

Signalling pathway crosstalk stimulated by L-proline drives differentiation of mouse embryonic stem cells to primitive-ectoderm-like cells

Hannah J. Glover^{1,a*}, Holly Holliday^{1,b,c}, Rachel A. Shparberg¹, David Winkler²⁻⁴, Margot Day¹, Michael B. Morris^{1*}

¹ School of Medical Sciences, University of Sydney, Australia

² Department of Biochemistry and Chemistry, Latrobe Institute for Molecular Science, Latrobe University, Australia

³ Monash Institute of Pharmaceutical Sciences, Monash University, Australia.

⁴ Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, UK

* Corresponding author emails: m.morris@sydney.edu.au, hannahjglover@gmail.com

Key words: L-proline, amino acid, primitive ectoderm, cell signalling, mouse embryonic stem cell, growth factor

Running Head: L-proline signalling in EPL cells

Current Address:

^a Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY

^b Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Australia

^c School of Clinical Medicine, University of New South Wales, Australia

1 **Summary Statement**

2 L-proline acts as growth factor to modulate phosphorylation of the Mapk, Pi3k, Fgf and mTor
3 signalling pathways to drive embryonic stem cells to primitive ectoderm-like cells.

4

5 **Abstract**

6

7 The amino acid L-proline exhibits novel growth factor-like properties during development
8 - from improving blastocyst development to driving neurogenesis *in vitro*. Addition of 400 μ M L-
9 proline to self-renewal medium drives mouse embryonic stem cells (ESCs) to a transcriptionally
10 distinct pluripotent cell population - early primitive ectoderm-like (EPL) cells - which lies between
11 the naïve and primed states. EPL cells retain expression of pluripotency genes, upregulate
12 primitive ectoderm markers, undergo a morphological change and have increased cell number.

13 These changes are facilitated by a complex signalling network hinging on the Mapk,
14 Fgfr, Pi3k and mTor pathways. We use a factorial experimental design coupled with linear
15 modelling and Bayesian regularised neural networks to understand which signalling pathways
16 are involved in the transition between ESCs and EPL cells, and how they underpin changes in
17 morphology, cell number, apoptosis, proliferation and gene expression. This approach allows for
18 consideration of where pathways work antagonistically or synergistically.

19 Modelling showed that most properties were affected by more than one inhibitor, and
20 each inhibitor blocked specific aspects of differentiation. These mechanisms underpin both
21 progression of stem cells across the *in vitro* pluripotency continuum and serve as a model for
22 pre-, peri- and post-implantation embryogenesis.

23 **Introduction**

24 Amino acids are present in the high micromolar to millimolar range in mammalian
25 reproductive fluid (Aguilar and Reyley, 2005; Cetin *et al.*, 2005; Harris *et al.*, 2005) and are
26 required to support normal embryo development *in vivo* (Van Winkle, 2001; Van Winkle *et al.*,
27 2006; Bazer, Johnson and Wu, 2015). Consistent with this, supplementation of culture media
28 with selected amino acids or certain groups of amino acids can be used to improve
29 preimplantation development (Gardner and Lane, 1993; Lane and Gardner, 1997; Harris *et al.*,
30 2005). For example, L-proline is a conditionally non-essential amino acid present in tubal fluid at
31 ~140 µM in mice, ~150 µM in humans, ~100 µM in rabbits, 50-300 µM in sheep and ~200 µM in
32 cows (Aguilar and Reyley, 2005; Cetin *et al.*, 2005). *In vitro*, L-proline helps improve bovine
33 oocyte maturation rates (Bahrami *et al.*, 2019), promotes development to the blastocyst stage in
34 the mouse system when added only during fertilization (Treleaven *et al.*, 2021), and improves
35 development when added to mouse embryo culture following fertilization (Morris *et al.*, 2020).

36 In pluripotent mouse embryonic stem cells (ESCs), which are an *in vitro* model of
37 mammalian embryo development, the addition of L-proline, either in purified form or as part of
38 HepG2 conditioned medium (MEDII), stimulates differentiation to a second pluripotent
39 population known as early primitive ectoderm-like cells (EPL cells) (Rathjen *et al.*, 1999;
40 Washington *et al.*, 2010); also known as proline-induced cells (PiCs) (Casalino *et al.*, 2011;
41 Comes *et al.*, 2013; D'Aniello *et al.*, 2015, 2017; Patriarca *et al.*, 2021; Minchiotti *et al.*, 2022)).
42 EPL cells/PiCs are metastable, as they revert to naïve ESCs upon removal of L-proline (Rathjen
43 *et al.*, 1999; Washington *et al.*, 2010; Casalino *et al.*, 2011).

44 The transition to EPL cells recapitulates many of the features of the conversion of inner
45 cell mass (ICM) cells in the 4.5 *days post coitum* (dpc) mouse embryo to pluripotent primitive
46 ectoderm by ~5.5 dpc, with the primitive ectoderm now primed to gastrulate and form the 3
47 multipotent germ layers (Snow, 1977; Washington *et al.*, 2010; Rivera-Pérez and
48 Hadjantonakis, 2015). These similarities include the following: EPL cells are more primed to
49 differentiate than ESCs, and represent a pluripotent population akin to formative pluripotency
50 (Smith, 2017; Hoogland and Marks, 2021; Wang *et al.*, 2021; Glover *et al.*, 2022). The
51 expression of the ICM marker *Rex1* in EPL cells is reduced, and there is increased expression
52 of the primitive ectoderm markers *Fgf5* and *Dnmt3b* (Rathjen *et al.*, 1999; Washington *et al.*,
53 2010; Glover *et al.*, 2022). Colonies undergo a change in morphology from round and domed to
54 flattened monolayers with irregular borders, and cell-cycle time is reduced from 11 h to 8 h
55 (Stead *et al.*, 2002; Washington *et al.*, 2010; Glover *et al.*, 2022). The continued presence of L-
56 proline in culture then drives EPL cells to neural cells by a series of embryologically relevant

57 intermediate cell types (Rathjen *et al.*, 2002; Shparberg *et al.*, 2019).

58 In ESCs, L-proline is taken up via the Snat2 (*S/c38a2*) transporter (Tan *et al.*, 2011). The
59 mechanisms by which L-proline stimulates development/differentiation include (i) acute
60 activation of signalling pathways, (ii) epigenetic remodelling and (iii) regulation of intracellular
61 metabolism (Washington *et al.*, 2010; Casalino *et al.*, 2011; Comes *et al.*, 2013; D'Aniello *et al.*,
62 2015, 2017; Tan *et al.*, 2016). Collectively, these mechanisms modify a range of emergent
63 properties that drive developmental progression and differentiation (Washington *et al.*, 2010)
64 and are consistent with L-proline behaving as a growth factor (Morris *et al.*, 2020).

65 The mTorc1 pathway is required for L-proline-mediated improvement in mouse
66 preimplantation development and L-proline also activates the Erk1/2 and Akt pathways during
67 this time (Morris *et al.*, 2020). When added to ESCs, L-proline acutely activates the same
68 signalling pathways (Lonic, 2006; Washington *et al.*, 2010), as well as the p38 pathway (Tan *et*
69 *al.*, 2016) and selective inhibition of mTorc1 (with rapamycin) or Mek1/Erk1/2 (with U0126) or
70 P38 (with SB203580 or PP2) prevents upregulation of the EPL cell marker *Dnmt3b* (Lonic,
71 2006; Washington *et al.*, 2010). On the other hand, inhibition of the Pi3k/Akt pathway with
72 LY294002 prevents the morphology change and increase in proliferation but allows the
73 associated gene-expression changes to occur (Lonic, 2006). Thus, a number of signalling
74 pathways are involved in the transition from ESCs to EPL cells, selective inhibition of pathways
75 blocks different aspects of the transition, and collectively this shows that L-proline activates a
76 complex signalling network. However, these experiments did not comprehensively measure
77 changes in a range of emergent properties and marker expression to better understand this
78 complex signalling.

79 To explore this, we employed inhibitors of Mek1, Fgf receptor (Fgfr), Pi3k, mTorc1 and
80 P70-S6 kinase (S6k) alone and in all combinations. The results of these factorial experiments
81 were analysed by linear, multiple interaction and Bayesian regularised neural network with a
82 Gaussian prior (BRANNGP) modelling to generate complementary models that avoid issues of
83 model overfitting (Woolf *et al.*, 2005; Burden and Winkler, 2008; Winkler and Burden, 2012; Epa
84 *et al.*, 2013) and reveal synergistic and antagonistic effects. This approach is most commonly
85 used to determine drug interactions (Sorokin *et al.*, 2018; Julkunen *et al.*, 2020; Panina *et al.*,
86 2020) and is becoming increasingly used in stem cell biology (Chang and Zandstra, 2004;
87 Prudhomme, Duggar and Lauffenburger, 2004; Audet, 2010; Jakobsen *et al.*, 2014; Ireland *et*
88 *al.*, 2020).

89

90 **Results**

91
92 *ESC-to-EPL cell transition alters gene expression and emergent properties*

93 ESCs were maintained in either 330 or 1000 U/mL LIF and then directed to differentiate
94 into EPL cells by addition of 400 μ M L-proline for 6 days. In addition, cells were allowed to
95 undergo spontaneous differentiation in the absence of LIF (**Fig. 1A**). ESCs grown in 330 or
96 1000 U/mL LIF maintained their dome-shaped colonies and showed no differences in
97 morphology score. Colony morphology changed significantly in the presence of L-proline to
98 flattened epithelial-like colonies, whereas cells allowed to spontaneously differentiate underwent
99 a more robust morphology change (**Fig. 1A-B**), consistent with these cells undergoing
100 differentiation beyond the EPL cell stage (Tan *et al.*, 2011; Minchiotti *et al.*, 2022).

101 Cell number, apoptosis and proliferation were quantified at days 2, 4 and 6 of
102 differentiation. Cell number was normalized to cells growing in 1000 U/mL LIF. Cells growing in
103 330 U/mL LIF + 400 μ M L-proline increased cell number by 1.7-fold at day 2 (**Fig. 1C**),
104 consistent with previous results for ESCs grown in 1000 U/mL LIF + L-proline (Washington *et*
105 *al.*, 2010). No significant changes in proliferation or apoptosis were observed (**Fig. 1D-E**). Cells
106 undergoing spontaneous differentiation without LIF or L-proline were dying by day 6: Cell
107 number was reduced by 7.8-fold (**Fig. 1C**), apoptosis increased 4.2-fold at day 4 and 2.3-fold at
108 day 6 (**Fig. 1D**), and proliferation decreased 2.0-fold at day 6 (**Fig. 1E**), suggesting deficiencies
109 in medium formulation and therefore a reduced capacity to support growth of differentiating
110 cells.

111 After 6 days of differentiation, gene expression was profiled, focusing on pluripotency
112 genes *Rex1* and *Oct4*, primitive ectoderm markers *Dnmt3b*, *Fgf5*, *Lefty2* and *Otx2*, and the
113 mesendoderm marker *Mixl1*. There were no differences in the expression of any of the genes
114 between ESCs grown in 330 or 1000 U/mL LIF (**Fig. 1Fi**). Cells grown in 330 U/mL LIF + 400
115 μ M L-proline had comparable expression of *Rex* and *Oct4*, indicating maintenance of
116 pluripotency, and the expression of the mesendoderm marker, *Mixl1*, also did not change.
117 However, the expression of all primitive ectoderm markers increased (**Fig. 1Fii**). Cells allowed
118 to spontaneously differentiate had a gene expression profile consistent with rapid, unregulated
119 differentiation: Reduced expression of *Rex1* and *Oct4*, a wave of expression of *Dnmt3b*, *Fgf5*,
120 and *Otx2* but with *Dnmt3b* expression returning to baseline and that of *Otx2* decreased by day
121 6. The expression of *Lefty2* remained strongly reduced throughout, while *Mixl1* expression
122 increased significantly (**Fig. 1Fiii**).

123

124 *L-proline-mediated phosphorylation of signalling pathway intermediates*

125 We examined the phosphorylation status of signalling pathway intermediates drawn from
126 the Stat3, Fgf, Mek1/Erk1/2, Pi3k/Akt, mTor, p38 and Pkc pathways (**Fig. 2A**), each of which is
127 known to play a role in pluripotency and/or differentiation of ESCs (Kunath *et al.*, 2007; Lanner
128 and Rossant, 2010; Washington *et al.*, 2010; Cherepkova, Sineva and Pospelov, 2016; Tan *et*
129 *al.*, 2016).

130 Naïve, self-renewing ESCs were switched from 1000 U/mL LIF to EPL cell medium
131 containing 330 U/mL LIF + 400 µM L-proline and the phosphorylation status of the pathway
132 intermediates was quantified by western blot over the short (0-12 h) and long term (1-6 days).
133 Of these, only phosphorylation of Fgfr increased significantly (from 12 h onwards) (**Fig. 2B-C**).
134 The P38 and Pkc pathways, including the downstream Hsp27, which had previously been
135 shown to be altered by addition of L-proline (Tan *et al.*, 2016), were not detected in ESCs ± L-
136 proline, under our conditions (**Fig. S1**). L-proline acutely increased phosphorylation of Erk1/2
137 and Stat3^{Y705} in these conditions (**Fig. 2D**).

