

Hyperpolarization-activated cation channels shape the spiking frequency preference of human cortical layer 5 pyramidal neurons

Happy Inibhunu^{1, *}, Homeira Moradi Chameh^{1, *}, Frances K Skinner^{1,6,†}, Scott Rich^{1,*,†}, and

Taufik A Valiante^{1,2,3,4,5,†}

¹Krembil Brain Institute, University Health Network (UHN), Division of Clinical and Computational Neuroscience, Toronto, Ontario, Canada

²University of Toronto, Institute of Biomedical Engineering, Toronto, ON, Canada

³University of Toronto, Electrical and Computer Engineering, Toronto, ON, Canada

⁴University of Toronto, Institute of Medical Science, Toronto, ON, Canada

⁵University of Toronto, Division of Neurosurgery, Department of Surgery, Toronto, ON, Canada

⁶University of Toronto, Departments of Medicine (Neurology) and Physiology, Toronto, ON, Canada

* Corresponding Author: scott.rich@sickkids.ca

*These authors share first authorship of this work.

†These authors share senior authorship of this work.

February 13, 2023

Abbreviated Title: Human h-channel and spiking frequency preference

Number of Pages: 32

Number of Figures: 6

Number of Tables: 0

Abstract Length: 245

Introduction Length: 646

Discussion Length: 1005

Conflicts of Interest: The authors declare no competing financial interests.

Acknowledgements: Funding sources: the National Sciences and Engineering Research Council of Canada (RGPIN-2016-06182 to F.K.S., RGPIN-2015-05936 to T.A.V.), the Krembil Foundation, the University of Toronto Department of Physiology, and the Savoy Foundation (fellowships/awards to S.R.).

1 Abstract

2 Discerning the contribution of specific ionic currents to complex neuronal dynamics is a difficult, but
3 important, task. This challenge is exacerbated in the human setting, although the widely-characterized
4 uniqueness of the human brain as compared to preclinical models necessitates the direct study of human
5 neurons. Neuronal spiking frequency preference is of particular interest given its role in rhythm generation
6 and signal transmission in cortical circuits. Here, we combine the frequency-dependent gain (FDG),
7 a measure of spiking frequency preference, and novel *in silico* analyses to dissect the contributions of
8 individual ionic currents to key FDG features of human L5 neurons. We confirm that a contemporary model
9 of such a neuron, primarily constrained to capture subthreshold activity driven by the hyperpolarization-
10 activated cyclic nucleotide gated (h-) current, replicates key features of the *in vitro* FDG both with and
11 without h-current activity. With the model confirmed as a viable approximation of the biophysical features
12 of interest, we applied new analysis techniques to quantify the activity of each modeled ionic current
13 in the moments prior to spiking, revealing unique dynamics of the h-current. These findings motivated
14 patch-clamp recordings in analogous rodent neurons to characterize their FDG, which confirmed that a
15 biophysically-detailed model of these neurons captures key inter-species differences in the FDG. These
16 differences are correlated with distinct contributions of the h-current to neuronal activity. Together,
17 this interdisciplinary and multi-species study provides new insights directly relating the dynamics of the
18 h-current to neuronal spiking frequency preference in human L5 neurons.

19 **Keywords**— Computational neuroscience, human neuron modeling, cortex, layer 5 pyramidal cell,
20 h-channel, frequency-dependent gain, frequency preference, rhythms and oscillations

21 **Significance Statement:** Understanding the contributions of individual ionic currents to neuronal
22 activity is vital, considering the established role of ion channel modifications in neuropsychiatric conditions.
23 We combine *in vitro* characterization of the spiking frequency preference of human L5 cortical pyramidal
24 neurons via the frequency-dependent gain (FDG) with new analyses of a biophysically-detailed computational
25 model of such a neuron to delineate the connection between the dynamics of the hyperpolarization-activated
26 cyclic nucleotide gated (h-) current prior to spiking and key properties of the FDG. By further determining
27 that both these FDG properties and h-current dynamics are distinct in analogous rodent neurons, we provide
28 convincing evidence for the key role of the h-current in the frequency preference of human L5 cortical neurons.

29 Introduction

30 Discerning how ion channels contribute to neuronal output is a daunting but essential task, as specific
31 channel types play key roles in neuropsychiatric conditions (Chang et al., 2019; Lupien-Meilleur et al., 2021;
32 Martinez-Losa et al., 2018; Sun et al., 2019). This is particularly relevant to the study of the human brain

33 considering its differences from preclinical models (Mohan et al., 2015; Eyal et al., 2016; Beaulieu-Laroche
34 et al., 2018; Kalmbach et al., 2018; Boldog et al., 2018; Deitcher et al., 2017; Molnár et al., 2008; Verhoog
35 et al., 2013; Kalmbach et al., 2021). Such differences motivate ongoing characterizations of human cell types
36 (Moradi Chameh et al., 2021; Bakken et al., 2021; Kalmbach et al., 2021), a challenging task given limitations
37 on human data (Rich et al., 2022) and the relative paucity of cell and circuit mapping tools used in rodent
38 studies. Exacerbating this challenge is that ion channel activity is typically characterized using voltage clamp,
39 preventing the simultaneous quantification of neuronal output. While an ion channel's role can be inferred by
40 comparing activity with and without channel blockade (Kostyuk et al., 1981; Ascoli et al., 2010; Thomas et al.,
41 2007; Berger et al., 2001; Yue and Huguenard, 2001; Gu et al., 2005; Berger et al., 2003; Moradi Chameh
42 et al., 2021; Kalmbach et al., 2018), these interpretations depend on the mechanism of blockade and potential
43 compensatory interactions.

44 These considerations are especially pertinent when studying the brain's oscillatory dynamics (Buzsaki,
45 2006). Understanding these rhythms' genesis involves accounting for their specific frequencies, recording
46 and analysis methods, disease, and functional correlates (Adamantidis et al., 2019; Buzsáki and Draguhn,
47 2004; Buzsáki et al., 2012; Hanslmayr et al., 2019; Maris et al., 2016; Mably and Colgin, 2018). Results from
48 preclinical models, while invaluable, must be applied cautiously to the human brain (Mohan et al., 2015; Eyal
49 et al., 2016; Beaulieu-Laroche et al., 2018; Kalmbach et al., 2018; Boldog et al., 2018; Deitcher et al., 2017;
50 Molnár et al., 2008; Verhoog et al., 2013; Kalmbach et al., 2021); indeed, studies from human cortical slices
51 have identified important nuances in their oscillatory dynamics (Florez et al., 2015; McGinn and Valiante,
52 2014).

53 Spiking frequency preference is an important factor underlying rhythm generation and signal transmission
54 in cortical circuits (Higgs and Spain, 2009), being indicative of a cell's potential role in pacemaking, phase-
55 locking, and amplifying frequency-modulated inputs. Therefore, understanding the influence of ion channels
56 on spiking frequency preference represents a significant contribution to understanding functionally important
57 aspects of neuronal dynamics. Recent experimental work identified the frequency preference of human cortical
58 layer 5 (L5) neurons via the frequency-dependent gain (FDG) (Higgs and Spain, 2009). These neurons exhibit
59 a primary FDG peak between 2 and 6 Hz and a secondary peak at approximately double that frequency,
60 both of which dissipate following application of the h-channel blocker ZD-7288 (Moradi Chameh et al.,
61 2021), comporting with the hypothesis that the h-current contributes to low-frequency oscillatory activity
62 (Beaulieu-Laroche et al., 2018; Kalmbach et al., 2018; Hu et al., 2002; Das and Narayanan, 2017). However,
63 what specific features of h-current activity underlie its relationship with these oscillations remains mysterious.

64 Here, we dissect this complex neuronal dynamic in human cortical pyramidal cells by applying the FDG
65 to computational models. We first show that a biophysically-detailed model of a human L5 neuron (Rich

66 et al., 2021) reproduces key features of the experimental FDG, despite these features not being a constraint
67 in model generation. Instead, this model was primarily constrained by subthreshold, h-current driven activity
68 (Rich et al., 2021), meaning its reproduction of complex spiking activity quantified by the FDG represents a
69 strong connection between the h-current's dynamics and spiking frequency preference. Further supporting
70 this conclusion is the similar response of the computational and experimental FDG to h-current blockade. By
71 combining the Currentscape visualization tool (Alonso and Marder, 2019) with spike-triggered average (STA)
72 analysis (Schwartz et al., 2006), we reinforce this connection by identifying distinctive properties of h-current
73 activity contributing to FDG features.

74 We then carried out a similar exploration with rodent neurons, motivated by known differences between
75 human and rodent h-currents (Rich et al., 2021; Moradi Chameh et al., 2021). If the h-current is of special
76 importance to spiking frequency preference, we would expect a distinct FDG profile in rodent neurons; indeed,
77 new patch-clamp experiments in rodent L5 cortical pyramidal cells identified a FDG profile distinct from
78 analogous human neurons. We confirmed that a model rodent L5 pyramidal neuron (Hay et al., 2011) echoes
79 these differences, justifying further application of our Currentscape/STA analysis. This revealed differences
80 in the h-current's contribution prior to spiking associated with the rodent model's distinct FDG; considering
81 the differing kinetics of the h-current in the human (Rich et al., 2021) and rodent (Hay et al., 2011; Kole
82 et al., 2006) models, this indicates that the distinct dynamics of human h-channels are necessary for the
83 frequency preference of human L5 neurons.

84 In summary, this study combines experimental results with novel *in silico* analyses to connect unique
85 dynamics of the h-current to the spiking frequency preference of human L5 cortical pyramidal neurons. This
86 interdisciplinary, multi-species approach provides convincing evidence for the h-current's special effect on the
87 spiking frequency preference of these neurons.

88 Materials and Methods

89 Computational models of human and rodent neurons

90 This work analyzes two computational models of cortical layer 5 (L5) pyramidal neurons, one of a human
91 neuron (Rich et al., 2021) and another of a rodent neuron (Hay et al., 2011). Both models are accessible via
92 ModelDB at senselab.med.yale.edu/ModelDB (Accession:266984 for Rich et al. (2021), Accession:139653
93 for Hay et al. (2011)). Our implementation of the rodent neuron model utilizes the parameters found in the
94 *L5bPCbiophys3.hoc* file. Both models are implemented in the NEURON simulation environment (Carnevale
95 and Hines, 2006) and contain a biophysically-detailed morphology, including a soma and various apical/basilar

96 dendritic compartments.

97 Both models contain 10 ionic currents with differing maximum conductances, as well as different passive
98 properties. The only differences in the kinetics of the ion channels are in the h-channel, the focus of the work
99 of Rich et al. (2021). For ease of reference we refer to these currents by how they are denoted in the code of
100 these models: *Na_Ta_t* is a fast, inactivating sodium current; *Nap_Et2* is a persistent sodium current; *K_Pst*
101 is a slow, inactivating potassium current; *SKv3_1* is a fast, non-inactivating potassium current; *SK_E2* is
102 a small-conductance calcium activated potassium current; *K_Tst* is a fast, inactivating potassium current;
103 *Ca_LVA* is a low voltage activated calcium current; *Ca_HVA* is a high voltage activated calcium current; *Ih* is
104 a non-specific hyperpolarization-activated cation current; and *Im* is a muscarinic current. We also track the
105 passive current, denoted *pas*.

106 All *in silico* experiments are performed in the somatic compartments of the corresponding models.

107 ***In vitro* recordings**

108 Data from human cortical L5 pyramidal neurons was obtained as described in Moradi Chameh et al. (2021).
109 The data making up Figure 1A-B is taken from the associated open source dataset (Howard et al., 2022) and
110 re-processed for presentation in a raw and normalized (see below) fashion. We also apply spike-triggered
111 averaged analysis to the $n = 3$ human cells used to create Figure 5f in Moradi Chameh et al. (2021) to
112 qualitatively assess the correspondence between this measure in the *in vitro* and *in silico* settings, specifically
113 the comparisons before and after the application of ZD7288; this analysis had not been previously performed.

114 All experimental procedures involving mice were reviewed and approved by the animal care committees of
115 the University Health Network in accordance with the guidelines of the Canadian Council on Animal Care.
116 Mixed male and female wild type C57Bl/6J, age postnatal 21 days old were used for experiments. Mice were
117 kept on a 12-hour light/dark cycle and had free access to food and water.

