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Abstract

Chromosomal instability (CIN) drives the formation of karyotype aberrations in cancer cells and is a major
contributor to intra-tumour heterogeneity, metastasis, and therapy resistance. Understanding how CIN
contributes to tumour karyotype evolution requires quantification of CIN rates in primary tumours. Single-
cell sequencing-based technologies enable the detection of karyotype heterogeneity, however deducing the
actual CIN rates that underlie intra-tumour heterogeneity is still complicated. We have developed an zn-sifico
model, called CINsi, to simulate the karyotype dynamics and validated our model in a murine mouse model
for T-cell lymphoma (T-ALL) in which CIN is introduced by mutation of the Mpsl spindle assembly
checkpoint protein. CINsiz can simulate karyotype evolution within physiologically relevant timescales,
across a range of CIN rates, and across a range of karyotype-imposed survival and proliferation effects. We
tind that CINsi» can accurately predict the CIN rates in chromosomal instable mouse T-ALLs as well as in
human colon cancer organoids as observed by live-cell time-lapse imaging. We conclude that CINszz is a
powerful tool to estimate CIN rates from static single-cell DNA sequencing data by finding the most likely

path from euploid founder cell to a heterogeneous tumour cell population.
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Introduction

Chromosomal instability (CIN) is a condition in which cells display an increased frequency of chromosome
mis-segregation events in mitosis, and a hallmark feature of many cancers [1-4]. CIN will lead to cells with
an abnormal DNA content, a state called aneuploidy [5,6]. The terms aneuploidy and CIN are often used
interchangeably, but refer to different phenomena. Cells can be aneuploid without exhibiting CIN, resulting
in a cell population of identical karyotypes [6,7]. Conversely, tumour cells that display a CIN phenotype will
produce populations with cell-to-cell variability between karyotypes, termed karyotype heterogeneity. As
CIN enables the rapid loss and gain of tumour suppressors and oncogenes respectively, it facilitates tumour
cell evolution and is associated with metastasis, immune evasion, and chemotherapy resistance [1,2,8,9]. The
prognostic value of CIN is further emphasized by the fact that copy number heterogeneity driven by CIN
rather than (point) mutational heterogeneity correlates with poor survival in non-small cell lung cancer [10].
The frequency of chromosome missegregations, ze. the CIN rate, is another important determinant of
cancer cell fate as low CIN rates are insufficient to drive cancer while very high CIN-rates can be tumour
suppressive in mouse models for CIN cancer [11,12]. Therefore, methods that can estimate CIN rates in
cancer cells are essential to improve patient risk stratification.

Single-cell whole genome sequencing (scWGS) platforms have made it possible to measure
complete karyotypes of individual cells at high resolution [13—16]. Recent scWGS efforts from various labs
are revealing that cancers indeed frequently display intra-tumour karyotype heterogeneity, a strong indication
of ongoing CIN [15,17-24]. Importantly, time-lapse imaging of primary tumour cultures with matched
scWGS confirms that intratumour karyotype heterogeneity correlates well with observed CIN rates [15,19].
While time-lapse microscopy still remains the golden standard to determine the rate of CIN [6,15,17], live-
cell imaging is not possible in primary human cancers. Therefore, estimating CIN rates from scWGS data
could be a useful alternative. Recent work has attempted to do just that, although the predictive power of
the mis-segregation model was still limited [25].

While modelling karyotype evolution has been done before to understand the effects of CIN on
population growth rates and karyotype selection [25-30], none of the previously reported methods
simulated evolution towards karyotype landscapes as observed in individual tumors and inferred the

accompanying CIN rate. Furthermore, some of the models explored karyotype dynamics on timescales
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between several hundred and a few thousand cell divisions, yielding theoretical population sizes or time
parameters that greatly exceed any physiological limit.

The overcome these limitations, we developed CINsiz, an algorithm that models karyotype
evolution from an initial diploid or tetraploid karyotype in an single cell towards the karyotype landscape of
a cancer cell population as observed in primary cancer samples assessed by single cell DNA sequencing. By
modulating the rates of CIN, cell death and cell proliferation 7 sifico, CINsim finds the optimal values for
these parameters that together yield a karyotype landscape closest to the landscape observed in the primary
tumour considering a physiological number of cells and cell divisions. These optimal values represent the
shortest path to this endpoint karyotype landscape and thus represent the most likely CIN, cell death and
proliferation rates in the primary tumour. We used CINsiz to model karyotype evolution for chromosomal
instable acute T-cell lymphomas (T-ALL) derived from a mouse model in which the spindle assembly
checkpoint protein Mps1 is conditionally mutated, and for a panel of human colorectal cancers. We find
that CINsim correctly infers CIN rates as quantified experimentally by live-cell time-lapse imaging for both
tumour types. We conclude that CINszz is a powerful tool to model karyotype evolution in chromosomal

instable cancers and can be used to predict CIN rates from scWGS data.

Results

Performing forward stochastic simulations for chromosome mis-segregations in CINsim
Chromosomal instability leads to karyotype evolution and intratumour heterogeneity. As measuring
karyotype dynamics in developing tumors is challenging, earlier studies have used ## silico approaches to
simulate karyotype evolution to better understand how karyotypes evolve in a CIN background [29,30].
While these modeling studies succeeded in simulating karyotype dynamics over time, they did not consider
selective pressures for particular karyotypes as observed in cancer, nor did they incorporate physiological
limitations such as tumor latency and maximum cell numbers. We therefore developed a model, CINGsin, to
examine karyotype dynamics within biologically relevant boundaries. CINsi simulates karyotype evolution
across a range of parameters, most notably the CIN rate (defined by the chance of missegregation, puic, see
below) and karyotype-dependent cell division and survival rates, within a physiological timescale. The model

assumes that the combination of these parameters that yields a karyotype landscape that most resembles the
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landscape observed in the primary tumour corresponds to the actual path of karyotype evolution (Fig. 1a),
an approach that to our knowledge has not been attempted before.

