

1 **Cooperation and cheating orchestrate *Vibrio* assemblages and**
2 **polymicrobial synergy in oysters infected with OsHV-1 virus**

3

4 Daniel Oyanedel^{1*}, Arnaud Lagorce^{1*}, Maxime Bruto^{2,3}, Philippe Haffner¹, Amandine Morot^{4,5},
5 Yann Dorant¹, Sébastien de La Forest Divonne¹, François Delavat⁶, Nicolas Inguimbert⁷, Caroline
6 Montagnani¹, Benjamin Morga⁸, Eve Toulza¹, Cristian Chaparro¹, Jean-Michel Escoubas¹, Yannick
7 Labreuche², Yannick Gueguen^{1,9}, Jeremie Vidal-Dupiol¹, Julien de Lorgesil^{1,10}, Bruno Petton^{2,4},
8 Lionel Degremont⁸, Delphine Tourbiez⁸, Léa-Lou Pimparé¹, Marc Leroy¹, Océane Romatif¹, Juliette
9 Pouzadoux¹, Guillaume Mitta^{1,11}, Frédérique Le Roux^{2,3}, Guillaume M. Charrière¹⁺, Marie-Agnès
10 Travers¹⁺, Delphine Destoumieux-Garzón¹

11

12 ¹ IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan. Montpellier, France

13 ² Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable,
14 Plouzané, France.

15 ³ Sorbonne Université, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models,
16 Station Biologique de Roscoff, Roscoff cedex, France.

17 ⁴ Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France

18 ⁵ Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France

19 ⁶ Nantes Université, CNRS, US2B, UMR6286, F-44000 Nantes, France

20 ⁷ CRIODE, USR EPHE-UPVD-CNRS 3278, Université de Perpignan Via Domitia, 58 Avenue Paul
21 Alduy, 66860 Perpignan, France.

22 ⁸ Ifremer, ASIM, Adaptation Santé des invertébrés, La Tremblade, France

23 ⁹ MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France

24 ¹⁰ Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, F-98800, Nouméa,
25 Nouvelle-Calédonie, France.

26 ¹¹ Ifremer, Université de Polynésie Française, IRD, ILM, EIO, Polynésie Française.

27

28 *⁺ Equal contribution

29 Corresponding authors: Marie-Agnès Travers (Marie.Agnes.Travers@ifremer.fr), Delphine
30 Destoumieux-Garzón (delphine.destoumieux-garzon@cnrs.fr)

31

32 **Abstract**

33

34 Polymicrobial diseases significantly impact the health of humans and animals but remain
35 understudied in natural systems. We recently described the Pacific Oyster Mortality Syndrome
36 (POMS), a polymicrobial disease that impacts oyster production and is prevalent worldwide.
37 Analysis of POMS-infected oysters on the French North Atlantic coast revealed that the disease
38 involves co-infection with the endemic ostreid herpesvirus 1 (OsHV-1) and virulent bacterial
39 species such as *Vibrio crassostreae*. However, it is unknown whether consistent *Vibrio* populations
40 are associated with POMS in different regions, how *Vibrio* contribute to POMS, and how they
41 interact with the OsHV-1 virus during pathogenesis.

42 We resolved the *Vibrio* population structure in oysters from a Mediterranean ecosystem and
43 investigated their functions in POMS development. We find that *Vibrio harveyi* and *Vibrio*
44 *rotiferianus* are the predominant species found in OsHV-1-diseased oysters and show that OsHV-
45 1 is necessary to reproduce the partition of the *Vibrio* community observed in the field. By
46 characterizing the interspecific interactions between OsHV-1, *V. harveyi* and *V. rotiferianus*, we
47 find that only *V. harveyi* synergizes with OsHV-1. When co-infected, OsHV-1 and *V. harveyi* behave
48 cooperatively by promoting mutual growth and accelerating oyster death. *V. harveyi* showed high
49 virulence potential in oysters and dampened host cellular defenses, making oysters a more
50 favorable niche for microbe colonization. We next investigated the interactions underlying the co-
51 occurrence of diverse *Vibrio* species in diseased oysters. We found that *V. harveyi* harbors genes
52 responsible for the biosynthesis and uptake of a key siderophore called vibrio ferrin. This
53 important resource promotes the growth of *V. rotiferianus*, a cheater that efficiently colonizes
54 oysters during POMS without costly investment in host manipulation nor metabolite sharing.

55 By connecting field-based approaches, laboratory infection assays and functional genomics, we
56 have uncovered a web of interdependencies that shape the structure and function of the POMS
57 pathobiota. We showed that cooperative behaviors contribute to synergy between bacterial and

58 viral co-infecting partners. Additional cheating behaviors further shape the polymicrobial
59 consortium. Controlling such behaviors or countering their effects opens new avenues for
60 mitigating polymicrobial diseases.

61

62 **Keywords:** Microbiota; mollusk; polymicrobial infection; pathogen; dysbiosis; iron uptake;
63 public good; synergy; cooperation; cheating.

64

65 **Introduction**

66 A number of polymicrobial diseases impact human and animal species [1]. They are defined as
67 diseases that result from infections by multiple pathogens [2]. Complex microbe communities that
68 form a cohesive entity with the potential to cause disease in polymicrobial diseases can be
69 referred to as a “pathobiota” [3]. Within pathobiota, microbes synergize to cause disease: their
70 interactions enhance disease progression compared to infection with the single microbes [1].
71 Fatal polymicrobial synergy has been reported between viruses and bacteria including influenza
72 A virus and *Streptococcus* pneumonia [4, 5] or Human Immunodeficiency Virus (HIV)
73 and *Mycobacterium tuberculosis* [6-8]. Synergy has also been reported between viruses such
74 as *Herpes* virus simplex and HIV [9, 10]. Pathobiota show cell-level cooperative capacities that
75 include the production of public goods (e.g. shared metabolites), division of labor, resource
76 transport, and creation and maintenance of the extracellular environment, as in other examples
77 of multicellular organization [11]. Dissecting the interactions within pathobiota is needed to
78 understand and possibly control disease establishment, progression, and symptoms. Theoretical
79 models have been developed in response to these challenges to predict what microbial behaviors
80 are favored during such complex interactions [12, 13]. In addition, a series of animal models (both
81 vertebrates and invertebrates) have been used to mimic polymicrobial diseases and validate
82 theoretical assumptions [1]. Still, natural pathobiota remain poorly explored.

83 We recently described a typical example of a polymicrobial disease, the Pacific Oyster Mortality
84 Syndrome (POMS). This disease is caused by the Ostreid herpesvirus OsHV-1 and opportunistic
85 bacteria [14] and has devastating consequences for the aquaculture of *Crassostrea gigas* oysters
86 worldwide. The bacterial genera colonizing oysters during POMS are conserved across
87 environments suggesting functional complementarity within the pathobiota [15]. Members of the
88 *Vibrionaceae* family are the best characterized bacteria in the POMS pathobiota [16-20]. Several
89 *Vibrio* species have been shown to have virulence functions in this disease [19, 21]. *Vibrio*
90 *crassostreae* (Splendidus clade) uses cytotoxicity and other mechanisms to evade oyster cellular

91 immune responses, leading to systemic infection [19, 21]. This virulent *Vibrio* species is highly
92 prevalent in OsHV-1-infected oysters on the French Atlantic coast, often associated with other
93 *Vibrio* species from the superclade Splendidus [17]. A number of studies suggest that *Vibrio*
94 species found in OsHV-1-infected oysters vary worldwide [22-24]. These species include *Vibrio*
95 *harveyi* (superclade Harveyi). A strain of *Vibrio harveyi* was isolated in 2003 from *C. gigas* oyster
96 spat during a mortality episode in the Thau lagoon (Mediterranean sea) and is pathogenic to
97 oysters [25]. However, we still know little about *Vibrio harveyi* in POMS and whether *V.*
98 *crassostreae* or other populations colonize OsHV-1-infected oysters in different ecosystems. In
99 addition, how *Vibrio* colonizes oysters and how *Vibrio* interacts with the OsHV-1 virus during
100 pathogenesis remains unclear.

101 Here we performed an integrative study of POMS in a Mediterranean ecosystem, combining field
102 analysis of the *Vibrio* population structure in OsHV-1-infected oysters with validation of this
103 polymicrobial assembly in mesocosm experiments. We find that two species of the Harveyi clade
104 – namely *Vibrio harveyi* and *Vibrio rotiferianus* – are prevalent in diseased oysters in a major
105 Mediterranean area used for oyster farming, the Thau lagoon. Using mesocosm experiments, we
106 characterized the complex interactions between *Vibrio* species and the OsHV-1 virus as well as
107 between the different *Vibrio* species that assemble in OsHV-1-infected oysters. Our data indicate
108 that OsHV-1 infection favors stable colonization by *V. harveyi* and *V. rotiferianus* but not other
109 *Vibrio* of the Harveyi clade. Polymicrobial synergy, including mutual growth promotion and
110 accelerated disease progression, was measured between OsHV-1 and *V. harveyi*. We next tested
111 the contribution of each partner to the interaction. A series of functional assays, including gene
112 knockouts, indicate that strains of *V. harveyi* are cytotoxic to immune cells and produce
113 siderophores. Our results uncover multiple interdependencies within the POMS pathobiota
114 leading to polymicrobial synergy and accelerated disease progression. We find that initial
115 infection with OsHV-1 shapes *Vibrio* assemblages within the host and favors colonization by *V.*
116 *harveyi*. This colonization promotes the growth of OsHV-1 and *V. rotiferianus* in oysters by

117 dampening host defenses and by producing vibrio ferrin, a key siderophore required for *Vibrio*
118 growth in iron-poor environments.

119 **Materials and methods**

120

121 **Oyster and seawater sampling**

122 Juvenile *C. gigas* (pathogen-free diploid oysters produced in hatchery, 6 months old) were
123 immersed in the Thau lagoon (Occitanie, France) and sampled at four timepoints between October
124 2015 and March 2017. Sampling coincided with mortality events and in the absence of any
125 observed mortality (see [Table S1 and S2](#) for details). 40L of seawater was collected and size-
126 fractionated by sequential filtration (from > 60 μ m to 0.2 μ m) as described by Bruto et al. [17].

127

128 **Bacterial sampling**

129 Oysters and large seawater particle fractions (> 60 μ m) were ground up with Ultra-Turrax (IKA)
130 and 100 μ L was plated on *Vibrio* selective media (thiosulfate-citrate-bile salts sucrose agar, TCBS).
131 Filters of 5, 1 and 0.22 μ m porosity were directly placed on TCBS agar and incubated at 20 °C for
132 2 days. About 100 colonies per sample were randomly picked then re-streaked first on TCBS and
133 then on Zobell agar (4 g.L⁻¹ bactopeptone, 1 g.L⁻¹ yeast extract and 15 g.L⁻¹ agar in sterile seawater,
134 pH 7.4). Stock cultures were stored at -80 °C in Zobell containing 15% glycerol (v/v). For
135 subsequent molecular analyses, all isolates were grown overnight at 20 °C in liquid Zobell medium
136 and bacterial DNA was extracted using the Nucleospin tissue kit following the manufacturer's
137 instructions (Macherey-Nagel).

138

139 **Population structure analysis**

140 Isolates from October 2015 were genotyped by partial *hsp60* sequencing [26, 27] (Table S3)
141 generating a total of 437 *hsp60* sequences [28]. *hsp60* sequence ambiguities were corrected using
142 4 peaks and Seaview software (<http://nucleobytes.com/index.php/4peaks>; [29]) and received a
143 taxonomic affiliation if the best BLAST-hit displayed an identity greater than 95% with a type-
144 strain. Fisher-exact tests were performed with a 2x2 contingency table using the computing
145 environment R [30] for statistical validation of the ecological preferences of populations and the
146 distribution of bacterial populations in oyster tissues and seawater. Significance was assessed
147 using p-value ≤ 0.05 .

148

149 **MLSA genotyping**

150 To validate *hsp60* sequence-based taxonomic assignments to the Harveyi clade, 3 additional
151 protein-coding genes were sequenced (*rctB*, *topA* and *mreB*). First, Harveyi isolates were screened
152 by PCR using *rctB*-F/*rctB*-R primers designed to specifically hybridize to Harveyi-related *rctB*
153 gene sequences (Table S3). The PCR program was: 2 min at 95 °C; 30 cycles of 30 sec at 95 °C, 1
154 min at 53 °C and 1.45 min at 72 °C; 5 min at 72 °C. As a result of this analysis, 143 *rctB*+ isolates
155 were considered to belong to the Harveyi clade. Then *topA* and *mreB* sequences were amplified
156 using VtopA400F/VtopA1200R and VmreB12F/VmreB999R primers, respectively [31, 32], Table
157 S3). All three genes were amplified using the Gotaq G2 flexi polymerase (Promega) following the
158 manufacturer's instructions and sequenced using the reverse PCR primer at GATC Biotech. Next,
159 *hsp60*, *rctB*, *topA* and *mreB* sequences were aligned with 8 Harveyi superclade type strains using
160 Muscle [33]. Alignments were concatenated with Seaview [29]. Phylogenetic trees for each
161 marker were reconstructed with RAxML using a GTR model of evolution and Gamma law of rate
162 heterogeneity. Bootstrap values were calculated for 100 replicates. All other options were left at
163 default values.

