

1 **Differentiation state and culture conditions impact neural stem/progenitor cell-derived
2 extracellular vesicle bioactivity**

3 *Dipankar Dutta^{1,2}#, Nicholas H Pirolli^{1,2}#, Daniel Levy¹, Jeffrey Tsao¹, Nicholas Seecharan¹, Xiang
4 Xu², Zihui Wang², Xiaofeng Jia^{2,3*}, Steven M. Jay,^{1,4*}*

5 ¹Fischell Department of Bioengineering, University of Maryland, College Park, MD

6 ²Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD

7 ³Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD

8 ⁴Program in Molecular and Cell Biology, University of Maryland, College Park, MD

9

10 [#]Equal contributors

11

12 ^{*}Co-corresponding authors:

13 Xiaofeng Jia, MD, PhD, FCCM

14 University of Maryland School of Medicine

15 685 W. Baltimore St, MSTF 823, Baltimore, MD 20201

16 xjia@som.umaryland.edu

17

18 Steven M. Jay, PhD

19 University of Maryland

20 8278 Paint Branch Dr, College Park, MD 20742

21 smjay@umd.edu

22

23

24 Keywords (3 to 7): exosomes, NPSC, neurogenesis, extracellular matrix, peripheral nerve injury

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

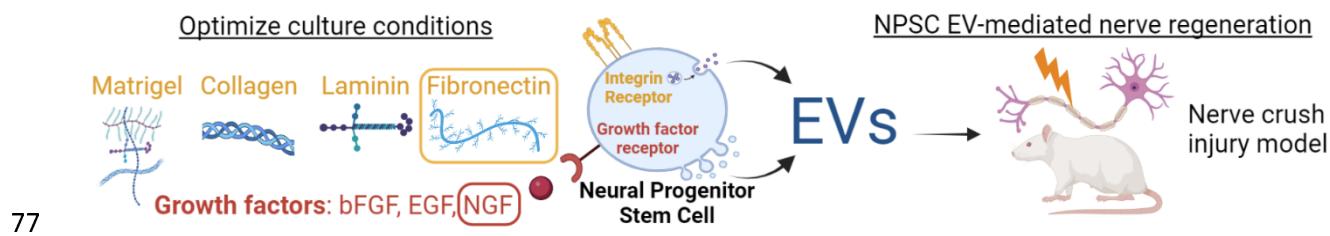
48

49

50 **Abstract**

51 Extracellular vesicles (EVs) derived from neural progenitor/stem cells (NPSCs) have shown
52 promising efficacy in a variety of preclinical models. However, NPSCs lack critical
53 neuroregenerative functionality such as myelinating capacity. Further, culture conditions used in
54 NPSC EV production lack standardization and identification of optimal conditions for NPSC EV
55 neurogenic bioactivity. Here, we assessed whether further differentiated oligodendrocyte
56 precursor cells (OPCs) and immature oligodendrocytes (iOLs) that give rise to mature
57 myelinating oligodendrocytes could yield EVs with neurotherapeutic properties comparable or
58 superior to those from NPSCs as well as mesenchymal stromal cells (MSCs), as MSC EVs are
59 also commonly reported to have neurotherapeutic activity. We additionally examined the effects
60 of four different extracellular matrix (ECM) coating materials (laminin, fibronectin, Matrigel, and
61 collagen IV) and the presence or absence of growth factors (EGF, bFGF, and NGF) in cell
62 culture on the ultimate properties of EVs. The data show that OPC EVs and iOL EVs performed
63 similarly to NPSC EVs in PC-12 proliferation and RAW264.7 mouse macrophage anti-
64 inflammatory assays, but NPSC EVs performed better in a PC-12 neurite outgrowth assay.
65 Additionally, the presence of nerve growth factor (NGF) in culture was found to be maximize
66 NPSC EV bioactivity among the conditions tested. NPSC EVs produced under rationally-
67 selected culture conditions (fibronectin + NGF) enhanced axonal regeneration and muscle
68 reinnervation in a rat nerve crush injury model. These results highlight the impact of culture
69 conditions on NPSC EV neuroregenerative bioactivity, thus providing additional rationale for
70 standardization and optimization of culture conditions for NPSC EV production.

71


72

73

74

75

76 **Table of Contents**

78 Extracellular vesicles (EVs) purified from neural progenitor/stem cells (NPSCs) have been
79 investigated for neurotherapeutic activity, however significant variability in culture conditions
80 limits reproducibility and efficacy of this approach. Here, we examined the impact of
81 extracellular matrix (ECM) components and growth factors in NPSC culture on the bioactivity on
82 the bioactivity of their EVs. The results show that EVs from NPSCs cultured with a rationally-
83 selected ECM type (fibronectin) and growth factor (nerve growth factor (NGF)) enhanced nerve
84 regeneration and muscle recovery in a rat sciatic nerve crush injury model.

85

86

87

88

89

90

91

92

93

94

95

96

97

98 **1. Introduction**

99 Extracellular vesicles (EVs) have emerged as alternatives to cell therapies for treatment of a
100 wide variety of diseases and injuries, including spinal cord injury (SCI), peripheral nerve injury
101 (PNI), and other neurological applications ^{1,2}. While much of the early work in this area involved
102 EVs from non-CNS source cells, especially mesenchymal stem/stromal cells (MSCs), more
103 recent investigations into the neurotherapeutic properties of EVs from cells such as neural
104 progenitor/stem cells (NPSCs) have yielded promising results in a variety of preclinical models ³⁻
105 ⁵. However, there is broad heterogeneity in how NPSCs are cultured, and culture conditions are
106 critical to EV production and bioactivity. Thus, this lack of standardization could contribute to
107 decreased potency of some NPSC EV formulations as well as reduced reproducibility of results
108 within the field, both of which are limiting to the ultimate translation of EVs to treat central
109 nervous system (CNS) diseases and injuries ^{6,7}.

110

111 A critical aspect of cell culture conditions for NPSCs is the extracellular matrix (ECM)
112 component. Stem cells such as NPSCs possess a wide variety of integrin receptors enabling
113 cellular phenotypic responses to extracellular ECM signals, and this ECM signaling has been
114 leveraged in vitro by culturing NPSCs on different ECM types to enhance NPSC proliferation
115 and control their differentiation. However, it remains relatively unknown how ECM signaling can
116 specifically influence the bioactivity of EVs released from NPSCs in culture. Additionally, the
117 impact of supplementing different growth factors in culture media on NPSC EV bioactivity has
118 also not been systematically explored.

119

120 Beyond culture conditions, it is notable that while NPSC EVs have received increasing attention,
121 the neuroregenerative potential of EVs derived from oligodendrocyte precursor cells (OPCs)
122 and their differentiated oligodendrocyte (OL) phenotypes are not well characterized, despite
123 these latter cell types being critical to the process of myelination in the CNS. Similar to MSCs,

124 exogenous OPC transplants correspond with functional improvements after SCI⁸⁻¹¹. Known
125 OPC/OL-mediated paracrine effects include neuroprotection/axonal sparing¹²⁻¹⁵, adaptive
126 neural plasticity¹⁶, angiogenesis¹⁷, axonal growth¹⁸, and endogenous oligodendrogenesis from
127 ependymal cells¹⁹. However, primary OPCs are not easily cultivated or cultured, hindering their
128 potential as EV sources.

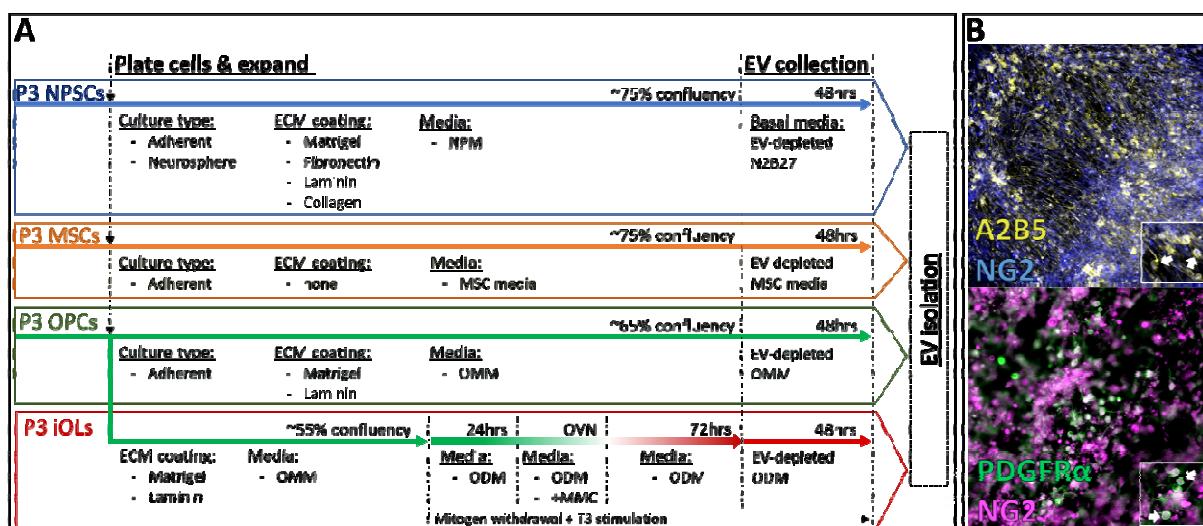
129

130 In this study, we addressed the issues identified above by establishing cultures of induced-
131 pluripotent stem cell (iPSC)-derived NPSCs as well as OPCs and immature OLs (iOLs) for EV
132 production. We observed that only NPSC EVs promoted neurite outgrowth in a PC-12 neural
133 cell line, and that this bioactivity was modulated by both the ECM coating in adherent cell
134 culture conditions and the presence of growth factors during EV biogenesis. Specially, we report
135 that NPSCs cultured on laminin and fibronectin produced EVs with enhanced PC-12 neurite
136 outgrowth compared to Matrigel and collagen IV. Additionally, mitogen withdrawal abrogated
137 NPSC EV bioactivity across several in vitro assays, whereas supplementation with nerve growth
138 factor (NGF) in culture generally enhanced EV bioactivity. Thus, overall we show that ECM and
139 growth factors in NPSC culture are critical determinants of NPSC EV bioactivity and should be
140 carefully considered and reported on in future NPSC EV studies. Standardized use of optimal
141 ECM and culture conditions holds promise to enhance NPSC EV efficacy for a wide range of
142 CNS therapies, enhancing their translational potential.

143

144 **2. Experimental Section**

145 *2.1 Cell culture*


146 Human induced-pluripotent stem cell (iPSC)-derived NPSCs were purchased from a commercial
147 source (Tempo Biosciences, Tempo-iNSTem). Upon receipt, NPSCs were plated in Matrigel-
148 coated flasks at 5,700cells/cm² and labeled as passage 1 (P1). Growth factor-reduced Matrigel
149 (Corning, 356231) was mixed in DMEM:F12 (Thermo Fisher Scientific, 11330032) under chilled

150 conditions and added in tissue culture flasks at 60 μ g/cm². The flasks were then incubated at
151 37°C for at least 1h before the Matrigel coating solution was removed to subsequently plate the
152 cells. NPSCs were cultured in basal media that we will refer to as N2B27. N2B27 formulation is
153 as follows: DMEM:F12 supplemented with 1X non-essential amino acids (NEAA; Thermo Fisher
154 Scientific, 11140050), 1X Glutamax (Thermo Fisher Scientific, 35050061), 1X
155 penicillin/streptomycin (Sigma-Aldrich, P0781), 0.1mM β -mercaptoethanol, 2 μ g/ml heparin, 1X
156 N2 supplement (Thermo Fisher Scientific, 17502048), and 1X B27 supplement (Thermo Fisher
157 Scientific, 12587010). NPSCs were expanded using NPSC proliferation media (NPM)
158 composed of N2B27 supplemented with 20 ng/ml epidermal growth factor (EGF; Peprotech, AF-
159 100-15), 20ng/ml basic fibroblast growth factor (bFGF; Peprotech, 100-18B) and 25 μ g/ml insulin
160 (Sigma-Aldrich, I9278). NPSCs were passaged upon reaching 85-90% confluence using
161 Accutase (Thermo fisher, A1110501). If applicable, NPSCs were stored in liquid nitrogen after
162 suspending in NPM supplemented with 10 μ M Y-27632 (ROCKi; Tocris, 1254) and 1X
163 chemically defined freezing solution (Lonza, 12-769E). 10 μ M ROCKi was supplemented in NPM
164 for the first 24h after every passage or plating of frozen stocks.