138
139 *Signalling pathway inhibition illustrates pathway cross-talk*

140 The effect of signalling pathway inhibitors, alone or in combination, on L-proline-
141 mediated pathway activity was assessed using the following: (i) Mapk pathway using the
142 Mek1/2 inhibitor U0126 (U) (Favata *et al.*, 1998); (ii) Fgfr pathway using receptor antagonist
143 SU5402 (S) (Mohammadi *et al.*, 1997); (iii) Pi3k/Akt pathway using the Pi3k inhibitor LY294002
144 (L) (Vlahos *et al.*, 1994); (iv) mTorc1 pathway using the mTorc1 complex inhibitor rapamycin (R)
145 (Sabers *et al.*, 1995); (v) mTorc1 pathway at the downstream kinase, S6k, using the inhibitor
146 PF-4708671 (P) (Pearce *et al.*, 2010).

147 An initial dose of U0126 suppressed L-proline-mediated Erk1/2 (downstream of Mek1)
148 phosphorylation only for 6 h, after which phosphorylation returned to that seen with L-proline
149 only (**Fig. 2E, Fi**). Furthermore, any second dose of U0126 failed to suppress Erk1/2
150 phosphorylation for longer than 6 h (**Fig. 2Fi**), suggesting Erk1/2 phosphorylation was no longer
151 controlled by Mek1.

152 None of the other 4 pathway inhibitors by themselves suppressed Erk1/2
153 phosphorylation on their own (**Fig. 2Fi**). However, extended suppression of Erk1/2
154 phosphorylation occurred up to 10 h when SU5401 or LY294002 or PF-4708671 were added
155 after the initial addition of U0126 (**Fig. 2Fi**), suggesting Erk1/2 phosphorylation was now
156 controlled by crosstalk involving an Fgfr/Pi3k/S6k axis.

157 Rps6 phosphorylation shows similar interplay between pathways. pRps6

158 phosphorylation was suppressed for up to 10 h by rapamycin and LY294002 (0.26 ± 0.02 SEM,
159 **Fig. 2E**), consistent with it lying on the mTorc1/S6k signalling axis (**Fig. 2A**). However, its
160 phosphorylation was also temporarily suppressed by inhibition of Mek1, Fgfr, and Pi3k, or
161 combinations of Mek1 inhibition followed by Fgfr inhibition, or Mek1 inhibition followed by Pi3k
162 inhibition (**Fig. 2Fii**). These results point to complex, dynamic changes in signalling pathway
163 activity over time in the presence of L-proline.

164

165 *Factorial experiments reveal relationships between emergent properties*

166 To further our understanding of pathway interactions and their effect of emergent
167 properties, a factorial experiment was designed for the differentiation of ESCs to EPL cells over
168 6 days in the presence of all possible combinations of the five inhibitors (**Fig. 3A**). On days 2
169 and 4, cells were counted, replated, and samples were collected to quantify apoptosis and cell
170 proliferation by flow cytometry. At day 6, in addition to measurements of apoptosis and cell
171 proliferation, cells were imaged for colony morphology and cell number, and qPCR was used to
172 quantify changes in the expression of marker genes.

173 At day 2, the 8 conditions which contained both LY294002 and rapamycin had poor
174 viability: Cell number had reduced by 90%, apoptosis had increased by more than 50%, and
175 proliferation reduced by nearly 40% (**Fig. S2**). By day 4, very few cells were present. These
176 conditions were considered to be non-viable, and were not considered in the day 4 and 6
177 measurements.

178 To get a broad understanding of relationships between emergent properties and gene
179 expression, a correlation matrix was generated using all data from all viable inhibitor
180 combinations (**Fig. S3A**). Expected correlations were observed, such as (i) the positive
181 correlation between cell number and proliferation, (ii) the negative correlation between cell
182 number and apoptosis across the 6 days of transition to EPL cells, and (iii) the coupling of
183 expression of pluripotency markers *Oct4* and *Rex1* and EPL-cell markers *Dnmt3b* and *Fgf5*.
184 However, more nuanced correlations were observed, including positive correlation (i) between
185 proliferation (from day 4 onwards) and morphology, and (ii) between proliferation and
186 expression of differentiation-related genes (*Dnmt3b*, *Fgf5*, and *Mixl1* at days 4 and 6). A high
187 correlation was also observed between expression of the primitive ectoderm marker *Lefty2* and
188 the pluripotency markers *Oct4* and *Rex1*.

189

190 *Results of data modelling help deconvolute complex signalling networks*

191 To understand which signalling pathways or pathway combinations drive changes in
192 gene expression and emergent properties, we generated multiple linear regression (MLR) and
193 BRANNGP models (**Fig. 3B-Ei, Fig. 4i**). The coefficients underlying the fit of each model were
194 used to indicate the direction and extent each inhibitor contributes to the response (**Fig. 3B-Eii,**
195 **Fig. 4ii**). We also ran MLR with two- interaction terms to determine if inhibitors were acting
196 independently (*additive*), *synergistically* or *antagonistically*. For models with interaction terms,
197 the coefficients for the inhibitors alone are added to the coefficient for the interaction term. An
198 *additive* effect is seen where there are significant effects for the inhibitors alone but no
199 significant interaction effect. A *synergistic* effect is seen where there are significant effects for
200 two inhibitors alone, and a significant interaction effect in the same direction. An *antagonistic*
201 effect is seen where there are significant effects for two inhibitors alone, and a significant
202 interaction effect in the opposite direction.

203 MLR fits with a higher adjusted R^2 and a lower standard error (σ) value generally denote
204 a better fit to the data (**Table S1**). An F-test was used to determine if MLR with interaction terms
205 resulted in a significantly improved fit, taking into account the increased number of parameters
206 (**Table S2**).

207 BRANNGPs were utilised to provide robust, potentially nonlinear models that may better
208 explain structure-activity relationships without issues around overfitting and overtraining (Burden
209 & Winkler, 2008; Winkler & Burden, 2012). Most data sets had improved R^2 values when
210 modelled using BRANNGP (**Table S1**). The average R^2 value for BRANNGPs was 0.64 ± 0.07
211 compared to 0.48 ± 0.07 for MLR models or 0.53 ± 0.09 for MLR models with two-way
212 interaction terms. Only apoptosis and proliferation models had R^2 values for BRANNGP models
213 similar to the MLR models. BRANNGP models with improved fit suggest additional nonlinear
214 factors are involved. However, the nature and magnitude of these factors cannot as yet be
215 deconvoluted from the BRANNGP models.

216

217 *Morphology is regulated by Erk1/2, Fgfr and mTor*

218 The morphology data set (**Fig. S2**) was used to train standard MLR, MLR with two-way
219 interaction terms, and BRANNGP models (**Fig. 3Bi**). The standard MLR model shows that
220 addition of SU5402 or U0126 prevented changes in colony morphology normally expected in the
221 presence of L-proline (**Fig. 3Bii**), resulting in cells which retained a domed, ESC-like
222 appearance. An F-test indicated that MLR with two-way interaction terms provided a better fit
223 than the MLR (**Table S2**). This improved model showed that SU5402, U0126 and rapamycin all

224 prevent morphology change (**Fig. 3Biii**). There was no significant interaction between SU5402
225 and U0126 indicating that this effect was largely additive. There was a significant interaction
226 between SU5402 and rapamycin mediating morphology change. This interaction coefficient was
227 reversed, indicating an antagonistic effect.

228
229 *All inhibitors decrease cell number and proliferation*

230 Modelling was performed on the cell number and proliferation data from all inhibitor
231 combinations. MLR produced robust fits for both cell number and proliferation with R^2 of 0.69
232 and 0.79 respectively (**Fig. 3C-Di**). All inhibitors significantly reduced cell number and
233 proliferation, with rapamycin having the largest effect (**Fig. 3C-Dii**).

234 For both cell number and proliferation, the MLR with two-way interactions had an
235 improved R^2 (0.79 and 0.83 respectively), and the F-test showed significant improvement (**Table**
236 **S2**). The individual effects were retained for each inhibitor, but multiple interaction effects were
237 noted: i) U0126 and PF-4708671 were antagonistic in both cell number and proliferation
238 models; ii) antagonism between rapamycin and PF-4708671 in the cell number model; iii)
239 LY294002 and rapamycin were strongly synergistic for both cell number and proliferation
240 models (**Fig. 3C-Diii**). An alternate model, which attempts to overcome non-normality of the
241 proliferation input data by dividing the data into octiles, exhibited a very similar results to the
242 linear model (**Fig. S4**).

243

244 *Apoptosis is differentially altered by each inhibitor*

245 Apoptosis data generated an adequate fit using the MLR (R^2 of 0.38), but this was
246 significantly increased using the MLR with two-way interactions (R^2 of 0.58 and F-test $P < 0.05$,
247 **Fig. 3Ei, Table S2**). In the standard MLR model, SU5402 reduced apoptosis and LY294002 and
248 rapamycin increased apoptosis (**Fig. 3Eii**). In the MLR with two-way interactions the individual
249 effects between LY294002 and rapamycin were lost, and instead there was a strong synergistic
250 effect between these inhibitors. The day 2 parameter was also significant. In conjunction with
251 the reduction in proliferation, this explains the early cellular lethality of the combination of
252 LY294002 and rapamycin, which does not affect the inhibitors when used alone. The apoptosis
253 model retained the significant reduction in apoptosis with SU5402, and also showed that
254 apoptosis was increased with PF-4708671 (**Fig. 3Eiii**). While both SU5402 and PF-4708671
255 reduce apoptosis, the reduction in proliferation (Fig. 3Cii) resulted in a net decrease in cell
256 number (Fig. 3Dii). U0126 did not affect apoptosis in the presence of L-proline (**Fig. 3Eii**),
257 indicating that the decrease in cell number elicited by U0126 is due entirely to a decrease in

258 proliferation (**Fig. 3Cii, Dii**).

259

260 *Gene expression is regulated by intracellular signalling*

261 Modelling was also performed to assess how inhibitors impacted gene expression at day
262 6 (**Fig. 4, S5**). MLR for *Dnmt3b*, *Fgf5* and *Lefty2* had a robust fit ($R^2 > 0.5$, **Fig. 4C-Ei**). Models
263 for *Rex1*, *Oct4*, *Mixl1* and *Otx2* expression had poor to modest fit (R^2 of 0.24, 0.21, 0.18 and
264 0.31 respectively, **Fig. 4A-Bi, F-Gi**). None of these models were significantly improved by
265 switching to two-way interaction effect models ($F > 0.05$, **Table S2, Fig. S6**).

266 The MLR fit showed that U0126 decreased expression of the pluripotency genes *Rex1*
267 and *Oct4* (**Fig. 4Aii, Bii**). The decrease was modest when compared to the strong
268 downregulation of these genes for cells undergoing spontaneous differentiation (**Fig. 1Fiii**).
269 There was significant U0126 and SU5402 interaction in the *Rex1* MLR model with interaction
270 terms, suggesting some antagonism (**Fig. 4Aiii**).

271 Inconsistent changes in expression patterns occurred frequently for the four EPL
272 markers – *Dnmt3b*, *Fgf5*, *Lefty2* and *Otx2*. For example, SU5402 decreased expression of
273 *Dnmt3b* and *Fgf5* (**Fig. 4C-Dii**) but increased expression of *Lefty2* and *Otx2* (**Fig. 4E-Fii**).
274 LY294002 increased *Dnmt3b* expression (**Fig. 4Cii**) but reduced that of *Lefty2* (**Fig. 4Eii**).
275 Rapamycin decreased *Dnmt3b*, *Fgf5* and *Otx2* expression (**Fig. 4C-Dii, Fii**) but did not alter that
276 of *Lefty2*. PF4708671 only reduced *Lefty2* expression (**Fig. 4Eii**). These results highlight that
277 the expression of individual genes associated with the identity of EPL cells are associated with
278 complex signalling pathway control. In all cases, 2 or 3 of the tested pathways regulated
279 expression of each gene. The MLR models for the mesendoderm gene *Mixl1* were not robust
280 enough to make strong biological statements (R^2 of 0.18, **Fig. 4Gi**).

281

282 *Functional assay establishes how inhibitor treated cells fall on the pluripotency continuum*

283 This lack of consensus in the inhibitors driving expression of EPL marker genes was
284 further exemplified by data showing that many inhibitor combinations suppressed some but not
285 all primitive ectoderm genes (**Fig. S5**). To address this, we ran a functional assay to identify the
286 pluripotency capacity of each inhibitor combination: After 6 days of differentiation in the
287 presence of L-proline and the various inhibitors, cells were allowed to spontaneously
288 differentiate as embryoid bodies (EBs). Samples were collected on days 2, 3 and 4 and qRT-
289 PCR was used to quantify expression of the primitive streak marker *Brachyury*. In the absence
290 of any inhibitors, cells which were more naïve, like ESCs, took 4 days to upregulate *Brachyury*,
291 compared to more primed cells, like EPL cells, which upregulated expression of *Brachyury* at

292 day 2 (**Fig. S7A**). Across all inhibitor treated conditions, conditions which contained U0126 or
293 LY294002 tended to upregulate *Brachyury* expression earlier, and conditions which contained
294 rapamycin tended to upregulate *Brachyury* later (**Fig. 7Bii**). We also assessed the correlations
295 between the slope of *Brachyury* upregulation to the other genes. Significant positive correlations
296 were noted between *Brachyury* upregulation and *Dnmt3b*, *Fgf5* and *Mixl1*, but not the
297 pluripotency markers *Rex1* and *Oct4*, or the more recently adopted primitive ectoderm markers
298 *Lefty2* and *Otx2* (**Fig. S3B**).

