

1 Conflicts are parametrically encoded: initial evidence for a cognitive space view to
2 reconcile the debate of domain-general and domain-specific cognitive control

3

4 Guochun Yang,^{1,2,3,4} Haiyan Wu,⁵ Qi Li,⁶ Xun Liu,^{1,2*} Zhongzheng Fu,^{7,8} Jiefeng
5 Jiang^{3,4}

6 ¹ CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing
7 100101, China.

8 ² Department of Psychology, University of Chinese Academy of Sciences, Beijing
9 100101, China.

10 ³ Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA
11 52242, USA.

12 ⁴ Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52242, USA.

13 ⁵ Centre for Cognitive and Brain Sciences and Department of Psychology, University
14 of Macau, Taipa, Macau 999078, China.

15 ⁶ Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital
16 Normal University, Beijing 100048, China.

17 ⁷ Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA
18 90048, USA.

19 ⁸ Division of Humanities and Social Sciences, California Institute of Technology,
20 Pasadena, CA 91125, USA.

21 *Correspondence: liux@psych.ac.cn

22 **Abstract**

23 Cognitive control resolves conflicts between task-relevant and -irrelevant information
24 to enable goal-directed behavior. As conflicts can arise from different sources (e.g.,
25 sensory input, internal representations), how a limited set of cognitive control
26 processes can effectively address diverse conflicts remains a major challenge. Based
27 on the cognitive space theory, different conflicts can be parameterized and
28 represented as distinct points in a (low-dimensional) cognitive space, which can then
29 be resolved by a limited set of cognitive control processes working along the
30 dimensions. It leads to a hypothesis that conflicts similar in their sources are also
31 represented similarly in the cognitive space. We designed a task with five types of
32 conflicts that could be conceptually parameterized. Both human performance and
33 fMRI activity patterns in the right dorsolateral prefrontal (dlPFC) support that
34 different types of conflicts are organized based on their similarity, thus suggesting
35 cognitive space as a principle for representing conflicts.

36

37 Keywords: cognitive control, cognitive space, domain-general, domain-specific,
38 conflict

39

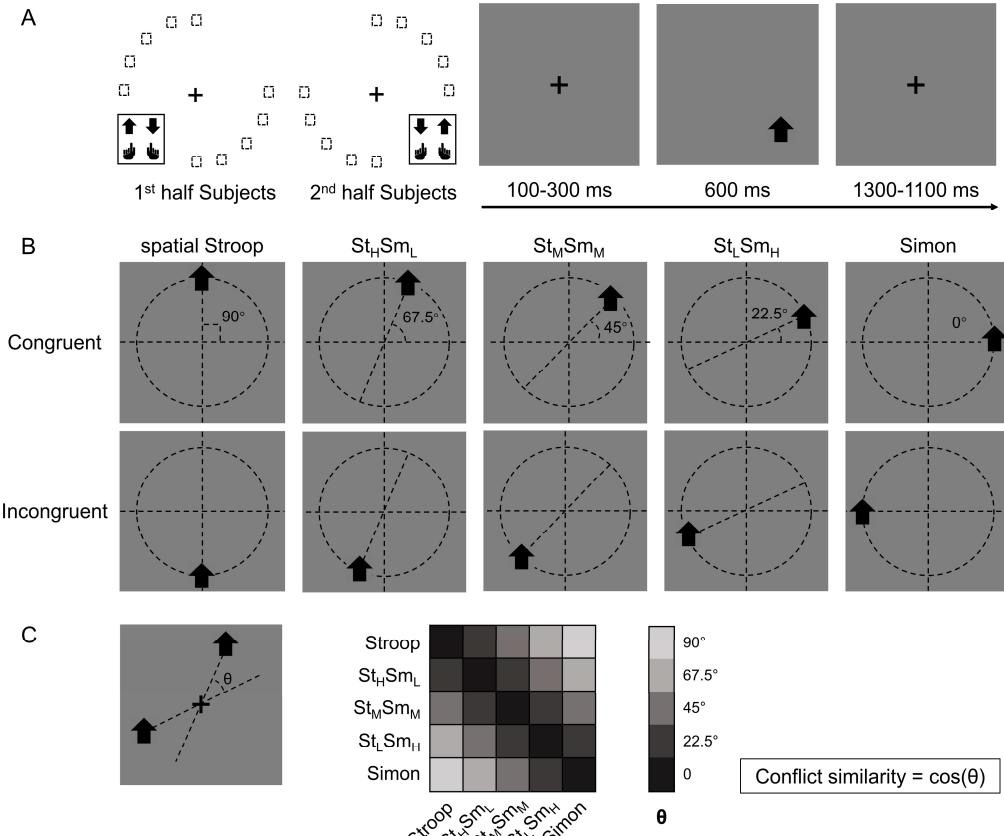
40 **Introduction**

41 Cognitive control enables humans to behave purposefully by modulating neural
42 processing to resolve conflicts between task-relevant and task-irrelevant information.
43 For example, when naming the color of the word “BLUE” printed in red ink, we are
44 likely to be distracted by the word meaning, because reading a word is highly
45 automatic in daily life. To keep our attention on the color, we need to mobilize the
46 cognitive control processes to resolve the conflict between the color and word by
47 boosting/suppressing the processing of color/word meaning. As task-relevant and
48 task-irrelevant information can come from different sources, the sources of conflicts
49 and how they should be resolved can vary greatly (Kornblum et al., 1990). **For**
50 **example, the conflict may occur between items of sensory information, such as**
51 **between a red light and a police officer signaling cars to pass. Alternatively, conflict**
52 **may occur between sensory and motor information, such as when a voice on the left**
53 **asks you to turn right. A key unsolved question in cognitive control is how our brain**
54 **efficiently resolves these different types of conflicts.**

55 A first step to addressing this question is to examine the commonalities and/or
56 dissociations across different types of conflicts that can be categorized into different
57 *domains*. Examples of the domains of conflicts include experimental paradigm
58 (Freitas et al., 2007; Magen & Cohen, 2007), sensory modality (Hazeltine et al., 2011;
59 Yang et al., 2017), or conflict type regarding the dimensional overlap of conflict
60 processes (Jiang & Egner, 2014; Liu et al., 2004).

61 Two solutions to resolving **different** conflict types are proposed. They differ
62 based on whether the same cognitive control mechanisms are applied across domains.
63 On the one hand, the *domain-general* cognitive control theories posit that the

64 frontoparietal cortex adaptively encodes task information and can thus flexibly
65 implement control strategies for different types of conflicts. This is supported by the
66 generalizable control adjustment (i.e., encountering a conflict trial from one type can
67 facilitate conflict resolution of another type) (Freitas et al., 2007; Kan et al., 2013) and
68 similar neural patterns (Peterson et al., 2002; Wu et al., 2020) across distinct conflict
69 tasks. A broader domain-general view holds that the frontoparietal brain
70 regions/networks are widely involved in multiple control demands well beyond the
71 conflict domain (Assem et al., 2020; Cole et al., 2013), which explains the remarkable
72 flexibility in human behaviors. However, since domain-general processes are by
73 definition likely shared by different tasks, when we need to handle multiple task
74 demands at the same time, the efficiency of both tasks would be impaired due to
75 resource competition or interference (Musslick & Cohen, 2021). Therefore, the
76 domain-general processes is evolutionarily less advantageous for humans to deal with
77 the diverse situations requiring high efficiency (Cosmides & Tooby, 1994). On the
78 other hand, the *domain-specific* theories argue that different types of conflicts are
79 handled by distinct cognitive control processes (e.g., where and how information
80 processing should be modulated)(Egner, 2008; Kim et al., 2012). However, according
81 to the domain-specific view, **the diverse conflict situations require a multitude of**
82 **preeexisting control processes**, which is biologically implausible (Abrahamse et al.,
83 2016).


84 To reconcile the two theories, researchers recently proposed that cognitive control
85 might be a mixture of domain-general and domain-specific processes. For instance,
86 Freitas and Clark (2015) found that trial-by-trial adjustment of control can generalize
87 across two conflict domains to different degrees, leading to domain-general (strong
88 generalization) or domain-specific (weak or no generalization) conclusions depending
89 on the task settings of the consecutive conflicts. Similarly, different brain networks
90 may show domain-generality (i.e., representing multiple conflicts) or domain-
91 specificity (i.e., representing individual conflicts separately)(Jiang & Egner, 2014; Li
92 et al., 2017). Even within the same brain area (e.g., medial frontal cortex), Fu et
93 al.(2022) found that the neural population activity can be factorized into orthogonal
94 dimensions encoding both domain-general and domain-specific conflict information,
95 which can be selectively read out by downstream brain regions. While the mixture
96 view provides an explanation for the contradictory findings (Braem et al., 2014), it
97 suffers the same criticism as domain-specific cognitive control theories, as it still
98 requires **many** cognitive control processes to fully cover all possible conflicts.

99 A key to reconciling domain-general and domain-specific cognitive control is to
100 organize the large number of conflict types using a system with limited, dissociable
101 dimensions. A construct with a similar function is the *cognitive space* (Bellmund et
102 al., 2018), which extends the idea of cognitive map (Behrens et al., 2018) to the
103 representation of abstract information. Critically, the cognitive space view holds that
104 the representations of different abstract information are organized continuously and
105 the representational geometry in the cognitive space is determined by the similarity
106 among the represented information (Bellmund et al., 2018).

107 In the human brain, it has been shown that abstract (Behrens et al., 2018; Schuck
108 et al., 2016) and social (Park et al., 2020) information can be represented in a
109 cognitive space. For example, social hierarchies with two independent scores (e.g.,
110 popularity and competence) can be represented in a 2D cognitive space (one
111 dimension for each score), such that each social item can be located by its score in the
112 two dimensions (Park et al., 2020). In the field of cognitive control, recent studies
113 have begun to conceptualize different control states within a cognitive space (Badre et
114 al., 2021). For example, Fu et al. (2022) mapped different conflict conditions to
115 locations in a low/high dimensional cognitive space to demonstrate the domain-
116 general/domain-specific problems; Grahek et al. (2023) used a cognitive space model
117 of cognitive control settings to explain behavioral changes in the speed-accuracy
118 tradeoff. However, the cognitive spaces proposed in these studies were only
119 applicable to a limited number of control states involved in their designs. Therefore, it
120 remains unclear whether there is a cognitive space that can explain the large number
121 of control states, similar to that of the spatial location (Bellmund et al., 2018) and
122 non-spatial knowledge (Behrens et al., 2018). A challenge to answering this question
123 lies in how to construct control states with continuous levels of similarity. Our recent
124 work (Yang et al., 2021) showed that it is possible to manipulate continuous conflict
125 similarity by using a mixture of two independent conflict types with varying ratios,
126 which can be used to further examine the behavioral and neural evidence for the
127 cognitive space view. It is also unclear how the cognitive space of cognitive control is
128 encoded in the brain, although that of spatial locations and non-spatial abstract
129 knowledge has been relatively well investigated in the medial temporal lobe, medial
130 prefrontal and orbitofrontal system (Behrens et al., 2018; Bellmund et al., 2018).
131 Recent research has suggested that the abstract task structure could be encoded and
132 implemented by the frontoparietal network (Vaidya & Badre, 2022; Vaidya et al.,
133 2021), but whether a similar neural system encodes the cognitive space of cognitive
134 control remains untested.

135 The present study aimed to test the geometry of cognitive space in conflict
136 representation. Specifically, we hypothesize that different types of conflicts are
137 represented as points in a cognitive space. Importantly, the distance between the
138 points, which reflects the geometry of the cognitive space, scales with the difference
139 in the sources of the conflicts being represented by the points. The dimensions in the
140 cognitive space of conflicts can be the aforementioned *domains*, in which domain-
141 specific cognitive control processes are defined. For a specific type of conflict, its
142 location in the cognitive space can be parameterized using a limited number of
143 coordinates, which reflect how much control is needed for each of the domain-
144 specific cognitive control processes. The cognitive space can also represent different
145 types of conflicts with low dimensionality (Badre et al., 2021; MacDowell et al.,
146 2022). Different domains can be represented conjunctively in a single cognitive space
147 to achieve domain-general cognitive control, as conflicts from different sources can
148 be resolved using the same set of cognitive control processes. We further hypothesize
149 that the cognitive space representing different types of conflicts may be located in the

150 frontoparietal network due to its essential roles in conflict resolution (Freund, Bugg,
 151 et al., 2021; Fu et al., 2022) and abstract task representation (Vaidya & Badre, 2022).

152
 153 **Fig. 1. Experimental design.** (A) The left panel shows the orthogonal stimulus-response mappings of
 154 the two participant groups. In each group the stimuli were only displayed at two quadrants of the
 155 circular locations. One group were asked to respond with the left button to the upward arrow and with
 156 the right button to the downward arrow presented in the top-left and bottom-right quadrants, and the
 157 other group vice versa. The right panel shows the time course of one example trial. The stimuli were
 158 displayed for 600 ms, preceded and followed by fixation crosses that lasted for 1400 ms in total. (B)
 159 Examples of the five types of conflicts, each containing congruent and incongruent conditions. The
 160 arrows were presented at locations along five orientations with isometric polar angles, in which the
 161 vertical location introduces the spatial Stroop conflict, and the horizontal location introduces the Simon
 162 conflict. Dashed lines are shown only to indicate the location of arrows and were not shown in the
 163 experiments. (C) The definition of the angular difference between two conflict types and the conflict
 164 similarity. The angle θ is determined by the acute angle between two lines that cross the stimuli and the
 165 central fixation. Therefore, stimuli of the same conflict type form the smallest angle of 0, and stimuli
 166 between Stroop and Simon form the largest angle of 90°, and others are in between. Conflict similarity
 167 is defined by the cosine value of θ . H = high; L = low; M = medium.