164

165 **Bacterial growth conditions**

166 Bacteria were grown for 18 h under shaking at 20°C in Zobell liquid medium (4 g.L⁻¹ bactopeptone,
167 1 g.L⁻¹ yeast extract in sterile seawater, pH 7.4) or LB broth adjusted to 0.5M NaCl unless otherwise
168 stated. When necessary, antibiotics were added (Trimethoprim Trim 10 µg/mL or
169 Chloramphenicol Cm 10 µg/mL).

170

171 **Virulence potential of *Vibrio* strains**

172 To test virulence potential, *Vibrio* were grown under shaking at 20 °C for 18 h in Zobell liquid
173 medium before adjustment to OD₆₀₀ = 0.7. A volume of 40 µL was injected intramuscularly into 20
174 specific pathogen-free (SPF) juvenile *C. gigas* oysters [16] previously anesthetized in hexahydrate
175 MgCl₂ (50 g.L⁻¹, 100 oysters/liter). An injection of *V. crassostreae* J2-9 (virulent strain), *V.*
176 *tasmaniensis* LMG20012^T (non-virulent strain) or sterile filtered seawater (negative control) were
177 used as controls. After injection, animals were transferred to aquaria (20 oysters per 1 L
178 aquarium) containing 400 mL of aerated seawater at 20 °C and kept under static conditions.
179 Mortalities were recorded 24 h post injection.

180

181 ***In vitro* cytotoxicity assays**

182 Hemocytes were plated in 96 well-plates (2 x 10⁵ cells/well) as previously published [34]. After 1
183 h, plasma was removed and 5 µg/µL Sytox Green (Molecular Probes) diluted in 200 µL sterile
184 seawater was added to each well. Washed *Vibrios* that had been opsonized in plasma for 1 h were
185 then added to the wells at an MOI of 50:1. Sytox Green fluorescence was monitored (λex 480
186 nm/λem 550 nm) for 15 h using a TECAN microplate reader. Maximum cytolysis was determined
187 by adding 0.1% Triton X-100 to hemocytes. Statistical analysis was performed using one-way

188 ANOVA and a post-hoc Tukey test for pairwise comparison of maximum cytolysis values for each
189 condition. Significance was assessed using p-value ≤ 0.05 .

190

191 **Fluorescence microscopy**

192 Hemocytes were plated onto glass coverslips in a 24-well plate to obtain monolayers of 5×10^5
193 cells per well. Adherent hemocytes were exposed to GFP or mCherry-expressing Washed *Vibrios*
194 that had been opsonized in plasma for 1 h, were then added to the wells at a MOI of 50:1. *Vibrios*
195 ([Table S4](#)) were added at a multiplicity of infection of 50:1, as in [34]. Binding of bacteria to
196 hemocytes was synchronized by centrifugation for 5 min at 400 g. After a 2 h incubation, the cell
197 monolayers (coverslips from bottom of the wells) were fixed with 4 % paraformaldehyde for 15
198 min. Coverslips were then washed in PBS and stained with 0.25 $\mu\text{g.mL}^{-1}$ DAPI (Sigma) and 0.5
199 $\mu\text{g.ml}^{-1}$ Phalloidin-TRITC or FITC (Sigma). Fluorescence imaging was performed using a Zeiss
200 Axioimager fluorescence microscope and a Zeiss 63 \times Plan-Apo 1.4 oil objective equipped with a
201 Zeiss MRC black and white camera for image acquisition.

202

203 **Experimental infection in mesocosm**

204 For experimental infections, a biparental family of oyster (*C. gigas*) spat was produced at the
205 Ifremer facilities in La Tremblade (Charente-Maritime, France). This family was selected for its
206 susceptibility to OsHV-1 infection. Spawn occurred in June 2017, and larval and spat cultures were
207 performed as described by Dégremont et al. [35] and Azéma et al. [36]. All growth steps involved
208 filtered and UV-treated seawater. Prior to the experiment, spat were acclimated via a constant
209 flow of filtered and UV-treated seawater enriched in phytoplankton (*Skeletonema costatum*,
210 *Isochrysis galbana*, and *Tetraselmis suecica*) in 120 L tanks at 19°C for at least 2 weeks. Oysters
211 (10 months, 4 cm) were infected with OsHV-1 virus, *Vibrio*, or both. Microorganisms were
212 prepared as follows.

213 *Viral inoculation* - For **Design 1** (Fig. S1), seawater containing OsHV-1 virions was produced to
214 infect pathogen-free juvenile oysters. Briefly, 90 donor oysters were anesthetized, and their
215 adductor muscles were injected with 100 μ l of 0.2 μ m filtrated viral suspension (10⁸ genomic units
216 mL⁻¹). These donor oysters were then placed in a 40 L tank for 24 h. Virion release into the
217 seawater was quantified by qPCR. This OsHV-1-contaminated seawater was used to fill tanks for
218 the different experimental conditions. At day 0, 10 recipient oysters were placed in tanks
219 containing 2 L of OsHV-1-contaminated seawater and were sampled at 4, 24, and 48 h; 15
220 additional recipient oysters were placed in tanks with 3 L of contaminated seawater to track
221 mortalities daily. An identical design was used for control tanks, in which clean seawater was used
222 instead of OsHV-1-contaminated water. For **Design 2** (Fig. S1), 250 donor oysters were injected
223 with a filtrated viral suspension as described above. After 24 h, 250 recipient oysters were placed
224 in contact with donor oysters in a 40 L-tank. After another 18 h (day 0), recipient oysters were
225 transferred into clean seawater for mortality recording (10 animals in 0.5 L) or for sampling (30
226 animals in 1.5 L).

227 *Bacterial inoculation* – Seawater tanks were inoculated with bacteria on day 0 (final concentration
228 of 10⁷ CFU/mL). Briefly, bacterial cultures (Zobell broth, 20°C, 18h) were centrifuged at 1500 x g
229 for 10 min. Bacterial pellets were rinsed and resuspended in sterile seawater and the
230 concentration was adjusted to OD₆₀₀ = 1 (10⁹ CFU/mL). The bacterial concentration was
231 confirmed by conventional dilution plating and CFU counting on Zobell agar.

232 At each sampling time point, oysters were sampled together with 100 mL of seawater. The oyster
233 flesh was removed from the shell, snap-frozen in liquid nitrogen and stored at -80°C. 30 mL of
234 seawater were filtered (0.2 μ m pore size) and filters were stored at -80 °C. For tissue grinding,
235 individual frozen oysters were shaken for 30 s inside a stainless steel cylinder containing a
236 stainless-steel ball cooled in liquid nitrogen in a Retsch MM400 mixer mill. The pulverized tissue
237 was transferred to a 2 mL screw-capped tube and stored at -80°C until further processing.

238

239 **Nucleic acid extraction**

240 Total DNA was extracted from either 20 mg of frozen oyster tissue-powder, 25 mg frozen oyster
241 tissue, a pellet from 1 mL of stationary phase bacterial cultures, or a 0.2 μ m filter using the
242 Nucleospin tissue DNA extraction kit (Macherey Nagel, ref: 740952.250) with a modified protocol.
243 Briefly, samples were added to a 2 mL screw-capped tube containing Zirconium beads, lysis
244 buffer, and proteinase K and shaken for 12 min at a frequency of 35 cycles/s in a Retsch MM400
245 mixer mill at room temperature and then incubated for 1h 30 min at 56 °C. The samples were then
246 treated with RNase for 5 min at 20 °C and then 10 min at 70 °C. The following purification steps
247 were carried out according to manufacturer's recommendations. Total RNA was extracted from
248 20 mg of frozen oyster tissue-powder using Direct-zol RNA extraction kit (Zymo research). In an
249 extra step, the aqueous phase was recovered from the TRIzol reagent prior to column purification
250 as described by [37]; the following steps were carried out as recommended by the manufacturer.
251 Nucleic acid concentration and purity was assayed using a Nanodrop ND-10000
252 spectrophotometer (Thermo Scientific) and RNA integrity analyzed by capillary electrophoresis
253 on the BioAnalyzer 2100 system (Agilent).

254

255 ***Vibrio* genome sequencing and assembly**

256 Individual genomic libraries were prepared from 1 ng of bacterial DNA at the Bio-Environment
257 platform (University of Perpignan) using the Nextera XT DNA Library Prep Kit (Illumina)
258 according to the manufacturer's instructions. The quality of the libraries was checked using High
259 Sensitivity DNA chip (Agilent) on a Bioanalyzer. Pooled libraries were sequenced in 2x150 paired-
260 end mode on a NextSeq 550 instrument (Illumina). Reads were assembled *de novo* using Spades
261 software. Computational prediction of coding sequences together with functional assignments
262 and comparative genomics were performed using the MaGe MicroScope [38]. The genome
263 sequence assemblies have been deposited in the European Nucleotide Archive (ENA) at EMBL-
264 EBI under project accession no. PRJEB49488 ([Table S6](#)).

265

266 **OsHV-1 detection and quantification**

267 The ground oyster flesh (1.5 mL) was centrifuged for 10 min at 4°C and 2,200 g and genomic DNA
268 was extracted from 50 µL of supernatant using phenol:chloroform:isoamyl alcohol (25:24:1) and
269 isopropanol precipitation. Detection and quantification of OsHV-1 µVar DNA was performed using
270 quantitative PCR targeting a predicted DNA polymerase catalytic subunit (DP) using
271 OsHVDPFor/OsHVDPRev primers ([Table S3](#)) [39] using the protocol previously described by [37].
272 All amplification reactions were performed in duplicate using a Roche LightCycler 480 Real-Time
273 thermocycler (qPHD-Montpellier GenomiX platform, Montpellier University). Oyster flesh
274 samples exhibiting a viral load greater than 100 genome units per ng of total DNA (GU/ng) were
275 considered to be infected by OsHV-1.

276

277 ***Vibrio* quantification**

278 16S rDNA sequences were used to quantify total *Vibrio* present in oysters by extracting 25 ng of
279 DNA from tissue or crude extracts from seawater (see above). Amplification reactions were
280 carried out in duplicate, in a total volume of 20 µl on Mx3005 Thermocyclers (Agilent) using
281 Brilliant III Ultra-Fast SyberGreen Master Mix (Agilent), and 567F and 680R primers at 0.3 µM,
282 [40], [Table S3](#). Absolute quantification of *Vibrio* genomes in oyster samples was estimated using
283 standards from 10² to 10⁹ genome copies of *Vibrio* (see supplementary material and methods).
284 *V. harveyi*-*V. rotiferianus* and *V. owensii*-*V. jasicida* were quantified based on 25 ng of DNA
285 extracted from tissue or crude extracts from seawater (see above) through detection of a specific
286 chemotaxis protein and *ompA*, respectively ([Table S3](#)). As described above, amplification
287 reactions were performed in duplicate using a Roche LightCycler 480 Real-Time thermocycler,
288 SYBR Green I Master mix (Roche) and primers at 0.3 and 0.2 µM f.c. respectively. For absolute

289 quantification, standard curves of known concentration of *V. harveyi*, *V. rotiferianus*, *V. jasicida*, *V.*
290 *owensii* genomes were used (supplementary material and methods).

291

292 ***rctB* metabarcoding**

293 Locus-specific PCR primers, including Illumina overhang adaptors, were designed to amplify a
294 573 bp region of the *rctB* gene in all our *Harveyi* strains, (rctB-Fw-I and rctB-Rv-I primers, [Table](#)
295 [S3](#)). PCR analysis of total DNA extracted from oysters (N=60) used the high fidelity Q5 polymerase
296 (New England Biolabs) in a total volume of 50 μ L under the following conditions: 98 °C for 25 s
297 followed by 35 cycles of 98 °C for 10 sec, 51 °C for 25 sec and 72 °C for 30 sec. Final extension was
298 performed at 72 °C for 2 minutes. Presence of the 573 bp amplicon was validated by 1.5 % gel
299 electrophoresis. Libraries were constructed with the Two-Step amplicon sequencing approach
300 using Illumina dual indexes (ref. 15044223) and sequenced on a MiSeq instrument to produce
301 paired end reads 2x300 bp, by the GenSeq platform, University of Montpellier (ISEM), France.
302 Sequencing data were processed using the SAMBA pipeline v3.0.1. [41]. All bioinformatics
303 processes used the next-generation microbiome bioinformatics platform QIIME 2 [42] (version
304 2020.2) and grouped sequences in ASV (Amplicon Sequence Variants) using DADA2 v1.14 [43].
305 The resulting ASVs were annotated against an in-house database containing the *Harveyi rctB*
306 sequences and filtered for low abundance ASVs to limit the prevalence of putative artifacts due to
307 sequencing errors. To do this, we only retained ASVs showing at least four reads in at least four
308 samples. Statistical analyses were performed with R [30] using the R packages Phyloseq v1.38.0
309 [44] and Vegan v2.6-2 [45]. Principal coordinate analyses (PCoA) based on Bray-Curtis distances
310 at each kinetic point were used to assess variation in the composition of *Harveyi* communities.
311 Putative differences between groups were assessed by statistical analyses (Permutational
312 Multivariate Analysis of Variance - PERMANOVA) using the function adonis2 implemented in
313 vegan [45]. Finally, we used DESeq2 v1.36.0 and STAMP software [46] to identify ASVs with
314 significant variation in abundance.