118 Brain slice preparation was done similarly for rodent tissue as outlined for human tissue in Moradi Chameh
119 et al. (2021). Mice were deeply anesthetized by isoflurane 1.5-3.0%. After decapitation, the brain was
120 submerged in ($\sim 4^{\circ}\text{C}$) cutting solution that was continuously bubbled with 95% O₂-5% CO₂ containing (in
121 mM) sucrose 248, KCl 2, MgSO₄·7H₂O 3, CaCl₂·2H₂O 1, NaHCO₃ 26, NaH₂PO₄·H₂O 1.25, D-glucose 10.
122 The osmolarity was adjusted to 300-305 mOsm. Mouse somatosensory cortical slices (350 μm) were prepared
123 in the coronal plane using a vibratome (Leica 1200 V) in cutting solution. After slicing, slices were transferred
124 to an incubation chamber filled with 32°C NaCl 126, KCl 2.5, NaH₂PO₄·H₂O 1.25, NaHCO₃ 26, Glucose
125 12.6, CaCl₂·2H₂O 2, and MgSO₄·7H₂O which continuously bubbled with 95% O₂-5% CO₂. After 30 min,
126 the slices were transferred to room temperature. Following this incubation, the slices were maintained in
127 standard aCSF at 22–23°C for at least 1 h, until they were individually transferred to a submerged recording

128 chamber (Moradi Chameh et al., 2021).

129 For electrophysiological recordings, cortical slices were placed in a recording chamber mounted on a
130 fixed-stage upright microscope (Olympus BX51WI upright microscope; Olympus Optical Co., NY, USA).
131 Slices were continuously perfused with carbogenated (95% O₂/5% CO₂) aCSF containing of (in mM): NaCl
132 123, KCl 4, CaCl₂·2H₂O 1.5, MgSO₄·7H₂O 1.3, NaHCO₃ 26, NaH₂PO₄·H₂O 1.2, and D-glucose 10, pH 7.40
133 at 32-34°C. Cortical neurons were visualized using an IR-CCD camera (IR-1000, MTI, USA) with a 40x
134 water immersion objective. Patch pipettes (3-6 MΩ) were pulled from standard borosilicate glass pipettes
135 (thin-wall borosilicate tubes with filaments, World Precision Instruments, Sarasota, FL, USA) using a vertical
136 puller (PC-10, Narishige). For somatic recordings of electrophysiological properties, patch pipettes were filled
137 with intracellular solution containing (in mM): K-gluconate 135; NaCl 10; HEPES 10; MgCl₂ 1; Na₂ATP 2;
138 GTP 0.3, pH adjusted with KOH to 7.4 (290–309 mOsm). Data were collected with excitatory (APV 50 μM,
139 Sigma; CNQX 25 μM, Sigma) and inhibitory (Bicuculline 10 μM, Sigma; CGP-35348 10 μM, Sigma) synaptic
140 activity blocked.

141 Electrical signals were measured with a Multiclamp 700A amplifier and the pClamp 10.6 data acquisition
142 software (Axon instruments, Molecular Devices, USA). Subsequently, electrical signals were digitized at
143 20 kHz using a 1440A digitizer (Axon instruments, Molecular Devices, USA). The access resistance was
144 monitored throughout the recording (typically between 8-20 MΩ), and neurons were discarded if the access
145 resistance was >25 MΩ.

146 For *in vitro* characterization of the frequency-dependent gain (see details below), a 2.5 s duration current
147 stimulus of frozen white noise convolved with a 3-ms square function (Galán et al., 2008) was injected to each
148 neuron 30 times for human neurons and 10 times for rodent neurons (with a 20 s inter-trial interval). An
149 additional DC input, chosen specifically for each cell and experimental condition (i.e., before/after application
150 of ZD7288) was injected to elicit approximately 12-15 spikes in the 2500 ms experimental paradigm. The
151 FDG of the neuron is the average of the FDGs calculated for each trial. Data from n=6 rodent cells are
152 shown in Figure 6.

153 *In silico* experimental protocol

154 *In silico* experiments were designed to mimic those performed *in vitro*. Thus, all *in silico* results are analyses
155 of a current-clamp injection of frozen white noise input (generated using the *makeNoise.m* MATLAB file
156 included in our code repository with $\sigma = 0.04$ and $\tau = 3$) plus a tonic “DC shift” chosen to elicit approximately
157 12-15 spikes in the 2500 ms experimental paradigm. In the human model, these experiments were performed
158 in four scenarios: with the normal *Ih* maximum conductance as defined in Rich et al. (2021) (maximum
159 somatic conductance of 5.14e-05 S/cm²), with that conductance doubled, with that conductance halved, and

160 with that conductance zeroed (modeling channel blockade). Spikes were detected using a voltage threshold of
161 greater than or equal to -55 mV for spike-triggered average analysis.

162 The DC shift for the human model was determined independently for each scenario given the effect of the
163 h-current on the model's excitability. These values were 0.003 nA for the scenario with doubled I_h maximum
164 conductance, 0.031 nA for the default scenario, 0.040 nA when the maximum conductance was halved, and
165 0.073 nA when the maximum conductance was zero. In the rodent model, the DC shift was 0.38 nA both
166 for the default model and the model with no h-current activity. The notable difference between the DC
167 shift needed in the human and rodent models is reflective of these models' differing excitabilities under this
168 experimental protocol. While we would not expect a direct correspondence between the DC shifts in the *in*
169 *vitro* and *in silico* settings for multiple reasons, including the effects of cell-to-cell variability (Golowasch et al.,
170 2002; Marder and Goaillard, 2006) and the differing model development techniques used in Rich et al. (2021)
171 and Hay et al. (2011), the increased DC shift necessitated *in silico* with decreased I_h maximum conductance
172 in the human model reflects a similar trend before and after application of ZD7288 in human neurons *in silico*.
173 The *in silico* DC shifts are also of similar orders of magnitude as those delivered *in vitro* in each setting.

174 All code used in this work is openly available at <https://github.com/FKSkinnerLab/HumanL5FDG>.

175 Frequency-dependent gain

176 This work presents an in-depth investigation of the frequency-dependent gain (FDG) profiles of cortical L5
177 pyramidal cells in the human and rodent setting both *in silico* and *in vitro*. The methodology follows that of
178 Higgs and Spain (2009), adapted to the *in silico* and *in vitro* setting as described above. This measure is
179 used to quantify the propensity of a neuron to fire in phase with an oscillatory input of small magnitude
180 relative to the overall input to the cell, or in essence to “track” particular frequencies in oscillatory input. The
181 physiological implications of this measure include viable explanations for the oscillatory frequency preference
182 of cortical regions, as outlined in detail in our previous work (Moradi Chameh et al., 2021). We note that
183 this measures a distinct element of a neuron’s frequency preference compared to other common measures,
184 such as subthreshold resonance in response to a ZAP input (Hutcheon and Yarom, 2000; Rich et al., 2021;
185 Moradi Chameh et al., 2021).

186 After detecting action potentials, a time varying firing rate $r(t)$ is calculated to be

$$r(t) = \begin{cases} \frac{1}{\Delta t}, & \text{Where spikes detected} \\ 0, & \text{Otherwise} \end{cases} \quad (1)$$

Then, the stimulus-response correlation (c_{sr}) and the stimulus autocorrelation (c_{ss}) is calculated via

$$c_{sr}(\tau) = \langle s(t)r(t + \tau) \rangle \quad (2)$$

$$c_{ss}(\tau) = \langle s(t)s(t + \tau) \rangle \quad (3)$$

187 for τ the time difference and $s(t)$ representing the noisy stimulus.

188 The complex Fourier components $C_{sr}(f)$ and $C_{ss}(f)$ is then obtained, and the frequency-dependent gain
189 is calculated as

$$G(f) = \frac{|C_{sr}(f)|}{|C_{ss}(f)|} \quad (4)$$

190 To derive averaged FDG plots for the model neurons, we generated 30 different 2500 ms frozen white
191 noise inputs (as described above) to inject to the cell in addition to the tonic DC input. We then averaged
192 the FDGs calculated from the outcomes of in silico current clamp experiments with each of these 30 different
193 inputs. Note that this is distinct from the analogous *in vitro* protocol, in which the *same* noisy input is
194 injected to each neuron multiple times (specifically, 10 trials for each of the 3 cells were done, and averaged
195 for each cell and overall), motivated by the variable responses observed in single neurons subject to identical
196 current injections. In contrast, the deterministic nature of both model neurons studied here would yield
197 identical outputs in response to each injection of an identical current input. Considering these differences,
198 we consciously chose our *in silico* technique to exploit the computational setting towards a more complete
199 picture of the FDG of the model neurons in response multiple noisy inputs with the same statistics. While
200 this choice might impair the exact correspondence between the *in silico* and *in vitro* settings, it does not
201 affect the clear qualitative correspondence in primary features of the FDG that are the focus of our analyses.

202 Normalized FDG plots emphasize the location of the “peaks” that represent a frequency preference of
203 these neurons, independent of the magnitude of the overall gain. A standard normalization $\left(\frac{x - x_{min}}{x_{max} - x_{min}} \right)$
204 is performed over the 1-30 Hz range on the FDG resulting from each noisy input in the *in silico* setting and
205 on the FDG resulting from each cell in the *in vitro* setting. These are then averaged to yield the normalized
206 FDG for each setting and scenario.

207 The 2-way ANOVA-Bonferroni’s multiple comparisons test is used to derive statistical significance between
208 FDG curves. A standard cutoff of $p < 0.05$ is used to determine significance. Reported p-values are averaged
209 over the regimes with significant differences.

210 **Currentscape visualization**

211 In this work, we apply the Currentscape visualization tool (Alonso and Marder, 2019) to display the dynamics
212 of ionic currents as percent contributions over time using stacked-area plots. This tool provides an interface
213 between NEURON, where the neuronal cell model is situated and run, and Python, which facilitates data
214 visualization. An array of currents within the model is inputted into Currentscape and split into inward and
215 outward currents. Inward currents are represented as negative values while outward currents are represented
216 as positive values. For each current, the percentage of its contribution to the overall inward/outward current
217 at each time step is calculated.

218 During the simulation, the ionic currents, membrane voltage, and action potentials are extracted from
219 the simulation in NEURON and imported into the Currentscape tool in Python. All code used in running
220 these Currentscape visualizations are included in the code repository. Of note, whether the human (Rich
221 et al., 2021) or rodent (Hay et al., 2011) model is implemented depends upon whether the command `h.load`
222 file("init_final.hoc") or `h.xopen("Hay_setup.hoc")` is invoked. We set `h.cvode_active(0)` to ensure a fixed time
223 step for these simulations. The simulations performed in this study, motivated by the calculation of the FDG,
224 involve calling the *noiserun* procedure with four inputs: the name of the file housing the noisy input, the
225 value of dt (0.01 for human simulations, 0.33 for rodent simulations), the simulation duration (2500 ms), and
226 the DC shift (outlined above for differing Ih conductances).

227 Ultimately, Currentscape outputs a plot containing: 1) Voltage traces (mV); 2) Total inward, outward,
228 and total current traces (nA); and 3) percent contributions to the inward and outward current by each of the
229 channels included in the model. Examples of these visualizations can be seen in Figures 2 and 3. Note that,
230 in this study, the only compartment analyzed was the soma to best correspond with the *in vitro* experiments
231 (Moradi Chameh et al., 2021).

232 Currentscape simulations on the human neuron model were performed utilizing the Neuroscience Gateway
233 (NSG), an online supercomputer (Sivagnanam et al., 2013). Identical code is used as outlined above and
234 included in our code repository for simulations on NSG, but it must be packaged in one zip file included in
235 the data section of the supercomputer. Once uploaded, performing the simulations on NSG involves executing
236 a Python file that includes Currentscape and NEURON, as indicated above, in a specific platform of NSG
237 that has NEURON via a Python interface.

238 Due to compatibility issues, Currentscape simulations on the rodent neuron model could not be performed
239 on NSG. Running these simulations on personal machines required a coarser temporal mesh due to compu-
240 tational limitations: $dt = 0.33$ ms as opposed to $dt = 0.01$ ms used with the human neuron. This coarser
241 discretization is responsible for the qualitative “jaggedness” of the rodent model’s FDG presented in Figure

242 6C-D, but does not confound the features of that curve (the locations of FDG peaks) nor the visualization
243 and analysis of the corresponding Currentscape plots.

244 **Spike-triggered average analysis**

245 Traditionally, spike-triggered average analysis (Schwartz et al., 2006) is used to quantify the average input
246 current preceding spiking activity in an neuron, as was done in L5 human cortical pyramidal neurons by
247 Moradi Chameh et al. (2021) using a 30 ms window. Here, we exploit the additional data afforded by
248 Currentscape to perform analogous analysis on the percent contribution to the inward or outward current of
249 individual channels preceding spiking in our neuron models. We analyze these dynamics both in the 30 ms
250 window used by Moradi Chameh et al. (2021) and in longer 100 and 200 ms windows to ensure capture of the
251 slow h-channel kinetics.