Within CINsim, cells are defined as single entities that each have a set of homologous chromosomes
with their copy number represented by a single value, Ze. monosomy = 1, disomy = 2, trisomy = 3, etc.. Cell
populations are represented in a table with chromosomes in columns and cells in rows. During one
simulation cycle, cells divide into daughter cells and mis-segregate chromosomes according to a mis-
segregation probability (Puisg) for each individual chromosome. Cells are removed after each simulated
division if they contain nullosomies or more than 8 copies for a single chromosome, as these copy number
states are exceedingly rare in scWGS data and hence likely not compatible with physiological constraints.
Surviving cells undergo further selection by determining a karyotype fitness score for each individual cell).
To determine a karyotype fitness score, chromosome copy number frequencies as observed in single cell
whole genome sequencing (scWGS) experiments of primary tumour samples are used to determine the
contribution to cellular fitness of each individual chromosome copy number state (7.e. frequently observed
individual copy number states enhancing fitness and vice versa). Observed chromosome copy number state
frequencies from scWGS data are used as scores, which are then summed across all chromosomes to yield
a cell-specific karyotype fitness score. Karyotype fitness scores are then scaled into a probability of survival
(Psuniva)) according to the degree of selection (see Supplementary Methods). To determine whether a cell lives
or dies, a random value between 0 and 1 is drawn for each cell from a uniform distribution. A cell ‘dies’ and
is removed from the population when this value is larger than the pumiw calculated for that cell. As such,
cells that have a karyotype close to the most frequently observed karyotype in the populations and thus a
Paunivar close to 1 will most likely survive, while cells with an infrequent karyotype will likely die. Simulation
cycles are repeated until the estimated population exceeds a set threshold (discussed in more detail below),
or until a pre-set number of generations is reached. To limit the required computational power, cell
populations are downsampled to 25% whenever the simulated population size exceeds 50,000 cells. Figure
1b shows a schematic overview of the CINsiz workflow and more details on the probabilities within the
model, the effect of down-sampling on evolutionary dynamics, and estimating the true population size
without down-sampling are described in the Supplementary Materials and Fig. S1. We quantified similarity

between simulated and scWGS-observed karyotype landscapes using two methods, the karyotype measure
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similarity (KMS) and the Chromosome copy number Frequency Similarity (CnFS) score. This comparison
is described in detail in the supplementary material under ‘quantifying the similarity between karyotype
landscapes’ and revealed that the CnFS score performed best for our purposes (Fig. S2). The larger this
CnF'S value is, the better the simulation mimics the karyotype landscape observed in the primary tumour

sample.

Developing a model with physiologically relevant constraints

To test and optimise CINszz, we made use of prior-generated scWGS data from a mouse model for CIN-
driven T-ALLs, in which the spindle assembly checkpoint protein Mps1 is conditionally mutated [17,31].
Based on this model, we first defined the physiological cell division and time constraints as observed for
this mouse model. We limited the maximum number of cell divisions to 42-84 starting from a single cell
towards full-blown T-ALLs as in this model T-ALLs take 6-12 weeks to grow from ~50 mg to ~1 gram
with an average cell division time of 24 hours (Fig. 1¢c), [17,31]. In addition, we limited the maximum number
of cells in an end-point tumour to 10 billion cells, assuming a single cell mass of 1 nanogram([32,33] and an
end point tumour weight of 1-2 gram [17,31]. To get to 10 billion cells from a single cell, assuming
exponential or logistic growth, requires 33 to 67 generations, respectively (Fig. 1d-e). Based on these
physiological constraints, we limited the maximum number of CINsiz simulation cycles to a 100 when
modelling murine T-ALL, unless otherwise specified. These physiological restrictions form an important
advance over prior models, which used much larger numbers (ze. thousands) of generations for their

simulations [26-30].

Copy number-based selection yields convergence towards karyotypes observed 7z vivo

Chromosomal instability is a powerful driver of cancer cell evolution in which fitter cells are expected to
thrive and unfit cells are selected against. As evolution assumes that the fittest individuals, or cells, will
dominate the population [34], for CINsin, we assume that the frequency of a given chromosome copy
number state observed in a tumour cell population is proportional to its effect on cellular fitness. Therefore,
CINsim assumes that frequent karyotypes observed from scWGS data have a high chance of survival and

infrequent ones do not. To model karyotype evolution in Mps1PK; p53f/f Lck-Cre T-ALLs (from here
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onward referred to as Mps1PK T-ALLs; DK refers to a truncation in the Mps1 kinase domain [31]) and to
validate CINsim, we used a previously-generated scWGS dataset from 7 independent Mps1PK T-ALLs (382
total single-cells; summary in Fig. 2a, all data in S3 [17]). In this model, recurrent karyotype features include
trisomy 4/ 9, and trisomy or tetrasomy 14 /15 [31], while chromosomes 6, 7 and 8 are predominantly
disomic. The remaining autosomes show varying degrees of aneuploidy, but are mostly disomic, in line with
an ongoing CIN phenotype with little selection for a specific copy number alteration. Because our data
includes both male and female tumours, aneuploidies for X are not considered.

We then determined a ‘chromosome fitness score’ per individual chromosome, which is defined as
the relative frequency of a given chromosome copy number state compared to the other copy number states
for that chromosome in the scWGS dataset. For instance, if a chromosome would have a disomic state in
88% of the cells, 2 monosomic state in 11% of the cells and a trisomic state in 11% of the cells, the
corresponding chromosome fitness scores would be 0.88 for the disomic state, 0.11 for the monosomic
state and 0.11 for the trisomic state, respectively (Fig. Sle, top panel). The chromosome fitness scores were
then combined into a ‘single cell karyotype score’, which represents the sum of all chromosome fitness
scores for that cell. As such, cells with a high single cell karyotype score harbour karyotypes close to those
observed in the scWGS dataset and thus represent “fit’ cells (Fig. Sle, bottom panel). Karyotype scores were
then fitted to a probability of survival (pumia) such that aneuploid karyotypes yield a pumia ranging from 0.1
to 1.0, with euploid cells having a pumiwa of 0.9 assuming that aneuploid cancer cells can be more fit than
euploid cells (Fig. S1f-g). The fold change in survival rate (survival FC) was then determined as the ratio of
Psunivar O the daughter cell over the pumia of the mother cell. For instance, if the mother cell had a psmivw of
0.9, and the daughter cell a pumia of 1 this yields a survival FC of 1.11, ze. an increase of survival of 11%.
When we generated 1,000,000 random karyotypes (with individual chromosome copy numbers restricted
between 1 and 8), and near-diploid cancer-like karyotypes (with up to 4 aneusomies), we found that very
few karyotypes yielded a greater karyotype score and pumia than euploid karyotypes (Fig. S1f), illustrating
the narrow window for cancer cells to acquire karyotypes that are fitter than euploid cells.

