

1 **Chemically-induced targeted protein degradation in mycobacteria uncovers antibacterial
2 effects and potentiates antibiotic efficacy**

3

4 Harim I. Won^{1,2}, Junhao Zhu^{1,2,*}, Olga Kandror¹, Tatos Akopian¹, Ian D. Wolf¹, Michael C. Chao¹,
5 Maya Waldor¹, Eric J. Rubin^{1,*}

6

7 ¹Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public
8 Health, Boston, Massachusetts 02115, USA.

9 ²These authors contributed equally to this work.

10 *Corresponding authors: juzhu@hsph.harvard.edu (J.Z.), erubin@hsph.harvard.edu (E. J. R.)

11

12 **Abstract**

13 Proteolysis-targeting chimeras (PROTACs) represent a new therapeutic modality involving
14 selectively directing disease-causing proteins for degradation through proteolytic systems. Our
15 ability to exploit this targeted protein degradation (TPD) approach for antibiotic development
16 remains nascent due to our limited understanding of which bacterial proteins will be labile TPD
17 targets. Here, we use a genetic system to model chemically-induced proximity and degradation
18 to screen essential proteins in *Mycobacterium smegmatis* (*Msm*), a model for the major human
19 pathogen *M. tuberculosis* (*Mtb*). We find that drug-induced proximity to the bacterial ClpC1P1P2
20 proteolytic complex is sufficient to degrade many, but not all, endogenous *Msm* proteins,
21 profoundly inhibiting bacterial growth for some targets. We also show that TPD can potentiate
22 the effects of existing antibiotics targeting the same pathways and complexes. Together, our
23 results identify specific endogenous mycobacterial proteins as attractive targets for future *Mtb*
24 PROTAC development, as both standalone antibiotics and potentiators of existing antibiotic
25 efficacy.

26

27 **Introduction**

28 Antibiotics, like many small molecule therapeutics, traditionally exert their mechanism of
29 action through modulating a specific molecular target, whether by direct binding to an enzymatic
30 active site or allosteric conformational changes. Efforts to develop new antibiotics largely apply
31 this same paradigm, but development remains challenging due to the extremely high failure
32 rate¹ and high cost². As a result, the discovery of new antibiotics has stalled dramatically in
33 recent decades, including of those to treat bacterial infections like tuberculosis (TB), which
34 remains one of the world's leading infectious killers. The continued use of old antibiotics has
35 compounded this problem, by giving rise to multi-drug resistant TB strains which are incredibly
36 difficult to treat³. Because the traditional approach of single target modulation has slowed in its
37 ability to discovery powerful new anti-tubercular agents, we sought to apply a novel modality to
38 TB antibiotic development.

39 Targeted protein degradation (TPD) is an emerging therapeutic modality that has
40 progressed from concept⁴ to Phase 2 clinical trials⁵ within the past two decades. The major
41 class of molecules that enable protein level regulation through TPD are the proteolysis-targeting
42 chimeras (PROTACs). These molecules are heterobifunctional, comprising two small molecule
43 ligands joined by a chemical linker. One of the ligands binds an E3 ubiquitin ligase while the
44 other binds a given target protein. The PROTAC induces the proximity of both the target protein
45 and the E3 ligase, resulting in polyubiquitination of the target and its subsequent degradation by
46 the eukaryotic proteasome. Other TPD approaches employ the lysosomal⁶ and autophagic^{7,8}
47 degradation machinery.

48 Despite its great potential, the development of TPD-based antimicrobials remains largely
49 conceptual. Rather than using host degradation machinery in a TPD strategy for bacteria,
50 induced autoproteolysis would instead deliver proteins essential for bacterial viability to bacterial
51 degradation machinery, resulting in their degradation and subsequent cell death or growth
52 inhibition. In mycobacteria, options for degradation machinery include the mycobacterial

53 proteasome, which uses the PafA ligase (a system analogous to the ubiquitination system
54 employed by PROTACs⁹), or the Clp proteolytic complexes (i.e., ClpC1P1P2 and ClpXP1P2,
55 which are essential in mycobacteria).

56 Recently, the first TPD proof-of-concept in bacteria demonstrated that heterobifunctional
57 bacterial PROTACs (BacPROTACs) could mediate the inducible degradation of target proteins
58 in *Msm* cells¹⁰. This approach relied on direct delivery of target proteins to the multicomponent,
59 ClpC1P1P2 proteolytic complex (Fig. 1a), resulting in their degradation. In this work,
60 BacPROTAC-mediated degradation of different targets was shown to induce sensitivity to D-
61 cycloserine or auxotrophy for L-threonine, highlighting the potential of TPD as the foundation of
62 a new class of antibiotic degraders. However, it remains unclear whether all proteins are equally
63 good targets for this approach, and whether some are more attractive targets for future drug
64 development. To determine this, we developed a rational platform for TPD target selection in
65 mycobacteria, where we surveyed a set of diverse, essential mycobacterial proteins to examine
66 their suitability for a TPD approach. Our genetic platform enables the rapid assessment of
67 different target proteins for TPD, identifying suitable substrates for degradation. We also find
68 that targeted degradation of particular substrates is sufficient to elicit cellular growth inhibition
69 and potentiation of killing by clinical TB antibiotics even when targeted degradation alone
70 functions at sub-inhibitory levels.

71

72 **Results**

73 **A chemical genetic platform for evaluating targeted protein degradation in mycobacteria**

74 The development of a targeted protein degradation (TPD) strategy for *Mtb* infection
75 necessitates the identification of protein targets that are required for bacterial growth and are
76 amenable to proximity mediated degradation by bacterial proteolytic systems. However, the
77 systematic evaluation of vulnerable protein targets for TPD drug development is infeasible using
78 a chemical-forward approach (i.e., identifying chemical ligands to all 461 genes identified as

79 essential for *Mtb* growth¹¹). Therefore, we sought to develop a platform for rational target
80 selection, which would enable the prioritization of targets before chemical screening for binding
81 ligands. To accomplish this, we needed a system that would enable regulated, inducible
82 proximity of native proteins and a mycobacterial proteolytic complex like ClpC1P1P2, which has
83 recently been used for TPD in bacteria¹⁰. For this purpose, we chose to create genetic fusions
84 with FRB, the rapamycin-binding domain of mTOR, and FKBP12, which binds both rapamycin
85 and FK506¹²; FRB and FKBP are small (~12 kDa) proteins which dimerize with nanomolar
86 affinity only in the presence of rapamycin^{13,14}. We fused ClpC1 with the FRB domain and
87 candidate proteins with FKBP, creating strains where the presence of rapamycin induces the
88 proximity of target proteins to ClpC1 (Fig. 1b). To enable rapid screening of targets which were
89 most effectively degraded, we built this system in the non-pathogenic model of *Mtb*,
90 *Mycobacterium smegmatis* (*Msm*).

91 Though FRB and FKBP have been widely used to conditionally dimerize proteins in
92 mammalian cells¹⁴ and, more recently, in *Escherichia coli*¹⁵, it had not yet been evaluated in live
93 mycobacterial cells. Therefore, we first assessed whether rapamycin-dependent dimerization
94 occurred in *Msm* cells by fusing each domain to the NanoLuc (Nluc) 11S fragment and 114
95 peptide split reporter system¹⁶. Compared to other split reporter systems (e.g., fluorescent
96 proteins, β-galactosidase), the split Nluc (NanoBiT) system features the rapid signal detection,
97 sensitivity, and dynamic range of luciferase assays while also being optimized to have minimal
98 affinity between the split components. We expressed the FRB and FKBP Nluc fusion proteins in
99 *Msm* and observed rapamycin-dependent luciferase activity only when both rapamycin-binding
100 domains were fused to the split Nluc fragments (i.e., FRB-11s and FKBP-114), and this activity
101 appeared to saturate at a rapamycin concentration of 1 µg ml⁻¹ (Fig. 1c). We also observed the
102 characteristic “hook effect” resulting from the formation of unproductive binary complexes at
103 high concentrations rather than necessary ternary complexes required for induced proximity^{17,18}.
104 Importantly, all concentrations of rapamycin we used to induce proximity in this work were inert

105 with respect to bacterial growth and were orders of magnitude below the highest tested
106 concentration which itself also did not inhibit bacterial growth in wild-type *mc²155* strain *Msm*
107 cells (Supplementary Figure 1).

108 To generate the ClpC1 and FRB fusion protein, the FRB domain could be fused to either
109 the N-terminal or C-terminal end. Based on the crystal structures of the *Staphylococcus aureus*
110 ClpC and *Mtb* ClpC1 hexamer^{19,20}, we reasoned while N-terminal fusion might facilitate the
111 direct delivery of target proteins to the ClpC1 hexamer pore, the genetic engineering of the
112 ClpC1 C-terminus would be better tolerated by cells given the degree to which the N-terminal
113 ends were nestled among the ClpC1 N-terminal domains (NTDs) compared to the relative
114 accessibility of the C-terminal end (Fig. 1d). To compare these two scenarios, we purified both
115 the N-terminal and C-terminal *Mtb* ClpC1 fusions (FRB-ClpC1 and ClpC1-FRB, respectively;
116 Supplementary Figure 2a) to measure each fusion protein's ability to degrade the eGFP-ssrA
117 target protein. This target was selected as WT *Mtb* ClpC1 in association with ClpP1P2 had been
118 previously shown to be able to degrade eGFP-ssrA *in vitro*^{21,22}. Indeed, we found FRB-ClpC1
119 had no measurable protease activity, while ClpC1-FRB was able to degrade eGFP-ssrA, albeit
120 to a lesser degree than WT ClpC1 (Fig. 1e). We also observed this trend among the different
121 ClpC1 fusion variants without ClpP1P2 when measuring ATPase activity, though here, FRB-
122 ClpC1 showed some minimal activity (Supplementary Figures 2b, c).

123 To generate a strain carrying a single copy of *clpC1-frb* under the native *clpC1* promoter,
124 we replaced wild-type *clpC1* with a *clpC1-frb* allele via an L5 integrase allele swap²³ (Fig. 1f,
125 top). We generated viable *Msm* strains with clean swaps for *clpC1-frb* alleles at a rate of 45.8%,
126 successfully verifying that ClpC1-FRB remains functional *in vivo* and can complement wild-type
127 ClpC1's essential role in normal mycobacterial growth (Fig. 1f, bottom). We further confirmed
128 that the addition of the FRB domain did not disrupt cellular physiology by measuring growth and
129 found that the strain expressing ClpC1-FRB shared growth characteristics with parental *Msm*
130 (Supplementary Figure 3). This strain served as the basis for our platform to assess TPD in

131 mycobacteria and examine whether we could mediate the degradation of specific target proteins
132 by induced proximity to ClpC1.

133

134 **Rapamycin-induced proximity to ClpC1 is sufficient to degrade a native mycobacterial**
135 **protein**

136 To test whether rapamycin-induced proximity to ClpC1 was sufficient for mycobacterial
137 protein degradation, we constructed target protein fusions with FKBP and enhanced green
138 fluorescent protein (eGFP) and introduced them as merodiploid copies into the Tweety phage
139 *attB* site²⁴ in both a WT *c/pC1* or $\Delta c/pC1$ L5::*c/pC1-frb* background (Figs. 2a, b) and measured
140 the effect of rapamycin on fluorescence in *Msm*. Before testing different native targets, we
141 assessed whether the minimal backbone, FKBP-eGFP alone, could be directed for degradation
142 by ClpC1 or if degradation was more substrate selective. We found that heterologously
143 expressed FKBP-eGFP was not degraded regardless of *c/pC1* background (Fig. 2c), suggesting
144 either that it is a poor ClpC1 substrate (perhaps due to eGFP's characteristic, protease-resistant
145 tight folding²⁵) or that the geometry of delivery we achieved is incompatible with efficient
146 degradation. To test whether the absence of rapamycin-induced degradation was due to
147 possible cryptic obstruction of the rapamycin-mediated protein-protein interaction, we examined
148 the subcellular distribution of the FKBP-eGFP signal with or without rapamycin treatment.

149 Previous work indicates that full-length ClpC1-eGFP locates near the plasma membrane and
150 enriches at the subpolar region in a non-homogeneous manner²⁶ which we also observed
151 (Supplementary Figures 4a, b). While FKBP-eGFP in the *c/pC1-frb* background diffuses in the
152 cytosol, the addition of rapamycin results in re-localization of FKBP-eGFP to the subpolar
153 membrane compartment (Supplementary Figure 4c), indicating that rapamycin successfully
154 mediates the physical interaction between FKBP-eGFP and ClpC1-FRB and further suggesting
155 that FKBP-GFP alone is a suboptimal substrate for ClpC1.