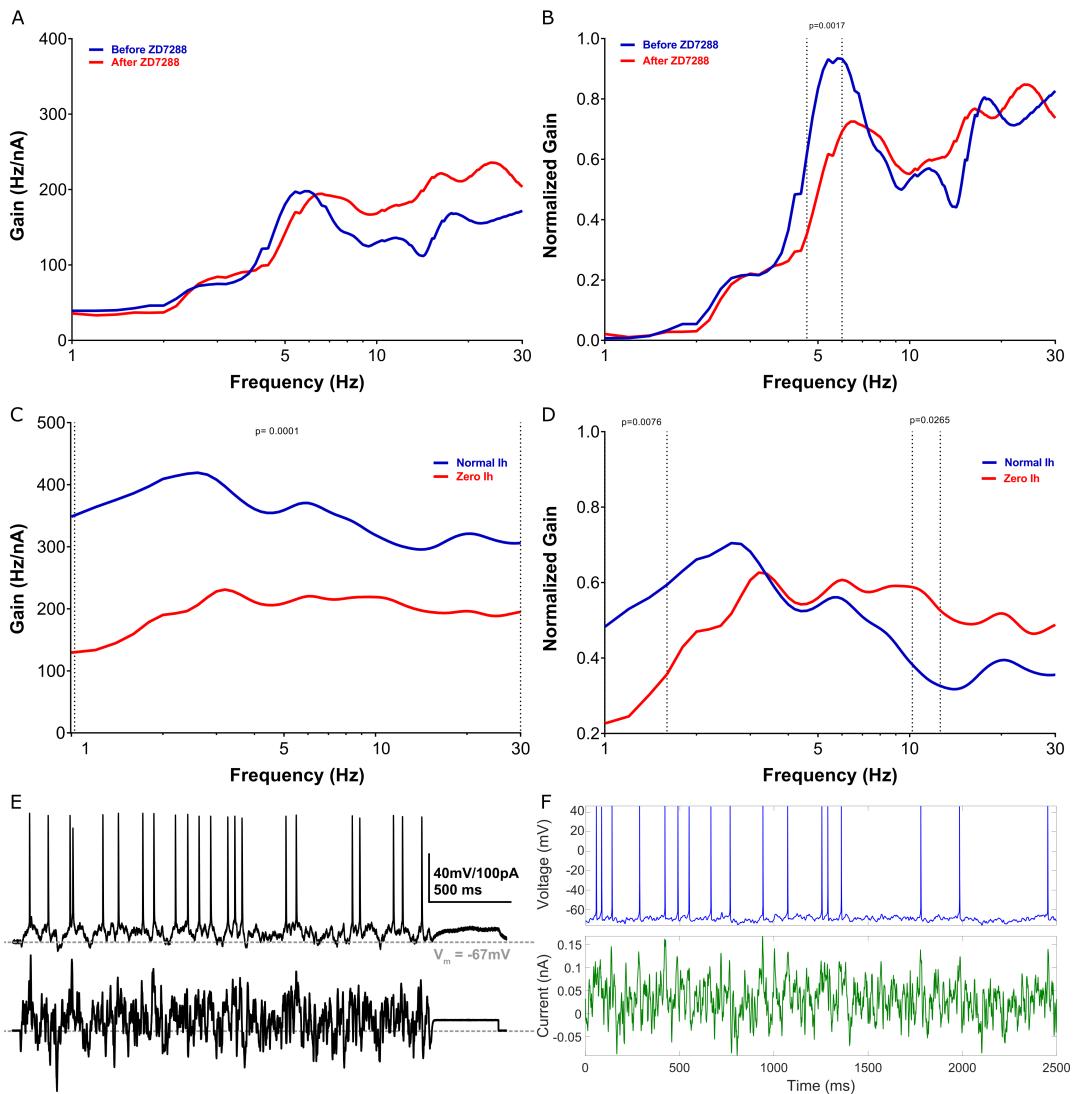
252 To perform these analyses, we first followed the *in silico* experimental protocol outlined above. We detected
253 spikes and only considered those for which there was no other spike in the 30, 100, or 200 ms preceding it
254 (as appropriate for the given time window). We averaged the dynamics of the percent contributions of the
255 various currents over the time window prior to each of these spikes for each of the 30 noisy input currents. In
256 this way, we extend the oft-used experimental tool of spike-triggered averaging beyond the input current,
257 using Currentscape, to describe the dynamics of individual ionic and passive currents in the moments prior
258 to spiking. This allows us to directly discern whether any ionic current contributes uniquely to spike timing.

259 *Quantification of STA dynamics*

260 We performed additional analysis to quantify the qualitatively different features of the STAs of Currentscape
261 derived percent contributions to inward/outward currents. These STAs are presented in Figures 4-6; for a
262 particular current c , denote the raw STA trace as I_{STA}^c . We process I_{STA}^c by first normalizing it over the
263 given time window, dividing each value by the maximum value for outward currents or minimal value for
264 inward currents in said window. We then “smooth” the curve using MATLAB’s built in *smooth* function
265 (MATLAB, 2019), yielding a processed trace, denoted I_*^c , that ranges between 0 and 1.

266 How I_*^c changes approaching spiking reflects its relative contribution and subsequent control of the spiking
267 process. In particular, we characterize the monotonicity of I_*^c . Mathematically, a monotonic function is
268 one that either never increases or never decreases. Here, we quantify the monotonicity of I_*^c by calculating
269 the proportion of the time series that is increasing and decreasing: a time series that is either increasing or
270 decreasing 100% of the time is purely monotonic, while one that decreases 50% of the time and increases
271 the other 50% would be maximally non-monotonic (i.e., it would be increasing and decreasing for equal
272 proportions of the time window). To accomplish this, we calculate the difference quotient for each time step,
273 yielding a new time series dI_*^c . The proportion of negative values in this time series yields the proportion of

274 the I_*^c time-series that is decreasing, and vice versa, which we use to draw conclusions about the monotonicity
275 of the current c 's contribution to the inward/outward current prior to spiking.


276 **Results**

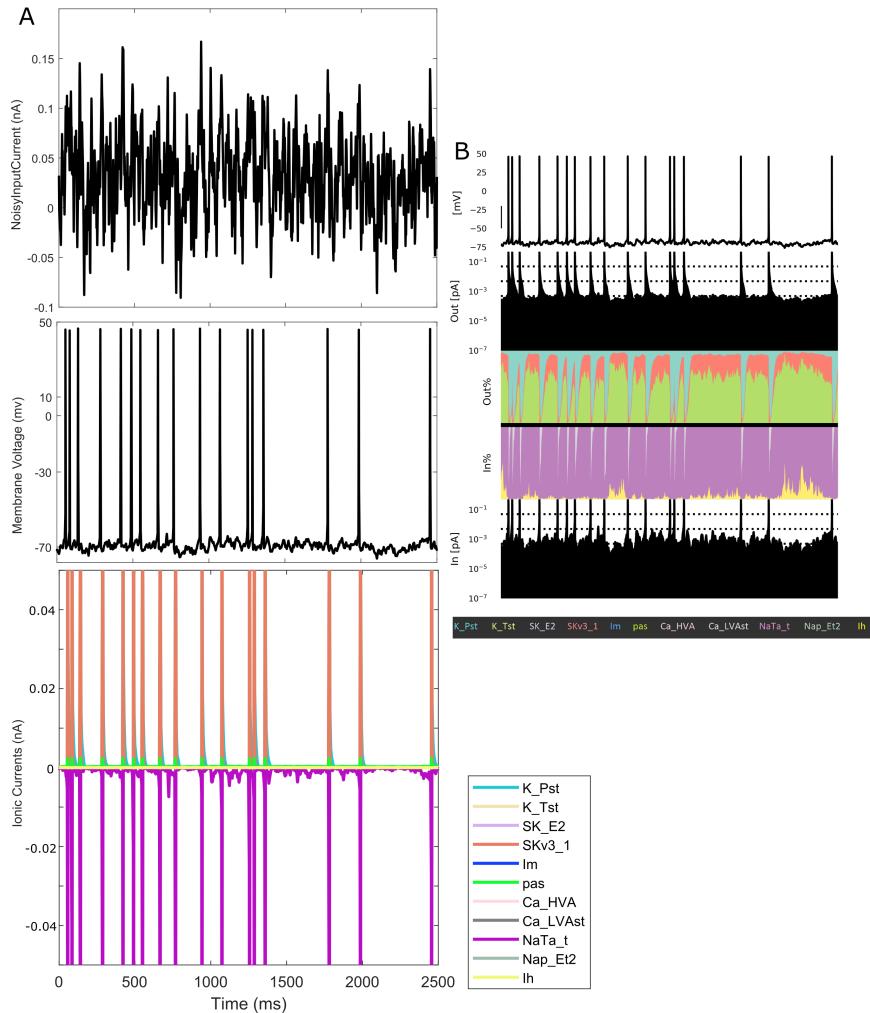
277 **Model replicates key features of experimentally derived FDG with and without
278 h-current contribution**

279 The frequency dependent gain (FDG) identifies the propensity of a neuron to spike in phase with a small
280 oscillatory input relative to the neuron's net input (Higgs and Spain, 2009). Experimentally, as shown
281 in Figure 1A-B, human L5 cortical pyramidal neurons exhibit a primary FDG peak in a low frequency
282 range between 2 and 6 Hz, with a secondary peak at approximately double that frequency. Under h-current
283 blockade with ZD-7288, these peaks dissipate and the gain mostly increases with increasing frequency. This is
284 quantified by the significant difference ($p=0.0017$) between 4.6 and 6 Hz in the normalized curves (achieved
285 via processing the raw FDG data as outlined in the Methods), a range including the low-frequency peak. An
286 example of the experimental traces used to derive the FDG is illustrated in Figure 1E.

287 Notably, the FDG profile of the human L5 model neuron presented by Rich et al. (2021), illustrated
288 in Figure 1C-D, replicates key features of the experimental FDG: there is a low-frequency peak (here at
289 around 3 Hz) and a secondary peak at double this frequency. These peaks also dissipate when the h-current
290 is blocked in the model neuron, including a “flat” FDG profile for > 3 Hz. The raw FDG traces with and
291 without h-current activity (panel C) are significantly different with $p=0.0001$ for the entire frequency range.
292 Normalized plots (achieved via processing the raw FDG data as outlined in the Methods) emphasize the
293 presence (or lack thereof) of peaks that indicate a frequency preference: these are significantly different for 1
294 to 1.6 Hz with $p=0.0076$ and for 10 to 12.6 Hz with $p=0.0265$. The difference at above 10 Hz is particularly
295 notable as it shows that the decrease in gain at high frequencies in the default model, which serves to
296 accentuate the peaks indicating frequency preference, is significantly diminished without h-current activity.
297 An example of the model output under the paradigm used to calculate the FDG is illustrated in Figure 1F.

298 Considering the model neuron was constrained primarily by subthreshold voltage traces and not by spiking
299 activity in response to a noisy input current (Rich et al., 2021), the correspondence between the primary
300 qualitative features of the experimental and model FDG profiles is a non-trivial and important result. Given
301 the focus of the modeling process in Rich et al. (2021) on capturing h-current activity, it stands to reason that
302 this FDG correspondence is due in part to the model's accurate encapsulation of h-current dynamics. This
303 conclusion is supported by the additional correspondence between the FDG profiles of the experimental neuron

Figure 1. Model matches h-current mediated FDG peaks observed experimentally in human layer 5 cortical pyramidal neurons. A-B Experimentally calculated FDG (A) and normalized FDG (B) of L5 human pyramidal neurons with and without blockade of the h-channel with ZD-7288. Under control conditions, there is a clear low-frequency peak at approximately 5 Hz. After treatment with ZD-7288, the peak FDG values occur at >10 Hz. Normalized curves exhibit significant differences ($p=0.0017$) between 4.6 and 6 Hz, the location of this low-frequency peak. **C-D** FDG (C) and normalized FDG (D) derived from the model human L5 cortical pyramidal neuron under normal conditions and without h-current activity. Normalized plots emphasize the qualitative correspondence between the model and experimental settings: the model exhibits a low frequency peak (here at approximately 3 Hz) under normal conditions, while this peak dissipates (yielding a "flat" FDG profile for >3 Hz) without h-current activity. Non-normalized plots are significantly different for 1 to 30 Hz with $p=0.0001$; normalized plots are significantly different with $p=0.0076$ for 1 to 1.6 Hz and with $p=0.0265$ from 10 to 12.6 Hz. All significance values are derived from the 2-way ANOVA-Bonferroni's multiple comparisons test. Note that the normalized plots (panels B and D) are *not* simply a rescaling of the absolute FDGs (panels A and C), but are processed as defined in the Methods. **E-F** Example input current (bottom) and output voltage (top) traces in the experimental setting (panel E, replicated with permission from Moradi Chameh et al. (2021)) and in the default model setting (panel F).


