

1 **Benchmarking robust spatial transcriptomics approaches to capture the**
2 **molecular landscape and pathological architecture of archived cancer tissues**

3

4 Tuan Vo¹, Kahli Jones¹, Sohye Yoon², Pui Yeng Lam^{1, 3}, Yung-Ching Kao³, Chenhao
5 Zhou³, P. Prakrithi^{1,5,6}, Joanna Crawford¹, Shaun Walters⁴, Ishaan Gupta⁶, H. Peter
6 Soyer³, Kiarash Khosrotehrani³, Mitchell S. Stark³, Quan Nguyen¹

7

8 1. The Institute for Molecular Bioscience, The University of Queensland, St Lucia,
9 QLD 4067, Australia

10 2. Genome Innovation Hub, The University of Queensland, St Lucia, QLD 4067,
11 Australia

12 3. The Frazer Institute, The University of Queensland, Dermatology Research Centre,
13 Woolloongabba, QLD 4102, Australia

14 4. School of Biomedical Sciences, the University of Queensland, St Lucia, QLD 4067,
15 Australia

16 5. University of Queensland - IIT Delhi Academy of Research (UQIDAR), Hauz Khas,
17 New Delhi 110016, India

18 6. Indian Institute of Technology Delhi, Department of Biochemical Engineering and
19 Biotechnology, Hauz Khas, New Delhi 110016, India

20

21 Correspondence: quan.nguyen@uq.edu.au

22 Short Title: Spatial transcriptomics reveal pathological context of human skin disease.

23

24

25 **Abstracts**

26 Applying spatial transcriptomics (ST) to explore a vast amount of formalin-fixed
27 paraffin-embedded (FFPE) archival cancer tissues has been highly challenging due to
28 several critical technical issues. In this work, we optimised ST protocols to generate
29 unprecedented spatial gene expression data for FFPE skin cancer. Skin is among the
30 most challenging tissue types for ST due to its fibrous structure and a high risk of
31 RNase contamination. We evaluated tissues collected from ten years to two years
32 ago, spanning a range of tissue qualities and complexity. Technical replicates and
33 multiple patient samples were assessed. Further, we integrated gene expression
34 profiles with pathological information, revealing a new layer of molecular information.
35 Such integration is powerful in cancer research and clinical applications. The data
36 allowed us to detect the spatial expression of non-coding RNAs. Together, this work
37 provides important technical perspectives to enable the applications of ST on archived
38 cancer tissues.

39

40 Key words: Dysplastic naevus, melanoma, spatial transcriptomics, pathological
41 annotation, formalin-fixed paraffin-embedded, poly(A)-capture, probe-capture.

42

43

44 **Introduction**

45 As cancer is a genetically heterogeneous disease, multimodal and multiplex molecular
46 data is increasingly being used to aid cancer diagnosis, prognosis and treatment
47 decisions¹. Spatial transcriptomics (ST) applications for fresh-frozen specimens has
48 led to important findings in measuring of tumour heterogeneity^{2,3}, but this embedding
49 type is often not suitable for clinical study sample volumes and long-term clinical
50 follow-ups. Formalin-fixed paraffin-embedded (FFPE) tissues present a widely
51 accessible archival biological resource and are used in all routine histopathology
52 diagnostic laboratories⁴. Despite the many advantages of these economical, diverse
53 and abundant samples, clinical FFPE samples are still vastly under-utilised for
54 transcriptomic profiling due to formaldehyde cross-linking and perceived RNA
55 degradation⁵⁻⁸.

56 The century-old clinical diagnostic practice based on H&E images, is qualitative and
57 highly variable. Breakthroughs to assist pathologists to utilise the rich information in
58 cancer biopsies are required to increase the precision of clinical decisions as well as
59 to advance the systemic and mechanistic understanding of cancer. Unlike traditional
60 technologies such as bulk and single-cell RNA sequencing, ST does not compromise
61 spatial and anatomical context by tissue dissociation⁹. As a whole-tissue, spatial
62 sequencing-based method of transcriptomic profiling, the Visium ST platform is one
63 such technology capable of measuring ~18,000 genes while generating histological-
64 grade H&E images. Fluorescence In Situ Hybridisation (FISH) methods or other
65 spatially resolved multiplex protein detection methods such as the CosMX Single
66 Molecular Imager (SMI, NanoString), Imaging Mass Cytometry (e.g. Hyperion,
67 Fluidigm), and Co-detection By Indexing (CODEX/PhusionCycler, Akoyabioscience)

68 are currently available to provide single-cell spatial resolution; however, technical
69 limitations arise when more targets are required¹⁰⁻¹³.

70 Melanoma is an aggressive heterogeneous skin cancer^{14,15} and has been analysed by
71 various methods, including gene expression profile^{16,17}, IHC¹⁸, proteomic assays^{19,20},
72 and fresh frozen spatial transcriptomics²¹; however, the results were still limited by the
73 absence of histological context, low throughput and resolution, or limitations of fresh
74 frozen tissues. In addition, skin biopsies represent the most challenging samples to
75 obtain a consistent high-quality transcriptome²², especially for the old and low quality
76 archival FFPE tissues.

77 In this study, we optimized both the Poly(A)-Capture Visium modified for FFPE
78 samples (hereafter defined 'Poly(A)-Capture protocol') and 10X Genomics' probe-
79 based protocols of Visium ST ('Probe-Capture protocol') for human FFPE tissues from
80 melanoma and dysplastic naevi (atypical mole). We aimed to build an FFPE ST
81 workflow that would allow for deep interrogation of the transcriptional complexity and
82 morphological characteristics of this challenging pathology without the need for using
83 the limited fresh tissue samples. For the first time, we adopted, compared and
84 combined two alternate Visium ST platforms for archived human FFPE tissue across
85 a broad range of tissue quality and storage times. The results were also compared
86 with the high sensitive, single-cell resolution RNAscope method. The FFPE pipeline
87 reported here provides a high potential for revealing insights into skin cancer tissue
88 biology.

89

90 **Materials and methods**

91 ***FFPE samples and RNA quality control***

92 Included in this study were clinical FFPE biopsies of dysplastic nevi and melanoma,
93 of various archival age, RNA quality and patient disease stages (Table S1).
94 Institutional approval of experiments involving human tissues was provided by Metro
95 South and The University of Queensland Human Research Ethics Committees
96 HREC/17/QPAH/817, 2018000165 and 2017000318.

97 FFPE blocks were previously prepared in a standard procedure with fixation in 10%
98 formalin, processed in ethanol and xylene and embedded in paraffin wax. All blocks
99 were stored at room temperature. To assess the suitability of each sample for
100 transcriptomic analysis, 7 μ m microtomed sections were collected in triplicate per
101 sample for RNA extraction using an RNeasy FFPE Kit (#73504, Qiagen). RNA Integrity
102 Number (RIN) and DV200 were determined by BioAnalyzer electrophoresis using an
103 RNA 6000 Pico Kit (#5067-1513, Agilent). The DV200 metric refers to the percentage
104 of total profiled RNA fragments greater than 200bp in length, with scores of at least
105 30% considered acceptable for sequencing applications^{23,24}. An increasing number of
106 fragments below this threshold in a sample is indicative of an increasing degree of
107 RNA degradation. For this project, we selected samples with a large range of DV200
108 scores, with the aim of assessing the effect of FFPE RNA degradation on spatial
109 transcriptomic data quality.

