641 in leukemic cells. *Blood* 2006; **108**(2): 630-7.

642 19. Hu H, Luo L, Liu F, et al. Anti-cancer and Sensibilisation Effect of Triptolide on Human Epithelial Ovarian Cancer. *Journal of
643 Cancer* 2016; **7**(14): 2093-9.

644 20. Zhao H, Yang Z, Wang X, et al. Triptolide inhibits ovarian cancer cell invasion by repression of matrix metalloproteinase 7 and 19
645 and upregulation of E-cadherin. *Experimental & Molecular Medicine* 2012; **44**(11): 633.

646 21. Huang W, He T, Chai C, et al. Triptolide Inhibits the Proliferation of Prostate Cancer Cells and Down-Regulates SUMO-Specific
647 Protease 1 Expression. *PLoS ONE* 2012; **7**(5): e37693.

648 22. Yang S, Chen J, Guo Z, et al. Triptolide inhibits the growth and metastasis of solid tumors. *Mol Cancer Ther* 2003; **2**(1): 65-72.

649 23. Wang Z, Jin H, Xu R, Mei Q, Fan D. Triptolide downregulates Rac1 and the JAK/STAT3 pathway and inhibits colitis-related colon
650 cancer progression. *Experimental and Molecular Medicine* 2009; **41**(10): 717.

651 24. Chugh R, Sangwan V, Patil SP, et al. A Preclinical Evaluation of Minnelide as a Therapeutic Agent Against Pancreatic Cancer.
652 *Science Translational Medicine* 2012; **4**(156): 156ra39-ra1.

653 25. Wang W, Li X, Sun W, et al. Triptolide triggers the apoptosis of pancreatic cancer cells via the downregulation of Decoy receptor 3
654 expression. *Journal of Cancer Research and Clinical Oncology* 2012; **138**(9): 1597-605.

655 26. Lee KY, Park JS, Jee YK, Rosen GD. Triptolide sensitizes lung cancer cells to TNF-related apoptosis-inducing ligand (TRAIL)-
656 induced apoptosis by inhibition of NF-kappaB activation. *Exp Mol Med* 2002; **34**(6): 462-8.

657 27. Phillips PA, Dudeja V, McCarroll JA, et al. Triptolide Induces Pancreatic Cancer Cell Death via Inhibition of Heat Shock Protein 70.
658 *Cancer Research* 2007; **67**(19): 9407-16.

659 28. Titov DV, Gilman B, He Q-L, et al. XPB, a subunit of TFIIH, is a target of the natural product triptolide. *Nature Chemical Biology*
660 2011; **7**(3): 182-8.

661 29. Noel P, Von Hoff DD, Saluja AK, Velagapudi M, Borazanci E, Han H. Triptolide and Its Derivatives as Cancer Therapies. *Trends in
662 Pharmacological Sciences* 2019; **40**(5): 327-41.

663 30. Tong L, Zhao Q, Datan E, et al. Triptolide: reflections on two decades of research and prospects for the future. *Nat Prod Rep*
664 2021; **38**(4): 843-60.

665 31. Kitzen JJEM, De Jonge MJA, Lamers CHJ, et al. Phase I dose-escalation study of F60008, a novel apoptosis inducer, in patients
666 with advanced solid tumours. *European Journal of Cancer* 2009; **45**(10): 1764-72.

667 32. Greeno E, Borazanci E, Gockerman J, Korn R, Saluja A, Von Hoff D. Abstract CT207: Phase I dose escalation and pharmokinetic
668 study of 14-O-phosphonooxymethyltriptolide. *Cancer Research* 2015; **75**(15 Supplement): CT207.

669 33. Qiu W, Su GH. Challenges and advances in mouse modeling for human pancreatic tumorigenesis and metastasis. *Cancer*
670 *Metastasis Rev* 2013; **32**(1-2): 83-107.

671 34. Shannon HE, Fishel ML, Xie J, et al. Longitudinal Bioluminescence Imaging of Primary Versus Abdominal Metastatic Tumor
672 Growth in Orthotopic Pancreatic Tumor Models in NSG Mice. *Pancreas* 2015; **44**(1): 64-75.

673 35. Weeber F, Ooft SN, Dijkstra KK, Voest EE. Tumor Organoids as a Pre-clinical Cancer Model for Drug Discovery. *Cell Chemical*
674 *Biology* 2017; **24**(9): 1092-100.

675 36. Huang L, Holtzinger A, Jagan I, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell-
676 and patient-derived tumor organoids. *Nat Med* 2015; **21**(11): 1364-71.

677 37. Seino T, Kawasaki S, Shimokawa M, et al. Human Pancreatic Tumor Organoids Reveal Loss of Stem Cell Niche Factor
678 Dependence during Disease Progression. *Cell Stem Cell* 2018; **22**(3): 454-67 e6.

679 38. Boj SF, Hwang CI, Baker LA, et al. Organoid models of human and mouse ductal pancreatic cancer. *Cell* 2015; **160**(1-2): 324-38.

680 39. Romero-Calvo I, Weber CR, Ray M, et al. Human Organoids Share Structural and Genetic Features with Primary Pancreatic
681 Adenocarcinoma Tumors. *Molecular Cancer Research* 2019; **17**(1): 70-83.

682 40. Pinto JA, Rolfo C, Raez LE, et al. In silico evaluation of DNA Damage Inducible Transcript 4 gene (DDIT4) as prognostic
683 biomarker in several malignancies. *Scientific Reports* 2017; **7**(1).

684 41. Park M, Hong J. Roles of NF- κ B in Cancer and Inflammatory Diseases and Their Therapeutic Approaches. *Cells* 2016; **5**(2): 15.

685 42. Liptay S, Weber CK, Ludwig L, Wagner M, Adler G, Schmid RM. Mitogenic and antiapoptotic role of constitutive NF- κ B/Rel
686 activity in pancreatic cancer. *Int J Cancer* 2003; **105**(6): 735-46.

687 43. Dolcet X, Llobet D, Pallares J, Matias-Guiu X. NF- κ B in development and progression of human cancer. *Virchows Arch* 2005;
688 **446**(5): 475-82.

689 44. Marquez-Jurado S, Diaz-Colunga J, das Neves RP, et al. Mitochondrial levels determine variability in cell death by modulating
690 apoptotic gene expression. *Nat Commun* 2018; **9**(1): 389.

691 45. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. *Biochim Biophys
692 Acta* 2016; **1863**(12): 2977-92.

693 46. Chen BJ. Triptolide, A Novel Immunosuppressive and Anti-Inflammatory Agent Purified from a Chinese Herb *Tripterygium Wilfordii*
694 Hook F. 2001; **42**(3): 253-65.

695 47. Torres MP, Rachagani S, Souchek JJ, Mallya K, Johansson SL, Batra SK. Novel Pancreatic Cancer Cell Lines Derived from
696 Genetically Engineered Mouse Models of Spontaneous Pancreatic Adenocarcinoma: Applications in Diagnosis and Therapy. *PLoS
697 ONE* 2013; **8**(11): e80580.

698 48. Li XJ, Jiang ZZ, Zhang LY. Triptolide: progress on research in pharmacodynamics and toxicology. *J Ethnopharmacol* 2014; **155**(1):
699 67-79.

700 49. Liu L, Jiang Z, Liu J, et al. Sex differences in subacute toxicity and hepatic microsomal metabolism of triptolide in rats. *Toxicology
701* 2010; **271**(1-2): 57-63.

702 50. Xue X, Gong L, Qi X, et al. Knockout of hepatic P450 reductase aggravates triptolide-induced toxicity. *Toxicol Lett* 2011; **205**(1):
703 47-54.

704 51. Fidler JM, An J, Carter BZ, Andreeff M. Preclinical antileukemic activity, toxicology, toxicokinetics and formulation development of
705 triptolide derivative MRx102. *Cancer Chemother Pharmacol* 2014; **73**(5): 961-74.

706 52. Chen F, Gao X, Shilatifard A. Stably paused genes revealed through inhibition of transcription initiation by the TFIIH inhibitor
707 triptolide. *Genes & Development* 2015; **29**(1): 39-47.

708 53. Santo L, Vallet S, Hideshima T, et al. AT7519, A novel small molecule multi-cyclin-dependent kinase inhibitor, induces apoptosis in
709 multiple myeloma via GSK-3beta activation and RNA polymerase II inhibition. *Oncogene* 2010; **29**(16): 2325-36.

710 54. Cai D, Latham VM, Jr., Zhang X, Shapiro GI. Correction: Combined Depletion of Cell Cycle and Transcriptional Cyclin-Dependent
711 Kinase Activities Induces Apoptosis in Cancer Cells. *Cancer Res* 2020; **80**(2): 361.

712 55. Albensi BC. What Is Nuclear Factor Kappa B (NF-kappa B) Doing in and to the Mitochondrion? *Front Cell Dev Biol* 2019; **7**.

713 56. Pazarentzos E, Mahul-Mellier AL, Datler C, et al. I kappa B alpha inhibits apoptosis at the outer mitochondrial membrane
714 independently of NF-kappa B retention. *Embo J* 2014; **33**(23): 2814-28.

715 57. Liu H, Ma Y, Pagliari LJ, et al. TNF-alpha-induced apoptosis of macrophages following inhibition of NF-kappa B: a central role for
716 disruption of mitochondria. *J Immunol* 2004; **172**(3): 1907-15.

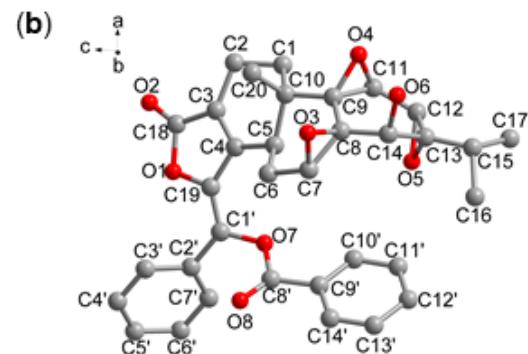
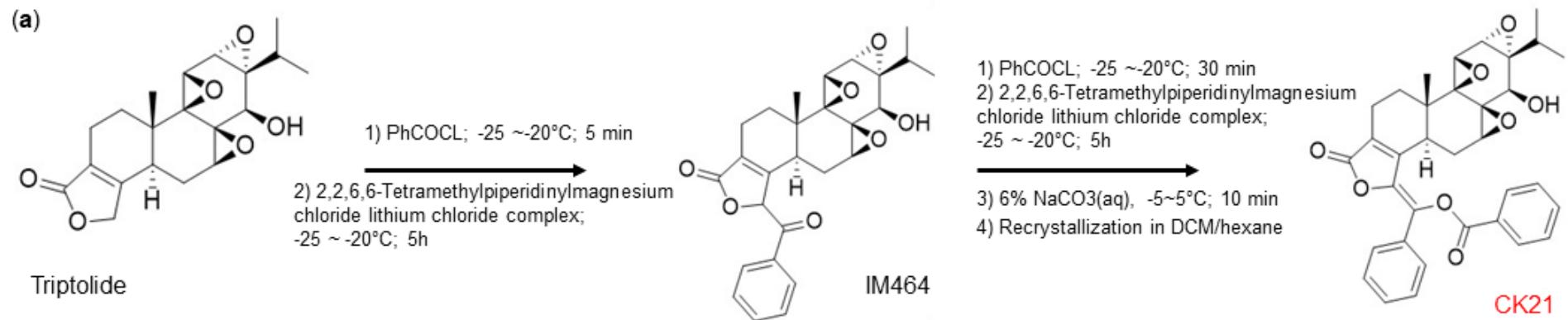
717 58. Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. *Trends Biochem Sci* 2001; **26**(1): 61-6.

718 59. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B
719 cells. *Nature* 1988; **335**(6189): 440-2.

720 60. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ. Movement of Bax from the cytosol to mitochondria during
721 apoptosis. *J Cell Biol* 1997; **139**(5): 1281-92.