156 We next selected RpoA, a small (38 kDa) and essential component of the RNA
157 polymerase (RNAP) holoenzyme, to test whether the addition of an endogenous protein could
158 potentiate proximity-induced degradation by ClpC1. Indeed, we found that rapamycin is
159 sufficient to direct RpoA-FKBP-eGFP for degradation, with substantial loss of eGFP signal only
160 in the *clpC1-frb* background (Fig. 2d). To validate that the observed loss of eGFP signal was the
161 result of *bona fide* protein degradation, we showed a rapamycin-dependent reduction in protein
162 levels of the full length RpoA-FKBP-eGFP fusion protein only in the *clpC1-frb* background (Fig.
163 2e). Furthermore, to assess the dynamics of this targeted protein degradation of RpoA, we
164 examined individual cells by time-lapse fluorescence microscopy and observed a rapamycin-
165 dependent reduction of eGFP signal only in the *clpC1-frb* background within 8 hours of induction
166 (Figs. 2f, g). Our findings demonstrate that a genetically encoded system for chemically-induced
167 proximity to ClpC1 which is orthogonal to the chemical approach developed by Morreale *et al.*¹⁰,
168 is sufficient to degrade a native mycobacterial protein.

169

170 **Mycobacterial proteins are differentially susceptible to ClpC1-mediated TPD**

171 To identify suitable endogenous targets for TPD more systematically, we fused a set of
172 native mycobacterial proteins to FKBP-eGFP and assessed their degradation using high-
173 throughput flow cytometry (Fig. 3a and Supplementary Figure 6a).

174 The fluorescent degradation kinetics of RpoA as measured by flow cytometry (Fig. 3b)
175 correlated well with the signal observed by time-lapse microscopy (Supplementary Figure 6b),
176 motivating our use of flow cytometry as the basis for our target screening assay. We selected
177 additional essential targets which were components of central biological processes (e.g.,
178 replication, translation, ATP synthesis) and had distinct subcellular localizations²⁷ (to assess
179 potential challenges with re-localizing certain targets to ClpC1). We quantified the effect of
180 rapamycin on the fluorescence of a total of 17 targets over time and found that most of the
181 tested native proteins were able to be targeted for degradation by rapamycin (Fig. 3c and

182 Supplementary Figure 7a) and that the observed fluorescent signal decay fit well to an
183 exponential decay function (Supplementary Figure 7b), permitting us to calculate a rate constant
184 for each target (Fig. 3d).

185 While some targets display slower degradation kinetics – such as RpoA, which did not
186 reach maximal, steady state degradation until 9 hours ($dG/dt = 0.063$) – we found that others,
187 such as the transcription factor RbpA, were rapidly degraded to a steady state baseline before 3
188 hours ($dG/dt = 0.646$; Fig. 3d and Supplementary Figure 7a). Intriguingly, efficient TPD by
189 ClpC1 was not restricted to native ClpC1 substrates, as we compared our list of proteins to a
190 proteomics dataset that predicted a set of native ClpC1 substrates²⁸ and found no correlation
191 between being a native substrate and degradation efficiency (Fig. 3d).

192 Interestingly, even though all targets were expressed from the same constitutive
193 promoter (except Wag31 and HupB, due to toxicity), we observed variance in the steady state
194 fluorescence in the different strains in the absence of rapamycin, indicating that there may be
195 some basal post-translational regulation of some targets, possibly through proteolysis. We
196 wondered whether these “active degraders” might be more susceptible to TPD, perhaps
197 because these proteins had exposed degrons that made them more amenable to protease
198 activity. Indeed, we found an inverse correlation with the \log_2 degradation rate of each target
199 and its steady state fluorescence (Fig. 3e; Pearson’s $r = -0.69$, $P = 0.006$).

200 To assess the effect of rapamycin-induced proximity to ClpC1 on protein localization and
201 protein levels, we imaged each strain using fluorescent, live-cell microscopy (Fig. 3f and
202 Supplementary Figures 8a, b). We confirmed the gradient of degradability of the tested targets
203 and again found high concordance between the flow cytometry and microscopy datasets
204 (Supplementary Figure 8c). Noticeably, for SecA1 and Ffh, which are only moderately degraded
205 by TPD, the addition of rapamycin resulted in profound re-localization of fluorescent signal (Fig.
206 3f). Though these observations could reflect biology, these punctate foci could alternatively form
207 due to oligomerization of eGFP when local concentrations increase near ClpC1-FRB.

208 Rapamycin does appear to be stable in this system as eGFP levels remain low for at least 48 h
209 post-inoculation (Supplementary Figure 9).

210

211 **Targeted protein degradation of native mycobacterial proteins inhibits bacterial growth**

212 In our previous experiments revealing that induced proximity drives the degradation of
213 several mycobacterial proteins, we did not expect to see any impacts on growth because the
214 strains we generated for these experiments were merodiploid for the protein being degraded
215 (i.e., the genes were present in two copies). To examine the effect of targeted degradation of
216 native mycobacterial proteins on bacterial growth and viability, we endogenously tagged the
217 various targets at their chromosomal loci with *fkbp* by recombineering in both a WT *clpC1* or
218 $\Delta clpC1$ L5::*clpC1-frb* background (Figs. 4a, b) and measured the effect of rapamycin on
219 bacterial growth. We observed that rapamycin-mediated degradation of RpoA and the ATP
220 synthase component AtpA resulted in a mild growth delay in cells grown in liquid media only in
221 the *clpC1-frb* background (Supplementary Figure 10). In contrast, we observed strong growth
222 delays when cells targeting AtpA and Ffh for degradation were plated on media containing
223 rapamycin (Fig. 4c) and further demonstrated that degradation of Ffh and AtpA resulted in the
224 formation of ~24% fewer colonies (Fig. 4d; AtpA $P = 0.0083$, Ffh $P = 0.0169$). Quantitative plate
225 image analysis also confirmed delayed colony outgrowth when degrading AtpA and Ffh, only in
226 the *clpC1-frb* background (Fig. 4e and Supplementary Figure 11). It is worth noting that Ffh is a
227 component of the bacterial version of the signal recognition particle (SRP) system, which could
228 mean that effective depletion of this target might additionally disrupt the proper secretion of
229 essential membrane proteins. Interestingly, targeted degradation of other components of the
230 ATP synthase machinery (i.e., AtpH, AtpG, AtpD) did not manifest the outgrowth delay we
231 observed with AtpA. Together, these results suggest that efficient degradation of a given target
232 is necessary, but not sufficient for growth phenotypes *in vivo*; therefore, selection of a target

233 must be validated empirically at the chromosomal locus even after effective degradation is
234 verified.

235

236 **Targeted degradation of druggable complexes sensitizes mycobacteria to corresponding
237 antibiotics**

238 In addition to the growth phenotypes we observed above, we examined whether
239 targeted degradation of protein complex components might sensitize bacteria to clinically
240 relevant antibiotics that target different members of those complexes. Specifically, we assessed
241 whether targeted degradation of RpoA would synergize with rifampicin, which targets the RpoB
242 subunit of the RNA polymerase holoenzyme; and if targeted degradation of AtpA would
243 synergize with bedaquiline, which targets the AtpE subunit of ATP synthase (Fig. 5a). In both
244 cases, with targeted degradation of RpoA and AtpA, cells were more sensitive to rifampicin and
245 bedaquiline, respectively (Figs. 5b, c). These observed shifts represented a 4.13-fold shift for
246 the MIC₅₀ of rifampicin and a 3.67-fold shift for the MIC₅₀ of bedaquiline. There was no
247 sensitization to either antibiotic in cells where targeted degradation was not occurring
248 (Supplementary Figures 12a, b). We also examined whether RpoA and AtpA degradation
249 sensitized cells to the antibiotics streptomycin and linezolid which inhibit translation by targeting
250 the 30S and 50S ribosomal subunits, respectively. There was no sensitization to streptomycin
251 when degrading RpoA, but we did observe a 2.69-fold shift in the MIC₅₀ of streptomycin when
252 degrading AtpA (Supplementary Figure 12c). Degrading both RpoA and AtpA resulted in 1.48-
253 fold and 2.17-fold shifts in the MIC₅₀ of linezolid (Supplementary Figure 12d). It is worth noting
254 that the effect of degrading RpoA and AtpA in the presence of antibiotics targeting different
255 pathways were less pronounced compared to antibiotics targeting the same enzyme complexes.
256 We hypothesize that the observed slight, non-specific sensitization may be the result of cells
257 being in a compromised state due to degradation of transcription or ATP synthesis machinery;
258 while we expect these cells to be more susceptible to antibiotics targeting the same pathway

259 that is being degraded, it is also possible that their compromised state also renders them
260 weaker against antibiotic stress more generally.

261 In addition to inhibition of growth (i.e., bacteriostatic activity), we further asked whether
262 targeted degradation of RpoA and AtpA specifically enhances bactericidal killing of cells by
263 rifampicin and bedaquiline, respectively. While degrading RpoA had no observable effect on
264 bacterial count in the absence of rifampicin, when treated with 10 \times the observed MIC₅₀ of
265 rifampicin, targeted degradation of RpoA resulted in significantly greater cell killing compared to
266 cells with no degradation (Fig. 5d, $P < 0.01$ for 20 and 27 hours). Similarly, degrading AtpA had
267 no impact on bacterial count without bedaquiline, but treatment with 10 \times the MIC₅₀ of
268 bedaquiline resulted in significantly enhanced cell killing compared to cells with no degradation,
269 which did not demonstrate any killing at all (Fig. 5e, $P < 0.05$ for 27 and 48 hours). This synergy
270 is particularly striking as bedaquiline has been shown to have delayed bactericidal activity
271 clinically^{29,30}. Taken together, our findings highlight current antibiotic targets as pathways which
272 can also be attacked by ClpC1-mediated targeted protein degradation, yielding direct effects on
273 reducing bacterial growth, but importantly also sensitizing bacteria to currently approved
274 antibiotics and accelerating their killing kinetics.

275

276 **Discussion**

277 In this work, we developed and validated a platform for the systematic identification of
278 promising targets in the development of BacPROTAC targeted degrader antibiotics against
279 mycobacteria. Genetic fusions to the FRB and FKBP domains enable the induced proximity of
280 targets and the ClpC1 ATPase with the small molecule rapamycin, facilitating the subsequent
281 proteolytic degradation of endogenous proteins. We show that most but not all proteins we
282 screened as ClpC1 targets are effectively degraded using this approach, a subset of which
283 demonstrate growth inhibitory, as well as antibiotic sensitizing and killing rate enhancement

284 effects on *Msm*. Our results demonstrate the potential of TPD as a new modality for
285 antimicrobial therapeutics.

286 TPD offers some advantages over traditional antibiotics. Since active site inhibition is not
287 necessary for this modality, molecules which may be poor inhibitors could be repurposed as
288 high affinity ligands for PROTAC development. Additionally, not being limited to an enzymatic
289 active site expands the repertoire of 1) potential targets to include those “undruggable” by
290 traditional means, as well as that of 2) potential ligands that can be identified for a given target
291 (that is, while an enzyme has only one active site, high affinity binders can be raised to multiple
292 sites on a protein). The latter point suggests that even when resistant mutants eventually arise
293 to a TPD antibiotic, a different ligand could be swapped that bound the target protein at a
294 different site. Moreover, the bifunctional nature of targeted degraders provides an alternative
295 means of specificity.

296 Though we ultimately selected the ClpC1P1P2 proteolytic complex as the mediator of
297 TPD in mycobacteria in our system, there are other endogenous protein degradation systems
298 that may also be suitable. The Pup proteasome system (PPS) is more analogous to PROTACs,
299 as the PPS uses the pupylating ligase PafA which could reduce the necessary residence time of
300 the molecule to achieve an effect, as necessary residence time is likely lower for pupylation at a
301 single exposed histidine residue (PafA) compared to pulling in and unfolding full proteins
302 (ClpC1). The PafA ligase and the proteasome likely have their own specificities, however, and
303 like the ClpC1 targeting systems, might be appropriate for a restricted class of proteins.

304 When selecting targets for a TPD strategy, access to the target surface by the
305 degradation mediating machinery (e.g., E3 ligase for PROTACs) is essential. The geometry of
306 the nascent ternary complex formed when targets are brought in proximity to degradation
307 machinery is therefore a critical factor determining whether proteins can be degraded or not³¹. In
308 addition to the limitations on our ability to vary the geometry of potential targets, an additional
309 layer of complexity to our ClpC1-mediated approach is that ClpC1 degradation has its own

310 structural determinants. The rules governing whether ClpC1 will degrade a given protein are not
311 well known, though previous work has observed that putative ClpC1 substrates tend to have
312 relatively disordered termini²⁸. Given differences in protein tertiary structure and termini
313 composition among different proteins, it is not overly surprising that we observed a gradient of
314 degradability among selected target proteins. While the proteins we selected span a diversity of
315 essential functions and subcellular locations, the number of proteins we screened (n=17) is too
316 small to make any meaningful associations between protein features and degradability per se;
317 further studies that screen the full set of essential mycobacterial genes would be able to answer
318 this question.