110 ***Poly(A)-Capture***

111 We have further optimised the protocol first developed by Gracia Villacampa, et al. ²⁵,
112 largely in terms of tissue handling and adherence, for FFPE melanoma and dysplastic
113 naevi samples (detailed in Figure 1).

114 **Tissue Optimisation:**

115 The FFPE tissue sections were collected at 7µm and trimmed to include pathologist-
116 annotated regions of interest (i.e., melanoma, stromal and lymphoid regions), and then
117 were multiplexed per array on Visium Tissue Optimisation slides (#3000394). Slides
118 were then dehydrated, overnight stored, then dried and deparaffinised by heat and
119 xylene (5 minutes, twice). Tissue was then rehydrated by ethanol gradient (100% for
120 2 minutes, twice; 90% for 2 minutes, twice; 85% for 2 minutes). Slides were then
121 stained with haematoxylin and eosin (H&E) and imaged using a Zeiss AxioScan Z1
122 slide scanner. Next, decrosslinking was performed by incubation in collagenase and
123 then 1 x TE buffer (pH 8.0). Tissue sections were then immediately permeabilised by
124 pepsin (0.1%) in an increasing incubation time series (5 to 40 minutes). Finally, cDNA
125 was synthesised from the captured RNA, fluorescently labelled with cyanine 3 (Cy3),
126 and visualised using a Leica DMi8 inverted widefield microscope.

127 Visium Spatial Gene Expression library preparation for skin cancer tissues:

128 Following optimisation of the above conditions, FFPE blocks were sectioned and
129 placed onto the Visium Spatial Gene Expression Slides (#2000233). Tissue was
130 permeabilised for the duration optimised on the Tissue Optimisation slide (25 minutes).
131 cDNA was synthesised from slide-bound poly(A) RNA *in situ*, followed by second
132 strand synthesis and denaturation. The denatured, full-length cDNA strands were PCR
133 amplified for 19-20 cycles. Amplified cDNA was end-repaired, A-tailed, and size-
134 selected by SPRIselect (0.8X bead cleanup). Illumina TruSeq Read 2 sequences were
135 ligated and standard i5 and i7 sample indexes added.
136 All libraries were loaded at 1.8pM onto a NextSeq500 (Illumina) and sequenced using
137 a High Output 150 cycle kit (Illumina) at the Institute for Molecular Bioscience
138 Sequencing Facility.

139 ***Probe-Capture***

140 The Probe-Capture protocol was based on the Visium Spatial Gene Expression for
141 FFPE User Guide (CG000407, CG000408, CG000409 - 10x Genomics), with
142 modifications as optimised for melanoma and naevus tissue.

143 **Tissue adherence optimisation**

144 FFPE tissues were collected at 5µm and trimmed to include pathologist-annotated
145 ROIs, then were multiplexed placement onto Visium Tissue Section Test Slides
146 (#2000460). The slides were later dried, stored overnight, and deparaffinised by heat
147 and xylene. Tissue was rehydrated by ethanol gradient following 10X protocol
148 (CG000409), followed by H&E staining and imaging. Finally, decrosslinking was
149 carried out in 1 x TE buffer (pH 8.0) for 1 hour at 70°C (with preconditioning in HCl).

150 **Library preparation:**

151 To prepare Probe-Capture libraries for sequencing, FFPE sections were multiplexed
152 onto Visium Spatial Gene Expression Slides. The process followed 10X user guide
153 (CG000407 , CG000409), using the whole transcriptome (18,000 protein coding
154 genes) human probes set (#2000449, #2000450). Sequencing was performed using
155 NovaSeq SP100.

156 ***Multiplexed RNA in-situ hybridization with RNAscope assay***

157 The following six target probes were designed by ACD probe design team using
158 RNAscope Hplex12 Reagent Kit v2 standard assay (ACD cat no. 32442): CTLA4
159 (ADV554341-T6), SOX10 (ADV484121-T7), Keratin8, 18 & 19 (ADV404751-T8), CD8
160 (ADV560391-T9), Ki67 (ADV548881-T11), CD4 (ADV605601-T12). The assay was
161 performed according to the manufacturer's user manual. Briefly, melanoma FFPE
162 tissues were sectioned at 5 µm, placed on slides, and then were dried at 60°C for 2
163 hours before deparaffinization. Subsequently, the target retrieval step was performed

164 followed by protein digestion with protease III. The slide was incubated with the mixture
165 of the 6 probes or control probes for hybridisation with RNAs. After signal amplification,
166 the slide was incubated with the RNAscope Hiplex FFPE reagent to reduce auto-
167 fluorescence in the FFPE tissues. The signals were fluoresced and counterstained
168 with DAPI followed by mounting with a cover slip. The imaging was performed using
169 Zeiss LSM900 with a 63x oil objective and 5 filters (DAPI, FITC, Cy3, Cy5 and Cy7).
170 Between imaging rounds, coverslips were removed, and fluorophores of previous
171 imaging rounds were cleaved to enable consecutive rounds of imaging, with each
172 round containing probes for a new set of transcripts. The single channel image at each
173 round of image was saved and used to generate the composite image using
174 RNAscope HiPlex Image registration Software v2.0.1.

175 ***Data analysis***

176 Sequencing data was mapped and demultiplexed (10x SpaceRanger), and then was
177 analysed by a software program, stLearn²⁶. The analysis consisted of: 1) processing
178 raw data to read counts, 2) overlaying expression data with H&E tissue images, 3)
179 performing normalisation, unsupervised clustering, 4) differential expression analysis
180 of gene expression between spatial clusters, and 5) visualisation. We assessed
181 heterogeneity at two levels, genes and cell types. To discriminate cell types, ST-seq
182 derived clusters were assigned functional names by gene markers. To compare
183 differences in cell-type composition and gene signature, we applied non-parametric
184 tests, including Wilcoxon rank sum test and bootstrap resampling. Spatially variable
185 genes were determined by modelling gene expression covariance with a spatial
186 distance, implemented in the SpatialDE package.

187 ***Noncoding RNA detection from spatial data***

188 The data were analyzed for their long non-coding RNAs captured by the two protocols.
189 The method described by Wang, et al.²⁷ was adopted to identify transcriptionally
190 active regions. The pipeline uses an R package GroHMM²⁸ that utilizes a two-state
191 hidden Markov Model to classify regions in an aligned genome as transcriptionally
192 active or not, based on the read coverage in each bin. The position sorted BAM files
193 generated by the 10X Spaceranger pipeline were used as inputs to the pipeline. By
194 default, it splits the genome into non-overlapping bins of 50bp and is called
195 transcriptionally active if reads are detected in that bin and are labelled as TARs
196 (Transcriptionally active regions). TARs found within 500 bp apart are merged into one
197 unit. The regions identified are then overlapped with reference gene annotations
198 (reference annotations from 10X). The TARs overlapping with existing gene
199 annotations are labelled aTARs (annotated TARs) and the ones falling outside gene
200 boundaries are called uTARs (unannotated TARs). The identified novel TARs could
201 be non-coding RNA. We overlapped these with existing databases for lncRNAs like
202 FANTOM²⁹ and LncExpDB³⁰ in a strand specific manner to identify previously
203 reported lncRNAs.