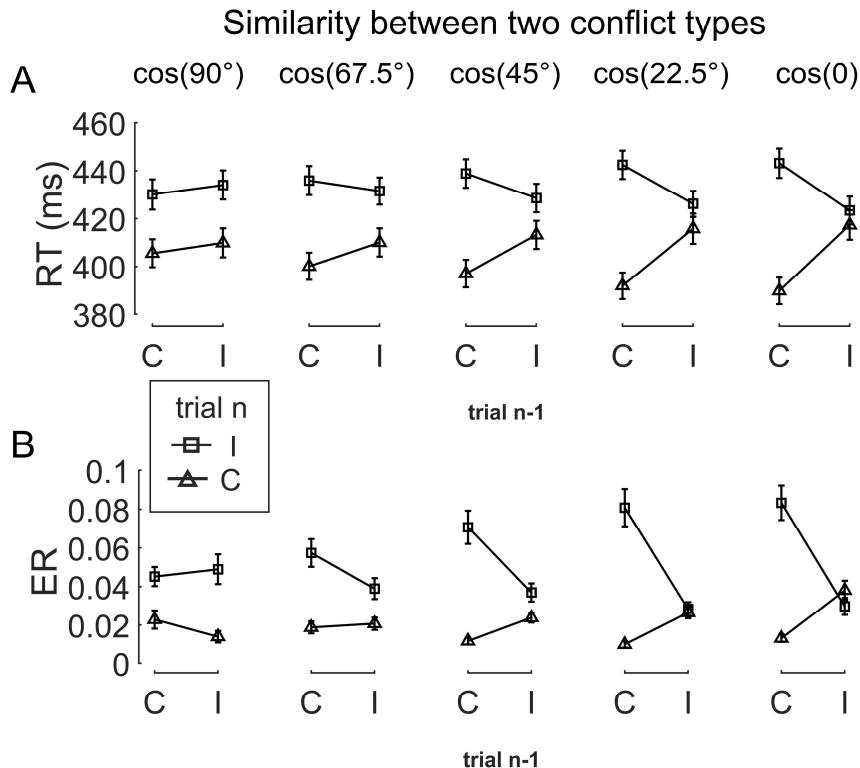
168 In this study, we adjusted the paradigm from our previous study (Yang et al.,
 169 2021) by including transitions of trials from five different conflict types, which
 170 enabled us to test if these conflict types are organized in a cognitive space (Fig. 1A).
 171 Specifically, on each trial, an arrow, pointing either upwards or downwards, was

172 presented on one of the 10 possible locations on the screen. Participants were required
173 to respond to the pointing direction of the arrow (up or down) by pressing either the
174 left or right key. Importantly, conflicts from two sources can occur in this task. On
175 one hand, the vertical location of the arrow can be incongruent with the direction
176 (e.g., an up-pointing arrow on the lower half of the screen), resulting spatial Stroop
177 conflict (Liu et al., 2004; Lu & Proctor, 1995). On the other hand, the horizontal
178 location of the arrow can be incongruent with the response key (e.g., an arrow
179 requiring left response presented on the right side of the screen), thus causing Simon
180 conflict (Lu & Proctor, 1995; Simon & Small, 1969). As the arrow location rotates
181 from the horizontal axis to the vertical axis, spatial Stroop conflict increases, and
182 Simon conflict decreases. Therefore, the 10 possible locations of the arrow give rise
183 to five conflict types with unique blend of spatial Stroop and Simon conflicts (Yang et
184 al., 2021). As the increase in spatial Stroop conflict is **highly** correlated with the
185 decrease in Simon conflict, we can use a 1D cognitive space to represent all five
186 conflict types.

187 One way to parameterize (i.e., defining a coordinate system) the cognitive space
188 is to encode each conflict type by the angle of the axis connecting its two possible
189 stimulus locations (Fig. 1B). Within this cognitive space, the similarity between two
190 conflict types can be quantified as the cosine value of their angular difference (Fig.
191 1C). The rationale behind defining conflict similarity based on combinations of
192 different conflict sources, such as spatial-Stroop and Simon, stems from the evidence
193 that these sources undergo independent processing (Egner, 2008; Li et al., 2014; Liu
194 et al., 2010; Wang et al., 2014). Identifying these distinct sources is critical in
195 efficiently resolving diverse conflicts. If the conflict types are organized as a
196 cognitive space in the brain, the similarity between conflict types in the cognitive
197 space should be reflected in both the behavior and similarity in the neural
198 representations of conflict types. Our data from two experiments using this
199 experimental design support both predictions: using behavioral data, we found that the
200 influence of congruency (i.e., whether the task-relevant and task-irrelevant
201 information indicate the same response) from the previous trial to the next trial
202 increases with the conflict similarity between the two trials. Using fMRI data, we
203 found that more similar conflicts showed higher multivariate pattern similarity in the
204 right dorsolateral prefrontal cortex (dlPFC).

205 **Results**

206 *Conflict type similarity modulates behavioral congruency sequence effect (CSE)*


207 Experiment 1.

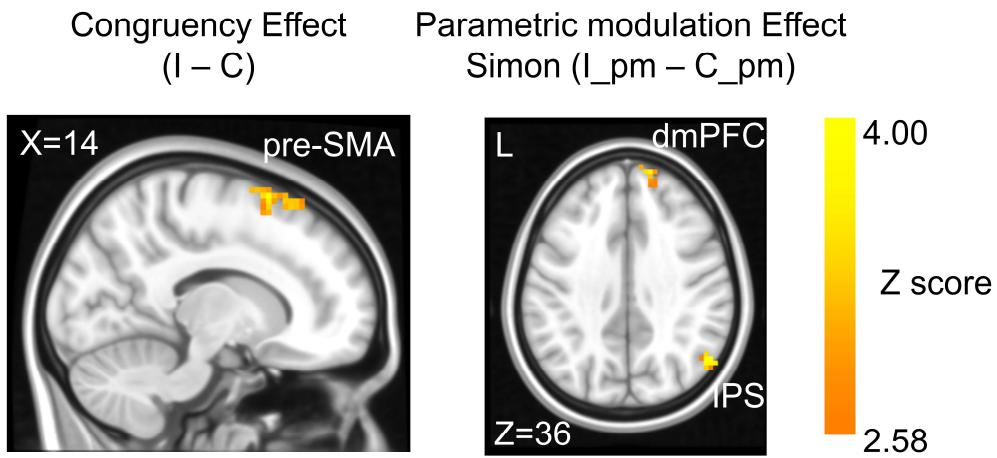
208 We conducted a behavioral experiment ($n = 33$, 18 females) to examine how CSEs
209 across different conflict types are influenced by their similarity. First, we validated the
210 experimental design by testing the congruency effects. All five conflict types showed
211 robust congruency effects such that the incongruent trials were slower and less
212 accurate than the congruent trials (Note S1; Fig. S1 A/B). To test the influence of
213 similarity between conflict types on behavior, we examined the CSE in consecutive

trials. Specifically, the CSE was quantified as the interaction between previous and current trial congruency and can reflect how (in)congruency on the previous trial influences cognitive control on the current trial (Egner, 2007; Schmidt & Weissman, 2014). It has been shown that the CSE diminishes if the two consecutive trials have different conflict types (Akcay & Hazeltine, 2011; Egner et al., 2007; Torres-Quesada et al., 2013). Similarly, we tested whether the size of CSE increases as a function of conflict similarity between consecutive trials. To this end, we organized trials based on a 5 (previous trial conflict type) \times 5 (current trial conflict type) \times 2 (previous trial congruency) \times 2 (current trial congruency) factorial design, with the first two and the last two factors capturing between-trial conflict similarity and the CSE, respectively. The cells in the 5×5 matrix were mapped to different similarity levels according to the angular difference between the two conflict types (Fig. 1C). As shown in Fig. 2, the CSE, measured in both reaction time (RT) and error rate (ER), scaled with conflict similarity.

To test the modulation of conflict similarity on the CSE, we constructed a linear mixed effect model to predict RT/ER in each cell of the factorial design using a predictor encoding the interaction between the CSE and conflict similarity (see Methods). The results showed a significant effect of conflict similarity (RT: $\beta = 0.10 \pm 0.01$, $t(1719.7) = 15.82$, $p < .001$, $\eta_p^2 = .120$; ER: $\beta = 0.15 \pm 0.02$, $t(204.5) = 7.84$, $p < .001$, $\eta_p^2 = .085$, Fig. S2B/E). In other words, the CSE increased with the conflict similarity between two consecutive trials. The conflict similarity modulation effect remained significant after regressing out the influence of physical proximity between the stimuli of consecutive trials (Note S2). As a control analysis, we also compared this approach to a two-stage analysis that first calculated the CSE for each previous \times current trial conflict type condition and then tested the modulation of conflict similarity on the CSEs (Yang et al., 2021). The two-stage analysis also showed a strong effect of conflict similarity (RT: $\beta = 0.58 \pm 0.04$, $t(67.5) = 14.74$, $p < .001$, $\eta_p^2 = .388$; ER: $\beta = 0.36 \pm 0.05$, $t(40.3) = 7.01$, $p < .001$, $\eta_p^2 = .320$, Fig. S2A/D). Importantly, individual modulation effects of conflict similarity were positively correlated between the two approaches (RT: $r = 0.48$; ER: $r = 0.86$, both $ps < 0.003$, one-tailed), indicating the consistency of the estimated conflict similarity effects across the two approaches. In the following texts, we will use the terms “*conflict similarity effect*” and “*conflict type effect*” interchangeably.

Moreover, to test the continuity and generalizability of the similarity modulation, we conducted a leave-one-out prediction analysis. We used the behavioral data from Experiment 1 for this test, due to its larger amount of data than Experiment 2. Specifically, we removed data from one of the five similarity levels (as illustrated by the θ s in Fig. 1C) and used the remaining data to perform the same mixed-effect model (i.e., the two-stage analysis). This yielded one pair of beta coefficients including the similarity regressor and the intercept for each subject, with which we predicted the CSE for the removed similarity level for each subject. We repeated this process for each similarity level once. The predicted results were highly correlated with the original data, with $r = .87$ for the RT and $r = .84$ for the ER, $ps < .001$.

257

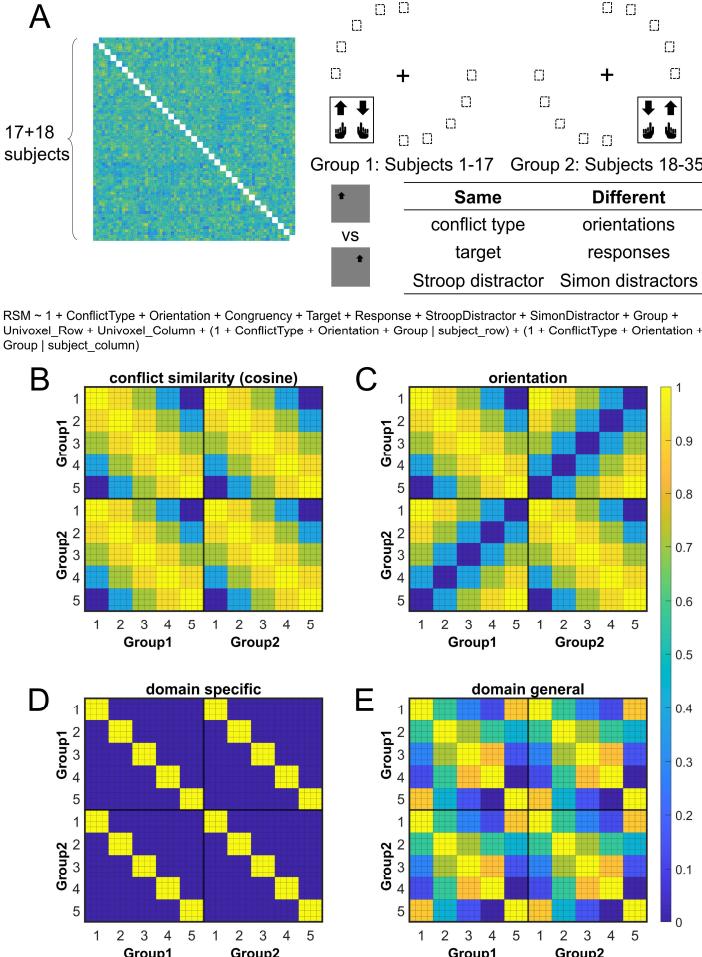

258 **Fig. 2. The conflict similarity modulation on the behavioral CSE in Experiment 1.** (A) RT and (B)
259 ER are plotted as a function of congruency types on trial n-1 and trial n. Each column shows one
260 similarity level, as indicated by the defined angular difference between two conflict types. Error bars
261 are standard errors. C = congruent; I = incongruent; RT = reaction time; ER = error rate.

262

263 Experiment 2.

264 *Behavioral results.* We next conducted an fMRI experiment using a shorter version of
265 the same task with a different sample ($n = 35$, 17 females) to seek neural evidence of
266 how different conflict types are organized. Using behavioral data, we first validated
267 the experimental design by testing congruency effects in each of the five conflict
268 types (Note S1; Fig. S1 C/D). We then tested the modulation of conflict similarity on
269 the behavioral CSE using the linear mixed effect model as in Experiment 1 (except
270 the two-stage method). Results showed a significant effect of conflict similarity
271 modulation (RT: $\beta = 0.24 \pm 0.04$, $t(71.7) = 6.36$, $p < .001$, $\eta_p^2 = .096$; ER: $\beta = 0.33 \pm$
272 0.06 , $t(175.4) = 5.81$, $p < .001$, $\eta_p^2 = .124$, Fig. S2C/F), thus replicating the results of
273 Experimental 1 and setting the stage for fMRI analysis. As in Experiment 1, the
274 conflict similarity modulation effect remained significant after regressing out the
275 influence of physical proximity between the stimuli of consecutive trials (Note S2).