319 Interestingly, while we had expected to find that being a predicted native ClpC1
320 substrate²⁸ would correlate with effective TPD in our system, we found that the predicted
321 substrates were broadly distributed across the degradability spectrum, with the two most
322 intractable mycobacterial proteins, EttA and InhA, both being predicted to be native substrates.
323 Meanwhile, that we were able to degrade 6/6 proteins not predicted to be native ClpC1
324 substrates perhaps suggests that ClpC1 has some promiscuity in its ability to degrade proteins
325 delivered to it, further highlighting this proteolytic complex component as a promising mediator
326 of TPD in mycobacteria. This suggests that the inherent degradability of a given target by
327 induced proximity is likely due to the confluence of multiple factors.

328 By microscopy, we noted that for some, but not all targets, rapamycin addition resulted
329 in the formation of fluorescent puncta. This raises the possibility that delivery of target proteins
330 to ClpC1 could have a dual effect: first, proximity-mediated degradation of that protein, and
331 second, forced removal of that protein from its native localization, potentially perturbing optimal
332 function or complex formation. This forced removal may be sufficient to cause unfavorable
333 outcomes in bacteria even without substantial degradation; for example, Ffh was only degraded
334 by about 30% of its steady state levels, yet we observed substantial growth delays on solid
335 media and significantly reduced colony formation when degraded. There is some evidence for

336 this concept in *Mtb*, where it has been shown that small molecules that disrupt a native protein-
337 protein interaction shows strongly bactericidal activity³².

338 In our study, were we able not only to show effective protein degradation using our
339 system but also to demonstrate TPD-dependent growth inhibition for some targets; furthermore,
340 we show that TPD can mediate antibiotic sensitization and more rapid antibiotic killing for other
341 targets. The strongest of these synergistic phenotypes was with AtpA depletion enhancing the
342 rate of killing by bedaquiline, one of the newest antibiotics for the treatment of multi-drug
343 resistant *Mtb* infection^{33,34}. Bedaquiline has been previously shown to have delayed killing
344 kinetics, which are not well understood and finding avenues to shorten this period – as we
345 showed with AtpA degradation – could prove advantageous in a clinical setting. The phenotypes
346 we observed with AtpA degradation was a curious example due to the differential growth
347 phenotypes we observed for different members of the ATP synthase complex. Though targeted
348 degradation of AtpA results in reduced colony formation with substantial growth delays on solid
349 media, no such reduction in colony formation or growth delay is observed for AtpG, AtpD, or
350 AtpH degradation. This would suggest that either 1) we achieve differential levels of protein
351 degradation among the different subunits, or 2) mycobacteria are particularly susceptible to
352 AtpA depletion. Recent work that systematically characterized the effect of essential genes'
353 transcript depletion by CRISPRi on bacterial fitness in *Mtb* and *Msm*³⁵ found that *Msm* is
354 similarly “vulnerable” to depletion of all four ATP synthase subunits, suggesting that in the
355 strains with *fkbp* fusions at their chromosomal loci, we are able to target a higher percentage of
356 cellular AtpA for degradation compared to the other subunits. Our study demonstrates that the
357 removal of a highly “degradable” target is not inherently sufficient to result in growth inhibitory
358 (bacteriostatic) or cell lethality (bactericidal) phenotypes, despite these proteins being identified
359 as essential¹¹. This could be because the new steady state level of protein after TPD is still
360 sufficient to perform cellular function under our culture conditions. The availability of the recent
361 CRISPRi vulnerability dataset now provides a resource which can guide the selection of

362 additional TPD targets, enriching for proteins to which cells are particularly susceptible when
363 even small amounts are depleted.

364 An important limitation of this study is that we were only able to fuse ClpC1 with FRB at
365 its C-terminus. Therefore, delivery of target proteins by rapamycin addition is not to the
366 hexameric pore, but rather the base of the hexamer. We reason that what degradation we
367 observed was due to the inherent on/off kinetics of the FRB-rapamycin-FKBP interaction
368 increasing the local concentration of the target proteins around ClpC1, driving enhanced
369 degradation. When employing a small molecule ligand that binds to the ClpC1 N-terminal
370 domain (NTD), we expect greater degradation efficiency. Notably, the ClpC1-targeting ligands in
371 the BacPROTAC work¹⁰ directly target the ClpC1 NTD; therefore, we expect that the potent
372 targets identified in our work may be even more efficiently degraded with a cognate
373 BacPROTAC molecule. Another limitation is that the growth and viability phenotypes following
374 TPD we report have been generated in *Msm* cells, using genetic fusions to the FRB and FKBP
375 domains (i.e., not a heterobifunctional small molecule). To enable further use of this system, it
376 will be important to identify 1) small molecule or chemical fragment ligands to the *Mtb* orthologs
377 of promising targets we identified and 2) ligands that bind optimally to *Mtb*ClpC1, enabling the
378 generation of BacPROTACs to direct the degradation of native *Mtb* proteins.

379 Together, our work reports a platform that enables the rapid screening of bacterial target
380 proteins for TPD and the identification of particularly labile targets that elicit antibacterial
381 phenotypes. Further screening of both new and old therapeutic targets for suitability as TPD
382 targets could be used for the development of new degrader BacPROTAC antibiotics. In
383 particular, the demonstrated sensitization to and enhanced killing by existing antibiotics could
384 mean that, when coupled with existing antibiotics, combination therapy with a BacPROTAC
385 antibiotic might shorten *Mtb*'s requisite lengthy treatment times or even restore antibiotic
386 sensitivity to drug-resistant strains.

387

388 **Methods**

389 **Bacterial strains and culture conditions**

390 *Mycobacterium smegmatis* mc²155 and derivative strains were grown in Middlebrook 7H9 liquid
391 media (Millipore) supplemented with ADC (5 g l⁻¹ bovine albumin fraction V, 2 g l⁻¹ dextrose,
392 0.003 g l⁻¹ catalase, 0.85 g l⁻¹ NaCl), 0.2% (v/v) glycerol, and 0.05% (v/v) Tween-80 or plated on
393 LB agar or 7H10 agar. Antibiotic selection concentrations for *Msm* were: 25 µg ml⁻¹ kanamycin,
394 20 µg ml⁻¹ nourseothricin, 50 µg ml⁻¹ hygromycin, and 20 µg ml⁻¹ zeocin. Antibiotic selection
395 concentrations for *Escherichia coli* were: 50 µg ml⁻¹ kanamycin, 40 µg ml⁻¹ nourseothricin, 100
396 µg ml⁻¹ hygromycin, and 50 µg ml⁻¹ zeocin. All strains were cultured at 37°C. Rapamycin
397 (Sigma) was dissolved in DMSO to a stock concentration of 10 mg ml⁻¹.

398

399 **Strain construction**

400 mc²155 ΔclpC1 L5::clpC1-frb strain

401 The *clpC1-frb* strain was made by L5 allele swap. First, a *clpC1* (MSMEG_6091) merodiploid
402 strain was generated by amplifying *clpC1* with 500 bp of the sequence upstream of the gene to
403 capture the native promoter, assembling into a kan^r plasmid with the L5 integrase, and
404 integrating as a single copy at the L5 phage chromosomal attachment site (*attB*)³⁶. Native *clpC1*
405 was knocked out by mycobacterial recombineering (phage-mediated homologous
406 recombination)³⁷, replacing the native *clpC1* allele with a zeocin selection marker, flanked by
407 *loxP* sites. The knockout construct comprised 500 bp homology arms upstream and
408 downstream of *clpC1* surrounding the floxed zeocin selection marker and was assembled into a
409 pL5 vector³⁸. Next, *clpC1* (with native promoter) and *frb* codon-optimized for mycobacteria were
410 amplified, assembled into a ntc^r plasmid with the L5 integrase, and transformed into the Δ*clpC1*
411 L5::*clpC1* strain; successful swaps acquired nourseothricin resistance at the expense of
412 kanamycin resistance, whereas double integrants contained both markers. A 1:1 ratio of single
413 to double integrants indicates that there is no fitness advantage to either allele.

414 Fluorescent target-fkbp-egfp fusions

415 The genes listed in Fig. 3d, as well as *fkbp* and *egfp* codon optimized for mycobacteria were
416 amplified, assembled under control of the high-strength P_{UV15} or P_{smyc} promoters (except for
417 *HupB* and *Wag31*; medium-strength P_{imyc} promoter) into a kan^r plasmid with the *Tweety*
418 integrase, and transformed in the WT *c/pC1* or $\Delta c/pC1$ L5::*c/pC1-frb* background.

419 Chromosomal locus target-fkbp fusions

420 The genes listed in Fig. 4d were tagged with *fkbp-flag* codon optimized for mycobacteria at their
421 native locus by recombineering, by adding the coding sequence in frame immediately before
422 each gene's stop codon. The knockin construct comprised 500 bp homology arms upstream
423 and downstream of each gene's stop codon surrounding the floxed zeocin marker and was
424 assembled into a pET-26b+ vector. The zeocin marker was removed by transformation with a
425 Cre plasmid that is sucrose curable by *SacB*³⁹. All chromosomal locus tags were with *fkbp-flag*,
426 except *ffh*, which was *fkbp-egfp*. All plasmids used in this work were cloned using isothermal
427 assembly⁴⁰ and plasmid maps are available upon request.

428 Transformation

429 *E. coli* competent cells were prepared using rubidium chloride and transformed by heat shock.
430 Electrocompetent *Msm* cells were prepared by growing cells to mid-log phase ($OD_{600} \approx 0.5$),
431 washing 3x with 10% (v/v) glycerol pre-chilled to 4°C, then resuspending in 1/100th of the initial
432 culture volume with 10% glycerol. DNA (200 ng for integrating plasmids, 1 μ g for
433 recombineering) was added to 100 μ l competent cells and incubated on ice for 5 minutes,
434 followed by electroporation in a 2 mm cuvette at 2500 V, 125 Ω , 25 μ F using an ECM 630
435 electroporator (BTX). 7H9 media (1 ml) was added to the cells, which recovered for 3 h with
436 shaking at 37°C, before spreading on LB agar and incubating at 37°C for 2-3 days.

437

438 **NanoLuc assay**

439 To validate rapamycin-mediated FRB-FKBP dimerization in mycobacteria, *Msm* cells were
440 grown to mid-log phase ($OD_{600} \approx 0.5$) and plated at a final $OD_{600} = 0.1$ with 5-fold serial dilutions
441 of rapamycin. The Nano-Glo® 5x reagent (furimazine substrate + buffer; Promega) was
442 prepared and added to each sample. Luminescence was measured in opaque white plates after
443 incubation with linear shaking at 37°C for 5 min using a Spark 10M plate reader (Tecan).

444

445 **Protein structure modeling**

446 The crystal structure of the stabilized mutant *Mtb*ClpC1 hexamer (PDB: 8A8U)²⁰ was modeled
447 using PyMOL (Schrodinger). The *Mtb*ClpC1 NTD trimer was modeled by aligning three
448 individual structures of the *Mtb*ClpC1 NTD (PDB: 6PBS)⁴¹ with a *E. coli* ClpB NTD trimer (PDB:
449 6OG3)⁴² as previously in ref. 20.

450

451 **Protein expression and purification**

452 The *Mtb* *clpC1* (Rv3596c) allele and *frb* codon optimized for mycobacteria were amplified and
453 assembled to encode both N- and C-terminally fused gene products under control of the T7
454 promoter into a pET-26b+ plasmid, which encodes a 6xHis tag at the C-terminal end of the gene
455 product. Constructs were transformed into BL21-CodonPlus(DE3)-RP cells (Agilent), which
456 enables efficient expression of GC-rich genes in *E. coli*.

457 BL21 strains were grown in LB broth (Lennox) with shaking at 37°C, until they reached $OD_{600} \approx$
458 0.8; protein expression was induced overnight with 100 µM IPTG and incubating with shaking at
459 18°C overnight. Cells were harvested by centrifugation, subjected to a -80°C freeze-thaw cycle,
460 and resuspended in protein binding buffer (25 mM Gomori buffer pH 7.6, 100 mM KCl, 5% (v/v)
461 glycerol). Next, cells were treated with 12.5 µg ml⁻¹ lysozyme for 5 min and then lysed by
462 sonication (30% power pulses for 30 s, alternating with ice incubation for 1 min; repeat 4x). Cell
463 debris was removed by centrifugation and His-tagged ClpC1 proteins were purified from
464 supernatants with Ni-NTA agarose beads (Qiagen). After washing in binding buffer

465 supplemented with 20 mM imidazole, proteins were eluted with binding buffer supplemented
466 with 100 mM and 200 mM imidazole. Input, flow through, and both elutions were examined by
467 SDS-PAGE by loading samples in a NuPAGE 4-12% Bis-Tris precast gradient gel (Invitrogen)
468 using MES SDS buffer.
469 Eluted proteins were concentrated and desalted with an Amicon® Ultra-4 Centrifugal Filter
470 Device (30 kDa MWCO, Millipore Sigma), with equilibration in protein binding buffer lacking
471 imidazole; protein concentrations were ascertained with the Pierce™ Coomassie Plus
472 (Bradford) Assay Reagent (ThermoScientific) and comparison to a BSA standard curve. Purified
473 fractions were pooled, aliquoted, and stored at -80°C. FRB-tagged *MtbClpC1* purification was
474 conducted as one independent experiment and WT *MtbClpC1*, *MtbClpP1*, and *MtbClpP2* were
475 purified previously²¹.