204

205 **Results**

206 **Optimisation of spatial transcriptomics protocols for FFPE samples**

207 We optimised two alternate sequencing-based ST protocols for archived FFPE
208 melanoma and dysplastic naevus tissues (Figure 1). In the Poly(A)-Capture protocol,
209 we optimised the sectioning, deparaffinisation, decrosslinking and permeabilisation
210 conditions. We also successfully optimised the Visium Spatial Gene Expression for
211 FFPE tissues from 10X Genomics ('Probe-Capture' protocol). The use of RNA-
212 templated ligation probes is expected to ensure high sensitivity and specificity that

213 could be compromised for Poly(A)-Capture by relying solely on long poly(A)
214 sequences. Figure 1 presents a step-by-step comparison between these two
215 optimised protocols.

216 A primary point of optimisation commonly required for FFPE samples is that of tissue
217 adherence to the Visium slide. Initially, we observed tissue detachment for both
218 melanoma and naevus samples throughout deparaffinisation, staining and
219 decrosslinking, particularly for small, overly dehydrated and fragile tissues maintaining
220 a propensity for detachment. For the Poly(A) workflow, we performed several
221 optimisations prior to running the Tissue Optimisation slides. Improved adherence was
222 observed after rehydrating FFPE blocks in cold water prior to sectioning, decreasing
223 section thickness to 7 µm, drying the slide before storing overnight with desiccator
224 beads, and increasing the wax-melting temperature. Comparatively for the Probe-
225 Capture workflow, a tissue adherence test replaces the tissue optimisation slide,
226 specifically designed to minimise tissue detachment problems for experimental
227 samples (Figure 1). For both workflows following these tests, tissue adherence was
228 largely successful for these challenging samples.

229 To further optimise the Poly(A)-Capture method, we adapted the Visium Tissue
230 Optimisation procedure for FFPE (manufacturer-designed for fresh-frozen samples)
231 prior to library preparation (Figure S1). Exhibiting a balance between capture efficiency
232 and lateral diffusion of RNA (decreased sharpness/specificity), we determined
233 permeabilisation at 25 minutes to be optimal for this tissue. Optimal conditions varied
234 between patient samples, proving Tissue Optimisation a necessity prior to library
235 preparation for the Poly(A)-Capture protocol.

236 **Generating spatial transcriptomic data from Poly(A)-Capture**

237 Following optimisations for both workflows, we performed the full sequencing library
238 preparation on Visium Spatial Gene Expression slides. Figure 2A,B shows gene
239 expression data from the Poly(A)-Capture workflow. By overlaying the ST data onto
240 H&E images of the tissue taken early during the protocol, it is possible to view the
241 number of sequencing reads and unique genes which derived from cellular/anatomical
242 regions of interest (Figure 2A,B). From this methodology, we detected up to 2,000
243 genes per spot and more than 15,000 total genes per sample (Figure 2A,B), with
244 success for both large (dysplastic naevus) and small (melanoma) tissue sections.

245 **Generating spatial transcriptomic data from Probe-Capture, assessing
246 performance across tissue conditions and archival time**

247 For comparison of Probe-Capture and Poly(A)-Capture protocols, we selected the
248 same tissue blocks for analysis (i.e., adjacent sections, patient 54013 dysplastic
249 naevus and 34960 melanoma). As expected, we observed a marked increase in the
250 number of genes detected per spot (Figure 2). For the sample replicates across each
251 protocol, we could detect on average 2,837 genes per spot, with up to 8,000 genes
252 per spot using Probe-Capture (Figure 2). We also assessed technical accuracy of the
253 method and intra-patient variation by analysing three technical replicates (adjacent
254 sections of the same tissue piece, 34960_2_1/2/3) and two different biopsies from the
255 same patient (34960_1 vs 34960_2) (Figure 2C,D). Capture results were consistent
256 across technical replicates, demonstrated by the similar number of genes per spot,
257 much more similar compared to that in other tissue sections, even for those from the
258 same patient (Figure 2D). As expected, there was a clear disparity in the number of
259 genes detected per spot between different biopsies of the same patient (Figure 2D),
260 indicating that selection of biopsies with variable morphology and anatomical details,
261 even when derived from the same clinical sample, can impact efficiency of ST.

262 A challenging aspect of translational research, particularly for retrospective studies, is
263 analysing clinical samples of variable storage times, storage conditions and
264 processing methods, any of which can negatively impact RNA quality. In this project,
265 we assessed the efficiency of the ST methods to analyse clinical samples collected 4-
266 14 years prior. Newer tissues (66487 and 48974, from 2018) had average DV200
267 scores of 70%, while older samples (9561 and 15051, from 2008) had average scores
268 of only 31%, clearly demonstrating an impact of FFPE sample age on RNA quality.
269 Using Probe-Capture Visium, we detected substantially more genes in the newer
270 samples, with up to 10,000 genes per spot (Figure 2E). In contrast, the older (and
271 more degraded) samples yielded a maximum of 6,000 genes per spot (Figure 2E). As
272 anticipated, the data shows that samples of lower initial RNA quality indeed yielded
273 decreased unique gene counts – a major consideration moving forward with FFPE ST.
274 Of note, despite the reduction in the gene detection sensitivity, the information from
275 these samples was sufficient for mapping cells consistently to histological annotation.
276 Additionally, similar to the replicates shown in Figure 2D, we again saw consistency in
277 QC between three adjacent replicate sections of the 15051 patient (Figure 2F). This
278 suggests that the data from spatial profiling was reproducible.

279 **Detecting noncoding RNA from Poly(A)-Capture and Probe-Captured Data**

280 While most of the analyses for spatial transcriptomics data have been focusing on
281 protein coding genes, there is a huge potential to detect long non-coding RNAs
282 (lncRNA) in the tissue. Successful detection on lncRNA spatially will allow to associate
283 their spatial expression patterns with morphological features. Analysing multiple
284 replicates, we found that the polyA-capture protocol detected a large number of
285 lncRNA (>9000 lncRNA per sample), much higher than those detected by the probe-
286 capture protocol (Figure 3). Importantly, more than 50% of the detected lncRNA also

287 present in the two well-curated lncRNA databases, LncExpDB and FANTOM,
288 suggesting that the lncRNAs in the spatial datasets are likely true lncRNA. Thus, the
289 polyA-capture protocol, although detected fewer genes in total, can find a significant
290 number of lncRNAs. Overall, this suggests the complementarity between the two
291 protocols and that the poly(A)-capture protocol can have important roles that the
292 probe-capture protocol alone could not meet.

293 **Characterising heterogeneity within the FFPE tissues**

294 The spatial transcriptomics data of the FFPE samples that were 4 years to 14 years
295 of storage both could accurately map cell types to the tissue. Here we assessed two
296 skin disease stages, a dysplastic naevus and melanoma. Of note, three technical
297 replicates as consecutive sections from the same block were included to assess
298 technical variation and reproducibility. For the dysplastic naevus, the unsupervised
299 clustering shows that the data from probe-capture could lead to a higher-resolution
300 classification of tissue types. As the manual annotation from the pathologist identified
301 the heterogeneity of dysplastic naevus skin (Figure 4A,F; Figure S2A,B), we ran
302 spatial clustering at spot level (one spot contains 1-9 cells). We identified four clusters
303 in Poly(A)-Capture data and nine clusters in Probe-Capture data that overall match
304 the manually annotated tissue types. In Poly(A)-Capture data, we defined collagen
305 (with markers *COL1A1*, *COL1A2*, *DCN*), Sebaceous gland (*FADS2*, *MGST1*),
306 Eccrine ducts (*DCD*, *SCFB1D2*), Keratinocytes and melanocytes (*KRT10*, *KRT1*,
307 *TYRP1*) (Figure 4B,C). In Probe-Capture data, we detected more Lymphocytes
308 (cluster 5 - *ACTB*, *TMSB4X*, *PNRC1*) (Figure 4G,H) within the of sebaceous gland
309 clusters and eccrine ducts clusters. Of note, in the Poly(A)-Capture data, by sub-
310 clustering cluster 2 (Keratinocytes and melanocytes), we could find lymphocytes

311 (CD74, HLA-DRB1, HLA-DRA) and melanocytes (PMEL, DCT, TYRP1), (Figure
312 4D,E).