165

166 Human iPSC-NPSC-derived oligodendrocyte precursor cells (OPCs) were acquired from Tempo
167 Biosciences (Tempo-iOligo), upon receipt cells were plated at 10,000cells/cm² on Matrigel-
168 coated culture flasks and labeled as P1. OPCs were cultured using OPC
169 maintenance/proliferation media (OMM) composed of N2B27 supplemented with 10ng/ml
170 insulin-like growth factor (IGF-1; Peprotech, 100-11), 15ng/ml platelet-derived growth factor AA
171 (PDGFaa; Peprotech, 100-13A), 5ng/ml hepatocyte growth factor (HGF; Peprotech, 100-39H),
172 10ng/ml Neurotrophin-3 (NT3; Peprotech, 450-03), 25 μ g/ml insulin, 1 μ M N6,2'-O-
173 Dibutyryladenosine 3',5'-cyclic monophosphate sodium salt (cAMP; Sigma-Aldrich, D0260),
174 100ng/ml biotin (Sigma-Aldrich, B4639) and 10ng/ml 3,3',5-triiodo-L-thyronine sodium salt
175 hormone (T3; Sigma-Aldrich, T6397). OPCs were passaged at 75% confluence where P2 and

176 P3 cells were plated at 7,500 cells/cm². OPCs were stored in liquid nitrogen after suspending in
177 OMM supplemented with 10µM ROCKi and 1X chemically defined freezing solution. 10µM
178 ROCKi was supplemented in OMM for the first 24h after every passage or plating of frozen
179 stocks. Cell populations likely to contain higher concentrations of immature oligodendrocytes
180 (iOLs) were generated via growth factor withdrawal and exposure to high levels of
181 triiodothyronine (T3) hormone for 3d, as described by others ²⁰⁻²². In short, OPCs were
182 expanded until ~55% confluence and the media was changed to OPC differentiation media
183 (ODM) composed of N2B27 supplemented with 1µM cAMP, 25µg/ml insulin and 200ng/ml T3.
184 The OPCs were incubated for 24h and the media was subsequently changed to ODM
185 supplemented with 4µg/ml mitomycin-C (MMC; Sigma-Aldrich, M4287) overnight to arrest cell
186 proliferation. Finally, the media was changed once more to fresh ODM without MMC for the
187 subsequent three days.

188 **Figure 1.** Schematic depicting all EV groups, EV isolation workflow, and OPC characterization.
189 A) Cells were grown in the indicated culture conditions until the appropriate confluence was
190 reached, at which point EV collection was commenced for 48h. B) Immunocytochemistry
191 reveals presence of OPC markers A2B5 and NG2 (upper panel) and iOL markers PDGFRα and
192 NG2 (lower panel).

194

195 Adipose-derived and bone marrow-derived mesenchymal stem cells (ADMSC and BDMSC,
196 respectively) were provided by RoosterBio. The MSC cell lines were all primary human-derived
197 with separate donors for each tissue source labeled as AD061, AD088 & AD097 for ADMSCs
198 and BM174, BM180 & BM182 for BDMSCs. All MSCs were plated at 3000cells/cm² in tissue
199 culture-treated flasks and cultured in MSC media, consisting of Dulbecco's Modified Eagle's
200 Medium (DMEM), supplemented with 10% (v/v) heat-inactivated fetal bovine serum (Hi-FBS),
201 1X NEAA and 1X penicillin/streptomycin. After initial plating, each cell line was labeled as P1.
202 MSCs were passaged upon reaching 90-95% confluence and if applicable, stored in liquid
203 nitrogen frozen in MSC media supplemented with 10% (v/v) DMSO.

204

205 *2.2 EV isolation*

206 P3 cells were used for EVs isolation from all cell types (NPSCs, OPCs, iOLs and MSCs), unless
207 otherwise stated (Table 2). EV-depleted Hi-FBS was used when necessary for EV isolation and
208 *in vitro* assays. Here, Hi-FBS was centrifuged at 100,000 x g for 16h and passing the top 70% of
209 the supernatant through a 0.2µm filter before storage at -20°C. For the neural cell types
210 (NPSCs, OPCs and iOLs), basal N2B27 underwent the same EV-depletion process as Hi-FBS
211 before starting EV collection. Suspension (neurosphere) culture for NPSCs were initiated by
212 suspending at 20,000cells/ml in NPM. Media was changed every 2-3d by gently pelleting the
213 resulting neurospheres and replacing the supernatant with fresh NPM. Neurosphere diameter
214 was visually inspected, and EV collection period was initiated when neurospheres reached a
215 diameter of ~0.25mm. Adherent culture conditions for EV collection included ECM signaling
216 cues from Matrigel, fibronectin (Sigma-Aldrich, F0895-5MG), laminin (Sigma-Aldrich, L2020-
217 1MG) and collagen IV (Sigma-Aldrich, C5533-5MG). Tissue culture flasks were incubated with
218 fibronectin at 1.5µg/cm² diluted in 1X HBSS for at least 1h at 37°C. Fibronectin coating solution
219 was then aspirated and allowed to air-dry for 30min before plating cells. Laminin immobilization

220 on culture flasks was completed in two steps. First, the flasks were coated with poly-L-ornithine
221 hydrobromide (PLO; Sigma-Aldrich P4957-50ML) at 15 μ g/ml diluted in 1X PBS for at least 1h at
222 37°C. Second, laminin was diluted in DMEM:F12 to final concentration of 20 μ g/ml and
223 incubated at 37°C for at least 2h. The plates were rinsed once with 1X PBS before plating cells.
224 Collagen IV stocks were diluted in sterile dH2O for a coating concentration of 5 μ g/cm². Plates
225 were then coated overnight at 4°C, followed by a 1h incubation in 37°C and cells were plated
226 after washing the coated surface once with 1X PBS.

227

228 For NPSCs and MSCs, EV isolation was initiated upon EV parent cells reaching a confluence of
229 ~75%. For OPCs, EV collection was initiated at ~65% confluence (Figure 1). EV isolation for the
230 iOLs were initiated after the 3d ODM treatment (Figure 1). For all cases, EV parent cells were
231 incubated with EV-depleted media (where all growth factor and small molecule supplements
232 were added immediately before use) for 48h before the conditioned media underwent a
233 standardized EV isolation process via differential centrifugation.²³ In short, conditioned media
234 was centrifuged at 1000 x g for 10min. The supernatant was then centrifuged at 2000 x g for
235 20min and the process was repeated once more at 10,000 x g for 30min. Finally, small EVs
236 were pelleted by centrifuging at 100,000 x g for 2h. The supernatant was carefully discarded,
237 the pellet was resuspended in PBS. The resuspended EV-rich solutions were washed and
238 concentrated with 1X PBS using Nanosep Centrifugal Devices with 300kDa molecular weight
239 cut-off (Pall, OD300C35). The isolated EVs were then resuspended in 1X PBS and aliquoted for
240 storage at -20°C for up to 8wk where the samples were subjected to no more than 1 freeze/thaw
241 cycle.

Media Type	Formulation
Neural basal media (N2B27)	DMEM:F12, 1x N2 supplement, 1x B27 supplement, 1x non-essential amino acids, 1x glutamax, 1x penicillin/streptomycin, 0.1mM β -mercaptoethanol and 2 μ g/ml heparin
NPSC proliferation media (NPM)	N2B27, 20ng/ml EGF, 20ng/ml bFGF and 25 μ g/ml insulin
OPC maintenance/proliferation media (OMM)	N2B27, 10ng/ml IGF-1, 15ng/ml PDGFaa, 5ng/ml HGF, 10ng/ml NT3, 25 μ g/ml insulin, 1 μ M cAMP, 100ng/ml biotin and 10ng/ml T3
OPC differentiation media (ODM)	N2B27, 1 μ M cAMP, 25 μ g/ml insulin and 200ng/ml T3
MSC media	DMEM, 10% (v/v) Hi-FBS, 1x non-essential amino acids and 1x penicillin/streptomycin

242
243 **Table 1.** Summary of the media formulations used for each of the cell types in the study.
244

245 *2.3 EV characterization*

246 Protein content in isolated EV samples was determined using bicinchoninic acid assay (BCA)
247 following the manufacturer's protocol. Particle size and concentration were characterized via
248 nanoparticle tracking analysis (NTA) using NanoSight (Malvern Pananalytical, LM10). In short,
249 EV solutions were diluted to a concentration that would produce between 60-120 of particles per
250 frame. A minimum of three 30s videos were captured using NTA analytical software version 2.3
251 with camera level set at 14. The detection threshold for image analysis was set at the beginning
252 of each sample and kept constant for each replicate. Data were corrected for dilutions and
253 presented as particle concentration (particles/ml) and percent population as a function of
254 diameter.

255 **Transmission electron microscopy (TEM)** was performed after negative staining of EVs to
256 verify appropriate EV morphology. Briefly, EV isolates were fixed 1:1 with 4% paraformaldehyde
257 (total volume = 40 μ L) for 30min, and the mixture was then placed on parafilm forming a droplet.
258 An ultrathin carbon film grid (Electron Microscopy Sciences (Hatfield, PA)) was carefully floated

259 on the droplet and allowed to incubate for 20min. Then, the grid was blotted to remove excess
260 liquid, washed with PBS, and floated on 1% glutaraldehyde (50 μ L, 5min) followed by dH2O
261 washing and negative staining with uranyl acetate replacement stain (50 μ L, 10min). Air-dried
262 grids were imaged with a JEM-2100 transmission electron microscope (JEOL, Japan) at 200kV
263 accelerating voltage.

264 **Molecular characterization of EVs was accomplished by immunoblot.** Approximately 15 μ g
265 of protein from EV isolates and lysates from respective cell types was used for immunoblots.
266 The EV markers Alix and TSG101 and the negative markers Calnexin and GAPDH were
267 assessed in accordance with standards from the International Society for Extracellular
268 Vesicles.⁷ Primary antibodies for ALIX (Abcam, ab186429), TSG101 (Abcam, ab125011) and
269 Calnexin (Cell Signaling, C5C9) were used at a 1:1000 dilution. Secondary goat anti-rabbit
270 IRDye 800CW (LICOR, 925-32210) was used at a dilution of 1:10,000. Immunoblots were then
271 imaged using a LI-COR Odyssey CLX Imager.

272

273 *2.4 PC-12 Neurite Outgrowth Assay*

274 PC-12 cells were acquired from a commercial source (ATCC, CRL1721) and expanded in PC-
275 12 proliferation media consisting of DMEM (Corning, 10-013-CV) supplemented with 15% (v/v)
276 Hi-FBS, 1X glutamax, 1X HEPES (Thermo Fisher Scientific, 11330032), 1X NEAA and 1X
277 penicillin/streptomycin. PC-12 cells were expanded by suspending the cells in tissue culture-
278 treated flasks at a concentration of 2.5×10^5 cells/ml. Media was changed every 2-3d and cells
279 were discarded after passage 9. The neurite outgrowth assays were conducted in collagen IV-
280 coated 96-well plates. In short, PC-12 cells were plated at 5000 cells/cm² and cultured with PC-
281 12 proliferation media for the first 24h. PC-12 proliferation media was then exchanged to basal
282 PC-12 assay media consisting of DMEM supplemented with 2% (v/v) EV-depleted Hi-FBS, 1X
283 Glutamax, 1X HEPES, 1X NEAA and 1X penicillin/streptomycin. The controls for the neurite

284 outgrowth assay were as follows: negative – basal PC-12 assay media; positive – basal media
285 + 100ng/ml nerve growth factor (NGF; Peprotech, 450-01); inhibitory – basal media + 100ng/ml
286 NGF + 0.3825 μ M dexamethasone. Dosage response for each EV experimental group was
287 determined by diluting isolated EVs to 1.0x10⁹ (high), 2.8x10⁸ (med) and 2.8x10⁷ (low)
288 particles/ml as measured using NTA. All neurite outgrowth assays were conducted in triplicates
289 (3 wells/EV dosage for each group).

290
291 After a 72h exposure to all control and experimental conditions, neurite outgrowth from PC-12
292 cells was quantified using light and fluorescent microscopy. In short, the PC-12 cells were fixed
293 using 3.7% (v/v) paraformaldehyde (Santa Cruz Biotechnology, sc-203049A) in 1X PBS for
294 15min. After washing gently with 1X PBS, the cells were permeabilized using 0.35% (v/v) Triton
295 X-100 diluted in 1X PBS for 15min. After another set of gentle washes and 4',6-diamidino-2-
296 phenylindole (DAPI) nuclear staining (Thermo Scientific, R37606; following manufacturer's
297 protocol), neurite outgrowth was recorded by imaging phase contrast overlaid with DAPI
298 channel fluorescent images of at least three distinct regions of each well. Acquired images were
299 quantified using FIJI and the NeuronJ plugin.²⁴ The DAPI fluorescent channels were used to
300 estimate the number of cells in each field using FIJI's particle count algorithm. The NeuronJ
301 plugin was used to manually trace all cellular processes from the respective phase contrast
302 images. Traces <10 μ m in length were discarded and the cumulative length of >10 μ m neurites
303 was normalized by the number of nuclei detected.