315

316 **Mutagenesis**

317 Deletion of *pvuA1* (THOG05_v1_100041) and *pvuA2* (THOG05_v1_100042) in *V. rotiferianus*
318 Th15_O_G05 was achieved through double homologous recombination between the pLP12
319 suicide plasmid ([Table S8](#)) and the bacterial chromosome [47]. Briefly, two fragments of around
320 800 bp flanking the target region were amplified, assembled by GeneArt, and cloned into the
321 pLP12 plasmid [48]. The suicide plasmid (named pAM010) was transferred by conjugation
322 between an *Escherichia coli* β3914 donor [49] and *V. rotiferianus* Th15_O_G05 recipient using a
323 triparental mating procedure ([Table S4-5](#)). The first and second recombination events leading to
324 pAM010 integration and elimination were selected following a recently published method [47].
325 Mutants were screened by PCR using primers del-pvuA1-A2-OG05-F and del-pvuA1-A2-OG05-R
326 ([Table S3](#)). A *V. rotiferianus* Th15_O_G05 mutant strain deleted for the *pvuA1-2* genes was stored
327 in glycerol at -80 °C (strain *V. rotiferianus* Th15_O_G05 Δ*pvuA1-2*).

328

329 ***Vibrio* growth in iron-depleted media and rescue**

330 Growth experiments in iron-depleted medium were performed with *V. rotiferianus* Th15_O_G05
331 and its Δ*pvuA1-2* isogenic derivative. Isolates were grown overnight at room temperature in
332 Artificial Sterile Seawater (ASW: NaCl 40 mM, KCl 20 mM, MgSO₄ 5 mM, CaCl₂ 2 mM) with 0.3 %
333 (wt/vol) casamino acids and vitamins (0.1 µg/L vitamin B12, 2 µg/L biotin, 5 µg/L calcium
334 pantothenate, 2 µg/L folic acid, 5 µg/L nicotinamide, 10 µg/L pyridoxin hydrochloride, 5 µg/L
335 riboflavin, 5 mg/L thiamin hydrochloride). Cultures were pelleted (2 min at 15,000 g) and washed
336 in ASW. Cells were then inoculated (1:100) into minimal media with (iron-poor) or without (iron-
337 replete) the iron-specific chelator 2,2'-bipyridin (150 µM). Bacteria were grown in 96-well plates
338 with orbital shaking in a Tecan microplate reader (Infinite M200) at 25 °C for 24 h. The OD₆₀₀ was
339 recorded at 30 min intervals. Rescue was performed either by adding freeze-drying concentrated

340 *V. harveyi* Th15_O_G11 cell-free supernatant or by adding synthetic vibrio ferrin (8.7 to 70 μ M) to
341 cultures. Vibrio ferrin was synthesized according to Takeuchi et al. [50] ([Fig. S9](#)). NMR and HRMS
342 spectroscopic data confirmed the structure ([Fig. S10](#)) and were consistent with the literature [50].

343

344 **Results**

345 **Specific *Vibrio* populations assemble in oysters infected by OsHV-1 virus**

346 We asked whether *Vibrio* populations that naturally assemble in oysters infected by OsHV-1 were
347 conserved across farming environments. With this objective in mind, we performed a field
348 experiment in the Thau lagoon (South of France). *Vibrio* populations have been suggested to be
349 distinct in this Mediterranean ecosystem from those previously found in the Atlantic (bay of Brest,
350 northwest of France) [25]. We performed our study during an episode of oyster mortality. Specific
351 pathogen-free (SPF) juvenile oysters were immersed in September 2015 in the Thau lagoon,
352 which hosts significant oyster farming activity (352 acres). Oysters tested positive for OsHV-1
353 after one month (October 2015), indicating an ongoing episode of POMS ([Table S1](#)). We
354 characterized the population structure of the *Vibrio* isolated from a pool of oysters and from the
355 surrounding seawater. A total of 472 isolates were sampled on *Vibrio*-selective medium from
356 infected oyster tissues and from the water column ([Table S2](#)). Partial *hsp60* sequences were
357 obtained for 437 isolates. Assignment to the *Vibrio* genus was confirmed for 304 sequences (67.8
358 %), which exhibited ≥ 95 % identity with the *hsp60* sequence from a *Vibrio* type-strain ([Table S2](#)).
359 Isolates with *hsp60* sequence identity below this threshold were not included in the study. We
360 observed contrasting population structures in oyster tissues and in the water column. Oyster
361 tissues were dominated by 3 populations of the *Vibrio* Harveyi super clade (*V. harveyi*, *V.*
362 *rotiferianus* and *V. owensii*), representing 54/55 isolates ([Fig. 1A](#)). The water column showed a
363 higher diversity of *Vibrio* with only 53/249 isolates (21%) falling into the Harveyi super clade
364 ([Fig. 1A](#), [Fig. S2](#)). These water column isolates were dominated by *V. jasicida* (39/53) ([Fig. 1A](#)).
365 Taxonomic assignments of Harveyi-related isolates were confirmed by multi-locus sequence

366 analysis (MLSA) phylogeny based on 4 *Vibrio* genes (*hsp60*, *rctB*, *topA* and *mreB*) (Fig. 1B)
367 (Lagorce, 2022). A total of 101 isolates could be assigned to *V. harveyi* (n=63), *V. rotiferianus*
368 (*n*=17), *V. jasicida* (*n*=15) and *V. owensii* (*n*=6) (Fig. 1B). Among them, *V. harveyi* and *V. rotiferianus*
369 showed a positive association with oyster tissues (Fisher exact test, *p* < 0.001) whereas *V. jasicida*
370 was almost exclusively associated with the water column (Fisher exact test, *p* < 0.001) (Fig. 1B).
371 The high relative abundance of *V. harveyi* in POMS-diseased oysters from the Thau lagoon was
372 confirmed by three subsequent samplings in 2016-2017: *V. harveyi* was isolated during but not
373 outside of POMS episodes, almost exclusively from oysters infected with OsHV-1 (Table S1). This
374 result contrasts with the preferential association of the species *V. crassostreae* with POMS-
375 diseased oysters on the French Atlantic coast [17].

376

377 **Preferential association of *V. harveyi* and *V. rotiferianus* with OsHV-1-infected oysters**

378 As a number of interdependent environmental variables (e.g. temperature, salinity, season, viral
379 infection) may influence *Vibrio* assemblages in oysters in the field, we next tested how *Vibrio*
380 populations partition and the role of OsHV-1 in this partitioning. To achieve this aim, we used
381 mesocosms, which allow controlled infection experiments of oysters through natural routes with
382 microorganisms relevant to POMS. We developed a synthetic *Vibrio* community composed of a
383 mixture of 20 isolates from the Harveyi super clade in the presence (VO) or absence (V) of OsHV-
384 1 (Fig. 2A). *Vibrio* representative of the 4 populations isolated from the Thau lagoon were used: *V.*
385 *harveyi* and *V. rotiferianus* (positively associated with oysters), *V. jasicida* (negatively associated
386 with oysters) and *V. owensii* (neutral). In parallel, oysters were exposed to OsHV-1 virus only (O)
387 or were kept in tanks devoid of introduced pathogens (control). Oysters were collected in the first
388 48 h, before mortalities occurred. We first examined which *Vibrio* populations colonized oysters
389 in the presence/absence of the OsHV-1 virus by comparing the V and VO conditions. To
390 discriminate between the four populations introduced in the mesocosm, we developed an
391 amplicon sequencing method based on the *rctB* polymorphic gene (Fig. S3). In the absence of

392 OsHV-1, the Harveyi-related population assemblage remained stable in oysters over time, as
393 shown by *rctB*-barcoding (Fig. S5). In contrast, co-infection with OsHV-1 had a significant effect
394 on the structure of the assemblage, as observed after 48 h (Permutational multivariate analysis of
395 variance, $p = 0.001$) (Fig. 2B, Fig. S4-S5). The species *V. harveyi* and *V. rotiferianus* were
396 significantly enriched in oyster flesh in the presence of OsHV-1 ($p < 0.05$, Welch's t-test, p-value
397 corrected with Benjamini-Hochberg FDR) (Fig. 2C). In contrast, *V. owensi* was equally abundant in
398 the presence/absence of OsHV-1, and *V. jasicida* was more abundant in oyster flesh in the absence
399 of OsHV-1 ($p < 0.001$) (Fig. 2C). The positive effect of OsHV-1 on oyster colonization by *V.*
400 *harveyi*/*V. rotiferianus* but not *V. jasicida*/*V. owensi* at 48 h was confirmed by qPCR monitoring of
401 pathogen loads (multiple t test, $p < 0.01$) (Fig. S4). Altogether, our experimental results show (i)
402 that OsHV-1 is necessary to reproduce the distribution of *Vibrio* community observed in the field
403 during a POMS episode, and (ii) that only *V. harveyi* and *V. rotiferianus* efficiently colonize OsHV1-
404 infected oysters.

405

406 **OsHV-1 virus synergizes with *V. harveyi* and/or *V. rotiferianus* in oyster mortality**

407 We next tested the effect of the *Vibrio*/OsHV-1 interaction on POMS progression. We used the
408 same synthetic community of *Vibrio* (Fig. 2A) to monitor oyster mortality and pathogen loads
409 under different experimental conditions. Mortalities were only observed in tanks containing the
410 OsHV-1 virus, indicating that the synthetic *Vibrio* community alone (V) was not lethal to oysters
411 through natural infection routes. Mortalities started at day 2 in tanks containing OsHV-1 (both O
412 and VO conditions). Still, mortalities progressed significantly more rapidly in oyster tanks
413 containing both OsHV-1 and the synthetic *Vibrio* community (VO) with 90% mortalities in 3 days
414 as opposed to 6 days for oysters exposed to OsHV-1 only (O) (Kaplan-Meier survival curves, log-
415 rank test, $p = 0.0018$) (Fig. 2D, left panel). Therefore, introducing the synthetic *Vibrio* community
416 accelerated the OsHV-1-induced disease. As expected from our previous study [14], the total
417 *Vibrio* load increased constantly over 48 h in OsHV-1-infected oysters (O). Remarkably, the

418 increase in *Vibrio* load was significantly higher in oysters exposed to both the *Vibrio* community
419 and OsHV-1 (VO) than in oysters exposed to *Vibrio* only (O) at 48h, *i.e.* at the onset of mortality
420 (Kruskal-Wallis test, $p < 0.001$) (Fig. 2D, right panel), with a significant contribution of *V. harveyi*
421 and *V. rotiferianus* (Fig. S4). In oysters exposed to *Vibrio* only (V), *i.e.* oysters that did not die, *Vibrio*
422 colonization tended to be transient with a peak between 4 h-24 h (Fig. 2D, right panel). Altogether,
423 this indicates that in the absence of OsHV-1, oysters tolerate transiently high loads of the synthetic
424 *Vibrio* community but *Vibrio* colonization is not stable and ultimately decreases without causing
425 mortality. In contrast, OsHV-1 infection favors the proliferation and persistent colonization of
426 *Vibrio* such as *V. harveyi* and *V. rotiferianus*, which exacerbate pathogenesis, an effect not seen
427 with *V. jascida* and *V. owensii*. These data show that OsHV-1 and specific populations of *Vibrio* act
428 in synergy to accelerate oyster death.

429

430 ***V. harveyi* and OsHV-1 reciprocally promote inside-host growth**

431 To get insight into the synergistic process, we next tested whether OsHV-1 and strains of *V. harveyi*
432 or *V. rotiferianus* affect one another's growth in co-infections. To facilitate pathogen monitoring
433 oysters were exposed to OsHV-1 and fluorescent *Vibrio* strains representing each population (Fig.
434 3A). Infection with OsHV-1 only was used as a control (Fig. 3A). As in the previous mesocosm
435 experiment (Fig 2), live oysters were sampled at 0, 4, 24 and 48 h, before the onset of mortalities
436 (Fig. S6) to monitor pathogen loads in every individual. First, we compared *V. harveyi* and *V.*
437 *rotiferianus* colonization in oysters infected with OsHV-1. Only *V. harveyi* had the ability to
438 colonize OsHV-1-infected oysters efficiently. Indeed, *V. harveyi* remained present at high doses
439 (10^5 to 5×10^6 copies/ng of DNA) in live oyster tissues throughout the time course. In contrast, *V.*
440 *rotiferianus* loads decreased rapidly over the same period and were undetectable ($< 10^4$ copies/ng
441 of DNA) in most individuals after 48 h (Fig. 3B). Second, we analyzed the effect of *Vibrio* strains
442 on OsHV-1 growth. Remarkably, the viral load was 100-fold higher at 48h in oysters co-infected
443 with *V. harveyi* and OsHV-1 than in oysters infected with OsHV-1 only (t-test, $p < 0.05$). Such an

444 increase in viral load was not observed in co-infections with *V. rotiferianus* (Fig. 3C), consistent
445 with the rapid elimination of *V. rotiferianus* from host tissues (Fig. 3D). Altogether, these results
446 indicate that *V. harveyi* and OsHV-1 cooperate by increasing mutual growth during pathogenesis,
447 an effect not observed with *V. rotiferianus*.