304 treated with ZD-7288 and the model neuron with no h-current activity. While the similarities between the *in*
 305 *silico* and *in vitro* FDGs are not exact, this is to be expected given the model generation process described

306 above, as well as the different processes for generating averaged FDGs (averaging over different cells in the
307 *in vitro* setting versus averaging over different noisy inputs in the *in silico* setting; see details in Methods)
308 necessitated by the deterministic nature of the model neuron. One discrepancy of note is the increased gain
309 at high frequencies seen experimentally following the application of ZD-7288; while the decrease in gain at
310 these frequencies is significantly diminished in the model without h-current activity, an overall increase in
311 gain is not observed. This is likely a consequence of secondary effects of treatment with ZD-7288 (Poolos,
312 2004; Sánchez-Alonso et al., 2008; Chevaleyre and Castillo, 2002), including an increased input resistance,
313 that are not encapsulated by simply removing h-current activity in the model neuron. Nonetheless, the
314 correspondence between the primary FDG features in the control setting (low-frequency peak and secondary
315 peak at approximately double the frequency) and with h-current blockade (suppressed low-frequency activity
316 and lack of a notable decrease in gain at > 10 Hz) justifies the use of this *in silico* model as a tool to better
317 understand the contribution of the h-current to the neuron's FDG.

318 **Currentscape visualization of noisy current injections highlights current contribi-
319 butions**

320 We sought to fully exploit the *in silico* setting to perform measurements that could not be done *in vitro*:
321 simultaneously quantifying the activity of each ionic current alongside the voltage response to a noisy
322 input current. Currentscape (Alonso and Marder, 2019) is invaluable for the visualization of these current
323 contributions within spiking simulations. As illustrated in Figure 2A, current activity differs by orders of
324 magnitude between neuronal spiking and subthreshold activity, obscuring the evolution of these contributions
325 over the course of a simulation. Currentscape addresses this problem, as illustrated in Figure 2B, by instead
326 calculating the percent contribution of a given current to the net inward/outward current at a particular
327 time step. This provides a more intuitive visualization of the evolution of ion channel contributions on a
328 single scale despite the spiking dynamics of the neuron.

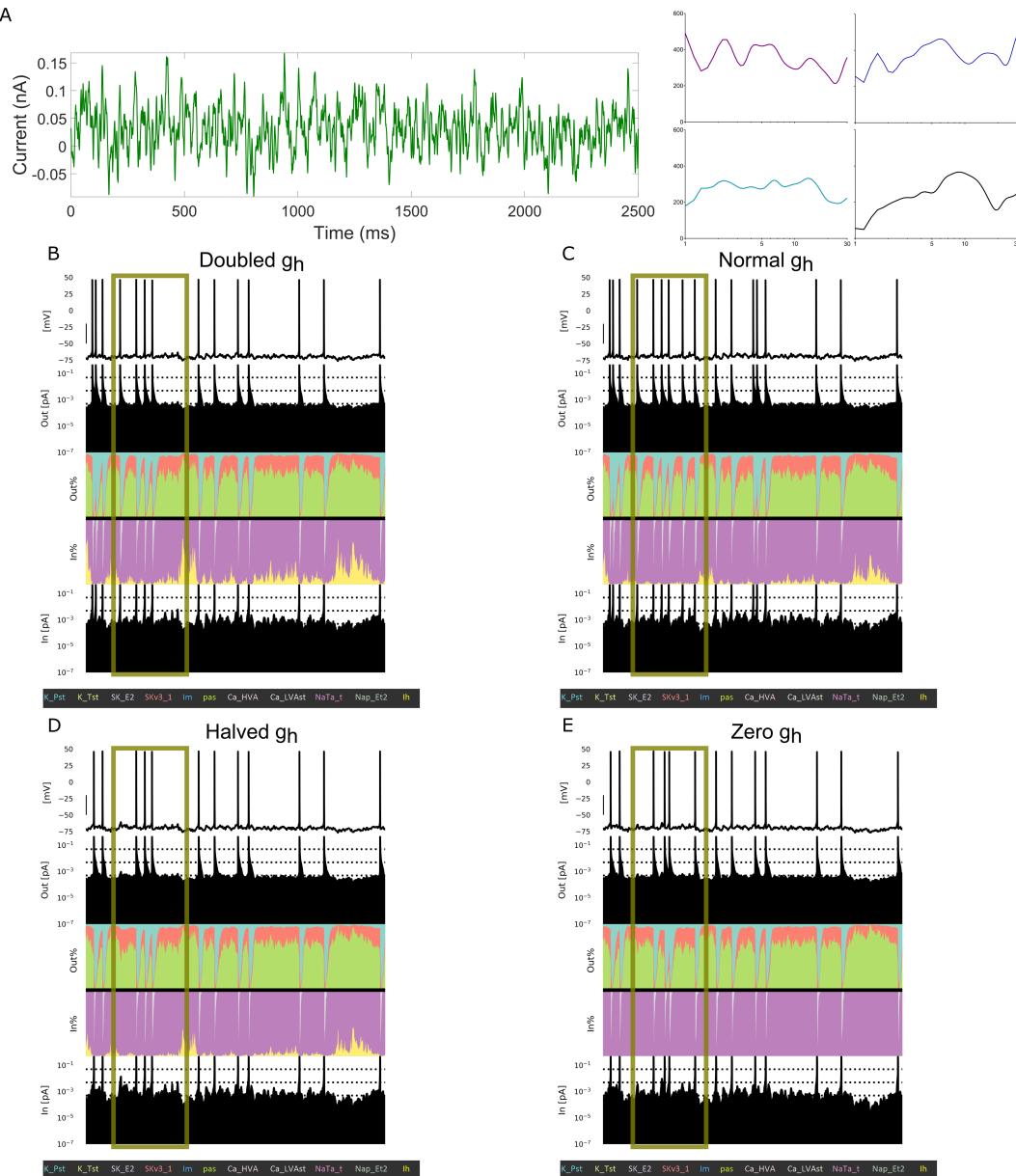

329 We employed this tool to decipher and highlight differences in neuronal dynamics as the h-current's
330 contribution is changed (by altering its conductance value) in Figure 3. An example of the noisy input
331 current used in these simulations is illustrated in Figure 3A (note the average value of this input, its "DC
332 Shift", is altered in each setting reflecting changes in the I_h maximum conductance; see details in Methods),
333 and Currentscape plots are illustrated when the I_h maximum conductance is doubled (Figure 3B), at its
334 default value (Figure 3C), halved (Figure 3D), and zeroed (Figure 3E). Currentscape visualization allows
335 for dynamics of the h-current (yellow inward current) to be discerned that would otherwise be obscured by
336 examining raw current magnitudes as in Figure 2A.

Figure 2. Currentscape visualization tool facilitates the identification of relative current contributions in spiking simulations. **A** Raw data obtained, via NEURON, of a simulation of a noisy input current injected into the L5 human pyramidal neuron model. Top to bottom: noisy input current, voltage trace and ionic current contributions. Of note is that the varying magnitudes of the ionic currents obscure one's ability to jointly visualize their contribution to the neuron's dynamics. **B** Using the Currentscape tool, the ionic current contributions are recontextualized as outward and inward percentage of contribution plots, allowing for a more intuitive visualization on a single scale despite the neuron's spiking activity. Note that *Im* is not discernible in this visualization, denoting its minimal contribution to the dynamics of the model in this scenario.

337 We highlight a regime in panels B-E with a gold box in which spiking differs in each scenario. Using
 338 Currentscape visualization, we can identify increased h-current activity at the end of this period when
 339 the *Ih* maximum conductance is doubled and when it is halved (panels B and D) compared to both the
 340 default state and when there is no h-current activity (panels C and E); in the former scenarios there is
 341 no spiking during this period, while in the latter scenarios there is. This non-linear relationship between
 342 h-current activity, h-current conductance, and spiking highlights the complexity of these interactions in this
 343 biophysically-detailed neuron model, and motivates further quantifications in search of clearer relationships.

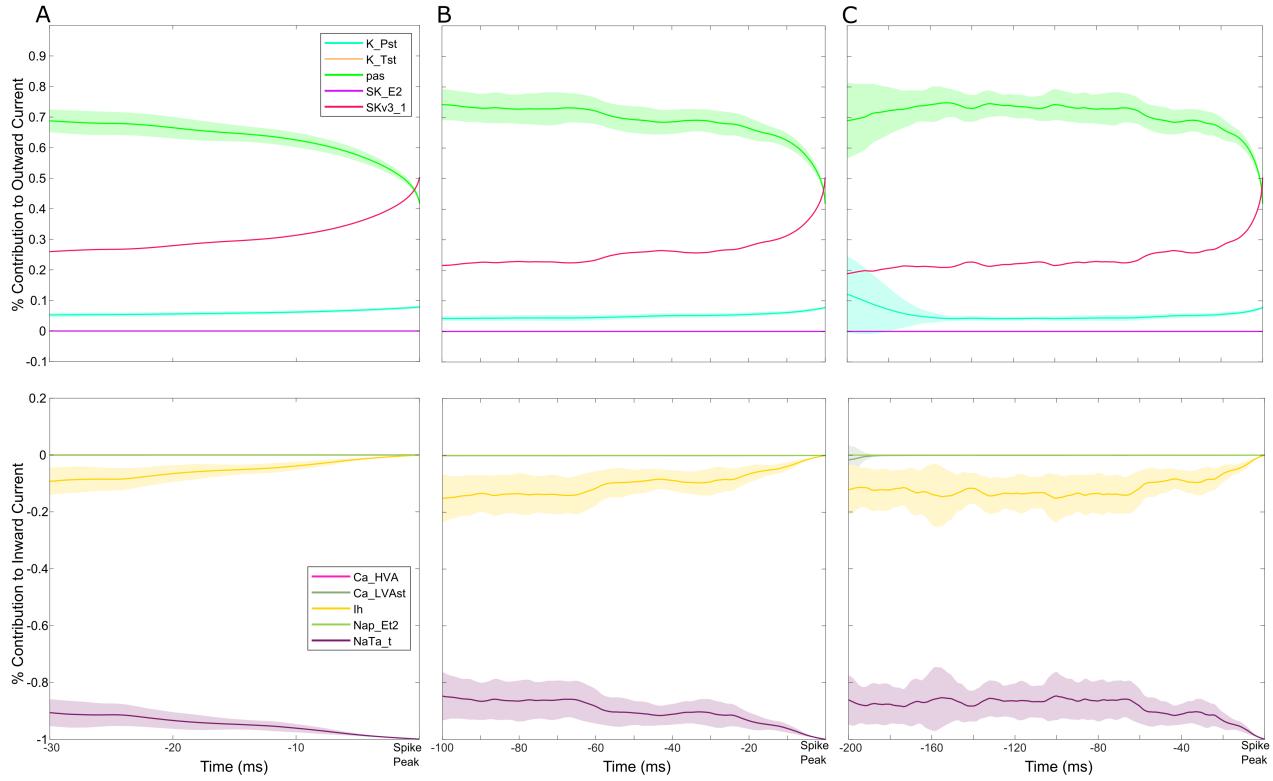
344 There are multiple ways one might quantify the differences in these spike trains as a result of the varying

Figure 3. Currentscape visualization highlights differences in spiking modulated by h-current activity.
A Left: The example noisy input current injected into the L5 human pyramidal neuron model with differing *Ih* conductance levels. Right: example FDGs (plot is Gain (nA) versus log-scaled Frequency (Hz)) from this input in each of four scenarios: with the *Ih* maximum conductance doubled (top-left, purple), normal (top-right, blue), halved (bottom-left, teal) or zero (bottom-right, black). **B-E** Currentscape visualizations corresponding with each of the scenarios outlined above. The h-channel contribution is indicated in the inward current contribution panel of the visualization in yellow, alongside the contributions of all the ionic currents and passive currents in the model. Spiking activity differs in each scenario (see highlighted regime) driven by the varying *Ih* conductance and the differing contributions of *Ih* to the neuron's activity highlighted by this Currentscape visualization.

345 contributions of the h-current. One is the FDG itself; we include FDG plots of these specific example trials
 346 in Figure 3 to illustrate how FDG properties differ for differing spike trains. Differences are apparent from
 347 the FDGs of these individual trials, and the differences between FDGs in these scenarios averaged over

348 multiple trials are statistically examined below. Another commonly used quantification of spike train features
349 is the coefficient of variation (CV) of the inter-spike intervals (ISIs); while this is commonly measured in
350 response to tonic current steps experimentally (Angelo and Margrie, 2011), here we apply this measurement
351 to the response of our model to noisy input. We calculated the CV of the ISIs in each of the four scenarios
352 for all 30 trials, and found the CV of the ISIs to be 0.78 for double I_h maximum conductance, 0.81 for
353 normal I_h maximum conductance, 0.92 for halved I_h maximum conductance, and 1.05 for zero I_h maximum
354 conductance. These CVs are significantly different between the doubled and halved I_h maximum conductance
355 scenario, the doubled and zeroed I_h maximum conductance scenario, and the normal and zeroed I_h maximum
356 conductance scenario ($p < 0.05$ in the first case, $p < 0.001$ in the last two cases; two sample coefficient of
357 variation test). This pattern follows from the role of the h-current in dictating a spiking frequency preference:
358 a neuron with a pronounced FDG peak will better track one of the many sinusoidal frequencies making up
359 the white noise input, in turn firing more regularly and with less variability (smaller CV). This is borne
360 out by the experimental data as well: analysis of the data yielding Figure 1**A-B** shows that the CV of the
361 ISIs is significantly increased following blockade of the h-current with ZD-7288 (0.413 vs. 0.333; $p = 0.00004$,
362 two-sample coefficient of variation test). The FDG and CV of the ISIs can thus be considered complimentary
363 measures of a spiking frequency preference, representing further quantitative support for the notable differences
364 in the spiking activity of the model neuron in response to varying I_h maximum conductance.