304
305 *2.5 RAW Inflammatory Assay*
306 RAW264.7 mouse macrophage (RAW) cells were acquired from a commercial source (ATCC,
307 CRL1721) and expanded in RAW media composed of DMEM supplemented with 5% Hi-FBS
308 and 1X penicillin/streptomycin by plating at 17,500cells/cm² in tissue culture-treated flasks and
309 passaged upon reaching ~80% confluence. RAW cells between passages 12-15 were used for

310 all inflammatory assays, which comprised a 24h pre-treatment, followed by a 4h co-treatment
311 regime. In short, RAW cells were plated at 70,000cells/cm² in 48-well plates and cultured
312 overnight using RAW media. The next day, the 24h pre-treatment regime was initiated by
313 exchanging to EV-depleted RAW assay media with the following controls: negative – assay
314 media-only; positive – assay media-only; inhibitory – assay media + 2.5μM dexamethasone.
315 Pre-treatment for the experimental groups comprised of assay media + EVs. The next day,
316 media was replaced to initiate the 4h co-treatment regime where the controls were as follows:
317 negative – assay media-only; positive – assay media + 10ng/ml lipopolysaccharide (LPS;
318 Sigma-Aldrich, L4391); inhibitory – assay media + 10ng/ml LPS + 2.5μM dexamethasone. Co-
319 treatment for the experimental groups comprised assay media + 10ng/ml LPS + EVs. EVs were
320 dosed identically to the neurite outgrowth assay with three concentrations for each group
321 (1.0x10⁹, 2.8x10⁸ and 2.8x10⁷ particles/ml as measured using NTA) during both pre- and co-
322 treatment regimens to determine dose-dependent responses. All inflammatory assays were
323 conducted in triplicates (3 wells/EV dosage for each group). After co-treatment, the conditioned
324 media was stored at -80°C and the interleukin-6 (IL-6) content was quantified via enzyme-linked
325 immunosorbent assay (R&D Systems, DY406) following the manufacturer's protocol.

326

327 *2.6 Immunocytochemistry*

328 OPC phenotype was validated via immunocytochemistry (ICC; Figure 1) probing for colocalized
329 OPC surface biomarkers of neural/glial antigen-2 (NG2), A2B5 and platelet derived growth
330 factor receptor alpha (PDGFRα).²⁵ In short, OPCs were plated on laminin-coated 96-well plates
331 until ~65% confluence. The cells were then fixed using 3.7% (v/v) paraformaldehyde diluted in
332 1X PBS for 15 mins. The wells were gently washed 3x with 1X PBS to minimize cell
333 detachment. The wells were then blocked for 60min at room temperature (RT) using 10% (v/v)
334 normal donkey serum and 0.05% BSA diluted in 1X PBS. After washing carefully with 1X PBS +

335 0.05% (v/v) Tween-20 (PBS-T), the samples were incubated overnight at 4°C with the primary
336 antibodies for A2B5 (1:50; R&D Systems, MAB1416) and NG2 (1:300; EMD Millipore, AB5320)
337 as well as PDGFR- α (1:25; R&D Systems AF-307) and NG2, separately. After washing with
338 PBS-T, samples were incubated with the appropriate secondary antibodies (Life Technologies,
339 A-21432, A-31573 & A-21202) for 1h at RT. After washing 3x with PBS-T, the samples were
340 imaged using a fluorescence microscope. Control wells without primary antibodies added were
341 used to check for background and non-specific binding. The PC-12 neurite outgrowth assay was
342 initially validated by probing for β -tubulin III (1:1000; Abcam, ab7751) using ICC to optimize the
343 positive, negative, and inhibitory controls (Figure 5a). The same protocol as above was used
344 along with an additional permeabilization step immediately before blocking. Samples were
345 incubated with 1X PBS with 0.35% (v/v) Triton X-100 for 15min such that the primary antibody
346 was available for binding to cytosolic β -tubulin III.

347

348 *2.7 In-vivo studies*

349 *2.7.1 Animals and Surgery Procedures*

350 The study was approved by the Institute Animal Care and Use Committee (IACUC) of the
351 University of Maryland, Baltimore. All animals had free access to food and water and were
352 maintained in accordance with NIH guidelines for the humane care of animals. In brief, a total of
353 8 female rats (200-250g, Charles River, Wilmington, MA, USA) were randomly assigned into 2
354 groups: the control group (n=4) and the NPSC-EV treatment group (n=4). All the rats received
355 anesthesia by inhalation of isoflurane and the surgical field on the randomly selected left leg of
356 each rat was shaved and steriley prepared. After exposing the sciatic nerve, a crush injury was
357 created at the middle part of the exposed nerve using a surgical hemostatic forceps for 30
358 seconds (a 10s click for 3 times with a 10s interval between each click). After crush injury, either
359 EV solution (10 μ g, EV group) or equal volume of PBS (control group) was gradually injected into
360 the crush injury site using a syringe under a stereomicroscope. Then, a 9-0 nylon epineural

361 stitch was used to mark the injury site at both the proximal and distal end of the injury. After
362 closing the muscle and skin with 4-0 nylon sutures, all rats were returned to their cages and
363 kept for 4wk. After recovery, all rats were euthanized, and nerve and muscle were harvested for
364 further evaluations.

365

366 *2.7.2 Immunofluorescence staining*

367 At 4wk after surgery, each rat was deeply euthanized and transcardially perfused with a 4%
368 paraformaldehyde (PFA) solution. After perfusion, the sciatic nerve sections at the injury site
369 were harvested and fixed in 4% PFA for overnight, then treated with 30% sucrose until further
370 immunofluorescence staining. Prior to immunohistochemistry, the sciatic nerve specimens were
371 cut into 10 μ m thick sections and mounted to slides. Standard immunofluorescence staining was
372 performed as we previously described ²⁶. In brief, after blocking, the nerve sections were
373 incubated with the following primary antibodies overnight at 4 °C: rabbit anti-Neurofilament 200
374 (NF-200) (1:500, MilliporeSigma) and mouse anti-MBP (1:50, Santa Cruz), and then incubated
375 with the secondary antibodies as follows: goat anti-rabbit IgG antibodies conjugated with Alexa
376 488 (1:500, Invitrogen) and donkey anti-mouse IgG antibodies conjugated with Alexa 594
377 (1:500, Invitrogen) at RT for 1h. The images were collected from at least three sections of nerve
378 tissues for each rat under a Leica DMi8 fluorescent microscope (Leica Microsystems).
379 Quantitative analysis of images was performed using Image J (v1.8.0, NIH, USA). Comparable
380 images have been equally adjusted for brightness/contrast. Axon numbers and diameters were
381 counted at three randomized microscopic fields in each section, and averages were used for
382 further analysis.

383

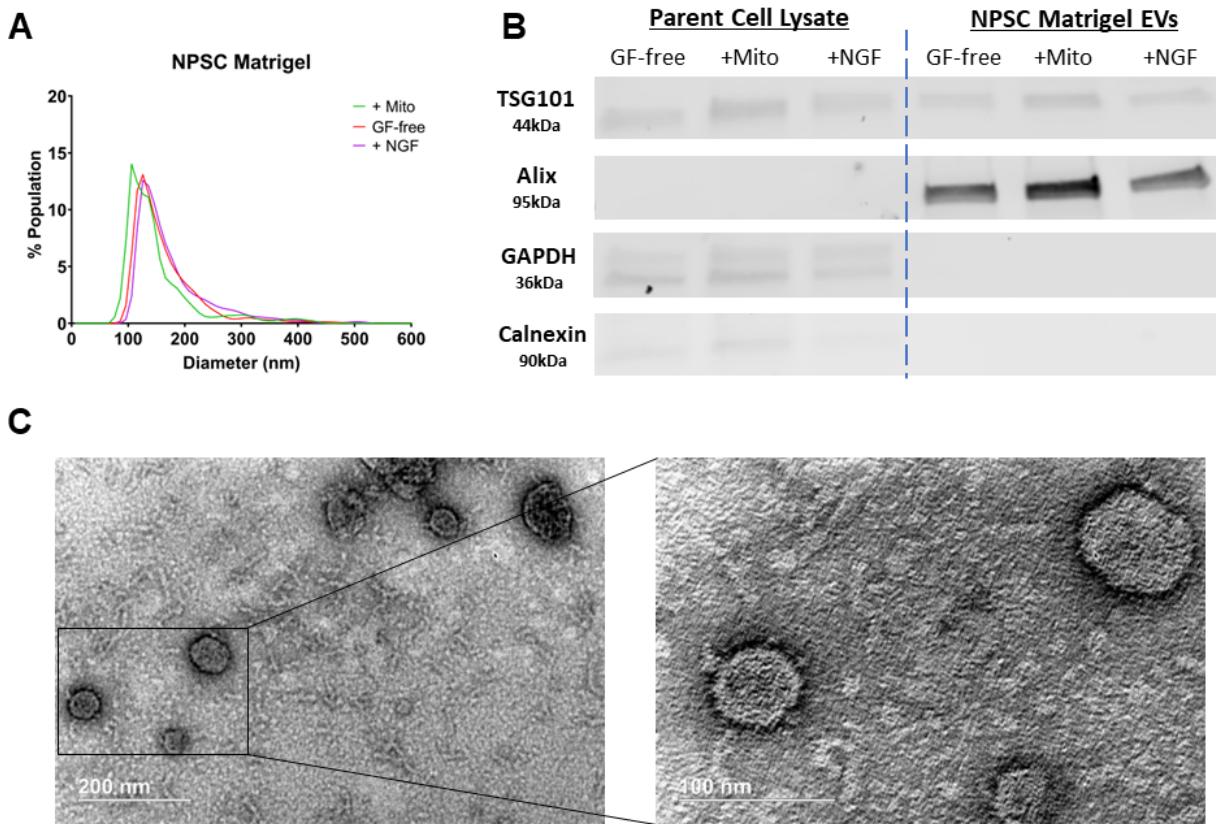
384 *2.7.3 Wet weight of gastrocnemius muscle*

385 Gastrocnemius muscles were excised from both the injured and contralateral side, and
386 immediately weighed using an electronic balance (Mettler AE 160, USA). Gastrocnemius

387 Muscle Index (GMI) was used to evaluate the muscle reinnervation following denervation-
388 induced muscle atrophy ²⁶. GMI was calculated by dividing the muscle mass at the injured side
389 by that at the contralateral side.

390

391 **2.8 Statistical analyses**

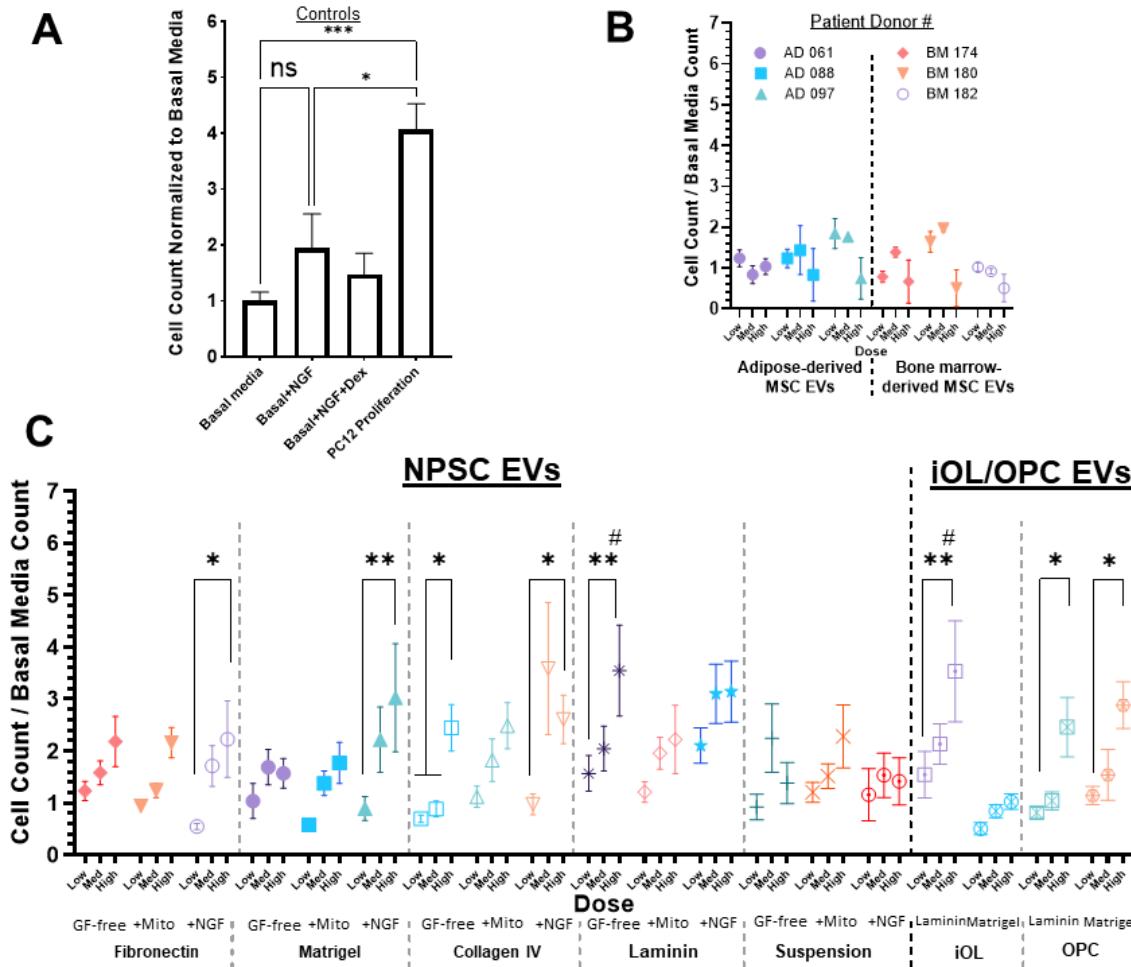

392 All analyses were performed in triplicate. Data are presented as mean \pm SEM. One-way
393 ANOVAs with Holm-Šídák multiple comparison tests were used to determine statistical
394 significance. All statistical analysis was performed with Prism 7 (GraphPad Software, La Jolla,
395 CA). Notation for significance in Figures are as follows: ns = P $>$ 0.05, * = P $<$ 0.05; ** =
396 P $<$ 0.01; *** = P $<$ 0.001.