448

449 ***V. harveyi* actively dampens oyster immune defenses**

450 We next investigated *Vibrio* traits that may facilitate host colonization and favor polymicrobial
451 synergy with OsHV-1. We first compared the virulence potential of *V. harveyi* and *V. rotiferianus*
452 (successful colonizers, Fig. 1B, 2C) and *V. jasicida* and *V. owensii* (poor colonizers). Virulence
453 potential was tested *in vivo* by direct injection of *Vibrio* isolates into oyster adductor muscle. *V.*
454 *harveyi* isolates showed strong virulence potential as revealed by an average of 50% oyster
455 mortality one day after injection (Fig. 4A). However, mortalities remained below 15% on average
456 after injection of *V. rotiferianus*, *V. jasicida*, and *V. owensii* (Fig. 4A). Not only did *V. harveyi* have a
457 significantly higher virulence potential than other species (Kruskal-Wallis test, $p < 0.001$), but it
458 also showed greater cytotoxicity toward oyster immune cells (hemocytes) *in vitro* (Fig. 4B). Here
459 we compared the cytotoxic activity of two strains per *Vibrio* species among the four Harveyi-
460 related species from our study. Upon exposure to *V. harveyi* strains, 67-76% of hemocytes
461 underwent lysis ($p < 0.001$, One-way ANOVA, and Tukey post-hoc test) (Fig. 4B). The three other
462 *Vibrio* species were not cytotoxic, with the percentage of lysed cells similar to controls (7 to 23%).
463 We further confirmed the ability of *V. harveyi*, but not *V. rotiferianus*, to damage hemocytes using
464 fluorescent *Vibrio* strains. After a 2 h exposure to *V. harveyi*, hemocytes were massively damaged
465 and many extracellular *V. harveyi* were observed (Fig. 4C). In contrast, no cellular damage was
466 observed when hemocytes were exposed to *V. rotiferianus*, with most bacteria being phagocytized.
467 Thus, *V. harveyi* strains are equipped with specific virulence/cytotoxicity mechanisms that can
468 dampen oyster cellular defenses. To uncover genomic features that might explain *V. harveyi*
469 virulence/cytotoxicity, we sequenced and analyzed 17 Harveyi-related genomes from our

470 collection (4 *V. harveyi*, 5 *V. owensii*, 4 *V. jasicida* and 4 *V. rotiferianus* isolates; [Table S6](#)). We found
471 that the *V. harveyi* genome contained the most candidate virulence factors of the four *Vibrio*
472 species in the present study. Candidate virulence genes in the *V. harveyi* genome included a type
473 3 secretion system (T3SS) and its associated effectors as well as 3-4 different type 6 secretion
474 systems (T6SS) ([Table S7](#)). Such T6SS were previously shown to be essential for oyster
475 colonization in *V. crassostreae* and *V. tasmaniensis* [19, 21].

476

477 ***V. harveyi* produces vibrioferrin, which can be used by *V. rotiferianus***

478 We next used comparative genomics to examine how *V. harveyi* and *V. rotiferianus* both colonize
479 OsHV-1-infected oysters but make distinct contributions to pathogenesis ([Table S6](#)). Using
480 genome comparisons, 15 genes were identified that are exclusively shared by *V. harveyi* and *V.*
481 *rotiferianus* (good colonizers; [Table S8](#)). Of these, iron acquisition systems differed between
482 species ([Fig. S7](#)). We paid particular attention to genes involved in the vibrioferrin pathway, a
483 siderophore whose uptake system was only found in strains of *V. harveyi* and *V. rotiferianus* ([Fig.](#)
484 **5A**). Vibrioferrin is a tricarboxylic acid siderophore derived from citric acid; it was shown to be
485 shared as a public good within populations of *V. splendidus* [51]. Remarkably, we found that *V.*
486 *harveyi* harbors genes responsible for the biosynthesis and uptake of vibrioferrin whereas *V.*
487 *rotiferianus* only carries the vibrioferrin uptake system ([Fig. 5A](#)). This suggests that by secreting
488 vibrioferrin, *V. harveyi* could facilitate iron uptake by *V. rotiferianus*. To determine whether *V.*
489 *rotiferianus* is able to use vibrioferrin produced by *V. harveyi*, we compared the growth of *V.*
490 *rotiferianus* in the presence/absence of increasing amounts of *V. harveyi* culture supernatant. *V.*
491 *harveyi* was able to grow in iron-depleted medium (2,2'-bipyridine used as iron chelator, [Fig. S8](#)),
492 in agreement with its ability to produce siderophores. In contrast, growth of *V. rotiferianus* was
493 impaired upon iron depletion, ($p < 0.05$, Mann-Whitney) ([Fig. S8](#)). Growth of *V. rotiferianus* was
494 rescued in a dose-dependent manner by the addition of cell-free culture supernatant from *V.*
495 *harveyi* (Kruskal-Wallis, $p < 0.05$) ([Fig. 5B](#)). To determine whether this rescue is linked to
496 vibrioferrin, we synthesized the siderophore ([Fig. S9-S10](#)). Synthetic vibrioferrin was sufficient to

497 rescue *V. rotiferianus* growth in iron-depleted medium (Kruskal-Wallis, $p < 0.05$) (Fig. 5C). Finally,
498 we constructed a *V. rotiferianus* mutant strain which lacks the two genes encoding the PvuA1-A2
499 receptor that are required for vibrio ferrin uptake. Vibrio ferrin failed to rescue the growth of the
500 *V. rotiferianus* Δ pvuA1-A2 mutant (Fig. 5D). This demonstrates that *V. rotiferianus* is able to
501 acquire vibrio ferrin, an important resource produced by *V. harveyi* (and potentially other *Vibrio*
502 within the microbiota), to grow in iron-poor environments.

503 Overall, our data show that *V. rotiferianus* behaves as a cheater by using a siderophore produced
504 by *V. harveyi*. Thus unlike *V. harveyi* and the OsHV-1 virus, which behave cooperatively, *V.*
505 *rotiferianus* successfully colonizes oysters taking advantage of public goods contributed by the
506 microbiota without providing benefit to the POMS-associated microbiota.

507

508

509 **Discussion**

510 Here, we used a natural pathosystem, the Pacific Oyster Mortality Syndrome (POMS), to
511 disentangle the complex web of interactions that shape polymicrobial assemblages and
512 pathogenicity. Our data highlighted a web of interdependencies in which diverse microorganisms
513 shape the POMS pathobiota and accelerate disease progression. In particular, we identified
514 conserved cooperative traits accelerating disease progression as well as incidental cheating traits.
515 These traits contribute to shaping the *Vibrio* community associated with OsHV-1-infected oysters.

516 We showed here that the population structure of *Vibrio*, a genus consistently found in the POMS
517 pathobiota [52], varies across French Atlantic and Mediterranean oyster-farming environments.
518 Indeed, we found *V. harveyi* and *V. rotiferianus* (Harveyi clade) positively associate with OsHV-1-
519 infected oysters during field mortalities in the Mediterranean. This finding contrasts with a
520 previous analysis of Atlantic oysters where *V. crassostreae* (Splendidus clade) dominated [17].
521 Experimentally, two out of four different species from the same clade were recruited from
522 seawater, suggesting that the environment serves as a reservoir for *Vibrio* recruitment during

523 POMS. Differences in *Vibrio* species associated with OsHV-1-infected oysters are therefore likely
524 related to different environmental distributions of *Vibrio* species. Indeed, while *V. crassostreae* is
525 present at high latitudes, e.g. in the North sea, Germany [53], *V. harveyi* preferentially grows in
526 warm waters [54], such as those found for half the year in the Thau lagoon (16-30°C) [55].
527 Consistently, *V. harveyi* has been associated with disease outbreaks under rising sea surface
528 temperatures [56]. Remarkably, the data from both locations (Atlantic/Mediterranean) converges
529 in that the OsHV-1 virus is associated with specific populations of *Vibrio* in diseased oysters only.
530 Our data indicate that OsHV-1 is key to enabling colonization by such specific *Vibrio* species.

531 By focusing on *Vibrio* that naturally co-infect oysters with OsHV-1, we observed a first level of
532 interdependence and polymicrobial synergy occurring during POMS. Indeed, the combined effects
533 of OsHV-1 and *Vibrio* triggered a faster host death than that observed when the microorganisms
534 were used in isolation to infect oysters. While both *V. harveyi* and *V. rotiferianus* successfully
535 colonized OsHV-1-infected oysters, polymicrobial synergy was specifically observed between
536 OsHV-1 and *V. harveyi*. The benefits of co-infection were not only observed for OsHV-1 but also
537 for the whole *Vibrio* community: both showed significantly greater expansion prior to oyster
538 death when OsHV-1 and *V. harveyi* were co-infected. Whether other bacterial genera conserved
539 among POMS consortia (e.g. *Arcobacter*, *Marinomonas*) [15, 52, 57] also contribute to this
540 polymicrobial synergy or play complementary roles in the polymicrobial consortium remains to
541 be established.

542 A key mechanism underlying polymicrobial synergy between OsHV-1 and *Vibrio* is the dampening
543 of oyster cellular defenses, which makes the local environment less hostile for the entire
544 microbiota. This manipulation of cellular immunity is key in a number of polymicrobial infections. For
545 instance, induction of IL-10-producing macrophages by *M. tuberculosis* favors HIV-1 replication and
546 spread [8]. Similarly, the apoptosis of macrophages, neutrophils, dendritic cells and NK cells
547 contributes to the fatal outcome of influenza A virus / *S. pneumoniae* co-infections [5]. Importantly,
548 cytotoxicity to host immune cells is a phenotypic trait conserved in *Vibrio* species that co-occurs with
549 OsHV-1 in diseased oysters. Indeed, cytotoxic effects toward oyster hemocytes is a functional trait

550 conserved in Mediterranean strains of *V. harveyi*, as well as in strains of *V. crassostreae*, *V.*
551 *tasmaniensis* and *V. splendidus* [19, 21, 58] isolated from POMS-diseased oysters in the Atlantic
552 [17, 20, 25, 59, 60]. We previously showed that cytotoxicity toward immune cells is essential for
553 *Vibrio* to colonize oyster tissues [21]. This indicates that *Vibrio* species that harbor similar
554 functions are likely replaceable within the POMS bacterial consortia. Our mesocosm experiment
555 validated the preferential association of *V. harveyi* with OsHV-1-infected oysters under controlled
556 conditions, showing that cytotoxic *Vibrio* species can be recruited from the ecosystems where they
557 circulate. In the mutualistic association between the mollusk *Euprymna scolopes* and its symbiont
558 *Vibrio fischeri*, it was also shown that *Vibrio* phenotypic traits determine their capacity to be
559 recruited from the environment [61]. Overall, our data show that similar to OsHV-1 [14], cytotoxic
560 *Vibrio* species modify their extracellular environment by targeting oyster immunity. This results
561 in eased proliferation of co-infecting partners, as shown here for OsHV-1 and specific *Vibrio*
562 species. This fundamental cooperation taking place within the POMS pathobiota has benefits for
563 the entire polymicrobial consortium.

564 Our present study suggests that cooperation through dampening host defenses contributes to the
565 shaping of the POMS pathobiota assembly. This supports recent studies highlighting that
566 cooperative interactions within animal microbiota participate in the shaping of community
567 composition and functioning (for review see [62]). However, pathogenic microbes cooperating to
568 manipulate their host may be outcompeted by other members of the microbiota that do not invest
569 in cooperation. Manipulation is therefore only expected to be favored if its benefits predominantly
570 fall back on the manipulator [63]. One important benefit for OsHV-1 and *V. harveyi* observed here
571 is a higher load for both manipulators. Another likely benefit is increased pathogen transmission
572 due to accelerated host death (Fig. 6). From a general point of view, accelerating host death is not
573 predicted to be favorable to pathogens as this may drive the host, and consequently themselves,
574 to extinction, unless transmissibility is also increased [64]. This is particularly true for pathogens
575 with narrow host spectra like *V. harveyi* and *V. crassostreae*, but also for OsHV-1, which are almost
576 exclusively found in oysters (this study;[17]). POMS is typically transmitted from oyster to oyster

577 by a massive release of pathogens into the seawater, which in turn infects neighboring oysters
578 through filter-feeding [57, 65]. We can therefore hypothesize that polymicrobial synergy leading
579 to accelerated release of OsHV-1 and *Vibrio* into seawater is advantageous in terms of group
580 selection.

581 Beyond cooperative traits conserved among successful *Vibrio* colonizers, we find evidence that
582 cheating is an efficient strategy that *Vibrio* use to colonize oysters affected by POMS. Indeed, unlike
583 *V. harveyi*, *V. rotiferianus* does not invest resources in virulence nor cytotoxicity. Moreover, our
584 data argues that *V. rotiferianus* lacks the costly pathways to synthesize vibrioferrin. Instead, this
585 species imports this siderophore, produced by *V. harveyi*, to promote its own growth. In contrast,
586 the unsuccessful colonizers *V. owensii* and *V. jasicida* lack the vibrioferrin uptake machinery,
587 which may contribute to their competitive exclusion [66].