Next, we simulated the proliferation of single founder cells in CINsi# for a maximum of 100
generations at different CIN rates (piwg) and rates of karyotype-dependent survival and compared the

simulated karyotype landscape to the landscape as observed 7 vivo in Mps1PK T-ALLs. At extreme CIN and

Bakker ez al, page7


https://doi.org/10.1101/2023.02.14.528596
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.14.528596; this version posted February 15, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

selection rates (with puisw>10-2 and survival FCs between 10 and 2) populations typically collapsed within
20 generations before karyotypes could evolved that would yield increased survival (Fig. 2b —light blue area).
The reason is two-fold: firstly, populations with high CIN are either unable to stabilize their karyotypes on
one that yields increased fitness, or evolve towards a lethal state. Secondly, the landscape of karyotypes
yielding increased fitness is a subset of all possible and viable karyotypes, meaning cells are more likely to
acquire a karyotype less fit than a euploid one. Enhanced selection will exacerbate the loss of fitness, equally
resulting in rapid population extinction. However, at survival FCs of 2 and smaller we observed evolution
beyond 20 generations, best resembling our scWGS data at survival FC 1.36 and puic, 6.21X10-3. We found
that for piw, < 1073 little to no adaptation takes place, whereas for pis, =102 karyotypes will drift towards
lethal nullisomies, leading to rapid population extinction (Fig. 2b). CIN rates between these values were
compatible with evolution towards karyotypes resembling those of Mps1PK T-ALLs, with a maximal
similarity CnFS score of 0.897 (Fig. 2b, yellow area).

While the chromosome copy number frequencies simulated by CINsiz were similar to those
observed 7 vivo as measured by scWGS (compare Fig. 2a to Fig. 2¢)., the simulated heterogeneity scores
from CINsim were somewhat higher (Fig. 2e). In addition, the number of cells required to reach this level
of karyotype landscape similarity after 100 generations were still well beyond physiological limits, with the
average population size exceeding 1010 cells. We therefore conclude that while copy number-based selection
enables the evolution of karyotypes similar to those observed 7 vivo, too many unfit cells are not yet selected

against by CINsin.

Karyotype-dependent survival and division rates both shape the karyotype landscape

To simulate the contribution of individual karyotypes to cancer cell proliferation, we converted karyotype
scores into a division probability (Pauii,) similar as done for pumia. As this alteration leads to a fraction of
cells skipping a cell division each simulation cycle, we increased the maximum number of cycles to 250, or
until 1010 cells were simulated, whichever requirement was met first. We then applied a range of paiisi. fold
changes (division FC), with the karyotype score only affecting pauisis. We found that as the division FC
decreased, simulations required fewer simulation cycles to reach 100 cells, and greatest similarity to our

scWGS data was achieved at a division FC of 2.73 (Fig. 3a) at ~150 generations. Exchanging the punia for
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a panision improved the CnFS score improved to 1.403 (Fig. 3c; compare to Fig 2b, CaFS score of 0.897 for
Psunina). The simulated karyotype landscapes were indeed more similar to 7 vivo karyotypes (compare Fig. 2a
to 3b), suggesting that karyotype-dependent division has a greater role in karyotype selection.

We next explored whether combining both karyotype-dependent division and karyotype-dependent
survival further improved the similarity between simulated and observed karyotypes, again restricting the
number of simulation cycles to 250 and the population size to 10'. For this, we simulated karyotype
evolution across a range of puiw, and division FCs at an optimal survival FC of 1.11, which was selected
because it yielded the greatest CnF'S scores on average (Fig. 3¢). Combining optimized karyotype-dependent
survival and division rates revealed that the optimal piw, for the Mps1PK model is around 6.21%10-3
corresponding to a mitotic error rate of 38.2% with a division and survival FC of 1.67 and 1.11 respectively
(Fig. 3g). While combining all three parameters reduced the CnFS score to 1.119, overall, the simulated
karyotype landscapes more closely resembled karyotypes 7# vivo (Fig. 3d), when also taking into account the
number of cell divisions required and resulting aneuploidy and heterogeneity scores (Fig. 3e-g). Together,
our simulations suggest that increasing the proliferation and survival rates of cells by 67% and 11%,
respectively, at a chromosome missegregation rate of 38.2%, yields the most efficient route towards the

karyotype landscape as observed in primary Mps1PK T-ALL.

Predicted CIN rates are concordant with rates observed in cultured murine T-ALLs

As CINsim predicted optimal CIN rates, we next compared these predicted CIN rates with the actual CIN
rates observed 7z vivo. However, as quantifying chromosome missegregation rates in a developing thymic T-
ALL is impossible with current available technology, we made use of a primary T-ALL cell line derived from
the Mps1PK model (T302; [17]). To rule out karyotype drift in culture conditions, we first single-cell
sequenced our T302 cell line 3 passages after being taken into culture. Similar to primary T-ALLs, we found
a preferential gain of chromosomes 4, 9, 14, and 15, suggesting that culturing conditions had minimal impact
on the main karyotype distribution during the first few passages. In addition, chromosomes 1, 2, 5, 11, and
18 showed gains in the majority of cells (Fig. 4a & b), all of which are common copy number changes in
our model (also see Fig. S3). Furthermore, aneuploidy and heterogeneity scores were very similar to those

observed in primary T-ALLs, indicating that our primary cultures maintain their CIN phenotype during
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these eatly passages (Fig. 4c). We next used CINsi to simulate karyotype evolution towards the karyotype
landscape we observed in cultured T302 T-ALL cells using scWGS similar across a range of division and
survival FCs and CIN-rates (puisg). We found that at division and survival FCs of 2.5 and 1.11, respectively,
and a Py of 6.21X1073 the simulated karyotype landscape most closely resembled that of primary T-ALL
cultures (Fig. 4d). While clear selection occurred for chromosomes 1, 4, 9, 14 and 15, the simulated karyotype
landscapes were more heterogeneous than observed in scWGS data (heterogeneity scores of 0.541-0.676 in
simulated data vs. 0.276 in scWGS data; Fig. 4e & f). This discrepancy could be because the selection forces
are underestimated, or the CIN rate is overestimated. To determine whether the CINsiz predicted CIN rate
was representative of the actual CIN-rates in this early passage T-ALL culture, we then quantified the
chromosome mis-segregation rate in the T302 cell line using live-cell time-lapse imaging and found that
24% of mitoses show signs of unbalanced chromosome distribution (7.e. lagging chromosomes and anaphase
bridges; Fig. 4g). This observed CIN rate is well in line with the CINszz-predicted CIN rate of 28.5-39.2%
(Fig. 4g). We conclude that CINs can simulate karyotype evolution as observed in our Mps1PK T-ALL
model and that CINsin can estimate chromosome missegregation rates reasonably well from copy number

frequency data.

