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Abstract

The use of biomedical knowledge graphs (BMKG) for knowledge representation and data integration has
increased drastically in the past several years due to the size, diversity, and complexity of biomedical datasets
and databases. Data extraction from a single dataset or database is usually not particularly challenging.
However, if a scientific question must rely on integrative analysis across multiple databases or datasets, it can
often take many hours to correctly and reproducibly extract and integrate data towards effective analysis. To
overcome this issue, we created Petagraph, a large-scale BMKG that integrates biomolecular data into a schema
incorporating the Unified Medical Language System (UMLS). Petagraph is instantiated on the Neo4j graph
platform, and to date, has fifteen integrated biomolecular datasets. The majority of the data consists of entities
or relationships related to genes, animal models, human phenotypes, drugs, and chemicals. Quantitative data
sets containing values from gene expression analyses, chromatin organization, and genetic analyses have also
been included. By incorporating models of biomolecular data types, the datasets can be traversed with hundreds
of ontologies and controlled vocabularies native to the UMLS, effectively bringing the data to the ontologies.
Petagraph allows users to analyze relationships between complex multi-omics data quickly and efficiently.

Keywords: UMLS, KG, BMKG

Introduction

As biological datasets continue to grow in size and complexity, knowledge graphs and machine learning
approaches applied to knowledge graphs are likely the best near-term solutions for integrating across large and
disparate biomedical datasets (Nicholson and Greene 2020). Knowledge graphs are graph-structured data
collections that integrate data points and their relationships into a connected graph entity. Knowledge graphs
have been used for many applications, including drug discovery and repurposing, target detection, and prediction
(Alshahrani and Hoehndorf 2018; Moon et al. 2021; Zheng et al. 2021; Alves et al. 2021). Other applications
include integration and analysis of heterogeneous COVID-19 data (Steenwinckel et al. 2020; Cernile et al. 2021;
Reese et al. 2021; Domingo-Fernandez et al. 2021; Zhang et al. 2021; Ostaszewski et al. 2021; Chen et al.
2021), oncology research (Zhu et al. 2023; Zhao et al. 2023; Jha et al.), and gene-disease associations (Choi
and Lee 2021; Alves et al. 2021) among many others. The unifying intent in these projects is the meaningful


https://doi.org/10.1101/2023.02.11.528088
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.11.528088; this version posted February 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

integration of heterogeneous biological data for exploration, analysis, and discovery. Machine-learning
approaches can also work with knowledge graphs, including graph-specific methods such as GNNs (Wu et al.
2021); (Kipf and Welling 2016).

Creating biomedical knowledge graphs from multi-omic biomolecular data can involve significant expenditures
in human, computational, and storage resources. Still, a knowledge graph can offer significant advantages to
research efforts once the graph is constructed, including providing a rich, connected environment for exploration
and modeling. We thus constructed Petagraph, a knowledge graph framework based on the Unified Biomedical
Knowledge Graph (UBKG) (Silverstein et al. 2023). The UBKG is a property graph representation of the NIH
Unified Medical Language Service (UMLS) (Bodenreider 2004), enabling Petagraph to extend the UMLS data
model. Petagraph essentially supports integrating large-scale biomolecular and biomedical data types into a
UBKG environment of about 200 cross-referenced ontologies. Thus, Petagraph’s model provides a rich
environment where relationships can be easily established between heterogeneous data types, more richly
connecting the graph.

Petagraph was conceived as a knowledge graph for rapid feature selection to explore candidates for gene variant
epistasis. The graph was assembled on the UBKG scaffold with new models for quantitative data from RNA-seq,
variant, and model organism datasets from projects such as GTEx (Lonsdale et al. 2013), HuBMAP (HUBMAP
Consortium 2019), Kids First (Gabriella Miller Kids First Pediatric Research Program (Kids First)-The Office of
Strategic Coordination-The Common Fund - National Institutes of Health), and IMPC (Groza et al. 2023). We
summarized these and other datasets to generate valuable biological assertions with reduced dimensions
(compared to the original data), which still retain information about the biological processes they represent. For
example, we calculated the median TPM value for each gene for each GTEXx tissue to represent a reduced-
dimension representation of tissue-specific gene expression.

To facilitate the integration of these and other biomolecular datasets into the UMLS ontology schema, we also
included several supporting ontologies and datasets, which will now become permanent additions to the UBKG
(Table S1). The number of supporting ontologies for biomolecular data included in Petagraph also allows for
customization with particular datasets for specific use cases. Petagraph’s biomolecular data model is also
designed to ingest and support several different genomic data types. The latest version of Petagraph also
introduces a Chromosome Region ontology to easily associate relevant features with different resolutions by
chromosome position and chromosomal vicinity (Figures $1-S2).

New datasets are easily incorporated into the Petagraph model as outlined in the Methods section. We show
that Petagraph’s integrated biomolecular data model can yield meaningful results for query-based use cases
that generate rapid feature selection across disparate data types.

METHODS

Concepts, Codes, and Term nodes

The UBKG and thus Petagraph utilizes the UMLS data model containing Concepts, Codes, and Terms that
describe specific categories of data that carry information. These categories are discussed in detail in the UMLS
Metathesaurus (National Library of Medicine (US) 2009). Within Petagraph, “Concept nodes” are the central
backbone of the entire graph model. The Concept node is a graph representation of a UMLS Concept and thus
represents a universal hub for a particular conceptual meaning from external references. For example, a Concept
node for the human gene TP53 may represent that gene's definition or version for a chosen set of references.
Every Concept node is assigned a Concept Unique Identifier (CUI) based on the UMLS model. For example, the
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UMLS's CUI for the H. sapiens TP53 gene is ‘C0079419.” CUIs are simply alphanumeric identifiers and are not
informative outside of their use as an identifier. “Code nodes” identify the external reference IDs that connect to
that Concept node. Examples of three Code nodes connecting to the Concept node for TP53 could be
“‘HGNC:11998” (HGNC ID), “ENSG00000141510” (Ensembl), and “7157” (NCBI Gene ID). Thus a Concept can
be defined by its Code nodes or Term nodes, which can act as definitions or names. A Term node can provide
human-readable information about an attached Code node. In the case of TP53, the Code node “HGNC:11998”
would have the Term labeled “tumor protein p53” (Figure 1).

Petagraph’s data model is built around the UBKG’s property graph model of the UMLS “Concept” and
“Relationship” classes with specific directionalities and is, therefore, a directed graph. A “Concept” in Petagraph’s
model is a generic node class allowed to connect bidirectionally within its class and is the only node type allowed
to have bidirectional edges. Concept nodes can also connect outwardly to other node classes, either “Code
nodes” representing data system IDs, or “Term Nodes,” representing details such as descriptions or definitions,
often connected through Code Nodes. In Figure 1, two Concept nodes are connected bidirectionally using
specific edge types: C0079319 (TP53) and C4748488 (OMIM. Each Code term is connected to its assigned
Concept node outwardly. Each Term node is connected to its Code node. Controlling the directionality of
relationships (edges) in the graph supports the central role that ‘Concepts’ play in the data structure and limits
the number of paths that can be traveled when integrating data types among different datasets and systems.
There are hundreds of edge types in the Petagraph property graph model supporting specific relationships
among Concept nodes, many of which derive from the UMLS relationship classes directly, while others are
designed specifically based on the datasets ingested. A document covering aspects of the Petagraph schema
can be found at:
https://github.com/TaylorResearchlLab/Petagraph/blob/main/schema_docs/schema_reference.md.

We will frequently elide “nodes” when referring to Concept nodes, Code nodes, and Term nodes in this
manuscript for ease of reading.

Standards, Ontologies, and supporting data

The UBKG includes, at the time of this writing, 185 ontological and classification systems, 165 of which are found
in the UMLS. Petagraph additionally includes other reference and interrelated datasets to support the integration
and querying of biomolecular data (Table S1).

Data Ingestion Process
The Petagraph database is instantiated on a Neo4j graph database, version 4.3.

Scripts have been developed as part of the UBKG project for data ingestion and code for the UBKG data
ingestion pipeline is featured in the project’'s GitHub repository (Silverstein et al. 2023). The scripts support
ingesting data that utilize the same identifiers (such as gene name, Human Phenotype Ontology (HP) ID, or
others). In the case that a Concept is already in the UBKG, the existing CUI is utilized and the new Code and
Term(s) added. In cases where we introduce ontologies or data summaries that do not have an existing CUI, the
UBKG ingestion process can automatically generate a new CUI. We have made minor adaptations in the UBKG
scripts for loading biomolecular data for Petagraph, and those scripts have been included in the Petagraph
GitHub repository.
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The data loading pipeline contains four major steps (Figure 2): (1) Data selection and modeling, (2) Cleaning
and preparing data, (3) Executing the UBKG “OWLNETS” pythons scripts and (4) Import using the Neo4j Bulk
Import tool. We discuss each of these steps in turn.