397

398 **3. Results**

399 **3.1 EVs from NPSCs, OPCs, and iOLs induce dose-dependent PC-12 proliferation**

400 An initial goal of these studies was to assess how differentiation of NPSCs into OPCs or iOLs
401 might affect EV bioactivity. We first confirmed EV identity for each population via assessment of
402 particle size, protein markers and vesicle morphology from these cells under various culture
403 conditions. EVs from BDMSCs and ADMSCs were utilized as controls in various bioactivity
404 assays and thus were also characterized. EVs from all cell types displayed similar size
405 distributions despite various ECM culture conditions (Supplemental Figure 1). As shown for
406 NPSCs grown on Matrigel, the presence or absence of growth factors had no discernable
407 impact on EV size distribution, production yields, or marker expression (TSG101, Alix) (Figure
408 2A,B, Supplemental Table 1). Transmission electron micrographs revealed 40-200nm diameter
409 EVs with the expected cup-shaped morphology (Figure 2C).


410

411 **Figure 2. EV characterization** **A)** Nanoparticle tracking analysis of EVs from NPSCs grown on
412 Matrigel in the presence or absence of growth factors (EGF/bFGF) or NGF. **B)** Immunoblots of
413 NPSC EV lysates generated from the same conditions as above for EV-associated markers
414 TSG101 and Alix as well as negative markers calnexin and GAPDH. **C)** Transmission electron
415 microscopy of EVs generated from NPSCs grown on Matrigel and in the presence of NGF
416 (scale bar = 200 nm, inset 100 nm).

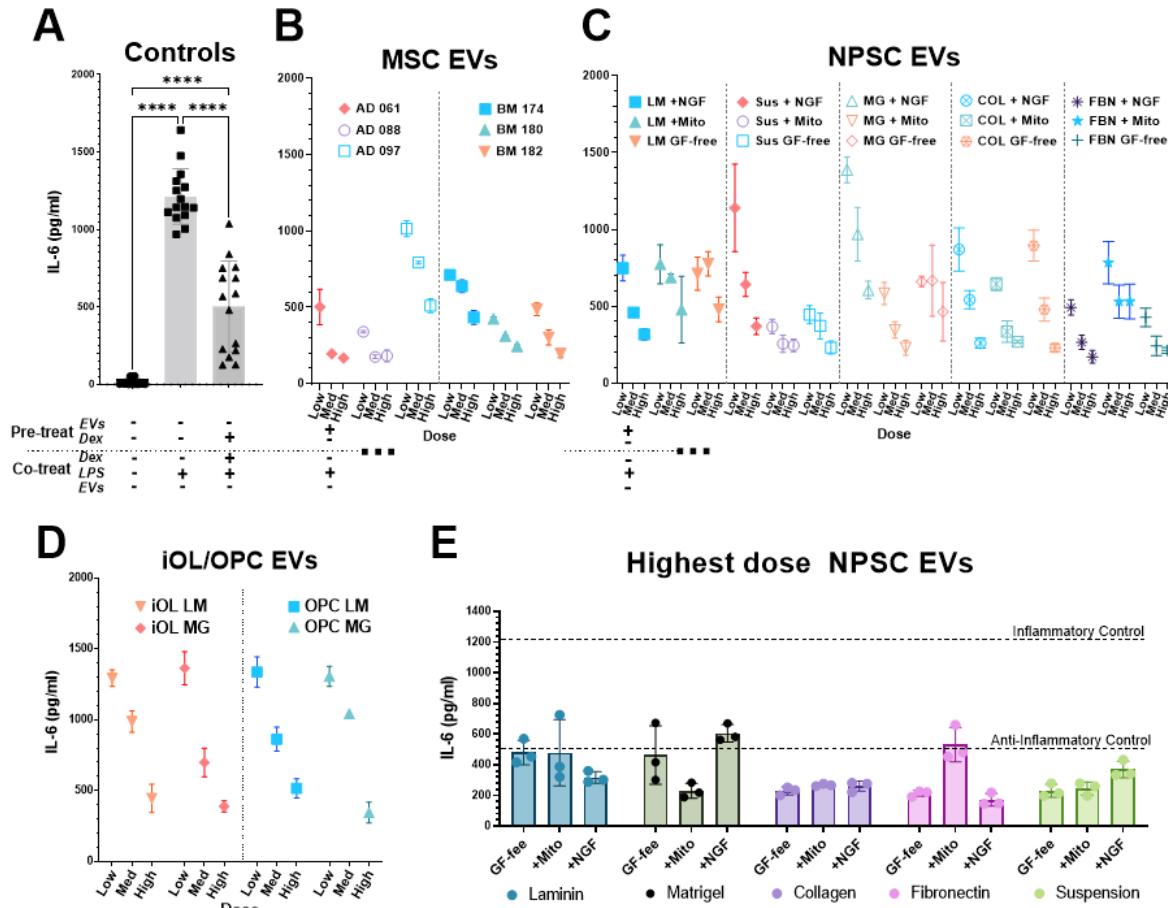
417

418 To assess bioactivity, a PC-12 proliferation assay was employed, as PC-12 cells are widely
419 used as a model for neuron differentiation and neuroregeneration. MSC EVs have previously
420 been shown to promote PC-12 cell proliferation²⁷, however, we did not observe increased PC-
421 12 proliferation from ADMSC or BDMSC EVs across multiple donors (Figure 3A,B). NPSC EVs

422 did show a general trend for dose-dependent increases in PC-12 proliferation across all ECM
423 and growth factors groups, except for suspension-grown NPSC EVs, which had no effect on
424 PC-12 proliferation (Figure 3C). Furthermore, certain combinations of ECM and growth factors
425 produced NPSC EVs with significant dose-dependent increases in PC-12 proliferation; most
426 notably, growth factor free (GF-free) laminin EVs produced a significant 3.5-fold increase in PC-
427 12 proliferation. Additionally, GF-free collagen IV, and several NGF+ EV groups (fibronectin,
428 Matrigel, collagen IV) showed significant dose-dependent increased PC-12 proliferation, but
429 responses were variable and none reached statistical significance over basal media. These data
430 show that the NPSC microenvironment (ECM and growth factors) can impact EV bioactivity
431 related to PC-12 proliferation. Additionally, EVs from OPCs and iOLs cultured on laminin
432 produced dose-dependent increases in PC-12 cell proliferation (Figure 3C). Compared to other
433 ECMs, laminin more consistently enhanced PC-12 proliferation across multiple cell types and
434 without a requirement for growth factors in culture media.

435 **Figure 3. Assessment of EV-induced PC-12 proliferation. A-C)** Normalized PC-12 cell count
436 following treatment with **A)** control groups: i) basal media (negative control), ii) basal+NGF
437 (positive control), iii) basal+NGF+Dex (inhibitory control), and iv) PC-12 proliferation media
438 (positive control). **B)** MSC EVs from either adipose or bone marrow tissue across different
439 patient donors, and **C)** NPSCs cultured on different ECM and in the presence of the growth
440 factors EGF/bFGF (+Mito), or NGF (+NGF), or absence of any growth factors (GF-free), as well
441 as OPC and iOLs cultured on either laminin or Matrigel. Doses for EV groups were 2.8e7
442 particles/mL (Low), 2.8e8 particles/mL (Med), and 1.0e9 particles/mL (High). All data are
443 normalized to basal media PC-12 cell count and represented as mean \pm SEM, and significance
444 was determined with one-way (control groups) or two-way (experimental groups) ANOVA with

446 Tukey's post hoc test (ns: P >0.05; *P < 0.05; **P < 0.01; ****P < 0.0001 compared between
447 doses, and # p< 0.05 compared to basal media).


448

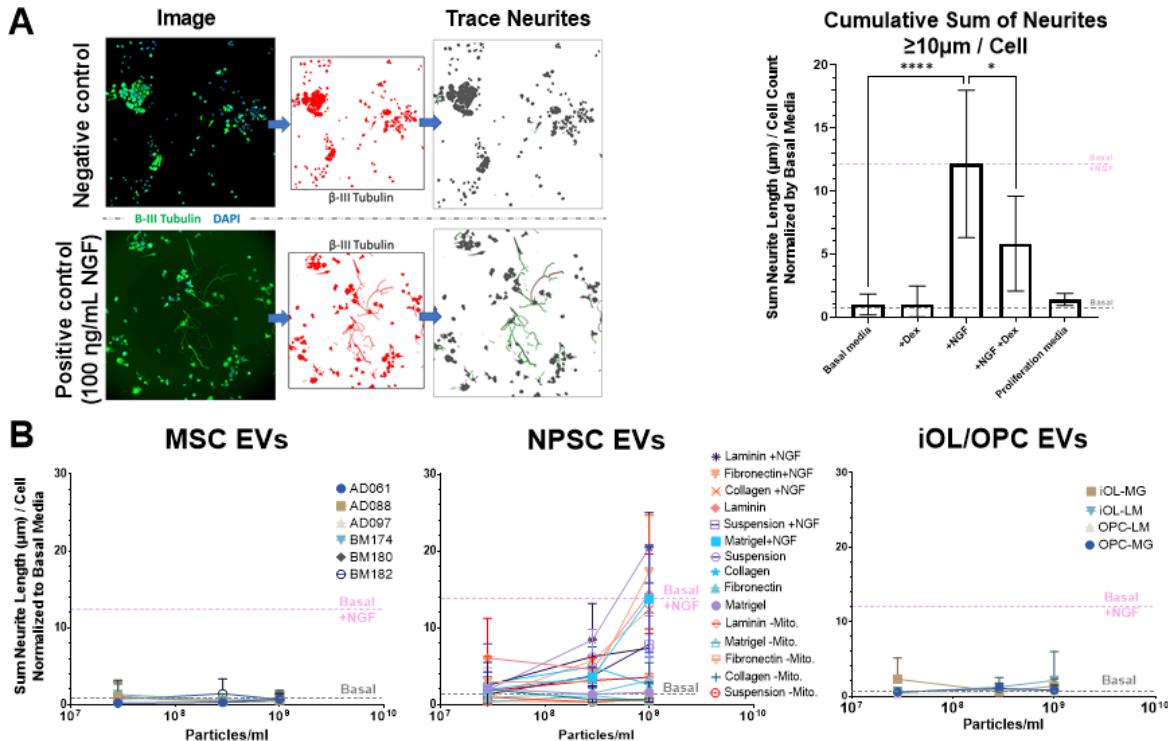
449 *3.2 EVs from NPSCs, OPCs, and iOLs induce dose-dependent anti-inflammatory effects in*
450 *RAW264.7 macrophages*

451 A therapeutic target for neurodegenerative disease and brain injury is reducing
452 neuroinflammation which is primarily mediated by CNS macrophages (microglia). Thus, we
453 sought to investigate the anti-inflammatory potential of NPSC, OPC, and iOL EVs. LPS
454 stimulation of RAW264.7 mouse macrophages generally produced levels of the inflammatory
455 cytokine IL-6 of >1000pg/ml in conditioned media across multiple assays (Figure 4A).