588 Remarkably, vibrioferrin biosynthetic pathways are highly conserved between *V. harveyi* and *V.*
589 *crassostreae*, the two main species associated with POMS in the Mediterranean and the Atlantic.
590 Comparison of these *Vibrio* genomes reveals conserved synteny and > 70% amino acid identity in
591 homologous proteins involved in these pathways (Fig. S12). Both *Vibrio* species can, therefore,
592 supply similar public goods to the POMS pathobiota. Metabolite cross-feeding, which enables a
593 bacterium to consume metabolites produced by another community member, can mediate
594 synergy in multi-species infections (for review see [1]). Cheating behavior regarding iron-
595 acquisition was earlier described in *Vibrio* by Cordero *et al.* [51]. The authors showed that within
596 ecologically cohesive clusters of closely related *Vibrio*, only some genotypes were able to produce
597 siderophores. Meanwhile, non-producers had selectively lost siderophore biosynthetic pathways.
598 We observe traces of selective loss in *V. rotiferianus* strains: while *V. rotiferianus* and *V. harveyi*
599 both harbor the genomic region that contains vibrioferrin receptors, the former species
600 specifically lacks the vibrioferrin biosynthetic genes.

601 The cheating behavior arguably coevolves with ecological adaptation of *Vibrio* toward association
602 with larger particles in the water column, consistent with efficient siderophore sharing where

603 local densities of bacteria are high [51]. Because oysters host dense populations of bacteria in
604 their body fluids ($> 10^7$ culturable bacteria/mL during episodes of POMS [67]), they constitute
605 microhabitats where cheating can occur. Oysters could, therefore, provide a favorable niche for
606 *Vibrio* strains that can import iron-loaded siderophores. Importantly, the present study shows
607 that cheating for iron acquisition occurs inter-specifically and coincides with the co-occurrence of
608 *V. harveyi* and *V. rotiferianus* in POMS-diseased oyster. Indeed, our two-year Mediterranean field
609 survey showed that *V. harveyi* is repeatedly associated with diseased oysters. *V. harveyi* co-occurs
610 with *V. rotiferianus* in oyster flesh, and to a lower extent in particles $>60\mu\text{m}$ (zooplankton) and 5-
611 $60\mu\text{m}$ (phytoplankton). These host-associated states provide conditions where *V. rotiferianus*
612 could have evolved cheating behavior. Thus, social interactions through siderophore-sharing
613 appear to structure the assembly of bacterial species in oysters affected by POMS.

614

615 **Conclusion:**

616 By disentangling the complex interactions at play in the Pacific Oyster Mortality Syndrome, we
617 have shown that cooperation is key in the functioning of this natural pathosystem. Cooperation
618 and cheating seem to drive the assembly of the pathobiota. The former manifests as polymicrobial
619 synergy between the OsHV-1 virus, the etiological agent of POMS and secondary *Vibrio* colonizers.
620 Dampening of oyster cellular defenses and siderophore sharing, both of which make the host
621 environment more favorable for microbial proliferation, are two cooperative traits conserved in
622 the main POMS-associated *Vibrio* species, namely *V. harveyi* and *V. crassostreae*, across oyster
623 farming environments. This knowledge opens new avenues for the control of polymicrobial
624 diseases by interfering with polymicrobial assembly. Implementation of ecological principles,
625 such as interfering with cooperative behavior within the microbiome (*e.g.* siderophore sharing)
626 or altering the local environment of the POMS pathobiota (*i.e.* stimulating host defenses) are
627 promising solutions for future exploration. We have shown recently that eliciting oyster antiviral
628 defenses through so-called immune priming is sufficient to prevent colonization by OsHV-1 and

629 subsequent disease development [37, 68]. Similarly, exposure to microbial communities at early
630 developmental stages (referred to as biological embedding) was also protective against POMS
631 [69]. Such solutions, which make the host a less favorable niche for the OsHV-1 virus [68] and/or
632 bacteria [69], are promising avenues for preventing or reducing the assembly of microbial
633 consortia that produce POMS.

634

635

636 **Declarations**

637 *Ethics approval*

638 The animal (oyster *Crassostrea gigas*) testing followed all regulations concerning animal
639 experimentation. The authors declare that the use of genetic resources fulfill the French
640 regulatory control of access and EU regulations on the Nagoya Protocol on Access and Benefit-
641 Sharing (ABSCH-IRCC-FR-259502-1).

642

643 *Availability of data and materials*

644 Targeted gene sequences (*hsp60*, *rctB*, *topA* and *mreB*) and all sequence files with associated
645 metadata generated in mesocosm experiments are available in Ifremer Oceanic database (doi
646 doi.org/10.12770/173c0414-a3ca-4a79-b6b2-cd424ee90593 [28] and
647 doi.org/10.12770/63b02659-cd9d-4834-8e6d-8adfa736755d [70]). Genome assemblies have
648 been deposited in the European Nucleotide Archive (ENA) under project accession no.
649 PRJEB49488. Original R statistic scripts for metagenomics analyses and the phyloseq table are
650 available <https://doi.org/10.5281/zenodo.7599486>.

651

652 *Competing interests*

653 The authors declare that they have no competing interests.

654

655 *Funding*

656 This work was funded by the Agence Nationale de la Recherche (DECICOMP, ANR-19-CE20-0004),
657 IFREMER, the European Union's Horizon 2020 Research and Innovation Program Grant Vivaldi
658 678589. François Delavat was awarded the "Rising Star" SMIDIDI project from the French Pays de
659 la Loire Region. This study falls within the framework of the "Laboratoires d'Excellence (LABEX)"
660 Tulip (ANR-10-LABX-41).

661

662 *Author contributions :*

663 Conception: DDG, MAT, GMC, FLR, GM. Designed the work: DDG, MAT, GMC, FLR, GM, DO, AL.
664 Acquisition, analysis and/or interpretation of data: DO, AL, MB, PH, AM, YD, FD, NI, BM, ET, CC,
665 CM, JME, YL, YG, JDL, LD, BP, DT, LLP, ML, OR, JP, GM, FLR, GMC, MAT, DDG. Drafted the work: DDG,
666 MAT, GMC, DO, AL or substantively revised it: FLR, GM, JME JDL.

667

668 *Acknowledgments:*

669 We thank Jean-François Allienne at the Bioenvironment platform (University Perpignan Via
670 Domitia) for supporting NGS library preparation and sequencing as well as Valentin Outrebon and
671 Anna Amouroux for crucial technical help. We thank Montpellier RIO Imaging
672 (<https://www.mri.cnrs.fr>) for access to microscopy facilities and the qPHD platform/Montpellier
673 genomix for access to qPCR. We thank the Regional Committee of Mediterranean Shellfish
674 Aquaculture (CRCM) and the Ifremer for access to the shellfish tables and for boats. We thank the

675 GENSEQ platform (<http://www.labex-cemeb.org/> fr/genomique-environnementale-2) from the
676 labEx CeMEB for nucleotide sequencing.

677

678

679 **References**

- 680 1. Murray JL, Connell JL, Stacy A, Turner KH, Whiteley M: **Mechanisms of synergy in**
681 **polymicrobial infections.** *Journal of Microbiology* 2014, **52**:188-199.
- 682 2. Brogden KA, Guthmiller JM: **Polymicrobial Diseases: Current and Future Research.** In
683 *Polymicrobial Diseases.* 2002: 401-410
- 684 3. Bartoli C, Frachon L, Barret M, Rigal M, Huard-Chauveau C, Mayjonade B, Zanchetta C,
685 Bouchez O, Roby D, Carrère S, Roux F: **In situ relationships between microbiota and**
686 **potential pathobiota in *Arabidopsis thaliana*.** *The ISME Journal* 2018, **12**:2024-2038.
- 687 4. McCullers JA, Rehg JE: **Lethal synergism between influenza virus and *Streptococcus***
688 **pneumoniae: Characterization of a mouse model and the role of platelet-activating factor**
689 **receptor.** *Journal of Infectious Diseases* 2002, **186**:341-350.
- 690 5. Mikušová M, Tomčíková K, Briestenská K, Kostolanský F, Varečková E: **The Contribution of**
691 **Viral Proteins to the Synergy of Influenza and Bacterial Co - Infection.** *Viruses* 2022, **14**.
- 692 6. Diedrich CR, Flynn JAL: **HIV-1/Mycobacterium tuberculosis coinfection immunology: How**
693 **does HIV-1 exacerbate tuberculosis?** *Infection and Immunity* 2011, **79**:1407-1417.
- 694 7. Rottenberg ME, Pawlowski A, Jansson M, Sko M: **Tuberculosis and HIV Co-Infection.** *plos*
695 *pathogen* 2012, **8**:e1002464-e1002464.
- 696 8. Souriant S, Balboa L, Dupont M, Pingris K, Kviatcovsky D, Cougoule C, Lastrucci C, Bah A,
697 Gasser R, Poincloux R, et al: **Tuberculosis Exacerbates HIV-1 Infection through IL-10/STAT3-**
698 **Dependent Tunneling Nanotube Formation in Macrophages.** *Cell Reports* 2019, **26**:3586-
699 3599.e3587.
- 700 9. Corey L: **Synergistic Copathogens — HIV-1 and HSV-2.** *N Engl J Med* 2007, **356**:854-856.
- 701 10. Van De Perre P, Segondy M, Foulongne V, Ouedraogo A, Konate I, Huraux J-m, Mayaud P,
702 Nagot N: **Herpes simplex virus and HIV-1 : deciphering viral synergy.** *Lancet Infect Dis* 2008,
703 **8**:490-497.
- 704 11. Athena Aktipis C, Boddy AM, Jansen G, Hibner U, Hochberg ME, Maley CC, Wilkinson GS:
705 **Cancer across the tree of life: Cooperation and cheating in multicellularity.** *Philosophical*
706 *Transactions of the Royal Society B: Biological Sciences* 2015, **370**.
- 707 12. Coyte KZ, Schluter J, Foster KR: **The ecology of the microbiome: Networks, competition, and**
708 **stability.** *Science* 2015, **350**:663-666.
- 709 13. Sofonea MT, Alizon S, Michalakis Y: **Exposing the diversity of multiple infection patterns.**
710 *Journal of Theoretical Biology* 2017, **419**:278-289.
- 711 14. de Lorges J, Lucasson A, Petton B, Toulza E, Montagnani C, Clerissi C, Vidal-Dupiol J,
712 Chaparro C, Galinier R, Escoubas J-M, et al: **Immune-suppression by OsHV-1 viral infection**
713 **causes fatal bacteraemia in Pacific oysters.** *Nature Communications* 2018, **9**:4215-4215.
- 714 15. Clerissi C, Luo X, Lucasson A, Mortaza S, de Lorges J, Toulza E, Petton B, Escoubas J-mM,
715 Degrémont L, Gueguen Y, et al: **A core of functional complementary bacteria infects oysters**
716 **in Pacific Oyster Mortality Syndrome.** *bioRxiv* 2022:2020.2011.2016.384644-
717 382020.384611.384616.384644.

718 16. Petton B, Bruto M, James A, Labreuche Y, Alunno-Bruscia M, Le Roux F: **Crassostrea gigas**
719 **mortality in France: The usual suspect, a herpes virus, may not be the killer in this**
720 **polymicrobial opportunistic disease.** *Frontiers in Microbiology* 2015, **6**:1-10.

721 17. Bruto M, James A, Petton B, Labreuche Y, Chenivesse S, Alunno-Bruscia M, Polz MF, Le Roux
722 F: **Vibrio crassostreae, a benign oyster colonizer turned into a pathogen after plasmid**
723 **acquisition.** *ISME Journal* 2017, **11**:1043-1052.

724 18. Le Roux F: **Diagnosis of vibriosis in the era of genomics : lessons from invertebrates the only**
725 **way to determine the.** *Rev Sci Tech Off Int Epiz* 2016, **35**:259-269.

726 19. Piel D, Bruto M, James A, Labreuche Y, Lambert C, Janicot A, Chenivesse S, Petton B, Wegner
727 KM, Stoudmann C, et al: **Selection of Vibrio crassostreae relies on a plasmid expressing a**
728 **type 6 secretion system cytotoxic for host immune cells.** *Environmental Microbiology* 2020,
729 **22**:4198-4211.

730 20. Lemire A, Goudenege D, Versigny T, Petton B, Calteau A, Labreuche Y, Le Roux F:
731 **Populations, not clones, are the unit of vibrio pathogenesis in naturally infected oysters.**
732 *The ISME Journal* 2015, **9**:1523-1531.

733 21. Rubio T, Oyanedel D, Labreuche Y, Toulza E, Luo X, Bruto M, Chaparro C, Torres M, de
734 Lorgesil J, Haffner P, et al: **Species-specific mechanisms of cytotoxicity toward immune cells**
735 **determine the successful outcome of <i>Vibrio</i> infections.** *Proceedings of the National*
736 *Academy of Sciences* 2019:201905747-201905747.