276 *Univariate brain activations scale with conflict strength*

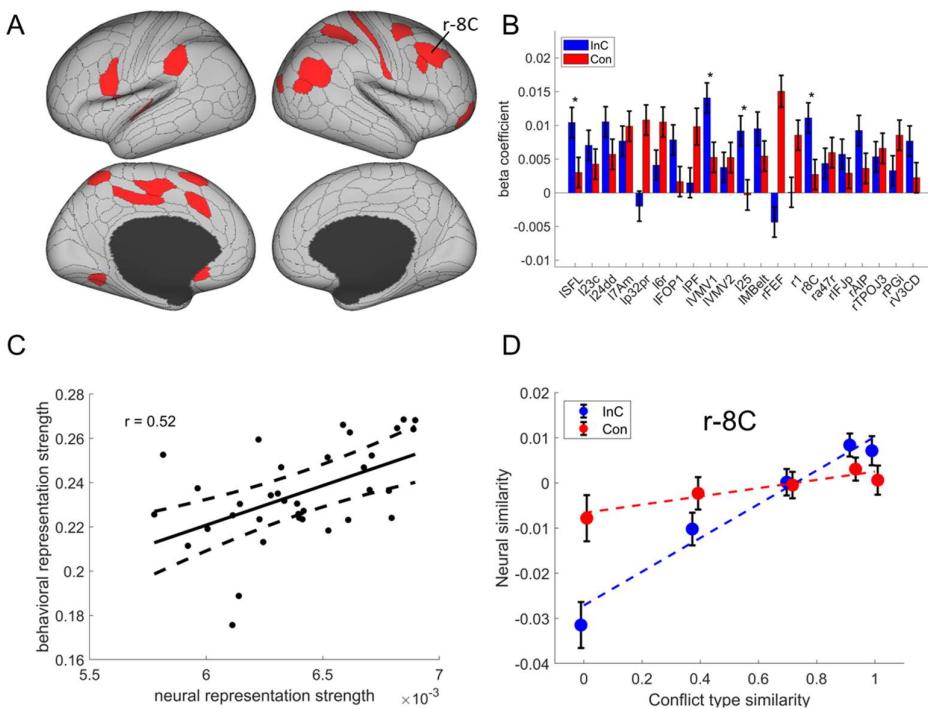

278 **Fig. 3. The congruency effect and parametric modulation effect detected by uni-voxel analyses.**

279 Results displayed are probabilistic TFCE enhanced and thresholded with voxel-wise $p < .001$ and
280 cluster-wise $p < .05$, both one-tailed. The congruency effect denotes the higher activation in
281 incongruent than congruent condition (left panel). The positive parametric modulation effect ($I_{pm} -$
282 C_{pm}) denotes the higher activation when the conflict type contained a higher ratio of Simon conflict
283 component (right panel). I = incongruent; C = congruent; pm = parametric modulator.

284
285 In the fMRI analysis, we first replicated the classic congruency effect by searching for
286 brain regions showing higher univariate activation in incongruent than congruent
287 conditions (GLM1, see Methods). Consistent with the literature (Botvinick et al.,
288 2004; Fu et al., 2022), this effect was observed in the pre-supplementary motor area
289 (pre-SMA) (Fig. 3, Table S1). We then tested the encoding of conflict type as a
290 cognitive space by identifying brain regions with activation levels parametrically
291 covarying with the coordinates (i.e., axial angle relative to the horizontal/vertical
292 axes) in the hypothesized cognitive space. As shown in Fig. 1B, change in the angle
293 corresponds to change in spatial Stroop and Simon conflicts in opposite directions, so
294 we used opposite contrasts to examine the encoding of spatial Stroop and Simon
295 strength, respectively (see Methods). Accordingly, we found the right inferior parietal
296 sulcus (IPS) and the right dorsomedial prefrontal cortex (dmPFC) displayed positive
297 correlation between fMRI activation and the Simon conflict (Fig. 3, Fig. S3, Table
298 S1). We did not observe regions showing significant correlation with the spatial
299 Stroop conflict.

300 To further test if the univariate results explain the conflict similarity modulation
301 of the behavioral CSE (slope in Fig. S2C), we conducted brain-behavioral correlation
302 analyses for regions identified above. Regions with higher spatial Stroop/Simon
303 modulation effects were expected to trigger higher behavioral conflict similarity
304 modulation effect on the CSE. However, none of the two regions (i.e., right IPS and
305 right dmPFC, Fig. 3) were positively correlated with the behavioral performance, both
306 uncorrected $p > .28$, one-tailed. In addition, since the conflict type difference covaries

307 with the orientation of the arrow location at the individual level (e.g., the stimulus in a
 308 higher level of Simon conflict is always closer to the horizontal axis, see Fig. 4A), the
 309 univariate modulation effects may not reflect purely conflict type difference. To
 310 further tease these factors apart, we used multivariate analyses.



311

312 **Fig. 4.** Rationale of the cross-subject RSA model and the schematic of key RSMs. A) The RSM is
 313 calculated as the Pearson's correlation between each pair of conditions across the 35 subjects. For 17
 314 subjects, the stimuli were displayed on the top-left and bottom-right quadrants, and they were asked to
 315 respond with left hand to the upward arrow and right hand to the downward arrow. For the other 18
 316 subjects, the stimuli were displayed on the top-right and bottom-left quadrants, and they were asked to
 317 respond with left hand to the downward arrow and right hand to the upward arrow. Within each
 318 subject, the conflict type and orientation regressors were perfectly covaried. For instance, the same
 319 conflict type will always be on the same orientation. To de-correlate conflict type and orientation
 320 effects, we conducted the RSA across subjects from different groups. For example, the bottom-right
 321 panel highlights the example conditions that are orthogonal to each other on the orientation, response,
 322 and Simon distractor, whereas their conflict type, target and spatial Stroop distractor are the same. The
 323 dashed boxes show the possible target locations for different conditions. (B) and (C) show the
 324 orthogonality between conflict similarity and orientation RSMs. The within-subject RSMs (e.g.,
 325 Group1-Group1) for conflict similarity and orientation are all the same, but the cross-group

326 correlations (e.g., Group2-Group1) are different. Therefore, we can separate the contribution of these
327 two effects when including them as different regressors in the same linear regression model. (D) and
328 (E) show the two alternative models. Like the cosine model (B), within-group trial pairs resemble
329 between-group trial pairs in these two models. The domain-specific model is an identity matrix. The
330 domain-general model is estimated from the absolute difference of behavioral congruity effect, but
331 scaled to 0 (lowest similarity) – 1 (highest similarity) to aid comparison. The plotted matrices in B-E
332 include only one subject each from Group 1 and Group 2. Numbers 1-5 indicate the conflict type
333 conditions, for spatial Stroop, St_HSm_L, St_MSm_M, St_LSm_H, and Simon, respectively. The thin lines
334 separate four different sub-conditions, i.e., target arrow (up, down) × congruity (incongruent,
335 congruent), within each conflict type.

336 *Multivariate patterns of the right dlPFC encodes the conflict similarity*

337
338 **Fig. 5. The conflict type effect.** (A) Brain regions surviving the Bonferroni correction ($p < 0.05$)
339 across the 360 regions (criterion 1). Labeled is the region meeting the three criteria. (B) Different
340 encoding of conflict type effect in the incongruent with congruent conditions (criterion 2). * FDR
341 corrected $p < .05$; r = right. (C) The brain-behavior correlation of the right 8C (criterion 3). The x-axis
342 shows the beta coefficient of the conflict type effect from the RSA, and the y-axis shows the beta
343 coefficient obtained from the behavioral linear model using the conflict similarity to predict the CSE in
344 Experiment 2. (D) Illustration of the different encoding strength of conflict type similarity in
345 incongruent versus congruent conditions of right 8C. The y-axis is derived from the z-scored Pearson
346 correlation coefficient after regressing out other factors. See Fig. S4B for a plot with the raw Pearson
347 correlation measurement. l = left; r = right.
348 The hypothesis that the brain encodes conflict types in a cognitive space predicts that
349 similar conflict types will have similar neural representations. To test this prediction,
350 we computed the representational similarity matrix (RSM) that encoded correlations

351 of blood-oxygen-level dependent (BOLD) signal patterns between each pair of
352 conflict type (Stroop, St_HSm_L, St_MSm_M, St_LSm_H, and Simon, with H, M and L
353 indicating high, medium and low, respectively, see also Fig. 1B) \times congruency
354 (congruent, incongruent) \times arrow direction (up, down) \times run \times subject combinations
355 for each of the 360 cortical regions from the Multi-Modal Parcellation (MMP) cortical
356 atlas (Glasser et al., 2016; Jiang et al., 2020). The RSM was then submitted to a linear
357 mixed-effect model as the dependent variable to test whether the representational
358 similarity in each region was modulated by various experimental variables (e.g.,
359 conflict type, spatial orientation, stimulus, response, etc., see Methods). The linear
360 mixed-effect model was used to de-correlate conflict type and spatial orientation
361 leveraging the between-subject manipulation of stimulus locations (Fig. 4A).

362 To validate this method, we applied this analysis to test the effects of
363 response/stimulus features and found that representational similarity of the BOLD
364 signal patterns significantly covaried with whether two response/spatial
365 location/arrow directions were the same most strongly in bilateral
366 motor/visual/somatosensory areas, respectively (Fig. S5). We then identified the
367 cortical regions encoding conflict type as a cognitive space by testing whether their
368 RSMs can be explained by the similarity between conflict types. Specifically, we
369 applied three independent criteria: (1) the cortical regions should exhibit a statistically
370 significant positive conflict similarity effect on the RSM; (2) the conflict similarity
371 effect should be stronger in incongruent than congruent trials to reflect flexible
372 adjustment of cognitive control demand when the conflict is present; and (3) the
373 conflict similarity effect should be positively correlated with the behavioral conflict
374 similarity modulation effect on the CSE (see *Behavioral Results* of Experiment 2).
375 The first criterion revealed several cortical regions encoding the conflict similarity,
376 including the frontal eye field (FEF), region 1, Brodmann 8C area (a subregion of
377 dlPFC) (Glasser et al., 2016), a47r, posterior inferior frontal junction (IFJp), anterior
378 intraparietal area (AIP), temporoparietooccipital junction 3 (TPOJ3), PGi, and V3CD
379 in the right hemisphere, and the superior frontal language (SFL) area, 23c, 24dd,
380 7Am, p32pr, 6r, FOP1, PF, ventromedial visual area (VMV1/2) areas, area 25, MBelt
381 in the left hemisphere (Bonferroni corrected $ps < 0.05$, one-tailed, Fig. 5A). We next
382 tested whether these regions were related to cognitive control by comparing the
383 strength of conflict similarity effect between incongruent and congruent conditions
384 (criterion 2) and correlating the strength to behavioral similarity modulation effect
385 (criterion 3). Given these two criteria pertain to second-order analyses (interaction or
386 individual analyses) and thus might have lower statistical power (Blake & Gangestad,
387 2020), we applied a more lenient threshold using false discovery rate (FDR)
388 correction (Benjamini & Hochberg, 1995) on the above-mentioned regions. Results
389 revealed that the left SFL, left VMV1, area 1 left 25 and right 8C met this criterion,
390 FDR corrected $ps < .05$, one-tailed, suggesting that the representation of conflict type
391 was strengthened when the conflict was present (e.g., Fig. 5D and Fig. S4). The inter-
392 subject brain-behavioral correlation analysis (criterion 3) showed that the strength of
393 conflict similarity effect on RSM scaled with the modulation of conflict similarity on
394 the CSE (slope in Fig. S2C) in right 8C ($r = .52$, FDR corrected $p = .015$, one-tailed,

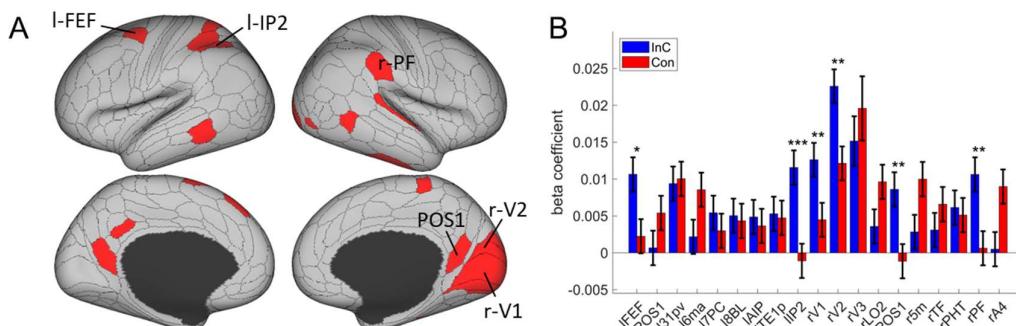
395 Fig. 5C) only. These results are listed in Table 1. In addition, we did not find evidence
 396 supporting the encoding of congruency in the right 8C area (see Note S6), suggesting
 397 that the right 8C area specifically represents conflict similarity.

398 **Table 1. Summary statistics of the cross-subject RSA for regions showing
 399 conflict type and orientation effects identified by the three criteria.**

Region name	Criterion 1			Criterion 2		Criterion 3	
	<i>t</i>	$\beta \pm \text{SD}$	<i>p</i>	<i>t</i>	<i>p</i>	<i>r</i>	<i>p</i>
<i>Conflict type effect</i>							
left SFL	4.77	0.0061 ± 0.0013	1.9×10^{-6}	2.45	0.007	.35	.021
left 23c	4.42	0.0049 ± 0.0011	9.8×10^{-6}	1.18	0.118	-.15	.800
left 24dd	6.13	0.0079 ± 0.0013	8.9×10^{-10}	1.61	0.053	-.04	.580
left 7Am	6.76	0.0090 ± 0.0013	1.4×10^{-11}	-.75	0.772	.04	.418
left p32pr	4.00	0.0044 ± 0.0011	6.4×10^{-5}	-3.95	1.000	-.01	.533
left 6r	5.41	0.0071 ± 0.0013	6.3×10^{-8}	-1.94	0.973	-.11	.737
left FOP1	4.37	0.0050 ± 0.0011	1.3×10^{-5}	1.83	0.034	-.25	.926
left PF	4.04	0.0058 ± 0.0014	5.3×10^{-5}	-1.90	0.969	-.24	.921
left VMV1	7.45	0.0091 ± 0.0012	9.6×10^{-14}	2.83	0.002	-.27	.940
left VMV2	4.75	0.0053 ± 0.0011	2.0×10^{-6}	-0.32	0.624	-.06	.630
left 25	3.70	0.0041 ± 0.0011	2.1×10^{-4}	3.26	0.001	.05	.386
left Mbelt	4.25	0.0064 ± 0.0015	2.1×10^{-5}	1.77	0.039	.10	.275
right FEF	3.98	0.0054 ± 0.0014	6.8×10^{-5}	-5.49	1.000	.08	.327
right 1	3.90	0.0045 ± 0.0012	9.7×10^{-5}	-2.34	0.990	-.07	.665
right 8C*	5.41	0.0064 ± 0.0012	6.1×10^{-8}	2.46	0.007	.52	.001
right a47r	5.04	0.0056 ± 0.0011	4.7×10^{-7}	-0.68	0.753	.05	.393
right IFJp	3.78	0.0042 ± 0.0011	1.6×10^{-4}	0.77	0.221	.27	.056
right AIP	4.64	0.0054 ± 0.0012	3.5×10^{-6}	1.86	0.032	-.02	.540
right TPOJ3	4.48	0.0056 ± 0.0012	7.6×10^{-6}	-0.25	0.600	.21	.118
right PGi	4.07	0.0045 ± 0.0011	4.8×10^{-5}	-1.59	0.944	-.01	.523
right V3CD	3.86	0.0043 ± 0.0011	1.2×10^{-4}	1.94	0.026	.02	.451
<i>Orientation effect</i>							
left FEF*	5.17	0.0060 ± 0.0012	2.4×10^{-7}	2.73	0.003	-.01	.518
left POS1	4.35	0.0051 ± 0.0012	1.4×10^{-5}	-1.52	0.936	.00	.500
left 31pv	5.60	0.0103 ± 0.0018	2.1×10^{-8}	-0.48	0.686	.05	.397
left 6ma	4.75	0.0055 ± 0.0012	2.0×10^{-6}	-1.87	0.970	-.00	.500
left 7PC	3.66	0.0042 ± 0.0012	2.5×10^{-4}	0.76	0.223	-.20	.876
left 8BL	4.55	0.0053 ± 0.0012	5.3×10^{-6}	0.10	0.460	.14	.207
left AIP	3.83	0.0044 ± 0.0012	1.3×10^{-4}	0.62	0.266	-.23	.910
left TE1p	3.95	0.0046 ± 0.0012	7.8×10^{-5}	0.14	0.443	.01	.475
left IP2*	4.49	0.0052 ± 0.0012	7.2×10^{-6}	4.02	0.000	.19	.139
right V1*	4.71	0.0083 ± 0.0018	2.5×10^{-6}	2.91	0.002	-.08	.672
right V2*	3.88	0.0172 ± 0.0044	1.1×10^{-4}	3.19	0.001	.02	.462
right V3	3.94	0.0175 ± 0.0045	8.2×10^{-5}	-1.45	0.927	.39	.010
right LO2	5.95	0.0069 ± 0.0012	2.8×10^{-9}	-1.81	0.965	.26	.068
right POS1*	3.70	0.0043 ± 0.0012	2.1×10^{-4}	2.98	0.001	.33	.028