313 For the melanoma samples (Figure 5), the data for patient ID-48974, which was
314 collected in 2018, contains six main clusters. Gene markers for these clusters, as
315 shown in the heatmap, suggest cell type annotation consistent with tissue regions
316 determined by the pathologist (Figure 5A-C, Figure S3A). We defined Melanoma
317 (PMEL, MLANA), Immune infiltrates (TRBC2, TRAC, TMSB4X), Melanophages
318 (CD74, LYZ), Keratinocytes (KRT14, TRIM29), Blood vessel (CAVIN1, PECAM),
319 Collagen (DCN, COL1A2, FBLN1). Depending on tissue sizes and complexity, the
320 number of clusters changed. A smaller tissue from patient ID-9561, collected in 2008,
321 had four clusters, including Melanoma (PMEL, TYRP1), Immune cells (TMSB4X,
322 IL32), Keratinocytes (KRT10, KRT1, DSG1), Collagen (COL1A2, COL1A1, DCN)
323 (Figure 5D-F, Figure S3B). For the smallest tissue from patient ID-15051, with three
324 biological replicates, there were two specific clusters consistently defined across the
325 replicates. These two clusters are keratinocytes and melanocytes (cluster 0 – S100A2,
326 SPARC, TYR, MYO10) vs epidermis (cluster 1 – LCE2C, FLG), consistent to the
327 pathological annotation (Figure 5G-I, Figure S2C).

328 Having established the experimental protocols to robustly perform spatial
329 transcriptomics on FFPE tissue, we next aimed to study (pre)melanoma tissue
330 heterogeneity at gene and cell level. Based on the expression profiles of over 15,000
331 genes across the whole tissue section (up to 5000 spots per tissue), we identified 10
332 molecularly distinct cell types or functional regions for the dysplastic naevus sample
333 (Figure S4). These cell types and regions showed spatially specific expression of gene
334 markers, for example the pigment-cell (melanocyte) specific Premelanosome gene
335 (PMEL) encoding melanocyte-specific type I transmembrane protein. Visual

336 inspection of PMEL gene expression also suggested that PMEL was expressed in
337 naevus region (Figure 2). Less known marker genes, specific to a cell type or a
338 functional region, like the PRDX2 can be detected (Figure S5). Together, our data
339 showed strong evidence that the spatial gene expression was able to capture tissue
340 heterogeneity at a high resolution, across the whole tissue section and in an
341 automated and unbiased way.

342 Moreover, to evaluate our findings from the FFPE ST study, we performed RNAscope
343 assay which produced single cell resolution and high sensitivity in gene detection
344 (Figure 6). Since the current RNAscope technology using FFPE sample is able to
345 detect a small set of genes (up to 12 molecules), we selected six genes as markers of
346 cancer cells and immune cells. Similar to ST experiment, we also provided the
347 pathological annotation based on nuclei shapes and distribution from the same slide,
348 defining immune infiltration and superficial melanomas regions (Figure 6A). Each
349 punctate dot signal on a cell represents a single molecule in the assay. As a result,
350 the assay established the abundant expression of SOX10 in the superficial melanoma
351 region along with its co-expression with MKI67 (Figure 6A1). Also, the distinct co-
352 expression of CD4 and CTLA4 was seen in the immune cell infiltrate area with a low
353 expression of CD8 (Figure 6A2). Compared to pathological annotation, it appears that
354 both ST and RNAscope can define the cancer and immune regions, but with much
355 more information on molecular expression profiles that mark individual cell types and
356 activities. While RNAscope provides single cell resolutions and high detection
357 sensitivity, the ST generated data for thousands of times more genes.

358

359 **Discussion**

360 Archived FFPE tissue samples, a worldwide standard in pathology departments,
361 provides an invaluable resource for molecular research due to enormous number of
362 biobanked collections³¹⁻³⁵. Despite the vast potential for pathological applications, ST
363 has not been popular for these samples due to nucleic acid crosslinking, molecular
364 degradation, and tissue-slide detachment^{8,35}. In this study, we established two
365 alternate ST methods to overcome these challenges with FFPE tissues. Importantly,
366 we assessed tissues of variable sizes, archival times, cancer progression level and
367 RNA quality across biological and technical replicates.

368

369 In clinical practice, manual observation of FFPE melanoma tissues by pathologists is
370 often limited to assess tumour heterogeneity, in turn meaning that accurate diagnosis
371 and effective treatment plans can be obstructed³⁶⁻⁴¹. Current common spatial
372 techniques⁴²⁻⁴⁶ can on average detect less than 100 proteins and fewer than 300 gene
373 markers. Comparatively, Visium is an ST technology that is capable of measuring the
374 spatial whole transcriptome and near single-cell resolution⁴⁷⁻⁴⁹ and at the same time
375 generating histological-grade tissue images. We optimised the Poly(A)-Capture
376 protocol as this method can capture RNA that are not in a predefined probeset, thereby
377 providing missing information like the expression of lncRNA or in the case of detecting
378 RNA from a species without predesigned probes. The gene detection capacity of the
379 two FFPE protocols reported here can be thousands of times higher than classic
380 pathology techniques. The Probe-Capture protocol detected more genes with
381 increased sensitivity, but missed genes not in the panel, especially lncRNA. This is
382 important because, lncRNAs play an important role in melanoma development
383 including proliferation, invasion, and apoptosis⁵⁰. Our protocols worked with

384 challenging FFPE skin tissues older than 12 years old, with high degradation (DV200
385 <30%) (Figures1, 5, 6). We have tested numerous sectioning and storage conditions,
386 as well as section thickness to improve section adhesion⁸, balancing the improved
387 adherence and protection of RNA quality. Moreover, since cost is a major barrier to
388 applying ST, we also validated the option to multiplex tissue samples into Visium
389 capture arrays for space maximisation. In this way, we were able to analyse up to nine
390 tissue sections per slide, rather than a standard four.

391

392 From the thorough assessment of these protocols, we suggested that for discovery
393 purposes, an unbiased approach FFPE poly(A)-capture approach should be applied
394 as it detect all genes, including lncRNA. By comparing multiple replicates, we found
395 that both protocols have high reproducibility, with much less technical variation
396 compared to biological differences. Thus to capture cancer heterogeneity we
397 recommend that biological replicates are more important than technical replicates. We
398 also demonstrated a multiplexing strategy to practically reduce cost and thus allowing
399 to increase sample size. For low throughput confirmation of the result, we suggest
400 using RNAscope with high sensitivity and resolution. These comprehensive results to
401 provide new approaches to processing old and degraded FFPE tissues for spatial
402 transcriptomics open a new horizon to explore skin cancer tissue biology.

