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Abstract 

Chromosomal instability (CIN) drives the formation of karyotype aberrations in cancer cells and is a major 

contributor to intra-tumour heterogeneity, metastasis, and therapy resistance. Understanding how CIN 

contributes to tumour karyotype evolution requires quantification of CIN rates in primary tumours. Single-

cell sequencing-based technologies enable the detection of karyotype heterogeneity, however deducing the 

actual CIN rates that underlie intra-tumour heterogeneity is still complicated. We have developed an in-silico 

model, called CINsim, to simulate the karyotype dynamics and validated our model in a murine mouse model 

for T-cell lymphoma (T-ALL) in which CIN is introduced by mutation of the Mps1 spindle assembly 

checkpoint protein. CINsim can simulate karyotype evolution within physiologically relevant timescales, 

across a range of CIN rates, and across a range of karyotype-imposed survival and proliferation effects. We 

find that CINsim can accurately predict the CIN rates in chromosomal instable mouse T-ALLs as well as in 

human colon cancer organoids as observed by live-cell time-lapse imaging. We conclude that CINsim is a 

powerful tool to estimate CIN rates from static single-cell DNA sequencing data by finding the most likely 

path from euploid founder cell to a heterogeneous tumour cell population. 
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Introduction 

Chromosomal instability (CIN) is a condition in which cells display an increased frequency of chromosome 

mis-segregation events in mitosis, and a hallmark feature of many cancers [1–4]. CIN will lead to cells with 

an abnormal DNA content, a state called aneuploidy [5,6]. The terms aneuploidy and CIN are often used 

interchangeably, but refer to different phenomena. Cells can be aneuploid without exhibiting CIN, resulting 

in a cell population of identical karyotypes [6,7]. Conversely, tumour cells that display a CIN phenotype will 

produce populations with cell-to-cell variability between karyotypes, termed karyotype heterogeneity. As 

CIN enables the rapid loss and gain of tumour suppressors and oncogenes respectively, it facilitates tumour 

cell evolution and is associated with metastasis, immune evasion, and chemotherapy resistance [1,2,8,9]. The 

prognostic value of CIN is further emphasized by the fact that copy number heterogeneity driven by CIN 

rather than (point) mutational heterogeneity correlates with poor survival in non-small cell lung cancer [10]. 

The frequency of chromosome missegregations, i.e. the CIN rate, is another important determinant of 

cancer cell fate as low CIN rates are insufficient to drive cancer while very high CIN-rates can be tumour 

suppressive in mouse models for CIN cancer [11,12].  Therefore, methods that can estimate CIN rates in 

cancer cells are essential to improve patient risk stratification.  

Single-cell whole genome sequencing (scWGS) platforms have made it possible to measure 

complete karyotypes of individual cells at high resolution [13–16]. Recent scWGS efforts from various labs 

are revealing that cancers indeed frequently display intra-tumour karyotype heterogeneity, a strong indication 

of ongoing CIN [15,17–24]. Importantly, time-lapse imaging of primary tumour cultures with matched 

scWGS confirms that intratumour karyotype heterogeneity correlates well with observed CIN rates [15,19]. 

While time-lapse microscopy still remains the golden standard to determine the rate of CIN [6,15,17], live-

cell imaging is not possible in primary human cancers. Therefore, estimating CIN rates from scWGS data 

could be a useful alternative. Recent work has attempted to do just that, although the predictive power of 

the mis-segregation model was still limited [25].  

While modelling karyotype evolution has been done before to understand the effects of CIN on 

population growth rates and karyotype selection [25–30], none of the previously reported methods 

simulated evolution towards karyotype landscapes as observed in individual tumors and inferred the 

accompanying CIN rate. Furthermore, some of the models explored karyotype dynamics on timescales 
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between several hundred and a few thousand cell divisions, yielding theoretical population sizes or time 

parameters that greatly exceed any physiological limit. 

The overcome these limitations, we developed CINsim, an algorithm that models karyotype 

evolution from an initial diploid or tetraploid karyotype in an single cell towards the karyotype landscape of 

a cancer cell population as observed in primary cancer samples assessed by single cell DNA sequencing. By 

modulating the rates of CIN, cell death and cell proliferation in silico, CINsim finds the optimal values for 

these parameters that together yield a karyotype landscape closest to the landscape observed in the primary 

tumour considering a physiological number of cells and cell divisions. These optimal values represent the 

shortest path to this endpoint karyotype landscape and thus represent the most likely CIN, cell death and 

proliferation rates in the primary tumour. We used CINsim to model karyotype evolution for chromosomal 

instable acute T-cell lymphomas (T-ALL) derived from a mouse model in which the spindle assembly 

checkpoint protein Mps1 is conditionally mutated, and for a panel of human colorectal cancers. We find 

that CINsim correctly infers CIN rates as quantified experimentally by live-cell time-lapse imaging for both 

tumour types. We conclude that CINsim is a powerful tool to model karyotype evolution in chromosomal 

instable cancers and can be used to predict CIN rates from scWGS data.  

 

Results 

Performing forward stochastic simulations for chromosome mis-segregations in CINsim 

Chromosomal instability leads to karyotype evolution and intratumour heterogeneity. As measuring 

karyotype dynamics in developing tumors is challenging, earlier studies have used in silico approaches to 

simulate karyotype evolution to better understand how karyotypes evolve in a CIN background [29,30]. 

While these modeling studies succeeded in simulating karyotype dynamics over time, they did not consider 

selective pressures for particular karyotypes as observed in cancer, nor did they incorporate physiological 

limitations such as tumor latency and maximum cell numbers. We therefore developed a model, CINsim, to 

examine karyotype dynamics within biologically relevant boundaries. CINsim simulates karyotype evolution 

across a range of parameters, most notably the CIN rate (defined by the chance of missegregation, pmisseg, see 

below) and karyotype-dependent cell division and survival rates, within a physiological timescale. The model 

assumes that the combination of these parameters that yields a karyotype landscape that most resembles the 
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landscape observed in the primary tumour corresponds to the actual path of karyotype evolution (Fig. 1a), 

an approach that to our knowledge has not been attempted before.  

Within CINsim, cells are defined as single entities that each have a set of homologous chromosomes 

with their copy number represented by a single value, i.e. monosomy = 1, disomy = 2, trisomy = 3, etc.. Cell 

populations are represented in a table with chromosomes in columns and cells in rows. During one 

simulation cycle, cells divide into daughter cells and mis-segregate chromosomes according to a mis-

segregation probability (pmisseg) for each individual chromosome. Cells are removed after each simulated 

division if they contain nullosomies or more than 8 copies for a single chromosome, as these copy number 

states are exceedingly rare in scWGS data and hence likely not compatible with physiological constraints. 

Surviving cells undergo further selection by determining a karyotype fitness score for each individual cell). 