722 61. Tao Y, Zhang ML, Ma PC, et al. Triptolide inhibits proliferation and induces apoptosis of human melanoma A375 cells. *Asian Pac J*
723 *Cancer Prev* 2012; **13**(4): 1611-5.

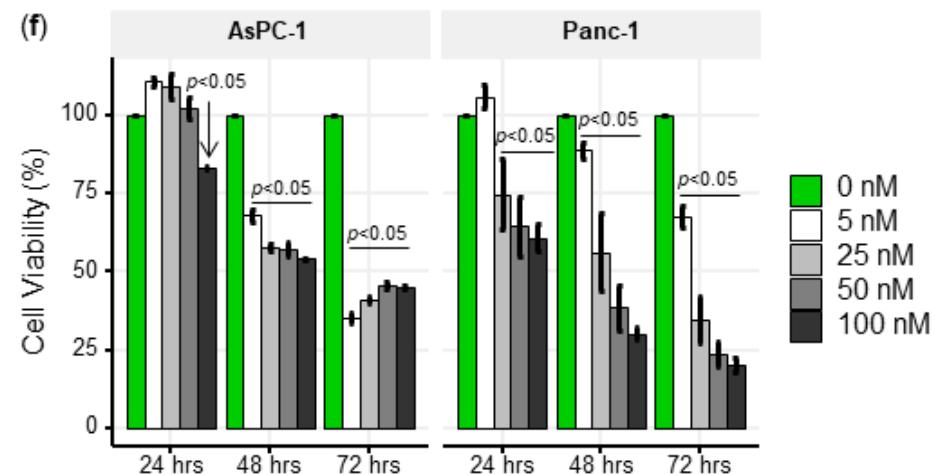
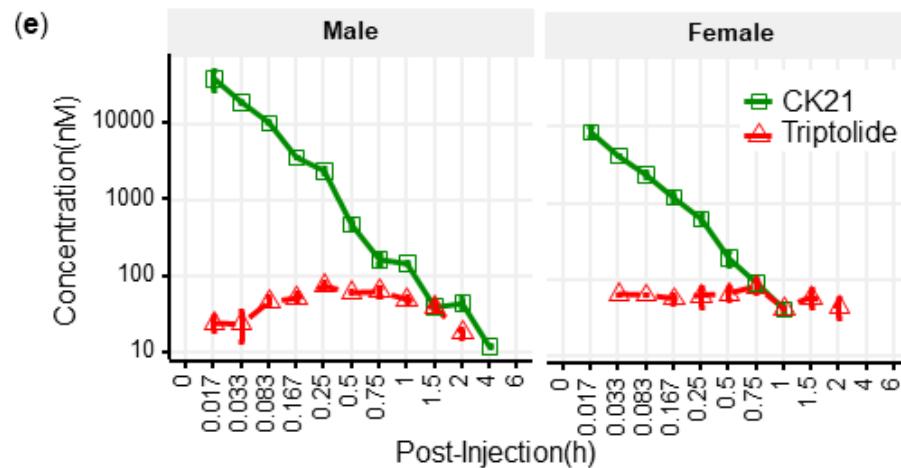
724 62. Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential ($\Delta\psi_m$) in apoptosis; an update. *Apoptosis* 2003; **8**(2):
725 115-28.

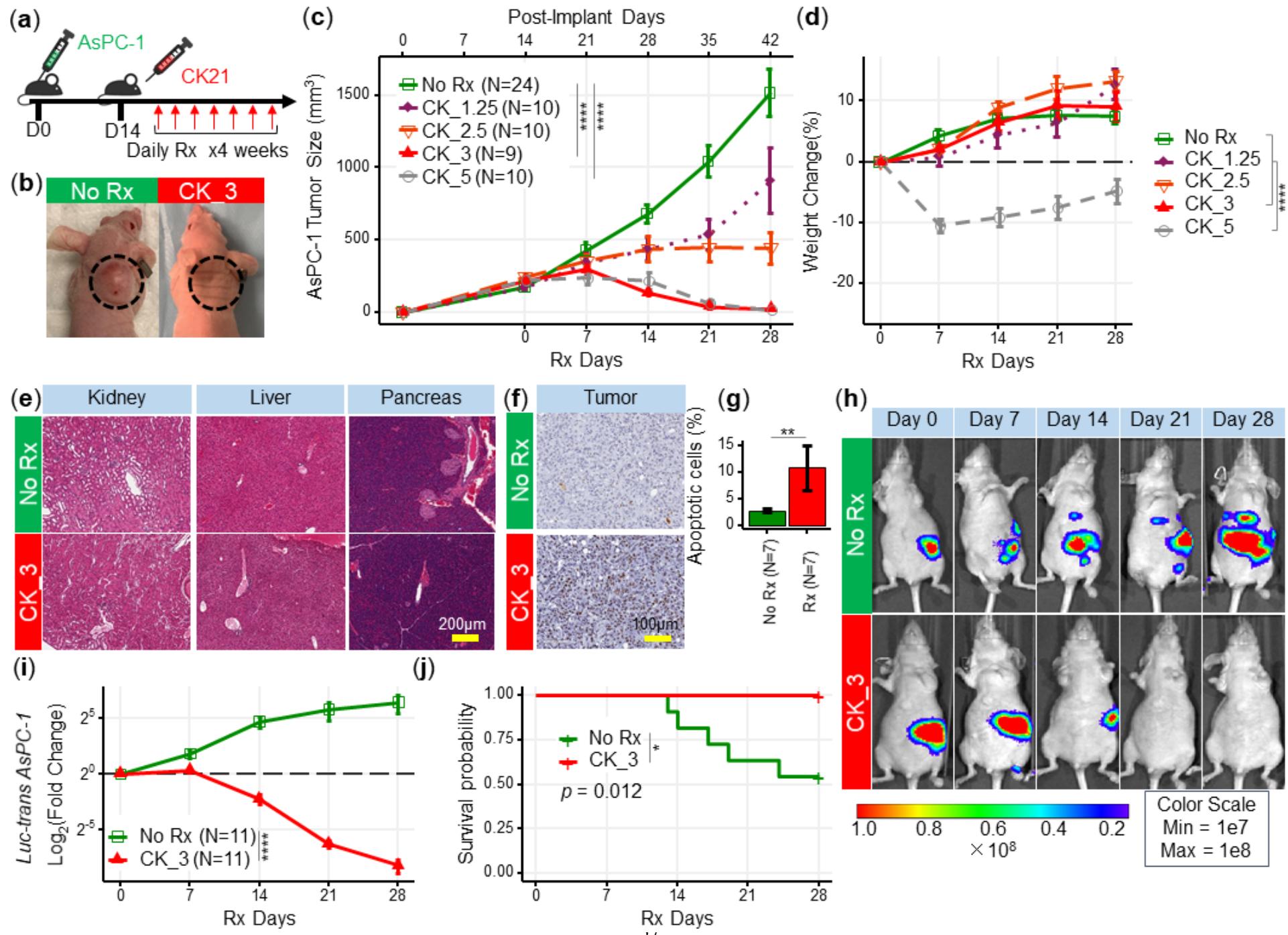


726 63. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. *Genes Dev* 1999; **13**(15):
727 1899-911.

728 64. Anders S, Huber W. Differential expression analysis for sequence count data. *Genome Biology* 2010; **11**(10): R106.

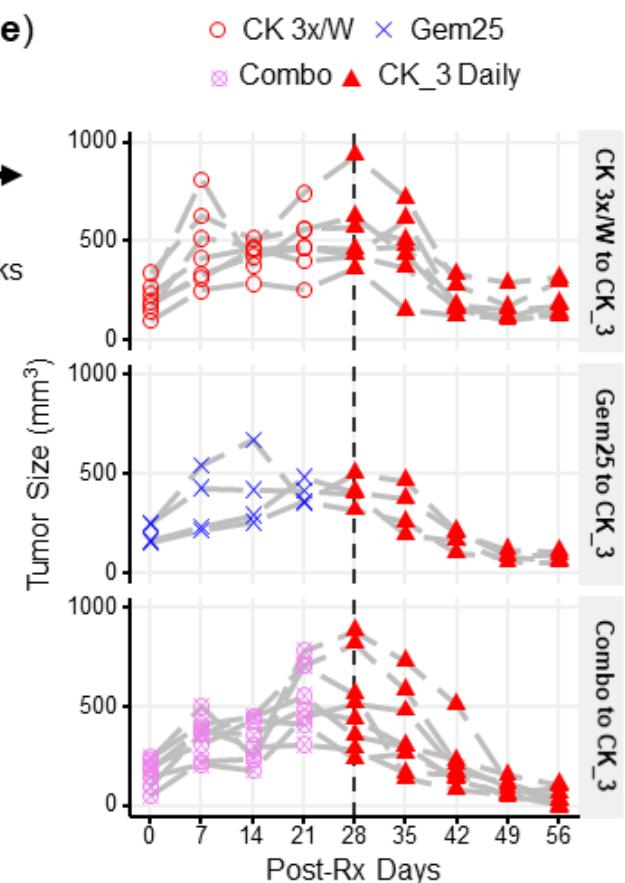
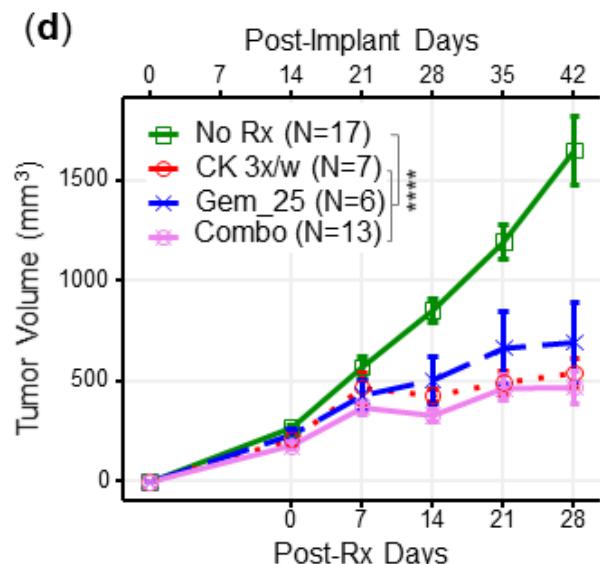
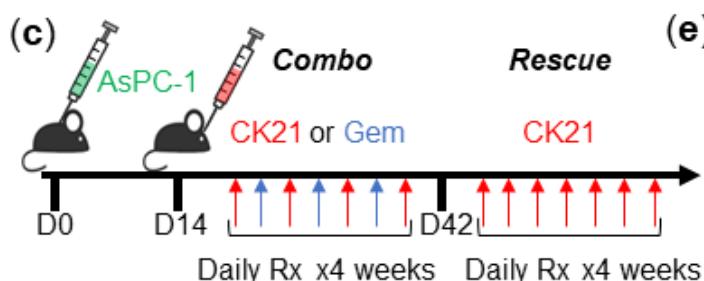
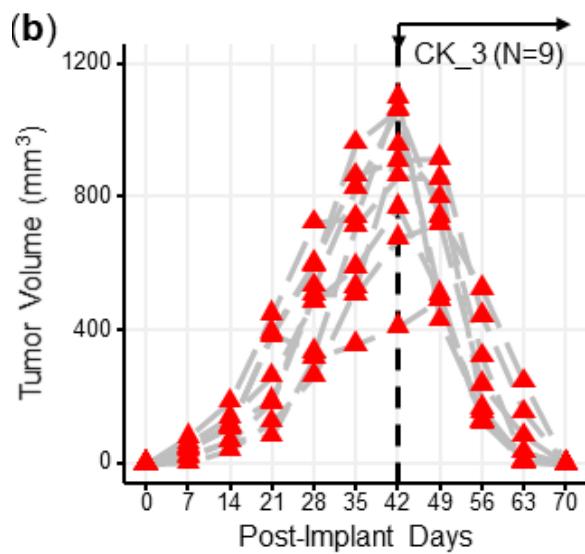
729