CINsim predicts whole genome duplication as an early event in some, but not all CRC organoids

Finally, we wanted to validate CINsz# for a completely different, human, cancer type. For this purpose, we
re-examined scWGS data acquired from four human colorectal cancer (CRC) organoids displaying a range
of aneuploidy and heterogeneity [15]. For this, we had CINs model karyotype evolution based on the
scWGS-observed karyotype landscape for each tumour organoid originating from a single diploid founder
cells that proliferated for a maximum of 250 generations (assuming that human tumours take longer to grow
than murine tumours) or until the population exceeded 5X1010 (the estimated carrying capacity for a ~4cm?
CRC tumour). Similar to our earlier simulations for murine T-ALL, CINsi yielded karyotype landscapes
highly similar to those observed in the four tumour organoids (Figure 5a — left-side heatmaps, scWGS data
in the centre column, similarity heatmaps in Fig. S4a, CnFS scores in Fig. 5b). However, for one of the

tumour organoids (24TB, near-triploid karyotype), CINsin failed to predict the karyotype landscape.
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Previous simulations studies have suggested that whole genome duplication (WGD) can help cancer
cells to evolve while minimizing the chances for nullosomies, and that transitioning through the resulting
tetraploid intermediate state favours evolution towards a near-triploid karyotype [30]. We therefore designed
an additional simulation experiment for all four tumour organoids where we started from single tetraploid
founders. Intriguingly, tetraploid founders allowed efficient evolution towards the optimal karyotypes for
24TB, but not for the near-diploid tumour organoids as reflected in the CnFS scores (Fig. 5a-b, similarity
heatmaps in Fig. S4b). This suggests that of the four tumours only the near-triploid 24TB likely underwent
whole genome duplication early during tumorigenesis.

Finally, we compared the optimal CIN rates as calculated by CINsz# to those actually observed by
live-cell time-lapse imaging of CRC organoids ([15], Fig. 5¢-d). For tumour organoids 14T and 16T CINsin
inferred a low CIN rate (13.1-14.3%) which is well in agreement with the observed values from time lapse
imaging (17-20%), Similarly, organoids 9T and 24TB were predicted to have CIN rates of approximately
26.4-27.6%, which is reasonably close to the rates observed in culture (31-45%; Fig. 5¢c, d). Altogether, these
analyses confirm that CINsi can be used to estimate actual CIN-rates from scWGS data for murine and
human cancer and furthermore be used to determine whether cancer cells likely underwent whole genome

duplication during tumorigenesis.

Discussion
In this study we have developed a forward stochastic model, CINsi, to simulate karyotype dynamics using
single cell karyotypes quantified by scWGS to infer CIN rates in primary tumours. Previous studies have
explored arbitrary karyotypes yielding limited insights into the precise karyotype dynamics of tumours [25—
30]. Since tumours are highly diverse in their degree of aneuploidy and karyotype heterogeneity, it is key to
examine karyotype landscapes in individual tumours. Using our tumour-specific selection metric, we
succeeded in simulating evolution towards a karyotype landscape that closely resembled the karyotypes
observed in the primary tumours. We tested this approach on available data from several murine T-ALL:s
that were induced by mutation of the SAC protein Mps1 [17,31].

Unlike previously-published models, in CINsi simulations are restricted to a timescale and

population size that are physiologically relevant for the sample of interest, thus giving cells a limited window
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in which they can evolve their karyotypes. By applying karyotype selection based on scWGS data from actual
tumours, we succeeded in simulating karyotype landscapes highly similar to those observed 7 vivo and
estimated optimal chromosome mis-segregation rates to achieve these landscapes. When accounting for
both karyotype-driven effects on cell survival (pumia) and proliferation (pauiin), CINsim simulated karyotype
landscapes with similar karyotype heterogeneity as observed by scWGS analysis in primary tumour samples
and primary T-ALL cultures. Related to this, another recent modelling study using data from the same T-
ALL models [35,36] that we used, also found that both cell survival and proliferation play an important role
in shaping the karyotype landscapes of murine T-ALLs with a CIN phenotype (Ban et al., 2022).

The fact that CINsin could faithfully predict karyotype landscapes with similar aneuploidy and
heterogeneity scores suggested to us that CIN rates in cultured T-ALL cells are in the same range as the
CIN rates observed 7 vivo. Indeed, when we compared CINszz-inferred CIN rates to CIN rates observed
by time lapse imaging, we found these to be in the same range for both T-ALL as well as CRC primary
cultures, although observed CIN rates were ~2 fold higher inferred CIN rates for both primary cultures. A
possible explanation is that observed mitotic normalities will only lead to karyotype changes in ~half of the
cases as lagging chromosomes can also end up on the correct daughter cell. Therefore, these data strongly
suggest that CINsiz can infer CIN rates in primary tumours from scWGS data, an approach that, to the
best of our knowledge, has not been attempted before.

Using live-cell microscopy remains the golden standard to quantify CIN rates [6]. To do so z vivo
requires transgenic mouse lines with chromosome reporter constructs that allow for intravital time-lapse
imaging. While such an approach is impossible in patients, culturing of primary tumours, tumour organoids
or patient-derived xenografts is the next best alternative to yield insight into their CIN phenotypes. However,
even this is still technically challenging, especially when studying (rare) tumour cells that are difficult or
impossible to culture.

CIN is associated with tumour recurrence, increased chances of metastasis and therapy resistance,
and thus an important determinant of patient prognosis [10]. However, different CIN rates might come
with different prognoses. For instance, while high rates of CIN are found to suppress tumorigenesis,
medium CIN rates are associated with more aggressive tumour development in mouse models [11,12,17],

probably in a tissue specific manner. Therefore, faithfully assessing CIN rates in primary tumours might
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significantly improve treatment stratification. With rapidly decreasing costs of scWGS, CINszz could thus

become an important diagnostic tool to estimate the CIN levels in tumour biopsies to help stratify treatment.