To determine a karyotype fitness score, chromosome copy number frequencies as observed in single cell 

whole genome sequencing (scWGS) experiments of primary tumour samples are used to determine the 

contribution to cellular fitness of each individual chromosome copy number state (i.e. frequently observed 

individual copy number states enhancing fitness and vice versa).  Observed chromosome copy number state 

frequencies from scWGS data are used as scores, which are then summed across all chromosomes to yield 

a cell-specific karyotype fitness score. Karyotype fitness scores are then scaled into a probability of survival 

(psurvival) according to the degree of selection (see Supplementary Methods). To determine whether a cell lives 

or dies, a random value between 0 and 1 is drawn for each cell from a uniform distribution. A cell ‘dies’ and 

is removed from the population when this value is larger than the psurvival calculated for that cell. As such, 

cells that have a karyotype close to the most frequently observed karyotype in the populations and thus a 

psurvival close to 1 will most likely survive, while cells with an infrequent karyotype will likely die. Simulation 

cycles are repeated until the estimated population exceeds a set threshold (discussed in more detail below), 

or until a pre-set number of generations is reached. To limit the required computational power, cell 

populations are downsampled to 25% whenever the simulated population size exceeds 50,000 cells. Figure 

1b shows a schematic overview of the CINsim workflow and more details on the probabilities within the 

model, the effect of down-sampling on evolutionary dynamics, and estimating the true population size 

without down-sampling are described in the Supplementary Materials and Fig. S1. We quantified similarity 

between simulated and scWGS-observed karyotype landscapes using two methods, the karyotype measure 
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similarity (KMS) and the Chromosome copy number Frequency Similarity (CnFS) score. This comparison 

is described in detail in the supplementary material under ‘quantifying the similarity between karyotype 

landscapes’ and revealed that the CnFS score performed best for our purposes (Fig. S2). The larger this 

CnFS value is, the better the simulation mimics the karyotype landscape observed in the primary tumour 

sample.  

 

Developing a model with physiologically relevant constraints 

To test and optimise CINsim, we made use of prior-generated scWGS data from a mouse model for CIN-

driven T-ALLs, in which the spindle assembly checkpoint protein Mps1 is conditionally mutated [17,31]. 

Based on this model, we first defined the physiological cell division and time constraints as observed for 

this mouse model. We limited the maximum number of cell divisions to 42-84 starting from a single cell 

towards full-blown T-ALLs as in this model T-ALLs take 6-12 weeks to grow from ~50 mg to ~1 gram 

with an average cell division time of 24 hours (Fig. 1c), [17,31]. In addition, we limited the maximum number 

of cells in an end-point tumour to 10 billion cells, assuming a single cell mass of 1 nanogram[32,33] and an 

end point tumour weight of 1-2 gram [17,31]. To get to 10 billion cells from a single cell, assuming 

exponential or logistic growth, requires 33 to 67 generations, respectively (Fig. 1d-e). Based on these 

physiological constraints, we limited the maximum number of CINsim simulation cycles to a 100 when 

modelling murine T-ALL, unless otherwise specified. These physiological restrictions form an important 

advance over prior models, which used much larger numbers (i.e. thousands) of generations for their 

simulations [26–30]. 

 

Copy number-based selection yields convergence towards karyotypes observed in vivo  

Chromosomal instability is a powerful driver of cancer cell evolution in which fitter cells are expected to 

thrive and unfit cells are selected against. As evolution assumes that the fittest individuals, or cells, will 

dominate the population [34], for CINsim, we assume that the frequency of a given chromosome copy 

number state observed in a tumour cell population is proportional to its effect on cellular fitness. Therefore, 

CINsim assumes that frequent karyotypes observed from scWGS data have a high chance of survival and 

infrequent ones do not. To model karyotype evolution in Mps1DK; p53f/f Lck-Cre T-ALLs (from here 
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onward referred to as Mps1DK T-ALLs; DK refers to a truncation in the Mps1 kinase domain [31]) and to 

validate CINsim, we used a previously-generated scWGS dataset from 7 independent Mps1DK T-ALLs (382 

total single-cells; summary in Fig. 2a, all data in S3 [17]). In this model, recurrent karyotype features include 

trisomy 4/ 9, and trisomy or tetrasomy 14 /15 [31], while chromosomes 6, 7 and 8 are predominantly 

disomic. The remaining autosomes show varying degrees of aneuploidy, but are mostly disomic, in line with 

an ongoing CIN phenotype with little selection for a specific copy number alteration. Because our data 

includes both male and female tumours, aneuploidies for X are not considered. 

We then determined a ‘chromosome fitness score’ per individual chromosome, which is defined as 

the relative frequency of a given chromosome copy number state compared to the other copy number states 

for that chromosome in the scWGS dataset. For instance, if a chromosome would have a disomic state in 

88% of the cells, a monosomic state in 11% of the cells and a trisomic state in 11% of the cells, the 

corresponding chromosome fitness scores would be 0.88 for the disomic state, 0.11 for the monosomic 

state and 0.11 for the trisomic state, respectively (Fig. S1e, top panel). The chromosome fitness scores were 

then combined into a ‘single cell karyotype score’, which represents the sum of all chromosome fitness 

scores for that cell. As such, cells with a high single cell karyotype score harbour karyotypes close to those 

observed in the scWGS dataset and thus represent ‘fit’ cells (Fig. S1e, bottom panel). Karyotype scores were 

then fitted to a probability of survival (psurvival) such that aneuploid karyotypes yield a psurvival ranging from 0.1 

to 1.0, with euploid cells having a psurvival of 0.9 assuming that aneuploid cancer cells can be more fit than 

euploid cells (Fig. S1f-g). The fold change in survival rate (survival FC) was then determined as the ratio of 

psurvival of the daughter cell over the psurvival of the mother cell. For instance, if the mother cell had a psurvival of 

0.9, and the daughter cell a psurvival of 1 this yields a survival FC of 1.11, i.e. an increase of survival of 11%. 

When we generated 1,000,000 random karyotypes (with individual chromosome copy numbers restricted 

between 1 and 8), and near-diploid cancer-like karyotypes (with up to 4 aneusomies), we found that very 

few karyotypes yielded a greater karyotype score and psurvival than euploid karyotypes (Fig. S1f), illustrating 

the narrow window for cancer cells to acquire karyotypes that are fitter than euploid cells.  

Next, we simulated the proliferation of single founder cells in CINsim for a maximum of 100 

generations at different CIN rates (pmisseg) and rates of karyotype-dependent survival and compared the 

simulated karyotype landscape to the landscape as observed in vivo in Mps1DK T-ALLs. At extreme CIN and 
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selection rates (with pmisseg>10-2 and survival FCs between 10 and 2) populations typically collapsed within 

20 generations before karyotypes could evolved that would yield increased survival (Fig. 2b – light blue area). 