456 Preliminary studies showed that co-treatment of EVs alone was insufficient to observe an anti-
457 inflammatory effect (Supplemental Figure 2B). When macrophages were pre- and co-treated
458 with EVs from all cell sources (NPSC, OPC, iOL, and MSCs as known anti-inflammatory
459 positive controls) we observed dose dependent decreases in IL-6 levels well below 1000pg/ml
460 indicating an anti-inflammatory effect for all cell types. EV anti-inflammatory effects were not
461 significantly affected by presence or absence of growth factors (Figures 4B,C). Additionally, type
462 of ECM did not have a major impact on anti-inflammatory efficacy of EVs (Figures 4D,E).

463

465 **Figure 4. Assessment of EV anti-inflammatory bioactivity. A-D)** Inflammatory responses
466 from RAW264.7 mouse macrophages were evaluated by IL-6 levels in conditioned media
467 following LPS-stimulation and treatment with **A)** dexamethasone (positive control), **B)** MSC EVs,
468 and **C)** NPSC EVs, and **D)** OPC, and iOL EVs. IL-6 levels from control groups across multiple
469 independent assays are pooled and displayed together. **E)** RAW264.7 macrophages were pre-
470 and co-treated with EVs from NPSCs cultured in suspension or on different ECM (laminin,
471 Matrigel, collagen IV, fibronectin), and either without growth factors (GF-free), or with
472 EGF/bFGF (+Mito) or NGF (+NGF). IL-6 levels from inflammatory control (LPS only) and anti-
473 inflammatory control (LPS+Dexamethasone) are indicated by dashed horizontal lines. Doses for
474 EV groups were 2.8e7 particles/mL (Low), 2.8e8 particles/mL (Med), and 1.0e9 particles/mL

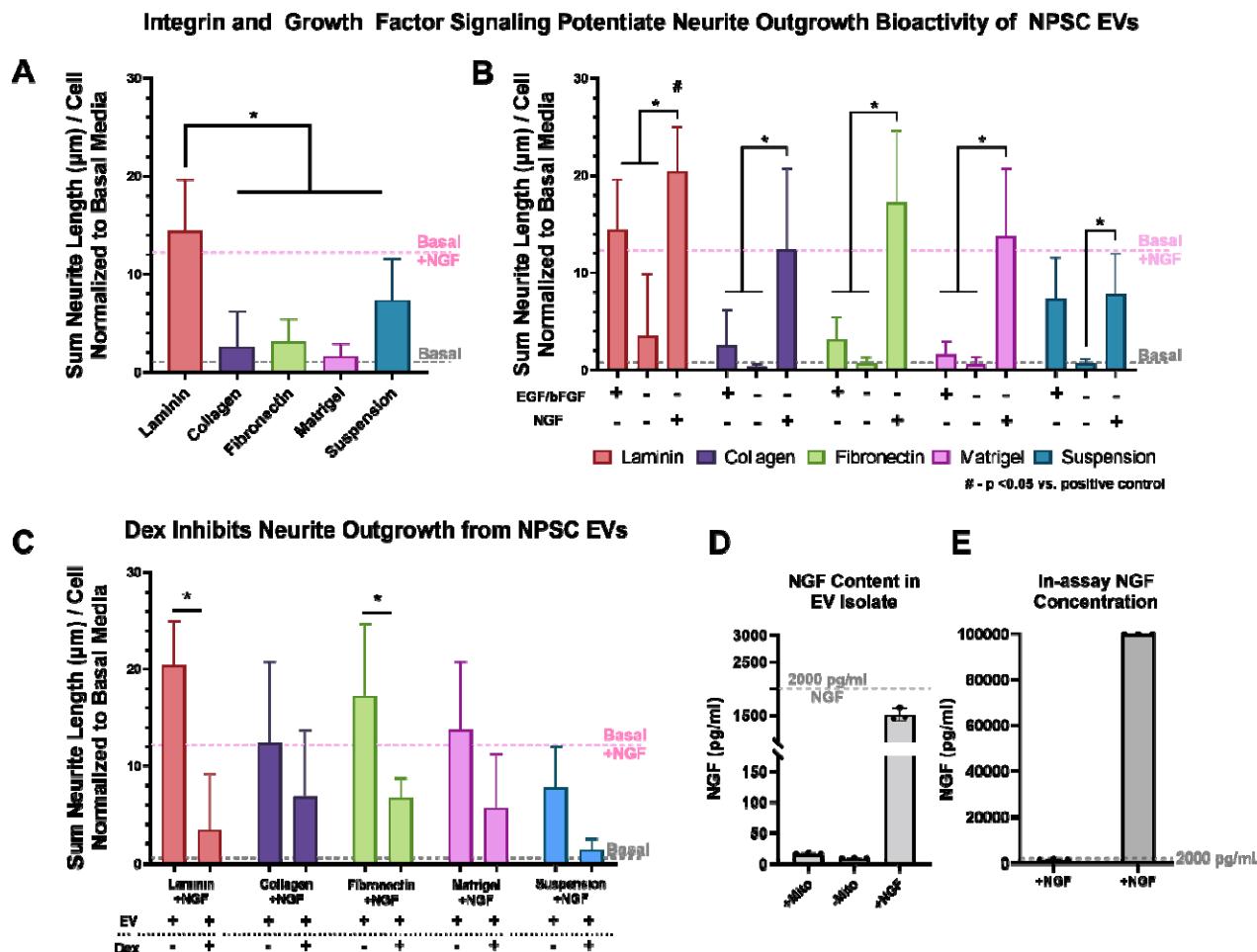

475 (High). Statistical significance for control groups was determined by one-way ANOVA with
476 Tukey's post hoc test (****P < 0.0001).

477

478 *3.3 NPSC EVs stimulate PC-12 neurite outgrowth*

479 Next, we utilized a PC-12 neurite outgrowth assay as a more relevant *in vitro* model for neuron
480 differentiation and growth. NGF was used a positive control benchmark and produced a cell-
481 count normalized average sum neurite length of 12.1 μ m (Figure 5A) relative to the basal media
482 control group, where the normalized neurite length was approximately 1 μ m. We assessed
483 several methods for neurite outgrowth data analysis and found similar trends in control groups
484 across all methods. Cumulative sum of neurites >10 μ m normalized by cell count was selected
485 due to the relatively low standard deviations between replicates and the statistically significant
486 differences across controls compared to other methods (Supplemental Figure 2A). This method
487 also normalizes for cell count which can vary significantly across individual images that are
488 being quantified. EVs from OPCs, iOLs, ADMSCs, or BDMSCs did not increase PC-12 neurite
489 outgrowth above basal media levels (Figure 5B). However, NPSC EVs from most culture
490 conditions showed dose-dependent increases in neurite outgrowth, reaching similar levels as
491 the NGF positive control (Figure 5B). Overall, these results indicate that differentiation of
492 NPSCs in to iOLs or OPCs could diminish some of the beneficial bioactivity of EVs and confirm
493 NPSCs as a promising source for generation of EVs with neuroregenerative properties.

494


495

496 **Figure 5. NPSC EVs stimulate neurite extension in vitro to a greater degree than OPC and**
497 **iOL EVs. A)** (left) β -III tubulin immunocytochemistry to label and quantify PC-12 neurite length
498 during assay development; (right) control groups: basal media and proliferation media (negative
499 controls), dexamethasone (+Dex) and +NGF+Dex (inhibitory controls), and +NGF (positive
500 control). NGF produced a mean normalized PC-12 neurite length of $\sim 12 \mu\text{m}$ which is indicated
501 by a pink horizontal line throughout subsequent figures. **B)** PC-12 neurite outgrowth of MSC
502 EVs (left), NPSC EVs (middle), and OPC/iOL EVs (right) across culture conditions and dosage.
503 Data presented as cumulative sum of all neurites greater than $10 \mu\text{m}$ normalized by cell count
504 and basal media PC-12 neurite length. Statistical significance for control groups was determined
505 by one-way ANOVA with Tukey's post hoc test ($^*P < 0.05$; $^{****}P < 0.0001$).
506
507 *3.4 Integrin and growth factor signaling potentiate neurite outgrowth bioactivity of NPSC EVs*

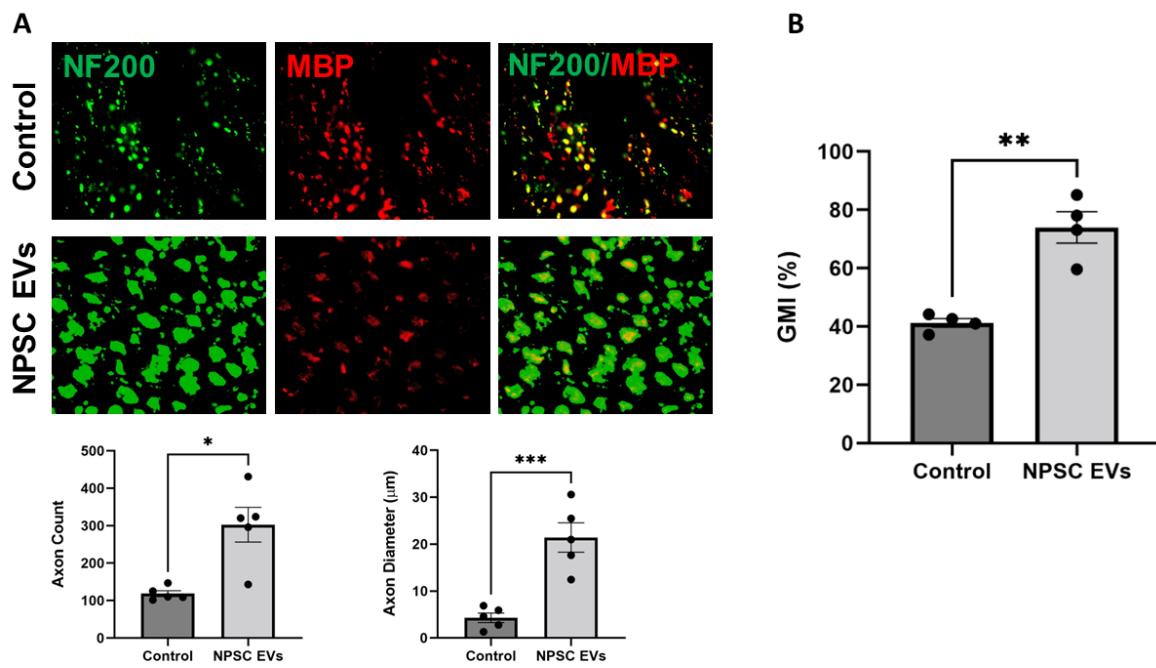
508 Having identified NPSCs as the most promising source of neurotherapeutic EVs among those
509 we investigated, we next sought to further investigate specific culture conditions that best
510 enhance NPSC EV PC-12 neurite outgrowth bioactivity. Among the four ECM conditions tested,
511 NPSCs cultured on laminin produced EVs with significantly enhanced PC-12 neurite outgrowth
512 bioactivity compared to all other ECM with average values above the NGF positive control
513 (Figure 6A). EVs from suspension-grown NPSCs also enhanced PC-12 neurite outgrowth, but
514 less than laminin and at levels insufficient to reach statistical significance over other ECM
515 groups. Next, we tested the same four ECMs with and without growth factors NGF or
516 EGF/bFGF. EGF/bFGF are typically included in NPSC culture, whereas NGF is not. NGF alone
517 (without EGF/bFGF) significantly enhanced PC-12 neurite outgrowth across all ECMs
518 regardless of the presence of EGF/bFGF (Figure 6B). Overall, the laminin+NGF and
519 fibronectin+NGF groups produced the greatest PC-12 neurite outgrowth compared to all other
520 conditions, and laminin+NGF produced statistically significant increases above the NGF positive
521 control (Figure 6B). Thus, culturing NPSCs with specific combinations of integrins and growth
522 factors is a potential method for enhancing NPSC EV-mediated neurite outgrowth bioactivity,
523 with the presence of NGF being a critical factor.

524
525 Dexamethasone is a glucocorticoid receptor agonist known to inhibit neurite outgrowth in PC-12
526 cells. In our studies, dexamethasone exhibited a trend for suppression of NPSC EV neurite
527 outgrowth bioactivity across all culture conditions tested, with statistically significant suppression
528 of laminin+NGF and fibronectin+NGF NPSC EV bioactivity and similar trends for the other
529 groups tested (Figure 6C). These results suggest that NPSC EVs may increase neurite
530 outgrowth via similar mechanisms that are suppressed by dexamethasone. Finally, since
531 100ng/mL NGF is a positive control for neurite outgrowth, NGF in NPSC culture media could
532 potentially enhance EV bioactivity via co-isolation of NGF with EVs during EV purification. We
533 found that although NGF was present in EV samples derived from NPSCs cultured with NGF,

534 the highest effective NGF protein concentration (as measured by ELISA) during PC-12 assays
535 was <2ng/ml, relative to the positive control (100ng/ml) (Figures 6D,E). Additionally, we tested
536 multiple EV isolation methods (ultracentrifugation or tangential flow filtration) and found
537 fibronectin+NGF EVs had similar PC-12 neurite outgrowth as well as anti-inflammatory
538 bioactivity across isolation methods (Supplemental Figure 3). Thus, it is unlikely that co-isolated
539 NGF solely accounts for the increased EV bioactivity above levels of the 100 ng/ml NGF control
540 seen with laminin+NGF and fibronectin+NGF groups. However, we cannot exclude a minor
541 contribution of co-isolated NGF to these results.