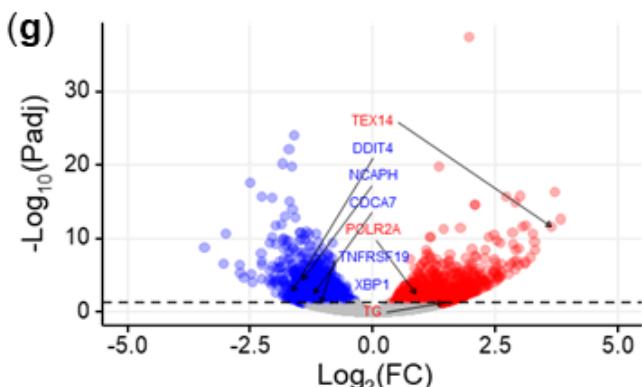
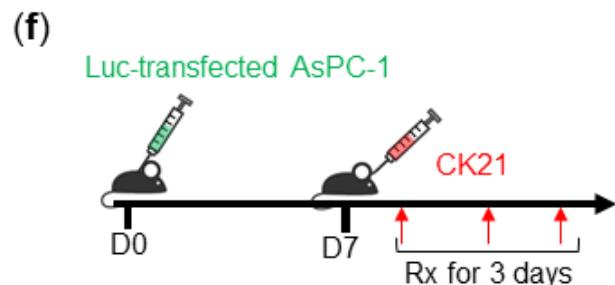
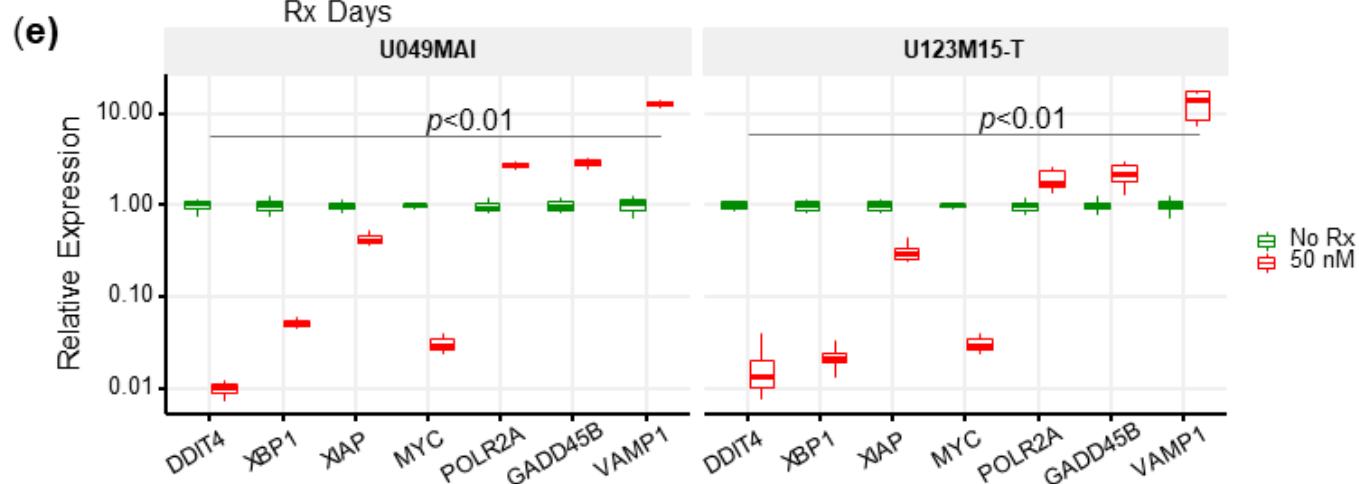
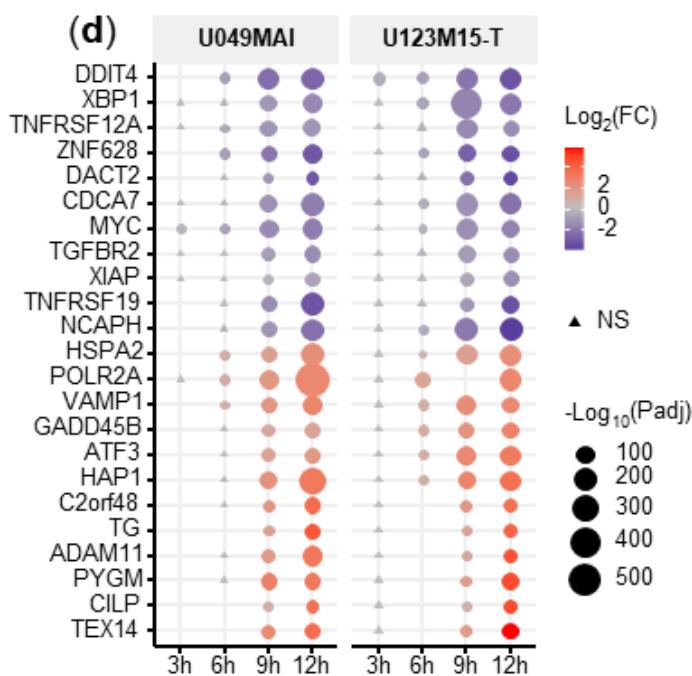
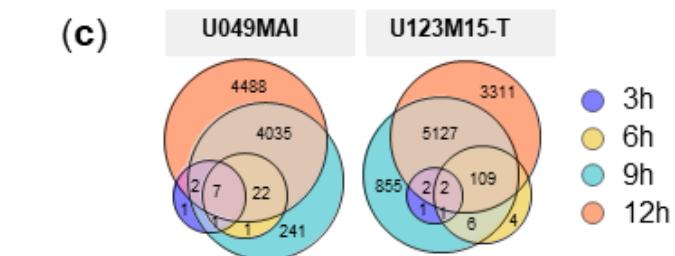
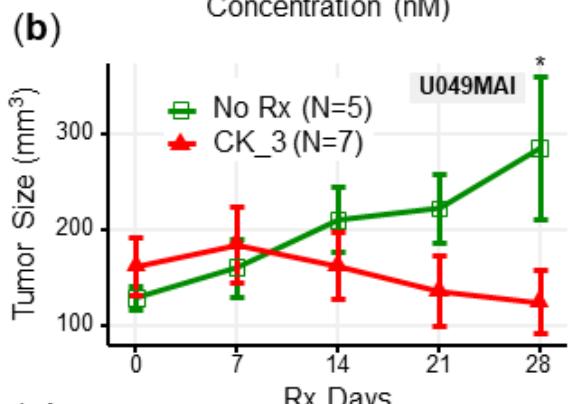
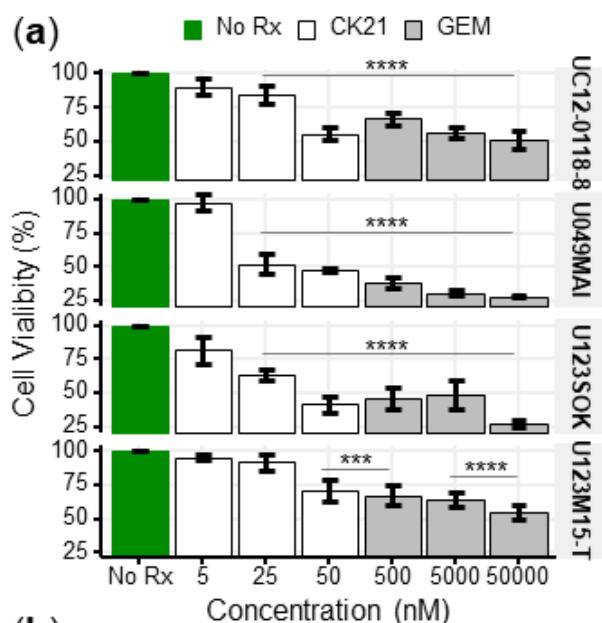
730



Figures and Figure Legends


(c)

Components	Function	Content (%)
CK21	API	0.03
Medium chain triglycerides	Oil phase	20
Phospholipids	Emulsifier	2
Glycerol	Isotonic moderator	2.25
DSPE-MPEG2000	Co-emulsifier	0.3
Water for injection	Water phase	77





(d)








733 **Fig.1. CK21 exhibits a stable release of triptolide *in vivo*.** (a) Synthesis of compound CK21 as white solid after recrystallization in a mixed
734 organic solvent. Compound structure was characterized by H-NMR, C-NMR and HR-MS. (b) Thermal ellipsoid model illustrating the crystal
735 structure of CK21; carbon atoms were shown in gray, and oxygen atoms in red. Hydrogen atoms were omitted for clarity (c) Composition and
736 putative function in the CK21 fat emulsion. (d) Macroscopic image of the final emulsion product of CK21. (e) *In vivo* administration of CK21 into SD
737 rats converted into triptolide. CK21 was injected intravenously into female (1.5 mg/kg) and male (3 mg/kg) rats. (f) CK21 inhibited the proliferation
738 of human pancreatic cancer cell lines. Data presented in all the graphs are mean \pm standard error. Statistical analysis: Two-way ANOVA (repeated
739 measures) with post-hoc comparison of the means was conducted for (f).