403

404 **Acknowledgments**

405 We gratefully acknowledge the contribution of IMB sequencing facility - Institute for
406 Molecular Bioscience. This work was partly funded by Genome Innovation Hub (GIH)
407 at the University of Queensland.

408

409 **Author contributions**

410 QN, MSS, KK conceived the study. TV, KJ, SY, PYL, JC performed experiments with
411 the help of SW. QN, TV, PP, IG, performed data analysis. YCK, CZ, KK, MSS
412 provided samples and ethic management. PS annotated H&E tissue sections. QN,
413 TV, KJ, SY, MSS wrote the manuscripts. All authors have read and approved the
414 manuscript.

415

416 **Data and code availability**

417 Datasets supporting this manuscript are available at Zenodo,
418 DOI:10.5281/zenodo.7475873 and code supporting this manuscript used our stLearn
419 spatial transcriptomics analysis software available at
420 <https://stlearn.readthedocs.io/en/latest/>.

421

422

423 **Figure legends**

424 **Figure 1. Developing and implementing protocols to perform spatial
425 transcriptomics for FFPE tissue.** (A). Poly(A)-Capture required the optimisation of
426 tissue permeabilization step. Probe-Capture required a tissue adherence test. (B). The
427 tissues were sectioned at 5 μ m (Probe-Capture) or 7 μ m (Poly(A)-Capture), then
428 floated on water bath before picking up onto the slide. The water bath was set at 37 $^{\circ}$ C
429 in Poly(A)-Capture protocol or at 42 $^{\circ}$ C in Probe-Capture protocol. (C). Tissue staining
430 was processed in different conditions in two protocols. In Poly(A)-capture, slides were
431 dehydrated with silica bead desiccants at room temperature for 1 hour, overnight
432 storage at 4 $^{\circ}$ C in a sealed slide-box, dried at 37 $^{\circ}$ C for 15 minutes in next day, and then
433 deparaffinised by incubated at 60 $^{\circ}$ C for 30 minutes then immerse in xylene (5 minutes,

434 twice) before H&E staining. In Probe-capture protocol, the slides were dried at 42°C
435 for 3 hours, overnight stored with silica bead desiccants at room temperature,
436 deparaffinised by incubated at 60°C for 2 hours and immersed in xylene (10 minutes,
437 twice) before H&E staining. (D). Decrosslinking was performed in the same way (1 x
438 TE buffer (pH 8.0) for 60 minutes at 70°C) to make RNA molecules accessible again
439 – In poly(A)-capture, tissue was incubated in collagenase for 20 minutes at 37°C
440 before decrosslinking. (E). In permeabilisation, the mRNA molecules or hybridized
441 probes were released from cells and bound to the spatial oligos on the glass slide.
442 Reverse transcription produced cDNA products in Poly(A)-Capture protocol or
443 extended probes in Probe-Capture protocol. (F). Eluting captured molecules/probes
444 and preparing the library for long/short cDNA sequencing. Note: RNase inhibitors were
445 additionally included in both protocols to minimise further RNA degradation during
446 high-temperature incubations.

447 **Figure 2. Poly(A)-Capture and Probe-Capture spatial sequencing data.** (A-B). The
448 QC for the dysplastic naevus (A) and melanoma (B) from Poly(A)-Capture protocol.
449 (C-D). The QC for the dysplastic naevus (C) and melanoma (D) data produced by
450 Probe-Capture method. Melanoma patient 34960 had two tissues. Tissues 34960_2
451 were sectioned continuously to provide triplicates on the capture area of slide
452 (considered as technical triplicates, labelled as 34960_2_1, 34960_2_2, and
453 34960_2_3). (E-F). The QC for melanoma samples, which were stored for very
454 different periods of time. The melanoma patient sample 15051 had three continuous
455 sections from the same block, considered as three replicates which are labelled
456 15051_1, 15051_2, and 15051_3.

457 **Figure 3. Detection of noncoding RNA (lncRNA) in melanoma samples by the**
458 **polyA-capture (polyA_FFPE) and probe-capture (PH_FFPE) protocols.** The

459 captured lncRNAs are classified as belonging to previously reported lncRNA in the
460 lncExpDB and/or FANTOM protocol. Replicates are shown as MA, MB, and MC
461 representing samples from three melanoma patients.

462 **Figure 4. The data-driven map of heterogeneous populations on dysplastic
463 naevus tissues.** (A). The annotation of dysplastic naevus from poly(A)-capture by
464 pathologist. Pathological annotation is shown as colour circles. (B-C). The spatial
465 clustering (B) and heatmap (C) of dysplastic naevus from poly(A)-capture revealed the
466 molecularly defined clusters that are heterogeneous and consistent with pathological
467 annotation. (D-E). Spatial sub-clustering (D) and heatmap (E) of cluster 2 defined in
468 the first round clustering of dysplastic naevus (as shown in B-C). (F). The annotation
469 of dysplastic naevus from probe-capture by pathologist. Pathological annotation is
470 shown as colour circles. (G-H). The clustering of dysplastic naevus tissue from probe-
471 capture (G) shows more heterogeneity details. Heatmap (H) shows top gene markers
472 for each cluster.

473 **Figure 5. Visium Probe-Capture for melanoma FFPE samples stored at different
474 periods of time.** (A, D, and G). The pathological annotation as colour circles. (B, E
475 and H). Corresponding clustering results from tissues in A, D, and G, respectively. (C,
476 F and I). Heatmaps of gene marker expression for each cluster in B, E and H,
477 respectively.

478 **Figure 6. Targeted RNA molecule expression at a single cell level using RNAscope
479 assay.** (A). An overview of the section with the nuclei stained with DAPI and
480 pathological annotation circled by white and red lines. The zoomed-in of a superficial
481 melanoma region, showing two windows A1 and A2. (A1). With the display of cancer
482 markers SOX10, PanCK, MKI67. These genes are expressed in the melanoma
483 metastasis region near the epithelial layers. Each punctate dot represents a single

484 copy of an mRNA molecule. (A2). The expression of CD4 T cell marker (CD4, CTL4A)
485 and CD8 T cell is observed in the immune cell infiltration area.

486

487 **Figure S1. Tissue Optimisation experiment performed prior to the Poly(A)-**
488 **Capture workflow.** (A). Brightfield (H&E-stained) image of the tissue section. (B).
489 Fluorescent (Cy3-tagged, poly(dT)-bound cDNA) image of the issue section. (C). Box
490 denotes an enlarged region on the brightfield image. (D). Box denotes an enlarged
491 region on the fluorescent image. (E). Overlays can be used as a measure of quality
492 control by assessing that Cy3 signal is consistent to H&E morphology, with cDNA
493 concentrated to the densely nucleated follicular tissue. (F). Cy3 images as a time
494 series of tissue section permeabilisations, beginning with 5 minutes and proceeding
495 to 40 minutes (incubation with 0.1% pepsin). The 25 minute permeabilisation was
496 chosen as optimal from the series, with highly concentrated poly(dT)-bound cDNA
497 evidenced as the most intense and tissue-specific Cy3 signal.

498 **Figure S2. The pathological annotational of the Dysplastic naevus section**
499 **used in Poly(A)-Capture protocol and Probe-Capture protocol.** (A). Dysplastic
500 naevus section used for poly(A)-capture protocol. Left is the original annotation and
501 right is the transfer of the selected regions with colour coding. (B). Dysplastic naevus
502 section from the same block, but was cut deeper, used for probe-capture protocol.
503 The annotation from left is transferred to the right with colour codes.