542

543 **Figure 6. Integrin and growth factor signaling potentiate neurite outgrowth bioactivity of**
544 **NPSC EVs. A-C) PC-12 neurite lengths following treatment with EVs from A) NPSCs growth on**


545 different ECM (laminin, collagen, fibronectin, Matrigel) or grown in suspension, **B)** NPSCs
546 cultured with the same ECM but with EGF/bFGF, or with NGF, or without any growth factors,
547 and **C)** co-treatment with dexamethasone in addition to EVs from NPSCs cultured with NGF.
548 Mean neurite lengths following treatment with basal media only or basal media+NGF are
549 indicated by dashed horizontal lines. **D-E)** Concentration of co-isolated NGF in purified EV
550 samples (D) and calculated effective concentration in neurite outgrowth assay compared to 100
551 ng/ml NGF positive control (E). Data represent “High” EV dose for all groups was 1.0e9
552 particles/mL. Statistical significance was determined with one-way (A) or two-way (B-C) ANOVA
553 with Tukey’s post hoc test (*P < 0.05; **P < 0.01; ****P < 0.0001 compared between dosage or
554 groups, and # p< 0.05 compared to basal media + NGF positive control).

555

556 3.5 NPSC EVs stimulated axonal regeneration and attenuated muscle atrophy in vivo
557 In order to investigate the effects of EVs delivered from optimized NPSC culture conditions on
558 axonal regeneration in a peripheral nerve crush injury model, we selected fibronectin+NGF
559 NPSC EVs for further study based on their relative effectiveness and consistency in the *in vitro*
560 assays. Neurofilament 200 (NF200) was used to represented neurofilaments for axonal tracing
561 and myelin basic protein (MBP) was used as a marker for re-myelination on harvested sciatic
562 nerve (Fig 7A). NF200 contributes substantially to axon structure and axon diameter by
563 providing structural support, and its arrangement is parallel to axon growth and can reflect the
564 number of axons. The results showed that at 4wk after surgery, NPSC-derived EVs significantly
565 increased axon count and axon diameter compared to control treatment (PBS). Quantitative
566 analysis indicated that the total number of NF200-positive axons in the NPSC EV group was
567 significantly higher than that in the control group (302.8 ± 46.2 vs. 118.6 ± 8.0 ; p<0.05) (Fig 7A).
568 In addition, the diameter of NF200-positive axons in the NPSC EV groups was 5-fold higher
569 than that in the control group (21.4 ± 3.1 vs. 4.3 ± 1.0 ; p<0.001) (Fig 7A). These observations

570 indicate that significantly more axons, with larger diameters, regenerated based on NPSC EV
571 treatment.

572
573 A further assessment of muscle recovery during nerve regeneration was conducted by
574 measuring the wet muscle weight on the gastrocnemius muscle on the injured side of the animal
575 and normalizing against the weight of the same muscle on the non-injured side to establish a
576 gastrocnemius muscle index (GMI). The GMI is a standardized measurement of gastrocnemius
577 muscle weight, which is expected to initially decrease after nerve injury due to atrophy and can
578 subsequently partially recover based on successful reinnervation²⁶. Therefore, the GMI serves
579 as an indirect measure of nerve regeneration. In this study, the GMI was significantly higher in
580 the NPSC EV group compared to that of the control group (74.0 ± 5.4 vs. 41.3 ± 1.5 ; $p<0.01$)
581 (Figure 7B), indicating that NPSC EVs attenuated muscle atrophy after crush nerve injury.

582
583 **Figure 7. NPSC EVs promote myelinated axonal regeneration and muscle reinnervation in**
584 **a rat sciatic nerve crush injury model. A)** Analysis of nerve regeneration in animals treated
585 with control (PBS) and NPSC EVs (n=4). (Top) Immunohistochemical staining for NF200 and

586 MBP on labeled myelinated axons in cross sections at 4wk following sciatic nerve crush injury.
587 (Bottom) Quantitative analysis of NF200-positive axons via ImageJ. **B)** Gastrocnemius wet
588 muscle weight analysis of animals administered control (PBS) or NPSC EVs (n=4).

589

590 **4. Discussion**

591 NPSC EVs are a promising alternative to cellular therapies for neuroregenerative applications.
592 Here, we tested the hypothesis that differentiating NPSC to OPCs and/or iOLs could improve
593 the neuroregenerative properties of their EVs based on the myelinating capacity of the latter two
594 cell types. Our results do not support this hypothesis, although it is important to mention that the
595 assays used here represent only a small fraction of the analyses that could be applied to assess
596 EV neurotherapeutic potential. Nevertheless, based on our data, we shifted focus to further
597 investigate the potential of NPSC EVs for neurological applications. Specifically, we investigated
598 the effects of culture conditions on NPSC EV bioactivity. Parameters such as ECM coating of
599 cell culture substrates are well known to modulate NPSC bioactivity, but their impact on NPSC
600 EV bioactivity had not been investigated. Laminin, Matrigel, fibronectin, and collagen IV are
601 commonly used coating materials for NPSC culture and provide a biomimetic microenvironment
602 and integrin signaling to promote NPSC proliferation ²⁹, differentiation to neurons ³⁰, viability ³¹,
603 among other functions. In particular, prior reports have indicated that laminin produced superior
604 NPSC proliferation and cell number compared to other ECMs ³². Here, we show that ECM type
605 is also a critical determinant of NPSC EV bioactivity. NPSCs grown on laminin or fibronectin
606 produced EVs that enhanced PC-12 neurite outgrowth and proliferation compared to Matrigel
607 and collagen IV. Indeed, prior studies have shown *ex vivo* NPSCs express high levels of
608 laminin-specific integrin receptors and relatively low levels of collagen receptors ^{30,33}. While
609 ECM type is recognized as a determinant of NPSC function, many NPSC EV studies do not
610 specify the type of ECM used. We show here for the first time that certain ECM types, notably
611 collagen IV, may compromise NPSC EV bioactivity, whereas others may enhance bioactivity

612 (i.e., laminin and fibronectin). Thus, we propose ECM type as an important consideration for
613 future NPSC EV studies, with laminin or fibronectin being preferred.

614

615 ECM composition is increasingly recognized as a regulator of *in vivo* NPSC function and
616 neurogenesis³⁵, and changes in ECM composition are implicated in neurodegenerative
617 diseases. Neurogenesis in the adult brain occurs in two regions rich in NPSCs: i) the
618 subgranular zone of the dentate gyrus in the hippocampus and ii) the subventricular zone on the
619 lateral ventricles. Here, NPSCs may be quiescent (type B cells) or give rise to type C transit-
620 amplifying cells directly involved in neurogenesis via generation of neuroblasts or OPCs³⁶. A
621 dense and intricate ECM (termed fractones) makes direct contact with NPSCs to promote
622 neurogenesis via integrin signaling and sequestration of neurogenic growth factors^{35,37}. Within
623 this ECM, laminin signaling plays a key role in potentiation of NPSC neurogenic functions and is
624 essential for CNS and PNS axon regeneration³⁸⁻⁴¹. Laminin is a class of heterotrimeric
625 glycoproteins assembled from five alpha, three beta, and three gamma subunits with different
626 isoforms performing distinct neurogenic functions⁴². Laminin-111, which was used in our study,
627 was the first identified laminin and is frequently utilized for NPSC culture due to its promotion of
628 NPSC proliferation and survival³². However, whether this is the ideal laminin isoform for
629 culturing NPSC for neuroregenerative applications is unclear. Recent studies have shown
630 laminin-211 can enhance oligodendrocyte maturation, and the α 5 chain-containing laminin-511
631 or -521 can enhance NPSC neurogenic functions and may be critical for hippocampal
632 neurogenesis⁴³⁻⁴⁶. Another recent approach towards recreating a neurogenic-permissive
633 microenvironment for NPSCs involves the use of laminin-embedded hydrogels to more
634 accurately recapitulate *in vivo* structural and mechanical cues⁴⁷. Thus, future studies of optimal
635 laminin subtype and biomaterial matrices hold promise for further enhancing NPSC EV
636 neuroregenerative bioactivity.

637

638 We also sought to investigate the role of growth factors in culture on NPSC EV neurite
639 outgrowth bioactivity using a PC-12 cell model. EGF/bFGF are common mitogens included in
640 NPSC culture, whereas NGF is not typically included ⁴⁸. We found that the presence of either
641 EGF/bFGF or NGF is essential for NPSC EV bioactivity, with NGF alone producing more
642 consistently enhanced PC-12 neurite outgrowth compared to EGF/bFGF alone. Recently,
643 engineering NPSCs to overexpress NGF was shown to enhance SCI recovery in mice following
644 transplantation of these cells into the lesion area ⁴⁹. A well-recognized advantage of EVs is their
645 ability to transport and deliver bioactive cargo. Thus, NGF could be leveraged to enhance NPSC
646 EV bioactivity either as a culture media additive as shown here, or by delivering recombinant
647 NGF with EVs either via cargo internalization or surface display techniques.

648

649 Neuroinflammation is a pathological hallmark and therapeutic target in neurodegenerative
650 disease and CNS injury. Neuroinflammation is mediated primarily by microglia within the CNS,
651 which are functionally similar to macrophages in the periphery. Here, we show that NPSC EVs
652 also possess anti-inflammatory effects in an LPS-stimulated mouse macrophage assay.
653 However, ECM and growth factors did not have a major impact on NPSC EV anti-inflammatory
654 bioactivity.

655

656 The ability of NPSC EVs to increase neurite outgrowth and suppress inflammation suggests
657 promise for treating *in vivo* models of nerve injury. Indeed, we observed NPSC EVs cultured on
658 fibronectin with NGF significantly enhanced axon count and axon diameter and reduced muscle
659 atrophy in a peripheral nerve crush injury rat model. These results suggest that NPSC EVs
660 represent an emerging therapeutic option for enhanced nerve regeneration and muscle
661 recovery following nerve injury.

662

663 **5. Conclusion**

664 We screened commonly-used ECMs for NPSC culture and evaluated NPSC EV bioactivity
665 related to PC-12 neuron proliferation and neurite outgrowth, as well as anti-inflammatory effects.
666 While the conditions selected are only a subset of the overall possible combinations, the data
667 generally support the concept that optimizing the ECM components and growth factors in NPSC
668 culture will be critical for enabling rational design of optimal microenvironments for
669 neurotherapeutic EV production. With further studies in this area, it may eventually be possible
670 to produce EVs with bioactivity specific to what is desired for different applications (e.g.,
671 neurogenesis, remyelination, adaptive neural plasticity, reducing neuroinflammation, promoting
672 angiogenesis, etc.)

673

674 **6. Acknowledgements**

675 This research was supported in part by the Maryland Stem Cell Research Fund (2020-
676 MSCRFD-5384 to X.J.; 2020-MSCRFF-5368 to D.D.); the National Institutes of Health
677 (HL141611 and NS110637 to S.M.J.; NS117102 to X.J.) and a University of Maryland MPower
678 Graduate Fellowship (to N.H.P.).

679

680 **7. Conflict of Interest**

681 The authors declare no conflicts of interest.

682

683 **8. Data Availability Statement**

684 The data that support the findings of this study are available from the corresponding author
685 upon reasonable request.

686

687 **Author Contributions:** D.D., N.H.P., and D. L. performed in vitro experiments; X.X. performed
688 in vivo experiments; N.H.P., D.D., D.L., J.T., N.S. X.X. and Z.W. analyzed the data; N.H.P.,
689 D.D., X.X. and Z.W. wrote the initial draft of the manuscript; and X.J. and S.M.J. conceived the
690 original idea, designed the experiments, and finalized the manuscript. The authors read and
691 approved the final manuscript.

692

693 **Institutional Review Board Statement:** The animal study was approved by the Institute Animal
694 Care and Use Committee at the University of Maryland, Baltimore.

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715
716
717
718

719 **References**

720 1 Zhang, B., Yeo, R. W., Tan, K. H. & Lim, S. K. Focus on Extracellular Vesicles:
721 Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles. *Int J Mol Sci* **17**, 174,
722 doi:10.3390/ijms17020174 (2016).