299
300 **Discussion**

301 *Signalling pathways active during ESC differentiation to EPL cells*

302 This study used small molecule inhibitors to help elucidate the role of various signalling
303 pathways that mediate self-renewal, differentiation, and other emergent properties such as
304 colony morphology, cell number, proliferation, and apoptosis during the transition of ESCs to
305 EPL cells (**Fig. 5A**); *viz* Mapk (using the Mek1 inhibitor U0126), Fgfr (using the antagonist
306 SU5402), Pi3k (using the Pi3k inhibitor LY294002) and mTor pathways (using the mTorc1
307 complex inhibitor rapamycin, or the S6k inhibitor PF-4708671). These signalling pathways are
308 acutely activated in response to L-proline (**Fig. 2D**) or have been previously associated with L-
309 proline-mediated differentiation to EPL cells (Lonic, 2006; Washington *et al.*, 2010; Tan *et al.*,
310 2016).

311 In the absence of inhibitors, L-proline increased pathway phosphorylation (**Fig. 5B**),
312 including acute phosphorylation of $\text{Stat3}^{\text{Y705}}$ and Erk1/2 within 10 min (**Fig. 2D-E**), which
313 suggests L-proline rapidly induces changes in pathways known to be important for
314 maintenance/loss of pluripotency (Stavridis, Collins and Storey, 2010; Huang *et al.*, 2014). Over
315 the course of differentiation, Fgfr phosphorylation increased but with no change in the canonical
316 intermediate Erk1/2 (**Fig. 2B-C**), suggesting Fgfr is likely signalling through other intermediates
317 such as Pkc, Pi3k, Src, Stat1, P38 and Jnk (Dailey *et al.*, 2005).

318 When signalling pathway inhibitors were used in the presence of L-proline, signalling
319 pathway cross talk led to maintenance of Mapk signalling: Erk1/2, immediately downstream of
320 U0126 target Mek1, had decreased phosphorylation in the presence of this inhibitor but only out
321 to 6 h. A second dose of U0126 did not extend this time (**Fig. 2Fi**). This effect is not unique to
322 U0126: Erk1/2 phosphorylation is only transiently reduced when a variety of Mek1 inhibitors
323 (PD98059, PD184352, PD0325901 and U0126) is added to the culture medium of ESCs (Chen
324 *et al.*, 2015). Together these results indicate it's unlikely the reduced Erk1/2 phosphorylation in

325 the presence of U0126 is due to loss of inhibitor activity but rather due to Erk1/2
326 phosphorylation now being maintained by pathway cross-talk, which bypasses Mek1. Since
327 reduced phosphorylation of Erk1/2 in the presence of U0126 could be extended out to 10 h by
328 also including the Fgfr inhibitor SU5402 or the Pi3k inhibitor LY294002, one possibility is that
329 the Fgfr-Pi3k-Akt axis now sustains L-proline-mediated phosphorylation of Erk1/2 (Dailey *et al.*,
330 2005). This complex network with multiple inputs speaks to the importance of Erk1/2 signalling
331 to avoid widespread apoptosis, as seen in *Erk1^{-/-}/Erk2^{-/-}* ESCs (Chen *et al.*, 2015).

332

333 *Modelling reveals inhibitors which alter aspects of the transition of ESCs to EPL cells*

334 We designed a factorial study to assess how signalling pathways influence a variety of
335 properties during the L-proline-mediated transition from ESCs to EPL cells (**Fig. 5**). No single
336 inhibitor was sufficient to explain all the changes in gene expression and emergent properties
337 during ESC differentiation to EPL cells. Rather, our modelling suggests that these signalling
338 pathways have discrete roles within this transition, likely supported by signalling pathway cross-
339 talk.

340 From the combinational experiments, we note the following for each pathway inhibitor:

341 (i) When the Mapk/Erk1/2 pathway was inhibited by U0126, cells didn't undergo the
342 morphological change associated with the presence of L-proline (**Fig. 3Aii**) even though
343 expression of *Rex1* and *Oct4* was decreased (**Fig. 4A-B, Fig. 5**). The decrease in *Rex1* and
344 *Oct4* was less than cells undergoing spontaneous differentiation (**Fig. 1Fiii**) but indicates
345 disruption of the pluripotency gene regulatory network (Kim *et al.*, 2008).

346 (ii) When the Fgfr was inhibited by SU5402, cells again didn't undergo a morphology
347 change (**Fig. 3Bii**) but instead the expression of the EPL-cell markers, *Dnmt3b* and *Fgf5*, which
348 is increased in the presence of L-proline alone, was blocked. In contrast, expression of EPL-cell
349 markers *Otx2* and *Lefty2* were increased in the presence of this inhibitor (**Fig. 4C-F, Fig. 5**).
350 This suggests that Fgfr inhibition at least partially blocks the transition.

351 (iii) When the Pi3K/Akt pathway was inhibited with LY294002, the L-proline-mediated
352 change in colony morphology was still permitted, as was the increased expression of EPL-cell
353 markers, *Dnmt3b* and *Fgf5*. The L-proline-mediated increase in *Otx2* expression was also
354 allowed but the L-proline-mediated increase in *Lefty2* expression was suppressed. An early
355 increase in *Lefty2* expression is associated with the transition of ESCs to EPL cells and
356 reduction in expression as pluripotency is lost (Harvey *et al.*, 2010) but these results suggest

357 increased *Lefty2* expression is not obligatory for the transition.

358 (iv) When mTorc1 was inhibited by rapamycin, ESCs underwent the L-proline-mediated
359 change in morphology but the increased expression of *Dnmt3b*, *Fgf5* and *Otx2* was suppressed.
360 This suppressed gene expression confirms previously published data (Washington *et al.*, 2010).
361 but in that work rapamycin also blocked the morphology change, which we did not observe.
362 Earlier protocols generated EPL cells using 1000 U/mL LIF and L-proline, which inconsistently
363 upregulated expression of the primitive ectoderm marker *Fgf5* (Washington *et al.*, 2010). Here,
364 we reduced LIF to 330 U/mL LIF, which results in robust upregulation of *Fgf5* expression
365 (Harvey *et al.*, 2010; Glover *et al.*, 2022). These results highlight the sensitive balance between
366 the cytokine LIF and the growth-factor-like properties of L-proline in promoting directed
367 differentiation.

368 (v) When the S6k branch of the mTorc1 pathway was inhibited with PF-4708671 it, like
369 rapamycin, failed to prevent the L-proline-mediated change in colony morphology but unlike
370 rapamycin it did not suppress the L-proline-mediated increase in the expression of the EPL-cell
371 markers *Dnmt3b*, *Fgf5* and *Otx2* (**Fig. 4C-D, F, Fig. 5**). This suggests that L-proline's
372 stimulation of expression of these markers requires the 4ebp1 branch of the mTorc1 pathway.

373 All 5 inhibitors reduced cell number and reduced the rate of proliferation compared to L-
374 proline (**Fig. 3Cii, Dii**) but different effects were seen on apoptosis (Fig. 3Eii). Neither inhibition
375 of the Mek/Erk1/2 pathway with U0126 nor S6k with PF-4708671 affected apoptosis, indicating
376 that reduced cell numbers result from reduced proliferation. However, inhibition of mTorc1 with
377 rapamycin increased apoptosis, supporting a role that mTorc1 signalling via the 4ebp1 branch is
378 anti-apoptotic (Nawroth *et al.*, 2011; Pons *et al.*, 2011; Yellen *et al.*, 2011). This branch is also
379 pro-proliferative, and may explain why rapamycin compromises proliferation more than PF-
380 4708671 (Dowling *et al.*, 2010; Nawroth *et al.*, 2011) (**Fig. 3Dii**). LY294002 led to an increase in
381 apoptosis in addition to the decrease in proliferation, which is in line with Pi3k as a strong
382 mediator of cell survival and progression (Chang *et al.*, 2003; Takahashi, Murakami and
383 Yamanaka, 2005; Tsurutani *et al.*, 2005; Yu and Cui, 2016). Fgfr signalling produces cell- and
384 state-specific effects on apoptosis and proliferation (Dailey *et al.*, 2005), and reduced apoptosis
385 observed with SU5402 provides further evidence for this. Collectively, these results highlight
386 biological system complexity and make it difficult, if not impossible, *a priori* to determine
387 outcomes even when a single inhibitor is used.

388

389 *Primitive ectoderm markers reflect spatial and temporal contributions to the EPL-cell transition*

390 We selected four primitive ectoderm markers to assess how cells transitioned to EPL
391 cells: *Dnmt3b*, *Fgf5*, *Lefty2* and *Otx2*. We found that these primitive ectoderm genes had similar
392 expression patterns in differentiation to EPL cells (**Fig. 1F**) but behaved contrarily in inhibitor
393 treated conditions (**Fig. 5B**).

394 In standard culture conditions, L-proline treated cells had significantly increased
395 expression of *Dnmt3b* and *Otx2* across days 2 to 6 and *Fgf5* at days 4 and 6, whereas *Lefty2*
396 expression was transiently increased at days 2 and 4 (**Fig. 1Fii**). Two of the inhibitors – SU5402
397 and LY294002 – has gene expression profiles which were less straightforward: cells treated
398 with SU5402 had decreased *Dnmt3b* and *Fgf5* and increased *Lefty2* and *Otx2*, and cells treated
399 with LY294002 had increased *Dnmt3b* expression but decreased *Lefty2* expression (**Fig. 4, 5**).

400 This difference may be due to different gene functions (i.e. *Dnmt3b* as a
401 methyltransferase), or may reflect temporal or spatial expression patterns. We measured gene
402 expression at day 6, which likely missed the transient peak of *Lefty2* expression as seen in our
403 data (**Fig. 1Fii**), and in previous studies using EPL cells derived from embryoid bodies MEDII
404 which also showed transient upregulation of *Lefty2* from days 1 to 4 (Harvey *et al.*, 2010). This
405 also explains why there were negative correlations between *Dnmt3b* and morphology changes
406 (**Fig. S3A**). The return to baseline of *Lefty2* also makes sense considering significant positive
407 correlations with stably-expressed pluripotency genes *Rex1* and *Oct4* (**Fig. 1Fii, S3A**).

408 To help assess ambiguity between markers, we included a functional assay which
409 measured *Brachyury* expression as cells underwent spontaneous differentiation (**Fig. 7A**). We
410 noted that conditions containing LY294002 tended to upregulate *Brachyury* earlier than average
411 (**Fig. 7B**), suggesting that they were further along the pluripotency continuum and more like EPL
412 cells. Conditions containing SU5402 tended to upregulate expression of *Brachyury* after 3 days,
413 placing them in the middle of the continuum. Rapamycin tended to produce the naivest cells,
414 though this may be skewed by lack of data from the non-viable conditions. No significant
415 changes in expression of *Mixl1* were observed either in the absence or presence of the
416 inhibitors (**Fig. 1Fii, 4G**), indicating that cells did not form mesendoderm.

417

418 *Modelling reveals synergy and antagonism in emergent properties*

419 Biological complexity is further highlighted when two or more inhibitors were used
420 together. Two-way interaction effects were used to determine if these pathways were
421 independent (no interaction effects), antagonistic (where blocking two pathways simultaneously
422 leads to a damped effect compared to the sum of the two inhibitors individually) or synergistic
423 (where blocking two pathways simultaneously leads to an increased effect compared to the sum

424 of the two inhibitors individually). The emergent property results, but not the gene expression
425 results, produced models which indicated interactions between pathways (**Table S2**).

426 Antagonistic effects were noted for Mek1 and S6k, where the combination of inhibitors
427 U0126 and PF-4708671 attenuated the inhibition of both cell number and proliferation compared
428 with the use of each of the inhibitors alone (**Fig. 3C-Diii**, **Fig. 5**); the combination of mTor and
429 S6k inhibitors (rapamycin and PF-4708671) attenuated the inhibition of cell number (**Fig. 3Ciii**);
430 and the combination of inhibitors for Fgfr and mTor (SU5402 and rapamycin) promoted the
431 change in colony morphology, which the individual inhibitors prevented (**Fig. 3Biii**). These
432 pathways likely coalesce on common downstream intermediates or transcription factors, or
433 suppress other pathways through cross-talk (Mendoza, Er and Blenis, 2011; Aksamitiene,
434 Kiyatkin and Kholodenko, 2012; Wang *et al.*, 2013; Arkun, 2016).

435 Addition of both LY294002 and rapamycin resulted in strong synergistic effects that
436 reduce cell number and proliferation and increase apoptosis (**Fig. 3C-Eiii**, **Fig. 5**) resulting in
437 non-viable cells. Both pathways have been shown to individually reduce proliferation and
438 increase apoptosis (Fingar *et al.*, 2002; Jirmanova *et al.*, 2002; Murakami *et al.*, 2004; Gross,
439 Hess and Cooper, 2005), and result in large defects in cell survival when used in combination in
440 T cells, glioma cells, and small cell lung cancer cells (Breslin *et al.*, 2005; Takeuchi *et al.*, 2005;
441 Tsurutani *et al.*, 2005).

442

443 *Understanding L-proline mediated signalling in early embryogenesis*

444 We have shown that L-proline activates several signalling pathways including the Mapk,
445 Fgfr, Akt and mTor pathways to facilitate the transition of ESCs to EPL cells (**Fig. 5**). While
446 changes in cell signalling are generally thought to initiate changes in cell function, it is possible
447 that other mechanisms of L-proline-mediated differentiation, including metabolic flux and
448 epigenetic changes, may alter the cellular landscape to facilitate further changes in cell
449 signalling. This has been seen previously with autocrine Fgf4 activation of the Fgfr as cells
450 undergo differentiation (Kunath *et al.*, 2007).