476

477 ***In vitro* assays**

478 ClpC1P1P2 protease activity

479 Degradation of the eGFP-ssrA by purified *MtbClpC1P1P2* was measured by examining loss in
480 fluorescence signal over time. *MtbClpC1* (WT and FRB-tagged proteins, 0.26 µM hexamer),
481 *MtbClpP1P2* (0.26 µM tetradecamer), and eGFP-ssrA (1.25 µM) were mixed in buffer
482 containing: 25 mM Gomori buffer pH 7.6 supplemented with 100 mM KCl (Sigma), 5% glycerol
483 (Sigma), 8 mM Mg-ATP (Sigma), and 2.5 mM Bz-Leu-Leu⁴³ (Laboratory of Dr. William
484 Bachovchin, Tufts University). Fluorescence signal decay was measured (Ex/Em: 485 nm / 520
485 nm) continuously in a SpectraMax M5 microplate reader (Molecular Devices) at 37°C for 35 min.

486

487 ClpC1 ATPase activity

488 ATP hydrolysis by purified *MtbClpC1* was measured using a pyruvate kinase and lactate
489 dehydrogenase (PK/LDH) coupled enzymatic assay in which absorbance at 340 nm is an
490 inverse proxy for the rate of ATP hydrolysis. *MtbClpC1* (WT and FRB-tagged proteins, 0 - 0.7

491 μ M hexamer), 1 mM phosphoenolpyruvate (Sigma), and 20 U ml⁻¹ PK/LDH (Sigma) were mixed
492 in buffer containing: 50 mM Tris pH 7.6 (Sigma), 100 mM KCl (Sigma), 1 mM DTT (Sigma), 1
493 mM NADH (Sigma), and 4 mM Mg-ATP (Sigma). Absorbance₃₄₀ was measured continuously in
494 a SpectraMax M5 microplate reader (Molecular Devices) at 37°C for 32 min.

495

496 **Flow cytometry**

497 To measure the fluorescence of the target reporter fusions in the presence of rapamycin, *Msm*
498 cells were grown to mid-log phase ($OD_{600} \approx 0.5$) and plated at a final $OD_{600} = 0.2$ (for the time
499 course flow cytometry, $OD_{600} = 0.1$) with the denoted concentration of rapamycin or DMSO
500 (vehicle control). Cells were incubated with shaking at 700 rpm at 37°C for the specified times (0
501 h, 3 h, 6 h, 9 h, 24 h), diluted in 7H9 media (to remain under 10,000 events sec⁻¹), and
502 fluorescence was quantified on a MACSQuant® VYB flow cytometer using the green
503 fluorescence laser and filter set (channel B1, Ex/Em: 488 nm / 525/50 nm) with at least 20,000
504 events captured for each sample. To suppress spurious events due to noise or cell debris, event
505 triggers were applied on forward scatter peak height ($FSC-H > 0.8$) and side scatter area ($SSC-$
506 $A > 1.2$). To exclude cellular aggregates and morphological outliers, gates were applied with
507 FlowJo (v. 10.8), and a representative gating strategy can be found in Supplementary Figure 6a.
508 The remaining events were normalized to mode and presented as histograms displaying \log_{10}
509 transformed green fluorescence intensity area (AlexaFluor488-A), using GFP signal as a proxy
510 for target protein levels *in vivo*. Full flow cytometry plots for all 17 targets and time points
511 summarized in Fig. 3b can be found in Supplementary Figure 7a. For the time course flow
512 cytometry, cells were prepared and then replica plated for each time point. At least 20,000
513 events were captured; after gating for single *Msm* cells, at least 15,000 cells remained for each
514 sample measured. Due to plate size limitations, technical replicates were measured from the
515 same sample.

516

517 **Immunoblotting**

518 To directly examine protein levels when redirected to ClpC1-FRB, *Msm* cells were grown to mid-
519 log phase ($OD_{600} \approx 0.5$), pelleted by centrifugation, and resuspended in 1× TBS supplemented
520 with the cComplete™ Protease Inhibitor Cocktail (Roche). Resuspended cells were aliquoted into
521 FastPrep® 2 ml Lysing Matrix tubes (MPBio) and lysed by beat beating with a Precellys 24
522 tissue homogenizer (Bertin Technologies; 6,500 rpm for 45 s, alternating with ice incubation for
523 2 min; repeat 3×). Cell debris was removed by centrifugation, supernatant protein content was
524 evaluated by NanoDrop 1000 (ThermoScientific), and all samples were normalized to the same
525 protein concentration in 1× TBS with protease inhibitor. Normalized protein aliquots were
526 treated with TURBO™ DNase (Invitrogen) for 15 min at 37°C to digest mycobacterial genomic
527 DNA and then denatured with boiling in Laemmli buffer. For all samples, 140 µg of protein was
528 loaded onto NuPAGE 4-12% Bis-Tris precast gradient gels (Invitrogen) using MES SDS buffer,
529 transferred to PVDF membranes using a Trans-Blot Turbo Transfer System (Bio-Rad), and
530 blocked with 1:1 SEA-BLOCK blocking buffer (ThermoScientific) and 1× PBS with shaking for 1
531 h at 25°C. Membranes were probed with the specified antibodies in 1:1 SEA-BLOCK and 1×
532 PBS-Tween (phosphate-buffered saline with 0.1% (v/v) Tween-20) with shaking for 1 h each
533 primary and secondary at 25°C. Immunoblots were imaged using the Odyssey® CLx Infrared
534 Imaging System (LI-COR) and processed using LI-COR ImageStudio. The full uncropped scans
535 of the blot shown in Fig. 2E can be found in Supplementary Figure 5. The mouse IgG2b
536 monoclonal RpoB antibody (Invitrogen, #8RB13) was diluted 1:1,000. The rabbit IgG
537 monoclonal GFP antibody (Abcam, #EPR14104) was diluted 1:1,000. The IRDye® 680RD goat
538 IgG (H+L) anti-mouse and IRDye® 800CW goat IgG (H+L) anti-rabbit (LI-COR) fluorescent
539 secondary antibodies were diluted 1:15,000.

540

541 **Time-lapse fluorescence microscopy and data analysis**

542 To generate the time-lapse data for targeted degradation of RpoA-FKBP-eGFP in Fig. 2f, cells
543 were grown until late log phase ($OD_{600} \approx 1.0$) and seeded on 2.0% agarose pads supplemented
544 with 7H9. The agarose pad was cast in a customized plastic frame and placed in a low-
545 evaporation imaging disk as described previously²⁷. Fluorescence and phase-contrast images
546 were acquired every 10 min over a 9 h period with a Plan Apo 60 3 1.45 NA objective using a
547 Nikon Ti-E inverted, widefield microscope equipped with a Nikon Perfect Focus system with a
548 Piezo Z drive motor, Andor Zyla sCMOS camera, and an Agilent MLC400 Monolithic laser
549 combiner. Fluorescence signals were acquired using a 6-channel Spectra X LED light source
550 and the Sedat Quad filter set. The excitation and emission filters used for the green
551 fluorophores (eGFP) were Ex. 470/24 nm and Em. 515/25 nm. Time-lapse snapshots were
552 rendered using customized Python scripts. To analyze time-lapse data, our previously
553 established microscopy image analysis pipeline MOMIA²⁷ was modified to track the
554 fluorescence of individual cells and emergence of new cell generations.

555

556 **Target protein microscopy image acquisition**

557 To capture the microscopy data for targeted degradation of all 17 target proteins examined in
558 Fig. 3f and Supplementary Figure 8a, cells were grown to mid-log phase ($OD_{600} \approx 0.5$) and
559 plated at a final $OD_{600} = 0.1$ and incubated with the indicated concentration of rapamycin for 9 h
560 with shaking at 700 rpm at 37°C. Cells were seeded on 2.0% agarose pads; fluorescence and
561 phase-contrast images were acquired using the same microscope configurations as used for the
562 time-lapse experiments. Image crops were rendered using customized Python scripts and the
563 dynamic range used for each individual target is reported in Supplementary Figure 8b.

564

565 **Quantitative imaging of colony growth**

566 To track colony growth dynamics, cells were grown to early-log phase ($OD_{600} \approx 0.3$), then
567 serially diluted and plated on solid 7H10 media supplemented with ADC and 0.5 μ g ml⁻¹

568 rapamycin or the equivalent volume of DMSO. Plates were incubated for 2-3 days at 37°C and
569 images were captured with a 12-megapixel camera with a 120° FOV at 0, 6, 8, 13, 21, 25, 30,
570 36, 48, and 56 h after plating. Our previously devised colony tracing pipeline⁴⁴ was augmented
571 with two deep learning models⁴⁵ that were trained to automate the identification of the grid lines
572 of each plate and also to perform semantic segmentation of plate photos. The pipeline was
573 applied as previously to track the expansion of individual colony areas over time and was
574 repurposed to generate CFU counts displayed in Fig. 4d and Supplementary Figure 11a.

575

576 **Minimum inhibitory concentration (MIC) assay**

577 To calculate their dose response to antibiotics and targeted degradation, *Msm* cells were grown
578 to mid-log phase ($OD_{600} \approx 0.5$) and plated at a final $OD_{600} = 0.0015$ in each well of a 96-well
579 plate containing serial dilutions of the specified antibiotics. For assays with concurrent targeted
580 degradation, all wells were supplemented with 0.5 μ g ml⁻¹ rapamycin or DMSO. Plates were
581 incubated with drug with shaking at 150 rpm at 37°C overnight. Resazurin was added to a final
582 concentration of 0.002% (w/v), plates were incubated up to 18 h, and fluorescence conversion
583 was measured (Ex/Em: 560 nm / 590 nm) in a SpectraMax M2 microplate reader (Molecular
584 Devices). Background fluorescence was subtracted from wells without cells and fluorescence
585 signal was normalized to wells without any compound. A nonlinear regression was used to fit a
586 sigmoid curve to the dose response data and calculate the half-maximal minimum inhibitory
587 concentration (MIC₅₀, GraphPad Prism).

588

589 **Antibiotic kill kinetics curves**

590 To examine the effect of targeted degradation on antibiotic killing, *Msm* cells were grown to mid-
591 log phase ($OD_{600} \approx 0.5$) and plated at a final $OD_{600} = 0.08$ in 24 well plates; wells were
592 supplemented with 0x or 10x their measured MIC of rifampicin or bedaquiline and with 0.5 μ g
593 ml⁻¹ rapamycin or DMSO. Plates were incubated for 2 days with shaking at 155 rpm at 37°C and

594 cells were sampled at 0, 4, 8, 20, 27 (both antibiotics), and 48 h (bedaquiline only) after plating.
595 Sampled cells were serially diluted and plated on plain LB agar; plates were incubated for 2-3
596 days at 37°C and individual colony forming units (CFUs) were counted.

597

598 **Bacterial growth kinetics curves**

599 To examine the effect of targeted degradation on bacterial growth in liquid media, *Msm* cells
600 were grown to mid-log phase ($OD_{600} \approx 0.5$) and plated at a final $OD_{600} = 0.0015$. Wells were
601 supplemented with the specified concentration of rapamycin or DMSO. Absorbance (OD_{600})
602 and/or eGFP fluorescence (Ex/Em: 488 nm / 510 nm) was measured in clear 96 well plates
603 sealed with a Breathe-Easy® membrane (Sigma) with linear shaking at 37°C for 48 h using a
604 Spark 10M plate reader (Tecan).

605

606 **Statistical analysis**

607 The statistical analyses and correlation plots described in this study were performed using the
608 python package SciPy⁴⁶ or GraphPad Prism. All experiments were performed at least twice
609 (biological replicates), unless otherwise noted. Technical replicates were measured within the
610 same experiment from distinct samples, unless otherwise noted. Means were compared using a
611 two-tailed Student's *t*-test. $P < 0.05$ was considered significant. For the microscopy experiments
612 at least 100 cells were analyzed for each shown image and the image data shown are
613 representative of multiple fields. No statistical methods were used to determine sample sizes
614 used in this work and the investigators were not blinded to sample identity.

615

616 **Data availability**

617 The data that support the findings of this study are available from the corresponding
618 author upon reasonable request.