723 2 Dutta, D., Khan, N., Wu, J. & Jay, S. M. Extracellular Vesicles as an Emerging Frontier
724 in Spinal Cord Injury Pathobiology and Therapy. *Trends in Neurosciences*,
725 doi:10.1016/j.tins.2021.01.003 (2021).

726 3 Ramotowski, C., Qu, X. & Villa-Diaz, L. G. Progress in the Use of Induced Pluripotent
727 Stem Cell-Derived Neural Cells for Traumatic Spinal Cord Injuries in Animal Populations:
728 Meta-Analysis and Review. *Stem Cells Transl Med* **8**, 681-693, doi:10.1002/sctm.18-
729 0225 (2019).

730 4 Webb, R. L. *et al.* Human Neural Stem Cell Extracellular Vesicles Improve Recovery in a
731 Porcine Model of Ischemic Stroke. *Stroke* **49**, 1248-1256,
732 doi:10.1161/strokeaha.117.020353 (2018).

733 5 Webb, R. L. *et al.* Human Neural Stem Cell Extracellular Vesicles Improve Tissue and
734 Functional Recovery in the Murine Thromboembolic Stroke Model. *Translational Stroke
735 Research* **9**, 530-539, doi:10.1007/s12975-017-0599-2 (2018).

736 6 Patel, D. B., Santoro, M., Born, L. J., Fisher, J. P. & Jay, S. M. Towards rationally
737 designed biomanufacturing of therapeutic extracellular vesicles: impact of the
738 bioproduction microenvironment. *Biotechnology Advances* **36**, 2051-2059,
739 doi:10.1016/j.biotechadv.2018.09.001 (2018).

740 7 Théry, C. *et al.* Minimal information for studies of extracellular vesicles 2018
741 (MISEV2018): a position statement of the International Society for Extracellular Vesicles
742 and update of the MISEV2014 guidelines. *Journal of Extracellular Vesicles* **7**, 1535750,
743 doi:10.1080/20013078.2018.1535750 (2018).

744 8 Kim, J. B. *et al.* Oct4-induced oligodendrocyte progenitor cells enhance functional
745 recovery in spinal cord injury model. *Embo j* **34**, 2971-2983,
746 doi:10.15252/embj.201592652 (2015).

747 9 Sharp, J., Frame, J., Siegenthaler, M., Nistor, G. & Keirstead, H. S. Human embryonic
748 stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after
749 cervical spinal cord injury. *Stem Cells* **28**, 152-163, doi:10.1002/stem.245 (2010).

750 10 Keirstead, H. S. *et al.* Human embryonic stem cell-derived oligodendrocyte progenitor
751 cell transplants remyelinate and restore locomotion after spinal cord injury. *J Neurosci*
752 **25**, 4694-4705, doi:10.1523/jneurosci.0311-05.2005 (2005).

753 11 Barakat, D. J. *et al.* Survival, integration, and axon growth support of glia transplanted
754 into the chronically contused spinal cord. *Cell Transplant* **14**, 225-240,
755 doi:10.3727/000000005783983106 (2005).

756 12 Rodriguez, J. P. *et al.* Abrogation of β -catenin signaling in oligodendrocyte precursor
757 cells reduces glial scarring and promotes axon regeneration after CNS injury. *J Neurosci*
758 **34**, 10285-10297, doi:10.1523/jneurosci.4915-13.2014 (2014).

759 13 Chen, L. X. *et al.* Neuroprotective effects of oligodendrocyte progenitor cell
760 transplantation in premature rat brain following hypoxic-ischemic injury. *PLoS One* **10**,
761 e0115997, doi:10.1371/journal.pone.0115997 (2015).

762 14 Filous, A. R. *et al.* Entrapment via synaptic-like connections between NG2 proteoglycan+
763 cells and dystrophic axons in the lesion plays a role in regeneration failure after spinal
764 cord injury. *J Neurosci* **34**, 16369-16384, doi:10.1523/jneurosci.1309-14.2014 (2014).

765 15 Busch, S. A. *et al.* Adult NG2+ cells are permissive to neurite outgrowth and stabilize
766 sensory axons during macrophage-induced axonal dieback after spinal cord injury. *J
767 Neurosci* **30**, 255-265, doi:10.1523/jneurosci.3705-09.2010 (2010).

768 16 Gibson, E. M. *et al.* Neuronal activity promotes oligodendrogenesis and adaptive
769 myelination in the mammalian brain. *Science* **344**, 1252304,
770 doi:10.1126/science.1252304 (2014).

771 17 Hamanaka, G., Ohtomo, R., Takase, H., Lok, J. & Arai, K. White-matter repair:
772 Interaction between oligodendrocytes and the neurovascular unit. *Brain Circ* **4**, 118-123,
773 doi:10.4103/bc.bc_15_18 (2018).

774 18 Lu, P., Jones, L. L., Snyder, E. Y. & Tuszyński, M. H. Neural stem cells constitutively
775 secrete neurotrophic factors and promote extensive host axonal growth after spinal cord
776 injury. *Exp Neurol* **181**, 115-129, doi:10.1016/s0014-4886(03)00037-2 (2003).

777 19 Barnabé-Heider, F. *et al.* Origin of new glial cells in intact and injured adult spinal cord.
778 *Cell Stem Cell* **7**, 470-482, doi:10.1016/j.stem.2010.07.014 (2010).

779 20 Dugas, J. C., Tai, Y. C., Speed, T. P., Ngai, J. & Barres, B. A. Functional genomic
780 analysis of oligodendrocyte differentiation. *J Neurosci* **26**, 10967-10983,
781 doi:10.1523/jneurosci.2572-06.2006 (2006).

782 21 Fumagalli, M. *et al.* Phenotypic changes, signaling pathway, and functional correlates of
783 GPR17-expressing neural precursor cells during oligodendrocyte differentiation. *J Biol
784 Chem* **286**, 10593-10604, doi:10.1074/jbc.M110.162867 (2011).

785 22 Dugas, J. C., Ibrahim, A. & Barres, B. A. The T3-induced gene KLF9 regulates
786 oligodendrocyte differentiation and myelin regeneration. *Mol Cell Neurosci* **50**, 45-57,
787 doi:10.1016/j.mcn.2012.03.007 (2012).

788 23 Théry, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of
789 exosomes from cell culture supernatants and biological fluids. *Curr Protoc Cell Biol
790 Chapter 3*, Unit 3.22, doi:10.1002/0471143030.cb0322s30 (2006).

791 24 Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat*
792 *Methods* **9**, 676-682, doi:10.1038/nmeth.2019 (2012).

793 25 Huang, H., He, W., Tang, T. & Qiu, M. Immunological Markers for Central Nervous
794 System Glia. *Neurosci Bull*, doi:10.1007/s12264-022-00938-2 (2022).

795 26 Du, J. *et al.* Optimal electrical stimulation boosts stem cell therapy in nerve regeneration.
796 *Biomaterials* **181**, 347-359, doi:10.1016/j.biomaterials.2018.07.015 (2018).

797 27 Xie, Y. *et al.* Adipose Mesenchymal Stem Cell-Derived Exosomes Enhance PC12 Cell
798 Function through the Activation of the PI3K/AKT Pathway. *Stem Cells Int* **2021**,
799 2229477, doi:10.1155/2021/2229477 (2021).

800 28 Kang, H. & Lichtman, J. W. Motor axon regeneration and muscle reinnervation in young
801 adult and aged animals. *J Neurosci* **33**, 19480-19491, doi:10.1523/jneurosci.4067-
802 13.2013 (2013).

803 29 Li, Y. C., Tsai, L. K., Wang, J. H. & Young, T. H. A neural stem/precursor cell monolayer
804 for neural tissue engineering. *Biomaterials* **35**, 1192-1204,
805 doi:10.1016/j.biomaterials.2013.10.066 (2014).

806 30 Flanagan, L. A., Rebaza, L. M., Derzic, S., Schwartz, P. H. & Monuki, E. S. Regulation of
807 human neural precursor cells by laminin and integrins. *J Neurosci Res* **83**, 845-856,
808 doi:10.1002/jnr.20778 (2006).

809 31 Hiraoka, M., Kato, K., Nakaji-Hirabayashi, T. & Iwata, H. Enhanced survival of neural
810 cells embedded in hydrogels composed of collagen and laminin-derived cell adhesive
811 peptide. *Bioconjug Chem* **20**, 976-983, doi:10.1021/bc9000068 (2009).

812 32 Komura, T., Kato, K., Konagaya, S., Nakaji-Hirabayashi, T. & Iwata, H. Optimization of
813 surface-immobilized extracellular matrices for the proliferation of neural progenitor cells
814 derived from induced pluripotent stem cells. *Biotechnology and Bioengineering* **112**,
815 2388-2396, doi:<https://doi.org/10.1002/bit.25636> (2015).

816 33 Prowse, A. B., Chong, F., Gray, P. P. & Munro, T. P. Stem cell integrins: implications for
817 ex-vivo culture and cellular therapies. *Stem Cell Res* **6**, 1-12,
818 doi:10.1016/j.scr.2010.09.005 (2011).

819 34 Frühbeis, C. *et al.* Oligodendrocytes support axonal transport and maintenance via
820 exosome secretion. *PLoS Biol* **18**, e3000621, doi:10.1371/journal.pbio.3000621 (2020).

821 35 Keverne, A. *et al.* Novel extracellular matrix structures in the neural stem cell niche
822 capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu.
823 *Stem Cells* **25**, 2146-2157, doi:10.1634/stemcells.2007-0082 (2007).

824 36 Gonzalez-Perez, O. Neural stem cells in the adult human brain. *Biol Biomed Rep* **2**, 59-
825 69 (2012).

826 37 Mercier, F., Kitasako, J. T. & Hatton, G. I. Anatomy of the brain neurogenic zones
827 revisited: fractones and the fibroblast/macrophage network. *J Comp Neurol* **451**, 170-
828 188, doi:10.1002/cne.10342 (2002).

829 38 Guldager Kring Rasmussen, D. & Karsdal, M. A. in *Biochemistry of Collagens, Laminins
830 and Elastin* (ed Morten A. Karsdal) 163-196 (Academic Press, 2016).

831 39 Aumailley, M. *et al.* A simplified laminin nomenclature. *Matrix Biol* **24**, 326-332,
832 doi:10.1016/j.matbio.2005.05.006 (2005).

833 40 Grimpe, B. *et al.* The critical role of basement membrane-independent laminin gamma 1
834 chain during axon regeneration in the CNS. *J Neurosci* **22**, 3144-3160,
835 doi:10.1523/jneurosci.22-08-03144.2002 (2002).

836 41 Kazanis, I. *et al.* Quiescence and activation of stem and precursor cell populations in the
837 subependymal zone of the mammalian brain are associated with distinct cellular and
838 extracellular matrix signals. *J Neurosci* **30**, 9771-9781, doi:10.1523/jneurosci.0700-
839 10.2010 (2010).

840 42 Kazanis, I. & ffrench-Constant, C. Extracellular matrix and the neural stem cell niche.
841 *Dev Neurobiol* **71**, 1006-1017, doi:10.1002/dneu.20970 (2011).

842 43 Chun, S. J., Rasband, M. N., Sidman, R. L., Habib, A. A. & Vartanian, T. Integrin-linked
843 kinase is required for laminin-2-induced oligodendrocyte cell spreading and CNS
844 myelination. *J Cell Biol* **163**, 397-408, doi:10.1083/jcb.200304154 (2003).

845 44 Dunville, K. *et al.* Laminin 511 and WNT signalling sustain prolonged expansion of
846 hiPSC-derived hippocampal progenitors. *Development* **149**, doi:10.1242/dev.200353
847 (2022).

848 45 Indyk, J. A., Chen, Z. L., Tsirka, S. E. & Strickland, S. Laminin chain expression
849 suggests that laminin-10 is a major isoform in the mouse hippocampus and is degraded
850 by the tissue plasminogen activator/plasmin protease cascade during excitotoxic injury.
851 *Neuroscience* **116**, 359-371, doi:10.1016/s0306-4522(02)00704-2 (2003).

852 46 Hyysalo, A. *et al.* Laminin α 5 substrates promote survival, network formation and
853 functional development of human pluripotent stem cell-derived neurons in vitro. *Stem
854 Cell Res* **24**, 118-127, doi:10.1016/j.scr.2017.09.002 (2017).

855 47 Barros, D., Amaral, I. F. & Pêgo, A. P. Laminin-Inspired Cell-Instructive
856 Microenvironments for Neural Stem Cells. *Biomacromolecules* **21**, 276-293,
857 doi:10.1021/acs.biomac.9b01319 (2020).

858 48 Ahmed, A. K., Isaksen, T. J. & Yamashita, T. Protocol for mouse adult neural stem cell
859 isolation and culture. *STAR protocols* **2**, 100522 (2021).