The reason is two-fold: firstly, populations with high CIN are either unable to stabilize their karyotypes on 

one that yields increased fitness, or evolve towards a lethal state. Secondly, the landscape of karyotypes 

yielding increased fitness is a subset of all possible and viable karyotypes, meaning cells are more likely to 

acquire a karyotype less fit than a euploid one. Enhanced selection will exacerbate the loss of fitness, equally 

resulting in rapid population extinction. However, at survival FCs of 2 and smaller we observed evolution 

beyond 20 generations, best resembling our scWGS data at survival FC 1.36 and pmisseg 6.21×10-3. We found 

that for pmisseg < 10-3 little to no adaptation takes place, whereas for pmisseg ≥10-2 karyotypes will drift towards 

lethal nullisomies, leading to rapid population extinction (Fig. 2b). CIN rates between these values were 

compatible with evolution towards karyotypes resembling those of Mps1DK T-ALLs, with a maximal 

similarity CnFS score of 0.897 (Fig. 2b, yellow area). 

While the chromosome copy number frequencies simulated by CINsim were similar to those 

observed in vivo as measured by scWGS (compare Fig. 2a to Fig. 2c)., the simulated heterogeneity scores 

from CINsim were somewhat higher (Fig. 2e). In addition, the number of cells required to reach this level 

of karyotype landscape similarity after 100 generations were still well beyond physiological limits, with the 

average population size exceeding 1010 cells. We therefore conclude that while copy number-based selection 

enables the evolution of karyotypes similar to those observed in vivo, too many unfit cells are not yet selected 

against by CINsim. 

 

Karyotype-dependent survival and division rates both shape the karyotype landscape  

To simulate the contribution of individual karyotypes to cancer cell proliferation, we converted karyotype 

scores into a division probability (pdivision) similar as done for psurvival. As this alteration leads to a fraction of 

cells skipping a cell division each simulation cycle, we increased the maximum number of cycles to 250, or 

until 1010 cells were simulated, whichever requirement was met first. We then applied a range of pdivision fold 

changes (division FC), with the karyotype score only affecting pdivision. We found that as the division FC 

decreased, simulations required fewer simulation cycles to reach 1010 cells, and greatest similarity to our 

scWGS data was achieved at a division FC of 2.73 (Fig. 3a) at ~150 generations. Exchanging the psurvival for 
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a pdivision improved the CnFS score improved to 1.403 (Fig. 3c; compare to Fig 2b, CnFS score of 0.897 for 

psurvival). The simulated karyotype landscapes were indeed more similar to in vivo karyotypes (compare Fig. 2a 

to 3b), suggesting that karyotype-dependent division has a greater role in karyotype selection.  

We next explored whether combining both karyotype-dependent division and karyotype-dependent 

survival further improved the similarity between simulated and observed karyotypes, again restricting the 

number of simulation cycles to 250 and the population size to 1010. For this, we simulated karyotype 

evolution across a range of pmisseg and division FCs at an optimal survival FC of 1.11, which was selected 

because it yielded the greatest CnFS scores on average (Fig. 3c). Combining optimized karyotype-dependent 

survival and division rates revealed that the optimal pmisseg for the Mps1DK model is around 6.21×10-3 

corresponding to a mitotic error rate of 38.2% with a division and survival FC of 1.67 and 1.11 respectively 

(Fig. 3g). While combining all three parameters reduced the CnFS score to 1.119, overall, the simulated 

karyotype landscapes more closely resembled karyotypes in vivo (Fig. 3d), when also taking into account the 

number of cell divisions required and resulting aneuploidy and heterogeneity scores (Fig. 3e-g). Together, 

our simulations suggest that increasing the proliferation and survival rates of cells by 67% and 11%, 

respectively, at a chromosome missegregation rate of 38.2%, yields the most efficient route towards the 

karyotype landscape as observed in primary Mps1DK T-ALL.  

 

Predicted CIN rates are concordant with rates observed in cultured murine T-ALLs 

As CINsim predicted optimal CIN rates, we next compared these predicted CIN rates with the actual CIN 

rates observed in vivo. However, as quantifying chromosome missegregation rates in a developing thymic T-

ALL is impossible with current available technology, we made use of a primary T-ALL cell line derived from 

the Mps1DK model (T302; [17]). To rule out karyotype drift in culture conditions, we first single-cell 

sequenced our T302 cell line 3 passages after being taken into culture. Similar to primary T-ALLs, we found 

a preferential gain of chromosomes 4, 9, 14, and 15, suggesting that culturing conditions had minimal impact 

on the main karyotype distribution during the first few passages. In addition, chromosomes 1, 2, 5, 11, and 

18 showed gains in the majority of cells (Fig. 4a & b), all of which are common copy number changes in 

our model (also see Fig. S3). Furthermore, aneuploidy and heterogeneity scores were very similar to those 

observed in primary T-ALLs, indicating that our primary cultures maintain their CIN phenotype during 
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these early passages (Fig. 4c). We next used CINsim to simulate karyotype evolution towards the karyotype 

landscape we observed in cultured T302 T-ALL cells using scWGS similar across a range of division and 

survival FCs and CIN-rates (pmisseg). We found that at division and survival FCs of 2.5 and 1.11, respectively, 

and a pmisseg of 6.21×10-3 the simulated karyotype landscape most closely resembled that of primary T-ALL 

cultures (Fig. 4d). While clear selection occurred for chromosomes 1, 4, 9, 14 and 15, the simulated karyotype 

landscapes were more heterogeneous than observed in scWGS data (heterogeneity scores of 0.541-0.676 in 

simulated data vs. 0.276 in scWGS data; Fig. 4e & f). This discrepancy could be because the selection forces 

are underestimated, or the CIN rate is overestimated. To determine whether the CINsim predicted CIN rate 

was representative of the actual CIN-rates in this early passage T-ALL culture, we then quantified the 

chromosome mis-segregation rate in the T302 cell line using live-cell time-lapse imaging and found that 

24% of mitoses show signs of unbalanced chromosome distribution (i.e. lagging chromosomes and anaphase 

bridges; Fig. 4g). This observed CIN rate is well in line with the CINsim-predicted CIN rate of 28.5-39.2% 

(Fig. 4g). We conclude that CINsim can simulate karyotype evolution as observed in our Mps1DK T-ALL 

model and that CINsim can estimate chromosome missegregation rates reasonably well from copy number 

frequency data. 