right 5m	5.24	0.0061 ± 0.0012	1.6×10^{-7}	-2.12	0.983	.00	.500
right TF	4.97	0.0058 ± 0.0012	6.7×10^{-7}	-1.08	0.860	-.07	.657
right PHT	4.54	0.0053 ± 0.0012	5.5×10^{-6}	0.03	0.486	-.04	.589
right PF*	5.57	0.0064 ± 0.0012	2.6×10^{-8}	3.08	0.001	-.03	.558
right A4	4.11	0.0048 ± 0.0012	3.9×10^{-5}	-2.68	0.996	-.09	.700

400 Note. all p values listed are 1-tailed and uncorrected. The * denotes the regions
401 meeting all three criteria for each effect.


The model described above employs the cosine similarity measure to define conflict similarity and will be referred to as the Cognitive-Space model. To examine if the right 8C specifically encodes the cognitive space rather than the domain-general or domain-specific organizations, we tested two additional models (see Methods). Model comparison showed a lower BIC in the Cognitive-Space model (BIC = 5377093) than the Domain-General (BIC = 537126) or Domain-Specific (BIC = 537127) models. Further analysis showed the dimensionality of the representation in the right 8C was 1.19, suggesting the cognitive space was close to 1D. Moreover, we replicated the results with only incongruent trials, considering that the pattern of conflict representations is more manifested when the conflict is present (i.e., on incongruent trials) than not (i.e., on congruent trials). We found a poorer fitting in Domain-general (BIC = 1344127), and Domain-Specific (BIC = 1344129) models than the Cognitive-Space model (BIC = 1344104). These results indicate that the right 8C encodes an integrated cognitive space for resolving Stroop and Simon conflicts. The more detailed model comparison results are listed in Table 2.

417 In sum, we found converging evidence supporting that the right dlPFC (8C area)
418 encoded conflict similarity parametrically, which further supports the hypothesis that
419 conflict types are represented in a cognitive space.

420 **Table 2. Model comparison results of the right 8C. RSM_I shows results using**
421 **incongruent trials only.**

Model name	Full RSM			RSM_I		
	<i>t</i>	<i>p</i>	BIC	<i>t</i>	<i>p</i>	BIC
Cognitive-Space	5.41	6.1×10^{-8}	5377093	4.97	3.35×10^{-7}	1345201
Domain-General	0.92	.179	5377126	1.43	.076	1344127
Domain-Specific	0.84	.200	5377127	0.28	.390	1344129

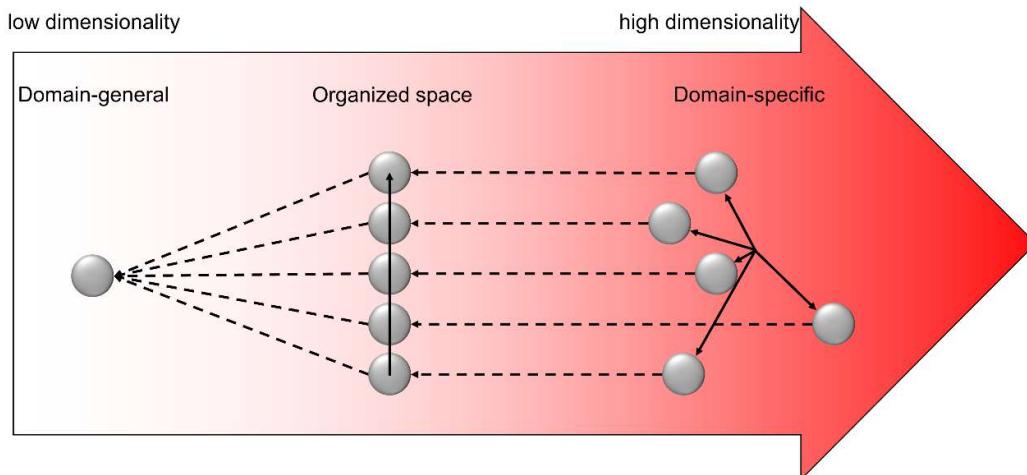
422 *Multivariate patterns of visual and oculomotor areas encode stimulus orientation*

423

424 **Fig. 6. The orientation effect.** (A) Brain regions surviving the Bonferroni correction ($p < 0.05$) across
425 the 360 regions (criterion 1). Labeled regions are those meeting the **three** criterion. (B) Different
426 encoding of orientation in the incongruent with congruent conditions. * FDR corrected $p < .05$, ** FDR
427 corrected $p < .01$; *** FDR corrected $p < .001$.

428

429 To tease apart the representation of conflict type from that of perceptual information,
430 we tested the modulation of the spatial orientations of stimulus locations on RSM
431 using the aforementioned RSA. We also applied three independent criteria: (1) the
432 cortical regions should exhibit a statistically significant orientation effect on the RSM;
433 (2) the conflict similarity effect should be stronger in incongruent than congruent
434 trials; and (3) the orientation effect should not interact with the CSE, since the
435 orientation effect was dissociated from the conflict similarity effect and was not
436 expected to influence cognitive control. We observed increasing fMRI
437 representational similarity between trials with more similar orientations of stimulus
438 location in the occipital cortex, such as right V1, right V2, right **V3**, **bilateral POS1**,
439 and right lateral occipital 2 (LO2) areas (Bonferroni corrected $ps < 0.05$). We also
440 found the same effect in the oculomotor related region, i.e., the left frontal eye field
441 (FEF), and other regions including the **left 31pv, 6ma, 7PC, 8BL, AIP, TE1p, IP2**,
442 **right 5m, TF, PHT, A4 and parietal area F (PF)** (Fig. 6A). Then we tested if any of
443 these brain regions were related to the conflict representation by comparing their
444 encoding strength between incongruent and congruent conditions. Results showed that
445 the right V1, right V2, **right POS1, left IP2**, left FEF, and right PF encoded stronger
446 orientation effect in the incongruent than the congruent condition, **FDR** corrected $ps <$
447 $.05$, one-tailed (Table1, Fig. 6B). We then tested if any of these regions was related to
448 the behavioral performance, and results showed that none of them positively
449 correlated with the behavioral conflict similarity modulation effect, all uncorrected ps
450 $> .18$, one-tailed. Thus all identified regions are consistent with the criterion 3. Like
451 the right 8C area, none of the reported areas directly encoded congruency (see Note
452 S6). Taken together, we found that the visual and oculomotor regions encoded
453 orientations of stimulus location in a continuous manner and that the encoding
454 strength was stronger when the conflict was present.


455 We hypothesize that the overlapping spatial information of orientation may have
456 facilitated the encoding of conflict types. To explore the relation between conflict
457 type and orientation representations, we conducted representational connectivity (i.e.,
458 the similarity between two within-subject RSMs of two regions) (Kriegeskorte et al.,
459 2008) analyses and found that among the orientation effect regions, the right V1 and
460 right V2 showed significant representational connectivity with the right 8C compared
461 to the controlled regions (including those encoding orientation effect but not showing
462 larger encoding strength in incongruent than congruent conditions, as well as eight
463 other regions encoding none of our defined effects in the main RSA, see Methods).
464 Compared with the largest connectivity strength in the controlled regions (i.e., the **left**
465 **6ma, $\beta = 0.7991 \pm 0.0299$**), we found higher connectivity in the right V1, $\beta = 0.8633$
466 ± 0.0325 , and right V2, $\beta = 0.8772 \pm 0.0335$ (Fig. S6).

467 **Discussion**

468 Understanding how different types of conflicts are resolved is essential to answer how
469 cognitive control achieves adaptive behavior. However, the dichotomy between
470 domain-general and/or domain-specific processes presents a dilemma (Braem et al.,
471 2014; Egner, 2008). Reconciliation of the two views also suffers from the inability to
472 fully address how **different** conflicts can be resolved by a limited set of cognitive
473 control processes. In this study, we hypothesized that this issue can be addressed if
474 conflicts are organized as a cognitive space. Leveraging the well-known dissociation
475 between the spatial Stroop and Simon conflicts (Li et al., 2014; Liu et al., 2010; Wang
476 et al., 2014), we designed five conflict types that are systematically different from
477 each other. The cognitive space hypothesis predicted that the representational
478 proximity/distance between two conflict types scales with their
479 similarities/dissimilarities, which was tested at both behavioral and neural levels.
480 Behaviorally, we found that the CSEs were linearly modulated by conflict similarity
481 between consecutive trials, replicating and extending our previous study (Yang et al.,
482 2021). BOLD activity patterns in the right dlPFC further showed that the
483 representational similarity between conflict types was modulated by their conflict
484 similarity, and that strength of the modulation was positively associated with the
485 modulation of conflict similarity on the behavioral CSE. We also observed that
486 activity in two brain regions (right IPS and right dlPFC) was parametrically
487 modulated by the conflict type difference, though they did not directly explain the
488 behavioral results. Additionally, we found that the visual regions encoded the spatial
489 orientation of the stimulus location, which might provide the essential concrete
490 information to determine the conflict type. Together, these results suggest that
491 conflicts may be organized in a cognitive space that enables a limited set of cognitive
492 control processes to resolve **a wide variety of distinct** types of conflicts.

493 Conventionally, the domain-general view of control suggests a common
494 representation for different types of conflicts (Fig. 7, left), while the domain-specific
495 view suggests dissociated representations for different types (Fig. 7, right). Previous
496 research on this topic often adopts a binary manipulation of conflicts (Braem et al.,
497 2014) (i.e., each domain only has one conflict type) and gathered evidence for the
498 domain-general/specific view with presence/absence of CSE, respectively. Here, we
499 parametrically manipulated the similarity of conflict types and found the CSE
500 systematically vary with conflict similarity level, demonstrating that cognitive control
501 is neither purely domain-general nor purely domain-specific, but can be reconciled as
502 a cognitive space (Bellmund et al., 2018)(Fig. 7, middle). The model comparison
503 analysis also showed that the Cognitive-Space model explained the representation in
504 right DLPFC better than the Domain-General or Domain-Specific models.
505 Specifically, the cognitive space provides a solution to use a single cognitive space
506 organization to encode different types of conflicts that are close (domain-general) or
507 distant (domain-specific) to each other. It also shows the potential for how **various**
508 conflict types can be coded using limited resources (i.e., as different points in a low-
509 dimensional cognitive space), as suggested by its out-of-sample predictability.

510 Moreover, geometry can also emerge in the cognitive space (Fu et al., 2022), which
511 will allow for decomposition of a conflict type (e.g., how much conflict in each of the
512 dimensions in the cognitive space) so that it can be mapped into the limited set of
513 cognitive control processes. Such geometry enables fast learning of cognitive control
514 settings from similar conflict types by providing a measure of similarity (e.g., as
515 distance in space).

516
517 **Fig. 7. Illustration of the hypothesized dimensionalities of different representations.** The shade of
518 the red color indicates the degree of dimensionality (i.e., how many dimensions are needed to represent
519 different states). The dimensionality of domain-general representation is extremely low, with all
520 representations compressed to one dot. The dimensionality of domain-specific representation is
521 extremely high, with each control state encoded in a unique and orthogonal dimension. The
522 dimensionality of the organized representation is modest, enabling distant states to be separated but
523 also allowing close states to share representations. The solid arrows show the axes of different
524 dimensions. The dashed arrows indicate how the representational dimensionality can be reduced by
525 projecting the independent dimensions to a common dimension.
526

527 If the dimensionality of the cognitive space of conflict is extremely high, the
528 cognitive space solution would suffer the same criticism as the domain-specificity
529 theory. We argue that the dimensionality is manageable for the human brain, as task
530 information unrelated to differentiating conflicts can be removed. For example, the
531 Simon conflict can be represented in a space consisting of spatial location, stimulus
532 information and responses. Thus, the dimensionality of the cognitive space of
533 conflicts should not exceed the number of represented features. The dimensionality
534 can be further reduced, as humans selectively represent a small number of features
535 when learning task representations (e.g., spatial information is reduced to the
536 horizontal dimension from the 3D space we live in) (Niv, 2019). Consistently, we
537 observed a low dimensional (1.19D) space representing the five conflict types. This is
538 expected since the only manipulated variable is the angular distance between conflict
539 types. The reduced dimensionality does not only require less effort to represent the
540 conflict, but also facilitates generalization of cognitive control settings among
541 different conflict types (Badre et al., 2021).