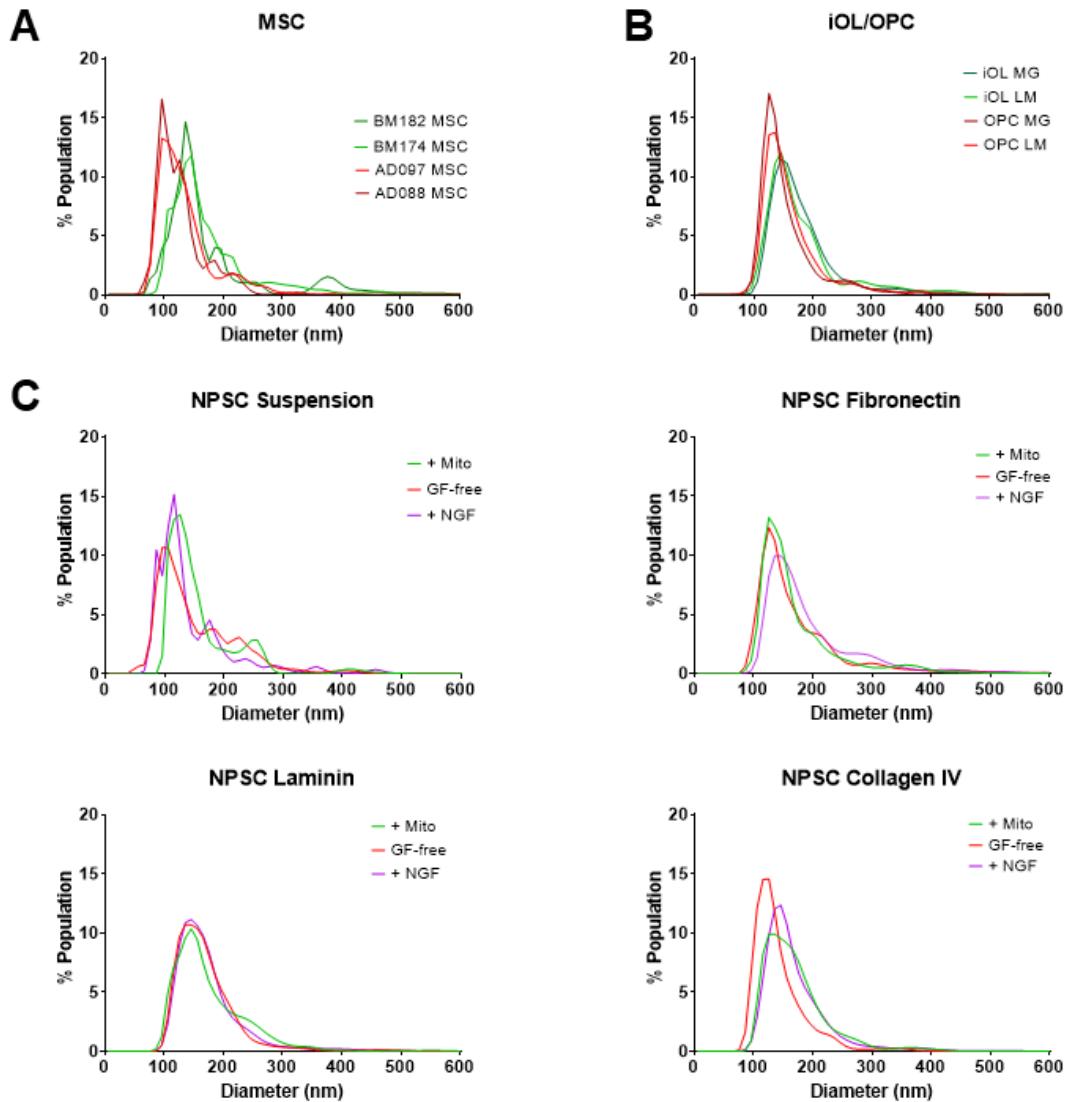
860 49 Wang, L. *et al.* Neural Stem Cells Overexpressing Nerve Growth Factor Improve
861 Functional Recovery in Rats Following Spinal Cord Injury via Modulating
862 Microenvironment and Enhancing Endogenous Neurogenesis. *Frontiers in Cellular
863 Neuroscience* **15**, doi:10.3389/fncel.2021.773375 (2021).

864

865

866

867

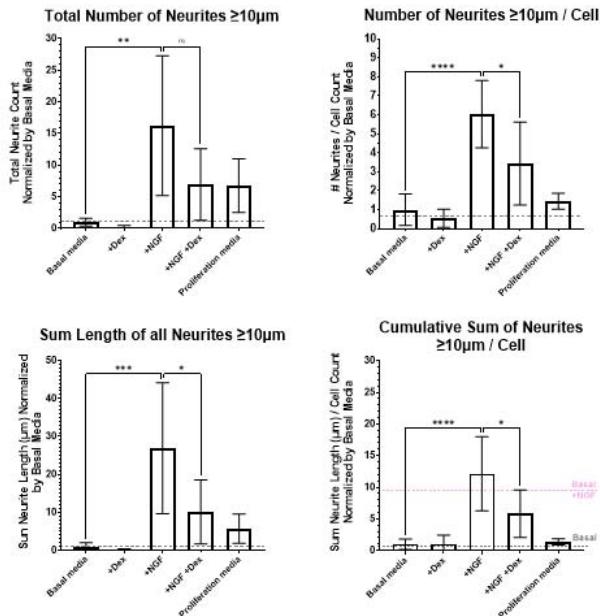

868

Culture Conditions				Average NTA concentration in EV isolate (particles/ml)	Mean Diameter ± error (nm)	Avg Particle count/Parent Cell	Total EV Isolate Protein Content (mg)/Cell
Cell Type	Culture	Integrin	Growth Factor				
NPSC	Suspension		EGF/bFGF	2.66E+10	153.2 ± 6.4	1.31E+02	1.28E-08
				9.42E+10	151.9 ± 8.0	8.01E+01	1.27E-08
			NGF	2.10E+11	147.8 ± 5.2	1.60E+02	1.54E-08
	Adherent	LM	EGF/bFGF	2.77E+10	144.5 ± 5.1	3.90E+02	6.53E-08
				2.44E+11	171.2 ± 1.8	3.46E+03	7.25E-08
			NGF	2.37E+11	175.6 ± 1.3	1.47E+03	4.27E-08
	Adherent	MG	EGF/bFGF	2.10E+10	152.9 ± 2.8	4.54E+02	6.80E-08
				2.91E+11	165.7 ± 2.7	7.29E+03	1.64E-07
			NGF	3.20E+10	177.3 ± 1.7	7.18E+02	1.94E-07
	Adherent	CollV	EGF/bFGF	6.89E+11	171.4 ± 1.1	1.30E+04	1.15E-07
				3.06E+11	144.1 ± 3.3	1.04E+04	3.17E-07
			NGF	2.70E+11	171.4 ± 1.1	5.50E+03	1.32E-07
	Adherent	FBN	EGF/bFGF	2.39E+10	171.7 ± 2.1	4.65E+02	9.55E-08
				2.00E+11	176.3 ± 0.8	4.84E+03	1.57E-07
			NGF	3.64E+10	195.7 ± 5.8	4.85E+02	7.88E-08
OPC	Adherent	LM	OMM	3.41E+10	164.5 ± 2.0	1.67E+03	1.19E-07
			MG	1.97E+10	157.2 ± 2.0	8.41E+02	8.82E-08
iOL	Adherent	ODM	LM	5.96E+10	184.7 ± 1.6	1.53E+03	1.20E-07
			MG	1.06E+11	182.5 ± 2.7	2.30E+03	1.58E-07
MSC AD061	Adherent			1.59E+10	128.4 ± 1.1	5.08E+02	4.22E-08
MSC AD088				5.47E+10	127.6 ± 5.2	7.69E+02	5.00E-08
MSC AD097				6.71E+10	134.6 ± 2.2	7.97E+02	5.37E-08
MSC BM174				3.50E+10	173.8 ± 5.5	5.11E+02	1.12E-07
MSC BM180				6.56E+10	167.8 ± 3.1	7.90E+02	7.38E-08
MSC BM182				4.93E+10	185.7 ± 12.9	6.15E+02	3.42E-08

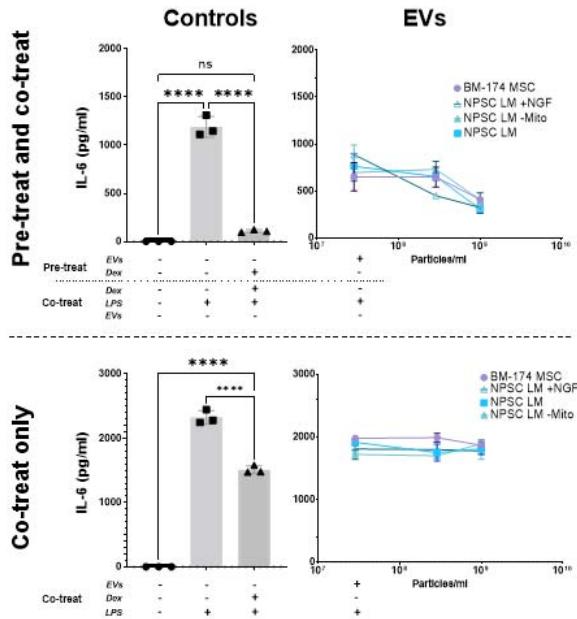
869

870 **Supplemental Table 1. EV characterization and yields.** Nanoparticle tracking analysis and
871 bicinchoninic acid assay were used to determine per cell EV yields (particle count and protein
872 content) and EV sample concentrations and mean size across all culture conditions tested.

873



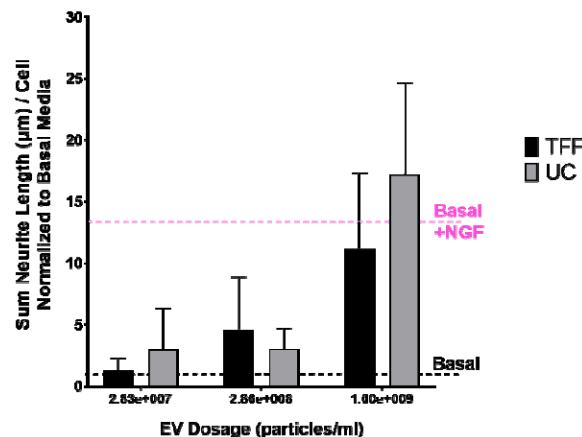
874


875 **Supplemental Figure 1. EV characterization.** Nanoparticle tracking analysis of EVs from **A**
876 MSCs from different patient donors and tissue sources (bone marrow or adipose), **B** iOLs and
877 OPCs grown on Matrigel or laminin, and **C** NPSCs grown in suspension or on fibronectin,
878 laminin, or collagen IV and in the presence or absence of growth factors (EGF/bFGF) or NGF.

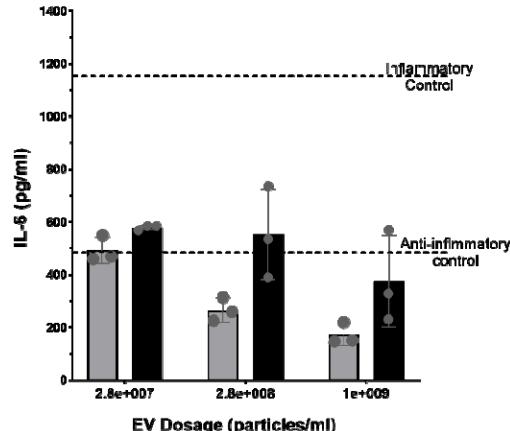
879

A

B



880


881 **Supplemental Figure 2. PC-12 neurite outgrowth assay and RAW264.7 immunoassay**

882 **development. A)** Several methods for data analysis were compared and cumulative sum of
883 neurites $\geq 10\mu\text{m}$ normalized by cell count was selected for its ability to maximize dynamic range
884 while controlling for cell count. **B)** Pre- and co-treat vs co-treat only regimens were compared
885 and only pre- and co-treat (upper panel) revealed anti-inflammatory effects of EVs.

UC vs. TFF for Fibronectin+NGF NPSC EVs

EV Isolation Method Does Not Significantly Alter Immunosuppressive Bioactivity of NPSC EVs

886

887 **Supplementary Figure 3. Bioactivity of NPSC EVs is similar between isolation with**
888 **ultracentrifugation (UC) and tangential flow filtration with 100kDa membrane (TFF). EVs**
889 **from NPSCs cultured on fibronectin with NGF were evaluated in A) PC-12 neurite outgrowth**
890 **assay and B) RAW 264.7 mouse macrophage immunoassay.**