Step 1: Data selection and modeling. The selection, sourcing, review, and modeling of data appropriate for
the knowledge graph requires a comprehensive understanding of the knowledge graph’s existing or planned
model and structure. When creating a model that merges disparate types of biomolecular data, there should be
an emphasis on modeling the relationships that are meaningful and biologically relevant to the data. For example,
when modeling relationships between Concepts for genes and Concepts for associated regulatory motifs,
biological context (such as the proximity of a regulatory motif to a gene within the genome) should be considered
in the model of the relationship. More complex models are used to support experimental data. Petagraph adds
data models and additional data onto the UBKG by appending nodes and relationships to those in the base
CSVs.

Step 2: Manual work in cleaning data into preliminary nodes and edges files. Clean and format the data. If
the data is in OWL format then this step can be skipped and the OWL file can be run directly with the
OWLNETS.py script (see https://github.com/callahantiff/PheKnowLator/wiki/OWL-NETS-2.0). However, most of
the datasets we ingested are not in OWL format, nor are they proper ontologies, so a fair amount of reformatting
and modeling was necessary for almost all of the datasets. After deciding exactly how a specific data set was
going to be modeled, data cleaning mostly involved removing missing or irrelevant data points. Data formatting
consisted of organizing the datasets into rows of ‘triples’, or node-edge-node rows. This ‘edges.tsv’ file
represents all the Concept-to-Concept relationships for the given dataset. The ‘nodes.tsv’ file consists of the
Code ID for the corresponding Concept nodes in the ‘edges.tsv’ file as well as various metadata fields included
in the Terms for the Code nodes.

Step 3: Execution of the UBKG ‘OWLNETS’ python ingestion script to convert nodes and edges files into
UBKG format. Download the necessary UBKG CSVs. The UBKG exists as a set of eleven ‘base’ CSV files that
represent the nodes and edges of the graph. The UBKG CSVs range in size from 5KB to 1GB. Once the nodes
and edges files have been created we use a python script called OWLNETS (that can be found in GitHub:
(https://github.com/TaylorResearchLab/CFDIKG/blob/master/scripts/owlnets/ OWLNETS-UMLS-GRAPH-12.py)
to convert them into the format that the eleven bases UBKG CSVs are in. Once these CSVs have been created,
we append them to the base CSVs. The OWLNETS script was originally written to ingest any OWL-formatted
file seamlessly into the UBKG. However, we have since adapted the script to handle any file that follows the
format of the nodes and edges files. The format used by OWLNETs can be found at https://github.com/dbmi-
pitt/ubkg/tree/main/user_guide.

Step 4: Building the graph with the Neo4j Bulk Import tool. Lastly, once the nodes and edges files for each
dataset have been converted to CSV format and appended to the base CSVs, we use Neo4js bulk import tool to
build the graph on the Neo4j platform. The build process for the current version of Petagraph takes approximately
20 minutes.

Graph Statistical Analyses

Graph statistical analyses were performed with the Neo4j Graph Data Science (GDS) statistics library (v1.6.1)
in the Cypher query language. We applied GDS procedures after excluding certain data sources from analyses
to show the relative impact of every data source on graph statistics (Table 2). Cypher was used to create a
Concept graph. Graph centrality and importance were calculated with the functions gds.degree.stats and
gds.pageRank.stats (maxlterations: 20, dampingFactor: 0.85). As a measure of community counts in the
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Concept-Concept graph, the function gds.labelPropagation.stats estimated the number of highly
connected communities using the Label Propagation Algorithm (LPA). Finally, we utilized
gds.triangleCount.stats to quantify the global triangle (3-cliques) count in Petagraph and the listed
subgraphs.

Semantic type heatmaps were generated from a selection of 54 (out of 127) Semantic Types in Petagraph,
where the selected types are related to anatomy, phenotypes, diseases, and chemical species. The distinct
relationships in each Semantic Type heatmap (Figure 5) were also retrieved from the graph. For Figures 5b
and 5c, the frequency of such relationships are shown between pairwise combinations of semantic Types,
connected through their Concept nodes. Therefore Concept-Concept relationships where one or both Concept
nodes are not connected to Semantic Types are excluded. The presence of relationships (Figure 5a), the
cumulative number of relationship types (Figure 5b), and the relationship counts (Figure 5¢) were plotted using
the package pheatmap v1.0.12 (Kolde 2019) in RStudio v 1.4.1106 (Posit team 2022) R v4.0.4 (R Core Team
2022). To increase the dynamic range in Figures 5b and 5c, the base10 logarithm was used, and to avoid log1o
(0), we added 1 to all values.

Shortest Path Length Analysis

Pairwise shortest path lengths between 256 million distinct pairs of HGNC concept nodes were calculated using
a Petagraph subgraph consisting of only Concept nodes and excluding HUBMAPSC data. Analysis was performed
using the distances function from igraph v1.2.11 (Csardi et al. 2006) in RStudio 2022.12.0.353 (Posit team 2022)
and R v4.2.2 (R Core Team 2022). Figure 6 shows that the majority of shortest paths fall within the range of 1
to 10.

Use Cases

eQTL vs phenotype Use Case

GTEx eQTLs represent variants that are “expression Quantitative Trait Loci” (eQTL) that can potentially indicate
variants that have upstream regulatory influences over a downstream target gene. We sought to identify a
possible link between animal model phenotypes and eQTLs by linking a query across the graph. Figure 7b shows
the neo4j Cypher query to generate all eQTLs associated with a particular mouse phenotype, for example
mammalian atrial septal defect (MP:0010403). The query matches all child phenotypes below the level of
MP:0010403 using a recursive search on the graph and extracts all genes associated with those phenotypes.
Gene-to-phenotype links from mice were included from IMPC using the OBO Relations Ontology (RO)
R0O:0002331 (involved in) term (OBO_Foundry). The mouse gene-human gene relationships were included in
the graph from the HGNC HCOP resource (Yates et al. 2021). The links between genes and eQTLs and the p-
values for each eQTL-tissue relationship were provided by GTEXx. In the query we selected eQTLs for only the
heart left ventricle myocardium using the Uberon ontology (UBERON: 0006566) and right atrium (UBERON:
0006631) as these anatomical parts are associated with atrial septal defects (Mungall et al. 2012). The result of
the query yielded 309 human eQTLs with p<0.05 that are potentially associated with genes linked to mammalian
atrial septal defects (MP:0010403).
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WITH collect(C_concept.CUI) + P concept.CUI AS terms UNWIND terms AS uterms
WITH collect (DISTINCT uterms) AS phenos

MATCH (mp_concept:Concept)-[: R0:0002331" ] - (hcop_concept:Concept ) -

[ :RO_HOM0000020] - (hgnc_concept :Concept)-[:CODE]->(human_gene:Code {SAB:'HGNC'})
WHERE mp concept.CUI IN phenos WITH hgnc_concept, human gene

MATCH (gene_ symbol:Term) - [:PREF TERM] - (hgnc_concept)-[:RO_0001025] -

(gtex concept:Concept )-[:RO_0001025] - (uberon_ concept:Concept)-[:CODE] -
(uberon code:Code {SAB:'UBERON'})

WHERE uberon code.CODE IN ['0006566','0006631'] WITH *

MATCH (gtex code:Code {SAB:'GTEX EQTL'})-[:CODE]- (gtex concept)-[:p_value ]-
(pval_concept:Concept)-[:CODE] - (pval_code:Code) WHERE pval code.upperbound <
0.05

WITH distinct split(gtex code.CODE, '-') AS data

RETURN data[0] AS SNP, data[l]+' '+data[2]+' '+data[3] AS tissue, data[-1] AS
gene

Glycosyltransferase evaluation Use Case

The GlyGen project provides resources for studying biology related to glycosylation (York et al. 2020). GlyGen’s
human glycosyltransferase proteins dataset was utilized to obtain median TPM expression levels for tissues in
the GTEx expression dataset. The expression levels (upper bound and lower bound) for the genes were returned
from the graph. In total, 220 glycosyltransferases were plotted for 40 individual tissues. The GlyGen dataset
provided a list of glycosyltransferases which were integrated into the graph by simply adding a
is_glycosyltransferase relationship between a (human) glycosyltransferase Concept node and the
corresponding HGNC Concept nodes. Then the relationship RO: 0002206 (expressed_in) between HGNC and
GTEx Expression Concept nodes was utilized to connect to the GTEx Expression nodes. Lastly, Expression Bin
nodes, which bin GTEx Expression median TPM values between an upper and lower bound are accessed
through a has_expression relationship. All TPM values were returned in this example, however it would be
trivial to add to the query to filter TPM values for a certain cutoff, or return only the maximum TPM and the
associated glycosyltransferase. The returned data can then be downloaded directly from the Neo4j browser or
programmatic access to the graph can be established using Neo4j's drivers and the data can be returned directly
into your environment. Python 3.7 and matplotlib 3.4 were then used to create Figure 8.