504 **Figure S3. The pathological annotational of the melanoma tissue sections that**
505 **used in this paper.** (A) Annotation for patient 48974. The six regions are coloured
506 coded and transferred from left to right. (B) Annotation for patient 9561. The
507 annotated melanoma and sun-damaged regions are transferred from left to right

508 images. (C) Annotation for patient 15051. Three sections are three technical
509 replicates.

510 **Figure S4. Spatial heterogeneity at gene level.** (A). Pathological annotation for the
511 two tissues. (B). The heatmap gradient colours show the expression level across the
512 tissue section. The top six most spatially variable genes are shown. These genes
513 were identified without human inputs from prior knowledge.

514 **Figure S5. Spatial heterogeneity at gene level.** The clustering results are shown
515 on the left, histopathological on the right. The heatmap gradient colours in the middle
516 show the expression level of two melanoma markers across the tissue section.

517

518 **Table S1.** Information of FFPE tissue samples used in this study

519

520 **References**

521 1 Bertram, J. S. The molecular biology of cancer. *Molecular Aspects of Medicine*
522 **21**, 167-223 (2000). [https://doi.org:https://doi.org/10.1016/S0098-2997\(00\)00007-8](https://doi.org:https://doi.org/10.1016/S0098-2997(00)00007-8)

523 2 Larsson, L., Frisén, J. & Lundeberg, J. Spatially resolved transcriptomics adds a
524 new dimension to genomics. *Nature Methods* **18**, 15-18 (2021).
525 <https://doi.org:10.1038/s41592-020-01038-7>

526 3 Nerurkar, S. N. *et al.* Transcriptional Spatial Profiling of Cancer Tissues in the
527 Era of Immunotherapy: The Potential and Promise. *Cancers (Basel)* **12**, 2572
528 (2020).

529 4 Normanno, N. *et al.* Molecular diagnostics and personalized medicine in
530 oncology: challenges and opportunities. *J Cell Biochem* **114**, 514-524 (2013).
531 <https://doi.org:10.1002/jcb.24401>

533 5 Hoffman, E. A., Frey, B. L., Smith, L. M. & Auble, D. T. Formaldehyde
534 crosslinking: a tool for the study of chromatin complexes. *J Biol Chem* **290**,
535 26404-26411 (2015). <https://doi.org/10.1074/jbc.R115.651679>

536 6 von Ahlfen, S., Missel, A., Bendrat, K. & Schlumpberger, M. Determinants of
537 RNA Quality from FFPE Samples. *PLoS One* **2**, e1261 (2007).
538 <https://doi.org/10.1371/journal.pone.0001261>

539 7 Lewis, F., Maughan, N. J., Smith, V., Hillan, K. & Quirke, P. Unlocking the
540 archive--gene expression in paraffin-embedded tissue. *J Pathol* **195**, 66-71
541 (2001). [https://doi.org/10.1002/1096-9896\(200109\)195:1<66::Aid-path921>3.0.Co;2-f](https://doi.org/10.1002/1096-9896(200109)195:1<66::Aid-path921>3.0.Co;2-f)

543 8 Gambella, A. *et al.* Section detachment in immunohistochemistry: causes,
544 troubleshooting, and problem-solving. *Histochemistry and Cell Biology* **148**, 95-
545 101 (2017). <https://doi.org/10.1007/s00418-017-1558-4>

546 9 Asp, M., Bergenstråhle, J. & Lundeberg, J. Spatially Resolved Transcriptomes-
547 Next Generation Tools for Tissue Exploration. *Bioessays* **42**, e1900221 (2020).
548 <https://doi.org/10.1002/bies.201900221>

549 10 Bingham, V. *et al.* RNAscope in situ hybridization confirms mRNA integrity in
550 formalin-fixed, paraffin-embedded cancer tissue samples. *Oncotarget* **8**, 93392-
551 93403 (2017). <https://doi.org/10.18632/oncotarget.21851>

552 11 Beechem, J. M. High-Plex Spatially Resolved RNA and Protein Detection Using
553 Digital Spatial Profiling: A Technology Designed for Immuno-oncology Biomarker
554 Discovery and Translational Research. *Methods Mol Biol* **2055**, 563-583 (2020).
555 https://doi.org/10.1007/978-1-4939-9773-2_25

556 12 Goltsev, Y. *et al.* Deep Profiling of Mouse Splenic Architecture with CODEX
557 Multiplexed Imaging. *Cell* **174**, 968-981.e915 (2018).
558 <https://doi.org:10.1016/j.cell.2018.07.010>

559 13 Giesen, C. *et al.* Highly multiplexed imaging of tumor tissues with subcellular
560 resolution by mass cytometry. *Nat Methods* **11**, 417-422 (2014).
561 <https://doi.org:10.1038/nmeth.2869>

562 14 Andor, N. *et al.* Pan-cancer analysis of the extent and consequences of
563 intratumor heterogeneity. *Nature Medicine* **22**, 105-113 (2016).
564 <https://doi.org:10.1038/nm.3984>

565 15 Shain, A. H. *et al.* The Genetic Evolution of Melanoma from Precursor Lesions.
566 *New England Journal of Medicine* **373**, 1926-1936 (2015).
567 <https://doi.org:10.1056/NEJMoa1502583>

568 16 Tirosh, I. *et al.* Dissecting the multicellular ecosystem of metastatic melanoma by
569 single-cell RNA-seq. *Science* **352**, 189-196 (2016).
570 <https://doi.org:doi:10.1126/science.aad0501>

571 17 Winnepenninckx, V. *et al.* Gene Expression Profiling of Primary Cutaneous
572 Melanoma and Clinical Outcome. *JNCI: Journal of the National Cancer Institute*
573 **98**, 472-482 (2006). <https://doi.org:10.1093/jnci/djj103>

574 18 Ohsie, S. J., Sarantopoulos, G. P., Cochran, A. J. & Binder, S. W.
575 Immunohistochemical characteristics of melanoma. *J Cutan Pathol* **35**, 433-444
576 (2008). <https://doi.org:10.1111/j.1600-0560.2007.00891.x>

577 19 Ferrara, G. & De Vanna, A. C. Fluorescence In Situ Hybridization for Melanoma
578 Diagnosis: A Review and a Reappraisal. *The American Journal of
579 Dermatopathology* **38** (2016).

580 20 Minca, E. C. *et al.* Comparison between melanoma gene expression score and
581 fluorescence in situ hybridization for the classification of melanocytic lesions.
582 *Modern Pathology* **29**, 832-843 (2016).
583 <https://doi.org/10.1038/modpathol.2016.84>

584 21 Thrane, K., Eriksson, H., Maaskola, J., Hansson, J. & Lundeberg, J. Spatially
585 Resolved Transcriptomics Enables Dissection of Genetic Heterogeneity in Stage
586 III Cutaneous Malignant Melanoma. *Cancer Res* **78**, 5970-5979 (2018).
587 <https://doi.org/10.1158/0008-5472.Can-18-0747>

588 22 Danilenko, M., Stones, R. & Rajan, N. Transcriptomic profiling of human skin
589 biopsies in the clinical trial setting: A protocol for high quality RNA extraction from
590 skin tumours. *Wellcome Open Res* **3**, 45-45 (2018).
591 <https://doi.org/10.12688/wellcomeopenres.14360.1>

592 23 Illumina. *Evaluating RNA Quality from FFPE Samples*,
593 <<https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/evaluating-rna-quality-from-ffpe-samples-technical-note-470-2014-001.pdf>> (2016).
594
595

596 24 Agilent. *Simplified DV200 Evaluation with the Agilent 2100 Bioanalyzer System*,
597 <<https://www.agilent.com/cs/library/technicaloverviews/public/5991-8287EN.pdf>>
598 (2017).
599
600

601 25 Gracia Villacampa, E. *et al.* Genome-wide spatial expression profiling in formalin-
602 fixed tissues. *Cell Genomics* **1**, 100065 (2021).
603 <https://doi.org/https://doi.org/10.1016/j.xgen.2021.100065>

604
605

606 26 Pham, D. *et al.* stLearn: integrating spatial location, tissue morphology and gene
607 expression to find cell types, cell-cell interactions and spatial trajectories within
608

604 undissociated tissues. *bioRxiv*, 2020.2005.2031.125658 (2020).