619

620 **Code availability**

621 All code used to generate data in this work are available at a public GitHub depository
622 (https://github.com/izrolling/ClpC1_TPD).

623

624 **References**

- 625 1. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs:
626 confronting the challenges of antibacterial discovery. *Nat. Rev. Drug Discov.* **6**, 29–40 (2007).
- 627 2. Årdal, C. *et al.* Insights into early stage of antibiotic development in small- and medium-sized
628 enterprises: a survey of targets, costs, and durations. *J. Pharm. Policy Pract.* **11**, 8 (2018).
- 629 3. WHO. *Global Tuberculosis Report 2022*. [https://www.who.int/teams/global-tuberculosis-
630 programme/tb-reports/global-tuberculosis-report-2022](https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022) (2022).
- 631 4. Sakamoto, K. M. *et al.* Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F
632 box complex for ubiquitination and degradation. *Proc. Natl. Acad. Sci. U. S. A.* **98**, 8554–
633 8559 (2001).
- 634 5. Gao, X. *et al.* Phase 1/2 study of ARV-110, an androgen receptor (AR) PROTAC degrader, in
635 metastatic castration-resistant prostate cancer (mCRPC). *J. Clin. Oncol.* **40**, 17–17 (2022).
- 636 6. Banik, S. M. *et al.* Lysosome-targeting chimaeras for degradation of extracellular proteins.
637 *Nature* **584**, 291–297 (2020).
- 638 7. Takahashi, D. *et al.* AUTACs: Cargo-Specific Degraders Using Selective Autophagy. *Mol.*
639 *Cell* **76**, 797-810.e10 (2019).
- 640 8. Li, Z. *et al.* Allele-selective lowering of mutant HTT protein by HTT–LC3 linker compounds.
641 *Nature* **575**, 203–209 (2019).
- 642 9. Pearce, M. J., Mintseris, J., Ferreyra, J., Gygi, S. P. & Darwin, K. H. Ubiquitin-like protein
643 involved in the proteasome pathway of *Mycobacterium tuberculosis*. *Science* **322**, 1104–
644 1107 (2008).

645 10. Morreale, F. E. *et al.* BacPROTACs mediate targeted protein degradation in bacteria. *Cell*
646 **185**, 2338-2353.e18 (2022).

647 11. DeJesus, M. A. *et al.* Comprehensive Essentiality Analysis of the *Mycobacterium*
648 tuberculosis Genome via Saturating Transposon Mutagenesis. *mBio* **8**, (2017).

649 12. Chen, J., Zheng, X. F., Brown, E. J. & Schreiber, S. L. Identification of an 11-kDa FKBP12-
650 rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and
651 characterization of a critical serine residue. *Proc. Natl. Acad. Sci.* **92**, 4947–4951 (1995).

652 13. Choi, J., Chen, J., Schreiber, S. L. & Clardy, J. Structure of the FKBP12-Rapamycin
653 Complex Interacting with Binding Domain of Human FRAP. *Science* **273**, 239–242 (1996).

654 14. Banaszynski, L. A., Liu, C. W. & Wandless, T. J. Characterization of the
655 FKBP-Rapamycin-FRB Ternary Complex. *J. Am. Chem. Soc.* **127**, 4715–4721 (2005).

656 15. Cui, B. *et al.* Bioluminescence Resonance Energy Transfer System for Measuring Dynamic
657 Protein-Protein Interactions in Bacteria. *mBio* **5**, e01050-14 (2014).

658 16. Dixon, A. S. *et al.* NanoLuc Complementation Reporter Optimized for Accurate
659 Measurement of Protein Interactions in Cells. *ACS Chem. Biol.* **11**, 400–408 (2016).

660 17. Tate, J. & Ward, G. Interferences in Immunoassay. *Clin. Biochem. Rev.* **25**, 105–120
661 (2004).

662 18. Douglass, E. F. Jr., Miller, C. J., Sparer, G., Shapiro, H. & Spiegel, D. A. A Comprehensive
663 Mathematical Model for Three-Body Binding Equilibria. *J. Am. Chem. Soc.* **135**, 6092–6099
664 (2013).

665 19. Carroni, M. *et al.* Regulatory coiled-coil domains promote head-to-head assemblies of AAA+
666 chaperones essential for tunable activity control. *eLife* **6**, e30120 (2017).

667 20. Weinhäupl, K. *et al.* Structure of the drug target ClpC1 unfoldase in action provides insights
668 on antibiotic mechanism of action. *J. Biol. Chem.* **298**, 102553 (2022).

669 21. Fraga, H. *et al.* Development of high throughput screening methods for inhibitors of
670 ClpC1P1P2 from *Mycobacteria tuberculosis*. *Anal. Biochem.* **567**, 30–37 (2019).

671 22. Schmitz, K. R. & Sauer, R. T. Substrate delivery by the AAA+ ClpX and ClpC1 unfoldases
672 activates the mycobacterial ClpP1P2 peptidase. *Mol. Microbiol.* **93**, 617–628 (2014).

673 23. Pashley, C. A. & Parish, T. Efficient switching of mycobacteriophage L5-based integrating
674 plasmids in *Mycobacterium tuberculosis*. *FEMS Microbiol. Lett.* **229**, 211–215 (2003).

675 24. Pham, T. T., Jacobs-Sera, D., Pedulla, M. L., Hendrix, R. W. & Hatfull, G. F. Comparative
676 genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of
677 compatible site-specific integration vectors for mycobacteria. *Microbiol. Read. Engl.* **153**,
678 2711–2723 (2007).

679 25. Bokman, S. H. & Ward, W. W. Renaturation of *Aequorea* green-fluorescent protein.
680 *Biochem. Biophys. Res. Commun.* **101**, 1372–1380 (1981).

681 26. Murphy, K. C. *et al.* ORBIT: a New Paradigm for Genetic Engineering of Mycobacterial
682 Chromosomes. *mBio* **9**, (2018).

683 27. Zhu, J. *et al.* Spatiotemporal localization of proteins in mycobacteria. *Cell Rep.* **37**, 110154
684 (2021).

685 28. Lunge, A., Gupta, R., Choudhary, E. & Agarwal, N. The unfoldase ClpC1 of *Mycobacterium*
686 tuberculosis regulates the expression of a distinct subset of proteins having intrinsically
687 disordered termini. *J. Biol. Chem.* **295**, 9455–9473 (2020).

688 29. Diacon, A. H. *et al.* 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and
689 moxifloxacin combinations: a randomised trial. *Lancet Lond. Engl.* **380**, 986–993 (2012).

690 30. Diacon, A. H. *et al.* Randomized dose-ranging study of the 14-day early bactericidal activity
691 of bedaquiline (TMC207) in patients with sputum microscopy smear-positive pulmonary
692 tuberculosis. *Antimicrob. Agents Chemother.* **57**, 2199–2203 (2013).

693 31. Smith, B. E. *et al.* Differential PROTAC substrate specificity dictated by orientation of
694 recruited E3 ligase. *Nat. Commun.* **10**, 131 (2019).

695 32. Lin, Y. *et al.* Identification of antituberculosis agents that target ribosomal protein
696 interactions using a yeast two-hybrid system. *Proc. Natl. Acad. Sci.* **109**, 17412–17417
697 (2012).

698 33. Andries, K. *et al.* A Diarylquinoline Drug Active on the ATP Synthase of *Mycobacterium*
699 tuberculosis. *Science* **307**, 223–227 (2005).

700 34. Conradie, F. *et al.* Bedaquiline–Pretomanid–Linezolid Regimens for Drug-Resistant
701 Tuberculosis. *N. Engl. J. Med.* **387**, 810–823 (2022).

702 35. Bosch, B. *et al.* Genome-wide gene expression tuning reveals diverse vulnerabilities of
703 *M. tuberculosis*. *Cell* **184**, 4579-4592.e24 (2021).

704 36. Lee, M. H., Pascopella, L., Jacobs, W. R. & Hatfull, G. F. Site-specific integration of
705 mycobacteriophage L5: integration-proficient vectors for *Mycobacterium smegmatis*,
706 *Mycobacterium tuberculosis*, and bacille Calmette-Guérin. *Proc. Natl. Acad. Sci. U. S. A.* **88**,
707 3111–3115 (1991).

708 37. van Kessel, J. C. & Hatfull, G. F. Recombineering in *Mycobacterium tuberculosis*. *Nat.*
709 *Methods* **4**, 147–152 (2007).

710 38. Kieser, K. J. *et al.* Phosphorylation of the Peptidoglycan Synthase PonA1 Governs the Rate
711 of Polar Elongation in Mycobacteria. *PLoS Pathog.* **11**, e1005010 (2015).

712 39. Pelicic, V., Reyrat, J. M. & Gicquel, B. Expression of the *Bacillus subtilis* *sacB* gene confers
713 sucrose sensitivity on mycobacteria. *J. Bacteriol.* **178**, 1197–1199 (1996).

714 40. Gibson, D. G. *et al.* Enzymatic assembly of DNA molecules up to several hundred
715 kilobases. *Nat. Methods* **6**, 343–345 (2009).

716 41. Wolf, N. M. *et al.* Structure of the N-terminal domain of ClpC1 in complex with the
717 antituberculosis natural product ecumicin reveals unique binding interactions. *Acta*
718 *Crystallogr. Sect. Struct. Biol.* **76**, 458–471 (2020).

719 42. Rizo, A. N. *et al.* Structural basis for substrate gripping and translocation by the ClpB AAA+
720 disaggregase. *Nat. Commun.* **10**, 2393 (2019).

721 43. Li, M. *et al.* Structure and Functional Properties of the Active Form of the Proteolytic
722 Complex, ClpC1P2, from *Mycobacterium tuberculosis*. *J. Biol. Chem.* **291**, 7465–7476
723 (2016).

724 44. Liu, Q. *et al.* Tuberculosis treatment failure associated with evolution of antibiotic resilience.
725 *Science* **378**, 1111–1118 (2022).

726 45. Diakogiannis, F. I., Waldner, F., Caccetta, P. & Wu, C. ResUNet-a: A deep learning
727 framework for semantic segmentation of remotely sensed data. *ISPRS J. Photogramm.
728 Remote Sens.* **162**, 94–114 (2020).

729 46. Virtanen, P. *et al.* SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nat.
730 Methods* **17**, 261–272 (2020).

731

732 **Figure Legends**

733 **Fig. 1 | The FRB-FKBP dimerizable domains can be used to induce proximity in**
734 **mycobacteria. a** The concept of bacterial targeted protein degradation (TPD), in which
735 an essential target protein is delivered to the ClpC1P1P2 proteolytic complex by a
736 heterobifunctional molecule. **b** Schematic of our chemical genetic approach to induced
737 proximity, in which fusions to the FRB and FKBP domains are dimerized with the addition of
738 rapamycin. **c** Luminescence in live cells expressing split NanoLuc (Nluc) fragments with and
739 without fusion to FRB and FKBP. Density matched log phase cells incubated with the luciferase
740 substrate furimazine and a range of rapamycin concentrations at 37°C for 10 min. **d** Crystal
741 structure of the stabilized mutant *Mtb*ClpC1 hexamer (teal, PDB: 8A8U) with highlighted
742 monomer (translucent green) and three visible N-terminal domains (NTDs) which cannot be
743 assigned to specific protomers due to invisibility of the linker region (grayscale, PDB: 6PBS).
744 ClpC1 N- and C-terminal residues highlighted in green and magenta, respectively. **e**
745 Fluorescence of eGFP-ssrA measuring *in vitro* protease activity of ClpC1P1P2 complex with WT
746 *Mtb*ClpC1 (left) or FRB-ClpC1 and ClpC1-FRB (right). Purified *Mtb*Clp proteins incubated with

747 eGFP-ssrA substrate at 37°C. **f** (Top) Schematic of the *clpC1* L5 allele swap, in which a second
748 copy of *clpC1* is integrated at the L5 phage *attB* site. This enables recombineering-mediated
749 knockout of chromosomal *clpC1*, followed by an L5 integrase-mediated swap for the *clpC1-frb*
750 allele and an alternative resistance marker. (Bottom) Quantification of the *clpC1-frb* swap; true
751 swaps carry only the second resistance marker, whereas double integrants carry both (and both
752 *clpC1* alleles). For **c**, data are mean \pm s.d. of three technical replicates and are representative of
753 two independent experiments; **e**, data are individually plotted technical replicate measurements,
754 normalized to time = 0 h, and are representative of two independent experiments. **a-b** Created
755 with BioRender.com

756

757 **Fig. 2 | Rapamycin redirects a native mycobacterial protein for degradation by ClpC1-**
758 **FRB. a-b** Schematics of reporter strains generated to assess target degradation, with *substrate-*
759 *fkbp-egfp* genes delivered to the Tweety phage *attB* site in a WT *clpC1* (**a**) or Δ *clpC1* L5::*clpC1-*
760 *frb* (**b**) background. **c-d** Fluorescence of live cells as a proxy for protein levels of FKBP-eGFP
761 (**c**) or RpoA-FKBP-eGFP (**d**) in the WT *clpC1* (top) or *clpC1-frb* (bottom) background. Density
762 matched log phase cells incubated with DMSO or 0.1 μ g ml⁻¹ rapamycin with shaking at 37°C for
763 24 h. **e** Western blot analysis of RpoA-FKBP-eGFP with DMSO or 0.1 μ g ml⁻¹ rapamycin
764 addition in both strain backgrounds. **f** Live cell, wide-field fluorescence microscopy time-lapse
765 images of cells expressing RpoA-FKBP-eGFP with 0.1 μ g ml⁻¹ rapamycin in both strain
766 backgrounds. Scale bar, 5 μ m. **g** Quantitation of all captured fields during time-lapse in (**f**),
767 measuring median fluorescent signal in the FITC channel across cells over time. Colored lines
768 represent individual cells (ClpC1, n=77; ClpC1-FRB, n=105) that were initially plated (G.0,
769 purple), first-generation (G.1, teal), or second-generation (G.2, lime green). For **c-d**, data are
770 representative of three independent experiments; **e**, data represent one independent
771 experiment; **f-g**, data are representative images selected from among 4 fields for each and are
772 representative of two independent experiments.