MATCH (glyco_concept:Concept)<-[:is_glycotransferase] - (hgnc_concept:Concept ) -
[:CODE] - (human_gene:Code {SAB:'HGNC'})-[:PT]->(gene_symbol:Term)

MATCH (gtex code:Code {SAB:'GTEX EXP'})-[:CODE]- (gtex cui:Concept) -

[: "RO:0002206 ] - ( hgnc_concept)

MATCH (exp_code:Code)-[:CODE] - (exp_cui:Concept) - [ :has_expression] - (gtex cui ) -
[: "RO:0002206 ] - (ub_cui:Concept) -[:CODE] - (ub_code:Code {SAB: 'UBERON'})-[:PT]-
(ub_term:Term)

RETURN DISTINCT split(gene_symbol.name, ' gene')[0] AS symbol, human gene.CODE AS
hgnc_id, ub_term.name AS tissue, ub_code.CODE AS uberon CODE, exp code.CODE AS
tpm

Glycosylation by Phenotype Use Case
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We obtained a set of glycosylated proteins, glycosylation types (O-linked, N-linked) and protein glycosylation
sites associated with common human congenital heart defects (CHDs) through querying the knowledge graph
using two different methods, one for human using the Human Phenotype Ontology (HP) (Kdhler et al. 2021) and
mouse using the Mammalian Phenotype Ontology (MP) (Smith and Eppig 2009).

Glycosylation by Human Phenotypes (HPO): To identify glycosylated proteins and tissues in humans relative to
disease status, we queried Petagraph with Concepts in HP with the following Codes: HP:0001629 (Ventricular
Septal Defect, VSD), HP:0001631 (Atrial septal defect, ASD), HP:0001643 (Patent ductus arteriosus, PDA),
HP:0001636 (Tetralogy of Fallot, ToF), HP:0001680 (Coarctation of the aorta, CoA), HP:0001719 (Double outlet
right or left ventricle, DORV), HP:0001650 (Aortic valve stenosis, AVS), HP:0012303 (Aortic Arch Anomaly,
AAA), HP:0006695 (Atrioventricular Septal Defect AVCD), HP:0001660 (Truncus arteriosus, TA), HP:0030853
(Heterotaxy, HTX), HP:0001718 (Mitral valve stenosis, MS). For each HP Concept, all “child nodes” below the
originally selected HP phenotype were identified down to the terminal branches. All resulting HP terms were
associated with genes identified on the HP website which publishes relationships of phenotype to gene features
in their phenotype associated with_gene table. This and the genes_associated with_phenotype
tables derive gene-phenotype relationships by linking genes in OMIM and estimated phenotypes to disease, as
discussed (Peter N Robinson, Sebastian Kéhler, Sandra Doelken, Sebastian Bauer 2022). We use relationships
connecting data from UniprotKB (UNIPROTKB) Concepts called has_product that links gene names (HGNC
Concepts) to UNIPROTKB protein IDs, respectively (Boutet et al. 2016). We then used the relationships
on_protein, and has_glycan to identify the glycosylation sites on each protein. Therefore, using this
relationship set, we were able to link across phenotypes, genes, proteins, and glycosylation sites, and identified
or predicted glycans (saccharide) Concept nodes.

Glycosylation by Mouse Phenotypes (MP): Mouse phenotype-to-gene information was identified from IMPC and
MGI. The resource links phenotypes to genes based on observed gene perturbations. Mouse phenotypes as MP
identifiers from these resources were identified as equivalent to HP terms of human phenotypes of interest: i.e.
MP:0010402 (Ventricular Septal Defect, VSD), MP:0000284 (Double outlet right ventricle, DORV), MP:0004113
(Aortic Arch Anomaly, AAA), MP:0010454 (Truncus arteriosus, TA), MP:0010403 (Atrial septal defect, ASD),
dMP:0010412 (Atrioventricular Septal Defect, AVCD), MP:0004133 (Heterotaxy, HTX), MP:0004110 (Dextro-
Transposition of the Great Arteries, TGA), MP:0010449 (Right ventricular outflow tract obstruction, RVO),
MP:0010413 (Complete atrioventricular canal, CAVC), MP:0003387 (Coarctation of the aorta, CoA).

After the mouse gene list was obtained, the human orthologs of the extracted mouse genes
(has_human_ortholog) were linked using the HGNC HCOP relation (Yates et al. 2021) and then retrieved the
glycans and glycosylation type/sites in the proteins encoded by those genes associated with the phenotypes
above, following the steps described in the last paragraph.

Once the data was extracted, we computed the ratio of genes with glycosylated proteins to all genes associated
with each phenotype to estimate how much the involved gene product would interact with glycosylation in
general. Additionally, we found the relative number of distinct glycans per glycosylated proteins as a measure of
the diversity of saccharides employed to modify such proteins. Finally, we took the average number of
glycosylated types/sites per glycosylated proteins for each phenotype as well as all human genes to measure
the extent of glycosylation in each phenotype group. The results of these analyses are reflected in Figure 9.

Developmental origins of heart defects use case
We utilized previously published single-cell gene expression data from embryonic heart samples at 6.5-7 post-
conception weeks (PCW) by gene ID, cell (cluster) identity, anatomy, and cluster p-value and fold change
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enrichment values (Asp et al. 2019). We used the Cell Ontology (Osumi-Sutherland et al. 2021) to link cell type
to cluster identity. For those cell types not found in the Cell Ontology, we created new ‘temporary’ types within
Petagraph until such time that the Cell Ontology is updated. There were 14 author-defined cell types (clusters).
We used the Seurat package in R to further analyze the single-cell RNA-seq data with differential expression
analysis (Butler et al. 2018; Stuart et al. 2019; Hao et al. 2021). By clustering the developing heart cells by the
author-defined cell types we could identify differentially expressed gene (DEG) markers that provided p-value
and log2-fold-change values representing the enrichment of a DEG marker in a cluster (cell type) versus all other
clusters. Nearly 3,000 biomarkers were identified with p<0.05 and log.FC>1 across the 14 cell types. These
biomarker data were mapped to human gene CUIs by HGNC ID and the DEG biomarkers were created as new
Concept nodes that are uniquely identified by their relationships to the biomarker (gene) and cell type (CL)
Concept nodes. We then link the single-cell data in developing the human heart to the mouse phenotypes of
developmental heart defects through MP.

MATCH (p:Code {CODE:'0010403'})<-[:CODE]- (m:Concept)<-[:isa *1..{SAB: 'MP'}]-
(n:Concept)-[: 'RO:0002331" ] - (o:Concept) - [ :RO_HOM0000020] -> (g:Concept) - [ : CODE] -
>(1:Code{SAB: 'HGNC'}) , (t:Term)-[:PREF_TERM]-(q)-[: R0O:0002206 ] - (c:Concept) -
[:10g2FC] - (rs:Concept) - [ :CODE] - (s:Code {SAB:'LOG2FC BINS'}), (c)-[:CODE]-
(r:Code)

RETURN * LIMIT 1

Rofecoxib use case

For this use case, we seek to link an expression signature for the drug rofecoxib (CHEBI:8887) to different
GTEXx tissue expression profiles. The gene expression tissue profiles for CMap and LINCS L1000 data were
summarized for use in Petagraph as discussed in the Supplemental data in the “LINCS L1000” section. The
summarized gene expression profile for rofecoxib from CMap and L1000 (CMAP or LINCS L1000) (Subramanian
et al. 2017) was compared to the tissue-specific gene expression profiles from GTEx. The ratio was calculated
for genes in rofecoxib profiles found in GTEXx tissues (in GTEX_EXP) with the total number of genes in the tissue
with TPM>5. The ratios for each tissue were normalized to the tissue with the highest value. The tissues were
then ranked accordingly (Figure 11).

WITH 'rofecoxib' AS COMPOUND_NAME, 5 AS MIN EXP

MATCH (ChEBITerm:Term {name:COMPOUND NAME})<-[:PT]- (ChEBICode:Code

{SAB: 'CHEBI'})<-[:CODE] - (ChEBIconcept:Concept)-[rl1{SAB:"LINCS"}]-
(hgncConcept:Concept) -[: "'RO:0002206" ] - (gtex_exp cui:Concept)-[: RO:0002206" ] -
(ub_cui:Concept) - [ : PREF_TERM] - (ub_term:Term) ,

(gtex code:Code{SAB: 'GTEX EXP'})-[:CODE]- (gtex exp cui)-[:has_expression]-
(expBinCUI:Concept) - [:CODE]- (expBinCode:Code {SAB:'EXP BINS'}),
(hgncConcept) - [ : CODE] -> (hgncCode:Code {SAB: 'HGNC'}) - [ : SYN] - (hgncTerm: Term)
WHERE expBinCode.lowerbound > MIN EXP

RETURN DISTINCT ChEBITerm.name AS Compound, hgncTerm.name AS GENE,
ub_term.name AS Tissue, expBinCode.CODE AS Expression_ Level

Results

Data modeling was a major consideration in how we introduced quantitative biomolecular data within the
ontology-rich environment supported by the UBKG. Quantitative values are supported within the Petagraph
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model and can be used and queried as numbers. However, we also wanted to integrate quantitative data within
the categorial structure that is native to the UMLS to support complex queries that would not have the overhead
for multidimensional, numerical searches. We created Concept nodes representing interval bins of numerical
ranges, for example for p-values, expression TPM and logoFC. Data points can then be assigned to those bins,
which allows for rapid selection of numerical values in the graph.