737 22. Lasa A, di Cesare A, Tassistro G, Borello A, Gualdi S, Furones D, Carrasco N, Cheslett D,
738 Brechon A, Paillard C, et al: **Dynamics of the Pacific oyster pathobiota during mortality**
739 **episodes in Europe assessed by 16S rRNA gene profiling and a new target enrichment next-**
740 **generation sequencing strategy.** *Environmental Microbiology* 2019, **21**:4548-4562.

741 23. King WL, Jenkins C, Seymour JR, Labbate M: **Oyster disease in a changing environment:**
742 **Decrypting the link between pathogen, microbiome and environment.** *Marine*
743 *Environmental Research* 2019, **143**:124-140.

744 24. King WL, Jenkins C, Go J, Siboni N, Seymour JR, Labbate M: **Characterisation of the Pacific**
745 **Oyster Microbiome During a Summer Mortality Event.** *Microbial Ecology* 2019, **77**:502-512.

746 25. Saulnier D, De Decker S, Haffner P, Cobret L, Robert M, Garcia C: **A Large-Scale**
747 **Epidemiological Study to Identify Bacteria Pathogenic to Pacific Oyster Crassostrea gigas**
748 **and Correlation Between Virulence and Metalloprotease-like Activity.** *Microbial Ecology*
749 2010, **59**:787-798.

750 26. Goh SH, Potter S, Wood JO, Hemmingsen SM, Reynolds RP, Chow AW: **HSP60 gene**
751 **sequences as universal targets for microbial species identification: Studies with coagulase-**
752 **negative staphylococci.** *Journal of Clinical Microbiology* 1996, **34**:818-823.

753 27. Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF: **Resource partitioning and**
754 **sympatric differentiation among closely related bacterioplankton.** *Science* 2008, **320**:1081-
755 1085.

756 28. Lagorce A: **Vibrio bacteria sampled from juvenile oysters and seawater collected in Thau**
757 **Lagoon (Languedoc-Roussillon, France).** Database in <https://doi.org/10.12770/173c0414-a3ca-4a79-b6b2-cd424ee90593>.

758 29. Gouy M, Guindon S, Gascuel O: **SeaView version 4: A multiplatform graphical user interface**
759 **for sequence alignment and phylogenetic tree building.** *Mol Biol Evol* 2010, **27**:221-224.

760 30. R Core Team: **A Language and Environment for Statistical Computing. R Foundation for**
761 **Statistical Computing, Vienna.** 2020.

762 31. Sawabe T, Ogura Y, Matsumura Y, Feng G, Rohul Amin AKM, Mino S, Nakagawa S, Sawabe T,
763 Kumar R, Fukui Y, et al: **Updating the Vibrio clades defined by multilocus sequence**
764 **phylogeny: Proposal of eight new clades, and the description of Vibrio tritonius sp. nov.**
765 *Frontiers in Microbiology* 2013, **4**.

766 32. Sawabe T, Kita-Tsukamoto K, Thompson FL: **Inferring the evolutionary history of vibrios by**
767 **means of multilocus sequence analysis.** *J Bacteriol* 2007, **189**:7932-7936.

768

769 33. Edgar RC: **MUSCLE: multiple sequence alignment with high accuracy and high throughput.**
770 *Nucleic Acids Res* 2004, **32**:1792-1797.

771 34. Vanhove AS, Duperthuy M, Charriere GM, Le Roux F, Goudenege D, Gourbal B, Kieffer-
772 Jaquinod S, Coute Y, Wai SN, Destoumieux-Garzon D: **Outer membrane vesicles are vehicles**
773 **for the delivery of *Vibrio tasmaniensis* virulence factors to oyster immune cells.** *Environ*
774 *Microbiol* 2015.

775 35. Dégremont L, Bédier E, Soletchnik P, Ropert M, Huvet A, Moal J, Samain JF, Boudry P:
776 **Relative importance of family, site, and field placement timing on survival, growth, and**
777 **yield of hatchery-produced Pacific oyster spat (*Crassostrea gigas*).** *Aquaculture* 2005,
778 **249**:213-229.

779 36. Azéma P, Lamy JB, Boudry P, Renault T, Travers MA, Dégremont L: **Genetic parameters of**
780 **resistance to *Vibrio aestuarianus*, and OsHV-1 infections in the Pacific oyster, *Crassostrea***
781 ***gigas*, at three different life stages.** *Genetics Selection Evolution* 2017, **49**:1-16.

782 37. Lafont M, Petton B, Vergnes A, Paulette M, Segarra A, Gourbal B, Montagnani C: **Long-lasting**
783 **antiviral innate immune priming in the Lophotrochozoan Pacific oyster, *Crassostrea gigas*.**
784 *Scientific Reports* 2017, **7**:1-14.

785 38. Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A, Le Fevre F, Longin C, Mornico
786 D, Roche D, et al: **MicroScope--an integrated microbial resource for the curation and**
787 **comparative analysis of genomic and metabolic data.** *Nucleic Acids Res* 2012, **41**:D636-647.

788 39. Webb SC, Fidler A, Renault T: **Primers for PCR-based detection of ostreid herpes virus-1**
789 **(OsHV-1): Application in a survey of New Zealand molluscs.** *Aquaculture* 2007, **272**:126-139.

790 40. Thompson JR, Randa MA, Marcelino LA, Tomita-mitchell A, Lim E, Polz MF: **Diversity and**
791 **Dynamics of a North Atlantic Coastal Vibrio Community.** *Appl Environ Microbiol* 2004,
792 **70**:4103-4110.

793 41. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C: **Nextflow enables**
794 **reproducible computational workflows.** *Nature Biotechnology* 2017, **35**:316-319.

795 42. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ,
796 Arumugam M, Asnicar F, et al: **Reproducible, interactive, scalable and extensible**
797 **microbiome data science using QIIME 2.** *Nature Biotechnology* 2019, **37**:852-857.

798 43. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP: **DADA2: High-**
799 **resolution sample inference from Illumina amplicon data.** *Nature Methods* 2016, **13**:581-
800 583.

801 44. McMurdie PJ, Holmes S: **Phyloseq: An R Package for Reproducible Interactive Analysis and**
802 **Graphics of Microbiome Census Data.** *PLoS ONE* 2013, **8**.

803 45. Oksanen J, Blanchet FG, Kindt R, Legendre P, O'hara R, Simpson GL: **Vegan: Community**
804 **ecology package, 2011. R package version, 1.17–18.** 2011.

805 46. Parks DH, Tyson GW, Hugenholtz P, Beiko RG: **STAMP: Statistical analysis of taxonomic and**
806 **functional profiles.** *Bioinformatics* 2014, **30**:3123-3124.

807 47. Morot A, El Fekih S, Bidault A, Le Ferrand A, Jouault A, Kavousi J, Bazire A, Pichereau V,
808 Dufour A, Paillard C, Delavat F: **Virulence of *Vibrio harveyi* ORM4 towards the European**
809 **abalone *Haliotis tuberculata* involves both quorum sensing and a type III secretion system.**
810 *Environmental Microbiology* 2021, **23**:5273-5288.

811 48. Luo P, He X, Liu Q, Hu C: **Developing universal genetic tools for rapid and efficient deletion**
812 **mutation in vibrio species based on suicide t-vectors carrying a novel counterselectable**
813 **marker, vmi480.** *PLoS ONE* 2015, **10**:1-17.

814 49. Le Roux F, Binesse J, Saulnier D, Mazel D: **Construction of a *Vibrio splendidus* mutant lacking**
815 **the metalloprotease gene vsm by use of a novel counterselectable suicide vector.** *Appl*
816 *Environ Microbiol* 2007, **73**:777-784.

817 50. Takeuchi Y, Nagao Y, Toma K, Yoshikawa Y, Akiyama T, Nishioka H, Abe H, Harayama T,
818 Yamamoto S: **Synthesis and siderophore activity of vibrioferrin and one of its**
819 **diastereomeric isomers.** *Chemical and Pharmaceutical Bulletin* 1999, **47**:1284-1287.

820 51. Cordero OX, Ventouras LA, DeLong EF, Polz MF: **Public good dynamics drive evolution of**
821 **iron acquisition strategies in natural bacterioplankton populations.** *Proceedings of the*
822 *National Academy of Sciences of the United States of America* 2012, **109**:20059-20064.

823 52. Clerissi C, de Lorges J, Petton B, Lucasson A, Escoubas JM, Gueguen Y, Dégremont L, Mitta G,
824 Toulza E: **Microbiota Composition and Evenness Predict Survival Rate of Oysters**
825 **Confronted to Pacific Oyster Mortality Syndrome.** *Frontiers in Microbiology* 2020, **11**:1-11.

826 53. Wendling CC, Mathias Wegner K: **Adaptation to enemy shifts: Rapid resistance evolution to**
827 **local vibrio spp. in invasive pacific oysters.** *Proceedings of the Royal Society B: Biological*
828 *Sciences* 2015, **282**.

829 54. Zhou K, Gui M, Li P, Xing S, Cui T, Peng Z: **Effect of Combined Function of Temperature and**
830 **Water Activity on the Growth of Vibrio Harveyi.** *Brazilian Journal of Microbiology*
831 2012:1365-1375.

832 55. Lopez-Joven C, Rolland JL, Haffner P, Caro A, Roques C, Carré C, Travers MA, Abadie E, Laabir
833 M, Bonnet D, Destoumieux-Garzón D: **Oyster farming, temperature, and plankton influence**
834 **the dynamics of pathogenic vibrios in the Thau Lagoon.** *Frontiers in Microbiology* 2018,
835 **9**:2530-2530.

836 56. Montánchez I, Ogayar E, Plágaro AH, Esteve-Codina A, Gómez-Garrido J, Orruño M, Arana I,
837 Kaberdin VR: **Analysis of Vibrio harveyi adaptation in sea water microcosms at elevated**
838 **temperature provides insights into the putative mechanisms of its persistence and spread**
839 **in the time of global warming.** *Scientific Reports* 2019, **9**:289.

840 57. Richard M, Rolland JL, Gueguen Y, de Lorges J, Pouzadoux J, Mostajir B, Bec B, Mas S, Parin
841 D, Le Gall P, et al: **In situ characterisation of pathogen dynamics during a Pacific oyster**
842 **mortality syndrome episode.** *Marine Environmental Research* 2021, **165**.

843 58. Oyanedel D, Labreuche Y, Bruto M, Amraoui H, Robino E, Haffner P, Rubio T, Charrière GM,
844 Le Roux F, Destoumieux-Garzón D: **Vibrio splendidus O-antigen structure: a trade-off**
845 **between virulence to oysters and resistance to grazers.** *Environmental Microbiology* 2020,
846 **00**.

847 59. Gay M, Renault T, Pons AM, Le Roux F: **Two Vibrio splendidus related strains collaborate to**
848 **kill Crassostrea gigas: Taxonomy and host alterations.** *Diseases of Aquatic Organisms* 2004,
849 **62**:65-74.

850 60. Bruto M, Labreuche Y, James A, Piel D: **Ancestral gene acquisition as the key to virulence**
851 **potential in environmental Vibrio populations.** *ISME J* 2018.

852 61. Bongrand C, Ruby EG: **The impact of Vibrio fischeri strain variation on host colonization.**
853 *Curr Opin Microbiol* 2019, **50**:15-19.

854 62. Figueiredo ART, Kramer J: **Cooperation and Conflict Within the Microbiota and Their Effects**
855 **On Animal Hosts.** *Frontiers in Ecology and Evolution* 2020, **8**:132-132.

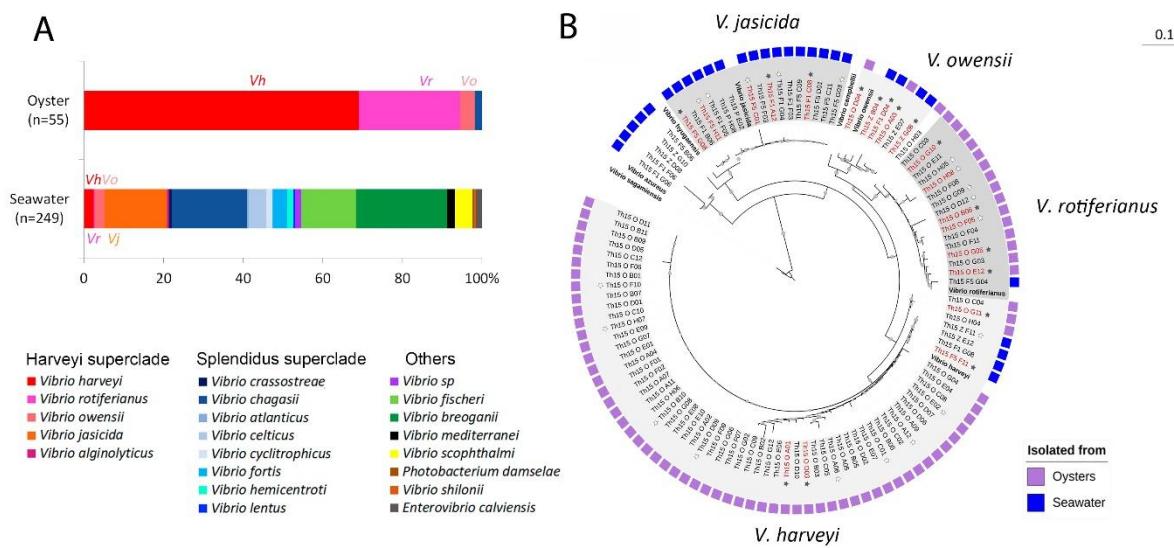
856 63. Johnson KVA, Foster KR: **Why does the microbiome affect behaviour?** *Nature Reviews*
857 *Microbiology* 2018, **16**:647-655.