542 Although our finding of cognitive space in the right dlPFC differs from other
543 cognitive space studies (Constantinescu et al., 2016; Park et al., 2020; Schuck et al.,
544 2016) that highlighted the orbitofrontal and hippocampus regions, it is consistent with
545 the cognitive control literature. The prefrontal cortex has long been believed to be a
546 key region of cognitive control representation (Mansouri et al., 2007; Miller & Cohen,
547 2001; Milner, 1963) and is widely engaged in multiple task demands (Cole et al.,
548 2013; Duncan, 2010). However, it is not until recently that the multivariate
549 representation in this region has been examined. For instance, Vaidya et al.(2021)
550 reported that frontal regions presented latent states that are organized hierarchically.
551 Freund et al.(2021) showed that dlPFC encoded the target and congruency in a typical
552 color-word Stroop task. Taken together, we suggest that the right dlPFC might
553 flexibly encode a variety of cognitive spaces to meet the dynamic task demands. In
554 addition, we found no such representation in the left dlPFC (Note S8), indicating a
555 possible lateralization. Previous studies showed that the left dlPFC was related to the
556 expectancy-related attentional set up-regulation, while the right dlPFC was related to
557 the online adjustment of control (Friehs et al., 2020; Vanderhasselt et al., 2009),
558 which is consistent with our findings. Moreover, the right PFC also represents a
559 composition of single rules (Reverberi et al., 2012), which may explain how the
560 spatial Stroop and Simon types can be jointly encoded in a single space.

561 Previous researchers have proposed an “expected value of control (EVC)” theory,
562 which posits that the brain can evaluate the cost and benefit associated with executing
563 control for a demanding task, such as the conflict task, and specify the optimal control
564 strength (Shenhav et al., 2013). For instance, Grahek et al. (2022) found that more
565 frequently switching goals when doing a Stroop task were achieved by adjusting
566 smaller control intensity. Our work complements the EVC theory by further
567 investigating the neural representation of different conflict conditions and how these
568 representations can be evaluated to facilitate conflict resolution. We found that
569 different conflict conditions could be efficiently represented in a cognitive space
570 encoded by the right dlPFC, and participants with stronger cognitive space
571 representation have also adjusted their conflict control to a greater extent based on the
572 conflict similarity (Fig 4C). The finding suggests that the cognitive space organization
573 of conflicts guides cognitive control to adjust behavior. Previous studies have shown
574 that participants may adopt different strategies to represent a task, with the model-
575 based strategies benefitting goal-related behaviors more than the model-free strategies
576 (Rmus et al., 2022). Similarly, we propose that cognitive space could serve as a
577 mental model to assist fast learning and efficient organization of cognitive control
578 settings. Specifically, the cognitive space representation may provide a principle for
579 how our brain evaluates the expected cost of switching and the benefit of
580 generalization between states and selects the path with the best cost-benefit tradeoff
581 (Abrahamse et al., 2016; Shenhav et al., 2013). The proximity between two states in
582 cognitive space could reflect both the expected cognitive demand required to
583 transition and the useful mechanisms to adapt from. The closer the two conditions are
584 in cognitive space, the lower the expected switching cost and the higher the
585 generalizability when transitioning between them. With the organization of a

586 cognitive space, a new conflict can be quickly assigned a location in the cognitive
587 space, which will facilitate the development of cognitive control settings for this
588 conflict by interpolating nearby conflicts and/or projecting the location to axes
589 representing different cognitive control processes, thus leading to a stronger CSE
590 when following a more similar conflict condition. On the other hand, without a
591 cognitive space, there would be no measure of similarity between conflicts on
592 different trials, hence limiting the ability of fast learning of cognitive control setting
593 from similar trials.

594 The cognitive space in the right dlPFC appears to be an abstraction of concrete
595 information from the visual regions. We found that the right V1 and V2 encoded the
596 spatial orientation of the target location (Fig. 6) and showed strong representational
597 connectivity with the right dlPFC (Fig. S6), suggesting that there might be
598 information exchange between these regions. We speculate that the representation of
599 spatial orientation may have provided the essential perceptual information to
600 determine the conflict type (Fig. 1) and thus served as the critical input for the
601 cognitive space. The conflict type representation further incorporates the stimulus-
602 response mapping rules to the spatial orientation representation, so that vertically
603 symmetric orientations can be recognized as the same conflict type (Fig. 7). In other
604 words, the representation of conflict type involves the compression of perceptual
605 information (Flesch et al., 2022), which is consistent with the idea of a low-
606 dimensional representation of cognitive control (Badre et al., 2021; MacDowell et al.,
607 2022). The compression and abstraction processes might be why the frontoparietal
608 regions are the top of hierarchy of information processing (Gilbert & Li, 2013) and
609 why the frontoparietal regions are widely engaged in multiple task demands (Duncan,
610 2013).

611 Although the spatial orientation information in our design could be helpful to the
612 construction of cognitive space, the cognitive space itself was independent of the
613 stimulus-level representation of the task. We found the conflict similarity modulation
614 on CSE did not change with more training (see Note S3), indicating that the cognitive
615 space did not depend on strategies that could be learned through training. Instead, the
616 cognitive space should be determined by the intrinsic similarity structure of the task
617 design. For example, a previous study (Freitas & Clark, 2015) has found that the CSE
618 across different versions of spatial Stroop and flanker tasks was stronger than that
619 across either of the two conflicts and Simon. In their designs, the stimulus similarity
620 was controlled at the same level, so the difference in CSE was only attributable to the
621 similar dimensional overlap between Stroop and flanker tasks, in contrast to the
622 Simon task. Furthermore, recent studies showed that the cognitive space generally
623 exists to represent structured latent states (e.g., Vaidya & Badre, 2022), mental
624 strategy cost (Grahek et al., 2022), and social hierarchies (Park et al., 2020).
625 Therefore, cognitive space is likely a universal strategy that can be applied to different
626 scenarios.

627 With conventional univariate analyses, we observed that the overall congruency
628 effect was located at the medial frontal region (i.e., pre-SMA), which is consistent
629 with previous studies (Botvinick et al., 2004; Fu et al., 2022). Beyond that, we also

630 found regions that can be parametrically modulated by conflict type difference,
631 including right IPS, right dlPFC (modulated by Simon difference). The right
632 lateralization of these regions is consistent with a previous finding (Li et al., 2017).
633 The parametric encoding of conflict also mirrors prior research showing the
634 parametric encoding of task demands (Dagher et al., 1999; Ritz & Shenhav, 2023).
635 The scaling of brain activities based on conflict difference is potentially important to
636 the representational organization of different types of conflicts. However, we didn't
637 observe their brain-behavioral relevance. One possible reason is that the conflict
638 (dis)similarity is a combination of (dis)similarity of spatial Stroop and Simon
639 conflicts, but each univariate region only reflects difference along a single conflict
640 domain. Also likely, the representational geometry is more of a multivariate problem
641 than what univariate activities can capture (Freund, Etzel, et al., 2021). Future studies
642 may adopt approaches such as repetition suppression induced fMRI adaptation (Badre
643 et al., 2021) to test the role of univariate activities in task representations.

644 Recently an interesting debate has arisen concerning whether cognitive control
645 should be considered as a process or a representation (Freund, Etzel, et al., 2021).
646 Traditionally, cognitive control has been predominantly viewed as a process.
647 However, the study of its representation has gained more and more attention. While it
648 may not be as straightforward as the visual representation (e.g., creating a mental
649 image from a real image in the visual area), cognitive control can have its own form
650 of representation. An influential theory, Marr's (1982) three-level model proposed
651 that representation serves as the algorithm of the process to achieve a goal based on
652 the input. In other words, representation can encompass a dynamic process rather than
653 being limited to static stimuli. Building on this perspective, we posit that the
654 representation of cognitive control consists of an array of dynamic representations
655 embedded within the overall process. A similar idea has been proposed that the
656 representation of task profiles can be progressively constructed with time in the brain
657 (Kikumoto & Mayr, 2020). Moreover, we anticipate that the representation of
658 cognitive space is most prominently involved at two critical stages to guide the
659 transference of behavioral CSE. The first stage involves the evaluation of control
660 demands, where the representational distance/similarity between previous and current
661 trials influences the adjustment of cognitive control. The second stage pertains to
662 control execution, where the switch from one control state to another follows a path
663 within the cognitive space. However, we were unable to fully distinguish between
664 these two stages due to the low temporal resolution of fMRI signals in our study.
665 Future research seeking to delve deeper into this question may benefit from
666 methodologies with higher temporal resolutions, such as EEG and MEG.

667 Several interesting questions remains to be answered. For example, is the
668 dimension of the unified space across conflict-inducing tasks solely determined by the
669 number of conflict sources? Is this unified space adaptively adjusted within the same
670 brain region? Can we effectively map any sources of conflict with completely
671 different stimuli into a single space? Does the cognitive space vary from population to
672 population, such as between the normal people and patients?

673 Methodological implications. Previous studies with mixed conflicts have applied
674 mainly categorical manipulations of conflict types, such as the multi-source
675 interference task (Fu et al., 2022) and color Stroop-Simon task (Liu et al., 2010). The
676 categorical manipulations make it difficult to quantify conceptual similarity between
677 conflict types and hence limit the ability to test whether neural representations of
678 conflict capture conceptual similarity. To the best of our knowledge, no previous
679 studies have manipulated the conflict types parametrically. This gap highlights a
680 broader challenge within cognitive science: effectively manipulating and measuring
681 similarity levels for conflicts, as well as other high-level cognitive processes, which
682 are inherently abstract. The use of an experimental paradigm that permits parametric
683 manipulation of conflict similarity provides a way to systematically investigate the
684 organization of cognitive control, as well as its influence on adaptive behaviors.
685 Moreover, the cross-subject RSA provides high sensitivity to the variables of interest
686 and the ability to separate confounding factors. For instance, in addition to
687 dissociating conflict type from orientation, we dissociated target from response, and
688 spatial Stroop distractor from Simon distractor. We further showed cognitive control
689 can both enhance the target representation and suppress the distractor representation
690 (Note S10, Fig. S7), which is in line with previous studies (Polk et al., 2008; Ritz &
691 Shenhav, 2022).

692 Limitations. A few limitations of this study need to be noted. To parametrically
693 manipulate the conflict similarity levels, we adopted the spatial Stroop-Simon
694 paradigm that enables parametrical combinations of spatial Stroop and Simon
695 conflicts. However, since this paradigm is a two-alternative forced choice design, the
696 behavioral CSE is not a pure measure of adjusted control but could be partly
697 confounded by bottom-up factors such as feature integration (Hommel et al., 2004).
698 Future studies may replicate our findings with a multiple-choice design (including
699 more varied stimulus sets, locations and responses) with confound-free trial sequences
700 (Braem et al., 2019). Another limitation is that in our design, the spatial Stroop and
701 Simon effects are highly anticorrelated. This constraint may make the five conflict
702 types represented in a unidimensional space (e.g., a circle) embedded in a 2D space.
703 This limitation also means we cannot conclusively rule out the possibility of a real
704 unidimensional space driven solely by spatial Stroop or Simon conflicts. However,
705 this appears unlikely, as it would imply that our manipulation of conflict types merely
706 represented varying levels of a single conflict, akin to manipulating task difficulty
707 when everything else being equal. If task difficulty were the primary variable, we
708 would expect to see greater representational similarity between task conditions of
709 similar difficulty, such as the Stroop and Simon conditions, which demonstrates
710 comparable congruency effects (see Fig. S1). Contrary to this, our findings reveal that
711 the Stroop-only and Simon-only conditions exhibit the lowest representational
712 similarity (Fig. S4). Furthermore, Fu et al. (2022) has shown that the representation of
713 mixtures of Simon and Flanker conflicts was compositional, rather than reflecting
714 single dimension, which also applies to our cases. Future studies may test the 2D
715 cognitive space with fully independent conditions. A possible improvement to our
716 current design would be to include left, right, up, and down arrows represented in a

717 grid formation across four spatially separate quadrants, with each arrow mapped to its
718 own response button. Additionally, our study is not a comprehensive test of the
719 cognitive space hypothesis but aimed primarily to provide original evidence for the
720 geometry of cognitive space in representing conflict information in cognitive control.
721 Future research should examine other aspects of the cognitive space such as its
722 dimensionality, its applicability to other conflict tasks such as Eriksen Flanker task,
723 and its relevance to other cognitive abilities, such as cognitive flexibility and learning.

724 In sum, we showed that the cognitive control can be parametrically encoded in
725 the right dlPFC and guides cognitive control to adjust goal-directed behavior. This
726 finding suggests that different cognitive control states may be encoded in an abstract
727 cognitive space, which reconciles the long-standing debate between the domain-
728 general and domain-specific views of cognitive control and provides a parsimonious
729 and more broadly applicable framework for understanding how our brains efficiently
730 and flexibly represents multiple task settings.

731

732 Materials and Methods

733 Subjects

734 In Experiment 1, we enrolled thirty-three college students (ages 19-28, average $21.5 \pm$
735 2.3 years; 19 males). In Experiment 2, thirty-six college students were recruited, one
736 of which was excluded due to not following task instructions. The final sample of
737 Experiment 2 consisted of thirty-five participants (ages 19-29, average 22.3 ± 2.5
738 years; 17 males). The sample sizes were determined based on our previous study
739 (Yang et al., 2021). All participants reported no history of psychiatric or neurological
740 disorders and were right-handed, with normal or corrected-to-normal vision. The
741 experiments were approved by the Institutional Review Board of the Institute of
742 Psychology, Chinese Academy of Science. Informed consent was obtained from all
743 subjects.

744 Method Details

745 Experiment 1

746 *Experimental Design.* We adopted a modified spatial Stroop-Simon task (Yang et al.,
747 2021) (Fig. 1). The task was programmed with E-prime 2.0 (Psychological Software
748 Tools, Inc.). The stimulus was an upward or downward black arrow (visual angle of \sim
749 1°), displayed on a 17-inch LCD monitor with a viewing distance of \sim 60 cm. The
750 arrow appeared inside a grey square at one of ten locations with the same distance
751 from the center of the screen, including two horizontal (left and right), two vertical
752 (top and bottom), and six corner (orientations of 22.5° , 45° and 67.5°) locations. The
753 distance from the arrow to the screen center was approximately 3° . To dissociate
754 orientation of stimulus locations and conflict types (see below), participants were

755 randomly assigned to two sets of stimulus locations (one included top-right and
756 bottom-left quadrants, and the other included top-left and bottom-right quadrants).