 

CINsim predicts whole genome duplication as an early event in some, but not all CRC organoids  

Finally, we wanted to validate CINsim for a completely different, human, cancer type. For this purpose, we 

re-examined scWGS data acquired from four human colorectal cancer (CRC) organoids displaying a range 

of aneuploidy and heterogeneity [15]. For this, we had CINsim model karyotype evolution based on the 

scWGS-observed karyotype landscape for each tumour organoid originating from a single diploid founder 

cells that proliferated for a maximum of 250 generations (assuming that human tumours take longer to grow 

than murine tumours) or until the population exceeded 5×1010 (the estimated carrying capacity for a ~4cm3 

CRC tumour). Similar to our earlier simulations for murine T-ALL, CINsim yielded karyotype landscapes 

highly similar to those observed in the four tumour organoids (Figure 5a – left-side heatmaps, scWGS data 

in the centre column, similarity heatmaps in Fig. S4a, CnFS scores in Fig. 5b). However, for one of the 

tumour organoids (24TB, near-triploid karyotype), CINsim failed to predict the karyotype landscape.  
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Previous simulations studies have suggested that whole genome duplication (WGD) can help cancer 

cells to evolve while minimizing the chances for nullosomies, and that transitioning through the resulting 

tetraploid intermediate state favours evolution towards a near-triploid karyotype [30]. We therefore designed 

an additional simulation experiment for all four tumour organoids where we started from single tetraploid 

founders. Intriguingly, tetraploid founders allowed efficient evolution towards the optimal karyotypes for 

24TB, but not for the near-diploid tumour organoids as reflected in the CnFS scores (Fig. 5a-b, similarity 

heatmaps in Fig. S4b). This suggests that of the four tumours only the near-triploid 24TB likely underwent 

whole genome duplication early during tumorigenesis.  

Finally, we compared the optimal CIN rates as calculated by CINsim to those actually observed by 

live-cell time-lapse imaging of CRC organoids ([15], Fig. 5c-d). For tumour organoids 14T and 16T CINsim 

inferred a low CIN rate (13.1-14.3%) which is well in agreement with the observed values from time lapse 

imaging (17-20%), Similarly, organoids 9T and 24TB were predicted to have CIN rates of approximately 

26.4-27.6%, which is reasonably close to the rates observed in culture (31-45%; Fig. 5c, d). Altogether, these 

analyses confirm that CINsim can be used to estimate actual CIN-rates from scWGS data for murine and 

human cancer and furthermore be used to determine whether cancer cells likely underwent whole genome 

duplication during tumorigenesis.  

 

Discussion 

In this study we have developed a forward stochastic model, CINsim, to simulate karyotype dynamics using 

single cell karyotypes quantified by scWGS to infer CIN rates in primary tumours. Previous studies have 

explored arbitrary karyotypes yielding limited insights into the precise karyotype dynamics of tumours [25–

30]. Since tumours are highly diverse in their degree of aneuploidy and karyotype heterogeneity, it is key to 

examine karyotype landscapes in individual tumours. Using our tumour-specific selection metric, we 

succeeded in simulating evolution towards a karyotype landscape that closely resembled the karyotypes 

observed in the primary tumours. We tested this approach on available data from several murine T-ALLs 

that were induced by mutation of the SAC protein Mps1 [17,31].  

Unlike previously-published models, in CINsim simulations are restricted to a timescale and 

population size that are physiologically relevant for the sample of interest, thus giving cells a limited window 
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in which they can evolve their karyotypes. By applying karyotype selection based on scWGS data from actual 

tumours, we succeeded in simulating karyotype landscapes highly similar to those observed in vivo and 

estimated optimal chromosome mis-segregation rates to achieve these landscapes. When accounting for 

both karyotype-driven effects on cell survival (psurvival) and proliferation (pdivision), CINsim simulated karyotype 

landscapes with similar karyotype heterogeneity as observed by scWGS analysis in primary tumour samples 

and primary T-ALL cultures. Related to this, another recent modelling study using data from the same T-

ALL models [35,36] that we used, also found that both cell survival and proliferation play an important role 

in shaping the karyotype landscapes of murine T-ALLs with a CIN phenotype (Ban et al., 2022). 

The fact that CINsim could faithfully predict karyotype landscapes with similar aneuploidy and 

heterogeneity scores suggested to us that CIN rates in cultured T-ALL cells are in the same range as the 

CIN rates observed in vivo. Indeed, when we compared CINsim-inferred CIN rates to CIN rates observed 

by time lapse imaging, we found these to be in the same range for both T-ALL as well as CRC primary 

cultures, although observed CIN rates were ~2 fold higher inferred CIN rates for both primary cultures. A 

possible explanation is that observed mitotic normalities will only lead to karyotype changes in ~half of the 

cases as lagging chromosomes can also end up on the correct daughter cell. Therefore, these data strongly 

suggest that CINsim can infer CIN rates in primary tumours from scWGS data, an approach that, to the 

best of our knowledge, has not been attempted before.  

Using live-cell microscopy remains the golden standard to quantify CIN rates [6]. To do so in vivo 

requires transgenic mouse lines with chromosome reporter constructs that allow for intravital time-lapse 

imaging. While such an approach is impossible in patients, culturing of primary tumours, tumour organoids 

or patient-derived xenografts is the next best alternative to yield insight into their CIN phenotypes. However, 

even this is still technically challenging, especially when studying (rare) tumour cells that are difficult or 

impossible to culture. 

CIN is associated with tumour recurrence, increased chances of metastasis and therapy resistance, 

and thus an important determinant of patient prognosis [10]. However, different CIN rates might come 

with different prognoses. For instance, while high rates of CIN are found to suppress tumorigenesis, 

medium CIN rates are associated with more aggressive tumour development in mouse models [11,12,17], 

probably in a tissue specific manner. Therefore, faithfully assessing CIN rates in primary tumours might 
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significantly improve treatment stratification. With rapidly decreasing costs of scWGS, CINsim could thus 

become an important diagnostic tool to estimate the CIN levels in tumour biopsies to help stratify treatment.  

 

Methods 

Basic characteristics of the CINsim chromosome mis-segregation model 

For the first cycle in our simulations, we consider a cell to have a euploid karyotype (i.e. 40 chromosomes 

in a murine cell, 46 chromosomes in a human cell; with two copies of each chromosome, except for male 

sex chromosomes). Chromosomes have a defined copy number state (for euploid cells this number is 2) 

that will be inherited into two emerging daughter cells, unless a mis-segregation event occurs. The likelihood 

of a single chromosome copy mis-segregating is given by pmisseg (hence p). Consider a chromosome pair, i.e. a 

copy number of 2 (diploidy). During S-phase both chromosomes are duplicated, leading to 4 sister 

chromatids. During mitosis, both duplicated chromosomes will be split and one copy for each duplicated 

chromosome will segregate into one of the daughter cells. Sister chromatids are bound unidirectionally by 

microtubules and pulled towards the nearest centrosome emitting the attached microtubule. A sister 

chromatid can be mis-segregated if it is instead pulled towards the opposite centrosome together with the 

sister chromatid (non-disjunction), or lags behind in the anaphase plane because of improper binding by 

microtubules (e.g. no binding or merotelic attachment). Given probability p of a single chromatid mis-

segregating, the probability of no mis-segregation is 1 – p. More generally, the probability of any scenario of 

chromatids mis-segregating can obtained using the binomial theorem: 

((1 − 𝑝) + 𝑝)! =()
𝑛
𝑘
, (1 − 𝑝)"𝑝!#"

!