Methods

Basic characteristics of the CINszm chromosome mis-segregation model

For the first cycle in our simulations, we consider a cell to have a euploid karyotype (i.e. 40 chromosomes
in a murine cell, 46 chromosomes in a human cell; with two copies of each chromosome, except for male
sex chromosomes). Chromosomes have a defined copy number state (for euploid cells this number is 2)
that will be inherited into two emerging daughter cells, unless a mis-segregation event occurs. The likelihood
of a single chromosome copy mis-segregating is given by i, (hence p). Consider a chromosome pair, ze. a
copy number of 2 (diploidy). During S-phase both chromosomes are duplicated, leading to 4 sister
chromatids. During mitosis, both duplicated chromosomes will be split and one copy for each duplicated
chromosome will segregate into one of the daughter cells. Sister chromatids are bound unidirectionally by
microtubules and pulled towards the nearest centrosome emitting the attached microtubule. A sister
chromatid can be mis-segregated if it is instead pulled towards the opposite centrosome together with the
sister chromatid (non-disjunction), or lags behind in the anaphase plane because of improper binding by
microtubules (eg. no binding or merotelic attachment). Given probability p of a single chromatid mis-
segregating, the probability of no mis-segregation is 1 — p. More generally, the probability of any scenario of

chromatids mis-segregating can obtained using the binomial theorem:

n

(@-py+pr=> (1) a-pkprt

k=0
where # is the total of chromatids considered. For instance, for a chromosome with copy number 2, the
probabilities of 0, 1 and 2 copies mis-segregating are given by (1 — p)2, 2p(1 — p) and p? respectively:
2

2
(1-p)+p)° = (k) (1 —p)kp?* =

k=0
(3) 1-p)°p* %+ (i) 1-p'p?> '+ (;) (1-p)?p* 2=

p*+ 2(1-pp+ (1 —-p)
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However, in this simplified example two simultaneous mis-segregation events (p?) do not result in
disproportionate inheritance, as both mis-segregations cancel each outer out (Ze. both daughters acquire a
single chromosome copy). In addition, as suggested by Laughney et al., p? will be negligible for small values
of p. From this, the probability of a mis-segregation event occurring is then given by 1 minus the probability
of no mis-segregation: 1 — (1 — p)2. In this example the exponent of 2 is equal to the number of copies in
the chromosome set at the time of mitosis onset. We can therefore generalize the weighted probability of
any chromosome set mis-segregating (Duegrd) to be:
Pweighted = 1= (1 —p)Tenrom

where p 1S puise a0d 70n 1 the number of copies for that chromosome set at the time mitosis starts. This
means that with increasing copy numbers a set has an increased probability of mis-segregating (Fig. STA).
To determine whether a chromosome set given puumes mis-segregates in the simulation, a value is drawn
from a uniform distribution (0, 1) and must be smaller than pyges. Note that if 7 15 0, Pueiges Will also be
0,as 1-(1—-p°=1-1=0, effectively forbidding the mis-segregation of non-existing chromosome sets.
Also note that the mis-segregation probabilities of each chromosome set are independent of the copy
number state of other chromosome sets. If a mis-segregation occurs, a single copy number gain and loss is
then randomly assigned to the daughter cells. While in principle this method allows for the mis-segregation
of multiple chromosome sets in one mitosis, single chromosome set mis-segregation events are more likely
at physiological values for piseg.

After every round of cell division, the viability of the individual daughters is assessed. In karyotype
selection-neutral simulations, cells will die only if they lose all copies of a chromosome set (#ur = 0) or
exceed the maximum number of allowed copies (%, > 8). Viable cells then enter into a next round of cell
division. In simulations with karyotype-based selection, these two boundaries still hold true, and the
probability of cell survival is determined based on karyotype scores.

In the base model, all cells will undergo cell division simultaneously once per generation. To
introduce asynchronous cell divisions, we have implemented a probability of division (puiin) that can either
be constant for all cells or be dependent on karyotypic fitness (see karyotype fitness below). Prior to cell
division, a value is drawn from the uniform distribution [0,1] per cell. If the drawn value is greater than or

equal to paiima cell will not enter mitosis but will enter subsequent selection based on copy number states
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and karyotype fitness. Individual cells are labelled at the start of the simulation with a unique identifier that
progeny will inherit. This enables quantification of clonal abundance over subsequent generations when the

founder population is greater than 1.

Effects of down-sampling on simulation results and rates of evolution

Simulating millions of independent karyotypes requires a considerable amount of computational power and
memory. The required time to simulate such large cell populations becomes impractical to study karyotype
dynamics when adjusting many combinations of simulation parameters. As we also intend CINsi to be a
tool that biologists can use on desktop computers or laptops to study simple evolutionary systems, we
reduce the simulated population through random sampling whenever the total number of cells exceeds a
particular threshold. However, the act of random down-sampling could result in the well-described
‘bottleneck effect’. Regular and substantial down-sampling of the population may therefore affect the rate
of karyotype evolution. To test how strongly down-sampling affects simulation results, we performed
simulations at various rates of down-sampling (a range of population size thresholds and down-sampling
fractions). We allowed 200 non-mis-segregating clones to propagate synchronously for 50 generations
(without the possibility of cell death) and determined the final fraction of clones still represented. We found
that a down-sampling rate of 25% whenever the population exceeds 50,000 consistently results in 100%
clonal survival while keeping simulation time per generation (Fig. S1B). These down-sampling parameters

were therefore applied in all simulations.

Estimating a biologically relevant timeframe for tumour evolution

Tumour cells in principle have the capacity to proliferate indefinitely, but are of course limited by availability
of nutrients, oxygen, and space in their niche. In terms of population growth, tumour cells will therefore
not display exponential growth but logistic growth instead. This environment-induced limit on the
population size is termed the ‘carrying capacity’. In the described Mps1PK T-ALL mouse model, this carrying
capacity is the maximum number of cells that can exist in a single tumour, which we estimate to be 1010
cells. This is inferred from 1-2 gram tumours at an estimated lymphocyte weight of 1 ng [38], although this

does not take into account possible dissemination from the original tumour site into peripheral blood or the
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bone marrow. Mathematically, the population size P at #+7 given the size at #, and considering the carrying

capacity of the environment, is defined as follows:

P, P, +1rP (1 —Pt>
= X —_—
t+1 t TTr M

where ris the low-density growth rate (a balance between survival and death), and M is the carrying capacity.
Starting from a single clone at # = 0 we calculated the number of generations required to reach 99.999%
saturation at M for a range of values of r [0.5,1] reflecting different rates of tumour cell survival and cell
division (Fig. 1d, ). We found that saturation is reached at a minimum of 30-34 generations and up to 52-
69 generations for lower proliferation rates. This sets an estimated upper time limit for the development of

murine T-ALLs between the order of 10 to 100 divisions.