365 These relationships imply that the h-current affects more than the neuron's basic excitability features
366 (Dyhrfjeld-Johnsen et al., 2009; Gasselin et al., 2015; Hogan and Poroli, 2008): distinct spike trains, associated
367 with distinct time-courses of h-current activity, are observed for varying I_h maximum conductances despite
368 compensation for changes in excitability via the DC input. Indeed, the contribution of the h-current to
369 neuronal spiking appears more complex, causing neurons with differing I_h maximum conductances to respond
370 differently to the same noisy input, often in unintuitive ways (i.e., the lack of spiking towards the end of the
371 highlighted region seen when the I_h maximum conductance is doubled *and* halved, compared to multiple
372 spikes in the default setting).


373 Importantly, these conclusions would be difficult to directly establish using only contemporary *in vitro*
374 experimental techniques, and likely obscured without Currentscape visualization in the *in silico* setting. They
375 remain, however, entirely qualitative. In the following, we further exploit the “percent contribution” measure
376 generated by Currentscape to quantitatively explore the relationship between h-current activity and spiking
377 activity.

378 STA analysis quantifies unique dynamics of the h-current before spiking

379 To quantify the contributions of each ionic current to spiking activity, we adapted spike triggered average
380 (STA) analysis (Schwartz et al., 2006) by applying this technique to the percent contribution of individual
381 ionic currents to the net inward and outward current derived using Currentscape. In this process, we also
382 confirmed that the traditional STA, as applied to the noisy current input (as in Moradi Chameh et al. (2021)),
383 is qualitatively similar in our model and in the human neurons studied in Figure 1**A-B** (results not shown).
384 This represents an additional validation that the model reasonably captures important features of the spiking
385 dynamics of human L5 cortical pyramidal neurons.

386 We applied STA analysis to each individual current's percent contribution to the net inward/outward
387 current at each time step, as quantified using Currentscape. We visualized this measure for 30 ms (Figure
388 4**A**), 100 ms (Figure 4**B**), and 200 ms (Figure 4**C**) windows prior to spiking, with the larger time windows
389 motivated by the slow kinetics of the human h-current (Rich et al., 2021). Differences in the h-current's
390 dynamics relative to other currents became apparent in the 200 ms prior to spiking, during which we see that
391 the h-current's contribution to the inward current is non-monotonic: on average, the percent contribution
392 increases in the 200 and 100 ms prior to spiking, but then decreases towards zero until the spike peak (this
393 monotonicity is further emphasized by the “zoomed in” plot in Figure 5**B**). In contrast, each of the outward
394 currents behaves approximately monotonically for a larger proportion of the 200 ms time frame and exhibits
395 more variability in the regime in which it does not: the *pas* current largely decreases, the *K_Pst* and *SKv3_1*
396 currents largely increase (the *SKv3_1* current with notably minimal variability), and the *K_Tst* and *SK_E2*
397 currents both have a minimal, near zero percent contribution. Meanwhile, amongst the inward currents,
398 *Ca_HVA*, *Ca_LVAst*, and *Nap_Et2* all have near-zero percent contribution in the 200 ms time frame. This
399 leaves the percent contribution of the *NaTa_t* current inversely proportional to the percent contribution
400 of the h-current, as these currents together account for ~ 100% of the inward current. Considering the
401 h-current is maximally active at sub-threshold voltages and acts on a slower time scale, while the *NaTa_t*
402 current contributes primarily to action potential generation at a very fast time scale (Rich et al., 2021), we
403 can reasonably assume that most changes in the inward current prior to spiking are driven primarily by the
404 h-current.

405 Following the process outlined in the Methods, we quantified the non-monotonicity of the h-current's
406 contribution to the inward current visualized in the 200 ms STA. Given the relationship between the percent
407 contribution of the *Ih* and *NaTa_t* currents described above, we focused on comparing the 200 ms STA of the
408 h-current to the 200 ms STA of the outward ionic currents; indeed, the primary ionic currents contributing
409 to the outward current, *SKv3_1* and *K_Pst*, both have quantitative distinctions from the dynamics of the

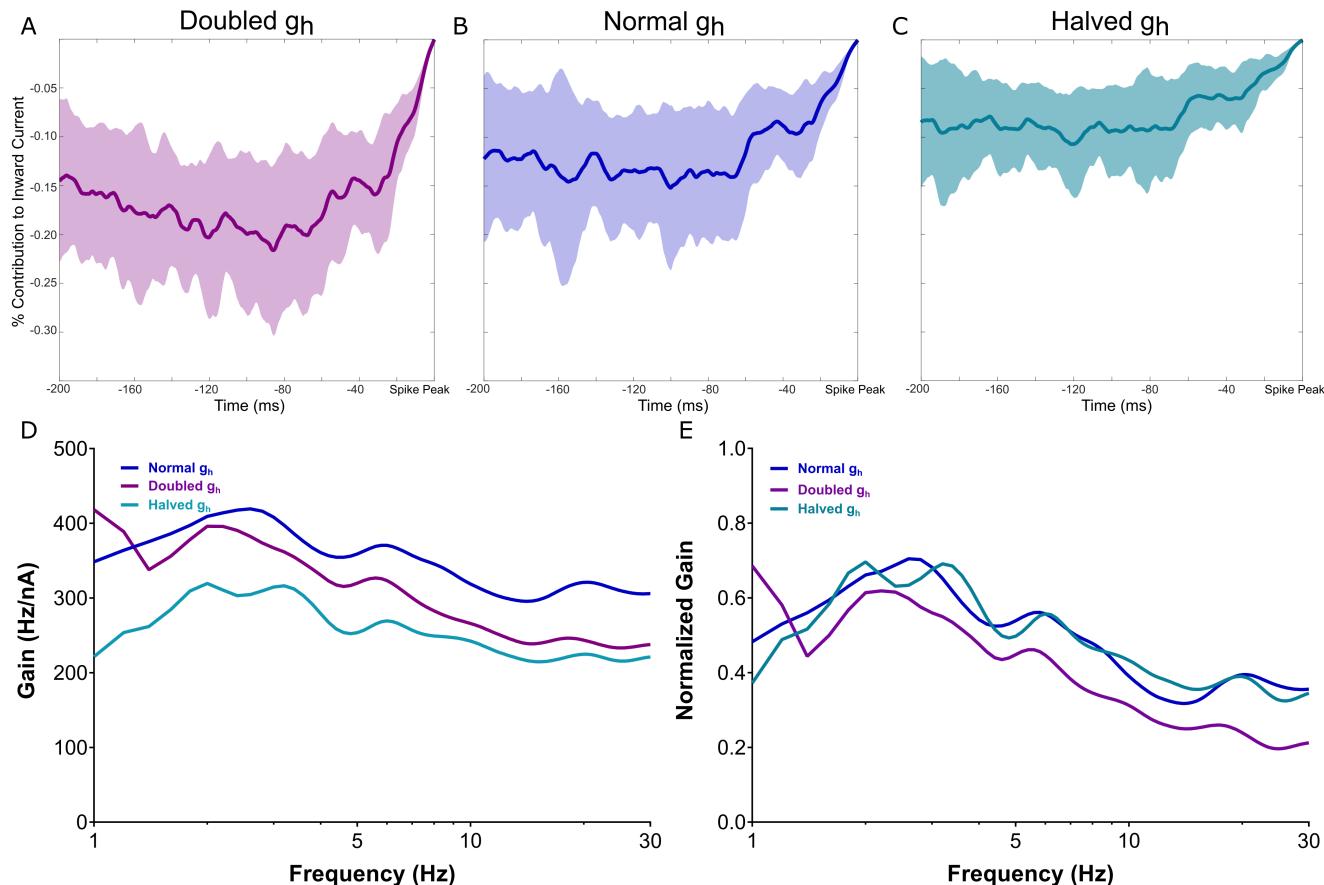


Figure 4. Currentscape data processing merged with spike-triggered average analysis of human cortical layer 5 neuron dynamics. A-C Representations of the STA for the percent contribution to outward (top panel) and inward (bottom panel) currents for 30 ms (panel C), 100 ms (panel D), and 200 ms (panel E) prior to a spike. A unique dynamic is observed in the dynamics of the h-current in panel E: over these 200 ms, the contribution of the h-channel is distinctively non-monotonic. The shaded portion of each plot represents \pm one standard deviation over the 30 repetitions with distinct noisy inputs. I_m is not included in these plots given its minimal contribution to model dynamics (see Figure 2).

410 h-current. The former current is almost entirely monotonic: $I_{*}^{SKv3.1}$ is increasing for 94.72% of the 200 ms
 411 prior to spiking, in sharp contrast with the h-current, for which I_{*}^{Ih} is decreasing for just 62.50% of the 200
 412 ms prior to spiking. Meanwhile, there is a noticeable increase in the variability of the contribution of K_{Pst}
 413 between 200 and 150 ms prior to spiking (see the fainter \pm STD shading), a clear distinction in comparison
 414 to the other ionic currents. The remaining ionic currents either contribute minimally in the 200 ms prior to
 415 spiking (Ca_{HVA} , Ca_{LVAst} , Nap_{Et2} , K_{Tst} , SK_{E2} ; also I_m which is omitted from the plots as mentioned
 416 in Figure 3) or have a percent contribution approximately inversely proportional to that of the h-current
 417 ($NaTa_t$). Thus, the qualitatively observed uniqueness of the h-current's 200 ms STA relative to other ionic
 418 currents is supported by quantitative analysis.

419 Next, we applied our STA analysis to three of the scenarios studied in Figure 3; double, normal, and
 420 halved Ih maximum conductance. As can be seen in Figure 5A-C, the curvature of the STA of the h-current's
 421 percent contribution to the inward current is exaggerated when its conductance is doubled, and diminished
 422 when it is halved. We quantified this by examining I_{*}^{Ih} in each scenario; we found that I_{*}^{Ih} was decreasing for

423 70.37% of the STA time-series when the Ih maximum conductance was halved, 62.50% of the STA time-series
 424 for this conductance's default value, and just 55.89% of the STA time-series when this conductance was
 425 doubled. This pattern confirms quantitatively what we observed qualitatively, that the monotonicity of these
 426 curves is affected by the amount of h-current activity, as dictated by the Ih channel's maximum conductance.
 427 These changes, elicited solely by alterations to the h-current's maximum conductance, are also confirmatory
 428 evidence that the features of the $NaTa_t$ current's percent contribution are most likely attributable to its
 429 relationship with the Ih current's percent contribution, as discussed above.

Figure 5. The non-monotonic nature of h-current activity prior to spiking is exaggerated with an increased h-channel conductance and diminished with a decreased h-channel conductance. A-C
 Visualizations of the h-channel contributions preceding spiking with the Ih maximum conductance doubled in panel A, normal in panel B, and halved in panel C, with the shaded regions representing \pm one standard deviation. **D-E** Non-normalized (D) and normalized (E) FDGs in each of the above scenarios. The normalized plots highlight the “flatter” decay of the FDG at high frequencies when the Ih maximum conductance is halved and the more precipitous drop when the Ih maximum conductance is doubled. The former diminishes the influence of any low-frequency peaks, while the latter accentuates it.

430 These differences correspond with alterations to the corresponding FDGs, displayed non-normalized in
 431 Figure 5D and normalized in Figure 5E. Notably, when the Ih maximum conductance is halved, the low
 432 frequency peak appears “split,” which undermines a key feature of the *in vitro* and default *in silico* FDG: the

433 presence of a single low-frequency peak and single secondary peak at approximately double the frequency.
434 This can also be seen in the individual FDGs in Figure 3A. Additionally, the decay of the gain at high
435 frequencies is notably more gradual, potentially mitigating the functional frequency preference quantified
436 by the FDG. Meanwhile, when the Ih maximum conductance is doubled, the decay of the gain at high
437 frequencies is more precipitous, strengthening the neuron's frequency preference at the low-frequency peaks.

438 The qualitative differences described above are confirmed via quantitative statistical testing. The
439 normalized FDG when the Ih maximum conductance is doubled is significantly different from the default
440 curve, for $p < 0.05$, for 19.2-30 Hz, while the non-normalized FDGs are significantly different for 6.4-30 Hz.
441 Meanwhile, the non-normalized FDG when the Ih maximum conductance is halved is significantly different
442 from the default curve, for $p < 0.05$, for the entire 1-30 Hz range.