451 The L-proline-mediated transition of ESCs to EPL cells demonstrates the progression of
452 cells from a naïve to primed state in the pluripotency continuum (D'Aniello *et al.*, 2017; Morgani,
453 Nichols and Hadjantonakis, 2017), and recapitulates aspects of peri- and post-implantation
454 embryogenesis. The results are consistent with other growth factor-like role for L-proline
455 including facilitating preimplantation embryo development (Morris *et al.*, 2020; Treleaven *et al.*,
456 2021), and differentiation of pluripotent cells towards neuroectoderm (Rathjen *et al.*, 1999, 2002;

457 Pelton *et al.*, 2002; Harvey *et al.*, 2010; Washington *et al.*, 2010; Shparberg *et al.*, 2019). L-
458 proline mediated differentiation provides a useful model for studying embryonic development *in*
459 *vitro*.

460

461 **Methods**

462

463 *Cell culture*

464 All cell culture was performed at 37 °C, 5% CO₂ in a humidified incubator. D3 ESCs
465 (Doetschman *et al.*, 1985) were maintained in ESC self-renewal medium containing DMEM
466 (Sigma), 10% FBS (AusGeneX), 1000 U/mL LIF (Neuromics), 0.1 mM β-merceptoethanol (β-
467 Me; Sigma) and Pen/Strep consisting of 50 U/mL penicillin (Sigma), and 50 µg/mL streptomycin
468 (Sigma). Cells were grown as a monolayer, and passaged using Trypsin-EDTA (Sigma), and
469 replated at 2,000-20,000 live cells/cm² (Glover *et al.*, 2022).

470 ESCs were differentiated to EPL cells by culturing 20,000 cells/cm² in EPL cell medium
471 (90% DMEM, 10% FBS, Pen/Strep, 0.1 mM β-Me, 330 U/mL LIF, 400 µM L-proline, Sigma) for
472 6 days, with passage every two days. As controls, ESCs were also cultured for 6 days with LIF
473 reduced to 330 U/mL LIF, or allowed to spontaneously differentiate in without LIF or L-proline
474 (Glover *et al.*, 2022).

475 The effect of signalling pathway inhibitors (alone and in combination) on the transition of
476 ESCs to EPL cells was tested (**Fig. 2E-F**). The inhibitors were as follows: Mek1 inhibitor U0126
477 (U, 5 µM, Selleck); Fgfr inhibitor SU5402 (S, 5 µM, MedChem Express); Pi3k inhibitor
478 LY294002 (L, 5 µM, Selleck); mTorc1 inhibitor rapamycin (R, 10 nM, Selleck) and S6k inhibitor
479 PF-4708671 (P, 10 µM, MedChem Express). All inhibitors were solubilized in DMSO, and a
480 vehicle control containing the maximum concentration (0.22%) of DMSO was included.

481 At days 2, 4 and 6, differentiating ESCs treated with 1000 u/mL LIF or 330 U/mL LIF,
482 and ESCs treated with L-proline ± inhibitor(s) were analysed for 3 emergent properties (cell
483 number, apoptosis, and proliferation), as well as phosphorylation of various signalling pathway
484 intermediates. Cells at day 6 were also analysed for colony morphology, changes in gene
485 expression, and differentiation potential, as described below. Data were collected over 5
486 independent experiments.

487

488 *Measurement of cell number and colony morphology*

489 Cell counts were measured with a haemocytometer following the addition of 0.4%
490 Trypan Blue solution (Glover *et al.*, 2022) to a single-cell suspension obtained following

491 trypsinisation.

492 Colony morphology was quantified based on images collected from an Olympus IX-81
493 inverted microscope. Images were deidentified and colony morphology scored based on a
494 predetermined scale: Round, domed (ESC) colonies were scored as 0. Flat, irregular, partially
495 differentiated colonies were scored as 1, and fully differentiated colonies consistent with EPL
496 cells were scored as 2 (Glover *et al.*, 2022). Scoring was performed on all colonies (10-40 per
497 image) over three representative images from each condition. The sum of the score was divided
498 by the total number of colonies scored, and then averaged across the three images to produce
499 a final score.

500
501 *Analysis of differentiation potential using embryoid bodies*

502 After 6 days of differentiation in adherent culture, cells were passaged and 1.5×10^6
503 were transferred to suspension culture plates and allowed to spontaneously differentiate without
504 LIF or L-proline as EBs. EBs were collected at days 2, 3 and 4 and analysed with qRT-PCR for
505 expression of the primitive streak marker *Brachyury* (*T*; primer sequences are provided in **Table**
506 **S3**).

507
508 *Gene expression analysis using qRT-PCR*

509 Total RNA was extracted from cells using GeneElute Mammalian Total RNA MiniPrep
510 Kit (Sigma), including on-column Dnase treatment to remove any contaminating DNA. RNA was
511 converted to cDNA using High Capacity cDNA Reverse Transcriptase Kit (Applied Biosystems).
512 qPCR was run on 10 μL reaction volumes containing 3 μL 0.5 ng/ μL cDNA, 2 μL 1 μM primer
513 (equal mix of Forward and Reverse primers; **Table S2**) and 5 μL 2x SYBR Green master mix
514 (Sigma) in a 384-well plate using a Roche LightCycler 480 with the following parameters: 15 min
515 at 95 °C, followed by 40 cycles of 30 s at 95 °C, 60 s at 60 °C, 30 s at 72 °C. Thermal melt
516 curves were obtained following this by ramping from 60–95 °C at 2.5 °C/s. Threshold (C_t) values
517 were used to calculate relative expression to the reference gene, β -*actin*, employing REST v9
518 software. Results were normalised to untreated ESCs and transformed to \log_2 fold changes. All
519 samples were tested to ensure that the C_t values for the reference gene were similar (20 ± 1
520 SD).

521
522 *Analysis of phosphorylation of signalling pathway intermediates*

523 Cell samples were washed in ice-cold PBS and lysed (1 μL lysis buffer per 4×10^4 cells)
524 in the presence of protease and phosphatase inhibitors (**Table S4**). For data in **Fig. 1D**, cells
525 were serum starved in 90% DMEM, 0.1% FBS, 0.1 mM β -Me for 4 h prior to sample collection.

526 Cell lysates were incubated on ice for 10 min and then centrifuged at 4°C at 12,000 rpm. The
527 supernatant was loaded onto a 1.5 mm 12% polyacrylamide gel with a 4% stacking gel.
528 Molecular weight markers (BioRad Precision Plus Protein Standards) were also loaded.
529 Electrophoresis was carried out in a BioRad western blot chamber at 100 V for 2 h.

530 Following electrophoresis, proteins were transferred to 0.45 µm nitrocellulose
531 membrane (BioRad) for 120 min at 100 V using a BioRad transfer system. The membrane was
532 blocked overnight in Odyssey Blocking buffer (LiCor) at 4 °C, then washed 3 x 5 min in Tris
533 buffered saline with Tween 20 (TBST) and then incubated with primary anti-phosphoprotein
534 antibody overnight at 4 °C with rocking. Anti-β-tubulin antibody was used to stain for the
535 reference protein. The membranes were then washed 3 x 5 min in TBST before 2 h incubation
536 at room temperature in the dark with fluorescently labelled secondary antibody. Primary and
537 secondary antibodies were diluted in Odyssey Blocking buffer with 0.1% (v/v) Tween 20. For
538 details of antibodies and dilutions, see **Table S5**.

539 Membranes were imaged using an Odyssey Infrared Imaging system (LiCor), and the
540 integrated intensity of each band was quantified with Image Studio software. Data were
541 normalised to β-tubulin to correct for differences in loading, and then to untreated ESCs.

542
543 *Apoptosis and proliferation analysis using flow cytometry*

544 Flow cytometry was performed on a FACS Calibur and the results quantified using
545 FlowJo software. Apoptosis was assayed using detection of Annexin V. Live cells were
546 centrifuged (1200 rpm x 2 min), washed in PBS and re-centrifuged, and then resuspended in 100
547 µL Annexin V binding buffer with either (i) FITC-Annexin V conjugated antibody (1:33 dilution in
548 TBST) and BD propidium iodide staining solution (BD Pharmingen) or (ii) PE-Annexin V
549 conjugated antibody (1:33 dilution in TBST) and 7-AAD as per kit instructions (BD Pharmingen).
550 Samples were analysed by flow cytometry within 30 min.

551 Proliferation was assayed using BrdU incorporation and processed using the FITC BrdU
552 Flow Kit (BD Pharmingen). Briefly, BrdU was added to cells in culture at a final concentration of
553 10 µM and incubated for 1 h. Cells were passaged, washed in PBS, fixed in BD
554 Cytofix/Cytoperm, and stored at -80 °C in BrdU freezing buffer until required. Thawed samples
555 were then stained according to the manufacturer's instructions prior to flow cytometry.

556
557 *Statistical modelling and testing*

558 Gene expression and emergent properties (cell number, proliferation, apoptosis and
559 morphology) were modelled with (i) standard multiple linear regression (Vittinghoff *et al.*, 2012),
560 (ii) multiple linear regression with two-way interaction terms (Flanders, DerSimonian and

561 Freedman, 1992), or (iii) Bayesian regularised neural network (BRANNGP, Burden and Winkler,
562 2008; Winkler and Burden, 2012). The R code used for modelling and generation of the figures
563 is available [here](#).

564 A correlation matrix was generated to assess broad relationships within the data (Hoyt,
565 Imel and Chan, 2008). The *Hmisc* R package was used to generate Pearson correlations with
566 significance levels based on rank correlation ($P < 0.05$). Parameters were ordered based on
567 hierarchical clustering.

568 Before modelling, each inhibitor was encoded using a 1-hot descriptor (1 when present,
569 0 when absent). For modelling cell number, proliferation, and apoptosis, 1-hot variables were
570 also used to represent each experimental day (either 2, 4 or 6). Each condition with an average
571 of 3 replicates was used as input for modelling, with replicates averaged before modelling. As
572 conditions containing both LY294002 and rapamycin resulted in cells not being viable after day
573 2, these were excluded from modelling on days 4 and 6. Data was subject to Shapiro-Wilks test,
574 and morphology, apoptosis and proliferation data were transformed to improve normality. To
575 ensure linearity, the residuals for each model were also measured for normality using a Shapiro-
576 Wilks test. Model fitting parameters, including adjusted R^2 and σ values can be found in **Table S1**. Adjusted R^2 was used for comparability across modelling styles. Models with a higher R^2
577 and lower σ values are considered to have better fit. F-tests were also calculated to compare
578 linear models (**Table S2**), where a P -value < 0.05 indicates that the more complex models
579 significantly improve the explanatory power of the model.

581 As this data contained all permutations and no predictive capacity was required, all the
582 data was used to train models. To assess the range of responses from splitting the data, we
583 generated 50 random 80% training/20% test models and profiled the range of responses seen
584 in **Table S6**.

585 Models were generated using both the sparse linear regression method and sparse 3-
586 layer feedforward neural network method; i.e., the Bayesian regularised neural network with a
587 Gaussian prior (BRANNGP, Burden and Winkler, 2008). These were implemented in the
588 specialised software package *Biomodeller*. The latter method automatically optimises the
589 complexity of the model (number of weights) to maximise predictivity. Models were trained until
590 the maximum of the evidence for the model so no validation set was required to provide a
591 stopping criterion (used to denote when network training should cease), important given the
592 small data set sizes. These models employed two neurons in the hidden layer, linear transfer
593 functions in the input neurons and sigmoidal transfer functions in the hidden and output layer
594 neurons. Data applied to the input layer was column scaled. See Burden and Winkler, 1999 for

595 a detailed explanation of BRANNGP methodology.

596

597 **Figure Legends**

598

599 **Figure 1. L-proline drives ESCs to EPL cells.** **A.** Representative images showing ESCs that have self-
600 renewed in medium containing 1000 U/mL LIF or differentiated in medium containing 330 U/mL LIF, 330
601 U/mL LIF + L-proline or no LIF for 6 days. Scale bar = 100 μ m. **B.** Colony morphology was scored at day
602 6. Cell number (**C**), apoptosis (**D**) and proliferation (**E**) were measured at days 2, 4 and 6. **F.** At days 2, 4
603 and 6, changes in expression of pluripotency genes (*Rex1* and *Oct4*), primitive ectoderm markers
604 (*Dnmt3b*, *Fgf5*, *Lefty2* and *Otx2*), and mesendoderm genes (*Mixl1*) in cells grown in medium containing (i)
605 330 U/mL LIF, (ii) 330 U/mL LIF + L-proline and (iii) no LIF or L-proline. All samples were normalised to β -
606 *Actin* and then to cells grown in 1000 U/mL LIF. All graphs (B-F) show mean \pm SEM with individual data
607 points. Data were analysed using one-way ANOVA with Dunnett's multiple comparisons test to cells
608 grown in 1000 U/mL LIF, * P < 0.05.