Simulation measures

After every round of cell division and selection we determine several population measures, including the
survival rate, estimated true population size, and karyotype measures such as aneuploidy and heterogeneity
scores based on AneuFinder [17]. The survival rate is defined as the fraction of daughter cells that survive
after selection. Because of down-sampling the true number of cells is estimated from the simulated

population size by multiplying with the down-sampling factor to the power of the down-sampling index:

1 i
Nirye = Ngim X (?)

where Ny, is the true cell count, N, is the number of simulated cells after one round of cell division and
selection, f1s the down-sampling factor (default of 0.25), and 7 is the down-sampling index (initial value is
0). The value of 7 will increase by 1 after each down-sampling event.

After selection, we calculate the degree of aneuploidy (D) and heterogeneity (H) of the population.
These measures are based on the AneuFinder package[17]. For a population of N cells with T'chromosomes,

the aneuploidy score is defined as:

N T
1
N_EZ lcne — el
n=1t=1

where ¢,;1s the copy number of chromosome #in cell #, and ¢ is the euploid copy number of chromosome

¢ (2 by default). The heterogeneity score is defined as:
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T S
1
H = EZES.mS’t
t=1s=0

where z, is the number of cells with copy number state s for chromosome # and S is the total number of
copy number states present in the population. Importantly, 7, is ordered for each chromosome, such that
M=04 = Ms=1,, = Ms=2,. This way a population with identical copy numbers for all chromosomes, whether they
are considered aneuploid or not, will have a heterogeneity score of 0. In addition to the heterogeneity

measure, we calculate the fraction of cells deviating from the modal copy number.

Karyotype-based survival and division probability

To apply copy number-based karyotype selection we first made a matrix containing the observed frequencies
of each chromosome copy number in 382 Mps1 T-ALL cells, with the copy numbers 0 to 9 in rows and the
chromosomes 1 to X in columns. To ensure the X-chromosome does not affect karyotype fitness we
assigned equal frequencies for the viable copy number states 1 to 8 (ze. 1/8 = 0.125) and 0 to the lethal
states (0 and >8). To determine the karyotype fitness score Syof a given karyotype, the chromosome copy
numbers are matched to the corresponding chromosome copy number in the copy number frequency
matrix obtained from scWGS data. For example, if chromosome 1 is observed at copy numbers 2 and 3 in
scWGS at frequencies of 0.2 and 0.8 respectively, a karyotype within the simulation that has chromosome
1 at copy number 2 will score 0.2 for that chromosome, or 0.8 if chromosome 1 were at copy number 3.
This process is repeated for all chromosomes, and all scores are summed into a single karyotype fitness
score S In this way, cells with commonly observed copy numbers for certain chromosomes will obtain a
greater fitness scores than cells with uncommon chromosome copy numbers. To assign a probability of
survival to Sywe first determined Sy for 1,000,000 randomly generated near-diploid karyotypes (at most 4 to
5 aneuploid chromosomes) to ensure the scores follow a symmetric distribution (Fig. S1F). We next fitted
these scores to the formula 2 X Sf+ 4, where @ and & are the slope and intercept coefficients determined
using the Im() function in R, such that euploid karyotypes had a probability of 0.9 (unless otherwise indicated
in the text), and the highest possible score yielded a probability of 1. For this fit we found @ = 0.04049, b =
0.4041 (Fig. S1G).

In summary, the survival or division probability of any karyotype is calculated as follows:
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N
1) S = 2 CSp
n=1

2) Psurvival = @ X Sf +b
where Syis the karyotype fitness score, N is the total number of chromosome sets, ¢, is the assigned copy

number score of chromosome 7, and where 2 and 4 are coefficients with the fitted values as described above.

Quantifying similarity between karyotype landscapes
When comparing multiple CIN rates and to determine at which rate the simulated karyotype landscape most
resembles the observed landscape, we needed a metric that determines the similarity between the simulated
landscapes. To this end, we developed two different metrics.

The first measure compares observed and simulated copy number frequencies. We define a score
named copy number frequency similarity (CnFS) as the inverse sum of squares of differences between

observed and simulated copy number frequencies:

1

C,FS =
" 11\{:1 Zgrly:l(fs,cn,n - fo,cn,n)2

where f ., is the frequency for copy number state ¢z of chromosome # in simulated data, and f,., is the
observed frequency for the respective copy number state of chromosome #. More dissimilar copy number
frequencies will yield a greater denominator, resulting in smaller CnFS scores, and vice versa. Since the X-
chromosome is selection-neutral (ze. its copy number does not affect survival probability) in our simulations,
we do not consider it to calculate karyotype similarity.

The second method is based on chromosomal aneuploidy and heterogeneity scores as they are
determined by AneuFinder. We define a score named karyotype measure similarity (KMS) as the inverse

sum of squares of differences between observed and simulated karyotype measures:

1

KMS =
ﬁzl(Ds,n - Do,n)2 + Zﬁzl(Hs,n - Ho,n)2

where D, and H,, are the aneuploidy and heterogeneity score respectively for chromosome # in simulated
data, and D,, and H,, are the observed karyotype measures. More dissimilar karyotypes will yield a greater
denominator, resulting in smaller KIMS scores, and vice versa. As with the CnFS metric, we do not include

the X-chromosome when calculating the similarity score.
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To test whether either one or both metrics adequately quantify differences between karyotype
landscapes, we applied both metrics to three sets of karyotypes: 1) random near-diploid karyotypes, 2)
karyotypes with preferential copy number gains for chromosomes 4,9, 14 and 15, and 3) karyotypes of
Mps1PK T-ALLs as determined by scWGS (Fig. S2A). Using both metrics through pairwise comparison we
could cluster the karyotypes of the three sets together based on their similarity, with the random karyotypes
clustering away from karyotypes that had preferential copy number changes (Fig. S2B).

We next tested how the two metrics change as karyotype evolution occurs, and whether it can be
used to identify a karyotype landscape that best resembles the one observed in Mps1PK T-ALLs. We ran
simulations at a single rate of CIN (puiw; = 0.0025) for 250 generations, applying either no selection or
Mps1PK-based copy number selection (see section on karyotype-based selection above), and determined the
KMS and CnFS scores with the overall Mps1 T-ALL karyotype landscape as a reference (Fig. S2C). In
simulations without selection both scores increased for the first 50 generations and then declined to baseline
(CnFS) or even below baseline (KMS). In simulations with selection CnFS continued to go up as generations
passed, whereas KMS score plateaued after 125 generations and afterwards decreased in some simulations
(Fig. S2C). Surprisingly, the simulation with the highest KMS score had the lowest CnFS score, and vice
versa. Monosomy 15, rather than trisomy/tetrasomy 15, was highly abundant in the simulation with the
highest KMS score. In contrast, the top CnFS simulation showed karyotypes carrying trisomy and tetrasomy
15 (Fig. S2D). We found that the KMS metric did not consider the directionality of various aneusomies (Ze.
monosmy and trisomy equally affect the aneuploidy score). Using the CnFS score we identified a landscape
with the trisomy and tetrasomy 15, and additional aberrations commonly observed in Mps1PX T-ALLs. For

all simulations we therefore used the CnFS score to quantify karyotype landscape convergence.