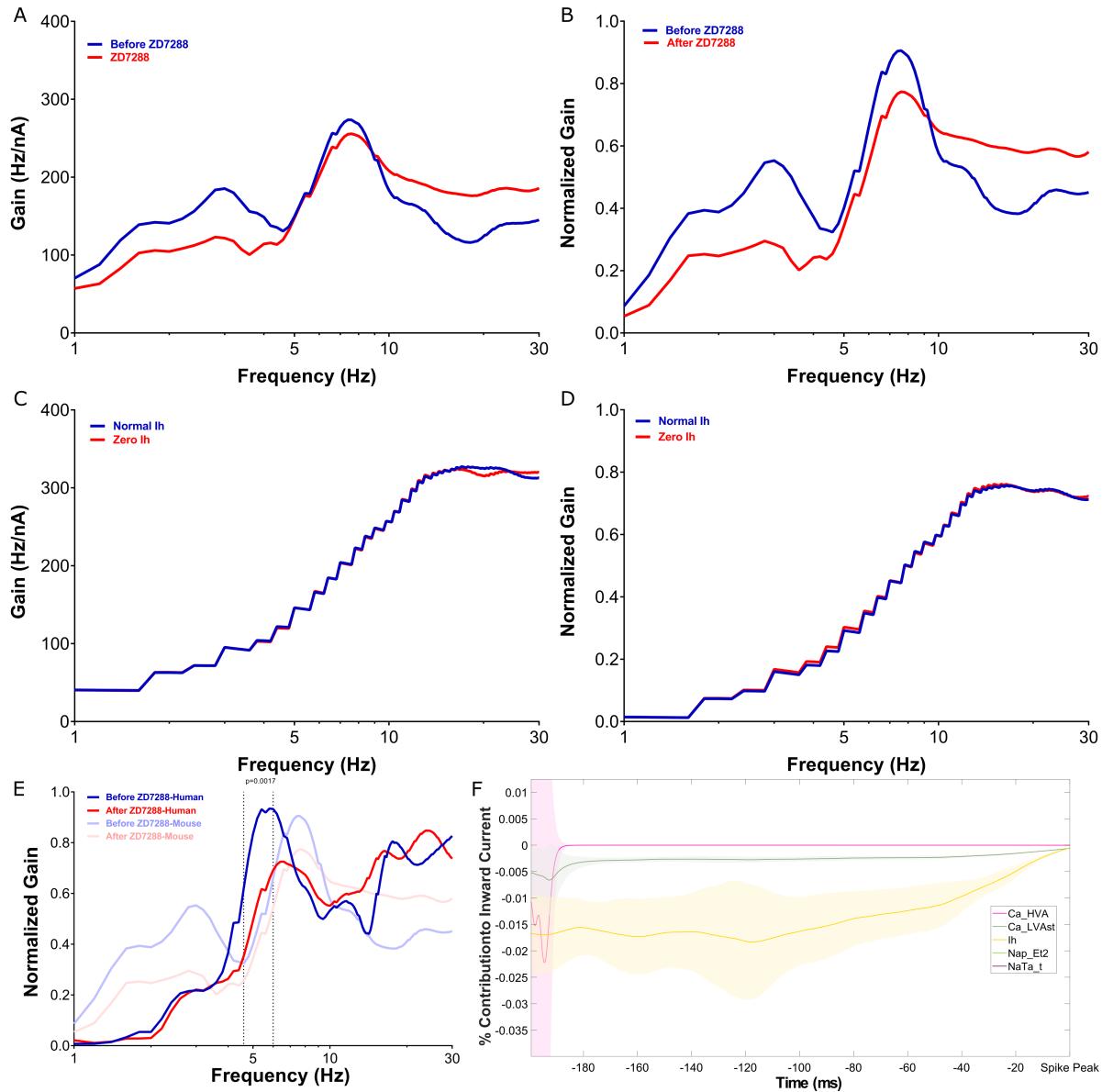
443 We note that the idiosyncratic maximum gain at 1 Hz when the Ih maximum conductance is doubled is a
444 likely side effect of the model's increased excitability in this scenario (as noted in the Methods, the DC shift
445 necessary to elicit appropriate spiking is smaller by an order of magnitude when the Ih maximum conductance
446 is doubled as compared to the default model). While this might be compensated for by changing other
447 elements of the model neuron, we consciously chose to *only* manipulate the h-current in order to minimize
448 any potential confounds. This nuance emphasizes the need to appropriately contextualize the conclusions
449 drawn when altering model neurons such as these (see the discussion of "hybrid" model neurons in Rich et al.
450 (2021)).

451 This analysis reveals a correlation between the time-course of the h-current's contribution to the inward
452 current prior to spiking and features of the FDG. By limiting our alterations to the model neurons *only* to the
453 Ih maximum conductance, we can confidently conclude that the activity of the h-channel is responsible for
454 these changes. In turn, we can directly infer a relationship between the h-channel's expression (as quantified
455 by the Ih maximum conductance), features of the h-current's activity prior to spiking, and the presence (or
456 lack thereof) of key features of the FDG of human L5 cortical pyramidal neurons.

457 **Comparison to rodent models identifies effect of h-current kinetics on FDG profile**

458 The above analysis uncovers a relationship between the distinctive contribution of the h-current to neuronal
459 dynamics prior to spiking and the features hallmarking the FDG of human L5 cortical pyramidal neurons. We
460 obtained this relationship by directly comparing the human cell model's output and analogous experimental
461 outputs expressing complex dynamics, combined with novel analyses of the model's dynamics. Given this
462 and the known differences between rodent and human cortical cells, we wondered whether this relationship
463 would be preserved for rodent cortical pyramidal cells. While a biophysically-detailed model of a rodent L5

464 pyramidal neuron is available Hay et al. (2011), an experimental quantification of these neuron's FDG was
465 not. We thus performed new *in vitro* explorations.


466 These experiments reveal clear differences between the FDGs of rodent and human L5 cortical pyramidal
467 neurons: notably, the primary peak in rodent L5 pyramidal neurons occurs at approximately 8 Hz, rather
468 than between 2-6 Hz in human neurons. Additionally, there are no significant differences between the curves
469 before and after the application of ZD7288 in rodent neurons (Figure 6A-B). These inter-species differences
470 are emphasized in Figure 6E, including significant differences between the settings before the application of
471 ZD7288 around the low-frequency peak of the human neurons.

472 The rodent model of Hay et al. (2011) (Figure 6C-D) preserves some key features of the experimentally
473 quantified FDG, including that these neurons do not exhibit a low frequency peak and exhibit minimal
474 differences with and without h-current activity. While this correspondence is less rigorous than in the human
475 setting, this is to be expected considering the modeling process of Hay et al. (2011) was distinct from that
476 of Rich et al. (2021), including a reduced emphasis on capturing h-current driven subthreshold activity.
477 Nonetheless, this correspondence between the *in silico* and *in vitro* settings highlights that we can reasonably
478 justify using this model in similar analyses as performed on the human model to assess the relationship
479 between ion channel contributions and FDG properties.

480 We note that the minimal effects of h-channel blockade on rodent neurons, either using ZD-7288 *in*
481 *vitro* or by making the *Ih* maximum conductance zero *in silico*, is supported by existing literature. In
482 a comparative study of rodent and human Layer 2/3 (L2/3) cortical pyramidal neurons, Kalmbach et al.
483 (2018) found application of ZD-7288 had a notably diminished effect on rodent neurons relative to human
484 neurons, including no appreciable change in the rodent neurons' resting membrane potential and a diminished
485 change in their input resistance. Our new experiments add to these findings by showing that ZD-7288 has a
486 non-significant effect on the FDG of rodent neurons, while this effect is significant in human neurons.

487 With the appropriateness of the Hay et al. (2011) model thus justified, we applied our STA/Currentscape
488 analysis to analyze the contribution of inward currents, particularly the h-current, to neuronal dynamics
489 in the moments prior to spiking. This reveals notable differences in the Currentscape STAs of the rodent
490 model compared to the human. First, the primary contributors to neuronal dynamics are the *Na_Ta_t* and
491 *Ca_LVAst* currents (as opposed to the *Na_Ta_t* and h-currents in the human model), both of which have
492 largely monotonic dynamics upon qualitative inspection in the 200 ms prior to spiking. Second, the h-current's
493 contribution is notably smaller, meriting the magnification presented in Figure 6F. Finally, the contributions
494 of the *Nap_Et2* and *Ca_HVA* currents are smaller by approximately another order of magnitude and largely
495 negligible.

496 The dynamics of the h-current's contribution appear to be more monotonous than in the human model

Figure 6. FDG properties are distinct in rodent L5 cortical pyramidal neurons, both *in vitro* and *in silico*, corresponding with a distinct h-channel contribution. A-B Non-normalized (A) and normalized (B) FDGs averaged from $n = 6$ rodent L5 cortical pyramidal cells firing approximately in the theta frequency range. **C-D** Non-normalized (C) and normalized (D) FDG analysis of the rodent L5 model of Hay et al. (2011) captures key qualitative properties displayed experimentally. Notably, there is minimal change in the FDG when the h-current is blocked, a stark contrast from the human setting both *in vitro* and *in silico*. The qualitative “jaggedness” of this curve relative to those from the human model (Figure 1C-D) are due to computational limitations described in the Methods, but do not affect the primary conclusions drawn from this analysis. **E** Comparison between the normalized FDGs of human and rodent L5 cortical pyramidal neurons highlights their differences; these are statistically significant before treatment with ZD7288 with $p=0.0017$ between 5-5.4 Hz (2-way ANOVA-Bonferroni’s multiple comparisons test). **F** STA analysis of the inward currents for the default model of Hay et al. (2011) (magnified to emphasize the contribution of the h-current). In comparison to the human model, the contribution is both much smaller in magnitude and notably more monotonic.

497 upon qualitative inspection. We confirmed this using the same quantification as performed on the human
 498 model, finding that I_{*}^{Ih} decreases for 84.56% of the STA time-series, more often than the 62.50% in the

499 human setting.

500 Implicit in the overall hypothesis of this work, that the distinguishing features of the h-current's contribution
501 to neuronal activity are necessary for the distinct features of the FDG of human L5 pyramidal neurons, is the
502 inverse: neurons with different h-current dynamics should not exhibit these FDG properties. Our analysis
503 of the Hay et al. (2011) model and rodent *in vitro* results showcases exactly this phenomenon: rodent L5
504 pyramidal neurons lack low-frequency FDG peaks both *in vitro* and *in silico*, which corresponds with a
505 diminished and more monotonic contribution of the h-current to neuronal dynamics in the 200 ms prior
506 to spiking. In essence, we here have adapted the strategy of “proof by contradiction” to support our main
507 hypothesis via a convincing example in which the inverse of our argument holds.

508 Discussion

509 In this study, we injected a noisy input current into a biophysically-detailed, multi-compartment model of
510 a human L5 cortical pyramidal neuron, extracting precise characterizations of ionic current contributions
511 to spiking activity that are not attainable with analogous *in vitro* experiments. This yields three major
512 conclusions regarding the relationship between the h-current and the frequency preference of these neurons:
513 1) Disruption of h-current activity alone dissipates the low frequency peak in the FDG that hallmarks these
514 neurons' spiking frequency preference; 2) The h-current exhibits distinctive activity in the 200 ms leading up
515 to spiking, a previously undescribed phenomenon providing a viable explanation for the neuron's frequency
516 preference at this time scale and its dependence on h-current activity; and 3) Differences in this frequency
517 preference between human and rodent L5 pyramidal neurons correspond not only with distinct h-current
518 kinetics between species (Rich et al., 2021; Kole et al., 2006), but also the h-current's activity in physiologically
519 relevant settings. This supports the recent hypothesis (Moradi Chameh et al., 2021), driven by *in vitro*
520 experiments, that the h-channel's contribution is necessary for the frequency-preference of human L5 cortical
521 pyramidal cells and their “leading” role in human cortical theta oscillations (Florez et al., 2015; McGinn and
522 Valiante, 2014).