609

610 **Figure 2. L-proline acts through Fgfr, Mapk, Pi3k and mTor signalling pathways.** **A.** L-proline enters
611 the cell via the SNAT2 transporter and activates the Mapk pathway (which can be inhibited by U0126, U),
612 the Pi3k pathway (which can be inhibited by LY294002, L), the mTor pathway (which can be inhibited by
613 rapamycin, R), the downstream mTor kinase S6k (which can be inhibited by PF-4708671, P), or indirectly
614 activates the Fgfr (which can be inhibited by SU5402, S). Activation or inhibition of these pathways affects
615 both gene expression and emergent cellular properties. **B.** Naïve ESCs were grown in medium containing
616 330 U/mL LIF + L-proline for up to 6 days (144 h). Cell lysates were analysed by western blotting for: p-
617 Stat3^{Y705} or p-Stat3^{S727}*, p-Fgfr^{Y653/Y654}, p-Erk1/2^{T202/Y204}, p-Akt^{S473}, p-S6k^{T389}, p-Rps6^{S235/S236} and p-
618 4ebp1^{T37/T46}. Representative images shown. **C.** Quantification of western blot bands. **D.** Naïve ESCs were
619 serum starved in DMEM + 0.1% FBS for 4 h, with 5 μ M U0126 added for the final 30 min, where
620 indicated. Cells were then left untreated or treated with 1 mM L-proline for 10 or 30 min. **E.** 400 μ M L-
621 proline and signalling pathway inhibitors were added to naïve ESCs in 1000 U/mL LIF. After 2 h, cell
622 samples were analysed for p-Erk1/2 (**i**) and p-Rps6 (**ii**). **F.** ESCs were treated with 400 μ M L-proline
623 alone, or L-proline and a signalling pathway inhibitor (**1i**) at 0 h. At 2, 4, 6, or 8 h, a second dose of the
624 same inhibitor or a different inhibitor (**2i**) was added and samples were collected 2 h later. Cell samples
625 were analysed for p-Erk1/2 (**i**) and p-Rps6 (**ii**). For all western blot data band intensity was normalised to
626 β -Tubulin (**C**, **E**, **F**) or t-Erk1/2 (**D**) and normalized to an untreated ESC sample. Graphs show either fold
627 change \pm SEM (**D**) or \log_2 fold change \pm SEM and individual data points (**E**). Heatmaps show mean \log_2
628 fold change. Data were analysed using one-way ANOVA with post hoc Tukey's (**D**) or Dunnett's (**C**, **E**, **F**)
629 multiple comparison test, * P < 0.05.

630

631 **Figure 3. Signalling pathway inhibitors regulate emergent properties during the ESC-to-EPL cell**
632 **transition.** **A.** Cartesian product experimental design showing all combinations of the five signalling
633 pathway inhibitors. Naïve ESCs were differentiated over 6 days in 330 U/mL LIF + 400 μ M L-proline with
634 combinations of five inhibitors (U: U0126; S: SU5402; L: LY294002; R: rapamycin; P: PF-4708671).
635 Colony morphology was scored on day 6 (**B**), while cell number (**C**), proliferation (**D**) and apoptosis (**E**)
636 were recorded at days 2, 4 and 6. Data was averaged across biological replicates where $n \geq 3$. To correct
637 for non-normal distributions, morphology and apoptosis data were log transformed, and proliferation data
638 was raised (x^6). (**i**) Data was modelled using either linear modelling, linear modelling with two-way
639 interaction terms or a Bayesian regularised neural network (BRANNGP). Fit of each model is shown
640 comparing the actual fit with the prediction from the model. (**ii**) Coefficients for each variable \pm SEM for
641 standard linear model. (**iii**) Coefficients for each variable \pm SEM for linear model with two-way interaction
642 terms. Significance is denoted as * P < 0.05.

643

644 **Figure 4. Signalling pathway inhibitors regulate gene expression during the ESC-to-EPL cell**
645 **transition.** Naïve ESCs were differentiated over 6 days in 330 U/mL LIF + 400 μ M L-proline with
646 combinations of five inhibitors (U: U0126; S: SU5402; L: LY294002; R: rapamycin; P: PF-4708671). At
647 day 6, changes in expression of pluripotency genes (*Rex1*, **A** and *Oct4*, **B**), primitive ectoderm markers
648 (*Dnmt3b*, **C**, *Fgf5*, **D**, *Lefty2*, **E** and *Otx2*, **F**), and mesendoderm genes (*Mixl1*, **G**). All samples were
649 normalised to β -*Actin* and then to cells grown in 1000 U/mL LIF. Data was averaged across biological
650 replicates where $n \geq 3$. (**i**) Data was modelled using either linear modelling, linear modelling with two-way
651 interaction terms or a Bayesian regularised neural network (BRANNGP). Fit of each model is shown

652 comparing the actual fit with the prediction from the model. **(ii)** Coefficients for each variable \pm SEM for
653 standard linear model.

654
655 **Figure 5. Summary of signalling pathway-mediated changes in emergent properties and gene**
656 **expression during the ESC-to-EPL cell transition.** **A.** The L-proline mediated ESC-to-EPL cell
657 transition recapitulates the transition from the inner cell mass (ICM) to the primitive ectoderm (Snow,
658 1977; Coucouvanis and Martin, 1999; Brennan *et al.*, 2001; Hart *et al.*, 2002; Pelton *et al.*, 2002;
659 Watanabe *et al.*, 2002; Acampora, Di Giovannantonio and Simeone, 2013). **B.** Results of linear modelling
660 show that L-proline acts through each signalling pathway to control different aspects of differentiation.
661 Interaction effects were noted between some inhibitor combinations, and these are shown in dotted lines.
662 Red dotted lines show synergistic effects where two inhibitors produce a response larger than either
663 alone. Green dotted lines show antagonistic effects where two inhibitors produce a response less than
664 the sum of either alone.

665
666
667
668 **Supplemental Figures**

669
670 **Figure S1. The P38 and PKC pathways are not active in ESCs.** Naïve ESCs were treated with either
671 400 μ M L-proline, the P38 inhibitor SB2028580 (SB, 10 μ M), or staurosporine (1 mM) for the times
672 indicated. As a positive control for P38 phosphorylation, protein lysates from the U251 human
673 glioblastoma cell line were also used. Cell lysates were taken and analysed using western blotting.
674 Western blots were stained for p-P38^{T180/Y182}, total P38 (t-P38), p-Hsp27^{S78/S82}, p-PKC ζ ^{T410}. These
675 samples were compared to β -Tubulin as a loading control.

676
677 **Figure S2. Emergent property data by inhibitor combination.** Naïve ESCs were differentiated over 6
678 days in 330 U/mL LIF + 400 μ M L-proline with combinations of five inhibitors (U: U0126; S: SU5402; L:
679 LY294002; R: rapamycin; P: PF-4708671). Cells were passaged at day 2, 4, and 6, and cells were
680 counted as an indicator of cell number, and apoptosis and proliferation were measured. Morphology
681 scoring was performed on Day 6. Conditions containing L+R (Blue) were considered non-viable at Day 2
682 and no data is available for this combination at Days 4 and 6. Data is shown as mean and SEM with
683 individual data points.

684
685 **Figure S3. Correlation matrix illustrates relationships between properties.** ESCs were differentiated
686 to EPL cells in the presence of each inhibitor combination and assayed for emergent properties (cell
687 number, proliferation, apoptosis, morphology) and gene expression, at the days shown. **A.** Correlation
688 matrix of all parameters ($n \geq 3$), sorted by hierarchical clustering. **B.** The correlation matrix was generated
689 using a subset of the data in panel A, along with paired data from the functional assay. The sum of the
690 three days of *Brachyury* data was used as a proxy for the slope. Dot size and colour indicate the strength
691 of either a positive (Blue) or negative (red) correlation.

692
693 **Figure S4. Alternative model for proliferation data.** Naïve ESCs were differentiated over 6 days in 330
694 U/mL LIF + 400 μ M L-proline with combinations of five inhibitors (U: U0126; S: SU5402; L: LY294002; R:
695 rapamycin; P: PF-4708671). At days 2, 4 and 6 proliferation was measured. Data was averaged across
696 biological replicates where $n \geq 3$. To correct bimodal input data, data was binned into octiles each
697 representing an equal proportion of the data. **A.** Data was modelled using either linear modelling, linear
698 modelling with two-way interaction terms or a Bayesian regularised neural network (BRANNGP). Fit of
699 each model is shown comparing the actual fit with the prediction from the model. **B.** Coefficients for each
700 variable \pm SEM for standard linear model. **C.** Coefficients for each variable \pm SEM for linear model with
701 two-way interaction terms. Significance is denoted as $^*P < 0.05$.

702
703 **Figure S5. Gene expression by inhibitor combination.** Naïve ESCs were differentiated over 6 days in
704 330 U/mL LIF + 400 μ M L-proline with combinations of five inhibitors (U: U0126; S: SU5402; L:
705 LY294002; R: rapamycin; P: PF-4708671). At day 6, cells were collected and analysed with qRT-PCR for
706 pluripotency genes (*Rex1* and *Oct4*, primitive ectoderm markers (*Dnmt3b*, *Fgf5*, *Lefty2* and *Otx2*), and

707 mesendoderm genes (*Mixl1*). Data is normalized to β -Actin and to cells grown in 1000 U/mL LIF. No data
708 is available for conditions containing L+R as they were considered non-viable at Day 2. Data is shown as
709 mean \log_2 fold change and SEM with individual data points.
710

711 **Figure S6. Two-way interaction models for gene expression data.** Naïve ESCs were differentiated
712 over 6 days in 330 U/mL LIF + 400 μ M L-proline with combinations of five inhibitors (U: U0126; S:
713 SU5402; L: LY294002; R: rapamycin; P: PF-4708671). At day 6, changes in expression of pluripotency
714 genes (*Rex1*, **A** and *Oct4*, **B**), primitive ectoderm markers (*Dnmt3b*, **C**, *Fgf5*, **D**, *Lefty2*, **E** and *Otx2*, **F**),
715 and mesendoderm genes (*Mixl1*, **G**). All samples were normalised to β -Actin and then to cells grown in
716 1000 U/mL LIF. Data shown is for $n \geq 3$ biological replicates. Data was modelled using linear modelling
717 with two-way interaction terms. Data shows coefficients for each inhibitor \pm SEM. Significance is denoted
718 as $^*P < 0.05$.
719

720 **Figure S7. Functional assay to determine position on the pluripotency continuum.** Naïve ESCs
721 were left maintained in 1000 U/mL LIF or differentiated over 6 days in 330 U/mL LIF + 400 μ M L-proline
722 with combinations of five inhibitors (U: U0126; S: SU5402; L: LY294002; R: rapamycin; P: PF-4708671).
723 Day 6 cells were spontaneously differentiated as embryoid bodies (EBs) on low adhesion plates in 0
724 U/mL LIF. mRNA samples were taken on day 2, 3 and 4 (EB2-4). Samples were analysed using qRT-
725 PCR for *Brachyury* expression, a marker for the primitive streak. All samples were normalised to β -Actin
726 as the reference gene and then to naïve ESCs. **A.** Mean \log_2 fold changes are shown \pm SEM with
727 individual data points. Data were analysed using a one-way ANOVA with *post hoc* Dunnett's multiple
728 comparison test to naïve ESCs. Significance is denoted as $^*P < 0.05$. **Bii.** The change in frequency of first significant
729 upregulation across all inhibitor treated conditions. **Bii.** The change in frequency of first significant
730 upregulation sorted for each condition

References

Acampora, D., Di Giovannantonio, L. G. and Simeone, A. (2013) 'Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition', *Development (Cambridge)*, 140(1), pp. 43–55. doi: 10.1242/dev.085290.

Aguilar, J. and Reyley, M. (2005) 'The uterine tubal fluid□: secretion , composition and biological effects', *Animal reproduction science*, 2(2), pp. 91–105.

Aksamitiene, E., Kiyatkin, A. and Kholodenko, B. N. (2012) 'Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: A fine balance', *Biochemical Society Transactions*, 40(1), pp. 139–146. doi: 10.1042/BST20110609.

Arkun, Y. (2016) 'Dynamic modeling and analysis of the cross- talk between insulin/akt and mapk/erk signaling pathways', *PLoS ONE*, 11(3), pp. 1–22. doi: 10.1371/journal.pone.0149684.

Audet, J. (2010) 'Adventures in time and space: Nonlinearity and complexity of cytokine effects on stem cell fate decisions', *Biotechnology and Bioengineering*, 106(2), pp. 173–182. doi: 10.1002/bit.22708.

Bahrami, M., Morris, M. B. and Day, M. L. (2019) 'Amino acid supplementation of a simple inorganic salt solution supports efficient in vitro maturation (IVM) of bovine oocytes', *Scientific Reports* 2019 9:1, 9(1), pp. 1–10. doi: 10.1038/s41598-019-48038-y.

Bazer, F. W., Johnson, G. A. and Wu, G. (2015) 'Amino acids and conceptus development during the peri-implantation period of pregnancy', *Advances in Experimental Medicine and Biology*, 843, pp. 23–52. doi: 10.1007/978-1-4939-2480-6_2/COVER.

Brennan, J. *et al.* (2001) 'Nodal signalling in the epiblast patterns the early mouse embryo', *Nature* 2001 411:6840, 411(6840), pp. 965–969. doi: 10.1038/35082103.

Breslin, E. M. *et al.* (2005) 'LY294002 and rapamycin co-operate to inhibit T-cell proliferation', *British Journal of Pharmacology*, 144(6), pp. 791–800. doi: 10.1038/sj.bjp.0706061.

Burden, F. R. and Winkler, D. A. (1999) 'Robust QSAR models using bayesian regularized neural networks', *Journal of Medicinal Chemistry*, 42(16), pp. 3183–3187. doi: 10.1021/JM980697N/ASSET/IMAGES/MEDIUM/JM980697NN00001.GIF.

Burden, F. and Winkler, D. (2008) 'Bayesian regularization of neural networks', *Methods in Molecular Biology*, 458, pp. 22–44. doi: 10.1007/978-1-60327-101-1_3.

Casalino, L. *et al.* (2011) 'Control of embryonic stem cell metastability by L-proline catabolism', *Journal of Molecular Cell Biology*, 3(2), pp. 108–122. doi: 10.1093/jmcb/mjr001.