"$%

 

where n is the total of chromatids considered. For instance, for a chromosome with copy number 2, the 

probabilities of 0, 1 and 2 copies mis-segregating are given by (1 – p)2, 2p(1 – p) and p2 respectively:	

.(1 − 𝑝) + 𝑝/& =01
2
𝑘3
(1 − 𝑝)"𝑝&#"
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 However, in this simplified example two simultaneous mis-segregation events (p2) do not result in 

disproportionate inheritance, as both mis-segregations cancel each outer out (i.e. both daughters acquire a 

single chromosome copy). In addition, as suggested by Laughney et al., p2 will be negligible for small values 

of p. From this, the probability of a mis-segregation event occurring is then given by 1 minus the probability 

of no mis-segregation: 1 – (1 – p)2. In this example the exponent of 2 is equal to the number of copies in 

the chromosome set at the time of mitosis onset. We can therefore generalize the weighted probability of 

any chromosome set mis-segregating (pweighted) to be: 

𝑝()*+,-). = 1 − (1 − 𝑝)!!"#$% 

where p is pmisseg and nchrom is the number of copies for that chromosome set at the time mitosis starts. This 

means that with increasing copy numbers a set has an increased probability of mis-segregating (Fig. S1A). 

To determine whether a chromosome set given pweighted mis-segregates in the simulation, a value is drawn 

from a uniform distribution (0, 1) and must be smaller than pweighted. Note that if nchrom is 0, pweighted will also be 

0, as 1 - (1 – p)0 = 1 – 1 = 0, effectively forbidding the mis-segregation of non-existing chromosome sets. 

Also note that the mis-segregation probabilities of each chromosome set are independent of the copy 

number state of other chromosome sets. If a mis-segregation occurs, a single copy number gain and loss is 

then randomly assigned to the daughter cells. While in principle this method allows for the mis-segregation 

of multiple chromosome sets in one mitosis, single chromosome set mis-segregation events are more likely 

at physiological values for pmisseg. 

After every round of cell division, the viability of the individual daughters is assessed. In karyotype 

selection-neutral simulations, cells will die only if they lose all copies of a chromosome set (nchrom = 0) or 

exceed the maximum number of allowed copies (nchrom > 8). Viable cells then enter into a next round of cell 

division. In simulations with karyotype-based selection, these two boundaries still hold true, and the 

probability of cell survival is determined based on karyotype scores. 

In the base model, all cells will undergo cell division simultaneously once per generation. To 

introduce asynchronous cell divisions, we have implemented a probability of division (pdivision) that can either 

be constant for all cells or be dependent on karyotypic fitness (see karyotype fitness below). Prior to cell 

division, a value is drawn from the uniform distribution [0,1] per cell. If the drawn value is greater than or 

equal to pdivision a cell will not enter mitosis but will enter subsequent selection based on copy number states 
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and karyotype fitness. Individual cells are labelled at the start of the simulation with a unique identifier that 

progeny will inherit. This enables quantification of clonal abundance over subsequent generations when the 

founder population is greater than 1. 

 

Effects of down-sampling on simulation results and rates of evolution 

Simulating millions of independent karyotypes requires a considerable amount of computational power and 

memory. The required time to simulate such large cell populations becomes impractical to study karyotype 

dynamics when adjusting many combinations of simulation parameters. As we also intend CINsim to be a 

tool that biologists can use on desktop computers or laptops to study simple evolutionary systems, we 

reduce the simulated population through random sampling whenever the total number of cells exceeds a 

particular threshold. However, the act of random down-sampling could result in the well-described 

‘bottleneck effect’. Regular and substantial down-sampling of the population may therefore affect the rate 

of karyotype evolution. To test how strongly down-sampling affects simulation results, we performed 

simulations at various rates of down-sampling (a range of population size thresholds and down-sampling 

fractions). We allowed 200 non-mis-segregating clones to propagate synchronously for 50 generations 

(without the possibility of cell death) and determined the final fraction of clones still represented. We found 

that a down-sampling rate of 25% whenever the population exceeds 50,000 consistently results in 100% 

clonal survival while keeping simulation time per generation (Fig. S1B). These down-sampling parameters 

were therefore applied in all simulations. 

 

Estimating a biologically relevant timeframe for tumour evolution 

Tumour cells in principle have the capacity to proliferate indefinitely, but are of course limited by availability 

of nutrients, oxygen, and space in their niche. In terms of population growth, tumour cells will therefore 

not display exponential growth but logistic growth instead. This environment-induced limit on the 

population size is termed the ‘carrying capacity’. In the described Mps1DK T-ALL mouse model, this carrying 

capacity is the maximum number of cells that can exist in a single tumour, which we estimate to be 1010 

cells. This is inferred from 1-2 gram tumours at an estimated lymphocyte weight of 1 ng [38], although this 

does not take into account possible dissemination from the original tumour site into peripheral blood or the 
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bone marrow. Mathematically, the population size P at t+1 given the size at t, and considering the carrying 

capacity of the environment, is defined as follows: 

𝑃-/' =	𝑃- + 𝑟	𝑃- × 11 −	
𝑃-
𝑀3

 

where r is the low-density growth rate (a balance between survival and death), and M is the carrying capacity. 

Starting from a single clone at t = 0 we calculated the number of generations required to reach 99.999% 

saturation at M for a range of values of r [0.5,1] reflecting different rates of tumour cell survival and cell 

division (Fig. 1d, e). We found that saturation is reached at a minimum of 30-34 generations and up to 52-

69 generations for lower proliferation rates. This sets an estimated upper time limit for the development of 

murine T-ALLs between the order of 10 to 100 divisions. 

 

Simulation measures 

After every round of cell division and selection we determine several population measures, including the 

survival rate, estimated true population size, and karyotype measures such as aneuploidy and heterogeneity 

scores based on AneuFinder [17]. The survival rate is defined as the fraction of daughter cells that survive 

after selection. Because of down-sampling the true number of cells is estimated from the simulated 

population size by multiplying with the down-sampling factor to the power of the down-sampling index: 

𝑁-01) = 𝑁2*3 × 1
1
𝑓3

*
 

where Ntrue is the true cell count, Nsim is the number of simulated cells after one round of cell division and 

selection, f is the down-sampling factor (default of 0.25), and i is the down-sampling index (initial value is 

0). The value of i will increase by 1 after each down-sampling event. 

After selection, we calculate the degree of aneuploidy (D) and heterogeneity (H) of the population. 