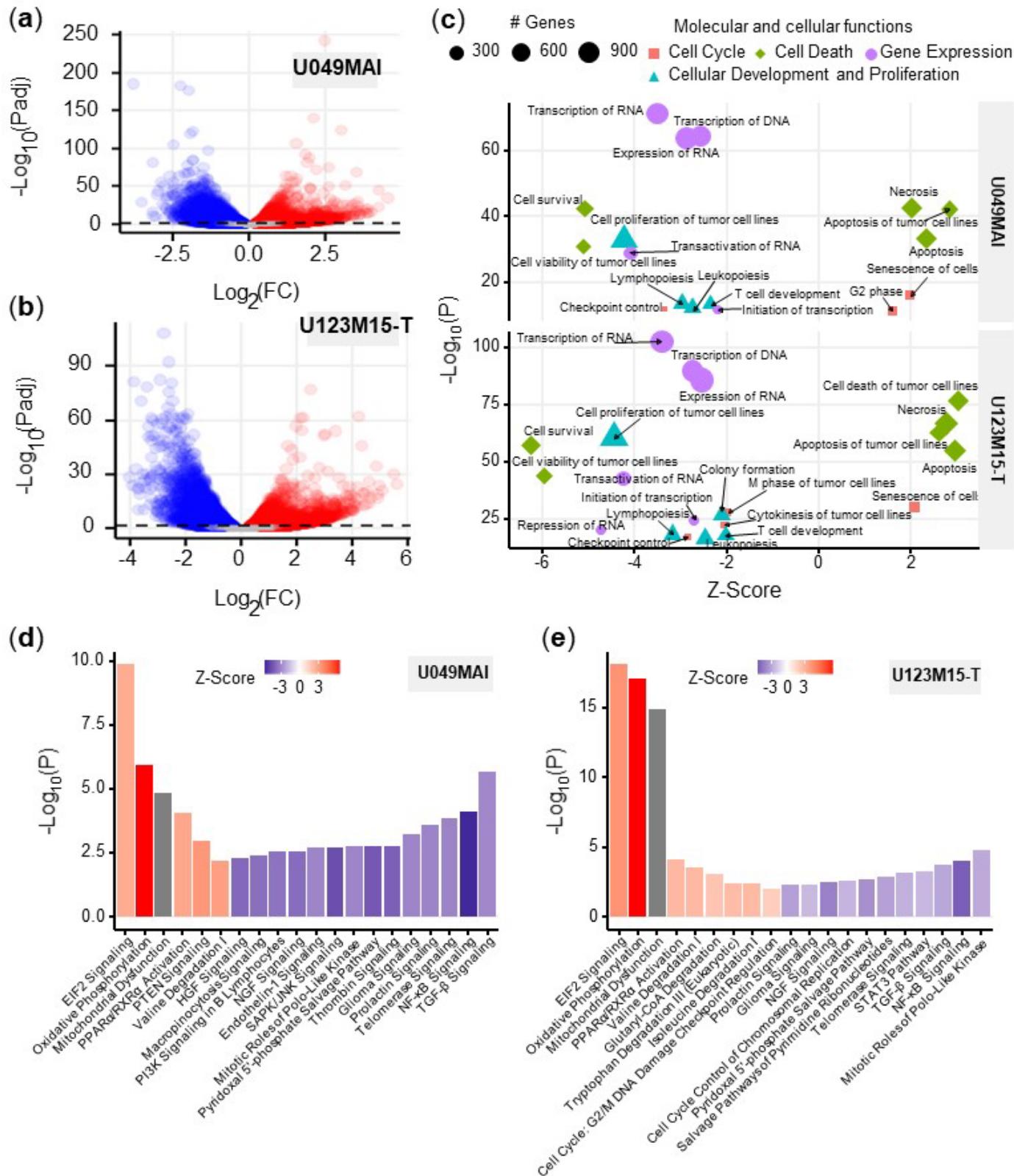
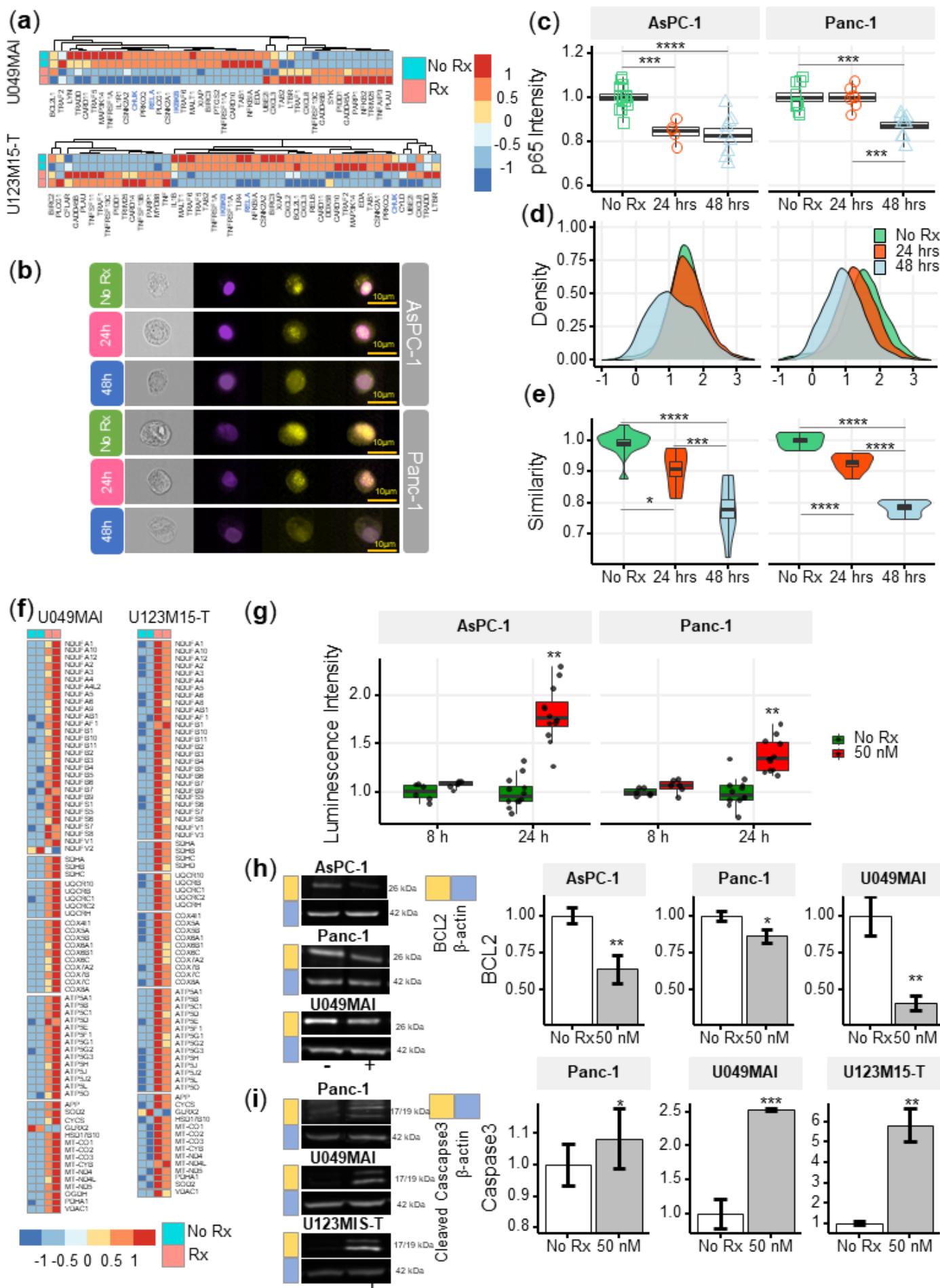
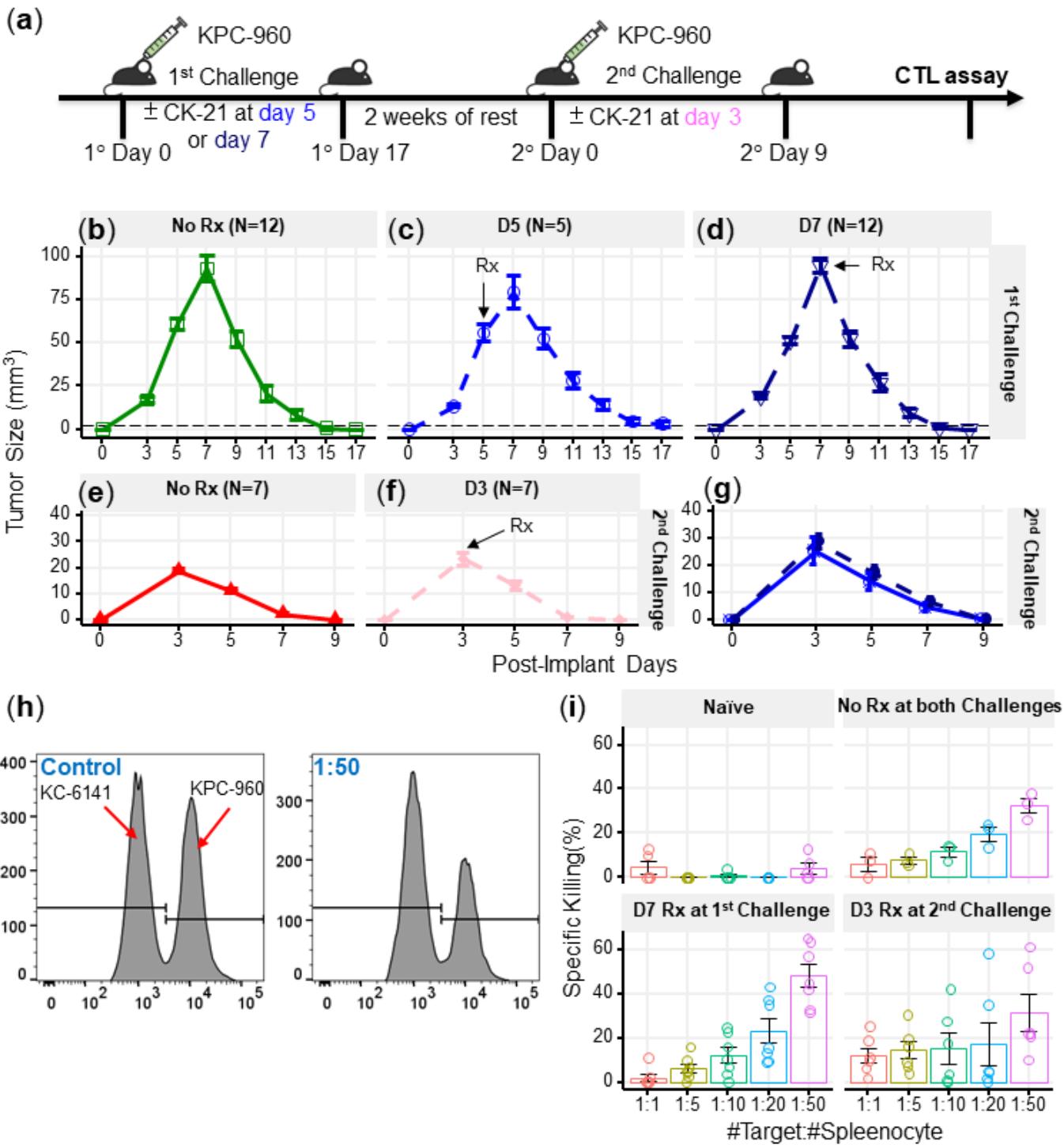

741 **Fig.2. CK21 shows efficacy and minimal toxicity at 3 mg/kg in different *in vivo* animal models.** (a) Scheme of *in vivo* efficacy studies. Human
742 pancreatic cancer cell line, AsPc-1, was implanted into nude mice and CK21 treatment was initiated ~14 days later, and administered daily for 4
743 weeks. (b) Macroscopic images of tumor-bearing nude mice after receiving CK21 or blank emulsion after 4 weeks treatment. (c) AsPC-1 tumor
744 volume after subcutaneous implantation and CK21 or gemcitabine treatment. (d) Weight change of the nude mice bearing AsPC-1 and receiving
745 CK21. (e) H&E staining of mice organ tissues after CK21 treatment. (f) TUNEL staining of tumor tissue and (g) percentage of apoptotic cells in
746 AsPC-1 tumor after 2 weeks CK21. (h) Bioluminescence images of nude mice bearing intra-pancreatic AsPC-1 and receiving CK21. Color scheme
747 represents the intensity of luminescence reflecting tumor size in each mouse. Mice with higher initial tumor burden was placed into Rx group, and
748 those with lower initial tumor burden into control group. (i) Fold change of the luminescence intensity of the nude mice bearing intra-pancreatic
749 AsPC-1. (j) Survival curve of mice with orthotopic AsPC-1 tumors receiving CK21 treatment. In all the figures, post-implant days are days after
750 tumor implantation and post-Rx days are days after receiving CK21 treatment. Data presented in all the graphs are mean \pm standard error.
751 Statistical analysis: Two-way ANOVA (not repeated measures) with post-hoc comparison of the means of each data set was conducted for all the
752 line graphs except (i); For survival curve, Log-rank (Mantel-Cox) test was applied. (* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$)

Fig.3. CK21 of 3 mg/kg daily shows efficacy in delay therapy and rescues mice that failed in synergistic therapy. (a) Scheme of delayed therapy. Mice received CK21 at 3 mg/kg daily starting on day 42 post-implantation for 4 weeks. (b) Tumor volume during delayed CK21 therapy. (c) Scheme of synergistic and rescue therapy. Mice receive CK21 3 mg/kg (3X/week; Mo, We, Fr), gemcitabine at 25 mg/kg (3X/week; Tu, Th, Sa), or both. (d) Tumor size during the synergistic therapy of CK21. (e) Mice which failed at CK21 or gemcitabine or synergistic therapy were then rescued by switching to CK21 at 3 mg/kg daily, and tumor size monitored. Post-implant days are days after tumor implantation. Post-Rx days are days after receiving CK21 treatment. Data presented in (d) are mean \pm standard error. Statistical analysis: Two-way ANOVA (not repeated measures) with post-hoc comparison of the means of each data set was conducted for (d), ($**** p < 0.0001$). Each line in (b) and (e) represents a single mouse.