858 64. Lenski RE, May RM: **The evolution of virulence in parasites and pathogens: Reconciliation**
859 **between two competing hypotheses.** In *Journal of Theoretical Biology*, vol. 169. pp. 253-265;
860 1994:253-265.

861 65. Petton B, de Lorges J, Mitta G, Daigle G, Pernet F, Alunno-Bruscia M: **Fine-scale temporal**
862 **dynamics of herpes virus and vibrios in seawater during a polymicrobial infection in the**
863 **Pacific oyster Crassostrea gigas.** *Diseases of Aquatic Organisms* 2019, **135**:97-106.

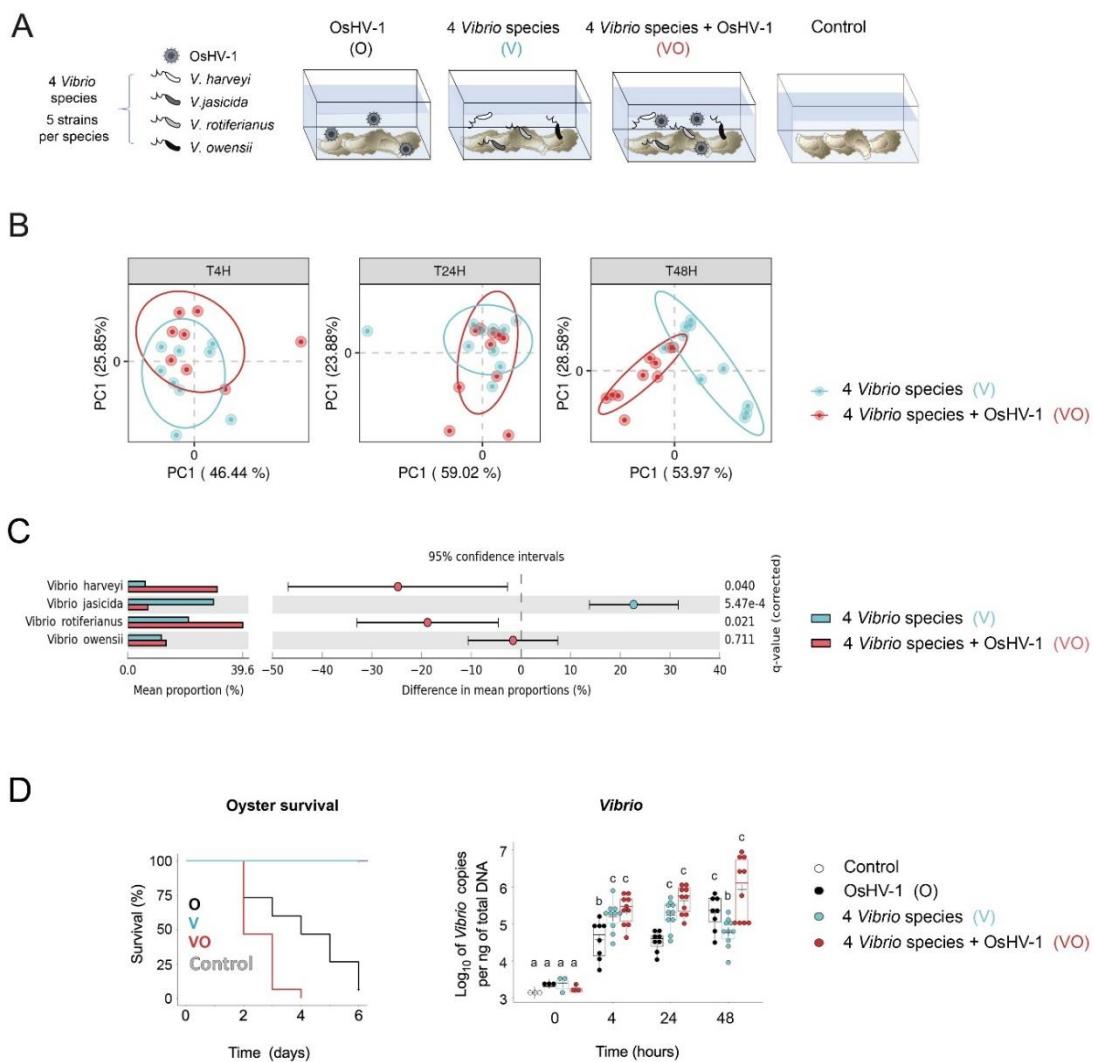
864 66. Eickhoff MJ, Bassler BL: **Vibrio fischeri siderophore production drives competitive exclusion**
865 **during dual-species growth.** *Molecular Microbiology* 2020, **114**:244-261.

866 67. de Lorges J, Escoubas JM, Loubiere V, Pernet F, Le Gall P, Vergnes A, Aujoulat F, Jeannot JL,
867 Jumas-Bilak E, Got P, et al: **Inefficient immune response is associated with microbial**
868 **permissiveness in juvenile oysters affected by mass mortalities on field.** *Fish and Shellfish*
869 *Immunology* 2018, **77**:156-163.

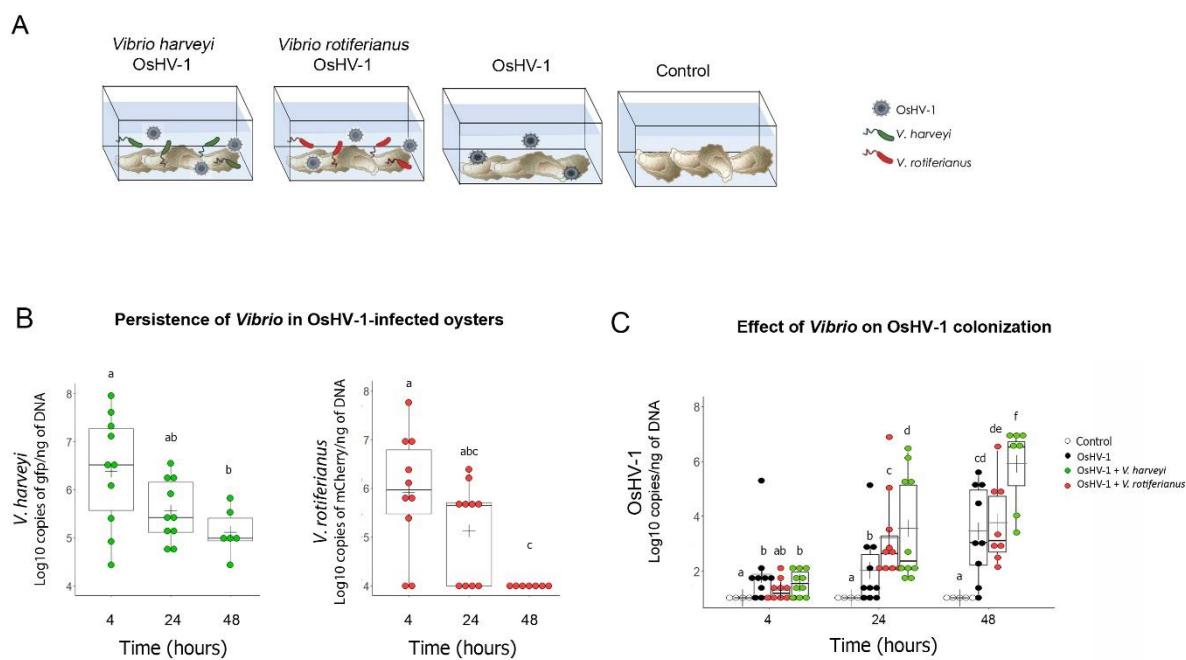

870 68. Lafont M, Vergnes A, Vidal-Dupiol J, de Lorges J, Gueguen Y, Haffner P, Petton B, Chaparro
871 C, Barrachina C, Destoumieux-Garzon D, et al: **A Sustained Immune Response Supports**

872 **Long-Term Antiviral Immune Priming in the Pacific Oyster, *Crassostrea gigas*. *mBio* 2020,**
873 **11:1-17.**

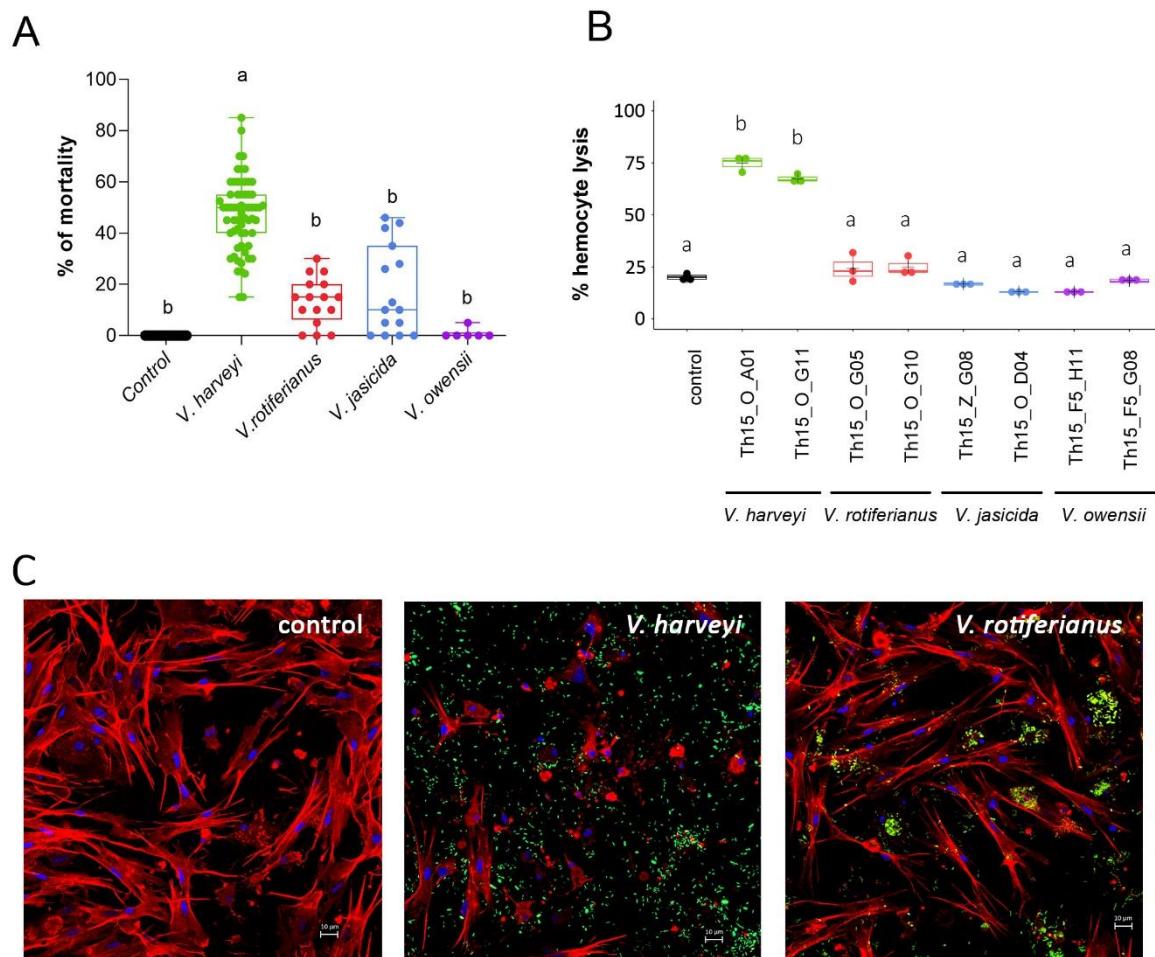
874 69. Fallet M, Montagnani C, Petton B, Dantan L, de Lorgesil J, Comarmond S, Chaparro C, Toulza
875 E, Boitard S, Escoubas J-M, et al: **Early life microbial exposures shape the *Crassostrea gigas***
876 **immune system for lifelong and intergenerational disease protection.** *Microbiome* 2022,
877 **10:1-21.**


878 70. Oyanedel D, Destoumieux-Garzon D, Travers MA, Lagorce A: **rctB metabarcoding sequencing**
879 **of *Vibrio Harveyi* during oyster experimental infections.** Database in
880 <https://doi.org/10.12770/63b02659-cd9d-4834-8e6d-8adfa736755d>.