773

774 **Fig. 3 | Mycobacterial proteins are differentially susceptible to degradation by ClpC1-**
775 **FRB.** **a** Schematic of high-throughput flow cytometry screen in *Msm* cells expressing targets
776 tagged with FKBP-eGFP. **b** Fluorescence of live cells as a proxy for protein levels of RpoA-
777 FKBP-eGFP in the *clpC1-frb* background over time. **c** Summary plot of all tested target proteins;
778 fluorescence of live cells as a proxy for protein levels in the *clpC1-frb* background over time.
779 Density matched log phase cells incubated with DMSO or 0.5 μ g ml⁻¹ rapamycin with shaking at
780 37°C for the indicated times. **d** Enumeration of all tested proteins and their respective rate
781 constants (dG/dt), proportion of total degradation (% deg), and whether they are predicted to be
782 native ClpC1 substrates²⁸. **e** Correlation plot relating the log₂-transformed degradation rate and
783 the steady state intensity of plotted target proteins. **f** Live cell, wide-field fluorescence
784 microscopy images of cells expressing selected target proteins with DMSO or 0.1 μ g ml⁻¹
785 rapamycin. Scale bar, 5 μ m. For **b**, data are two technical replicates, are representative of three
786 independent experiments, and normalized to the mode; **c**, data are the mean of two technical
787 replicates, are representative of two independent experiments, and normalized to fluorescent
788 intensity of DMSO-treated cells at time = 0 h. Data in **e** are bounded by the 95% confidence
789 interval. Data in **f** are representative images selected from among 4 fields for each and are
790 representative of two independent experiments. **a** Created with BioRender.com
791

792 **Fig. 4 | Targeted degradation of mycobacterial proteins inhibits bacterial growth. a-b**
793 Schematics of strains generated to assess phenotypes arising from targeted protein
794 degradation, with target alleles tagged with *fkbp-flag* (*atpG*, *secA1*, *atpD*, *atpH*, *rpoA*, *atpA*) or
795 *fkbp-egfp* (*ffh*) at their chromosomal loci in a WT *clpC1* (**a**) or Δ *clpC1* L5::*clpC1-frb* (**b**)
796 background. **c** Representative images illustrating colony outgrowth dynamics of the indicated
797 targets in the *clpC1-frb* background over time. Density matched log phase cells serially diluted,
798 plated on solid media containing DMSO or 0.5 μ g ml⁻¹ rapamycin, and incubated at 37°C for the

799 indicated times. **d** Total colonies formed during outgrowth on solid media containing DMSO or
800 0.5 $\mu\text{g ml}^{-1}$ rapamycin for the indicated targets in the *clpC1-frb* background. *P* values were
801 determined by unpaired two-tailed *t*-tests and compared (■) with (□). **P* < 0.05, ***P* < 0.01.
802 Exact *P*-values: AtpA, ***P* = 0.0083; Ffh, **P* = 0.0169. **e** Quantitation of colony outgrowth
803 dynamics as in (c) by colony size tracking by area (mm^2) of individual colonies of the indicated
804 targets in the *clpC1-frb* background over time. Cells plated as in **c-d**. For **c**, images are
805 representative of three technical triplicates and two independent experiments; **d**, data are mean
806 \pm s.d. of three technical replicates and are representative of two independent experiments. In **e**,
807 dark lines are the mean of three technical replicates, are bounded by the 95% confidence
808 interval, and are representative of two independent experiments.

809

810 **Fig. 5 | Targeted degradation of complex components sensitizes to and enhances killing**
811 **by antibiotics targeting the same complex.** **a** Schematic of combination approach to
812 potentiate antibiotic efficacy, in which different members of the multi-component complexes
813 RNA polymerase (top, PDB: 5UHA) or ATP synthase (bottom, PDB: 7NJK) are both inhibited
814 with small molecule antibiotics (yellow) and targeted for degradation by rapamycin (green). **b-c**
815 Half-maximal minimum inhibitory concentration (MIC_{50}) dose response measuring the sensitivity
816 of strains expressing RpoA-FKBP-FLAG (**b**) or AtpA-FKBP-FLAG (**c**) to the indicated antibiotics
817 in media supplemented with DMSO or 0.5 $\mu\text{g ml}^{-1}$ rapamycin. **d-e** Kill curves measuring the
818 number of individual colony forming units (CFU) following treatment of strains expressing RpoA
819 (**d**) or AtpA (**e**) with 0 \times MIC (left) or 10 \times MIC (right) the corresponding antibiotic for the indicated
820 times. This assay measures the killing kinetics of antibiotics when supplemented with DMSO or
821 0.5 $\mu\text{g ml}^{-1}$ rapamycin. *P* values were determined by unpaired two-tailed *t*-tests and compared (▲)
822 with (△). **P* < 0.05, ***P* < 0.01. Exact *P*-values: (**e**) $t = 20$ h, ***P* = 0.0049; $t = 27$ h, ***P* =
823 0.0017, (**f**) $t = 27$ h, **P* = 0.0101; $t = 48$ h, ***P* = 0.0055. For **b-e**, data are mean \pm s.d. of three
824 technical replicates and are representative of two independent experiments.

825

826 **Acknowledgments**

827 We thank members of the Rubin and Sarah Fortune labs for helpful discussions during this work
828 and Douaa Mugahid for thoughtful feedback on the manuscript. We thank Kenan Murphy for
829 sharing the ClpC1-eGFP *Msm* strain. Funding: This material is based upon work supported by
830 the NSF Graduate Research Fellowship under Grant No. DGE1745303 (HW), the Harvard
831 GSAS Herchel Smith Graduate Fellowship (HW), the Marcus Urann Graduate Fellowship (HW),
832 NIH/NIAID award U19 AI142735 (EJR), and funding provided by Grace Wang and Josef
833 Tatelbaum.

834 **Author contributions**

835 HW, JZ, and ER conceived and designed the study; HW, JZ, OK, and MW performed
836 experiments; HW, JZ, and IW performed data analysis; OK, TA, MC, ER gave technical and
837 conceptual advice; HW and JZ wrote the original draft; HW, JZ, MC, IW, OK, TA, MW, and ER
838 reviewed and edited the manuscript; JZ and ER supervised this study.

839 **Competing interests**

840 The authors declare no competing interests.

841 **Correspondence** and requests for materials should be addressed to Eric Rubin.

842

843 **Supplementary Figure Legends**

844 **Supplementary Figure 1 | Rapamycin does not restrict mycobacterial growth at the**
845 **concentrations used in this work.** Half-maximal minimum inhibitory concentration (MIC₅₀)
846 dose response measuring the sensitivity of *Msm* strains to rapamycin. Primary concentration of
847 rapamycin used in this work indicated by dotted line. Data are mean ± s.d. of three technical
848 replicates and are representative of two independent experiments. Related to Fig. 1.

849

850 **Supplementary Figure 2 | C-terminally tagged *Mtb*ClpC1-FRB retains ATPase activity *in***

851 ***vitro*.** **a** SDS-PAGE of purified tagged *Mtb*ClpC1 proteins expressed in BL21 cells. Arrow

852 denotes expected size of fusion proteins. I = input; FT = flow-through; E1 = elution 1, 100 mM

853 imidazole; E2 = 200 mM imidazole. **b** Schematic of ATP/NADH coupled *in vitro* assay to

854 measure ClpC1 ATPase activity. **c** Absorbance at 340nm measuring *in vitro* ATPase activity of

855 WT ClpC1 (left), ClpC1-FRB (middle), or FRB-ClpC1 (left) with the indicated concentrations of

856 each protein. For **c**, data are individually plotted measurements, normalized to time = 0 h, and

857 are representative of two independent experiments. **b** Created with BioRender.com. Related to

858 Fig. 1.

859

860 **Supplementary Figure 3 | The ClpC1-FRB strain is not growth-impaired compared to WT**

861 ***Msm*.** Optical density of bacterial cultures at 600nm measuring the growth kinetics of the

862 indicated *Msm* strains over time when supplemented with DMSO (left), 0.1 μ g ml⁻¹ rapamycin

863 (middle), or 0.5 μ g ml⁻¹ rapamycin (left) with shaking at 37°C. Data are mean \pm s.d. of three

864 technical replicates and are representative of two independent experiments. Related to Fig. 1.

865

866 **Supplementary Figure 4 | Rapamycin re-localizes FKBP-eGFP.** **a** Live cell, wide-field

867 fluorescence microscopy images of cells expressing ClpC1 tagged at its chromosomal locus

868 with eGFP and treated with DMSO (top) or 0.1 μ g ml⁻¹ rapamycin (bottom). Scale bar, 5 μ m. **b**

869 Western blot analysis of ClpC1-eGFP. **c** Live cell, wide-field fluorescence microscopy images of

870 cells expressing FKBP-eGFP in the WT *clpC1* (left) or *clpC1-frb* (right) background and treated

871 with DMSO (top) or 0.1 μ g ml⁻¹ rapamycin (bottom). **a,c** Data are representative images

872 selected from among 4 fields for each and are representative of two independent experiments.

873 Normalized axial intensity of FITC signal across the cell widths of cells (N shown in each panel).

874 Arrows highlight signal increases at the cell edges. Related to Fig. 2.

875

876 **Supplementary Figure 5 | Uncropped western blot from Fig. 2e.** Western blot analysis of
877 RpoA-FKBP-eGFP with DMSO or 0.1 μ g ml⁻¹ rapamycin addition in the WT *clpC1* or *clpC1-frb*
878 background. Related to Fig. 2.

879

880 **Supplementary Figure 6 | Flow gating strategy and RpoA degradation kinetics correlation**
881 **plot.** **a** Representative flow gating strategy employed in this work. **b** Correlation plot comparing
882 fluorescent signal loss kinetics of RpoA-FKBP-eGFP by time-lapse microscopy and flow
883 cytometry. Time-lapse data represents the median fluorescent signal of all cells and flow data
884 represents the mean fluorescent signal of two technical replicates; both are normalized to time =
885 0 h. Related to Fig. 3.

886

887 **Supplementary Figure 7 | Mycobacterial proteins are differentially degraded with varying**
888 **kinetics.** **a** Fluorescence of live cells as a proxy for protein levels of indicated targets in the
889 *clpC1-frb* background over time. Density matched log phase cells incubated with DMSO or 0.5
890 μ g ml⁻¹ rapamycin with shaking at 37°C for the indicated times. **b** Flow data from (a)
891 transformed into normalized signal delay for all indicated targets following first order exponential
892 decay kinetics. For **a**, data are two technical replicates, representative of two independent
893 experiments, and normalized to the mode; **b**, data are individually plotted technical replicate
894 measurements, representative of two independent experiments, and normalized to time = 0 h.
895 Related to Fig. 3.

896

897 **Supplementary Figure 8 | Mycobacterial proteins are differentially degraded and**
898 **sometimes re-localized with rapamycin.** **a** Live cell, wide-field fluorescence microscopy
899 images of cells expressing selected target proteins with DMSO or 0.1 μ g ml⁻¹ rapamycin. Scale
900 bar, 5 μ m. **b** Dynamic range of GFP signal for each indicated strain. **c** Correlation plot
901 comparing fluorescent signal intensity for each tested target by microscopy and flow cytometry.

902 Samples stratified by treatment with DMSO or 0.1 $\mu\text{g ml}^{-1}$ rapamycin. For **a**, data are
903 representative images selected from among 4 fields for each and are representative of two
904 independent experiments. In **c**, Data are bounded by the 95% confidence interval; time-lapse
905 data represents the median fluorescent signal of all cells and flow data represents the mean
906 fluorescent signal of two technical replicates. Related to Fig. 3.