To demonstrate the contribution of individual datasets to Petagraph’s final structure, we performed a set of graph
theoretic statistical analyses of Petagraph and the corresponding subgraphs of Petagraph, each excluding one
of the data sources, as shown in Table 2. The analysis included an estimation of the relationship counts for each
dataset as a subgraph (hence the difference in the number of links between subgraphs), degree centrality
analysis, PageRank, global triangle count, and label propagation community count. Table 2 shows that the
majority (>99%) of all triangles in the graph result from the integration of GTEx Coexpression links; that is,
7,490,242,947 triangles within the graph consist of HGNC Concept nodes with an SAB of GTEX_ COEXP. In
understanding this number, one should consider the reciprocal nature of the Concept-Concept relationships as
well as the fact that each triangle is counted thrice to account for each vertex. Another notable observation is the
contribution of the HUBMAP single-cell dataset, (HUBMAPSC) to the overall connectivity in the graph, which is
reflected in the reduction of the mean degree centrality in the subgraph lacking edges from HUBMAPSC, which is
mainly due to its large number of edges. There are differential numbers of relationships between the datasets.
Preferential relationships between different datasets are not explicitly shown here, including several relationship-
only data sets. For example, the GTEX_COEXP data makes up the majority of HGNC-to-HGNC relationships and
the CHEBI-to-HGNC relationships are made up of LINCS and CMAP data.

For the fifteen new datasets ingested into Petagraph, we were interested in how those datasets are inter-related
by dataset identity. Figure 3 shows the logio count of relationships across the datasets. The HGNC (human
gene) category is directly connected to each human biomolecular-derived dataset. HUBMAP currently has the
most human gene relationships given Petagraph’s current model. Future releases of Petagraph will reduce the
number of HUBMAP data points through more aggressive summarization. The GlyGen dataset includes
glycosylated information on mouse proteins and maps to mouse gene IDs identified as human homologs through
HCOP.

In addition to the data included in Table 2, we plotted the deviation percentages of some graph theoretic
measures for a selected number of subgraphs in comparison to Petagraph. As shown in Figure 4, HUBMAPSC
and GTEX_EQTL exclusion would result in the largest deviation in the number relationships (Figure 4a), while
LINCS and CMAP have the second and third rank in terms of the triangles introduced. However, their contribution
is two orders of magnitude smaller than the GTEX_COEXP, as discussed earlier (Figure 4b). Interestingly, the
number of label propagation algorithm (LPA) communities introduced by GTEX_COEXP and LINCS gave rise to
a similar deviation percent to Petagraph but in different directions; while the integration of the LINCS dataset
increased the number of communities by about 0.78%, GTEX_COEXP decreased this number (Figure 4c).

Semantic Types are Petagraph nodes specified to assign types to different entities that are presented as
(Concept-Code-Term) triplets to the graph. Currently, there are 127 Semantic Types in Petagraph attached to
Concept nodes through STY relationship types. To understand how the node and relationship data connect such
Semantic Types, we picked 54 Semantic Types and listed the relationships (type/SAB) for pairwise combinations
of these Semantic Types and presented their quality and quantity as heatmaps (Figure 5).

Figure 5a shows whether there exists at least one relationship type between at least a pair of Concept nodes of
the given start and end Semantic Types. In this regard, this figure can provide intuition into the extent of
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connectivity in the graph from one point of view, i.e., it shows all pairs of types with no graph-wide relationship
between them. Understanding these gaps opens an opportunity to connect the graph across those areas either
through graph-encoded information (e.g. by link prediction) or external data sources. Also, this information can
be viewed as a guide to develop queries that help to deduce information between Semantic Types with no direct
connection between them. For example, Concept nodes with STY of Congenital Abnormality and
Clinical Drug have no direct relationship in the graph, while both have relationships to Physiologic
Function. Hence, given the abundance of links of those entities to this intermediate node, queries could be
utilized to relate the STY of Congenital Abnormality with the STY of Clinical Drug (Figure 5a).

Similar to the approach above, the logio of the number of relationship types (distinguished by the start and end
nodes, relationship type, and SAB) per pair of the 54 Semantic Types was computed and plotted as a heatmap
(Figure 5b). As illustrated in this figure, the highest diversity in interconnectivity was observed for Semantic
Types related to body parts, organs, and tissues, followed by chemicals and biological functions. It was also
observed that Concepts with the same or similar Semantic Types (on or surrounding diagonal) have the highest
chance of being connected through a diverse set of relationships. On the other hand, off-diagonal Semantic Type
pairs are of lower probability to have their associated Concept nodes connected through multiple relationship
types.

While Figure 5b provides information on the diversity of the relationship types connecting Concept nodes, it
does not say much about the number of such relationships. This information is presented in Figure 5¢c. As shown
here, on-diagonal nodes are of the highest likelihood be connected with a larger number of links reflected by the
log1o of their relationship counts, among which Concept nodes with gene or genome Semantic Types have at
least one order of magnitude larger than the second largest pair, and is mostly composed of GTEX COEXP
relationships (N_REL>40M). Together with the information in Figures 5a and 5b, conclusions could be made
about which of the graph’s Semantic Types have the majority of relationships and which information could be
extracted from such relationships to elicit information where it is not directly available.

We were interested in how connected human genes were to one another through secondary relationships. As
stated in the methods section, the distribution of the shortest path lengths between the graph’s Gene to Gene
(HGNC-HGNC) Concept nodes was estimated using a sample of 256 million pairs of such nodes in a subgraph
consisting of Concept nodes (excluding data from HUBMAPSC source) and the result is illustrated in Figure 6.
As depicted in the histogram, the probability distribution for shortest lengths ranges from 1 to 10, and the majority
of HGNC Concept nodes (>50%) are connected to each other through only one intermediary node (one hop) thus
having a path of length 2, followed by length 3 shortest paths (2 hubs), while direct connectivity and 4-length
shortest paths are only a small (<3%) fraction and length >5 paths are relatively negligible.

Use case: Identifying eQTLs linked to genes associated with a disease or disorder.

Diseases and disorders can result from dysregulation of gene expression programs. Genetic changes that can
influence gene expression in tissues have been measured in the GTEXx project as ‘expression’ quantitative trait
loci” or ‘eQTLs.” An eQTL represents a genetic variant whose allele dosage has been shown to influence a
particular gene’s expression profile within a certain tissue. All eQTLs for a particular gene may be interesting to
an investigator who is researching genetic effects of that gene’s expression related to a disease. To explore how
Petagraph can navigate these kinds of questions, we designed a query that can take a phenotype term and then
retrieve all genes associated with that phenotype and then quickly return all tissue-specific eQTLs related to
those genes based on the GTEXx project. We can also easily restrict the output to a particular tissue, as we did
in Figure 7, where we queried on MP “Atrial Septal Defects” (MP:0010403) and all phenotype child terms, used
the genes associated with that phenotype to map to human genes and and then output all human heart eQTLs
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associated with the human genes implicated with that phenotype. This query took under fifteen seconds to
complete on a laptop computer.

Use case: What tissues express the most of a certain gene type?

We also utilized Petagraph to show how disparate data types — phenotypes and protein glycosylation — can be
quickly linked together for interesting observations. Glycosyltransferases are enzymes that catalyze the transfer
of sugar molecules, resulting in the synthesis of saccharides and glycoconjugates. Aberrant gene expression
levels of glycosyltransferases have been implicated in multiple neurodegenerative diseases including
Alzheimer's disease, Parkinson’s disease, and Amyloid Lateral Sclerosis (ALS) (Moll et al. 2020; Schneider and
Singh 2022). Consequently, it may be interesting to query the expression levels of the glycotransferase gene
family in brain tissue compared to other regions of the body. In Figure 8 we show the median per-tissue
expression from GTEXx tissues for 221 human glycosyltransferase genes in selected tissues. This may be useful
for showing which tissues may be most affected by the loss or aberrant expression of one of these genes. This
query links the human glycosyltransferase data set from the GlyGen project and the tissue level expression data
set from GTEXx. This use case demonstrates the ease in which one can easily query gene expression levels for
specific gene identities from other parts of the graph.

Use case: Linking glycosylation data to models of human diseases and disorders.

We also utilized Petagraph to show how disparate data types — phenotypes and protein glycosylation — can be
quickly linked together for interesting observations. In this query, we join the major categories of human
congenital heart defects (CHDs) — the most common type of structural birth defect — with cellular glycosylation
processes as described in the methods section. This type of analysis would be interesting to people studying the
relationship between developmental biology, birth defects, and protein post-translational modification. A manual
approach to this type of analysis would typically require at least an hour’s worth of work merging across several
source files. By using Petagraph, this analysis took seconds.