523 The *in silico* setting is not only useful, but in fact necessary, to derive these conclusions, as it is not
524 possible experimentally to simultaneously record a neuron's membrane potential and multiple ionic currents
525 in response to a complex input. This is particularly relevant for studying the h-current, as during *in vitro*
526 current-clamp experiments, properties of this current are most commonly inferred from the “sag voltage”
527 (Moradi Chameh et al., 2021; Kalmbach et al., 2018; Zemankovics et al., 2010; Guet-McCreight et al., 2021)
528 rather than directly quantified. We fully exploited the opportunities presented by the *in silico* setting by
529 combining a contemporary visualization tool, Currentscape (Alonso and Marder, 2019), with ubiquitous

530 spike-triggered average analysis (Schwartz et al., 2006) to identify the average contribution of each ionic
531 current, including the h-current, in the moments prior to spiking in response to a noisy stimulus. Our
532 computational models allowed us to manipulate the ionic current contributions in a precise fashion, unlike
533 what would be possible in *in vitro* settings with pharmacological blockade (which also typically have secondary
534 effects). This facilitated our connection between the enhanced non-monotonicity of the h-current's dynamics
535 when the I_h maximum conductance was doubled, and the mitigation of this dynamic when this conductance
536 was halved, with corresponding changes in the FDG to further support our conclusions. As these were the
537 only changes implemented in the model neuron, it is apparent that these changes to the h-current directly
538 drive the observed changes in neuronal activity. Similar Currentscape/STA approaches have been used with a
539 computational model of a hippocampal interneuron to show the underlying biophysical currents contributing
540 to theta frequency spiking resonance (Sun et al., 2022).

541 The correspondence between the *in vitro* FDG (Moradi Chameh et al., 2021) and that of the model neuron
542 of Rich et al. (2021) is vital and non-trivial. Given inherent limitations in the study of human cortical tissue,
543 the model of Rich et al. (2021) was generated primarily by matching subthreshold voltage activity from a
544 single neuron in a range with pronounced h-current activity, including adjusting the h-current's kinetics.
545 Spiking dynamics were constrained only by requiring the neuron to fire repetitively in an approximate
546 frequency range exhibited by separate human L5 neurons in response to tonic inputs. The model's close
547 approximation of complex spiking dynamics observed *in vitro*, but not constraining model development, is
548 additional support that the h-current plays a pivotal role in this activity.

549 We note that our analysis of the *in silico* model is limited to the soma to correspond to the *in vitro*
550 experiments. The frequency preference of dendrites is a rich topic for future research given both the
551 non-uniform distribution of the h-channel (Rich et al., 2021; Hay et al., 2011) and unique morphological
552 properties of human neurons (Beaulieu-Laroche et al., 2018). We also acknowledge the limitations inherent
553 in all computational modeling studies: the model neurons studied here are necessarily abstractions of the
554 biophysical reality that cannot capture the entirety of a neuron's intricate dynamics (Almog and Korngreen,
555 2014). Nonetheless, the focused conclusions of this study on the relationship between the h-current and
556 spiking frequency preference are well justified given the specific correspondences between the *in vitro* and *in*
557 *silico* settings in h-current activity and FDG. Given neuronal degeneracy (Edelman and Gally, 2001), it is
558 possible that combinations of other ionic currents might affect the FDG properties related to h-current activity
559 in this study; however, that does not affect the primary conclusion of this work, that that the h-current is
560 a necessary contributor to these FDG properties for this well-developed model of a human cortical L5 cell.
561 Developing and exploring additional models and model populations is outside the focused scope of this paper.

562 We have shown here that h-channels are essential in determining the spiking frequency preference of

563 human L5 pyramidal cells, which in turn implies that they can be key controllers of oscillatory activity
564 produced by neuronal circuits. As more human data has become available, computational models of human
565 cortical circuits have been developed and used to show how reduced inhibition in depression affects stimulus
566 processing (Yao et al., 2022), how reduced neuronal heterogeneity can impair seizure resilience (Rich et al.,
567 2022), and that age-dependent sag current increases affect resting state activities (Guet-McCreight et al.,
568 2021). While circuit models are needed to link to system level experimental data, there are many more
569 experimental unknowns that need to be considered in developing such models. Indeed, exploration goals
570 using model neuronal circuits often differ from those of studies using detailed cellular models of individual
571 neurons. This work is an example of the latter, focusing on whether and how the specifics of particular
572 channel types might affect complex cellular output (i.e., spiking frequency preference) that influence circuit
573 output (i.e., rhythms). The detail needed in any model naturally varies with the question, and there is no
574 clear consensus of the extent of experimental detail needed as we consider the multiscale nature of the brain
575 (D'Angelo and Jirsa, 2022). Given these challenges, clarity regarding model generation and the goals of
576 computational studies are required to accelerate our understanding of the brain (Eriksson et al., 2022) and
577 usher interdisciplinary neuroscientists towards jointly tackling the challenges of neurodegenerative disease at
578 cell and circuit levels (Farrell et al., 2019; Gallo et al., 2020; Rich et al., 2022).

579 References

580 Adamantidis AR, Herrera CG, Gent TC (2019) Oscillating circuitries in the sleeping brain. *Nature Reviews
581 Neuroscience* 20:746–762.

582 Almog M, Korngreen A (2014) A quantitative description of dendritic conductances and its application to
583 dendritic excitation in layer 5 pyramidal neurons. *Journal of Neuroscience* 34:182–196.

584 Alonso LM, Marder E (2019) Visualization of currents in neural models with similar behavior and different
585 conductance densities. *eLife* 8:e42722.

586 Angelo K, Margrie TW (2011) Population diversity and function of hyperpolarization-activated current in
587 olfactory bulb mitral cells. *Scientific reports* 1:1–11.

588 Ascoli GA, Gasparini S, Medinilla V, Migliore M (2010) Local control of postinhibitory rebound spiking in
589 ca1 pyramidal neuron dendrites. *Journal of Neuroscience* 30:6434–6442.

590 Bakken TE, Jorstad NL, Hu Q, Lake BB, Tian W, Kalmbach BE, Crow M, Hodge RD, Krienen FM, Sorensen

591 SA, et al. (2021) Comparative cellular analysis of motor cortex in human, marmoset and mouse. *Nature*
592 598:111–119.

593 Beaulieu-Laroche L, Toloza EH, van der Goes MS, Lafourcade M, Barnagian D, Williams ZM, Eskandar
594 EN, Frosch MP, Cash SS, Harnett MT (2018) Enhanced dendritic compartmentalization in human cortical
595 neurons. *Cell* 175:643–651.

596 Berger T, Larkum ME, Luscher HR (2001) High i_h channel density in the distal apical dendrite of layer V
597 pyramidal cells increases bidirectional attenuation of EPSPs. *Journal of neurophysiology* 85:855–868.

598 Berger T, Senn W, Luscher HR (2003) Hyperpolarization-activated current i_h disconnects somatic and
599 dendritic spike initiation zones in layer V pyramidal neurons. *Journal of neurophysiology* 90:2428–2437.

600 Boldog E, Bakken TE, Hodge RD, Novotny M, Avermann BD, Baka J, Bordé S, Close JL, Diez-Fuertes F,
601 Ding SL, et al. (2018) Transcriptomic and morphophysiological evidence for a specialized human cortical
602 gabaergic cell type. *Nature neuroscience* 21:1185–1195.

603 Buzsaki G (2006) *Rhythms of the Brain*. Oxford University Press, USA, 1 edition.

604 Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents — EEG, ECoG,
605 LFP and spikes. *Nature Reviews Neuroscience* 13:407–420.

606 Buzsáki G, Draguhn A (2004) Neuronal Oscillations in Cortical Networks. *Science* 304:1926 –1929.

607 Carnevale NT, Hines ML (2006) *The NEURON book*. Cambridge University Press.

608 Chang X, Wang J, Jiang H, Shi L, Xie J (2019) Hyperpolarization-Activated Cyclic Nucleotide-Gated
609 Channels: An Emerging Role in Neurodegenerative Diseases. *Frontiers in Molecular Neuroscience* 12.

610 Chevaleyre V, Castillo PE (2002) Assessing the role of i_h channels in synaptic transmission and mossy fiber
611 ltp. *Proceedings of the National Academy of Sciences* 99:9538–9543.

612 Das A, Narayanan R (2017) Theta-frequency selectivity in the somatic spike-triggered average of rat
613 hippocampal pyramidal neurons is dependent on hCN channels. *Journal of neurophysiology* 118:2251–2266.

614 Deitcher Y, Eyal G, Kanari L, Verhoog MB, Atenekeng Kahou GA, Mansvelder HD, De Kock CP, Segev I
615 (2017) Comprehensive morpho-electrotonic analysis shows 2 distinct classes of l2 and l3 pyramidal neurons
616 in human temporal cortex. *Cerebral Cortex* 27:5398–5414.

617 Dyhrfjeld-Johnsen J, Morgan RJ, Soltesz I (2009) Double trouble? potential for hyperexcitability following
618 both channelopathic up-and downregulation of i_h in epilepsy. *Frontiers in neuroscience* 3:5.

619 D'Angelo E, Jirsa V (2022) The quest for multiscale brain modeling. *Trends in Neurosciences* 45:777–790.

620 Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. *Proceedings of the National*
621 *Academy of Sciences* 98:13763–13768.

622 Eriksson O, Bhalla US, Blackwell KT, Crook SM, Keller D, Kramer A, Linne ML, Saudargienė A, Wade
623 RC, Hellgren Kotaleski J (2022) Combining hypothesis- and data-driven neuroscience modeling in FAIR
624 workflows. *eLife* 11:e69013. Publisher: eLife Sciences Publications, Ltd.

625 Eyal G, Verhoog MB, Testa-Silva G, Deitcher Y, Lodder JC, Benavides-Piccione R, Morales J, DeFelipe J,
626 de Kock CP, Mansvelder HD, et al. (2016) Unique membrane properties and enhanced signal processing in
627 human neocortical neurons. *Elife* 5:e16553.

628 Farrell JS, Nguyen QA, Soltesz I (2019) Resolving the Micro-Macro Disconnect to Address Core Features of
629 Seizure Networks. *Neuron* 101:1016–1028.

630 Florez C, McGinn R, Lukankin V, Marwa I, Sugumar S, Dian J, Hazrati LN, Carlen P, Zhang L, Valiante T
631 (2015) In vitro recordings of human neocortical oscillations. *Cerebral cortex* 25:578–597.

632 Galán RF, Ermentrout GB, Urban NN (2008) Optimal time scale for spike-time reliability: theory, simulations,
633 and experiments. *Journal of neurophysiology* 99:277–283.

634 Gallo NB, Paul A, Van Aelst L (2020) Shedding Light on Chandelier Cell Development, Connectivity, and
635 Contribution to Neural Disorders. *Trends in Neurosciences* 43:565–580.

636 Gasselin C, Inglebert Y, Debanne D (2015) Homeostatic regulation of h-conductance controls intrinsic
637 excitability and stabilizes the threshold for synaptic modification in ca1 neurons. *The Journal of physiology*
638 593:4855–4869.

639 Golowasch J, Goldman MS, Abbott L, Marder E (2002) Failure of averaging in the construction of a
640 conductance-based neuron model. *Journal of Neurophysiology* 87:1129–1131.

641 Gu N, Vervaeke K, Hu H, Storm JF (2005) Kv7/kcnq/m and hcn/h, but not kca2/sk channels, contribute to
642 the somatic medium after-hyperpolarization and excitability control in ca1 hippocampal pyramidal cells.
643 *The Journal of physiology* 566:689–715.

644 Guet-McCreight A, Chameh HM, Mahallati S, Wishart M, Tripathy SJ, Valiante TA, Hay E (2021) Age-
645 dependent increased sag current in human pyramidal neurons dampens baseline cortical activity. *bioRxiv*
646 .

647 Hanslmayr S, Axmacher N, Inman CS (2019) Modulating Human Memory via Entrainment of Brain
648 Oscillations. *Trends in Neurosciences* 42:485–499.

649 Hay E, Hill S, Schürmann F, Markram H, Segev I (2011) Models of neocortical layer 5b pyramidal cells
650 capturing a wide range of dendritic and perisomatic active properties. *PLoS computational biology*
651 7:e1002107.

652 Higgs MH, Spain WJ (2009) Conditional bursting enhances resonant firing in neocortical layer 2–3 pyramidal
653 neurons. *Journal of Neuroscience* 29:1285–1299.

654 Hogan QH, Poroli M (2008) Hyperpolarization-activated current (ih) contributes to excitability of primary
655 sensory neurons in rats. *Brain research* 1207:102–110.

656 Howard D, Chameh HM, Guet-McCreight A, Hsiao HA, Vuong M, Seo YS, Shah P, Nigam A, Chen Y, Davie
657 M, et al. (2022) An in vitro whole-cell electrophysiology dataset of human cortical neurons. *GigaScience* 11.

658 Hu H, Vervaeke K, Storm JF (2002) Two forms of electrical resonance at theta frequencies, generated by
659 m-current, h-current and persistent Na^+ current in rat hippocampal pyramidal cells. *The Journal of
660 physiology* 545:783–805.

661 Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. *Trends
662 in Neurosciences* 23:216–222.

663 Kalmbach BE, Buchin A, Long B, Close J, Nandi A, Miller JA, Bakken TE, Hodge RD, Chong P, de Frates R,
664 et al. (2018) h-channels contribute to divergent intrinsic membrane properties of supragranular pyramidal
665 neurons in human versus mouse cerebral cortex. *Neuron* 100:1194–1208.