763 **Fig.4. Transcriptome analysis of patient-derived pancreatic tumor organoids after CK21 treatment. (a)**
764 *In vitro* culture of different organoids with escalating concentrations of CK21 for 72h. Gemcitabine was included
765 as a positive control. **(b)** U049MA1 tumor size in nude mice during CK21 treatment. **(c)** Co-expression Venn
766 diagram of differentially expressed genes that were significantly different with CK21 treatment. Size of the
767 circles reflect the total number of differentially expressed genes (transformed using $\log_2(n+1)$). **(d)** Genes of
768 interest showing consistent up or down regulation as treatment time increased. Fold change is color coded
769 where red is upregulation, blue is down regulation. Circle presents the genes had an adjusted p value < 0.05 ,
770 and triangle presents the genes had an adjusted p value > 0.05 . Size of the circle represents the adjusted p
771 values. **(e)** RT-qPCR analysis of gene expression in tumor organoids after CK21 treatment for 24h. **(f)** Scheme
772 of RNA seq using *in vivo* orthotopic AsPC-1 model. **(g)** Volcano plots of statistically significant differentially
773 expressed genes in AsPC-1 tumors after treated with CK21 for three days. Statistical analysis: Two-way
774 ANOVA (not repeated measures) with post-hoc comparison of the means of each time point was conducted for
775 **(a)**, and stats was only listed when compared to the No Rx controls. Two-way ANOVA with post-hoc
776 comparison of the means of each time point was conducted for **(b)**, Multiple t tests were conducted for **(e)** (**
777 $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$)
778
779



780
781
782
783

784 **Fig.5. Bioinformatic analysis of the effect of CK21 on patient-derived pancreatic tumor organoids. (a)**
785 Volcano plots of differentially expressed genes in **(a)** U049MAI and **(b)** U123M15-T after 12 h CK21 treatment
786 (50 nM). Significance cutoff was $p < 0.05$. Upregulation was colored as red, and downregulation was colored
787 as blue. **(c)** Enrichment of molecular and cellular functions in U049MAI and U123M15-T after CK21 treatment.
788 Size represents gene numbers. Color and shape represent functional groups. Z-score represents the
789 confidence of the prediction, where positive value means upregulation and negative value means
790 downregulation. Canonical pathway enrichment in **(d)** U049MAI and **(e)** U123M15-T after treatment with CK21
791 at 50 nM. Color represent Z-score where red means upregulation and blue means downregulation. Statistical
792 analysis: Unpaired t-test was conducted for **(c)**; Data presented in all the bar graphs are mean \pm standard
793 error.

795
796 **Fig.6. CK21 inhibits NF-κB activation and induces mitochondrial mediated apoptosis.** (a) Heatmap of the
797 relative expression of genes in the NF-κB pathway in U049MAI and U123M15-T after CK21 treatment. Genes
798 are color coded where red means upregulated, and blue means downregulated. Only statistically significant
799 genes are listed. (b) Representative p65 translocation images of AsPC-1 and Panc-1 after treated with CK21
800 at 50 nM. Nuclei stained as purple, p65 stained as yellow. (c) Relative p65 MFI of AsPC-1 and Panc-1 after
801 CK21 (50 nM) treatment. (d) Density plots and (e) similarity scores of p65 for AsPC-1 and Panc-1. (f)
802 Heatmaps of genes involved in oxidative phosphorylation of U049MAI and U123M15-T after CK21 treatment.
803 (g) Reactive oxygen species generated after CK21 treatment (8 and 24 hours). Representative blotting images
804 and quantification of (h) BCL2 expression and (i) cleaved caspase-3 at 24 hours after CK21 treatment.
805 Statistical analysis: One-way ANOVA with post-hoc Tukey comparison of the means of each data set was
806 conducted for (c), (e); Unpaired T test was conducted at different time points for (g), (h), (i). (* $p < 0.05$, ** $p <$
807 0.01, *** $p < 0.001$, **** $p < 0.0001$)

808
809
810
811
812
813
814

815 **Fig.7. CK21 does not exhibit significant immunosuppression in a spontaneous tumor rejection model.**
816 (a) Scheme of a subcutaneous model of mouse pancreatic tumor, KPC-960, with CK21 treatment. CK21 was
817 provided at 3 mg/kg daily starting on day 5 or day 7. During secondary challenge, CK21 was provided at 3
818 mg/kg daily from day 3 post-tumor implantation. Tumor size of mice receiving first challenge (b) without any
819 CK21, (c) with CK21 starting on day 5. (d) or day 7. Tumor size of mice receiving a second challenge (e)
820 without any CK21, or (f) with CK21 treatment starting on day 3. (g) Mice that cleared KPC-960 tumor in (c) and
821 (d) received a second tumor challenge without any CK21; tumor size were quantified weekly (h) Flow plots of
822 CTL assay, another mouse pancreatic tumor, KC-6141, was used as a non-specific target. Quantification of the
823 recovered KPC-960 compared to KC-6141, as a quantification of specific cytotoxic T cell (CTL) killing. (i)
824 Specific CTL killing of KPC-960 cells with splenocytes from (e), (f), (g). Splenocytes from naïve mice was
825 included as a negative control. Data presented in all the graphs are mean \pm standard error. Statistical analysis:
826 Two-way ANOVA with post-hoc comparison of the means of each time point was conducted for (b) and (e), (*
827 $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$).

828

829
830

Key Resources Table

Reagent	Source	Cat #	RRID
Drugs			
CK21	In house	NA	
Gemcitabine	Actavis	45963-619-59	
Cell lines			
AsPC-1	ATCC	CRL-1682™	CVCL_0152
Luciferase transfected AsPC-1	Indiana University	N/A	
Panc-1	ATCC	CRL-1469™	CVCL_0480
KC-6141	University of Nebraska	N/A	
KPC-960	University of Nebraska	N/A	
KPC-961	University of Nebraska	N/A	
Mice			
B6129SF1/J	Jackson Laboratory	101043	IMSR_JAX:101043
C57BL/6J	Jackson Laboratory	000664	IMSR_JAX:000664
Athymic Nude-Foxn1 ^{nu}	Envigo		
Cell Culture			
DMEM	ATCC	30-2002™	
RPMI	Quality Biological	112-024-101	
Fetal bovine serum	Atlanta Biologicals	S115OH	
Penicillin streptomycin	Gibco	15140-122	
L-Glutamine	Gibco	25030-081	
DMSO	Sigma	276855	
Trypsin-EDTA	Stemcell	07901	
TrypLE™ express	Gibco	12605-010	
Sodium pyruvate	Gibco	11360-070	
MEM nonessential amino acids	Cellgro	25-025-CL	
2-Mercaptoethanol	Gibco	21985-023	
Organoid Culture			
IntestiCult™ organoid growth medium	Stemcell	6005	
A83-01	Sigma	SML0788	
FGF-10	Sigma	SRP3262	
Gastrin I	Sigma	G9145	
N-acetylcysteine	Sigma	A9165	
Nicotinamide	Sigma	N0636	
B27 supplement	Gibco	17504-044	
Primocine	Invivogen	ant-pm-1	
Y-27632	Tocris	1254	
Matrigel	Corning	356231	
TrypLE™	Gibco	12605-010	
Multiplex Assay & Flow Cytometry			
CellTiter 96® AQueous one solution	Promega	G3580	
Caspase-3/7 green detection	Thermo Fisher	C10427	
SYTOX® dead cell stain	Thermo Fisher	C10427	

CFSE cell proliferation kit	Thermo Fisher	C34554	
ACK lysing buffer	Quality Biological	118-156-101	
ROS-Glo™ H ₂ O ₂ assay	Promega	G8820	
Western Blotting			
NuPAGE™ 10% Bis-Tris gel	Invitrogen	NP0301BOX	
NuPAGE® MES SDS running buffer	Novex	NP002	
NuPAGE® MOPS SDS running buffer	Novex	NP001	
NuPAGE® transfer buffer	Novex	NP0006-1	
NuPAGE® LDS sample reducing agent	Invitrogen	NP0007	
NuPAGE® sample buffer	Invitrogen	NP0009	
NuPAGE™® antioxidant	Invitrogen	NP0005	
TBS Tween™-20 buffer	Thermo Scientific	28360	
Invitrolon™ PVDF filter paper	Novex	LC2005	
PageRuler prestained protein ladder	Thermo Scientific	26616	
Methanol	Fisher Scientific	A452-4	
Pierce™ protease&phosphatase inhibitor	Thermo Scientific	A32959	
Bovine serum albumin	Sigma	A7906	
SuperSignal™ west pico PLUS	Thermo Scientific	34579	
Pierce™ bradford assay kit	Thermo Scientific	23246	
Antibodies			
Anti-beta actin	Abcam	ab8227	AB_2305186
Recombinant anti-REDD-1/DDIT4	Abcam	ab191871	
Anti-Caspase-3	Abcam	ab13847	AB_443014
Recombinant anti- BCL2	Abcam	ab182858	AB_2715467
Goat anti-rabbit IgG H&L	Abcam	ab205718	AB_2819160
4',6-Diamidino-2-Phenylindole, Dilactate	Biolegend	422801	
Phospho-NF κ B p65, PE, eBioscience™	Invitrogen	12986342	AB_2572751
RT-qPCR			
PowerUp™ SYBR™ green master mix	Applied Biosystem	A25742	
High capacity cDNA reverse transcription	Applied Biosystem	4368814	
Bioluminescence Imaging			
D-Luciferin potassium salt	Perkin Elmer	122799	
PBS	GenClone	25-508	
RNA-Seq			
Cell recovery solution	Corning	354253	
RNeasy® Plus Mini Kit	Qiagen	74124	
DNase I recombinant	Roche	04536282001	

Fig.s1. IC50 (μ M) of triptolide (TP) or CK21 for different cancer cell lines and human fibroblasts in an in vitro cell viability assay.

Compound	HFL-1	SK-OV-3	PC-3	AsPC-1 (Round1)	AsPC-1 (Round2)
TP	0.02	0.21	0.013	0.018	0.027
CK21	0.044	0.04	0.035	0.022	0.056

HFL-1: human fetal lung fibroblast cell line; SK-OV-3: ovarian adenocarcinoma;
PC-3: prostatic adenocarcinoma; AsPC-1: pancreatic adenocarcinoma

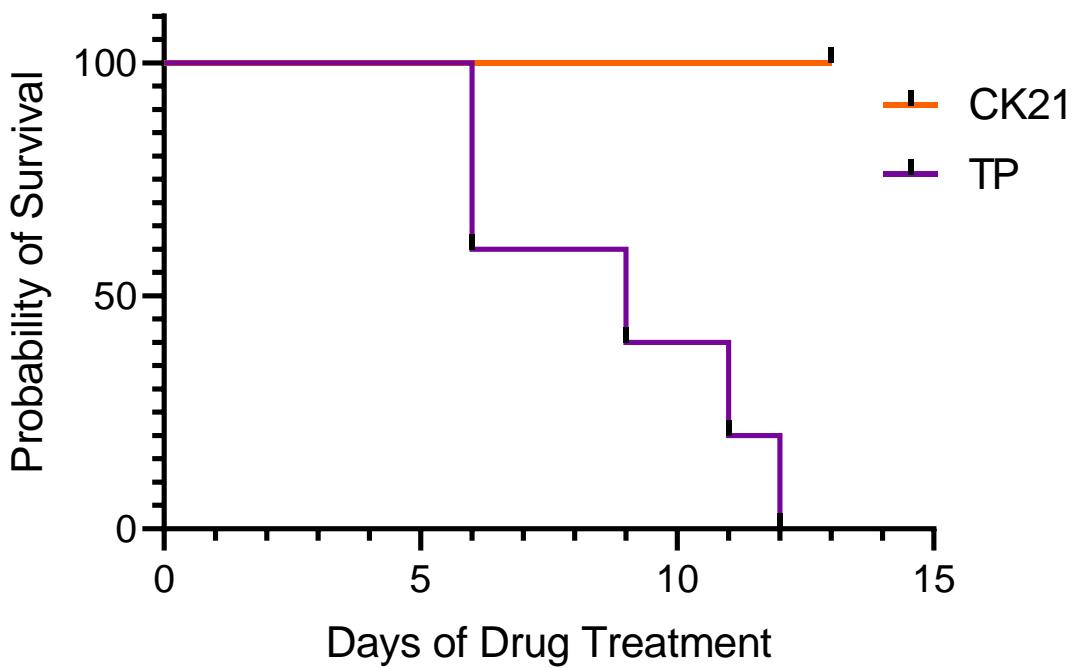


Fig.s2. Survival curve of mice receiving CK21 at 5mg/kg or triptolide (TP) at 0.25 mg/kg.