907

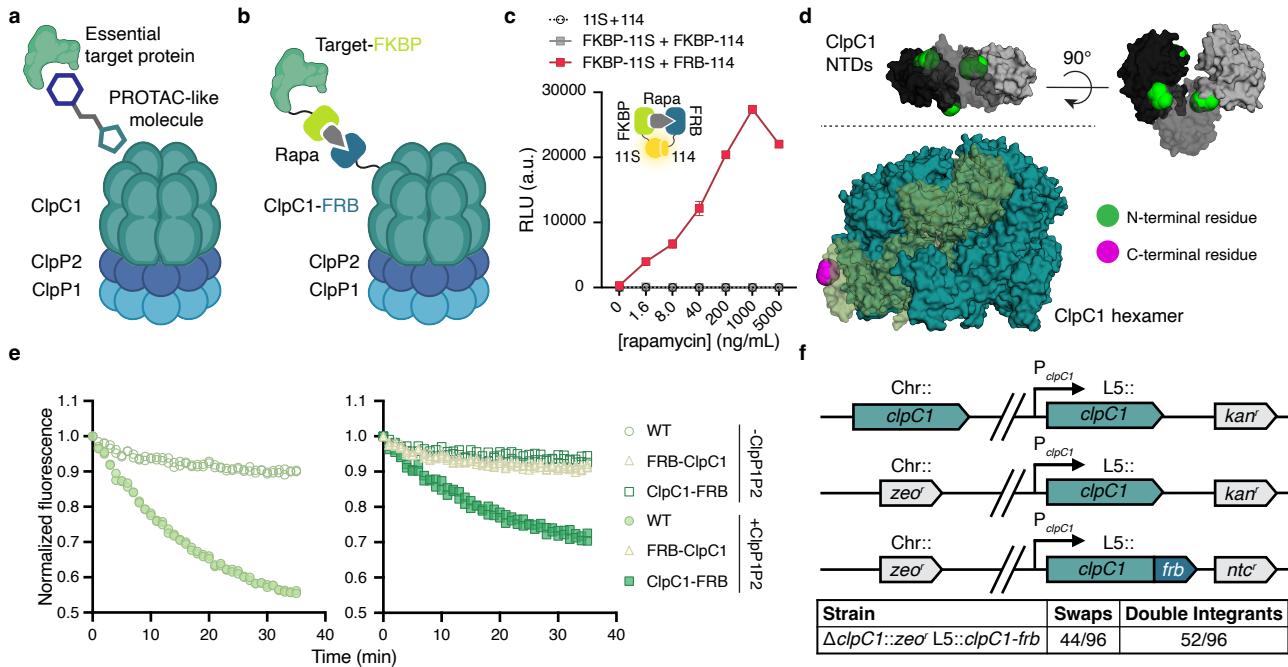
908 **Supplementary Figure 9 | Rapamycin stably directs degradation of RpsJ for 48 h. a-b** Cell
909 density (OD_{600})-normalized fluorescence of live cells as a proxy for protein levels of FKBP-eGFP
910 (**a**) or RpsJ-FKBP-eGFP (**b**) in the *c/pC1-frb* background. Density matched log phase cells
911 incubated with DMSO or 1 $\mu\text{g ml}^{-1}$ rapamycin with shaking at 37°C. Data are individually plotted
912 technical replicate measurements. Related to Fig. 3.

913

914 **Supplementary Figure 10 | Targeted degradation of RpoA and AtpA delays growth in**
915 **liquid media. a-b** Optical density of bacterial cultures at 600nm measuring the growth kinetics
916 of strains expressing RpoA (**a**) or AtpA (**b**) in the WT *c/pC1* (left) or *c/pC1-frb* (right) background
917 when supplemented with DMSO or 10 $\mu\text{g ml}^{-1}$ rapamycin with shaking at 37°C. Data are mean \pm
918 s.d. of three technical replicates and are representative of two independent experiments.

919 Related to Fig. 4.

920


921 **Supplementary Figure 11 | Targeted degradation growth inhibition phenotypes are**
922 **C_lpC1-FRB dependent. a** Total colonies formed during outgrowth on solid media containing
923 DMSO or 0.5 $\mu\text{g ml}^{-1}$ rapamycin for the indicated targets in the *c/pC1* background. Density
924 matched log phase cells serially diluted, plated on solid media containing DMSO or 0.5 $\mu\text{g ml}^{-1}$
925 rapamycin, and incubated at 37°C. *P* values were determined by unpaired two-tailed *t*-tests and
926 compared (■) with (□). **P* < 0.05, Exact *P*-value: SecA1, ***P* = 0.0214. **b** Quantitation of colony
927 outgrowth dynamics by colony size tracking by area (mm^2) of individual colonies of the indicated

928 targets in the *c/pC1* background over time. **c** Representative images illustrating colony
929 outgrowth dynamics of the indicated targets in the *c/pC1* background over time. Cells plated as
930 in **a-b**. For **a**, data are mean \pm s.d. of three technical replicates and are representative of two
931 independent experiments; in **b**, dark lines are the mean of three technical replicates, are
932 bounded by the 95% confidence interval, and are representative of two independent
933 experiments. For **c**, images are representative of three technical triplicates and two independent
934 experiments. Related to Fig. 4.

935

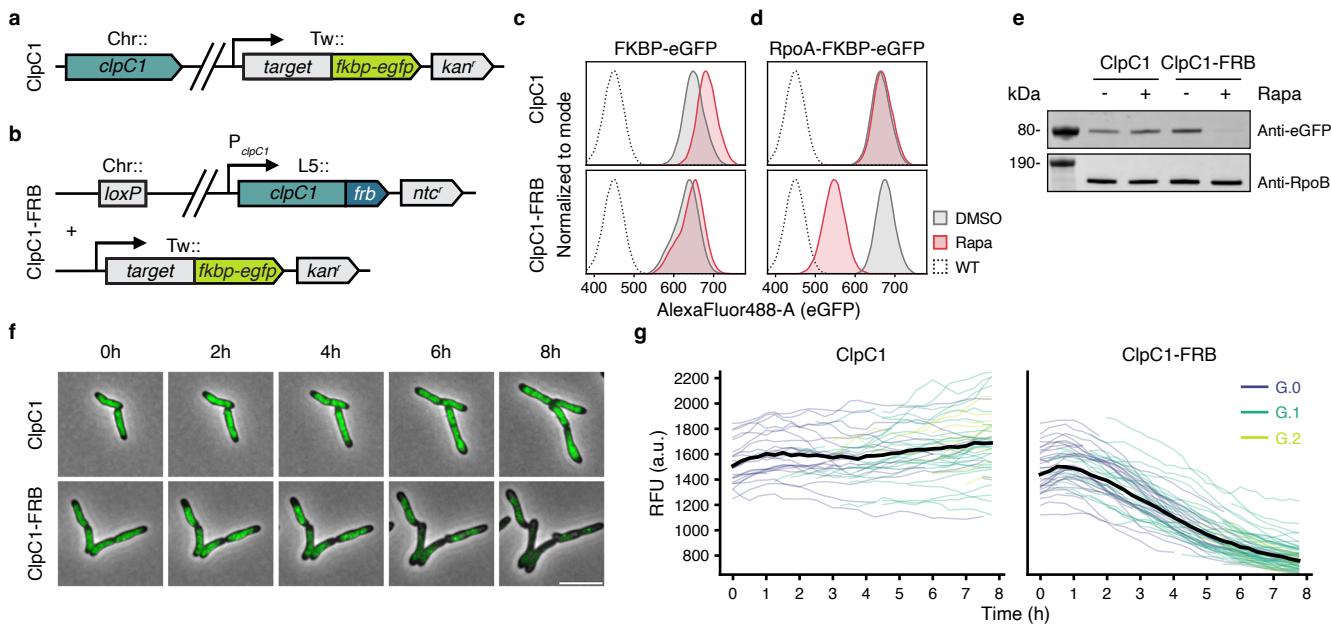

936 **Supplementary Figure 12 | *Msm* dose response to antibiotics with targeted protein**
937 **degradation. a-d** Half-maximal minimum inhibitory concentration (MIC₅₀) dose response
938 measuring the sensitivity of indicated strains to rifampicin (**a**), bedaquiline (**b**), streptomycin (**c**),
939 or linezolid (**d**) in media supplemented with DMSO or 0.5 μ g ml⁻¹ rapamycin. Observed fold-
940 shifts are denoted on the corresponding plot. For **a-d**, data are mean \pm s.d. of three technical
941 replicates. Related to Fig. 5.

Figure 1

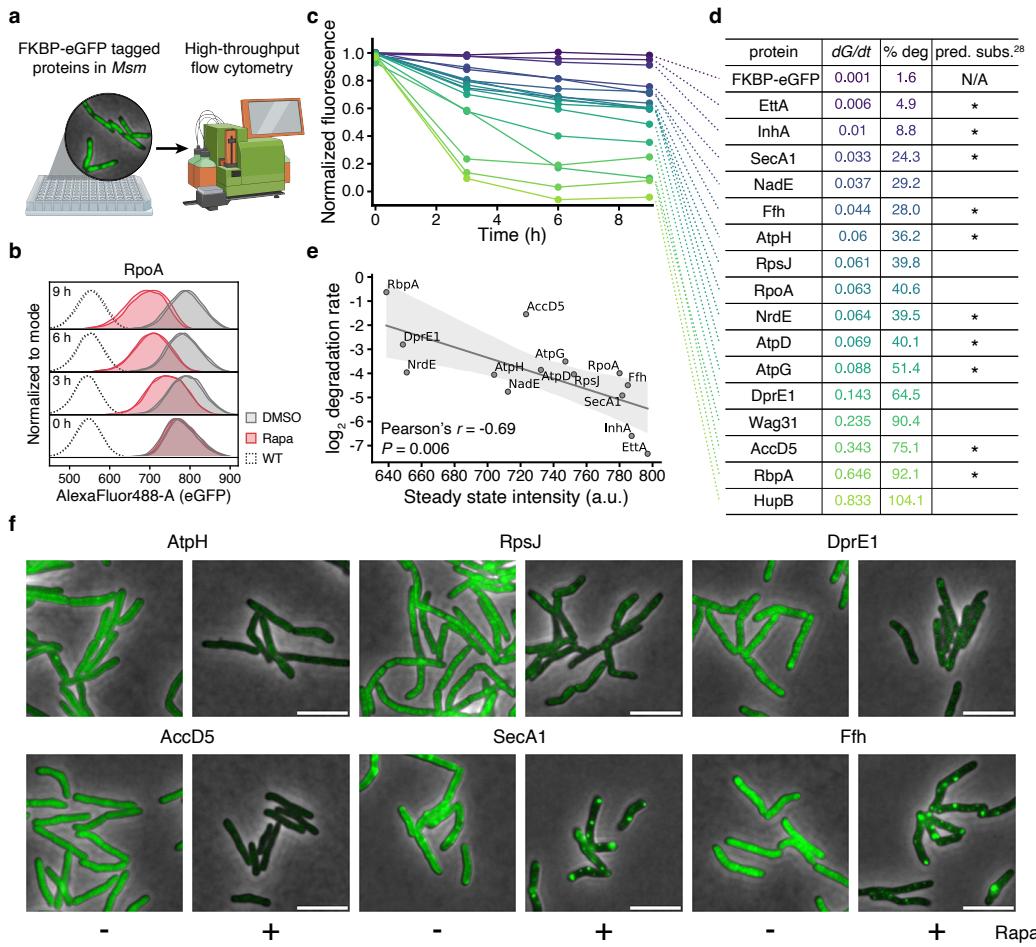

Fig. 1 | The FRB-FKBP dimerizable domains can be used to induce proximity in mycobacteria. **a** The concept of bacterial targeted protein degradation (TPD), in which an essential target protein is delivered to the ClpC1P1P2 proteolytic complex by a heterobifunctional molecule. **b** Schematic of our chemical genetic approach to induced proximity, in which fusions to the FRB and FKBP domains are dimerized with the addition of rapamycin. **c** Luminescence in live cells expressing split NanoLuc (Nluc) fragments with and without fusion to FRB and FKBP. Density matched log phase cells incubated with the luciferase substrate furimazine and a range of rapamycin concentrations at 37 °C for 10 min. **d** Crystal structure of the stabilized mutant *Mtb*ClpC1 hexamer (teal, PDB: 8A8U) with highlighted monomer (translucent green) and three visible N-terminal domains (NTDs) which cannot be assigned to specific protomers due to invisibility of the linker region (grayscale, PDB: 6PBS). ClpC1 N- and C-terminal residues highlighted in green and magenta, respectively. **e** Fluorescence of eGFP-ssrA measuring *in vitro* protease activity of ClpC1P1P2 complex with WT *Mtb*ClpC1 (left) or FRB-ClpC1 and ClpC1-FRB (right). Purified *Mtb*Clp proteins incubated with eGFP-ssrA substrate at 37 °C. **f** (Top) Schematic of the *clpC1* L5 allele swap, in which a second copy of *clpC1* is integrated at the L5 phage *attB* site. This enables recombineering-mediated knockout of chromosomal *clpC1*, followed by an L5 integrase-mediated swap for the *clpC1*-*frb* allele and an alternative resistance marker. (Bottom) Quantification of the *clpC1*-*frb* swap; true swaps carry only the second resistance marker, whereas double integrants carry both (and both *clpC1* alleles). For **c**, data are mean \pm s.d. of three technical replicates and are representative of two independent experiments; **e**, data are individually plotted technical replicate measurements, normalized to time = 0 h, and are representative of two independent experiments. **a-b** Created with BioRender.com