T-ALL culture, scWGS and time-lapse imaging

To acquire T-ALL cultures, Mps1PK mice suffering from T-ALL were sacrificed when showing signs of
lymphoma (weight loss, laboured breathing, and other signs of anaemia). Enlarged thymuses were dissected
and homogenized through a 70 um filter (Greiner) to acquire single cell lymphocyte suspensions. T-ALL
cells were cultured in RPMI-1640 GlutaMax medium containing 25 mM HEPES (Gibco), 10% FBS (Sigma),

1% penicillin/streptomycin (Gibco), 1% non-essential amino acids (Gibco) and 55 pM B mercaptoethanol
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according to an established protocol [39]. Cells were passaged 1:10 when population density reached 2-3

million cells/ml, typically every 3 days.

For scWGS, T-ALL cells were harvested, sorted as single cells in 96 wells plates using a Jazz FACS flow
cytometer (BD) into nuclear lysis buffer, processed in a semi-automated fashion to acquire single cell
sequencing libraries and sequenced in a multiplex manner on an HiSeq sequencer (Illumina) as described

previously [40]. scWGS data was analysed using AneuFinder [17].

For time-lapse imaging, primary T-ALL cultures were transduced with retroviruses carrying H2B-GFP [31]
using spinfection. Transduced T-ALL cells were transferred onto a Lab-Tek imaging chamber (Nunc) and
monitored using a 40x objective on a DeltaVision time-lapse microscope (Applied Precision/GE
Healthcare/Leica). Time-lapse data were analysed using SoftWorx (Applied Preciesion) and Image] software

and quantified in Excel (Microsoft).

Code availability
All simulations were performed in R v3.5.0. The code for running CINsiz and for making the figures is
available from the GitHub repository at “bbakker1989/CINsim2”. A more detailed description of CINsin

itself can be found in the methods section above.
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Table S1: Characteristics of the murine Mps1PX T-ALL panel.

Ace Thymus  Spleen t’I;:‘:)alr # Aneu Hetero 1?2:; i(::irto
Sample description Sex g weight weight umou scWGS ploidy geneity ploidy 8 Y
(wks) (mg) (mg) mass libs binwise binwise whole whole
b g (mg) chrom  chrom
Endpoint T-ALL
T158 Mps1£/£ p53€/£ Lek-Cre+ F 11.4 1420.0 210.0 1630.0 88 0.4477 0.2841 0.449 0.269
Endpoint T-ALL
T170 Mps1£/£ p53€/£ Lek-Cre+ M 11.7 1280.0 0.0 1280.0 39 0.4832 0.2242 0.464 0.201
Endpoint T-ALL - - -
T257 Mps1£/£ p53€/£ Lek-Cre+ F 15.1 1410.0 210.0 1620.0 86 0.4589 0.2742 0.453 0.249
Endpoint T-ALL
T260 Mps1£/£: pS3£/E Lek-Cre+ M 17.1 400.0 740.0 1140.0 46 0.3319 0.1042 0.323 0.102
Endpoint T-ALL
T386 Mps1/£ p53£/+; Lek-Cre+ F 18.3 1780.0 50.0 1830.0 38 0.6048 0.2620 0.624 0.274
13 week T-ALL _ -
T384 Mps1£/£: pS3£/E Lek-Cre+ M 13.0 570.0 50.0 620.0 45 0.6579 0.2983 0.668 0.296
14 week T-ALL -
T388 Mps1€/6 p53/+; Lek-Cre+ M 14.0 650.0 50.0 700.0 41 0.4770 0.1870 0.459 0.187
Mean | 14.37 1072.9 187.1 1260.0 0.4945 0.2334 0.4914 0.2254
SD 2.63 526.2 257.6 470.7 0.1074 0.0686 0.1170 0.0672
Total 383
T302 | Cultured T-ALL (pas 3) - -
P3 Mps1£/£ p53€/£; Lek-Cre+ M 16.7 590.0 60.0 650.0 38 0.6253 0.2765 0.675 0.268
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FIGURE LEGENDS

Figure 1 CINsim — a model for simulating karyotype evolution in an expanding cell population.

a. Schematic overview of the workflow to identify the most likely CIN rate. Simulations are performed

across a range of CIN rates, stopping at a predetermined set of generations or until the population reaches

a certain size. Inferred karyotypes are then compared with observed ones, which is quantified using a

similarity score. The value of pi, that yields the greatest karyotype landscape similarity is selected as the

most likely CIN rate. b. Schematic outline of the CINsi pipeline, with actions in yellow boxes and decision
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moments in blue diamonds. c. Schematic timeline for T-ALL development in the Mps1PX mouse model.
Red bars and crosses with tumour 1Ds represent the T-ALLs harvested at the indicated time points. The
green bar represents the putative window of tumour evolution, estimated to be between 6 and 12 weeks. d.
Expected population size over time at a range of division/survival rates R using either true exponential or
logistic growth (with a carrying capacity at 10 billion cells). e. Required number of generations to reach
99.99% of catrying capacity M (10 billion cells) at a range of division/sutvival rates R. This provides a range

of 30-70 generations in which to sample the karyotype landscape.

Figure 2 Chromosome copy number-based fitness results in rapid karyotype selection. a. Copy
number frequencies in 382 T-ALL cells driven by Mps1 mutation and p53-loss as determined by scWGS of
7 independent lymphomas. b. Parameter scan for CIN rate (puisg) and selection strength through survival
(survival FC) for Mps1PK T-ALLs using karyotype similarity as quantified by CnFS scores as the output.
Red asterisk denotes the optimal combination of parameters yielding greatest similarity. Transparency
corresponds to the proportion of simulations yielding a viable population (n = 100 iterations per parameter
combination. c. Chromosome copy number frequencies at the piq, yielding maximal CnFS. d. A
representative example of 1,000 randomly sampled cells simulated by CINszz from the karyotype at optimal
Puissgand Survival FC. e. Karyotype measures (genome-wide aneuploidy and heterogeneity scores) at optimal
Pmissg and Survival FC compared to observed measures. Non-viable simulations are included. Bars and
whiskers indicate the mean®*SEM. Significant differences in means was determined using a Wilcox signed

rank test.