666 Kalmbach BE, Hodge RD, Jorstad NL, Owen S, de Frates R, Yanny AM, Dalley R, Mallory M, Graybuck
667 LT, Radaelli C, et al. (2021) Signature morpho-electric, transcriptomic, and dendritic properties of human
668 layer 5 neocortical pyramidal neurons. *Neuron* 109:2914–2927.

669 Kole MH, Hallermann S, Stuart GJ (2006) Single ih channels in pyramidal neuron dendrites: properties,
670 distribution, and impact on action potential output. *Journal of Neuroscience* 26:1677–1687.

671 Kostyuk P, Veselovsky N, Tsyndrenko AY (1981) Ionic currents in the somatic membrane of rat dorsal root
672 ganglion neurons—i. sodium currents. *Neuroscience* 6:2423–2430.

673 Lupien-Meilleur A, Jiang X, Lachance M, Taschereau-Dumouchel V, Gagnon L, Vanasse C, Lacaille JC,
674 Rossignol E (2021) Reversing frontal disinhibition rescues behavioural deficits in models of CACNA1A-

675 associated neurodevelopment disorders. *Molecular Psychiatry* 26:7225–7246. Number: 12 Publisher: Nature
676 Publishing Group.

677 Mably AJ, Colgin LL (2018) Gamma oscillations in cognitive disorders. *Current Opinion in Neurobiology*
678 52:182–187.

679 Marder E, Goaillard JM (2006) Variability, compensation and homeostasis in neuron and network function.
680 *Nature Reviews Neuroscience* 7:563.

681 Maris E, Fries P, van Ede F (2016) Diverse Phase Relations among Neuronal Rhythms and Their Potential
682 Function. *Trends in Neurosciences* 39:86–99.

683 Martinez-Losa M, Tracy TE, Ma K, Verret L, Clemente-Perez A, Khan AS, Cobos I, Ho K, Gan L, Mucke
684 L, Alvarez-Dolado M, Palop JJ (2018) Nav1.1-Overexpressing Interneuron Transplants Restore Brain
685 Rhythms and Cognition in a Mouse Model of Alzheimer’s Disease. *Neuron* 98:75–89.e5.

686 MATLAB (2019) version 9.6.0 (R2019a). Natick, Massachusetts: The MathWorks Inc.

687 McGinn RJ, Valiante TA (2014) Phase–Amplitude Coupling and Interlaminar Synchrony Are Correlated in
688 Human Neocortex. *The Journal of Neuroscience* 34:15923–15930.

689 Mohan H, Verhoog MB, Doreswamy KK, Eyal G, Aardse R, Lodder BN, Goriounova NA, Asamoah B,
690 B Brakspear AC, Groot C, et al. (2015) Dendritic and axonal architecture of individual pyramidal neurons
691 across layers of adult human neocortex. *Cerebral Cortex* 25:4839–4853.

692 Molnár G, Oláh S, Komlósi G, Füle M, Szabadics J, Varga C, Barzó P, Tamás G (2008) Complex events
693 initiated by individual spikes in the human cerebral cortex. *PLoS biology* 6:e222.

694 Moradi Chameh H, Rich S, Wang L, Chen FD, Zhang L, Carlen PL, Tripathy SJ, Valiante TA (2021) Diversity
695 amongst human cortical pyramidal neurons revealed via their sag currents and frequency preferences.
696 *Nature Communications* 12.

697 Poolos NP (2004) The yin and yang of the h-channel and its role in epilepsy. *Epilepsy Currents* 4:3–6.

698 Rich S, Chameh HM, Lefebvre J, Valiante TA (2022) Loss of neuronal heterogeneity in epileptogenic human
699 tissue impairs network resilience to sudden changes in synchrony. *Cell Reports* 39:110863.

700 Rich S, Moradi Chameh H, Sekulic V, Valiante TA, Skinner FK (2021) Modeling reveals human–rodent
701 differences in h-current kinetics influencing resonance in cortical layer 5 neurons. *Cerebral Cortex* 31:845–872.

702 Sánchez-Alonso J, Halliwell J, Colino A (2008) Zd 7288 inhibits t-type calcium current in rat hippocampal
703 pyramidal cells. *Neuroscience letters* 439:275–280.

704 Schwartz O, Pillow JW, Rust NC, Simoncelli EP (2006) Spike-triggered neural characterization. *Journal of*
705 *vision* 6:13–13.

706 Sivagnanam S, Majumdar A, Yoshimoto K, Astakhov V, Bandrowski AE, Martone ME, Carnevale NT, et al.
707 (2013) Introducing the neuroscience gateway. *IWSG* 993:0.

708 Sun AX, Yuan Q, Fukuda M, Yu W, Yan H, Lim GGY, Nai MH, D'Agostino GA, Tran HD, Itahana Y, Wang
709 D, Lokman H, Itahana K, Lim SWL, Tang J, Chang YY, Zhang M, Cook SA, Rackham OJL, Lim CT,
710 et al. (2019) Potassium channel dysfunction in human neuronal models of Angelman syndrome. *Science*
711 366:1486–1492.

712 Sun Z, Crompton D, Lankarany M, Skinner F (2022) Reduced oriens-lacunosum/moleculare (OLM) cell model
713 identifies biophysical current balances for in vivo theta frequency spiking resonance. *bioRxiv* (Accepted,
714 *Frontiers in Neural Circuits*) .

715 Thomas MP, Chartrand K, Reynolds A, Vitvitsky V, Banerjee R, Gendelman HE (2007) Ion channel blockade
716 attenuates aggregated alpha synuclein induction of microglial reactive oxygen species: relevance for the
717 pathogenesis of parkinson's disease. *Journal of neurochemistry* 100:503–519.

718 Verhoog MB, Goriounova NA, Obermayer J, Stroeder J, Hjorth JJJ, Testa-Silva G, Baayen JC, Kock CPJd,
719 Meredith RM, Mansvelder HD (2013) Mechanisms Underlying the Rules for Associative Plasticity at Adult
720 Human Neocortical Synapses. *The Journal of Neuroscience* 33:17197–17208.

721 Yao HK, Guet-McCreight A, Mazza F, Moradi Chameh H, Prevot TD, Griffiths JD, Tripathy SJ, Valiante
722 TA, Sibille E, Hay E (2022) Reduced inhibition in depression impairs stimulus processing in human cortical
723 microcircuits. *Cell Reports* 38:110232.

724 Yue BW, Huguenard JR (2001) The role of h-current in regulating strength and frequency of thalamic network
725 oscillations. *Thalamus & related systems* 1:95–103.

726 Zemankovics R, Káli S, Paulsen O, Freund TF, Hájos N (2010) Differences in subthreshold resonance of
727 hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics.
728 *The Journal of physiology* 588:2109–2132.

729 Figure/Table Legends

730 **Figure 1: Model matches h-current mediated FDG peaks observed experimentally in human**
731 **layer 5 cortical pyramidal neurons. A-B** Experimentally calculated FDG (**A**) and normalized FDG (**B**)
732 of L5 human pyramidal neurons with and without blockade of the h-channel with ZD-7288. Under control
733 conditions, there is a clear low-frequency peak at approximately 5 Hz. After treatment with ZD-7288, the
734 peak FDG values occur at >10 Hz. Normalized curves exhibit significant differences ($p=0.0017$) between
735 4.6 and 6 Hz, the location of this low-frequency peak. **C-D** FDG (**C**) and normalized FDG (**D**) derived
736 from the model human L5 cortical pyramidal neuron under normal conditions and without h-current activity.
737 Normalized plots emphasize the qualitative correspondence between the model and experimental settings: the
738 model exhibits a low frequency peak (here at approximately 3 Hz) under normal conditions, while this peak
739 dissipates (yielding a “flat” FDG profile for >3 Hz) without h-current activity. Non-normalized plots are
740 significantly different for 1 to 30 Hz with $p=0.0001$; normalized plots are significantly different with $p=0.0076$
741 for 1 to 1.6 Hz and with $p=0.0265$ from 10 to 12.6 Hz. All significance values are derived from the 2-way
742 ANOVA-Bonferroni’s multiple comparisons test. Note that the normalized plots (panels B and D) are *not*
743 simply a rescaling of the absolute FDGs (panels A and C), but are processed as defined in the Methods.
744 **E-F** Example input current (bottom) and output voltage (top) traces in the experimental setting (panel E,
745 replicated with permission from Moradi Chameh et al. (2021)) and in the default model setting (panel F).

746 **Figure 2: Currentscape visualization tool facilitates the identification of relative current**
747 **contributions in spiking simulations. A** Raw data obtained, via NEURON, of a simulation of a noisy
748 input current injected into the L5 human pyramidal neuron model. Top to bottom: noisy input current,
749 voltage trace and ionic current contributions. Of note is that the varying magnitudes of the ionic currents
750 obscure one’s ability to jointly visualize their contribution to the neuron’s dynamics. **B** Using the Currentscape
751 tool, the ionic current contributions are recontextualized as outward and inward percentage of contribution
752 plots, allowing for a more intuitive visualization on a single scale despite the neuron’s spiking activity. Note
753 that I_m is not discernible in this visualization, denoting its minimal contribution to the dynamics of the
754 model in this scenario.

755 **Figure 3: Currentscape visualization highlights differences in spiking modulated by h-current**
756 **activity. A** Left: The example noisy input current injected into the L5 human pyramidal neuron model with
757 differing I_h conductance levels. Right: example FDGs (plot is Gain (nA) versus log-scaled Frequency (Hz))
758 from this input in each of four scenarios: with the I_h maximum conductance doubled (top-left, purple), normal
759 (top-right, blue), halved (bottom-left, teal) or zero (bottom-right, black). **B-E** Currentscape visualizations
760 corresponding with each of the scenarios outlined above. The h-channel contribution is indicated in the

761 inward current contribution panel of the visualization in yellow, alongside the contributions of all the ionic
762 currents and passive currents in the model. Spiking activity differs in each scenario (see highlighted regime)
763 driven by the varying I_h conductance and the differing contributions of I_h to the neuron's activity highlighted
764 by this Currentscape visualization.

765 **Figure 4: Currentscape data processing merged with spike-triggered average analysis of**
766 **human cortical layer 5 neuron dynamics. A-C** Representations of the STA for the percent contribution
767 to outward (top panel) and inward (bottom panel) currents for 30 ms (panel C), 100 ms (panel D), and 200
768 ms (panel E) prior to a spike. A unique dynamic is observed in the dynamics of the h-current in panel E:
769 over these 200 ms, the contribution of the h-channel is distinctively non-monotonic. The shaded portion of
770 each plot represents \pm one standard deviation over the 30 repetitions with distinct noisy inputs. I_m is not
771 included in these plots given its minimal contribution to model dynamics (see Figure 2).

772 **Figure 5: The non-monotonic nature of h-current activity prior to spiking is exaggerated with**
773 **an increased h-channel conductance and diminished with a decreased h-channel conductance.**
774 **A-C** Visualizations of the h-channel contributions preceding spiking with the I_h maximum conductance
775 doubled in panel A, normal in panel B, and halved in panel C, with the shaded regions representing \pm one
776 standard deviation. **D-E** Non-normalized (**D**) and normalized (**E**) FDGs in each of the above scenarios.
777 The normalized plots highlight the “flatter” decay of the FDG at high frequencies when the I_h maximum
778 conductance is halved and the more precipitous drop when the I_h maximum conductance is doubled. The
779 former diminishes the influence of any low-frequency peaks, while the latter accentuates it.

780 **Figure 6: FDG properties are distinct in rodent L5 cortical pyramidal neurons, both *in vitro***
781 **and *in silico*, corresponding with a distinct h-channel contribution. A-B** Non-normalized (**A**) and
782 normalized (**B**) FDGs averaged from $n = 6$ rodent L5 cortical pyramidal cells firing approximately in the
783 theta frequency range. **C-D** Non-normalized (**C**) and normalized (**D**) FDG analysis of the rodent L5 model
784 of Hay et al. (2011) captures key qualitative properties displayed experimentally. Notably, there is minimal
785 change in the FDG when the h-current is blocked, a stark contrast from the human setting both *in vitro* and
786 *in silico*. The qualitative “jaggedness” of this curve relative to those from the human model (Figure 1C-D)
787 are due to computational limitations described in the Methods, but do not affect the primary conclusions
788 drawn from this analysis. **E** Comparison between the normalized FDGs of human and rodent L5 cortical
789 pyramidal neurons highlights their differences; these are statistically significant before treatment with ZD7288
790 with $p=0.0017$ between 5-5.4 Hz (2-way ANOVA-Bonferroni's multiple comparisons test). **F** STA analysis of
791 the inward currents for the default model of Hay et al. (2011) (magnified to emphasize the contribution of
792 the h-current). In comparison to the human model, the contribution is both much smaller in magnitude and
793 notably more monotonic.