In this query, predicted glycosylation sites on proteins were extracted by selecting their gene names associated
with the selected phenotypes either in mouse or human. As depicted in Figure 9, we compared glycosylation
processes with three different measures between the CHD-related genes derived from HPO-gene and MP-gene
associations (the top and bottom rows, respectively). These measures include the ratio of the genes with
glycosylated proteins to all genes (Figures 9a & 9d), the average number of distinct glycans per glycosylated
proteins (Figures 9b & 9e), and the average number of glycosylation sites/types per glycosylated proteins
(Figures 9c¢c & 9f). Values for the control group of “all proteins” were for HGNC-labeled genes without conditioning
on an association with any disease. As shown in Figures 9a & 9d, genes that have an association with CHD
have a considerably higher number of protein glycosylation sites compared to all genes in the graph, and that
holds for the majority of CHDs, no matter whether MP or HP is used to link the genes. In Figure 9a, heterotaxy
(HTX) can be seen to be the only phenotype that is associated with genes with proteins with a lower-than-
average ratio of glycosylation sites compared to all genes, while septal defects (atrial (ASD) and ventricular
(VSD)) show the highest ratios collectively. Interestingly, the analysis quickly showed that the majority of CHDs
have a more diverse set of glycans involved in their glycosylation than all human glycosylated proteins Figures
9b & 9e. Finally, the average number of glycosylation sites/types per glycosylated proteins are not as deviated
from that of all human proteome as the previous measures, however HTX-associated genes retrieved through
HPO have a remarkably higher average number of sites/types compared to all glycosylated proteins (>3 folds),
that is, even though such genes are not as abundant, their protein products are highly glycosylated (Figure 9c).

Use case: Identifying cell type markers also associated with disorders and diseases
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Congenital heart defects are abnormalities in heart structure that occur within the developing human heart early
in embryo development (Waters and Hughes 2017; Bennett et al. 2019). By integrating the developmental heart
single-cell RNA-seq data into Petagraph, we can now link cell type and gene expression data across other
ontologies and datasets. For example, we can take advantage of the gene node's relationships to other
ontologies by filtering the data based on gene location, chromosome, transcript type, expression in tissue
(UBERON and GTEXx) or biological function (GO). Ultimately, we are able to query Petagraph for DEGs that
could be associated with CHDs as defined by the Kids First Data Resource Center in order to identify potential
targets for further research. Figure 10 shows that we can identify cell type clusters that express genes that are
linked to a phenotype (Atrial Septal Defects) derived from mouse perturbation study data hosted at the IMPC.

Use case: Drug side effects and tissues of interest

The drug rofecoxib was recalled due to safety concerns because of an observed increased risk for cardiovascular
events, most notably heart attack, and stroke (Topol 2004). Figure 11 summarizes the result of a query used to
extract relationships between a generic drug (rofecoxib) and human tissues. This query is based on the genes
with higher than the threshold (TPM>5) expression levels with relationships with rofecoxib either in CMAP or
LINCS data. An example of such an interconnected set of nodes is given in Figure 11c. As shown in Figures
11a and 11b, the ranked tissues point to different organs, i.e. in the case of CMAP we observed brain tissues
more abundantly (e.g. cortex of frontal lobe or hypothalamic structure, Figure 11a) while LINCS provides a
correct prediction that heart and blood vessels in the GTEx dataset are most closely related to perturbation gene
profiles in rofecoxib (e.g. “right auricular appendage,” “myocardium of left ventricle,” “Coronary arteries,” Figure
11b). The CMAP subgraph represents the CMap pilot study, while the .1000 dataset represents the much larger
L1000 project, which tested rofecoxib across 9 cell lines. (Subramanian et al. 2017). Figure 11d illustrates how
different tissues independently ranked with respect to these datasets correlate to each other, for example, some
liver tissues, testis, and blood are predicted to be amongst the least affected by the dug in both datasets, while
the structure of the kidney cortex is highly affected as indicated in both datasets.

Discussion

In this paper we have introduced Petagraph, a biomedical knowledge graph utilizing the base structure of UBKG
which is a graph implementation of the UMLS. At the time of publication, we have integrated 15 data sources
and mappings into the graph. The majority of these data sources are concerned with genetic and phenotypic
data and their cross-mappings between human and mouse (IMPC, MGI, HP and MP, ClinVar, OMIM). We have
also ingested primary data sources that contain information about how genes are affected by drugs and
chemicals (LINCS L1000, and CMap) as well as gene pathway resources from MSigDB. We now have these
datasets integrated into a powerful knowledge graph containing millions of ontological and semantic mappings
which can be leveraged to enrich queries and provide contextual and categorical meaning to biomedical
questions. By “bringing the data to the ontologies” we have created a large-scale data resource rich in semantic
and categorical annotation that allows for rapid and meaningful biomedical queries.

Petagraph’s biomedical data models can easily integrate new ontology structures or experimental datasets
utilizing one of many commonly used biomedical terminologies, including HGNC gene IDs, chromosomal
locations, small molecule registries, and phenotype ontologies. Petagraph’s base module, UBKG, is updated on
a regular basis, and integration of ontologies and datasets is supported by an agnostic data ingestion protocol
as discussed.

We have shown that a query in Petagraph can rapidly link across multiple different types of data. For example,
we can link diseases or phenotypes to genes, and then those genes can be linked as cell-type markers to single-
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cell data analyses (Figure 10), eQTLs in GTEx (Figure 7), or glycotransferases from GlyGen (Figure 8).
Conversely, collections of gene markers in single-cell data can be linked back to likely phenotypes or pathways
through a Petagraph query, such as linking genes with particular glycosylation patterns back phenotypes (Figure
9). All of these queries would be of value for those investigators interested in rapid evaluation of large-scale
datasets, from simple annotation to more complex evaluation of the data.

Petagraph’s many applications will be useful at every stage of the research process, from hypothesis generation
and hypothesis testing to returning data. Petagraph enables users to query and answer non-trivial biomedical
questions quickly and easily as we have shown in the Use cases above. Petagraph can also be queried to
retrieve relevant data for further downstream analysis and to be used in multi-layer queries where results of one
query can be used as a basis for another query. The graph can also be used to intelligently filter queries based
on dozens of relevant biomedical criteria.

It would benefit the larger community to expose Petagraph for use to the community through a public API.
Currently, Petagraph must be set up in a Neo4j’'s community server, which is free but requires use of the Cypher
query language. Also, Petagraph is a large, complex graph, and if a user is not familiar with Petagraph’s schema,
it could easily return misleading results. This issue can be compounded further if a user is not well-versed in
Cypher; although the syntax of the query language is simple, methods like pattern matching and graph traversal
can quickly become complex. To remedy these limitations we are building an API so that common types of
queries can be parameterized.

Petagraph’s next dataset ingestions will include data from protein-protein interactions, human to mouse
developmental stage mappings, genetics testing, multiple -omics datasets and more. Additionally, we plan on
developing an API around Petagraph to enable the parameterization of queries so that researchers do not need
to understand the graph schema or the query language to take full advantage of this resource.

Petagraph can leverage the rich, semantic, biomedical environment of UMLS in concert with large-scale
biomolecular datasets in order to answer more meaningful questions related to human diseases, disorders, drugs
and other interesting characteristics. Future implementations of Petagraph will include machine learning
analyses to predict important characteristics of genes, diseases and therapeutics.
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Figures and tables

Table 1a: Quantitative datasets and ontologies in Petagraph
* *explain why we’re only reporting Concept (CUI) counts and Concept (CUI-CUI) edges

Graph SAB Source # of Code | % of # of Concept- | % of total
nodes total Concept Concept-

Code Relationships | Concept
nodes relationships

Single-Cell/Nucleus | HUBMAP 10,047,00 | 50.51% | 60,275,680 35.84%

RNA-seq datasets 3

(58)

GTEx eQTLs GTEx 1,160,938 | 5.84% 12,035,022 7.15%

GTEx Expression GTEx 1,822,288 | 9.61% 5,466,864 3.25%

Human-Mouse HGNC HCOP | 27,429 0.14% 67,019 0.04%

Ortholog mappings

Gene to Phenotype | IMPC 0 0% 468,068 0.28%

(Mouse)

Gene to Phenotype | MONDO 0 0% 2,853,584 1.7%

(Human) (Monarch)

Human to Mouse PheKnoWLator | 0 0% 4,216 0.003%

Phenotypes

LINCS L1000 LINCS 0 0 3,198,094 1.9%

MSIGDB MSigDB 31,702 0.159% | 2,610,562 1.55%

CLINVAR Clinvar 0 0% 214,040 0.127%

GLYGEN selected Glygen 241,768 1.21% 911,934 0.54

datasets

GlyGen Ontology Glygen 309 0.002% | 356 0.0002%

Developmental heart | (Asp et al. 2,816 0.014% | 8,448 0.005%

single-cell RNA-seq | 2019)