These measures are based on the AneuFinder package[17]. For a population of N cells with T chromosomes, 

the aneuploidy score is defined as: 

𝐷 =
1
𝑁𝑇

((|𝑐!,- − 𝑒-|
5

-$'

6

!$'

 

where cn,t is the copy number of chromosome t in cell n, and et is the euploid copy number of chromosome 

t (2 by default). The heterogeneity score is defined as: 
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𝐻 =
1
𝑇𝑆
((𝑠 ∙ 𝑚2,-

7

2$%

5

-$'

 

where ms,t is the number of cells with copy number state s for chromosome t, and S is the total number of 

copy number states present in the population. Importantly, ms,t is ordered for each chromosome, such that 

ms=0,t ≥ ms=1,t ≥ ms=2,t. This way a population with identical copy numbers for all chromosomes, whether they 

are considered aneuploid or not, will have a heterogeneity score of 0. In addition to the heterogeneity 

measure, we calculate the fraction of cells deviating from the modal copy number. 

 

Karyotype-based survival and division probability 

To apply copy number-based karyotype selection we first made a matrix containing the observed frequencies 

of each chromosome copy number in 382 Mps1 T-ALL cells, with the copy numbers 0 to 9 in rows and the 

chromosomes 1 to X in columns. To ensure the X-chromosome does not affect karyotype fitness we 

assigned equal frequencies for the viable copy number states 1 to 8 (i.e. 1/8 = 0.125) and 0 to the lethal 

states (0 and >8). To determine the karyotype fitness score Sf of a given karyotype, the chromosome copy 

numbers are matched to the corresponding chromosome copy number in the copy number frequency 

matrix obtained from scWGS data. For example, if chromosome 1 is observed at copy numbers 2 and 3 in 

scWGS at frequencies of 0.2 and 0.8 respectively, a karyotype within the simulation that has chromosome 

1 at copy number 2 will score 0.2 for that chromosome, or 0.8 if chromosome 1 were at copy number 3. 

This process is repeated for all chromosomes, and all scores are summed into a single karyotype fitness 

score Sf. In this way, cells with commonly observed copy numbers for certain chromosomes will obtain a 

greater fitness scores than cells with uncommon chromosome copy numbers. To assign a probability of 

survival to Sf we first determined Sf for 1,000,000 randomly generated near-diploid karyotypes (at most 4 to 

5 aneuploid chromosomes) to ensure the scores follow a symmetric distribution (Fig. S1F). We next fitted 

these scores to the formula a × Sf + b, where a and b are the slope and intercept coefficients determined 

using the lm() function in R, such that euploid karyotypes had a probability of 0.9 (unless otherwise indicated 

in the text), and the highest possible score yielded a probability of 1. For this fit we found a = 0.04049, b = 

0.4041 (Fig. S1G). 

In summary, the survival or division probability of any karyotype is calculated as follows: 
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(1)	𝑆8 = (𝑐𝑠!

6

!$'

 

(2)	𝑝2109*9:; = 𝑎 × 𝑆8 + 𝑏 

where Sf is the karyotype fitness score, N is the total number of chromosome sets, csn is the assigned copy 

number score of chromosome n, and where a and b are coefficients with the fitted values as described above. 

 

Quantifying similarity between karyotype landscapes 

When comparing multiple CIN rates and to determine at which rate the simulated karyotype landscape most 

resembles the observed landscape, we needed a metric that determines the similarity between the simulated 

landscapes. To this end, we developed two different metrics.  

 The first measure compares observed and simulated copy number frequencies. We define a score 

named copy number frequency similarity (CnFS) as the inverse sum of squares of differences between 

observed and simulated copy number frequencies: 

𝐶!𝐹𝑆 =
1

∑ ∑ (𝑓2,<!,! − 𝑓=,<!,!)&>6
<!$'

6
!$'

 

where fs,cn,t is the frequency for copy number state cn of chromosome n in simulated data, and fo,cn,t is the 

observed frequency for the respective copy number state of chromosome n. More dissimilar copy number 

frequencies will yield a greater denominator, resulting in smaller CnFS scores, and vice versa. Since the X-

chromosome is selection-neutral (i.e. its copy number does not affect survival probability) in our simulations, 

we do not consider it to calculate karyotype similarity. 

The second method is based on chromosomal aneuploidy and heterogeneity scores as they are 

determined by AneuFinder. We define a score named karyotype measure similarity (KMS) as the inverse 

sum of squares of differences between observed and simulated karyotype measures: 

𝐾𝑀𝑆 =
1

∑ (𝐷2,! − 𝐷=,!)&6
!$' +∑ (𝐻2,! −𝐻=,!)&6

!$'
 

where Ds,n and Hs,n are the aneuploidy and heterogeneity score respectively for chromosome n in simulated 

data, and Da,n and Ha,n are the observed karyotype measures. More dissimilar karyotypes will yield a greater 

denominator, resulting in smaller KMS scores, and vice versa. As with the CnFS metric, we do not include 

the X-chromosome when calculating the similarity score. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 15, 2023. ; https://doi.org/10.1101/2023.02.14.528596doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.14.528596
http://creativecommons.org/licenses/by/4.0/


 

Bakker et al, page19 

To test whether either one or both metrics adequately quantify differences between karyotype 

landscapes, we applied both metrics to three sets of karyotypes: 1) random near-diploid karyotypes, 2) 

karyotypes with preferential copy number gains for chromosomes 4,9, 14 and 15, and 3) karyotypes of 

Mps1DK T-ALLs as determined by scWGS (Fig. S2A). Using both metrics through pairwise comparison we 

could cluster the karyotypes of the three sets together based on their similarity, with the random karyotypes 

clustering away from karyotypes that had preferential copy number changes (Fig. S2B). 

We next tested how the two metrics change as karyotype evolution occurs, and whether it can be 

used to identify a karyotype landscape that best resembles the one observed in Mps1DK T-ALLs. We ran 

simulations at a single rate of CIN (pmisseg = 0.0025) for 250 generations, applying either no selection or 

Mps1DK-based copy number selection (see section on karyotype-based selection above), and determined the 

KMS and CnFS scores with the overall Mps1 T-ALL karyotype landscape as a reference (Fig. S2C). In 

simulations without selection both scores increased for the first 50 generations and then declined to baseline 

(CnFS) or even below baseline (KMS). In simulations with selection CnFS continued to go up as generations 

passed, whereas KMS score plateaued after 125 generations and afterwards decreased in some simulations 

(Fig. S2C). Surprisingly, the simulation with the highest KMS score had the lowest CnFS score, and vice 

versa. Monosomy 15, rather than trisomy/tetrasomy 15, was highly abundant in the simulation with the 

highest KMS score. In contrast, the top CnFS simulation showed karyotypes carrying trisomy and tetrasomy 

15 (Fig. S2D). We found that the KMS metric did not consider the directionality of various aneusomies (i.e. 

monosmy and trisomy equally affect the aneuploidy score). Using the CnFS score we identified a landscape 

with the trisomy and tetrasomy 15, and additional aberrations commonly observed in Mps1DK T-ALLs. For 

all simulations we therefore used the CnFS score to quantify karyotype landscape convergence. 