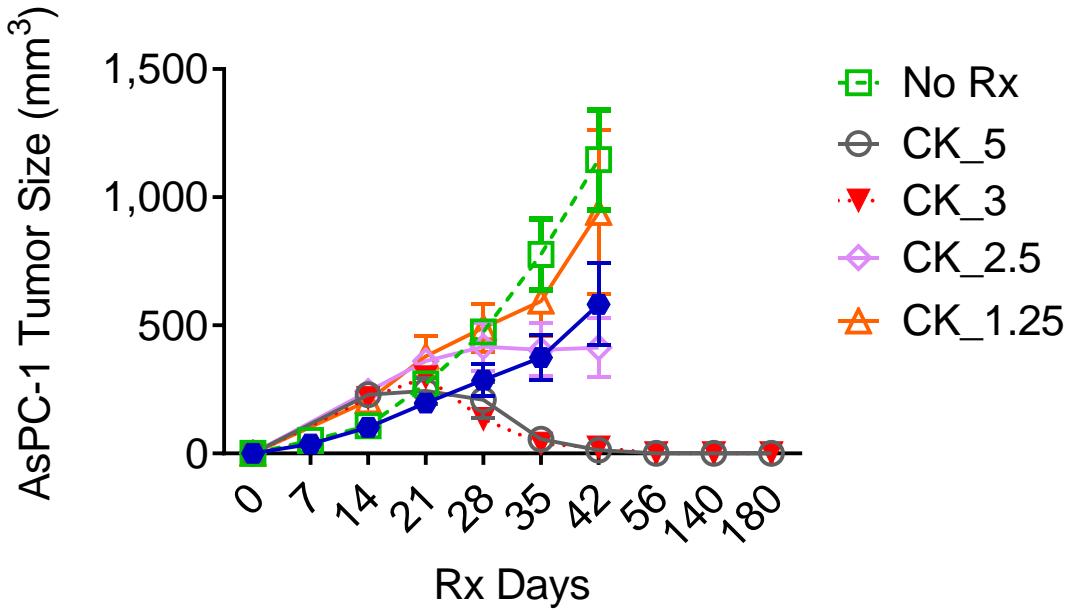


Fig.s3. AsPC-1 subcutaneous tumors showed no tumor relapse after treated with CK21 at 5 or 3 mg/kg.

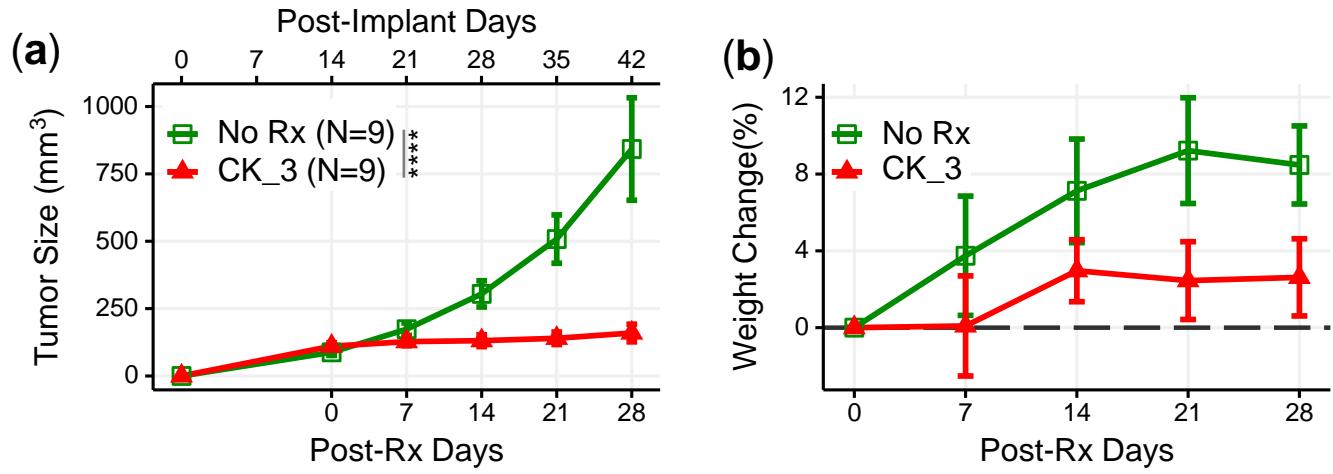


Fig.s4. CK21 inhibited growth of Panc-1 tumors in a subcutaneous xenograft model. (a) Tumor growth with CK21 treatment at 3 mg/kg daily for 28 days. (b) Weight change of mice during Ck21 treatment.

Organoids	Patient #	Mutations	Origin	Adjuvant Therapy	Sex
UC12-0118-4	1	KRAS_G12R TP53_F134L	PDX (derived from PDAC)	Gemcitabine; FOLFIRINOX	F
UC12-0118-8	2	KRAS_G12R TP53_F270L	PDX (derived from PDAC)	FOLFIRINOX (no irinotecan); Gemcitabine/Abraxane	M
U123	6	KRAS_G12D TP53_G245S	Primary(PDAC)	Gemcitabine; Gemcitabine/Abraxane	M
U114	7	KRAS_G12D TP53- chr17_7578176 _C->T	Primary(PDAC)	Gemcitabine; Gemcitabine/Abraxane	M

Fig.s5 . Essential information on the pancreatic tumor organoids used in this study. Details of organoids from Patient# 1, 2, 6 and 7 are provided in reference 39 (Romero-Calvo et al., Molecular Cancer Research 2019)

U049MAI

U123M15-T

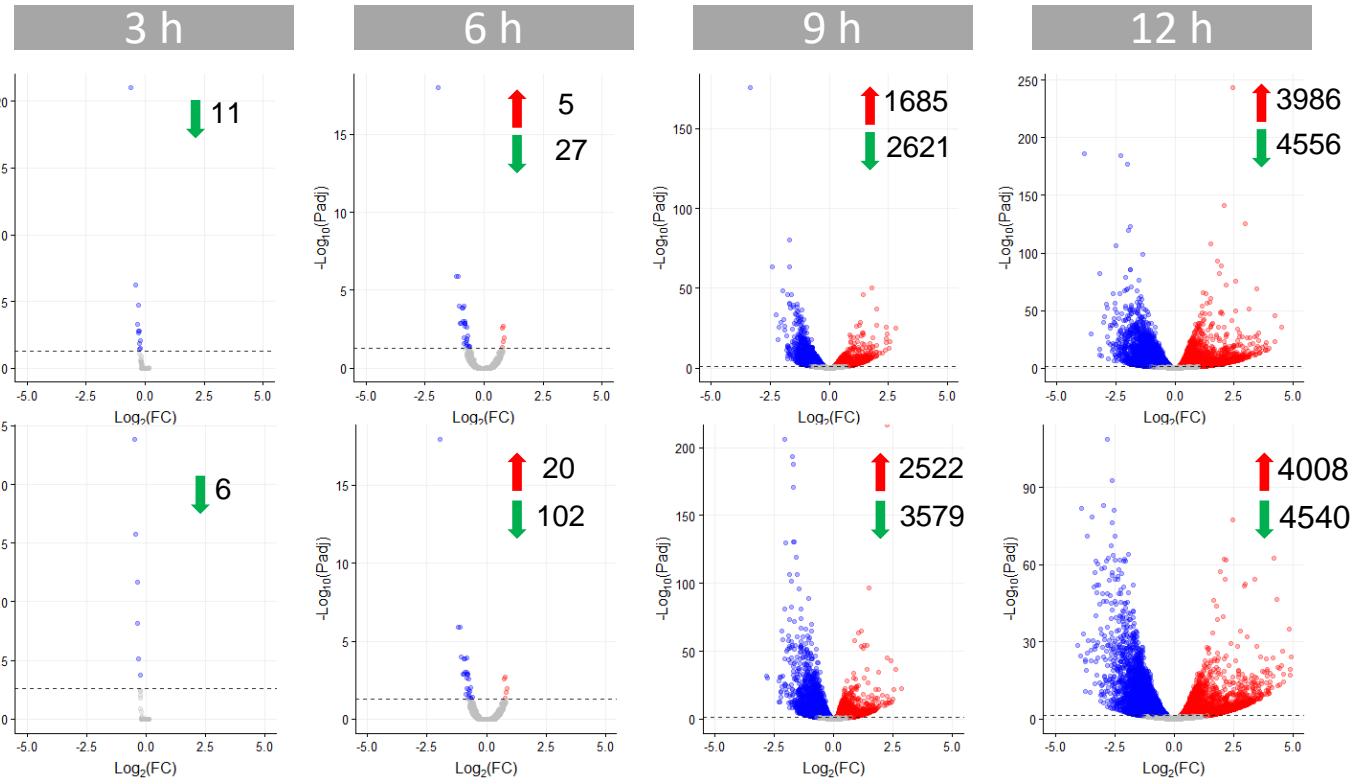


Fig.s6. Volcano plots highlighting differentially expressed genes by U049MAI and U123m15-T respectively after 3h, 6h, 9h and 12 h of CK21 (50 nM) treatment.

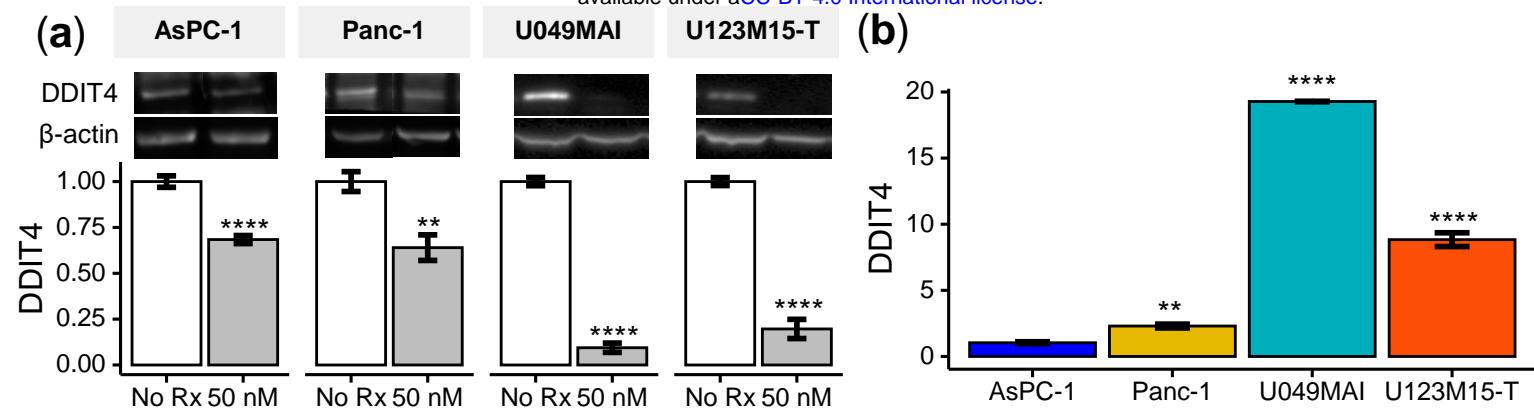


Fig.s7. (a) CK21 (50 mM) reduced the expression of DDIT4 in AsPC-1, Panc-1, U049MAI, and U123M15-T after 24 hours of culture. (b) Baseline expression of DDIT4 in different tumor cells (without CK21 treatment).