Kids First Kids First 5,006 0.025% | 46,414 0.028%

Phenotypes

CMAP CMap 0 0 2,625,336 1.56%

GTEX Co- GTEXx 0 0 42,713,122 25.4%

expression by tissue
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Table 1b. Biomolecular-derived datasets in Petagraph

tissue

Dataset (citation) Source Graph SAB Has edges with

Single-Cell/Nucleus RNA- HuBMAP HUBMAPSC HGNC, UBERON,

seq datasets (58) self

GTEx eQTLs GTEx GTEX_EQTL HGNC,UBERON,dbSNP, chr
loc, P-value nodes

GTEx Expression GTEx GTEX_EXP HGNC, UBERON, TPM nodes

Human-Mouse Ortholog HCOP HGNC | HGNC_HCOP mouse gene nodes, HGNC

mappings

Mouse Gene-Phenotype IMPC IMPC mouse gene nodes and MP

mappings

Human Gene-Phenotype MONDO MONDO HGNC, HPO

mappings (Monarch)

Human-Mouse Phenotype PheKnoWLator | HGNC_HPO HPO, MP, self

mappings

LINCS L1000 LINCS LINCS_L1000 ChEBI, HGNC

MSigDB MSigDB MSIGDB HGNC

Clinvar Clinvar CLINVAR HPO, OMIM, EFO, MONDO,
HGNC

Glygen selected datasets Glygen GLYGEN Glygen Saccharide,
Glycosylation sites, UniProtKB,
HGNC

Developmental heart single- | Asp et al. 2019 | SCHeart PMID | UBERON, HGNC,

cell RNA-seq 31835037 Expression

Kids First Phenotypes Kids First DRC | KF HPO

Connectivity Map CMap CMAP ChEBI, HGNC

GTEX Co-expression by GTEX GTEX_COEXP HGNC
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Table 2: Graph statistics. Each “Minus” column indicates the graph statistics calculated minus that datasource.

Graph
Version

All CUI-CUI

Minus
MSIGDB

Minus
CLINVAR

Minus
HUBMABSC

Minus
LINCS

Minus
GTEX_COE
XP

Minus
GLYGEN

Minus
CMAP

Minus
GTEXEQTL

Relationship
Count
(difference
vs full

graph)

168155890

165545328
(2610562)

167941850
(214040)

107880210
(60275680)

164957796
(3198094)

125442768
(42713122)

167243956
(911934)

165530554
(2625336)

156120868
(12035022)

Global
Triangle
Count

7503683363

7495671978

7503038504

7503683356

7467533393

13440416

7503682261

7483258009

7502319751

Label
Propagation
Community

Count

213083

213366

212830

212798

211410

214850

214011

212551

2178933

Mean
Centrality
Score
(Page-Rank)

0.958

0.958

0.958

0.529

0.958

0.958

0.948

0.958

0.874

Max
Centrality
Score
(Page-Rank)

208847

211539

208941

69823

211340

228403

208852

211484

207328

Mean
Degree
Centrality

8.850

8.713

8.839

5.678

8.682

6.602

8.802

8.712

8.213

Max Degree
Centrality

1686840

1686840

1686840

737252

1686840

1686840

1686840

1686840

1686840
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C0079419

tumor protein
pS3 TP53 gene

Figure 1: Example graph schema. Example Concept nodes (blue) connecting to associated Code nodes (pink)
and Term codes (green). The Concept in blue for TP53 (C0079419) with two of its codes and associated terms
are shown: HGNC (HGNC:11998) and NCBI Gene (NG:7157). Other codes also exist for C0079419 but are not
shown. Note that all the relationships from the concept to codes and terms are unidirectional: directed outwards.
The only bidirectional connections allowed in Petagraph are those between Concept nodes, here shown as
TP53’s Concept and one of the OMIM phenotypes associated with TP53, connected by the OBO relations
ontology (RO:0002331) for “involved in”. Petagraph has many millions of connected concept nodes. ACR:
Abbreviation. MTH_ACR: Abbreviation. PT: Preferred. PREF_TERM: Preferred term. SYN: Synonym.
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1

. Is file in
Download UBKG

OowL YES
base CSVs and format?
dataset to ingest
NO
3.
2. Run OWLNETS 4.
Clean and format Python script to Use the Neo4j Bulk
data into nodes convert nodes and Import tool to build
and edges files edges (or OWL) the graph
files into UBKG
format

Figure 2. Petagraph Data Ingestion Workflow. The data ingestion workflow starts by downloading the UBKG
base CSVs and the dataset(s) that will be integrated. Then the raw data (or ontology) must be formatted into
nodes and edges file, the guidelines of which are in the user guide. If the file is in OWL format then no extra
formatting needs to be done and this step can be skipped. The third step involves running the OWLNETS Python
script which will convert the edges and nodes files into the UBKG format. Once the files are in UBKG format
They are simply appended to the base UBKG files. Lastly, Neo4js command-line bulk import tool will be used to
build the graph database.


https://doi.org/10.1101/2023.02.11.528088
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.11.528088; this version posted February 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

7.5
oI D HEEEY B
HCOP (mouse genes) - 6.0
HPO - B
v~ [
UBERON - . .. 4.5
CHEBI -

GTEXx Expression -

<IN HHEE HNE
I

GTEx eQTLs - -3.0
HUBMAP - .
Developmental heart _
scRNA-seq (Asp)
GLYGEN (selected datasets) - F1:5
MSigDB -
1 1 1 1 1 1 1 1 1 1 1
m o a b= o c 9] o ™~ foa)
§ 2 =98 2 F 28238 3
g W O ¢ o Q@ 2 8 0 -0.0
=) & X T B8= ®©® =
3 x W o O
= w G vy o log;o
£ i) Eq & relationship
o 5 %5 9 count
9 3 2
X o E
G
>
(@)

Figure 3: Dataset interconnectedness. Relationship counts between selected data sources in Petagraph.
Several ontologies that are part of the UBKG ingestion are shown (HGNC,UBERON,HPO, CHEBI). The
integrated datasets are largely gene-centric with most datasets having relationships to HGNC nodes
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Figure 5: Heatmap representation of relationship statistics of 54 selected Semantic Types. In all graphs, data represents Concept-Concept node
connections. a) the presence (red) or absence (blue) map of at least one relationship (type+SAB) between pairwise combinations of Semantic Types
shows. b) The color intensity representation of the diversity of the logo relationship counts (type+SAB) connecting the candidate Semantic Types. c)
The color intensity representation of the logio number of outgoing relationships (from row to column) connecting the candidate Semantic Types. Note
that for (a)-(c) the matrices are diagonally symmetrical as Concept-Concept relationships are bidirectional.
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Figure 6: Shortest Path Lengths. Probability distribution of associated Concept to Concept node shortest path lengths for 256 million pairwise

combinations of human gene Concept nodes in Petagraph.
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Figure 7: Recursive queries on ontologies allow for returning results and increasing search depths. This is an example of a recursive (transitive
closure) search using the mammalian phenotype (MP) Atrial Septal Defects as the parent phenotype. This query returns all of the eQTLs (p-value
< .05) from ASD (MP:00110403) as well as its child phenotypes, based on genes that are expressed in the GTEx heart data. Concept nodes are in
blue, code nodes in purple, and term nodes in green.
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Figure 9: Query results on heart-defect phenotype-associated glycosylation targets. The query linked phenotypes from from a-¢c) OMIM (human) and
d-f) IMPC (mouse) to associated genes, proteins, glycosylation sites and glycans using the intersection of UniCarb-DB, GlyConnect, and O-GIcNAc
(see Methods). The bars represent the ratios of known glycosylated genes vs all source genes associated with each condition, showing the relative
depletion of glycosylated sites by type of heart defect. Heterotaxy, for example, is much lower in glycosylated gene products associated with the
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disorder (a and d). CHD-associated genes have higher diversity of glycans/proteins (b and e) and higher sites/proteins (c and f).
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Figure 10: Result of a query linking genes associated with a phenotype to specific cell types in a single-cell 6w human embryonic heart dataset (Asp
et al. 2019). The top panel shows a single result of the query, where the gene FLNC, associated with a phenotype Atrial Septal Defects, MP:0010403
is linked to the ventricular cardiomyocyte cell type. The bottom panel shows tabular query results where specific gene markers associated with

MP:0010403 were identified for cell type clusters in the dataset.
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Figure 11: Querying possible drug-tissue interactions for rofecoxib using CMAP, LINCS L1000 and GTEX EXP datasets. a) Top 20 tissues
with the highest ratio of genes correlated with rofecoxib (CMAP) and to all genes (TPM>5), b) Top 20 tissues with the highest ratio of genes correlated
with rofecoxib (LINCS L1000) to all genes (TPM>5). ¢) An example query result for possible interaction of rofecoxib and myocardium of left ventricle
through Gb3S gene modulation. d) Distribution of normalized values of gene interactions per tissue correlated with rofecoxib based on CMAP vs.