757 Each trial started with a fixation cross displayed in the center for 100–300 ms,
758 followed by the arrow for 600 ms and another fixation cross for 1100–1300 ms (the
759 total trial length was fixed at 2000 ms). Participants were instructed to respond to the
760 pointing direction of the arrow by pressing a left or right button and to ignore its
761 location. The mapping between the arrow orientations and the response buttons was
762 counterbalanced across participants. The task design introduced two possible sources
763 of conflicts: on one hand, the direction of the arrow is either congruent or incongruent
764 with the vertical location of the arrow, thus introducing a spatial Stroop conflict (Lu
765 & Proctor, 1995; MacLeod, 1991), which contains the dimensional overlap between
766 task-relevant stimulus and task-irrelevant stimulus (Kornblum et al., 1990); on the
767 other hand, the response (left or right button) is either congruent or incongruent with
768 the horizontal location of the arrow, thus introducing a Simon conflict (Lu & Proctor,
769 1995; Simon & Small, 1969), which contains the dimensional overlap between task-
770 irrelevant stimulus and response (Kornblum et al., 1990). Therefore, the five polar
771 orientations of the stimulus location (from 0 to 90°) defined five unique combinations
772 of spatial Stroop and Simon conflicts, with more similar orientations having more
773 similar composition of conflicts. More generally, the spatial orientation of the arrow
774 location relative to the center of the screen forms a cognitive space of different
775 blending of spatial Stroop and Simon conflicts.

776 The formal task consisted of 30 runs of 101 trials each, divided into three sessions
777 of ten runs each. The participants completed one session each time and all three
778 sessions within one week. Before each session, the participants performed training
779 blocks of 20 trials repeatedly until the accuracy reached 90% in the most recent block.
780 The trial sequences of the formal task were pseudo-randomly generated to ensure that
781 each of the task conditions and their transitions occurred with equal number of trials.

782 *Experiment 2*

783 *Experimental Design.* The apparatus, stimuli and procedure were identical to
784 Experiment 1 except for the changes below. The stimuli were back projected onto a
785 screen (with viewing angle being ~3.9° between the arrow and the center of the
786 screen) behind the subject and viewed via a surface mirror mounted onto the head
787 coil. Due to the time constraints of fMRI scanning, the trial numbers decreased to a
788 total of 340, divided into two runs with 170 trials each. To obtain a better
789 hemodynamic model fitting, we generated two pseudo-random sequences optimized
790 with a genetic algorithm (Wager & Nichols, 2003) conducted by the NeuroDesign
791 package (Durnez et al., 2018) (see Note S3 for more detail). In addition, we added 6
792 seconds of fixation before each run to allow the stabilization of the hemodynamic
793 signal, and 20 seconds after each run to allow the signal to drop to the baseline.

794 Before scanning, participants performed two practice sessions. The first one
795 contained 10 trials of center-displayed arrow and the second one contained 32 trials
796 using the same design as the main task. They repeated both sessions until their
797 performance accuracy for each session reached 90%, after which the scanning began.

798 *fMRI Image acquisition and preprocessing*

799 Functional imaging was performed on a 3T GE scanner (Discovery MR750) using
800 echo-planar imaging (EPI) sensitive to BOLD contrast [in-plane resolution of $3.5 \times$
801 3.5 mm^2 , 64×64 matrix, 37 slices with a thickness of 3.5 mm and no interslice skip,
802 repetition time (TR) of 2000 ms, echo-time (TE) of 30 ms, and a flip angle of 90°]. In
803 addition, a sagittal T1-weighted anatomical image was acquired as a structural
804 reference scan, with a total of 256 slices at a thickness of 1.0 mm with no gap and an
805 in-plane resolution of $1.0 \times 1.0 \text{ mm}^2$.

806 Before preprocessing, the first three volumes of the functional images were
807 removed due to the instability of the signal at the beginning of the scan. The
808 anatomical and functional data were preprocessed with the fMRIprep 20.2.0 (Esteban
809 et al., 2019) (RRID:SCR_016216), which is based on Nipype 1.5.1 (Gorgolewski et
810 al., 2011) (RRID:SCR_002502). Specifically, BOLD runs were slice-time corrected
811 using 3dTshift from AFNI 20160207 (Jenkinson et al., 2002) (RRID:SCR_005927).
812 The BOLD time-series were resampled to the MNI152NLin2009cAsym space
813 without smoothing. For a more detailed description of preprocessing, see Note S4.
814 After preprocessing, we resampled the functional data to a spatial resolution of 3×3
815 $\times 3 \text{ mm}^3$. All analyses were conducted in volumetric space, and surface maps are
816 produced with Connectome Workbench
817 (<https://www.humanconnectome.org/software/connectome-workbench>) for display
818 purpose only.

819 *Quantification and Statistical Analysis*

820 *Behavioral analysis*

821 *Experiment 1.* RT and ER were the two dependent variables analyzed. As for RTs,
822 we excluded the first trial of each block (0.9%, for CSE analysis only), error trials
823 (3.8%), trials with RTs beyond three *SDs* or shorter than 200 ms (1.3%) and post-
824 error trials (3.4%). For the ER analysis, the first trial of each block and trials after an
825 error were excluded. To exclude the possible influence of response repetition, we
826 centered the RT and ER data within the response repetition and response alternation
827 conditions separately by replacing condition-specific mean with the global mean for
828 each subject.

829 To examine the modulation of conflict similarity on the CSE, we organized trials
830 based on a 5 (previous trial conflict type) \times 5 (current trial conflict type) \times 2 (previous
831 trial congruency) \times 2 (current trial congruency) factorial design. As conflict similarity
832 is commutative between conflict types, we expected the previous by current trial
833 conflict type factorial design to be a symmetrical (e.g., a conflict 1-conflict 2
834 sequence in theory has the same conflict similarity modulation effect as a conflict 2-
835 conflict 1 sequence), resulting a total of 15 conditions left for the first two factors of
836 the design (i.e., previous \times current trial conflict type). For each previous \times current
837 trial conflict type condition, the conflict similarity between the two trials can be
838 quantified as the cosine of their angular difference. In the current design, there were

839 five possible angular difference levels (0, 22.5°, 42.5°, 67.5° and 90°, see Fig. 1C).
840 We further coded the previous by current trial congruency conditions (hereafter
841 abbreviated as CSE conditions) as CC, CI, IC and II, with the first and second letter
842 encoding the congruency (C) or incongruency (I) on the previous and current trial,
843 respectively. As the CSE is operationalized as the interaction between previous and
844 current trial congruency, it can be rewritten as a contrast of (CI – CC) – (II – IC). In
845 other words, the load of CSE on CI, CC, II and IC conditions is 1, –1, –1 and 1,
846 respectively. To estimate the modulation of conflict similarity on the CSE, we built a
847 regressor by calculating the Kronecker product of the conflict similarity scores of the
848 15 previous × current trial conflict similarity conditions and the CSE loadings of
849 previous × current trial congruency conditions. This regressor was regressed against
850 RT and ER data separately, which were normalized across participants and CSE
851 conditions. The regression was performed using a linear mixed-effect model, with the
852 intercept and the slope of the regressor for the modulation of conflict similarity on the
853 CSE as random effects (across both participants and the four CSE conditions). As a
854 control analysis, we built a similar two-stage model (Yang et al., 2021). In the first
855 stage, the CSE [i.e., (CI – CC) – (II – IC)] for each of the previous × current trial
856 conflict similarity condition was computed. In the second stage, CSE was used as the
857 dependent variable and was predicted using conflict similarity across the 15 previous
858 × current trial conflict type conditions. The regression was also performed using a
859 linear mixed effect model with the intercept and the slope of the regressor for the
860 modulation of conflict similarity on the CSE as random effects (across participants).
861 *Experiment 2.* Behavioral data was analyzed using the same linear mixed effect model
862 as Experiment 1, with all the CC, CI, IC and II trials as the dependent variable. In
863 addition, to test if fMRI activity patterns may explain the behavioral representations
864 differently in congruent and incongruent conditions, we conducted the same analysis
865 to measure behavioral modulation of conflict similarity on the CSE using congruent
866 (CC and IC) and incongruent (CI and II) trials separately.

867 *Estimation of fMRI activity with univariate general linear model (GLM)*

868 To estimate voxel-wise fMRI activity for each of the experimental conditions, the
869 preprocessed fMRI data of each run were analyzed with the GLM. We conducted
870 three GLMs for different purposes. GLM1 aimed to validate the design of our study
871 by replicating the engagement of frontoparietal activities in conflict processing
872 documented in previous studies (Jiang & Egner, 2014; Li et al., 2017), and to explore
873 the cognitive space related regions that were parametrically modulated by the conflict
874 type. Preprocessed functional images were smoothed using a 6-mm FWHM Gaussian
875 kernel. We included incongruent and congruent conditions as main regressors and
876 appended a parametric modulator for each condition. The modulation parameters for
877 Stroop, St_HSm_L, St_MSm_M, St_LSm_H, and Simon trials were –2, –1, 0, 1 and 2,
878 respectively. In addition, we also added event-related nuisance regressors, including
879 error/missed trials, outlier trials (slower than three SDs of the mean or faster than 200
880 ms) and trials within two TRs of significant head motion (i.e., outlier TRs, defined as
881 standard DVARS > 1.5 or FD > 0.9 mm from previous TR)(Jiang et al., 2020). On

882 average there were 1.2 outlier TRs for each run. These regressors were convolved
883 with a canonical hemodynamic response function (HRF) in SPM 12
884 (<http://www.fil.ion.ucl.ac.uk/spm>). We further added volume-level nuisance
885 regressors, including the six head motion parameters, the global signal, the white
886 matter signal, the cerebrospinal fluid signal, and outlier TRs. Low-frequency signal
887 drifts were filtered using a cutoff period of 128 s. The two runs were regarded as
888 different sessions and incorporated into a single GLM to get more power. This yielded
889 two beta maps (i.e., a main effect map and a parametric modulation map) for the
890 incongruent and congruent conditions, respectively and for each subject. At the group
891 level, paired t-tests were conducted between incongruent and congruent conditions,
892 one for the main effect and the other for the parametric modulation effect. Since the
893 spatial Stroop and Simon conflicts change in the opposite direction to each other, a
894 positive modulation effect would reflect a higher brain activation when there is more
895 Simon conflict, and a negative modulation effect would reflect a higher brain
896 activation for more spatial Stroop conflict. To avoid confusion, we converted the
897 modulation effect of spatial Stroop to positive by using a contrast of $[-(I_pm -$
898 $C_pm)]$ throughout the results presentation. Results were corrected with the
899 probabilistic threshold-free cluster enhancement (pTFCE) and then thresholded by
900 3dClustSim function in AFNI (Cox & Hyde, 1997) with voxel-wise $p < .001$ and
901 cluster-wise $p < .05$, both 1-tailed. To visualize the parametric modulation effects, we
902 conducted a similar GLM (GLM2), except we used incongruent and congruent
903 conditions from each conflict type as separate regressors with no parametric
904 modulation. Then we extracted beta coefficients for each regressor and each
905 participant with regions observed in GLM1 as regions of interest, and finally got the
906 incongruent-congruent contrasts for each conflict type at the individual level. We
907 reported the results in Fig. 3, Table S1, and Fig. S3. Visualization of the uni-voxel
908 results was made by the MRIcron
909 (<https://www.mccauslandcenter.sc.edu/mricto/mricron/>).

910 The GLM3 aimed to prepare for the representational similarity analysis (see
911 below). There were several differences compared to GLM1. The unsmoothed
912 functional images after preprocessing were used. This model included 20 event-
913 related regressors, one for each of the 5 (conflict type) \times 2 (congruency condition) \times 2
914 (arrow direction) conditions. The event-related nuisance regressors were similar to
915 GLM1, but with additional regressors of response repetition and post-error trials to
916 account for the nuisance inter-trial effects. To fully expand the variance, we
917 conducted one GLM analysis for each run. After this procedure, a voxel-wise fMRI
918 activation map was obtained per condition, run and subject.

919 *Representational similarity analysis (RSA)*

920 To measure the neural representation of conflict similarity, we adopted the RSA.
921 RSAs were conducted on each of the 360 cortical regions of a volumetric version of
922 the MMP cortical atlas (Glasser et al., 2016). To de-correlate the factors of conflict
923 type and orientation of stimulus location, we leveraged the between-subject
924 manipulation of stimulus locations and conducted RSA in a cross-subject fashion

925 (Fig. 4). Previous studies (e.g., J. Chen et al., 2017) have demonstrated that consistent
926 multi-voxel activation patterns exist across individuals, and successful applications of
927 cross-subject RSA (see review by Freund, Etzel, et al., 2021) and cross-subject
928 decoding approaches (Jiang et al., 2016; Tusche et al., 2016) have also been reported.
929 The beta estimates from GLM3 were noise-normalized by dividing the original beta
930 coefficients by the square root of the covariance matrix of the error terms (Nili et al.,
931 2014). For each cortical region, we calculated the Pearson's correlations between
932 fMRI activity patterns for each run and each subject, yielding a 1400×1400 (20 conditions \times
933 2 runs \times 35 participants) RSM. The correlations were calculated in a cross-
934 voxel manner using the fMRI activation maps obtained from GLM3 described in the
935 previous section. We excluded within-subject cells from the RSM (thus also
936 excluding the within-run similarity as suggested by Walther et al., (2016)), and the
937 remaining cells were converted into a vector, which was then z-transformed and
938 submitted to a linear mixed effect model as the dependent variable. The linear mixed
939 effect model also included regressors of conflict similarity and orientation similarity.
940 Importantly, conflict similarity was based on how Simon and spatial Stroop conflicts
941 are combined and hence was calculated by first rotating all subject's stimulus location
942 to the top-right and bottom-left quadrants, whereas orientation was calculated using
943 original stimulus locations. As a result, the regressors representing conflict similarity
944 and orientation similarity were de-correlated (Fig. 4A). Similarity between two
945 conditions was measured as the cosine value of the angular difference. Other
946 regressors included a target similarity regressor (i.e., whether the arrow directions
947 were identical), a response similarity regressor (i.e., whether the correct responses
948 were identical); a spatial Stroop distractor regressor (i.e., vertical distance between
949 two stimulus locations); a Simon distractor regressor (i.e., horizontal distance between
950 two stimulus locations). Additionally, we also included a regressor denoting the
951 similarity of Group (i.e., whether two conditions are within the same subject group,
952 according to the stimulus-response mapping). We also added two regressors including
953 ROI-mean fMRI activations for each condition of the pair to remove the possible uni-
954 voxel influence on the RSM. A last term was the intercept. To control the artefact due
955 to dependence of the correlation pairs sharing the same subject, we included crossed
956 random effects (i.e., row-wise and column-wise random effects) for the intercept,
957 conflict similarity, orientation and the group factors (G. Chen et al., 2017). Individual
958 effects for each regressor were also extracted from the model for brain-behavioral
959 correlation analyses. In brain-behavioral analyses, only the RT was used as behavioral
960 measure to be consistent with the fMRI results, where the error trials were regressed
961 out.