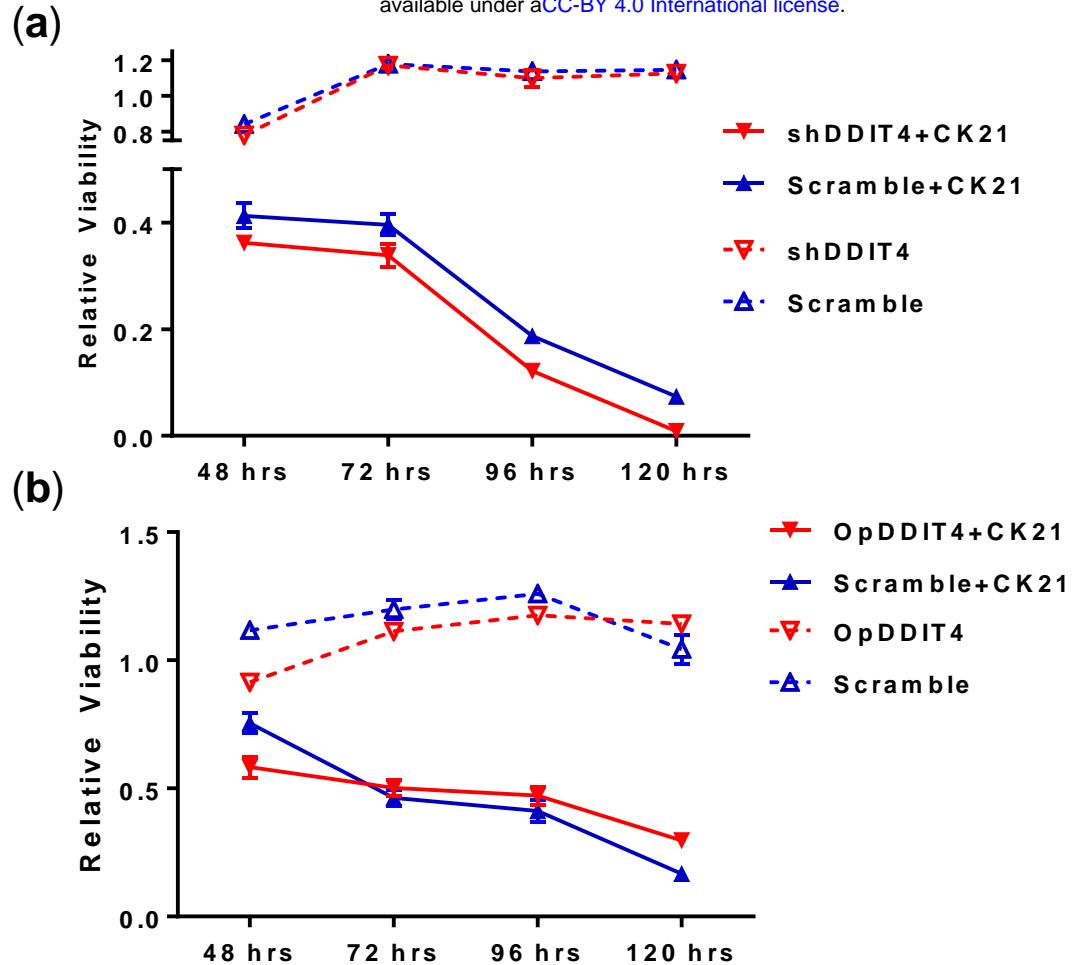


Fig.s8 (a) knockdown of DDIT4 in Panc-1 did not alter response to CK21 (50 nM). (b) AsPC-1 overexpression of DDIT4 did not alter response to CK21 (50 nM).

(a)

Murine PDAC cells	Confirmed mutations	Mice model	Host mice
KC-6141	Kras ^{G12D}	KC	B6
KPC-961	Kras ^{G12D} Trp53 ^{R172H}	KPC	B6×129

(b)

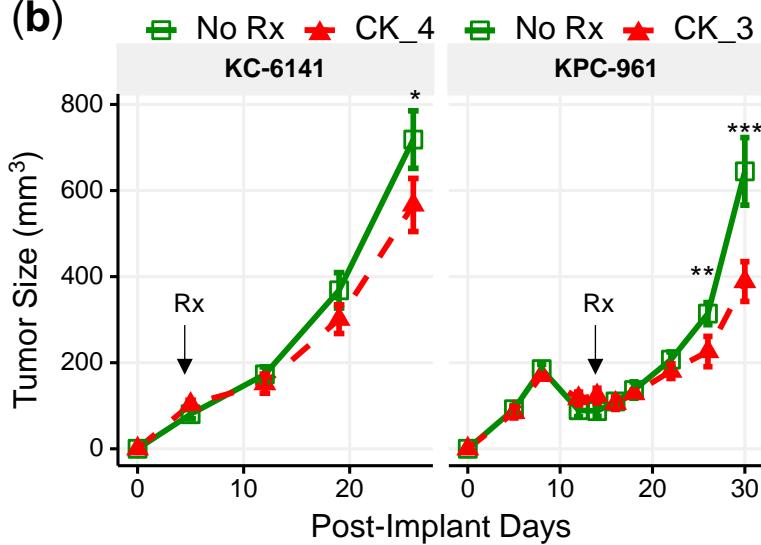


Fig.s9 (a) Information for murine pancreatic cancer cell lines. (b) Tumor size of KC-6141 and KPC-961 after subcutaneous implantation. CK21 given at 4 mg/kg/day for KC-6141 and 3 mg/kg/day for KPC-961 resulted in modest inhibition of tumor growth.

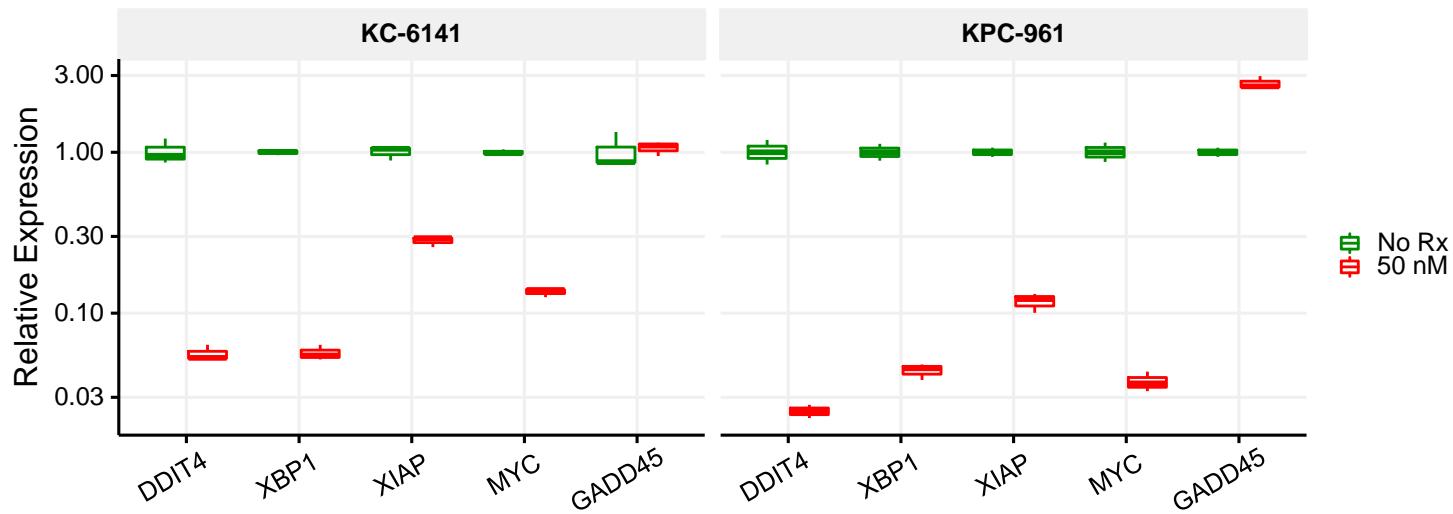


Fig.s10 RT-qPCR analysis of differentially expressed genes by two mice pancreatic tumor cell lines after CK21 treatment at 50 nM for 24h.

(a)

bioRxiv preprint doi: <https://doi.org/10.1101/2023.02.15.528599>; this version posted February 15, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

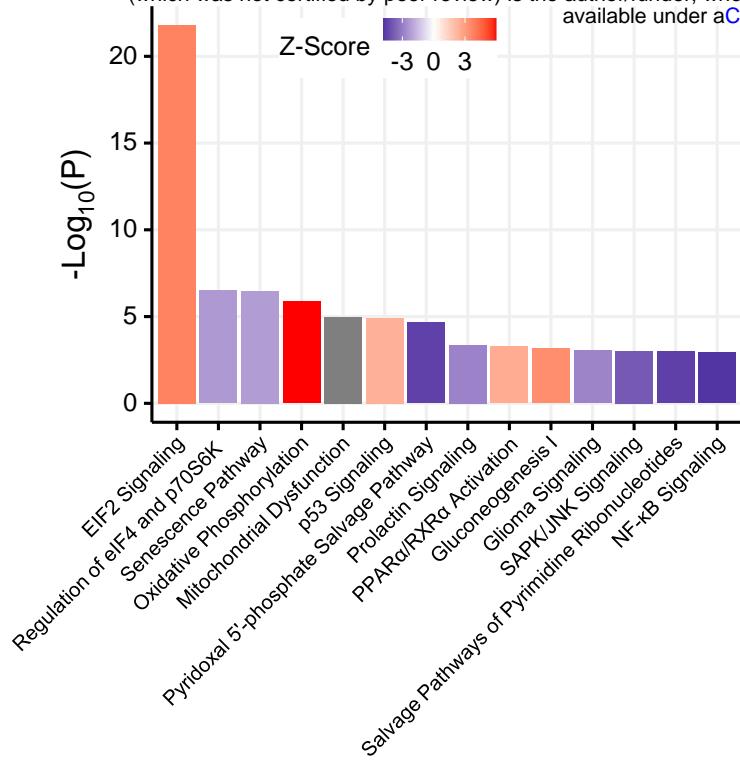
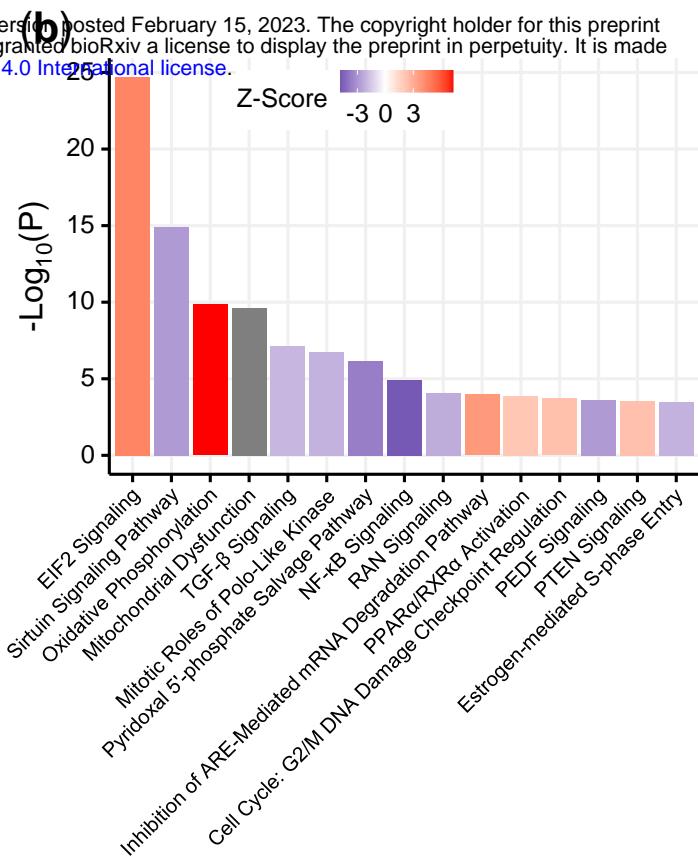


(b)

Fig.s11 Pathway enrichment of U049MAI and U123m15-T after treatment with CK21 (50 nM) for 9 hours. Top pathways for (a) U049MAI and (b) U123M15-T