LINCS L1000 data (cardiovascular system noted in red) .
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SUPPLEMENTARY DATA

Supporting Ontologies, Standards, and Mappings

The following ontologies were added by the UBKG team in support of the Petagraph project:

Table S1

Abbreviation Name Description Availability

PATO Phenotypic Quality Ontology

UBERON Uber Anatomy Ontology

CL Cell Ontology

DOID Human Disease Ontology

CCFASCTB

OBI Ontology for Biomedical
Investigations

EDAM

HSAPDV Human Developmental Stages HsapDv 107
Ontology

SBO Systems Biology Ontology

Ml

CHEBI CHEBI Integrated Role
Ontology

MP Mammalian Phenotype
Ontology

ORDO Orphanet Rare
Disease ontology

UNIPROTKB UniProtkB

uo Units of Measure Ontology

The UBKG ontology set is regularly updated and can be found at:

https://qgithub.com/dbmi-pitt/ubkg/blob/main/scripts/README-

PARAMETER%200RDER%20for%20generation.md
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The mammalian phenotype ontology (MP) describes the hierarchy of mouse phenotypes. Data was obtained
from https://bioportal.bioontology.org/ontologies/MP and directly loaded into an empty neo4j graph instance
using the neosemantics tool from neo4j. This graph was then extracted, formatted to fit the UMLS KG schema
and loaded into the UMLS KG. The purpose of using the neosemantics (N10s) plugin is that it can render
OWL/turtle/triple files into a graph structure. The MP consists of ~13,200 phenotypes. The hierarchical nature of
the MP allows for recursive searches which can be useful when asking broader questions. For example, one
can search for all genes related to the heart disease MP term or all genes related to heart disease and all of the
child terms of heart disease.

Human-to-Mouse ortholog mappings were obtained in April 2021 from the HGNC Comparisons of Orthology
Predictions (HCOP) tool at https://www.genenames.org/tools/hcop/. We created new mouse gene Concepts and
mapped them using the HCOP data to their corresponding human ortholog. Each orthologous pair share
reciprocal relationships, (‘has_human_ortholog', 'has_mouse_ortholog') and out of the 41,638 HGNC Codes in
the UMLS, the HCOP tool found at least one mouse ortholog for 20,715 HGNC Codes.

Mouse genotype-to-phenotype mappings were obtained from multiple datasets from two databases, namely,
the international mouse phenotyping consortium (IMPC) and the mouse genome informatics (MGI) database.
The datasets from IMPC and MGI were combined to create a master genotype-to-phenotype dataset. This
master dataset contains 10,380 MP terms that are mapped to at least one gene and 17,936 genes that are
mapped to at least one MP term.

Human-to-mouse phenotype mapping data that connects HPO terms to MP terms was generated using the
PheKnowLator tool in December 2020 [PheKnowLator citation.] Here we only map mouse to human phenotypes
that are present in the Gabriella Miller Kids First (GMKF) datasets in this instance of Petagraph, to support the
use cases in this study, but other mappings could be included at a later date. The mappings that PheKnowLator
generated were then checked and edited manually for accuracy. We kept only the highest quality mappings
which left us with ~1000 mappings. Mapping all HPO to MP terms is an ongoing project by the MONDO and
uPheno projects [CITE].

HGNC-to-HPO mappings data which containing from human genes to human phenotypes were obtained in July
2021 from https://ci.monarchinitiative.org/view/hpo/job/hpo.annotations/lastSuccessfulBuild/artifact/rare-
diseases/util/annotation/phenotype to genes.txt. These data contain 4,545 genes mapped to at least one
phenotype and 10,896 phenotypes mapped to at least one gene.

Primary Data Sources
GlyGen selected datasets

Five datasets from the GlyGen website (https://data.glygen.org) (York et al. 2020)) were chosen based on their
relevance to our preliminary use cases. The first two datasets were simply lists of genes that code for
glycosyltransferase  proteins in the human (https:/data.glygen.org/GLY 000004) and mouse
(https://data.glygen.org/GLY 000030). These datasets were modeled by creating a human glycosyltransferase’
Concept node as well as a ‘mouse glycosyltransferase’ . Then the Concept nodes for the genes (HGNC nodes)
were connected to their respective glycosyltransferase nodes with a ‘is_glycotransferase’ relationship. The next
three datasets contain human O-linked and N-linked glycosylation information, namely O-GIcNac
(human_proteoform_glycosylation_sites_o_glcnac_mcw.csv v1.12.3), Glyconnect
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(human_proteoform_glycosylation_sites_glyconnect.csv v1.12.3) and UniCarbKB
(human_proteoform_glycosylation_sites_unicarbkb.csv v1.12.3) were obtained from GlyGen. These datasets
contain information of human proteoform, i.e. the exact residue on a protein isoform which is glycosylated, type
of glycosylation and glycans found to bind that amino acid. To define relationships between human proteins from
UniProtKB (UNIPROTKB concept nodes) (Boutet et al. 2016) and Glycans from the CHEBI resource (Hastings et
al. 2016) (as included in CHEBI data) we introduced an intermediary ontology of gylcosylation sites derived from
the information included in the mentioned dataset. In that process, we added 15,101 gylcosylation site nodes to
the knowledge graph with 30,198 connections (including reverse relationships) to UniProtkKB concept nodes on
one hand (type “has_site” and “on_protein”, SAB: “GlyGen”) and (including reverse relationships)
connections to glycan CHEBI nodes with type ‘binds_glycan” and “binds_protein_site” (SAB:
“GlyGen”).

HuBMAP single-cell RNA-seq data was obtained in January 2022 from the Human BioMolecular Atlas Program
data portal at HUBMAP Data Portal. We included 62 10x Genomics V3 single-cell and single-nucleus RNAseq
datasets. Of the 62 studies, 20 are kidney tissue, 15 are spleen tissue, 9 are respiratory system tissue, 9 are
large intestine tissue, 5 are lymph node tissue and 4 are thymus tissue. To model each study we used the cluster
labels to find the average gene expression per cluster for every gene that had a non-zero expression level.

New HUBMAP concept nodes were created and connected to the corresponding gene node (HGNC) and tissue
node (usually UBERON or SNOMED). There are also study concept nodes so that one can search individual
studies using the HUBMAP study ID. Furthermore, there are cluster nodes which connect the study nodes to the
HuUBMAP nodes so that individual clusters can be queried efficiently. So, the general schema of the HUBMAP
datasets is study node to cluster node(s) to HUBMAP nodes where each HUBMAP node is connected to its
respective gene and tissue node.

Single cell Fetal heart data was obtained from Asp et al. 2019 htips://pubmed.ncbi.nlm.nih.gov/31835037/
Average gene expression of each cluster was calculated and used to represent each gene within a cell type
cluster. Single cell fetal heart concept nodes were created and connections to cell type nodes (author defined
cell types, as many Cell Ontology concepts defined in paper are not currently part of the Cell Ontology) and
HGNC nodes connections were made.

IMPC: Mouse genotype-to-phenotype data were obtained in January 2021 from multiple datasets from two
separate databases. The first set of datasets were obtained from the international mouse phenotyping
consortium  (IMPC),  which includes data from KOMP2, and <can be found at
http://ftp.ebi.ac.uk/pub/databases/impc/all-data-releases/latest/results/. We used the genotype-phenotype-
assertions-ALL.csv.gz and the statistical-results-ALL.csv.gz datasets from this database. Both datasets contain,
among other data, phenotype to gene mappings in the mouse. The second set of datasets were obtained from
the mouse genome informatics (MGl) database and can be found at
http://www.informatics.jax.org/downloads/reports/index.html#pheno. We used the MGI_PhenoGenoMP.rpt
(Table 5), MGI_GenePheno.rpt (Table 9) and MGI_Geno_ DiseaseDO.rpt (Table 10) datasets. All 3 datasets
contain, among other data, phenotype-to-gene mappings. The datasets from IMPC and MGI were combined to
create a master genotype-to-phenotype dataset. This master dataset contains 10,380 MP terms that are mapped
to at least one gene and 17,936 genes that are mapped to at least one MP term.

Human gene expression vs tissue location data was obtained in January 2021 from Genotype-Tissue
Expression (GTEx) Portal (Version 8) at https://gtexportal.org/home/datasets. We used the gene expression
dataset, GTEx_Analysis_2017-06-05_v8 RNASeQCv1.1.9_gene_median_tpm, as well as an expression
quantitative trait loci (eQTL) dataset, GTEx_Analysis_v8 eQTL. The gene expression dataset contains 54
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tissues and 56,200 genes (transcripts). The eQTLs dataset contains over 1.2 million eQTLs from 49 tissues. We
created Concept nodes for each eQTL and each tissue-gene expression pair. The eQTL Concepts were then
connected to their corresponding tissue node (UBERON), gene node (HGNC) and variant node (dbSNP). The
gene expression nodes are connected to their corresponding tissue node and gene node. We also integrated
quantitative data from GTEXx including p-values for the eQTL data and transcripts per million (TPM) for the gene
expression data into the graph. In order to reduce redundancy of nodes we created bin nodes for these
quantitative data types. For example, if the gene TP53 has a TPM of 10.5 in the heart, the GTEx Concept for
"TP53 - Heart' will be connected to the '(10,11] ' TPM bin node. Similarly, if an eQTL has a p-value of 0.0005 it
will be connected to the '0.0001,0.001' p-value bin node.