Cetin, I. *et al.* (2005) 'Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus', *American Journal of Obstetrics and Gynecology*, 192(2), pp. 610–617. doi: 10.1016/j.ajog.2004.08.011.

Chang, F. *et al.* (2003) 'Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: A target for cancer chemotherapy', *Leukemia*, 17(3), pp. 590–603. doi: 10.1038/sj.leu.2402824.

Chang, K. H. and Zandstra, P. W. (2004) 'Quantitative screening of embryonic stem cell differentiation: Endoderm formation as a model', *Biotechnology and Bioengineering*, 88(3), pp. 287–298. doi: 10.1002/bit.20242.

Chen, H. *et al.* (2015) 'Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells.', *Proceedings of the National Academy of Sciences*, 112(44), pp. E5936-43. doi: 10.1073/pnas.1516319112.

Cherepkova, M. Y., Sineva, G. S. and Pospelov, V. A. (2016) 'Leukemia inhibitory factor (LIF) withdrawal activates mTOR signaling pathway in mouse embryonic stem cells through the

MEK/ERK/TSC2 pathway', *Cell Death and Disease*, 7, p. e2050. doi: 10.1038/cddis.2015.387.

Comes, S. et al. (2013) 'L-proline induces a mesenchymal-like invasive program in embryonic stem cells by remodeling H3K9 and H3K36 methylation', *Stem Cell Reports*, 1(4), pp. 307–321. doi: 10.1016/j.stemcr.2013.09.001.

Coucouvanis, E. and Martin, G. R. (1999) 'BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo', *Development (Cambridge, England)*, 126(3), pp. 535–546. doi: 10.1242/DEV.126.3.535.

D'Aniello, C. et al. (2015) 'A novel autoregulatory loop between the Gcn2-Atf4 pathway and L-Proline metabolism controls stem cell identity', *Cell Death and Differentiation*, 22(7), pp. 1094–1105. doi: 10.1038/cdd.2015.24.

D'Aniello, C. et al. (2017) 'Vitamin C and L-Proline antagonistic effects capture alternative states in the pluripotency continuum', *Stem Cell Reports*, 8(1), pp. 1–10. doi: 10.1016/j.stemcr.2016.11.011.

Dailey, L. et al. (2005) 'Mechanisms underlying differential responses to FGF signaling', *Cytokine and Growth Factor Reviews*, 16(2 SPEC. ISS.), pp. 233–247. doi: 10.1016/j.cytogfr.2005.01.007.

Doetschman, T. C. et al. (1985) 'The *in vitro* development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium', *Journal of Embryology and Experimental Morphology*, 87(1), pp. 27–45.

Dowling, R. J. O. et al. (2010) 'mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs', *Science (New York, N.Y.)*, 328(5982), p. 1172. doi: 10.1126/SCIENCE.1187532.

Epa, V. C. et al. (2013) 'Europe PMC Funders Group Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces', 22(39), pp. 20902–20906. doi: 10.1039/C2JM34782B. Modelling.

Favata, M. F. et al. (1998) 'Identification of a novel inhibitor of mitogen-activated protein kinase kinase', *Journal of Biological Chemistry*, 273(29), pp. 18623–18632. doi: 10.1074/jbc.273.29.18623.

Fingar, D. C. et al. (2002) 'Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E.', *Genes and Development*, 16(12), pp. 1472–87. doi: 10.1101/gad.995802.

Flanders, W. D., DerSimonian, R. and Freedman, D. S. (1992) 'Interpretation of linear regression models that include transformations or interaction terms', *Annals of Epidemiology*, 2(5), pp. 735–744. doi: 10.1016/1047-2797(92)90018-L.

Gardner, D. K. and Lane, M. (1993) 'Amino acids and ammonium regulate mouse embryo development in culture.', *Biology of Reproduction*, 48(2), pp. 377–85.

Glover, H. J., Shparberg, R. A. and Morris, M. B. (2022) 'L-Proline Supplementation Drives Self-Renewing Mouse Embryonic Stem Cells to a Partially Primed Pluripotent State: The Early Primitive Ectoderm-Like Cell', *Methods in molecular biology (Clifton, N.J.)*, 2490, pp. 11–24. doi: 10.1007/978-1-0716-2281-0_2.

Gross, V. S., Hess, M. and Cooper, G. M. (2005) 'Mouse embryonic stem cells and preimplantation embryos require signaling through the phosphatidylinositol 3-kinase pathway to suppress apoptosis', *Molecular Reproduction and Development*, 70(3), pp. 324–332. doi: 10.1002/mrd.20212.

Harris, S. E. et al. (2005) 'Nutrient concentrations in murine follicular fluid and the female reproductive tract.', *Theriogenology*, 64(4), pp. 992–1006. doi:

10.1016/j.theriogenology.2005.01.004.

Hart, A. H. *et al.* (2002) 'Mixl1 is required for axial mesendoderm morphogenesis and patterning in the murine embryo', *Development (Cambridge, England)*, 129(15), pp. 3597–3608. doi: 10.1242/DEV.129.15.3597.

Harvey, N. T. *et al.* (2010) 'Response to BMP4 signalling during ES cell differentiation defines intermediates of the ectoderm lineage.', *Journal of Cell Science*, 123(Pt 10), pp. 1796–804. doi: 10.1242/jcs.047530.

Hoogland, S. H. A. and Marks, H. (2021) 'Developments in pluripotency: a new formative state', *Cell research*, 31(5), pp. 493–494. doi: 10.1038/S41422-021-00494-W.

Hoyt, W. T., Imel, Z. E. and Chan, F. (2008) 'Multiple Regression and Correlation Techniques: Recent Controversies and Best Practices', *Rehabilitation Psychology*, 53(3), pp. 321–339. doi: 10.1037/A0013021.

Huang, G. *et al.* (2014) 'STAT3 Phosphorylation at Tyrosine 705 and Serine 727 Differentially Regulates Mouse ESC Fates', *Stem cells (Dayton, Ohio)*, 32(5), p. 1149. doi: 10.1002/STEM.1609.

Ireland, R. G. *et al.* (2020) 'Combinatorial extracellular matrix microarray identifies novel bioengineered substrates for xeno-free culture of human pluripotent stem cells', *Biomaterials*, 248(August 2019), p. 120017. doi: 10.1016/j.biomaterials.2020.120017.

Jakobsen, R. B. *et al.* (2014) 'Analysis of the effects of five factors relevant to in vitro chondrogenesis of human mesenchymal stem cells using factorial design and high throughput mRNA-profiling', *PLoS ONE*, 9(5). doi: 10.1371/journal.pone.0096615.

Jirmanova, L. *et al.* (2002) 'Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells.', *Oncogene*, 21(36), pp. 5515–5528. doi: 10.1038/sj.onc.1205728.

Julkunen, H. *et al.* (2020) 'Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects', *Nature Communications*, 11(1). doi: 10.1038/s41467-020-19950-z.

Kim, J. *et al.* (2008) 'An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells', *Cell*, 132(6), pp. 1049–1061. doi: 10.1016/j.cell.2008.02.039.

Kunath, T. *et al.* (2007) 'FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment.', *Development*, 134(16), pp. 2895–902. doi: 10.1242/dev.02880.

Lane, M. and Gardner, D. K. (1997) 'Nonessential amino acids and glutamine decrease the time of the first three cleavage divisions and increase compaction of mouse zygotes in vitro.', *Journal of Assisted Reproduction and Genetics*, 14(7), pp. 398–403. doi: 10.1007/BF02766148.

Lanner, F. and Rossant, J. (2010) 'The role of FGF/Erk signaling in pluripotent cells', *Development*, 137(20), pp. 3351–3360. doi: 10.1242/dev.050146.

Lonic, A. (2006) *Molecular mechanism of L-proline induced EPL-cell formation*. University of Adelaide.

Mendoza, M. C., Er, E. E. and Blenis, J. (2011) 'The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation', *Trends in Biochemical Sciences*, 36(6), pp. 320–328. doi: 10.1016/j.tibs.2011.03.006.

Minchiotti, G. *et al.* (2022) 'Capturing Transitional Pluripotency through Proline Metabolism', *Cells*, 11(14). doi: 10.3390/CELLS11142125.

Mohammadi, M. *et al.* (1997) 'Structures of the tyrosine kinase domain of fibroblast growth

factor receptor in complex with inhibitors', *Science*, 276(5314), pp. 955–960. doi: 10.1126/SCIENCE.276.5314.955/ASSET/C77197A2-82FE-4E7E-A3C4-E4212C555522/ASSETS/GRAPHIC/SE1975130007.jpeg.

Morgani, S., Nichols, J. and Hadjantonakis, A. K. (2017) 'The many faces of Pluripotency: In vitro adaptations of a continuum of in vivo states', *BMC Developmental Biology*, 17(1), pp. 10–12. doi: 10.1186/s12861-017-0150-4.

Morris, M. B. *et al.* (2020) 'Selected Amino Acids Promote Mouse Pre-implantation Embryo Development in a Growth Factor-Like Manner', *Frontiers in Physiology*, 11(March), pp. 1–12. doi: 10.3389/fphys.2020.00140.

Murakami, M. *et al.* (2004) 'mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells.', *Molecular and Cellular Biology*, 24(15), pp. 6710–8. doi: 10.1128/MCB.24.15.6710-6718.2004.

Nawroth, R. *et al.* (2011) 'S6K1 and 4E-BP1 Are Independent Regulated and Control Cellular Growth in Bladder Cancer', *PLOS ONE*, 6(11), p. e27509. doi: 10.1371/JOURNAL.PONE.0027509.

Panina, S. B. *et al.* (2020) 'Utilizing Synergistic Potential of Mitochondria-Targeting Drugs for Leukemia Therapy', *Frontiers in Oncology*, 10(April). doi: 10.3389/fonc.2020.00435.

Patriarca, E. J. *et al.* (2021) 'The Multifaceted Roles of Proline in Cell Behavior', *Frontiers in cell and developmental biology*, 9. doi: 10.3389/FCELL.2021.728576.

Pearce, L. R. *et al.* (2010) 'Characterization of PF-4708671, a novel and highly specific inhibitor of p70 ribosomal S6 kinase (S6K1).', *The Biochemical Journal*, 431(2), pp. 245–55. doi: 10.1042/BJ20101024.

Pelton, T. A. *et al.* (2002) 'Transient pluripotent cell populations during primitive ectoderm formation: correlation of *in vivo* and *in vitro* pluripotent cell development.', *Journal of Cell Science*, 115(Pt 2), pp. 329–339.

Pons, B. *et al.* (2011) 'The effect of p-4E-BP1 and p-eIF4E on cell proliferation in a breast cancer model', *International journal of oncology*, 39(5), pp. 1337–1345. doi: 10.3892/IJO.2011.1118.

Prudhomme, W. A., Duggar, K. H. and Lauffenburger, D. A. (2004) 'Cell population dynamics model for deconvolution of murine embryonic stem cell self-renewal and differentiation responses to cytokines and extracellular matrix', *Biotechnology and Bioengineering*, 88(3), pp. 264–272. doi: 10.1002/bit.20244.

Rathjen, J. *et al.* (1999) 'Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors.', *Journal of Cell Science*, 112(5), pp. 601–612.

Rathjen, J. *et al.* (2002) 'Directed differentiation of pluripotent cells to neural lineages: Homogeneous formation and differentiation of a neurectoderm population', *Development*, 129(11), pp. 2649–2661. doi: 10.1242/dev.129.11.2649.

Rivera-Pérez, J. A. and Hadjantonakis, A. K. (2015) 'The Dynamics of Morphogenesis in the Early Mouse Embryo', *Cold Spring Harbor Perspectives in Biology*, 7(11). doi: 10.1101/CSHPERSPECT.A015867.

Sabers, C. J. *et al.* (1995) 'Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells', *The Journal of biological chemistry*, 270(2), pp. 815–822. doi: 10.1074/JBC.270.2.815.

Shparberg, R. A., Glover, H. J. and Morris, M. B. (2019) 'Embryoid body differentiation of mouse embryonic stem cells into neurectoderm and neural progenitors', *Methods in Molecular Biology*,

2029, pp. 273–285. doi: 10.1007/978-1-4939-9631-5_21.

Shparberg, R., Glover, H. and Morris, M. B. (2019) 'Modeling Mammalian Commitment to the Neural Lineage Using Embryos and Embryonic Stem Cells', *Frontiers in physiology*, 10(MAY). doi: 10.3389/FPHYS.2019.00705.

Smith, A. (2017) 'Formative pluripotency: the executive phase in a developmental continuum.', *Development*, 144(3), pp. 365–373. doi: 10.1242/dev.142679.

Snow, M. (1977) 'Gastrulation in the mouse: Growth and regionalization of the epiblast', *J. Embryol. exp. Morph*, 42, pp. 293–303.

Sorokin, M. et al. (2018) 'Oncobox bioinformatical platform for selecting potentially effective combinations of target cancer drugs using high-throughput gene expression data', *Cancers*, 10(10). doi: 10.3390/cancers10100365.

Stavridis, M. P., Collins, B. J. and Storey, K. G. (2010) 'Retinoic acid orchestrates fibroblast growth factor signalling to drive embryonic stem cell differentiation', *Development*, 137(6), pp. 881–890. doi: 10.1242/dev.043117.

Stead, E. et al. (2002) 'Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities.', *Oncogene*, 21(54), pp. 8320–33. doi: 10.1038/sj.onc.1206015.