 

T-ALL culture, scWGS and time-lapse imaging 

To acquire T-ALL cultures, Mps1DK mice suffering from T-ALL were sacrificed when showing signs of 

lymphoma (weight loss, laboured breathing, and other signs of anaemia). Enlarged thymuses were dissected 

and homogenized through a 70 µm filter (Greiner) to acquire single cell lymphocyte suspensions. T-ALL 

cells were cultured in RPMI-1640 GlutaMax medium containing 25 mM HEPES (Gibco), 10% FBS (Sigma), 

1% penicillin/streptomycin (Gibco), 1% non-essential amino acids (Gibco) and 55 µM b mercaptoethanol 
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according to an established protocol [39]. Cells were passaged 1:10 when population density reached 2-3 

million cells/ml, typically every 3 days. 

 

For scWGS, T-ALL cells were harvested, sorted as single cells in 96 wells plates using a Jazz FACS flow 

cytometer (BD) into nuclear lysis buffer, processed in a semi-automated fashion to acquire single cell 

sequencing libraries and sequenced in a multiplex manner on an HiSeq sequencer (Illumina) as described 

previously [40]. scWGS data was analysed using AneuFinder [17]. 

 

For time-lapse imaging, primary T-ALL cultures were transduced with retroviruses carrying H2B-GFP [31] 

using spinfection. Transduced T-ALL cells were transferred onto a Lab-Tek imaging chamber (Nunc) and 

monitored using a 40x objective on a DeltaVision time-lapse microscope (Applied Precision/GE 

Healthcare/Leica). Time-lapse data were analysed using SoftWorx (Applied Preciesion) and ImageJ software 

and quantified in Excel (Microsoft). 

 

Code availability 

All simulations were performed in R v3.5.0. The code for running CINsim and for making the figures is 

available from the GitHub repository at “bbakker1989/CINsim2”. A more detailed description of CINsim 

itself can be found in the methods section above. 
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Table S1: Characteristics of the murine Mps1DK T-ALL panel. 

ID Sample description Sex Age 
(wks) 

Thymus 
weight 
(mg) 

Spleen 
weight 
(mg) 

Total 
tumour 
mass 
(mg) 

# 
scWGS 

libs 

Aneu 
ploidy 

binwise 

Hetero 
geneity 
binwise 

Aneu 
ploidy 
whole 
chrom 

Hetero 
geneity 
whole 
chrom 

T158 Endpoint T-ALL 
Mps1f/f; p53f/f; Lck-Cre+ F 11.4 1420.0 210.0 1630.0 88 0.4477 0.2841 0.449 0.269 

T170 Endpoint T-ALL 
Mps1f/f; p53f/f; Lck-Cre+ M 11.7 1280.0 0.0 1280.0 39 0.4832 0.2242 0.464 0.201 

T257 Endpoint T-ALL 
Mps1f/f; p53f/f; Lck-Cre+ F 15.1 1410.0 210.0 1620.0 86 0.4589 0.2742 0.453 0.249 

T260 Endpoint T-ALL 
Mps1f/f; p53f/f; Lck-Cre+ M 17.1 400.0 740.0 1140.0 46 0.3319 0.1042 0.323 0.102 

T386 Endpoint T-ALL 
Mps1f/f; p53f/+; Lck-Cre+ F 18.3 1780.0 50.0 1830.0 38 0.6048 0.2620 0.624 0.274 

T384 13 week T-ALL 
Mps1f/f; p53f/f; Lck-Cre+ M 13.0 570.0 50.0 620.0 45 0.6579 0.2983 0.668 0.296 

T388 14 week T-ALL 
Mps1f/f; p53f/+; Lck-Cre+ M 14.0 650.0 50.0 700.0 41 0.4770 0.1870 0.459 0.187 

                        
    Mean 14.37 1072.9 187.1 1260.0   0.4945 0.2334 0.4914 0.2254 
    SD 2.63 526.2 257.6 470.7   0.1074 0.0686 0.1170 0.0672 
    Total         383         
                        

T302 
P3 

Cultured T-ALL (pas 3) 
Mps1f/f; p53f/f; Lck-Cre+  M 16.7 590.0 60.0 650.0 38 0.6253 0.2765 0.675 0.268 
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FIGURE LEGENDS 

Figure 1 CINsim – a model for simulating karyotype evolution in an expanding cell population.  

a. Schematic overview of the workflow to identify the most likely CIN rate. Simulations are performed 

across a range of CIN rates, stopping at a predetermined set of generations or until the population reaches 

a certain size. Inferred karyotypes are then compared with observed ones, which is quantified using a 

similarity score. The value of pmisseg that yields the greatest karyotype landscape similarity is selected as the 

most likely CIN rate. b. Schematic outline of the CINsim pipeline, with actions in yellow boxes and decision 
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moments in blue diamonds. c. Schematic timeline for T-ALL development in the Mps1DK mouse model. 

Red bars and crosses with tumour IDs represent the T-ALLs harvested at the indicated time points. The 

green bar represents the putative window of tumour evolution, estimated to be between 6 and 12 weeks. d. 

Expected population size over time at a range of division/survival rates R using either true exponential or 

logistic growth (with a carrying capacity at 10 billion cells). e. Required number of generations to reach 

99.99% of carrying capacity M (10 billion cells) at a range of division/survival rates R. This provides a range 

of 30-70 generations in which to sample the karyotype landscape. 

 

Figure 2 Chromosome copy number-based fitness results in rapid karyotype selection. a. Copy 

number frequencies in 382 T-ALL cells driven by Mps1 mutation and p53-loss as determined by scWGS of 

7 independent lymphomas. b. Parameter scan for CIN rate (pmisseg) and selection strength through survival 

(survival FC) for Mps1DK T-ALLs using karyotype similarity as quantified by CnFS scores as the output. 

Red asterisk denotes the optimal combination of parameters yielding greatest similarity. Transparency 

corresponds to the proportion of simulations yielding a viable population (n = 100 iterations per parameter 

combination. c. Chromosome copy number frequencies at the pmisseg yielding maximal CnFS. d. A 

representative example of 1,000 randomly sampled cells simulated by CINsim from the karyotype at optimal 

pmisseg and Survival FC. e. Karyotype measures (genome-wide aneuploidy and heterogeneity scores) at optimal 

pmisseg and Survival FC compared to observed measures. Non-viable simulations are included. Bars and 

whiskers indicate the mean±SEM. Significant differences in means was determined using a Wilcox signed 

rank test.  