Kids First phenotypes were added because we are specifically interested in evaluating patients in the Kids
First database. We added phenotypes from 5006 subjects, modeled as Concept nodes, and connected them to
their respective HPO Concepts in the graph. KFPheno_June2022_forKG.xIsx, 5006 patient IDs

Data containing mappings from human genes to human phenotypes (HGNC-HPO) were obtained from
https://ci.monarchinitiative.org/view/hpo/job/hpo.annotations/lastSuccessfulBuild/artifact/rare-
diseases/util/annotation/phenotype to genes.txt. These data contain 4,545 genes mapped to at least one
phenotype and 10,896 phenotypes mapped to at least one gene.

ClinVar

The ClinVar human genetic variants-phenotype submission summary dataset (2023-01-05) was utilized to
define relationships between human genes and phenotypes (Landrum et al. 2018). For that purpose we only
considered genes with pathogenic, likely pathogenic and pathogenic/likely pathogenic variants, and associations
with no assertion criteria met were excluded. We also did not include variants that affect a subset of genes
(where there was no one-to-one relationship between a gene and phenotype/disease). To retrieve the target
phenotype/disease we used MedGen IDs listed in the ClinVar dataset (also already present in the KG). As a
result, ClinVar gave rise to 214,040 new relationships (including reverse relationships) with the following
characteristics [Type: “gene_associated with disease_or_ phenotype”’, SAB: “CLINVAR’] and [type:
inverse gene_associated with_disease_or_phenotype, SAB: “CLINVAR’] connecting HGNC and
MEDGEN, MONDO, HPO, EFO and MESH Concept nodes. The ClinVar website is hosted at
https://www.ncbi.nlm.nih.gov/clinvar/.

MSigDB

MSigDB is a collection of gene set resources, curated or collected from several different sources (Subramanian
et al. 2005; Liberzon et al. 2015). Five subsets of MSigDB v7.4 datasets were introduced as entity-gene
relationships to the knowledge graph: C1 (positional gene sets), C2 (curated gene sets), C3 (regulatory target
gene sets), C8 (cell type signature gene sets) and H (hallmark gene sets ). With this subset, we created MSIGDB
Concept nodes for 31,702 MSigDB systematic names (used as Codes) through base64 encoding (Code SAB:
MSIGDB). The relationships between these Concept nodes and HGNC nodes were established considering the
information available in each of the mentioned 5 subsets where the subset information was included in the
relationship SABs as “MSIGDB”. The Term names and SUIs were also compiled according to the MSigDB generic
entity names and base64 conversion of such names, respectively. Collectively, MSigDB ingestion added
2,610,854 cuIi-cul relationships (including reverse relationships) to the KG. Table S2 summarizes the
bidirectional relationship information for the MSigDB dataset integration.
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Table S2
MSIGDB relationship types and SABs
Relationship Type Source
chr_band contains_gene MSigDB C1
inverse chr band contains_gene MSigDB C1
pathway associated with gene MSigDB C2
inverse pathway associated with_ gene MSigDB C2
targets_expression_of gene MSigDB C3
inverse_targets_expression of_ gene MSigDB C3
has_marker_ gene MSigDB C8
inverse has_marker gene MSigDB C8
has_signature_gene MSigDB H
inverse has_signature_ gene MSigDB H
LINCS L1000

We introduced gene-small molecule perturbagen relationships to the KG based on the LINCS L1000 [iii] edge
list available on the Harmonizome database: https://maayanlab.cloud, (Duan et al. 2014; Rouillard et al. 2016) .
These relationships were summarized from LINCS L1000 CMAP Signatures of Differentially Expressed Genes
for Small Molecules dataset. This was done by first finding the corresponding CHEBI Concept nodes for the
L1000 small molecules and then establishing the relationship of such nodes to the KG HGNC nodes according to
the edge list mentioned above. For that purpose, the relationships were collapsed to exclude the cell line, dosage,
and treatment time information but the effect directions were retained in relationship types. This led to 3,198,094
relationships (bidirectional) with “LINCS” as the SAB and types of “negatively correlated with gene”,
‘positively correlated with gene’, “inverse negatively correlated with gene’ and

“inverse positively correlated with gene’.
Connectivity MAP (CMAP)

In a similar manner to L1000 data integration discussed above, we obtained the edge lists of the CMAP
Signatures of Differentially Expressed Genes for Small Molecules dataset from the Harmonizome database
:https://maayanlab.cloud, (Lamb et al. 2006; Rouillard et al. 2016). The data was computed based on an earlier
study (Lamb et al. 2006; Rouillard et al. 2016). The dataset added 2,625,336 new relationships (including reverse
relationships) connecting the KG CHEBI and HGNC nodes with types types of
“negatively correlated with gene’, “positively correlated with gene’,

‘inverse negatively correlated with gene’ and
‘inverse positively correlated with_gene” and SAB of “CMAP”".

Human Gene Coexpression
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Coexpression of human genes was computed using the GTEx gene TPM (transcript per million) normalized data
(GTEx_Analysis_2017-06-05_v8 RNASeQCv1.1.9_gene_tpm by first computing the correlation matrix for each
of the GTEX tissues and selecting the entries with pairwise Pearson’s correlation above 0.99. This was done for
54 human tissues and cell types as a result 42,713,122 (including reverse) relationships were ingested into the
KG connecting HGNC Concept nodes (type “coexpressed with Tissue”, SAB: “GTEX_COEXP"} and (type
‘inverse coexpressed with_Tissue”, SAB: “GTEX_COEXP"}.

Software

A series of python scripts have been developed to ingest specific datasets, each are described on the project

GitHub webpage.

https://github.com/TaylorResearchLab/CFDIKG

Table S3: Basic Comparison between UBKG and Petagraph

UBKG Petagraph Notes

Total # of Nodes 19,894,444 49,624,263 Ex. +50%

# of total edges 52,087,930 209,878,717

# of node types 5 5 Concepts, Codes,
Terms, Definitions,
Semantic

# of Concepts 4,612,422 19,000,094

# of Codes 5,453,973 19,889,354

# of Terms 9,803,663 10,565,175

# Concept - Concept edges

# of SAB

# of edge types 1102 1911

# of property keys 11 13 Added ‘lowerbound’

and ‘upperbound’
properties to numerical
bin Concepts
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Figure S1: The schema of the Chromosome Region ontology developed for Petagraph. Entity X could be any chromosomal
feature, including chromosomal bands, genes, exons, introns, regulatory elements, QTLs, variants, accessible chromatin
regions, viral integration sites, human endogenous retroviruses, transposons, tandem repeats, chromosomal contact
regions, TADs, telomere, centromeres, and any other type.
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1 249 2490 24896 248957 249 2490 24896 248957 248 2489 24895 248956
2 243 2422 24220 242194 243 2422 24220 242194 242 2421 24219 242193
3 199 1983 19830 198296 199 1983 19830 198296 198 1982 19829 198295
4 191 1903 19022 190215 191 1903 19022 190215 190 1902 19021 190214
5 182 1816 18154 181539 182 1816 18154 181539 181 1815 18153 181538
6 171 1709 17081 170806 171 1709 17081 170806 170 1708 17080 170805
7 160 1594 15935 159346 160 1594 15935 159346 159 1593 15934 159345
8 146 1452 14514 145139 146 1452 14514 145139 145 1451 14513 145138
9 139 1384 13840 138395 139 1384 13840 138395 138 1383 13839 138394
10 134 1338 13380 133798 134 1338 13380 133798 133 1337 13379 133797
1 136 1351 13509 135087 136 1351 13509 135087 135 1350 13508 135086
12 134 1333 13328 133276 134 1333 13328 133276 133 1332 13327 133275
13 115 1144 11437 114365 115 1144 11437 114365 114 1143 11436 114364
14 108 1071 10705 107044 108 1071 10705 107044 107 1070 10704 107043
15 102 1020 10200 101992 102 1020 10200 101992 101 1019 10199 101991
16 1 904 9034 90339 91 904 9034 90339 90 903 9033 90338

17 84 833 8326 83258 84 833 8326 83258 83 832 8325 83257

18 81 804 8038 80374 81 804 8038 80374 80 803 8037 80373

19 59 587 5862 58618 59 587 5862 58618 58 586 5861 58617
20 65 645 6445 64445 65 645 6445 64445 64 644 6444 64444
21 47 468 4671 46710 47 468 4671 46710 46 467 4670 46709
22 51 509 5082 50819 51 509 5082 50819 50 508 5081 50818

X 157 1561 15605 156041 157 1561 15605 156041 156 1560 15604 156040
Y 58 573 5723 57228 58 573 5723 57228 57 572 5722 57227
mtDNA - - 2 17 - - - 17 - - 1 16

Figure S2: Unidirectional relationship counts between Concepts in the Chromosome Region Ontology
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