Figure 3 Karyotype-dependent survival and division rates shape the karyotype landscape. a.
Parameter scan for CIN rate (i) and selection strength through division (division FC) at optimal pisse
for Mps1PK T-ALLs using karyotype similarity as output as quantified by CaFS scores. Red asterisk denotes
the optimal combination of parameters. Transparency corresponds to the proportion of simulations yielding
a viable population (n = 100 iterations per parameter combination). b. Chromosome copy number

frequencies (left) and a representative example of 1,000 randomly sampled cells (right) at optimal parameters

simulated by CINsiz for the karyotype-dependent division model. c. Parameter scan for CIN rate (Puise)
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and selection strength through division (division FC) at optimal py, and Survival FC for Mps1PK T-ALLs
using karyotype similarity quantified by CnFS scores as output. Red asterisk denotes the optimal
combination of parameters. Transparency corresponds to the proportion of simulations yielding a viable
population (n = 100 iterations per parameter combination). d. Chromosome copy number frequencies (left)
and a representative example of 1,000 randomly sampled cells (right) at optimal parameters simulated by
CINsim tor the full model (karyotype-dependent division and survival). e-h. Maximal karyotype similarity
(CnFS, e), time (generations, f) and karyotype measures (genome-wide aneuploidy, g; and heterogeneity

scores, h) in viable populations compared between the three models and observed values in Mps1 T-ALLs.

Fig. 4 Predicted CIN rates validated by live-cell time-lapse imaging of cultured Mps1PX T-ALLs. a.
scWGS data from cultured T-ALL cells (cell line T302) after three passages. b. Copy number frequencies
observed in T302 used for karyotype selection in CINGsiz. c. Karyotype measures (genome-wide aneuploidy
and heterogeneity scores) for primary and cultured T-ALL:s as calculated by AneuFinder. d. Parameter scan
for CIN, Division and Survival FCs using karyotype landscape similarity quantified by CnFS as output for
T302 simulations. Optimal parameter combination is indicated by a red asterisk. e. Copy number
frequencies simulated by CINsiz at optimal parameters. f. Representative copy number heatmap of 100
randomly sampled cells simulated by CINsiz at optimal parameters. g. Observed mis-segregation rates in
murine primary Mps1PK T-ALL culture as determined by live-cell time-lapse imaging with predicted CIN

rates in white triangles.

Figure 5: Predicting CIN rates in human colorectal cancers suggests that whole genome
duplication is an early event during karyotype evolution

a. Karyotype landscapes at the optimal convergence of CIN and selection rates for four human CRC.
CINsim simulations from diploid and tetraploid founders (left and right side, respectively) flank the observed
karyotype landscapes as assessed by scWGS. b. Karyotype similarity as determined by CnFS scores for all
four CRC organoids assuming diploid or tetraploid founders. c. Observed mis-segregation errors in human

CRC organoids as determined by live-cell time-lapse imaging with predicted CIN rates in white triangles.
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Data adapted from [15]. d. Predicted founder cell ploidy, selection rates through cell division and survival,

and mis-segregation frequencies as compared to observed CIN rates in organoid cultures.
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SUPPLEMENTARY FIGURE LEGENDS

Figure S1 Basic properties of the CINszm model and karyotype-dependent selection. a. Expected
mis-segregation probability per chromosome copy number over a range of CIN rates for a mouse genome.
b. Optimisation of down-sampling strategy. 200 non-mis-segregating clones were expanded simultaneously,
and down-sampling was performed over a range of population sizes and down-sampling fractions. At 25%
down-sampling at a population size of 50,000 clonal survival is complete. These down-sampling parameters
were applied in all simulations. c. Net growth rate, defined as the population fold change as a function of
CIN rate (Puicy), demonstrating that high CIN rates are inherently lethal within the model. d. Time (in
generations) required to reach 10 billion cells at different values for pic,. Data is the same as in ¢, with the
dashed line showing the theoretical minimum of 34 generations. e. Observed frequencies of copy number
states for a chromosome are assumed to represent the most fit state for that chromosome. Cells with
infrequently-observed chromosome copy numbers have lower karyotype scores than cells with frequently-
observed copy numbers. f. Karyotype scores for a population of cells with either randomly generated
(random copy numbers between 1 and 8 for any chromosome) or near-diploid (cancer-like) karyotypes, with
the maximum possible karyotype score and euploid scores indicated in blue and green vertical lines
respectively, highlighting that the majority of viable karyotypes are less fit than a euploid karyotype. The red
line indicates the fit to convert a karyotype score into a survival/division probability such that a euploid
karyotype corresponds to a survival probability of 0.9 (red) or 0.5 (orange). g. The formula used to convert
a karyotype score into a probability, with coefficients shown for a euploid karyotype survival at 0.9 and 0.5

probability.

Figure S2 Comparing karyotype landscape similarity metrics, based on aneuploidy and
heterogeneity (KMS) or chromosome copy number frequencies (CnFS). a. Heatmaps showing the
karyotypes on which the two metrics are tested, either random near-diploid, or near-diploid with preferential
copy number gains (+4, +9, +14, +15), and observed Mps1PK T-ALL karyotypes. b. Karyotypes from panel
a are compared paired-wise using the KMS and CnFS metrics, showing karyotypes from the same group

clustering together, as do karyotypes with preferential karyotypes (simulated or Mps1PK T-ALLs). c.
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Karyotype similarity to Mps1PK T-ALLs for simulations at pyiw, = 0.0025 over 250 generations. Top
simulation according to either KMS or CnFS are indicated. Grey line indicates the baseline metric at the

start of the simulation. d. Representative copy number heatmaps of the top simulations from panel c.

Figure S3 Karyotype landscape of Mps1PX T-ALL. Combined scWGS data from 382 individual
lymphoma cells from 7 independent T-ALLs, clustered by karyotype similarity, showing the consensus

karyotype for CIN-driven T-ALL cells. Cells are clustered by karyotype similarity.

Figure S4: Human karyotype mis-segregation dynamics and zz vitro mis-segregation rates

a. Karyotype landscape similarity quantified by CnFS for human CRC organoid simulations using diploid
founders, optimal division and survival FCs and pic, highlighted with a red box. b. Same as in panel a, using
tetraploid founders instead. c. Fraction of mitoses resulting in at least 1 mis-segregating chromosome as a
function of P, for human karyotypes. Data represents the mean*SD of 25,000 mitoses per value of P
d. The observed frequency of chromosome mis-segregation events per mitosis for human cells. Data

represent mean of 25,000 mitoses.
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