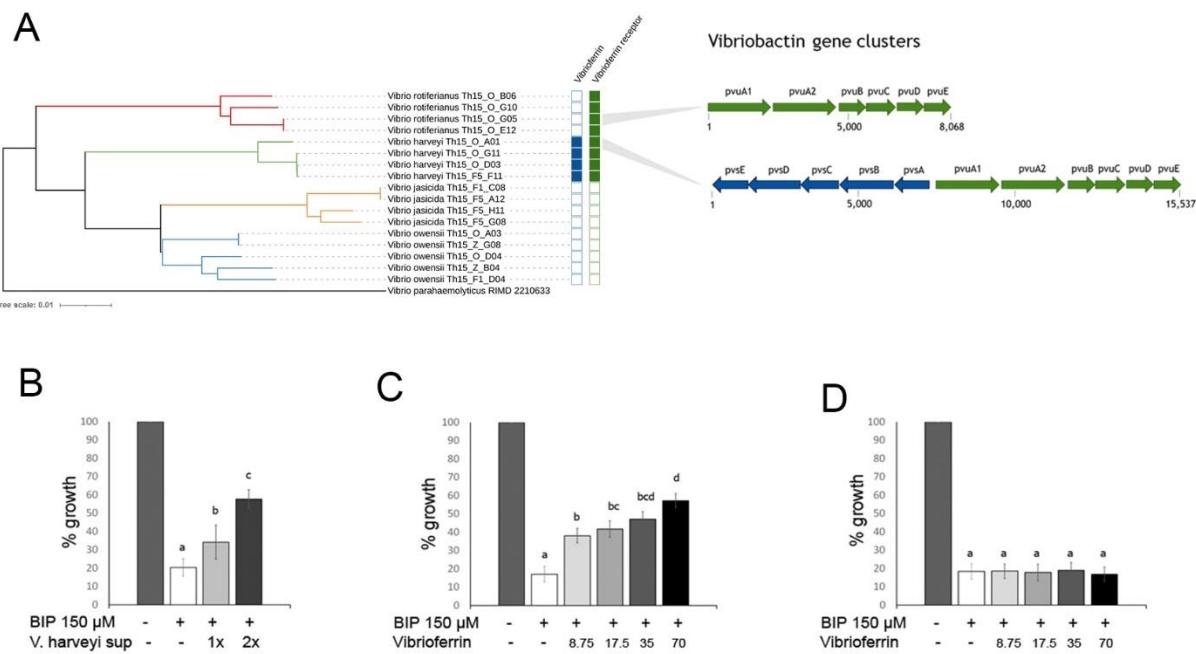
881


Figure 1. *Vibrio harveyi* and *Vibrio rotiferianus* are the most prevalent *Vibrio* species in OsHV-1-infected oysters

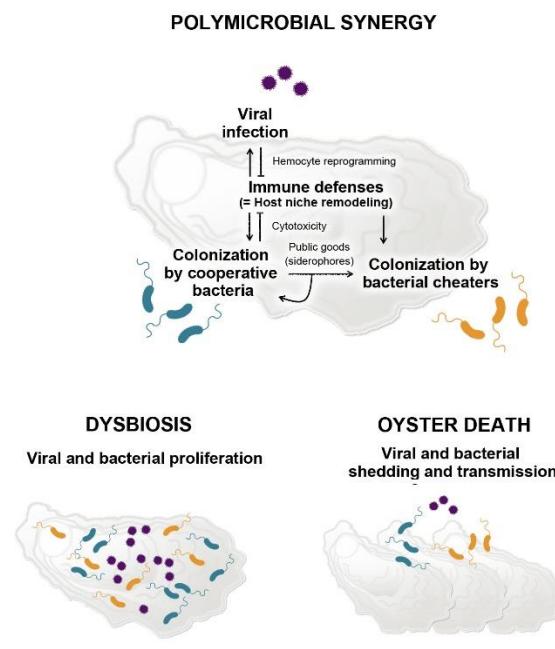
The population structure of *Vibrionaceae* was determined in seawater and oyster flesh during an episode of POMS (Thau lagoon, October 2015). **(A)** shows the distribution (%) of *Vibrio* isolated from oysters and seawater. A total of 304 isolates whose *hsp60* sequence displayed $\geq 95\%$ identity with a *Vibrio* type strains were included. A high prevalence of the Harveyi super-clade (*V. harveyi* -Vh, *V. owensii* -Vo, *V. jasicida* -Vj and *V. rotiferianus* -Vr) is observed in oysters. **(B)** shows the high prevalence of *V. harveyi* and *V. rotiferianus* in oysters after taxonomic affiliation shown in A was validated by an MLST analysis. Four marker genes (*hsp60*, *rctB*, *topA* and *mreB*) were used. A phylogenetic tree was constructed with the concatenated sequences of the 4 markers. The following reference strains were used in the analysis: *V. azureus* NBRC 104587, *V. campbellii* CAIM 519, *V. harveyi* NBRC 15634, *V. hyugaensis* 090810a, *V. jasicida* CAIM 1864, *V. owensii* CAIM 1854, *V. rotiferianus* CAIM 577, *V. sagamiensis* NBRC 104589. *Vibrio sagamiensis* type strain was used as an outgroup to root the tree. Bootstrap values ($>50\%$) are indicated by circles on branches. Color boxes indicate whether a strain was isolated from seawater (blue boxes) or from oysters (purple boxes). For details on seawater column fractionation, see Fig. S2. Stars indicate strains whose genome was sequenced in this study, and filled stars those used for comparative genomics. Red indicates strains used in mesocosm experiments (Fig. 2).


Figure 2. OsHV-1 synergizes with *Vibrio harveyi* and/or *Vibrio rotiferianus* to kill oysters

(A) Mesocosm experiment to test OsHV-1 synergy with *Vibrio* species (Design 1). Specific pathogen-free oysters were placed in contact with seawater containing OsHV-1 (10^8 genomic units mL^{-1}) or *Vibrio* (10^7 CFU. mL^{-1}) or both during 6 days at 20°C. (O): seawater containing only OsHV-1. (V): 4 species of the Harveyi clade (V; *V. harveyi*, *V. rotiferianus*, *V. owensii*, *V. jasicida*), (VO): both OsHV-1 and *Vibrio*, (C): Controls not exposed to pathogen. **(B) Monitoring of the OsHV-1-induced dysbiosis by *rctB*-barcoding.** Principal Component Analysis (PCoA) ordination plots of Bray-Curtis dissimilarities for the Harveyi-related community associated with oysters. PCoA results are depicted for each time point (i.e. 4, 24 and 48 h). Each dot represents the *Vibrio* microbiome of one oyster. Colors refer to the experimental condition (blue for V, red for VO). Ellipses represent the 95% confidence intervals for each group. PERMANOVA between the two experimental conditions and the three time-points indicates significant differences $p = 0.001$ (see Fig S5). Statistical differences between V and VO conditions are observed at 48 h. **(C) Colonization of diseased oysters by *V. harveyi* and *V. rotiferianus* at 48 h.** The left barplot represents the mean proportion of the species *V. harveyi*, *V. rotiferianus*, *V. owensii*, *V. jasicida* in oysters from the V and VO conditions at T=48h. The right dot plot represents the difference in mean proportion of each species by STAMPS analysis. Statistical differences were obtained from Welch's t-test (p-value corrected with Benjamini-Hochberg FDR). **(D) Synergy between OsHV-1 and *V. harveyi*/*V. rotiferianus*.** Left panel shows a significant increase in the mortality rate for oysters exposed to both Harveyi and OsHV-1 (in red) compared to OsHV-1 only (in black) (Kaplan-Meier survival curves, log-rank test, $p = 0.0018$). Right panel shows that oyster colonization by *Vibrio* is favored by OsHV-1 (Kruskal-Wallis test, p value < 0.001).


Figure 3. OsHV-1 and *V. harveyi* cooperate to colonize oysters

(A) Simplified mesocosm experiment using fluorescent strains of *V. harveyi* and *V. rotiferianus* (Design 2). In order to identify putative cooperative behaviors between OsHV-1 and *Vibrio*, oysters were immersed at 20°C in seawater containing OsHV-1 and fluorescent *Vibrio* (either *gfp*-labeled *V. harveyi* Th15_O_G11 or *mCherry*-labeled *V. rotiferianus* Th15_O_G05). Exposure to OsHV-1 only or immersion in seawater without introduced pathogen were used as a control. Oysters were collected at 4 h, 24 h, and 48 h, *i.e.* before mortalities occurred, to monitor pathogen load in oyster tissues. **(B) Higher persistence of *V. harveyi* in OsHV-1-infected oysters.** *Vibrio* loads were determined by qPCR by quantifying *gfp* and *mCherry* copies in total DNA extracted from oyster flesh in OsHV-1/*V. harveyi* and OsHV-1/*V. rotiferianus* co-infections, respectively. Each dot represents an individual oyster (t-test, $p < 0.05$). Only *V. harveyi* is detected at $> 10^5$ copies/ng DNA over the time course of the experiment. Detection limit: 10^4 copies/ng DNA. **(C) *V. harveyi* promotes OsHV-1 replication.** OsHV-1 load was measured by qPCR in the flesh of oysters exposed to OsHV-1 and *gfp*-labeled *V. harveyi* Th15_O_G11 (green) or OsHV-1 and *mCherry*-labeled *V. rotiferianus* Th15_O_G05 (red), or OsHV-1 only (black). Each dot represents an individual. (t-test, $p < 0.05$). A significant increase in OsHV-1 load is observed in the presence of *V. harveyi*.


Figure 4. *V. harveyi* strains show high virulence potential and cytotoxicity toward oyster immune cells

(A) *V. harveyi* is significantly more virulent than other Harveyi-related species in oyster experimental infection. Oyster mortality rate (%) was measured at 24 h following an injection of Harveyi-related isolates. Mortality rates were compared for each *Vibrio* species using the Kruskal-Wallis test with post-hoc Dunn Test. Significant differences between mean values are represented by different letters (p -value < 0.0001). *V. harveyi* ($n=63$), *V. rotiferianus* ($n=16$), *V. jasicida* ($n=15$), *V. owensii* ($n=6$) (Kruskal-Wallis test, $p < 0.001$). *V. harveyi* isolates induced significantly higher mortalities than other strains. **(B) *V. harveyi* is significantly more cytotoxic to oyster hemocytes than other species.** *Vibrio* cytotoxicity was determined on monolayers of hemocytes and monitored using Sytox green labelling. Cells were incubated with bacteria at a MOI of 50:1. The maximum percentage of hemocyte lysis (%) caused by *Vibrio* is displayed. Error bars represent the standard deviation of the mean, different letters represent significant differences between means in a multiple comparison test ($p < 0.05$, One-way ANOVA with post-hoc Tukey HSD Test). Strains of *V. harveyi* were significantly more cytotoxic than other strains. **(C) *V. harveyi* but not *V. rotiferianus* causes damage to oyster hemocytes.** The *Vibrio* effect on hemocytes was observed by epifluorescence microscopy. Monolayers of hemocytes were incubated with fluorescently-labeled *V. harveyi* Th15_O_G11 or *V. rotiferianus* Th15_O_G05 at a MOI of 50:1 for 2h. Actin was stained with Fluorescent-phalloidin (Red), Chromatin was stained with DAPI. *Vibrio* strains expressing fluorescent proteins are shown in Green. Cell damage was only observed with *V. harveyi*.

Figure 5. *V. rotiferianus* growth in iron-poor conditions is rescued by *V. harveyi* supernatant or vibrio ferrin

(A) Possible cheating on vibrio ferrin uptake in *V. rotiferianus*. Comparative genomics between strains of *V. harveyi* (Th15_O_G11, Th15_F5_F11, Th15_O_D03, Th15_O_A01) and *V. rotiferianus* (Th15_O_G05, Th15_O_G10, Th15_O_B06, Th15_O_E12) point to a possible cheating behavior for vibrio ferrin uptake in *V. rotiferianus*, which has receptor for vibrio ferrin but does not produce it. **(B) *V. rotiferianus* growth in iron-depleted medium is rescued by *V. harveyi* culture supernatant.** Iron-depletion was obtained by adding 150 μ M 2,2'-bipyridine (BIP) to the minimal culture medium. Dose-dependent growth rescue of strain Th15_O_G05 was achieved by adding *V. harveyi* Th15_O_G11 culture supernatant (either 1X or 2X concentrated by lyophilization). **(C) *V. rotiferianus* growth in iron-depleted medium is rescued by vibrio ferrin.** Dose-dependent growth rescue of strain Th15_O_G05 was achieved by 8.75 to 70 μ M vibrio ferrin (see Fig. S8 for vibrio ferrin synthesis). **(D) *V. rotiferianus* growth rescue requires the iron-vibrio ferrin receptor PvUa.** Growth of *V. rotiferianus* Th15_O_G05 Δ pvuA1-A2 in iron-depleted medium was not rescued by addition of vibrio ferrin up to 70 μ M. Letters indicate significant differences between conditions ($p < 0.05$, Kruskal-Wallis).

Figure 6. A systemic view of Pacific Oyster Mortality Syndrome polymicrobial synergy.

Oysters are infected by OsHV-1 μvar, which impairs host immune defenses making the environment less hostile for stable bacterial colonization. Secondary bacterial colonization is enabled. The subset of cooperative bacteria that exhibit cytotoxicity toward hemocytes further dampen oyster immune defenses. This dampening is beneficial to the whole microbial community (bacteria and the OsHV-1 virus) and leads to dysbiosis. Cooperative bacteria also secrete siderophores that can be used by other members of the community who do not invest in costly mechanisms of colonization (cheaters). Cooperation between the virus and cytotoxic bacteria accelerates host death leading to the shedding of bacteria and viruses that can infect new hosts.