605 <https://doi.org/10.1101/2020.05.31.125658>

606 27 Wang, M. F. Z. *et al.* Uncovering transcriptional dark matter via gene annotation

607 independent single-cell RNA sequencing analysis. *Nature Communications* **12**,

608 2158 (2021). <https://doi.org/10.1038/s41467-021-22496-3>

609 28 Chae, M., Danko, C. G. & Kraus, W. L. groHMM: a computational tool for

610 identifying unannotated and cell type-specific transcription units from global run-

611 on sequencing data. *BMC Bioinformatics* **16**, 222 (2015).

612 <https://doi.org/10.1186/s12859-015-0656-3>

613 29 Hon, C.-C. *et al.* An atlas of human long non-coding RNAs with accurate 5' ends.

614 *Nature* **543**, 199-204 (2017). <https://doi.org/10.1038/nature21374>

615 30 Li, Z. *et al.* LncExpDB: an expression database of human long non-coding RNAs.

616 *Nucleic Acids Research* **49**, D962-D968 (2020).

617 <https://doi.org/10.1093/nar/gkaa850>

618 31 Sanderson, C., Emmanuel, J., Emmanuel, J. & Campbell, P. A Historical Review

619 of Paraffin and its Development as an Embedding Medium. *Journal of*

620 *Histotechnology* **11**, 61-63 (1988). <https://doi.org/10.1179/his.1988.11.1.61>

621 32 Gaffney, E. F., Riegman, P. H., Grizzle, W. E. & Watson, P. H. Factors that drive

622 the increasing use of FFPE tissue in basic and translational cancer research.

623 *Biotechnic & Histochemistry* **93**, 373-386 (2018).

624 <https://doi.org/10.1080/10520295.2018.1446101>

625 33 Kokkat, T. J., Patel, M. S., McGarvey, D., LiVolsi, V. A. & Baloch, Z. W. Archived

626 formalin-fixed paraffin-embedded (FFPE) blocks: A valuable underexploited

627 resource for extraction of DNA, RNA, and protein. *Biopreserv Biobank* **11**, 101-

628 106 (2013). <https://doi.org/10.1089/bio.2012.0052>

629 34 Rush, A. *et al.* Improving Academic Biobank Value and Sustainability Through an
630 Outputs Focus. *Value in Health* **23**, 1072-1078 (2020).
631 <https://doi.org:https://doi.org/10.1016/j.jval.2020.05.010>

632 35 Mathieson, W. & Thomas, G. Using FFPE Tissue in Genomic Analyses:
633 Advantages, Disadvantages and the Role of Biospecimen Science. *Current
634 Pathobiology Reports* **7**, 35-40 (2019). <https://doi.org:10.1007/s40139-019-00194-6>

635 36 Monshizadeh, L., Hanikeri, M., Beer, T. W. & Heenan, P. J. A critical review of
636 melanoma pathology reports for patients referred to the Western Australian
637 Melanoma Advisory Service. *Pathology* **44**, 441-447 (2012).
638 <https://doi.org:10.1097/PAT.0b013e328355767e>

639 37 Swerlick, R. A. & Chen, S. The Melanoma Epidemic: Is Increased Surveillance
640 the Solution or the Problem? *Archives of Dermatology* **132**, 881-884 (1996).
641 <https://doi.org:10.1001/archderm.1996.03890320029004>

642 38 Welch, H. G., Woloshin, S. & Schwartz, L. M. Skin biopsy rates and incidence of
643 melanoma: population based ecological study. *BMJ* **331**, 481 (2005).
644 <https://doi.org:10.1136/bmj.38516.649537.E0>

645 39 Gerami, P. *et al.* Histomorphologic Assessment and Interobserver Diagnostic
646 Reproducibility of Atypical Spitzoid Melanocytic Neoplasms With Long-term
647 Follow-up. *The American Journal of Surgical Pathology* **38**, 934-940 (2014).
648 <https://doi.org:10.1097/pas.0000000000000198>

649 40 Duncan, L. M. *et al.* Histopathologic Recognition and Grading of Dysplastic
650 Melanocytic Nevi: An Interobserver Agreement Study. *Journal of Investigative
651 Dermatology* **100**, S318-S321 (1993).
652 <https://doi.org:https://doi.org/10.1038/jid.1993.55>

654 41 Corona, R. *et al.* Interobserver variability on the histopathologic diagnosis of
655 cutaneous melanoma and other pigmented skin lesions. *Journal of Clinical*
656 *Oncology* **14**, 1218-1223 (1996). <https://doi.org/10.1200/jco.1996.14.4.1218>