Takahashi, K., Murakami, M. and Yamanaka, S. (2005) 'Role of the phosphoinositide 3-kinase pathway in mouse embryonic stem (ES) cells', *Biochemical Society Transactions*, 33(6), pp. 1522–1525. doi: 10.1042/BST20051522.

Takeuchi, H. et al. (2005) 'Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors', *Cancer Research*, 65(8), pp. 3336–3346. doi: 10.1158/0008-5472.CAN-04-3640.

Tan, B. S. N. et al. (2011) 'The amino acid transporter SNAT2 mediates L-proline-induced differentiation of ES cells', *American Journal of Physiology - Cell Physiology*, 300(6). doi: 10.1152/ajpcell.00235.2010.

Tan, B. S. N. et al. (2016) 'Src family kinases and p38 Mitogen-Activated Protein Kinases regulate pluripotent cell differentiation in culture', *PLoS One*. Edited by M. Schubert, 11(10), p. e0163244. doi: 10.1371/journal.pone.0163244.

Treleaven, T. et al. (2021) 'In vitro fertilisation of mouse oocytes in L-proline and L-pipecolic acid improves subsequent development', *Cells*, 10(6). doi: 10.3390/cells10061352.

Tsurutani, J. et al. (2005) 'Inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway but not the MEK/ERK pathway attenuates laminin-mediated small cell lung cancer cellular survival and resistance to imatinib mesylate or chemotherapy', *Cancer Research*, 65(18), pp. 8423–8432. doi: 10.1158/0008-5472.CAN-05-0058.

Vittinghoff, E. et al. (2012) 'Regression Methods in Biostatistics'. doi: 10.1007/978-1-4614-1353-0.

Vlahos, C. J. et al. (1994) 'A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002)', *Journal of Biological Chemistry*, 269(7), pp. 5241–5248. doi: 10.1016/s0021-9258(17)37680-9.

Wang, C. et al. (2013) 'Functional crosstalk between AKT/mTOR and Ras/MAPK pathways in hepatocarcinogenesis: Implications for the treatment of human liver cancer', *Cell Cycle*, 12(13), pp. 1999–2010. doi: 10.4161/cc.25099.

Wang, X et al. (2021) 'Formative pluripotent stem cells show features of epiblast cells poised for gastrulation', *Cell research*, 31(5), pp. 526–541. doi: 10.1038/S41422-021-00477-X.

Washington, J. M. et al. (2010) 'L-Proline induces differentiation of ES cells: a novel role for an

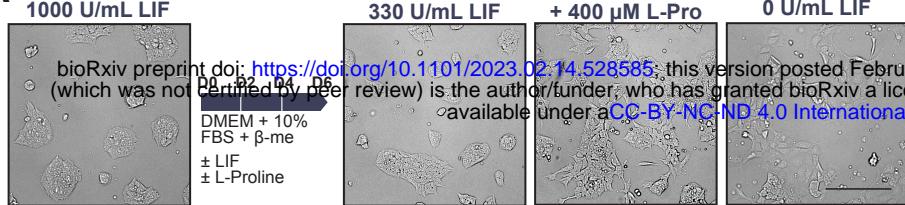
amino acid in the regulation of pluripotent cells in culture', *American Journal of Physiology - Cell Physiology*, 298, pp. 982–992.

Watanabe, D. *et al.* (2002) 'Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis', *Mechanisms of Development*, 118(1–2), pp. 187–190. doi: 10.1016/S0925-4773(02)00242-3.

Van Winkle, L. J. (2001) 'Amino Acid Transport Regulation and Early Embryo Development', *Biology of Reproduction*, 64(1), pp. 1–12. doi: 10.1095/BIOLREPROD64.1.1.

Van Winkle, L. J. *et al.* (2006) 'System B0,+ amino acid transport regulates the penetration stage of blastocyst implantation with possible long-term developmental consequences through adulthood', *Human reproduction update*, 12(2), pp. 145–157. doi: 10.1093/HUMUPD/DMI044.

Winkler, D. A. and Burden, F. R. (2012) 'Robust, quantitative tools for modelling ex-vivo expansion of haematopoietic stem cells and progenitors', *Molecular BioSystems*, 8(3), pp. 913–920. doi: 10.1039/c2mb05439f.


Woolf, P. J. *et al.* (2005) 'Bayesian analysis of signaling networks governing embryonic stem cell fate decisions', *Bioinformatics*, 21(6), pp. 741–753. doi: 10.1093/bioinformatics/bti056.

Yellen, P. *et al.* (2011) 'High-dose rapamycin induces apoptosis in human cancer cells by dissociating mTOR complex 1 and suppressing phosphorylation of 4E-BP1', <http://dx.doi.org/10.4161/cc.10.22.18124>, 10(22), pp. 3948–3956. doi: 10.4161/CC.10.22.18124.

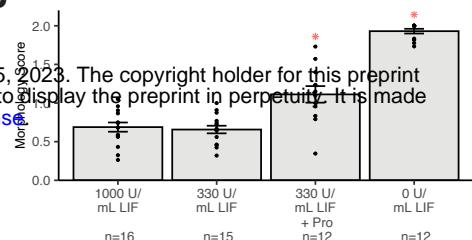
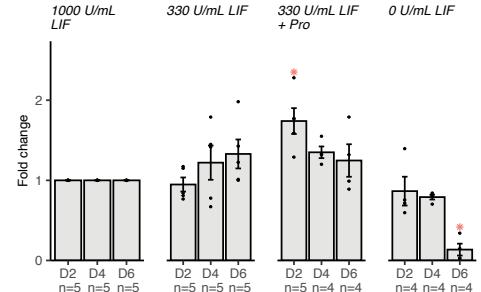
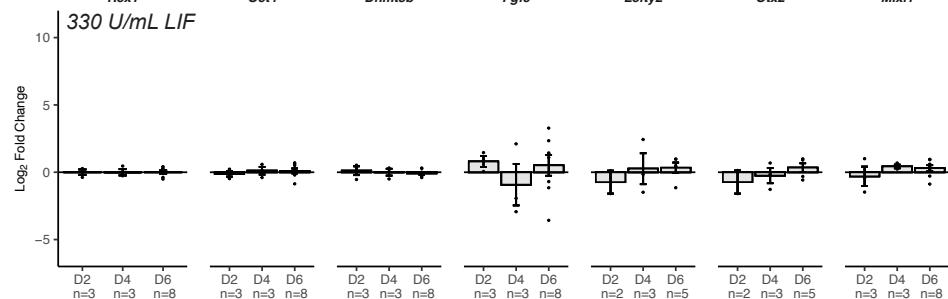
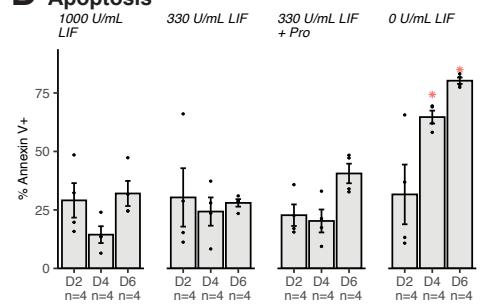
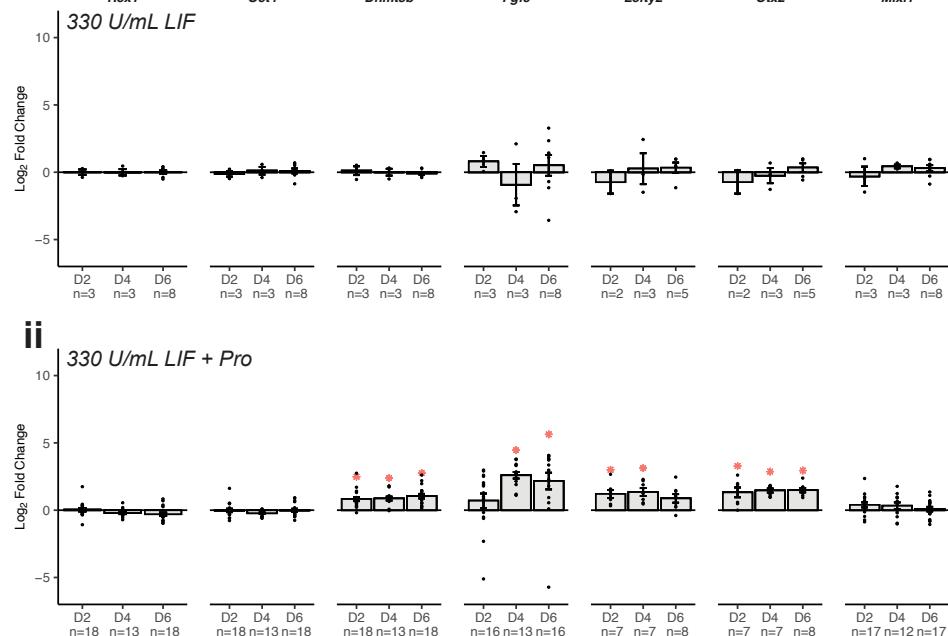

Yu, J. S. L. and Cui, W. (2016) 'Proliferation, survival and metabolism: The role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination', *Development (Cambridge)*, 143(17), pp. 3050–3060. doi: 10.1242/dev.137075.