 

Figure 3 Karyotype-dependent survival and division rates shape the karyotype landscape. a. 

Parameter scan for CIN rate (pmisseg) and selection strength through division (division FC) at optimal pmisseg 

for Mps1DK T-ALLs using karyotype similarity as output as quantified by CnFS scores. Red asterisk denotes 

the optimal combination of parameters. Transparency corresponds to the proportion of simulations yielding 

a viable population (n = 100 iterations per parameter combination). b. Chromosome copy number 

frequencies (left) and a representative example of 1,000 randomly sampled cells (right) at optimal parameters 

simulated by CINsim for the karyotype-dependent division model. c. Parameter scan for CIN rate (pmisseg) 
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and selection strength through division (division FC) at optimal pmisseg and Survival FC for Mps1DK T-ALLs 

using karyotype similarity quantified by CnFS scores as output. Red asterisk denotes the optimal 

combination of parameters. Transparency corresponds to the proportion of simulations yielding a viable 

population (n = 100 iterations per parameter combination). d. Chromosome copy number frequencies (left) 

and a representative example of 1,000 randomly sampled cells (right) at optimal parameters simulated by 

CINsim for the full model (karyotype-dependent division and survival). e-h. Maximal karyotype similarity 

(CnFS, e), time (generations, f) and karyotype measures (genome-wide aneuploidy, g; and heterogeneity 

scores, h) in viable populations compared between the three models and observed values in Mps1 T-ALLs. 

 

Fig. 4 Predicted CIN rates validated by live-cell time-lapse imaging of cultured Mps1DK T-ALLs. a. 

scWGS data from cultured T-ALL cells (cell line T302) after three passages. b. Copy number frequencies 

observed in T302 used for karyotype selection in CINsim. c. Karyotype measures (genome-wide aneuploidy 

and heterogeneity scores) for primary and cultured T-ALLs as calculated by AneuFinder. d. Parameter scan 

for CIN, Division and Survival FCs using karyotype landscape similarity quantified by CnFS as output for 

T302 simulations. Optimal parameter combination is indicated by a red asterisk. e. Copy number 

frequencies simulated by CINsim at optimal parameters. f. Representative copy number heatmap of 100 

randomly sampled cells simulated by CINsim at optimal parameters. g. Observed mis-segregation rates in 

murine primary Mps1DK T-ALL culture as determined by live-cell time-lapse imaging with predicted CIN 

rates in white triangles. 

 

Figure 5: Predicting CIN rates in human colorectal cancers suggests that whole genome 

duplication is an early event during karyotype evolution 

a. Karyotype landscapes at the optimal convergence of CIN and selection rates for four human CRC. 

CINsim simulations from diploid and tetraploid founders (left and right side, respectively) flank the observed 

karyotype landscapes as assessed by scWGS. b. Karyotype similarity as determined by CnFS scores for all 

four CRC organoids assuming diploid or tetraploid founders. c. Observed mis-segregation errors in human 

CRC organoids as determined by live-cell time-lapse imaging with predicted CIN rates in white triangles. 
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Data adapted from [15]. d. Predicted founder cell ploidy, selection rates through cell division and survival, 

and mis-segregation frequencies as compared to observed CIN rates in organoid cultures. 
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SUPPLEMENTARY FIGURE LEGENDS 

 

Figure S1 Basic properties of the CINsim model and karyotype-dependent selection. a. Expected 

mis-segregation probability per chromosome copy number over a range of CIN rates for a mouse genome. 

b. Optimisation of down-sampling strategy. 200 non-mis-segregating clones were expanded simultaneously, 

and down-sampling was performed over a range of population sizes and down-sampling fractions. At 25% 

down-sampling at a population size of 50,000 clonal survival is complete. These down-sampling parameters 

were applied in all simulations. c. Net growth rate, defined as the population fold change as a function of 

CIN rate (pmisseg), demonstrating that high CIN rates are inherently lethal within the model. d. Time (in 

generations) required to reach 10 billion cells at different values for pmisseg. Data is the same as in c, with the 

dashed line showing the theoretical minimum of 34 generations. e. Observed frequencies of copy number 

states for a chromosome are assumed to represent the most fit state for that chromosome. Cells with 

infrequently-observed chromosome copy numbers have lower karyotype scores than cells with frequently-

observed copy numbers. f. Karyotype scores for a population of cells with either randomly generated 

(random copy numbers between 1 and 8 for any chromosome) or near-diploid (cancer-like) karyotypes, with 

the maximum possible karyotype score and euploid scores indicated in blue and green vertical lines 

respectively, highlighting that the majority of viable karyotypes are less fit than a euploid karyotype. The red 

line indicates the fit to convert a karyotype score into a survival/division probability such that a euploid 

karyotype corresponds to a survival probability of 0.9 (red) or 0.5 (orange). g. The formula used to convert 

a karyotype score into a probability, with coefficients shown for a euploid karyotype survival at 0.9 and 0.5 

probability. 

 

Figure S2 Comparing karyotype landscape similarity metrics, based on aneuploidy and 

heterogeneity (KMS) or chromosome copy number frequencies (CnFS). a. Heatmaps showing the 

karyotypes on which the two metrics are tested, either random near-diploid, or near-diploid with preferential 

copy number gains (+4, +9, +14, +15), and observed Mps1DK T-ALL karyotypes. b. Karyotypes from panel 

a are compared paired-wise using the KMS and CnFS metrics, showing karyotypes from the same group 

clustering together, as do karyotypes with preferential karyotypes (simulated or Mps1DK T-ALLs). c. 
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Karyotype similarity to Mps1DK T-ALLs for simulations at pmisseg = 0.0025 over 250 generations. Top 

simulation according to either KMS or CnFS are indicated. Grey line indicates the baseline metric at the 

start of the simulation. d. Representative copy number heatmaps of the top simulations from panel c. 

 

Figure S3 Karyotype landscape of Mps1DK T-ALL. Combined scWGS data from 382 individual 

lymphoma cells from 7 independent T-ALLs, clustered by karyotype similarity, showing the consensus 

karyotype for CIN-driven T-ALL cells. Cells are clustered by karyotype similarity. 

 

Figure S4: Human karyotype mis-segregation dynamics and in vitro mis-segregation rates 

a. Karyotype landscape similarity quantified by CnFS for human CRC organoid simulations using diploid 

founders, optimal division and survival FCs and pmisseg highlighted with a red box. b. Same as in panel a, using 

tetraploid founders instead. c. Fraction of mitoses resulting in at least 1 mis-segregating chromosome as a 

function of pmisseg for human karyotypes. Data represents the mean±SD of 25,000 mitoses per value of pmisseg. 

d. The observed frequency of chromosome mis-segregation events per mitosis for human cells. Data 

represent mean of 25,000 mitoses. 
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