962 The statistical significance of these beta estimates was based on the outputs of the
963 mixed-effect model estimated with the “fitlme” function in Matlab 2022a. We
964 adjusted the t and p values with the degrees of freedom calculated through the
965 Satterthwaite approximation method (Satterthwaite, 1946). Of note, this approach was
966 applied to all the mixed-effect model analyses in this study. Multiple comparison
967 correction was applied with the Bonferroni approach across all cortical regions at the
968 $p < 0.05$ level. To test if the representation strengths are different between congruent

969 and incongruent conditions, we also conducted the RSA using only congruent
970 (RDM_C) and incongruent (RDM_I) trials separately. The contrast analysis was
971 achieved by an additional model with both RDM_C and RDM_I included, adding the
972 congruency and the interaction between conflict type (and orientation) and
973 congruency as both fixed and random factors. The difference between incongruent
974 and congruent representations was indicated by a significant interaction effect. To
975 visualize the difference, we plotted the effect-related patterns (the predictor multiplied
976 by the slope, plus the residual) as a function of the similarity levels (Fig. 5D), and a
977 summary RSM for incongruent and congruent conditions, respectively (Fig. S4).

978 *Model comparison and representational dimensionality*

979 To estimate if the right 8C specifically encodes the cognitive space, rather than the
980 domain-general or domain-specific structures, we conducted two more RSAs. We
981 replaced the cognitive space-based conflict similarity matrix in the RSA we reported
982 above (hereafter referred to as the Cognitive-Space model) with one of the alternative
983 model matrices, with all other regressors equal. The domain-general model treats each
984 conflict type as equivalent, so each two conflict types only differ in the magnitude of
985 their conflict. Therefore, we defined the domain-general matrix as the absolute
986 difference in their congruency effects indexed by the group-averaged RT in
987 Experiment 2. Then the z-scored model vector was sign-flipped to reflect similarity
988 instead of distance. The domain-specific model treats each conflict type differently, so
989 we used a diagonal matrix, with within-conflict type similarities being 1 and all cross-
990 conflict type similarities being 0.

991 To better capture the dimensionality of the representational space, we estimated
992 its dimensionality using the participation ratio (Ito & Murray, 2023). Since we
993 excluded the within-subject cells from the whole RSM, the whole RSM is an
994 incomplete matrix and could not be used. To resolve this issue, we averaged the cells
995 corresponding to each pair of conflict types to obtain an averaged 5×5 RSM matrix,
996 similar to the matrix shown in Fig. 1C. We then estimated the participation ratio using
997 the formula:

$$998 \quad \text{dim} = \frac{(\sum_i^m \lambda_i)^2}{\sum_i^m \lambda_i^2},$$

999 where λ_i is the eigenvalue of the RSM and m is the number of eigenvalues.

1000 *Representational connectivity analysis*

1001 To explore the possible relevance between the conflict type and the orientation
1002 effects, we conducted representational connectivity (Kriegeskorte et al., 2008)
1003 between regions showing evidence encoding conflict similarity and orientation
1004 similarity. We hypothesized that this relationship should exist at the within-subject
1005 level, so we conducted this analysis using within-subject RSMs excluding the
1006 diagonal. Specifically, the z-transformed RSM vector of each region were extracted
1007 and submitted to a mixed linear model, with the RSM of the conflict type region (i.e.,
1008 the right 8C) as the dependent variable, and the RSM of one of the orientation regions

1009 (e.g., right V2) as the predictor. Intercept and the slope of the regressor were set as
1010 random effects at the subject level. The mixed effect model was conducted for each
1011 pair of regions, respectively. Considering there might be strong intrinsic correlations
1012 across the RSMs induced by the nuisance factors, such as the within-subject
1013 similarity, we added two sets of regions as control. First, we selected regions without
1014 showing any effects of interest (i.e., uncorrected $p > 0.3$ for all the conflict type,
1015 orientation, congruency, target, response, spatial Stroop distractor and Simon
1016 distractor effects). Second, we selected regions of orientation effect meeting the first
1017 but not the second criterion, to account for the potential correlation between regions
1018 of the two partly orthogonal regressors (Fig. 4A). **Regions adjacent to the orientation**
1019 **regions were excluded to avoid the inherent strong similarity they may share.**
1020 Existence of representational connectivity was defined by a connectivity slope higher
1021 than 95% of the standard error above the mean of any control region.
1022

1023 Acknowledgement

1024 We thank Eliot Hazeltine for valuable comments on a previous version of this
1025 manuscript. The work was supported by the National Natural Science Foundation of
1026 China and the German Research Foundation (NSFC 62061136001/DFG TRR-169) to
1027 X.L. and China Postdoctoral Science Foundation (2019M650884) to G.Y.
1028

1029 Reference

1030 Abrahamse, E., Braem, S., Notebaert, W., & Verguts, T. (2016). Grounding cognitive
1031 control in associative learning. *Psychological Bulletin*, 142(7), 693-728.
1032 <https://doi.org/10.1037/bul0000047>

1033 Akcay, C., & Hazeltine, E. (2011). Domain-specific conflict adaptation without
1034 feature repetitions. *Psychonomic Bulletin & Review*, 18(3), 505-511.
1035 <https://doi.org/10.3758/s13423-011-0084-y>

1036 Assem, M., Glasser, M. F., Van Essen, D. C., & Duncan, J. (2020). A Domain-
1037 General Cognitive Core Defined in Multimodally Parcellated Human Cortex.
1038 *Cerebral Cortex*, 30(8), 4361-4380. <https://doi.org/10.1093/cercor/bhaa023>

1039 Badre, D., Bhandari, A., Keglovits, H., & Kikumoto, A. (2021). The dimensionality
1040 of neural representations for control. *Curr Opin Behav Sci*, 38, 20-28.
1041 <https://doi.org/10.1016/j.cobeha.2020.07.002>

1042 Behrens, T. E. J., Muller, T. H., Whittington, J. C. R., Mark, S., Baram, A. B.,
1043 Stachenfeld, K. L., & Kurth-Nelson, Z. (2018). What Is a Cognitive Map?
1044 Organizing Knowledge for Flexible Behavior. *Neuron*, 100(2), 490-509.
1045 <https://doi.org/10.1016/j.neuron.2018.10.002>

1046 Bellmund, J. L. S., Gardenfors, P., Moser, E. I., & Doeller, C. F. (2018). Navigating
1047 cognition: Spatial codes for human thinking. *Science (New York, N.Y.)*,
1048 362(6415). <https://doi.org/10.1126/science.aat6766>

1049 Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate - a
1050 Practical and Powerful Approach to Multiple Testing. *Journal of the Royal*
1051 *Statistical Society Series B-Statistical Methodology*, 57(1), 289-300.
1052 <https://doi.org/10.1111/j.2517-6161.1995.tb02031.x>

1053 Blake, K. R., & Gangestad, S. (2020). On Attenuated Interactions, Measurement
1054 Error, and Statistical Power: Guidelines for Social and Personality Psychologists.
1055 *Pers Soc Psychol Bull*, 46(12), 1702-1711.
1056 <https://doi.org/10.1177/0146167220913363>

1057 Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and
1058 anterior cingulate cortex: an update. *Trends in Cognitive Sciences*, 8(12), 539-
1059 546. <https://doi.org/10.1016/j.tics.2004.10.003>

1060 Braem, S., Abrahamse, E. L., Duthoo, W., & Notebaert, W. (2014). What determines
1061 the specificity of conflict adaptation? A review, critical analysis, and proposed
1062 synthesis. *Frontiers in Psychology*, 5, 1134.
1063 <https://doi.org/10.3389/fpsyg.2014.01134>

1064 Braem, S., Bugg, J. M., Schmidt, J. R., Crump, M. J. C., Weissman, D. H., Notebaert,
1065 W., & Egner, T. (2019). Measuring Adaptive Control in Conflict Tasks. *Trends in*
1066 *Cognitive Sciences*, 23(9), 769-783. <https://doi.org/10.1016/j.tics.2019.07.002>

1067 Chen, G., Taylor, P. A., Shin, Y.-W., Reynolds, R. C., & Cox, R. W. J. N. (2017).
1068 Untangling the relatedness among correlations, Part II: Inter-subject correlation
1069 group analysis through linear mixed-effects modeling. *147*, 825-840.

1070 Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K. A., & Hasson, U.
1071 (2017). Shared memories reveal shared structure in neural activity across
1072 individuals. *Nature Neuroscience*, 20(1), 115-125.
1073 <https://doi.org/10.1038/nn.4450>

1074 Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S.
1075 (2013). Multi-task connectivity reveals flexible hubs for adaptive task control.
1076 *Nature Neuroscience*, 16(9), 1348-1355. <https://doi.org/10.1038/nn.3470>

1077 Constantinescu, A. O., O'Reilly, J. X., & Behrens, T. E. J. (2016). Organizing
1078 conceptual knowledge in humans with a gridlike code. *Science (New York, N.Y.)*,
1079 352(6292), 1464-1468. <https://doi.org/10.1126/science.aaf0941>

1080 Cosmides, L., & Tooby, J. (1994). Origins of domain specificity: The evolution of
1081 functional organization. In L. A. Hirschfeld & S. A. Gelman (Eds.), *Mapping the*
1082 *mind: Domain specificity in cognition and culture* (Vol. 853116). Cambridge
1083 University Press.

1084 Cox, R. W., & Hyde, J. S. (1997). Software tools for analysis and visualization of
1085 fMRI data. *NMR in Biomedicine*, 10(4-5), 171-178.
1086 [https://doi.org/10.1002/\(sici\)1099-1492\(199706/08\)10:4/5<171::Aid-nbm453>3.0.Co;2-1](https://doi.org/10.1002/(sici)1099-1492(199706/08)10:4/5<171::Aid-nbm453>3.0.Co;2-1)

1088 Dagher, A., Owen, A. M., Boecker, H., & Brooks, D. J. (1999). Mapping the network
1089 for planning: a correlational PET activation study with the Tower of London task.
1090 *Brain*, 122 (Pt 10), 1973-1987. <https://doi.org/10.1093/brain/122.10.1973>

1091 Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental
1092 programs for intelligent behaviour. *Trends in Cognitive Sciences*, 14(4), 172-179.
1093 <https://doi.org/10.1016/j.tics.2010.01.004>

1094 Duncan, J. (2013). The structure of cognition: attentional episodes in mind and brain.
1095 *Neuron*, 80(1), 35-50. <https://doi.org/10.1016/j.neuron.2013.09.015>

1096 Durnez, J., Blair, R., & Poldrack, R. A. (2018). Neurodesign: Optimal Experimental
1097 Designs for Task fMRI. *bioRxiv*, 119594. <https://doi.org/10.1101/119594>

1098 Egner, T. (2007). Congruency sequence effects and cognitive control. *Cognitive,*
1099 *Affective & Behavioral Neuroscience*, 7(4), 380-390.
1100 <https://doi.org/10.3758/cabn.7.4.380>

1101 Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain.
1102 *Trends in Cognitive Sciences*, 12(10), 374-380.
1103 <https://doi.org/10.1016/j.tics.2008.07.001>

1104 Egner, T., Delano, M., & Hirsch, J. (2007). Separate conflict-specific cognitive
1105 control mechanisms in the human brain. *NeuroImage*, 35(2), 940-948.
1106 <https://doi.org/10.1016/j.neuroimage.2006.11.061>

1107 Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe,
1108 A., . . . Gorgolewski, K. J. (2019). fMRIprep: a robust preprocessing pipeline for
1109 functional MRI. *Nature Methods*, 16(1), 111-116. <https://doi.org/10.1038/s41592-018-0235-4>

1111 Flesch, T., Juechems, K., Dumbalska, T., Saxe, A., & Summerfield, C. (2022).
1112 Orthogonal representations for robust context-dependent task performance in
1113 brains and neural networks. *Neuron*. <https://doi.org/10.1016/j.neuron.2022.01.005>

1114 Freitas, A. L., Bahar, M., Yang, S., & Banai, R. (2007). Contextual adjustments in
1115 cognitive control across tasks. *Psychological Science*, 18(12), 1040-1043.
1116 <https://doi.org/10.1111/j.1467-9280.2007.02022.x>

1117 Freitas, A. L., & Clark, S. L. (2015). Generality and specificity in cognitive control:
1118 conflict adaptation within and across selective-attention tasks but not across
1119 selective-attention and Simon tasks. *Psychological Research*, 79(1), 143-162.
1120 <https://doi.org/10.1007/s00426-014-0540-1>

1121 Freund, M. C., Bugg, J. M., & Braver, T. S. (2021). A Representational Similarity
1122 Analysis of Cognitive Control during Color-Word Stroop. *Journal of*
1123 *Neuroscience*, 41(35), 7388-7402. <https://doi.org/10.1523/JNEUROSCI.2956-20.2021>

1125 Freund, M. C., Etzel, J. A., & Braver, T. S. (2021). Neural Coding of Cognitive
1126 Control: The Representational Similarity Analysis Approach. *Trends in Cognitive*
1127 *Sciences*, 25(7), 622-638. <https://doi.org/10.1016/j.tics.2021.03.011>

1128 Friehs, M. A., Klaus, J., Singh, T., Frings, C., & Hartwigsen, G. (2020). Perturbation
1129 of the right prefrontal cortex disrupts interference control. *NeuroImage*, 222,
1130 117279. <https://doi.org/10.1016/j.neuroimage.2020.117279>

1131 Fu, Z., Beam, D., Chung, J. M., Reed, C. M., Mamelak, A. N., Adolphs, R., &
1132 Rutishauser, U. (2022). The geometry of domain-general performance monitoring
1133 in the human medial frontal cortex. *Science (New York, N.Y.)*, 376(6593),
1134 eabm9922. <https://doi.org/10.1126/science.abm9922>

1135 Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. *Nat Rev Neurosci*, 14(5), 350-363. <https://doi.org/10.1038/nrn3476>

1136 Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., . . . Van Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. *Nature*, 536(7615), 171-178. <https://doi.org/10.1038/nature18933>