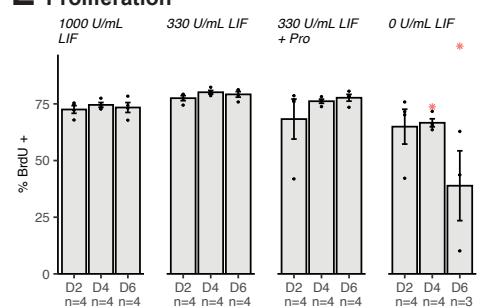
FIG. 1

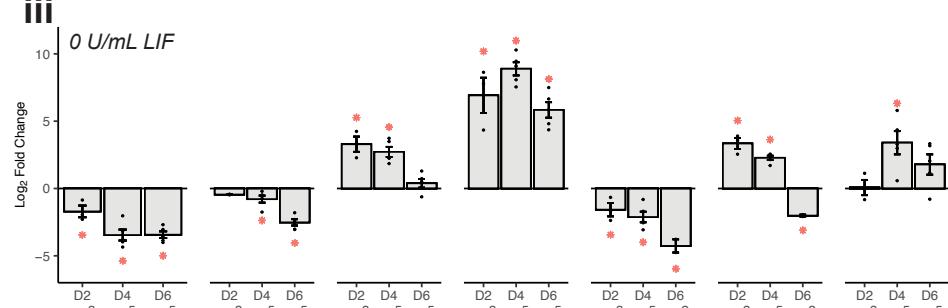

A

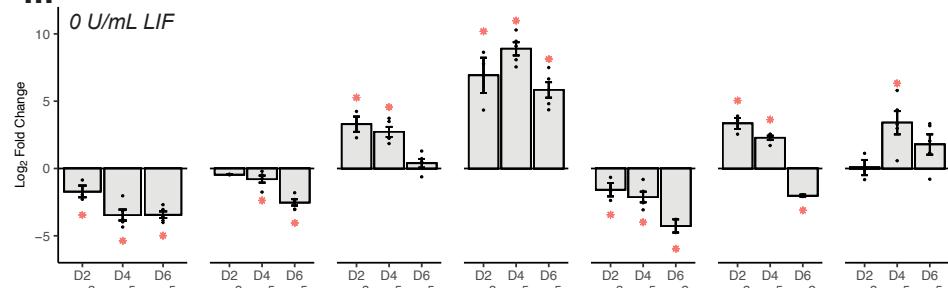

B


C Cell number


F


D Apoptosis


i


E Proliferation

ii

iii

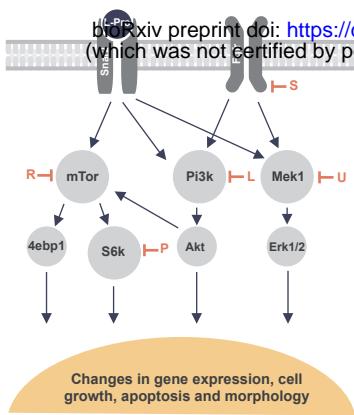
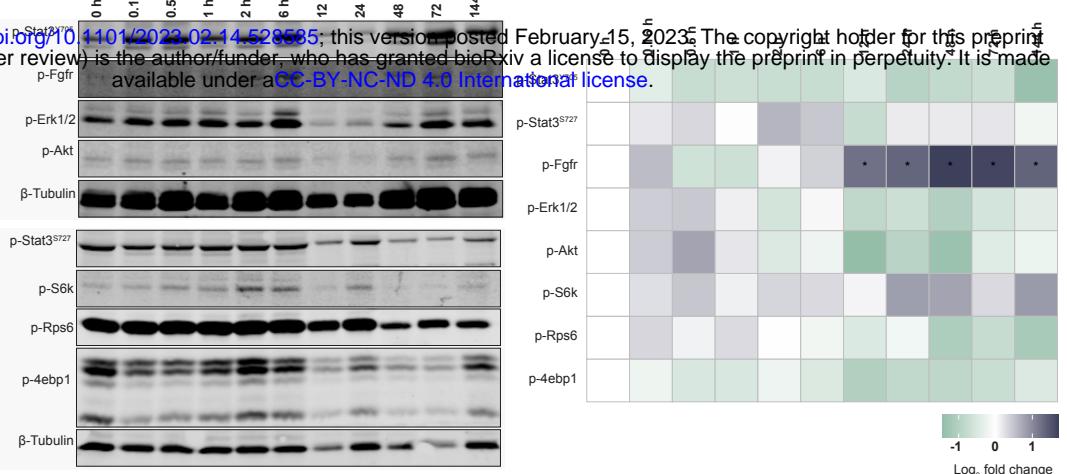
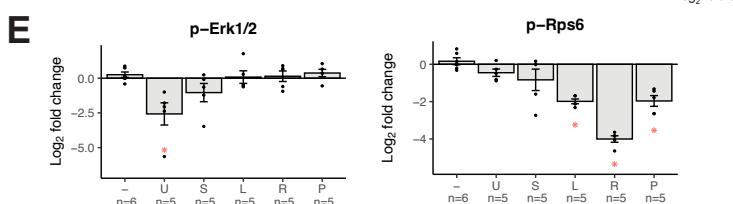
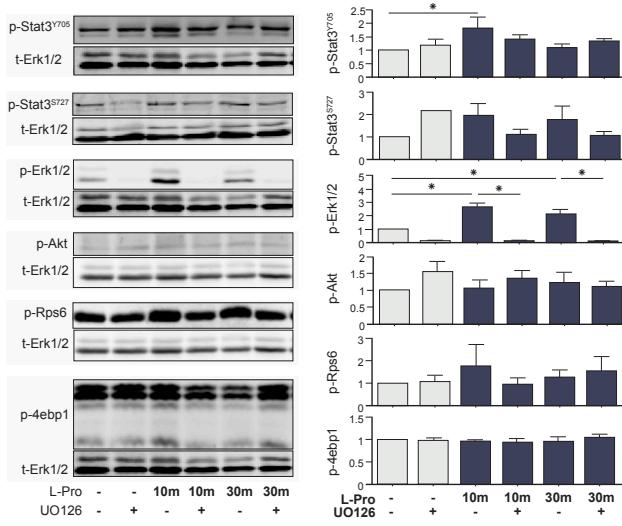
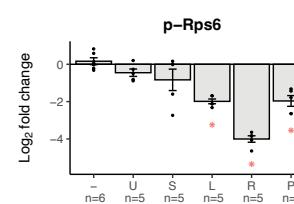
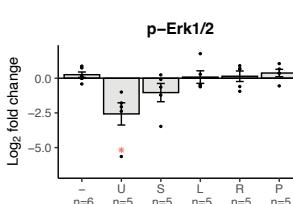
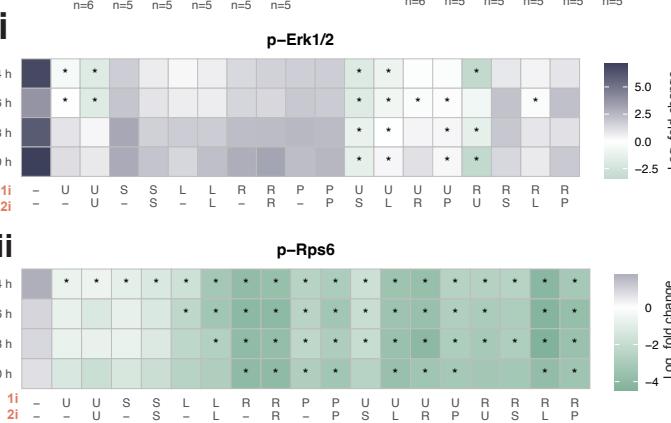
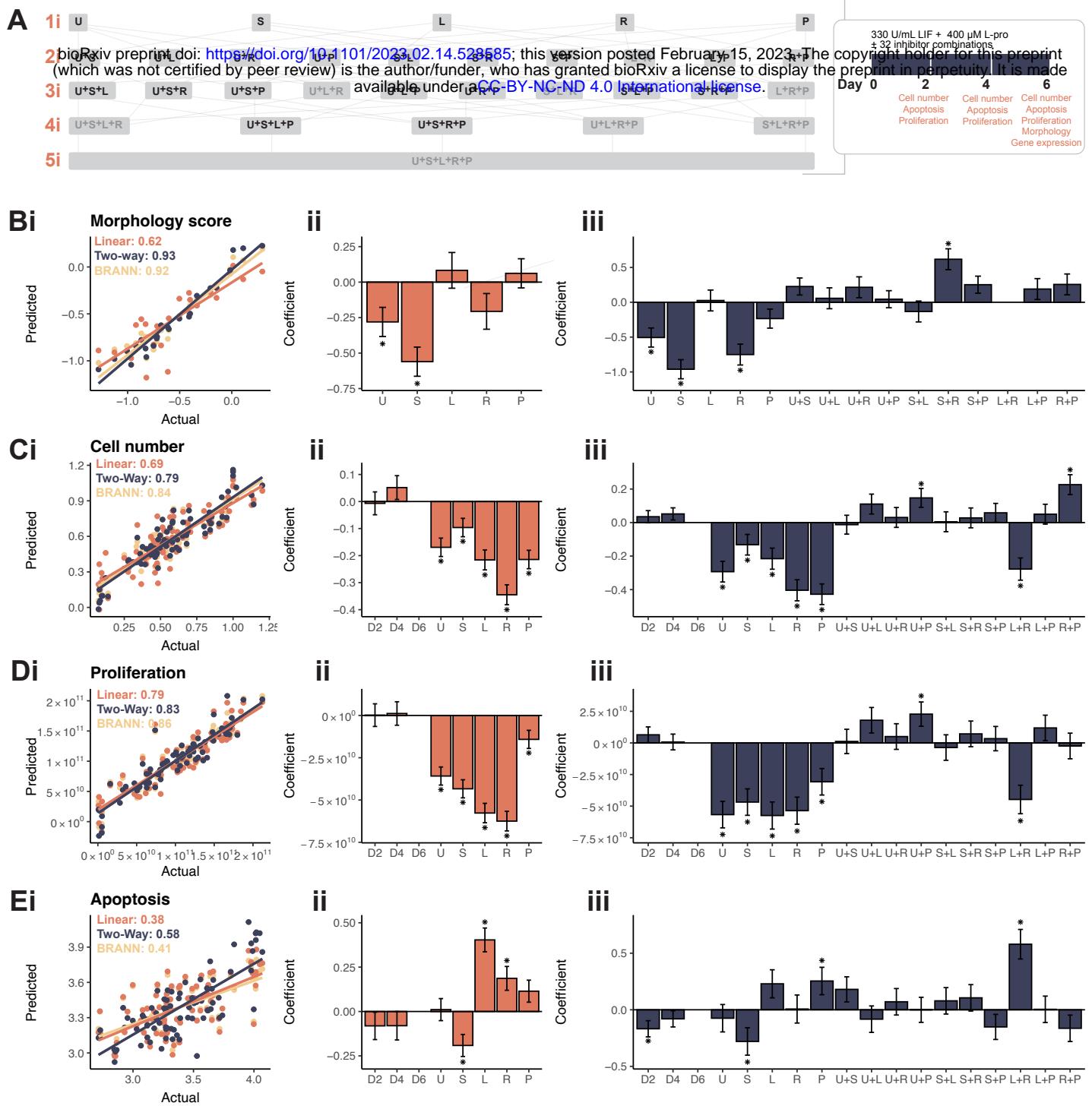
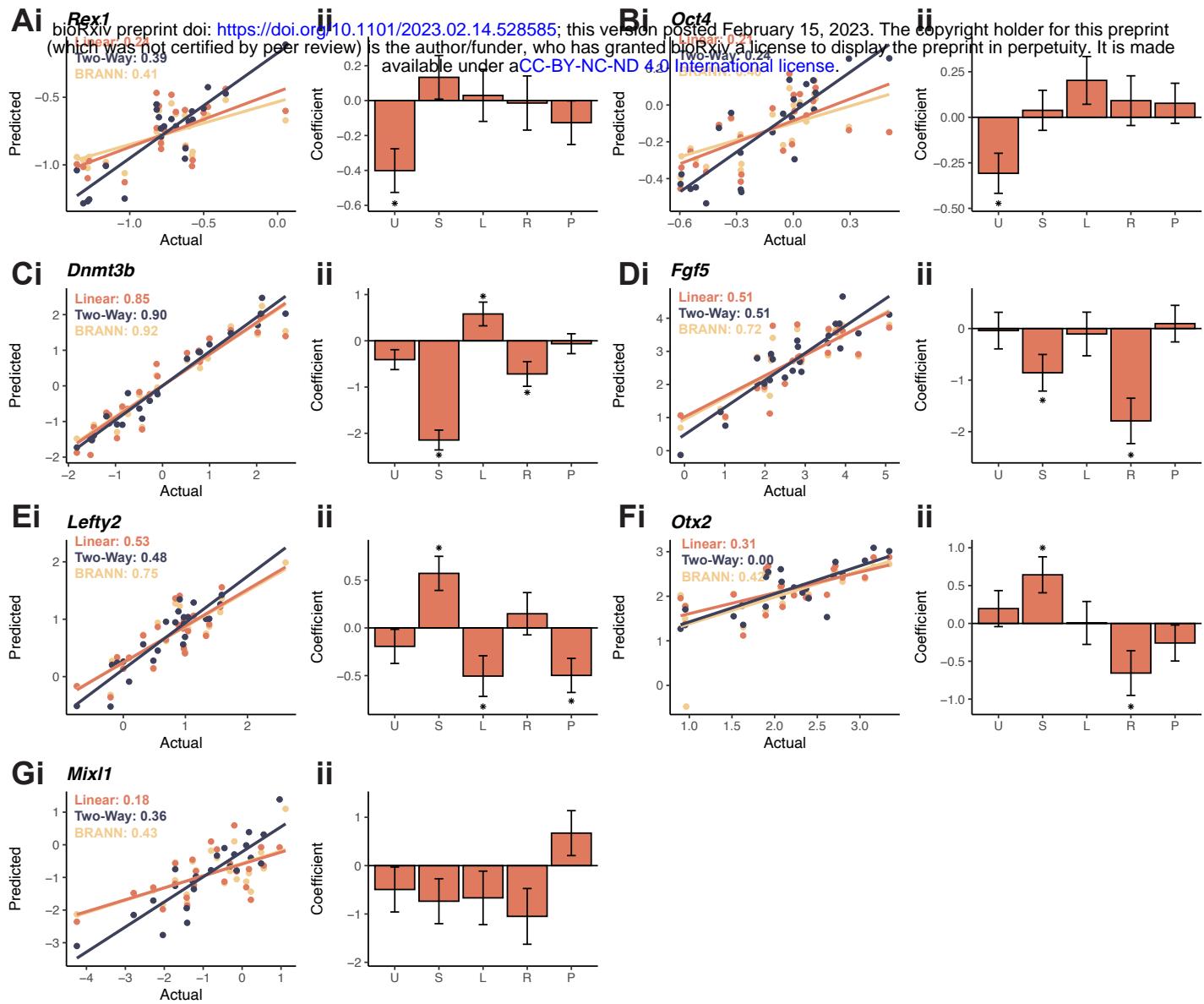
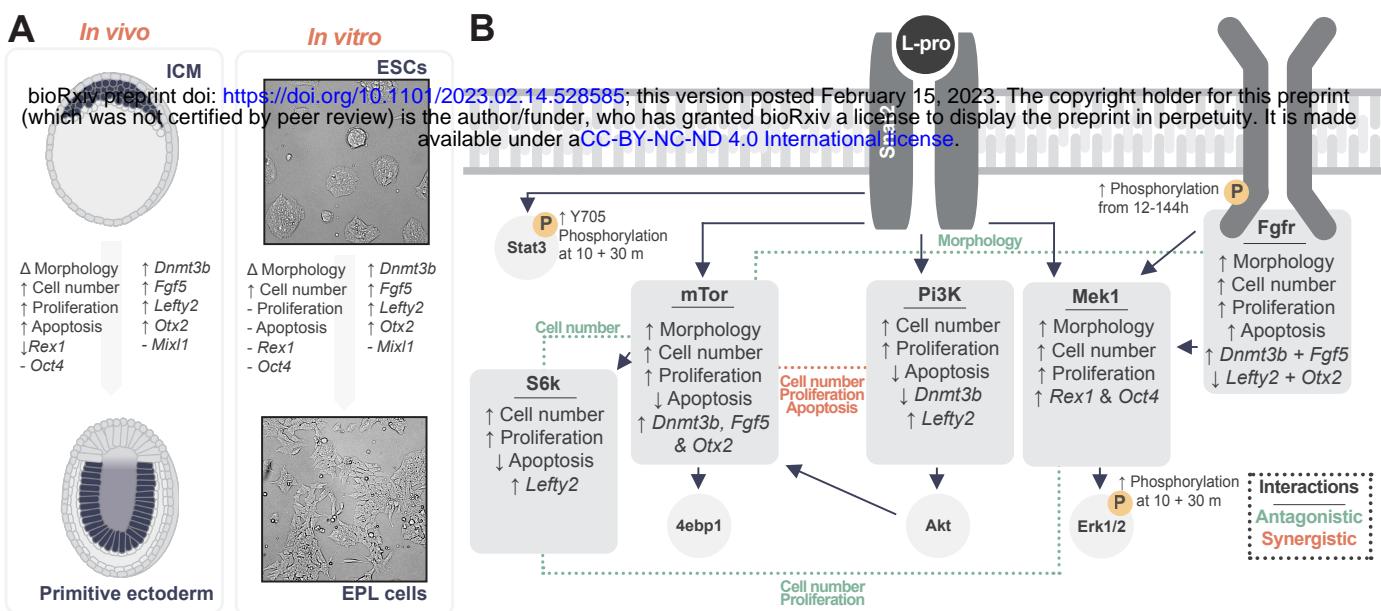










FIG. 2**A****B****C****D****E****F**

FIG. 3