Figure 2

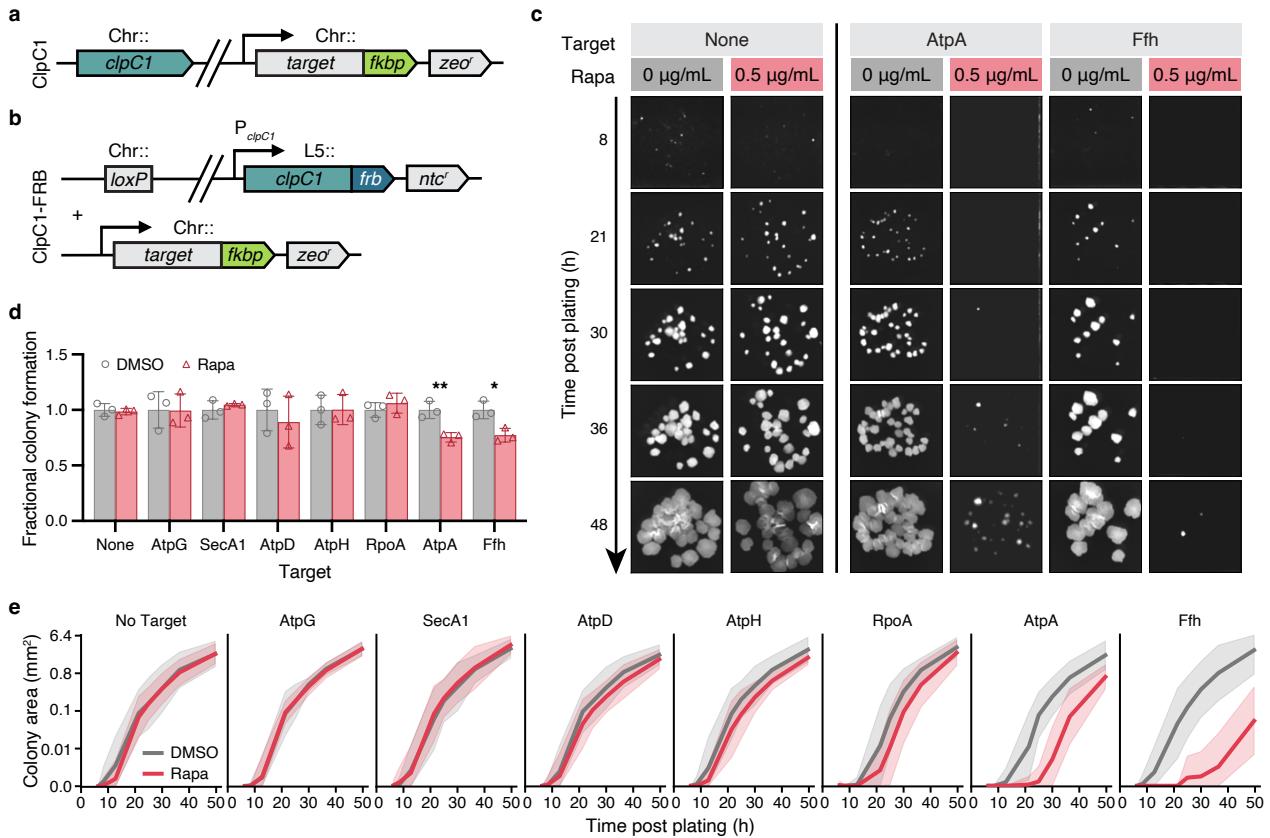

Fig. 2 | Rapamycin redirects a native mycobacterial protein for degradation by ClpC1-FRB. **a-b** Schematics of reporter strains generated to assess target degradation, with *substrate-fkbp-eGFP* genes delivered to the Tweety phage *attB* site in a WT *clpC1* (**a**) or Δ *clpC1* L5::*clpC1-frb* (**b**) background. **c-d** Fluorescence of live cells as a proxy for protein levels of FKBP-eGFP (**c**) or RpoA-FKBP-eGFP (**d**) in the WT *clpC1* (top) or *clpC1-frb* (bottom) background. Density matched log phase cells incubated with DMSO or 0.1 μ g ml⁻¹ rapamycin with shaking at 37° C for 24 h. **e** Western blot analysis of RpoA-FKBP-eGFP with DMSO or 0.1 μ g ml⁻¹ rapamycin addition in both strain backgrounds. **f** Live cell, wide-field fluorescence microscopy time-lapse images of cells expressing RpoA-FKBP-eGFP with 0.1 μ g ml⁻¹ rapamycin in both strain backgrounds. Scale bar, 5 μ m. **g** Quantitation of all captured fields during time-lapse in (**f**), measuring median fluorescent signal in the FITC channel across cells over time. Colored lines represent individual cells (ClpC1, n=77; ClpC1-FRB, n=105) that were initially plated (G.0, purple), first-generation (G.1, teal), or second-generation (G.2, lime green). For **c-d**, data are representative of three independent experiments; **e**, data represent one independent experiment; **f-g**, data are representative images selected from among 4 fields for each and are representative of two independent experiments.

Figure 3

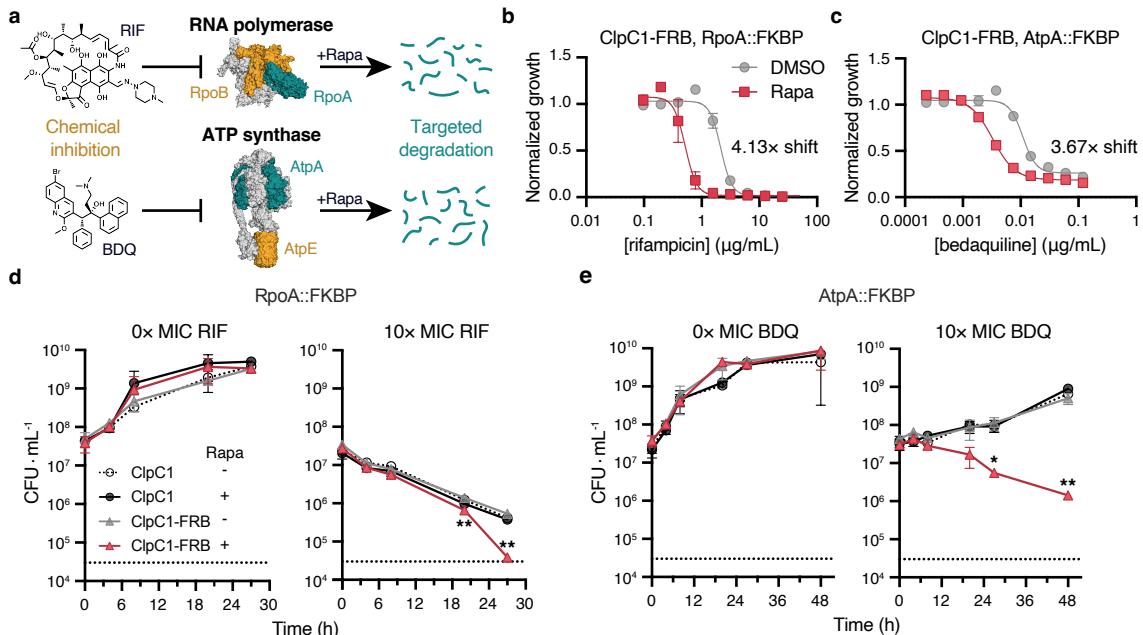

Fig. 3 | Mycobacterial proteins are differentially susceptible to degradation by ClpC1-FRB. **a** Schematic of high-throughput flow cytometry screen in *Msm* cells expressing targets tagged with FKBP-eGFP. **b** Fluorescence of live cells as a proxy for protein levels of RpoA-FKBP-eGFP in the *clpC1-frb* background over time. **c** Summary plot of all tested target proteins; fluorescence of live cells as a proxy for protein levels in the *clpC1-frb* background over time. Density matched log phase cells incubated with DMSO or 0.5 μ g ml $^{-1}$ rapamycin with shaking at 37 °C for the indicated times. **d** Enumeration of all tested proteins and their respective rate constants (dG/dt), proportion of total degradation (% deg), and whether they are predicted to be native ClpC1 substrates²⁸. **e** Correlation plot relating the \log_2 -transformed degradation rate and the steady state intensity of plotted target proteins. **f** Live cell, wide-field fluorescence microscopy images of cells expressing selected target proteins with DMSO or 0.1 μ g ml $^{-1}$ rapamycin. Scale bar, 5 μ m. For **b**, data are two technical replicates, are representative of three independent experiments, and normalized to the mode; **c**, data are the mean of two technical replicates, are representative of two independent experiments, and normalized to fluorescent intensity of DMSO-treated cells at time = 0 h. Data in **e** are bounded by the 95% confidence interval. Data in **f** are representative images selected from among 4 fields for each and are representative of two independent experiments. **a** Created with BioRender.com

Figure 4

Fig. 4 | Targeted degradation of mycobacterial proteins inhibits bacterial growth. **a-b** Schematics of strains generated to assess phenotypes arising from targeted protein degradation, with target alleles tagged with *fkbp*-flag (*atpG*, *secA1*, *atpD*, *atpH*, *rpoA*, *atpA*) or *fkbp*-egfp (*ffh*) at their chromosomal loci in a WT *clpC1* (**a**) or Δ *clpC1* L5::*clpC1*-*frb* (**b**) background. **c** Representative images illustrating colony outgrowth dynamics of the indicated targets in the *clpC1*-*frb* background over time. Density matched log phase cells serially diluted, plated on solid media containing DMSO or 0.5 μ g ml⁻¹ rapamycin, and incubated at 37 °C for the indicated times. **d** Total colonies formed during outgrowth on solid media containing DMSO or 0.5 μ g ml⁻¹ rapamycin for the indicated targets in the *clpC1*-*frb* background. *P* values were determined by unpaired two-tailed *t*-tests and compared (red) with (grey). **P* < 0.05, ***P* < 0.01. Exact *P*-values: AtpA, ***P* = 0.0083; Ffh, **P* = 0.0169. **e** Quantitation of colony outgrowth dynamics as in (**c**) by colony size tracking by area (mm²) of individual colonies of the indicated targets in the *clpC1*-*frb* background over time. Cells plated as in **c-d**. For **c**, images are representative of three technical triplicates and two independent experiments; **d**, data are mean \pm s.d. of three technical replicates and are representative of two independent experiments. In **e**, dark lines are the mean of three technical replicates, are bounded by the 95% confidence interval, and are representative of two independent experiments.

Figure 5

Fig. 5 | Targeted degradation of complex components sensitizes to and enhances killing by antibiotics targeting the same complex. **a**, A schematic of combination approach to potentiate antibiotic efficacy, in which different members of the multi-component complexes RNA polymerase (top, PDB: 5UHA) or ATP synthase (bottom, PDB: 7NJK) are both inhibited with small molecule antibiotics (yellow) and targeted for degradation by rapamycin (green). **b-c**, Half-maximal minimum inhibitory concentration (MIC_{50}) dose response measuring the sensitivity of strains expressing RpoA-FKBP-FLAG (b) or AtpA-FKBP-FLAG (c) to the indicated antibiotics in media supplemented with DMSO or $0.5 \mu\text{g mL}^{-1}$ rapamycin. **d-e**, Kill curves measuring the number of individual colony forming units (CFU) following treatment of strains expressing RpoA (d) or AtpA (e) with $0 \times$ MIC (left) or $10 \times$ MIC (right) the corresponding antibiotic for the indicated times. This assay measures the killing kinetics of antibiotics when supplemented with DMSO or $0.5 \mu\text{g mL}^{-1}$ rapamycin. P values were determined by unpaired two-tailed t -tests and compared (red line) with (black line). * $P < 0.05$, ** $P < 0.01$. Exact P -values: (e) $t = 20$ h, ** $P = 0.0049$; $t = 27$ h, ** $P = 0.0017$, (f) $t = 27$ h, * $P = 0.0101$; $t = 48$ h, ** $P = 0.0055$. For **b-e**, data are mean \pm s.d. of three technical replicates and are representative of two independent experiments.