1137 Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., & Ghosh, S. S. (2011). Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. *Front Neuroinform*, 5, 13. <https://doi.org/10.3389/fninf.2011.00013>

1138 Grahek, I., Leng, X., Fahey, M. P., Yee, D., & Shenhav, A. (2022). Empirical and Computational Evidence for Reconfiguration Costs During Within-Task Adjustments in Cognitive Control. Proceedings of the Annual Meeting of the Cognitive Science Society,

1139 Grahek, I., Leng, X., Musslick, S., & Shenhav, A. (2023). Control adjustment costs limit goal flexibility: Empirical evidence and a theoretical account. *bioRxiv*. <https://doi.org/10.1101/2023.08.22.554296>

1140 Hazeltine, E., Lightman, E., Schwab, H., & Schumacher, E. H. (2011). The boundaries of sequential modulations: evidence for set-level control. *Journal of Experimental Psychology: Human Perception and Performance*, 37(6), 1898-1914. <https://doi.org/10.1037/a0024662>

1141 Hommel, B., Proctor, R. W., & Vu, K. P. (2004). A feature-integration account of sequential effects in the Simon task. *Psychological Research*, 68(1), 1-17. <https://doi.org/10.1007/s00426-003-0132-y>

1142 Ito, T., & Murray, J. D. (2023). Multitask representations in the human cortex transform along a sensory-to-motor hierarchy. *Nat Neurosci*, 26(2), 306-315. <https://doi.org/10.1038/s41593-022-01224-0>

1143 Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. *NeuroImage*, 17(2), 825-841. <https://doi.org/10.1006/nimg.2002.1132>

1144 Jiang, J., & Egner, T. (2014). Using neural pattern classifiers to quantify the modularity of conflict-control mechanisms in the human brain. *Cereb Cortex*, 24(7), 1793-1805. <https://doi.org/10.1093/cercor/bht029>

1145 Jiang, J., Summerfield, C., & Egner, T. (2016). Visual Prediction Error Spreads Across Object Features in Human Visual Cortex. *J Neurosci*, 36(50), 12746-12763. <https://doi.org/10.1523/JNEUROSCI.1546-16.2016>

1146 Jiang, J., Wang, S. F., Guo, W., Fernandez, C., & Wagner, A. D. (2020). Prefrontal reinstatement of contextual task demand is predicted by separable hippocampal patterns. *Nat Commun*, 11(1), 2053. <https://doi.org/10.1038/s41467-020-15928-z>

1147 Kan, I. P., Teubner-Rhodes, S., Drumrey, A. B., Nutile, L., Krupa, L., & Novick, J. M. (2013). To adapt or not to adapt: the question of domain-general cognitive control. *Cognition*, 129(3), 637-651. <https://doi.org/10.1016/j.cognition.2013.09.001>

1177 Kikumoto, A., & Mayr, U. (2020). Conjunctive representations that integrate stimuli,
1178 responses, and rules are critical for action selection. *Proc Natl Acad Sci U S A*,
1179 117(19), 10603-10608. <https://doi.org/10.1073/pnas.1922166117>

1180 Kim, C., Chung, C., & Kim, J. (2012). Conflict adjustment through domain-specific
1181 multiple cognitive control mechanisms. *Brain Research*, 1444, 55-64.
1182 <https://doi.org/10.1016/j.brainres.2012.01.023>

1183 Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: cognitive
1184 basis for stimulus-response compatibility--a model and taxonomy. *Psychological
1185 Review*, 97(2), 253-270. <https://doi.org/10.1037/0033-295x.97.2.253>

1186 Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity
1187 analysis - connecting the branches of systems neuroscience. *Front Syst Neurosci*,
1188 2, 4. <https://doi.org/10.3389/neuro.06.004.2008>

1189 Li, Q., Nan, W., Wang, K., & Liu, X. (2014). Independent processing of stimulus-
1190 stimulus and stimulus-response conflicts. *PLoS One*, 9(2), e89249.
1191 <https://doi.org/10.1371/journal.pone.0089249>

1192 Li, Q., Yang, G., Li, Z., Qi, Y., Cole, M. W., & Liu, X. (2017). Conflict detection and
1193 resolution rely on a combination of common and distinct cognitive control
1194 networks. *Neuroscience and Biobehavioral Reviews*, 83, 123-131.
1195 <https://doi.org/10.1016/j.neubiorev.2017.09.032>

1196 Liu, X., Banich, M. T., Jacobson, B. L., & Tanabe, J. L. (2004). Common and distinct
1197 neural substrates of attentional control in an integrated Simon and spatial Stroop
1198 task as assessed by event-related fMRI. *NeuroImage*, 22(3), 1097-1106.
1199 <https://doi.org/10.1016/j.neuroimage.2004.02.033>

1200 Liu, X., Park, Y., Gu, X., & Fan, J. (2010). Dimensional overlap accounts for
1201 independence and integration of stimulus-response compatibility effects.
1202 *Attention, Perception, & Psychophysics*, 72(6), 1710-1720.
1203 <https://doi.org/10.3758/APP.72.6.1710>

1204 Lu, C. H., & Proctor, R. W. (1995). The influence of irrelevant location information
1205 on performance: A review of the Simon and spatial Stroop effects. *Psychonomic
1206 Bulletin & Review*, 2(2), 174-207. <https://doi.org/10.3758/BF03210959>

1207 MacDowell, C. J., Tafazoli, S., & Buschman, T. J. (2022). A Goldilocks theory of
1208 cognitive control: Balancing precision and efficiency with low-dimensional
1209 control states. *Curr Opin Neurobiol*, 76, 102606.
1210 <https://doi.org/10.1016/j.conb.2022.102606>

1211 MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative
1212 review. *Psychological Bulletin*, 109(2), 163-203.
1213 <http://www.ncbi.nlm.nih.gov/pubmed/2034749>

1214 Magen, H., & Cohen, A. (2007). Modularity beyond perception: evidence from single
1215 task interference paradigms. *Cognitive Psychology*, 55(1), 1-36.
1216 <https://doi.org/10.1016/j.cogpsych.2006.09.003>

1217 Mansouri, F. A., Buckley, M. J., & Tanaka, K. (2007). Mnemonic function of the
1218 dorsolateral prefrontal cortex in conflict-induced behavioral adjustment. *Science
1219 (New York, N.Y.)*, 318(5852), 987-990. <https://doi.org/10.1126/science.1146384>

1220 Marr, D. (1982). *Vision: A Computational Investigation into the Human*
1221 *Representation and Processing of Visual Information*. Henry Holt and Co., Inc.

1222 Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex
1223 function. *Annual Review of Neuroscience*, 24(1), 167-202.
1224 <https://doi.org/10.1146/annurev.neuro.24.1.167>

1225 Milner, B. (1963). Effects of Different Brain Lesions on Card Sorting - Role of
1226 Frontal Lobes. *Archives of Neurology*, 9(1), 90-&. <https://doi.org/10.1001/archneur.1963.00460070100010>

1227 Musslick, S., & Cohen, J. D. (2021). Rationalizing constraints on the capacity for
1229 cognitive control. *Trends Cogn Sci*, 25(9), 757-775.
1230 <https://doi.org/10.1016/j.tics.2021.06.001>

1231 Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., & Kriegeskorte, N.
1232 (2014). A toolbox for representational similarity analysis. *PLoS Comput Biol*,
1233 10(4), e1003553. <https://doi.org/10.1371/journal.pcbi.1003553>

1234 Niv, Y. (2019). Learning task-state representations. *Nat Neurosci*, 22(10), 1544-1553.
1235 <https://doi.org/10.1038/s41593-019-0470-8>

1236 Park, S. A., Miller, D. S., Nili, H., Ranganath, C., & Boorman, E. D. (2020). Map
1237 Making: Constructing, Combining, and Inferring on Abstract Cognitive Maps.
1238 *Neuron*, 107(6), 1226-1238 e1228. <https://doi.org/10.1016/j.neuron.2020.06.030>

1239 Peterson, B. S., Kane, M. J., Alexander, G. M., Lacadie, C., Skudlarski, P., Leung, H.
1240 C., . . . Gore, J. C. (2002). An event-related functional MRI study comparing
1241 interference effects in the Simon and Stroop tasks. *Brain Research: Cognitive*
1242 *Brain Research*, 13(3), 427-440. [https://doi.org/10.1016/s0926-6410\(02\)00054-x](https://doi.org/10.1016/s0926-6410(02)00054-x)

1243 Polk, T. A., Drake, R. M., Jonides, J. J., Smith, M. R., & Smith, E. E. (2008).
1244 Attention enhances the neural processing of relevant features and suppresses the
1245 processing of irrelevant features in humans: a functional magnetic resonance
1246 imaging study of the Stroop task. *Journal of Neuroscience*, 28(51), 13786-13792.
1247 <https://doi.org/10.1523/JNEUROSCI.1026-08.2008>

1248 Reverberi, C., Gorgen, K., & Haynes, J. D. (2012). Compositionality of rule
1249 representations in human prefrontal cortex. *Cereb Cortex*, 22(6), 1237-1246.
1250 <https://doi.org/10.1093/cercor/bhr200>

1251 Ritz, H., & Shenhav, A. (2022). Humans reconfigure target and distractor processing
1252 to address distinct task demands. *bioRxiv*, 2021.2009. 2008.459546.
1253 <https://doi.org/10.1101/2021.09.08.459546>

1254 Ritz, H., & Shenhav, A. (2023). Orthogonal neural encoding of targets and distractors
1255 supports multivariate cognitive control.
1256 <https://doi.org/10.1101/2022.12.01.518771>

1257 Rmus, M., Ritz, H., Hunter, L. E., Bornstein, A. M., & Shenhav, A. (2022). Humans
1258 can navigate complex graph structures acquired during latent learning. *Cognition*,
1259 225, 105103. <https://doi.org/10.1016/j.cognition.2022.105103>

1260 Satterthwaite, F. E. (1946). An Approximate Distribution of Estimates of Variance
1261 Components. *Biometrics Bulletin*, 2(6). <https://doi.org/10.2307/3002019>

1262 Schmidt, J. R., & Weissman, D. H. (2014). Congruency sequence effects without
1263 feature integration or contingency learning confounds. *PLoS One*, 9(7), e102337.
1264 <https://doi.org/10.1371/journal.pone.0102337>

1265 Schuck, N. W., Cai, M. B., Wilson, R. C., & Niv, Y. (2016). Human Orbitofrontal
1266 Cortex Represents a Cognitive Map of State Space. *Neuron*, 91(6), 1402-1412.
1267 <https://doi.org/10.1016/j.neuron.2016.08.019>

1268 Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control:
1269 an integrative theory of anterior cingulate cortex function. *Neuron*, 79(2), 217-
1270 240. <https://doi.org/10.1016/j.neuron.2013.07.007>

1271 Simon, J. R., & Small, A. M., Jr. (1969). Processing auditory information:
1272 interference from an irrelevant cue. *Journal of Applied Psychology*, 53(5), 433-
1273 435. <https://doi.org/10.1037/h0028034>

1274 Torres-Quesada, M., Funes, M. J., & Lupianez, J. (2013). Dissociating proportion
1275 congruent and conflict adaptation effects in a Simon-Stroop procedure. *Acta
1276 Psychologica*, 142(2), 203-210. <https://doi.org/10.1016/j.actpsy.2012.11.015>

1277 Tusche, A., Bockler, A., Kanske, P., Trautwein, F. M., & Singer, T. (2016). Decoding
1278 the Charitable Brain: Empathy, Perspective Taking, and Attention Shifts
1279 Differentially Predict Altruistic Giving. *Journal of Neuroscience*, 36(17), 4719-
1280 4732. <https://doi.org/10.1523/JNEUROSCI.3392-15.2016>

1281 Vaidya, A. R., & Badre, D. (2022). Abstract task representations for inference and
1282 control. *Trends Cogn Sci*, 26(6), 484-498.
1283 <https://doi.org/10.1016/j.tics.2022.03.009>

1284 Vaidya, A. R., Jones, H. M., Castillo, J., & Badre, D. (2021). Neural representation of
1285 abstract task structure during generalization. *eLife*, 10, 1-26.
1286 <https://doi.org/10.7554/eLife.63226>

1287 Vanderhasselt, M. A., De Raedt, R., & Baeken, C. (2009). Dorsolateral prefrontal
1288 cortex and Stroop performance: tackling the lateralization. *Psychonomic Bulletin
1289 & Review*, 16(3), 609-612. <https://doi.org/10.3758/PBR.16.3.609>

1290 Wager, T. D., & Nichols, T. E. (2003). Optimization of experimental design in fMRI:
1291 a general framework using a genetic algorithm. *NeuroImage*, 18(2), 293-309.
1292 [https://doi.org/10.1016/S1053-8119\(02\)00046-0](https://doi.org/10.1016/S1053-8119(02)00046-0)

1293 Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., & Diedrichsen, J. (2016).
1294 Reliability of dissimilarity measures for multi-voxel pattern analysis.
1295 *NeuroImage*, 137, 188-200. <https://doi.org/10.1016/j.neuroimage.2015.12.012>

1296 Wang, K., Li, Q., Zheng, Y., Wang, H., & Liu, X. (2014). Temporal and spectral
1297 profiles of stimulus-stimulus and stimulus-response conflict processing.
1298 *NeuroImage*, 89, 280-288. <https://doi.org/10.1016/j.neuroimage.2013.11.045>

1299 Wu, T., Spagna, A., Chen, C., Schulz, K. P., Hof, P. R., & Fan, J. (2020). Supramodal
1300 Mechanisms of the Cognitive Control Network in Uncertainty Processing.
1301 *Cerebral Cortex*, 30(12), 6336-6349. <https://doi.org/10.1093/cercor/bhaa189> %J
1302 Cerebral Cortex

1303 Yang, G., Nan, W., Zheng, Y., Wu, H., Li, Q., & Liu, X. (2017). Distinct cognitive
1304 control mechanisms as revealed by modality-specific conflict adaptation effects.

1305 *Journal of Experimental Psychology: Human Perception and Performance*,
1306 43(4), 807-818. <https://doi.org/10.1037/xhp0000351>
1307 Yang, G., Xu, H., Li, Z., Nan, W., Wu, H., Li, Q., & Liu, X. (2021). The congruency
1308 sequence effect is modulated by the similarity of conflicts. *Journal of*
1309 *Experimental Psychology: Learning, Memory, and Cognition*, 47(10), 1705-1719.
1310 <https://doi.org/10.1037/xlm0001054>
1311