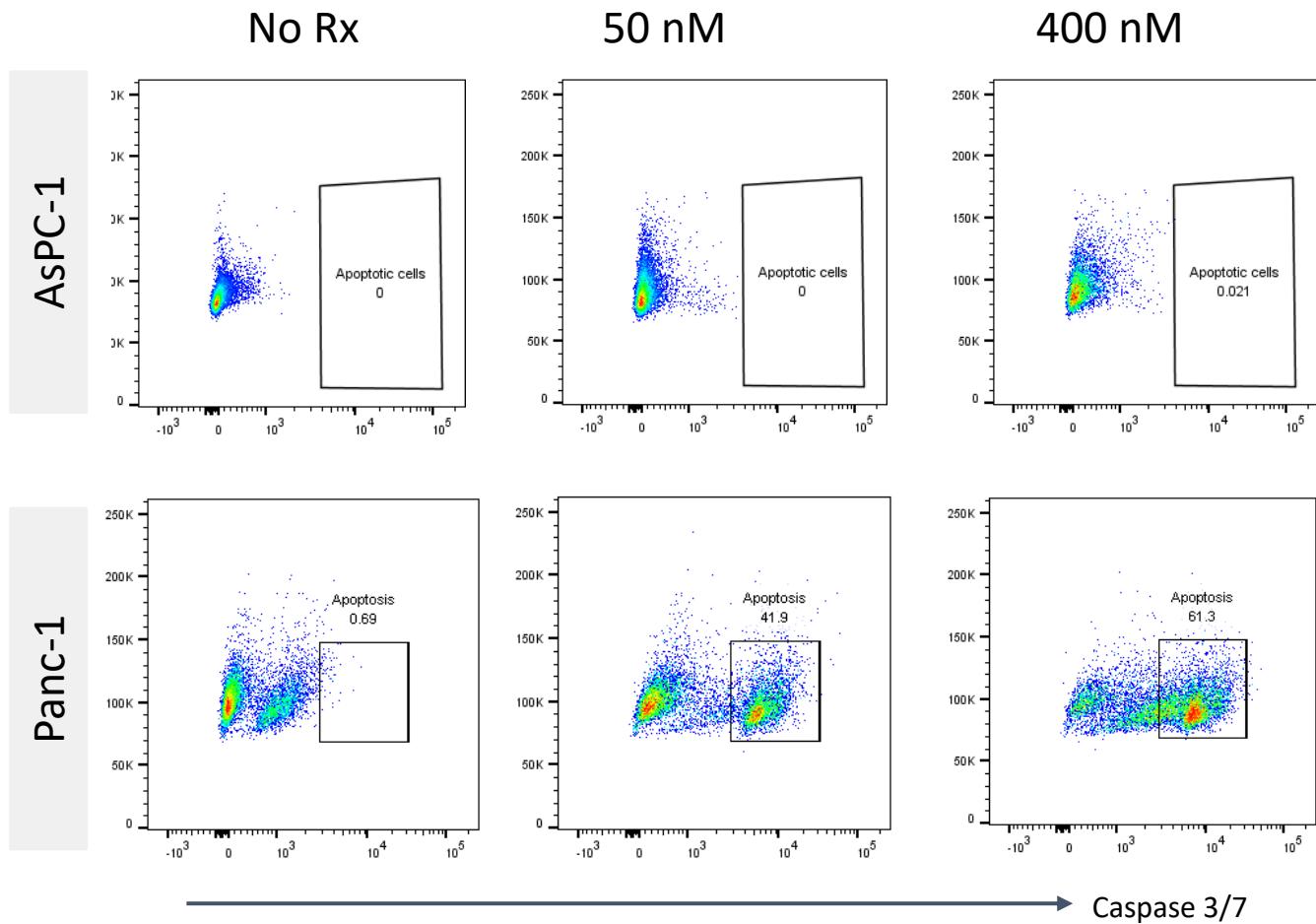


Fig.s12 Flow plots illustrating active Caspase 3/7 expression in AsPC-1 and Panc-1 treated with CK21 (50 and 400 mM) for 24 hours.

Study ID	Species	Route	Dose	Observation	
Acute MTD (single dose ^a)	Rats (20/sex)	IV infusion (20 mL/kg/hour)	1.5, 3 or 6 mg/kg	Mortality (five females at 6 mg/kg)	Liver & kidney toxicity ^y
Toxicity and Toxicokinetic (daily dose ^b)	Rats (88 males; 100 females)	IV infusion (20 mL/kg/hour)	1, 2 or 4 mg/kg (male); 0.5, 1 or 2 mg/kg (female)	well tolerated for both male and female ^d	
Acute MTD (single dose on days 1,3,5 ^a)	Beagle Dogs (4/sex)	IV infusion (30 min)	0.2, 0.4, and 0.8 mg/kg	well tolerated for both male and female ^e	

^a Single CK21 dose followed by a 14-day observation and recovery period.

^b 28 consecutive days of CK21 treatment followed by a 28-day observation and recovery period.

^y Increases of alanine aminotransferase, aspartate aminotransferase, total bilirubin, and alkaline phosphatase correlated with potential hepatotoxicity. Increases of urea and creatinine correlated with potential kidney toxicity.

^d No treatment-related mortality, and no adverse effects in clinical signs: body weight, food consumption, ophthalmology, clinical pathology, organ weight of thymus, ovaries, uterus and spleen, gross findings of enlarged spleen and microscopic changes in bone marrow (sternum and femur), ovaries, spleen, liver, kidneys, lymph nodes (mandibular and mesenteric), and thymus.

^e No test CK21-related effects on food consumption, hematology, coagulation, serum chemistry or macroscopic findings at necropsy.

Fig.s13 Safety profile of CK21. Acute maximum tolerated dose (MTD) studies, toxicity and toxicokinetic studies on rats and beagle dogs.

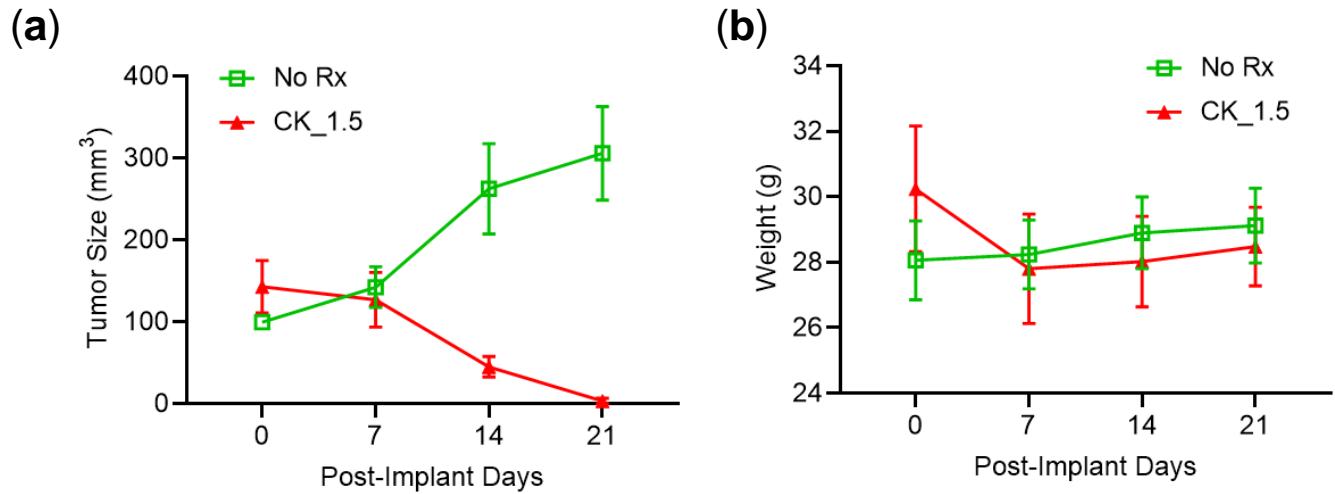


Fig.s14 Male mice with AsPC-1 tumors responded to CK21. (a) Subcutaneous AsPC-1 tumor in male mice after CK21 treatment at 1.5 mg/kg. (b) Male mice weight during CK21 treatment. (N=5 for each experimental group)

(a)

bioRxiv preprint doi: <https://doi.org/10.1101/2023.02.15.528599>; this version posted February 15, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

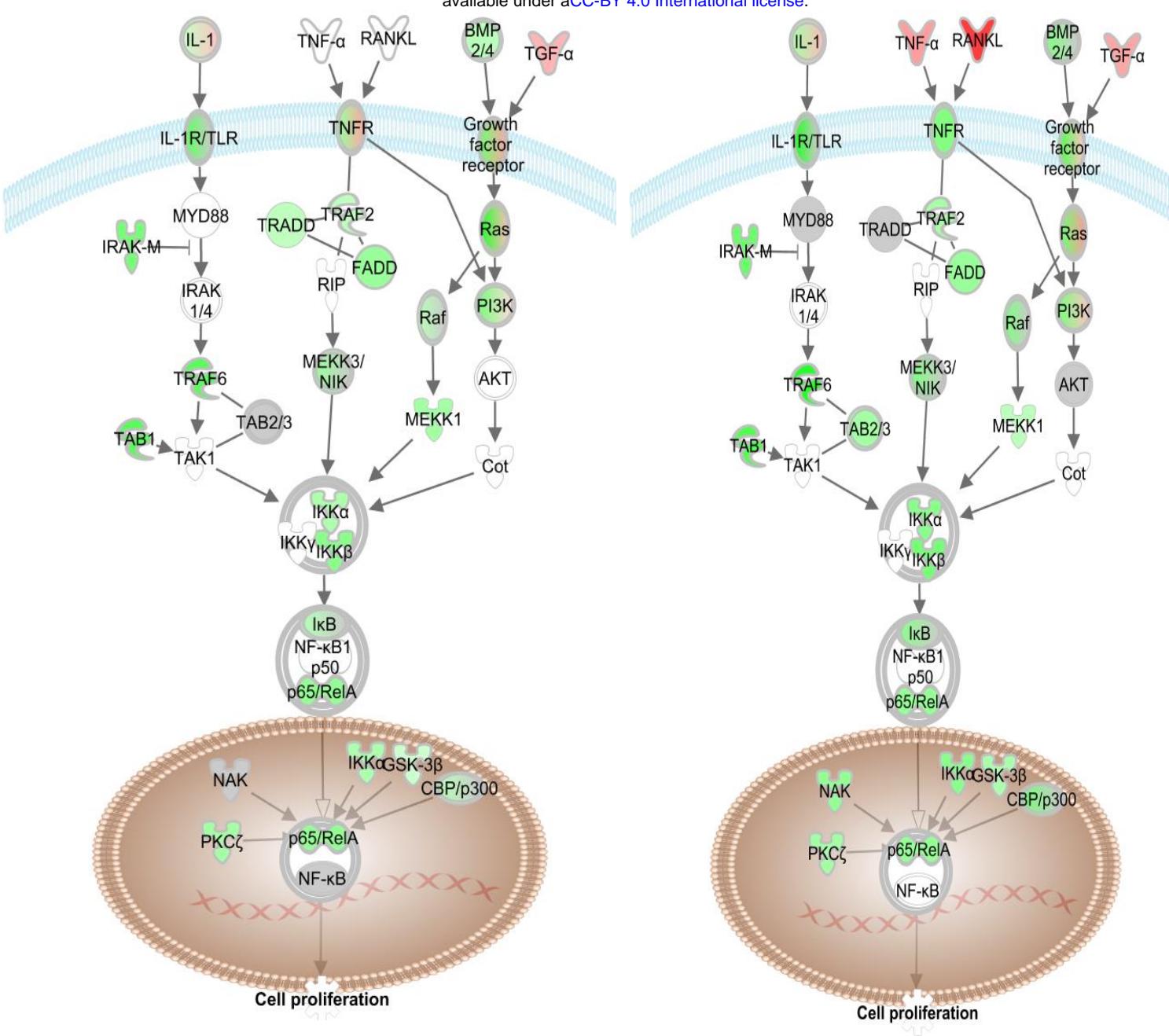

(b)

Fig.s15 Key regulators in NF- κ B canonical signaling pathway are significantly downregulated in (a) U049MAI and (b) U123m15-T after treatment with CK21 (50 nM) for 12 hours. Green represent downregulation and red represent upregulation by IPA analysis.