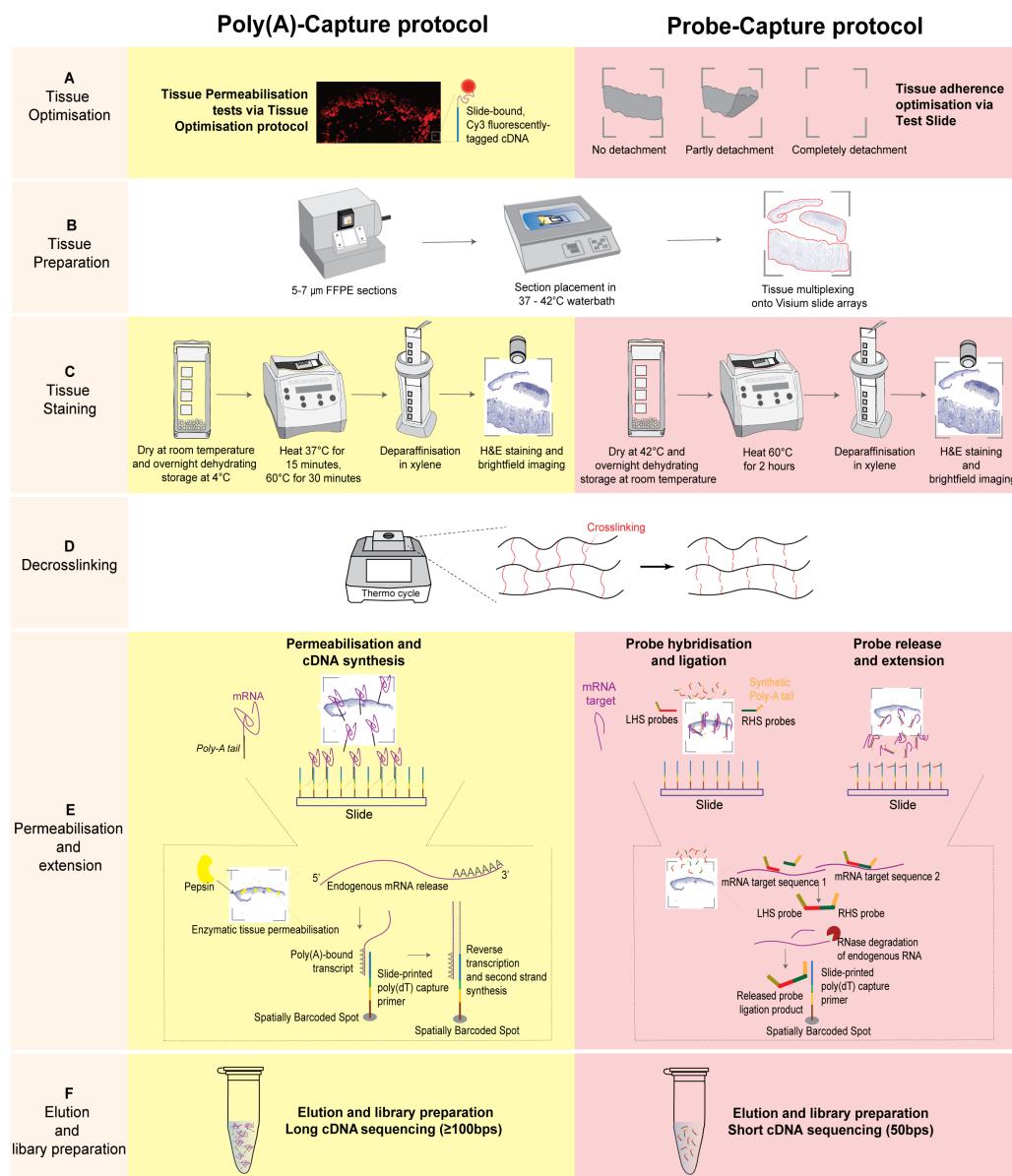
657 42 Halse, H. *et al.* Multiplex immunohistochemistry accurately defines the immune
658 context of metastatic melanoma. *Scientific Reports* **8**, 11158 (2018).
659 <https://doi.org/10.1038/s41598-018-28944-3>

660 43 Phillips, D. *et al.* Highly Multiplexed Phenotyping of Immunoregulatory Proteins in
661 the Tumor Microenvironment by CODEX Tissue Imaging. *Frontiers in*
662 *Immunology* **12** (2021). <https://doi.org/10.3389/fimmu.2021.687673>

663 44 Toki, M. I. *et al.* High-Plex Predictive Marker Discovery for Melanoma
664 Immunotherapy–Treated Patients Using Digital Spatial Profiling. *Clinical Cancer*
665 *Research* **25**, 5503-5512 (2019). <https://doi.org/10.1158/1078-0432.Ccr-19-0104>

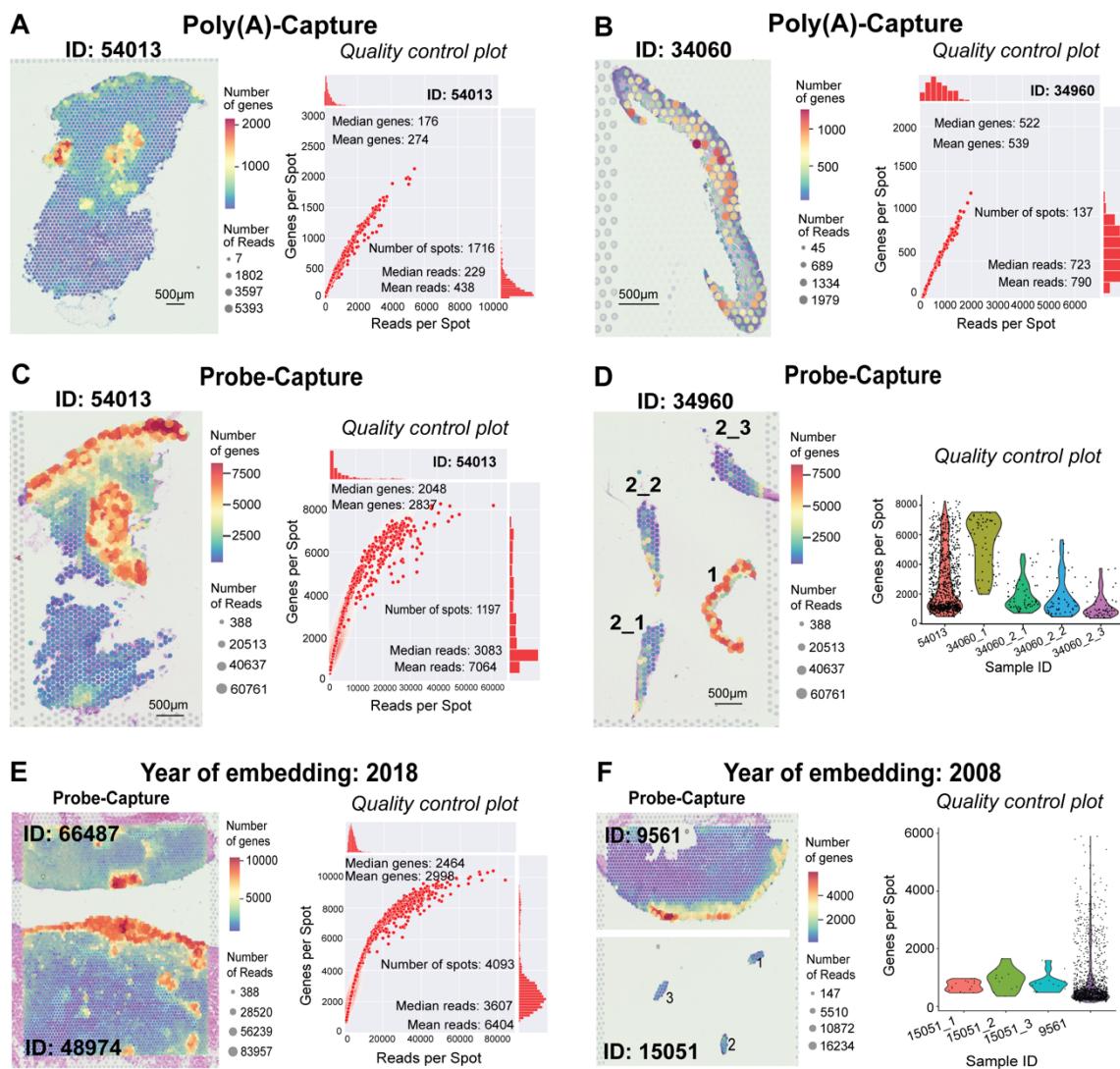
666 45 Martinez-Morilla, S. *et al.* Biomarker Discovery in Patients with Immunotherapy-
667 Treated Melanoma with Imaging Mass Cytometry. *Clinical Cancer Research* **27**,
668 1987-1996 (2021). <https://doi.org/10.1158/1078-0432.Ccr-20-3340>

669 46 Baltzarsen, P. B., Georgsen, J. B., Nielsen, P. S., Steiniche, T. & Stougaard, M.
670 Detection of mRNA of Telomerase Protein in Benign Naevi and Melanomas
671 Using RNAscope. *Applied Immunohistochemistry & Molecular Morphology* **28**
672 (2020).

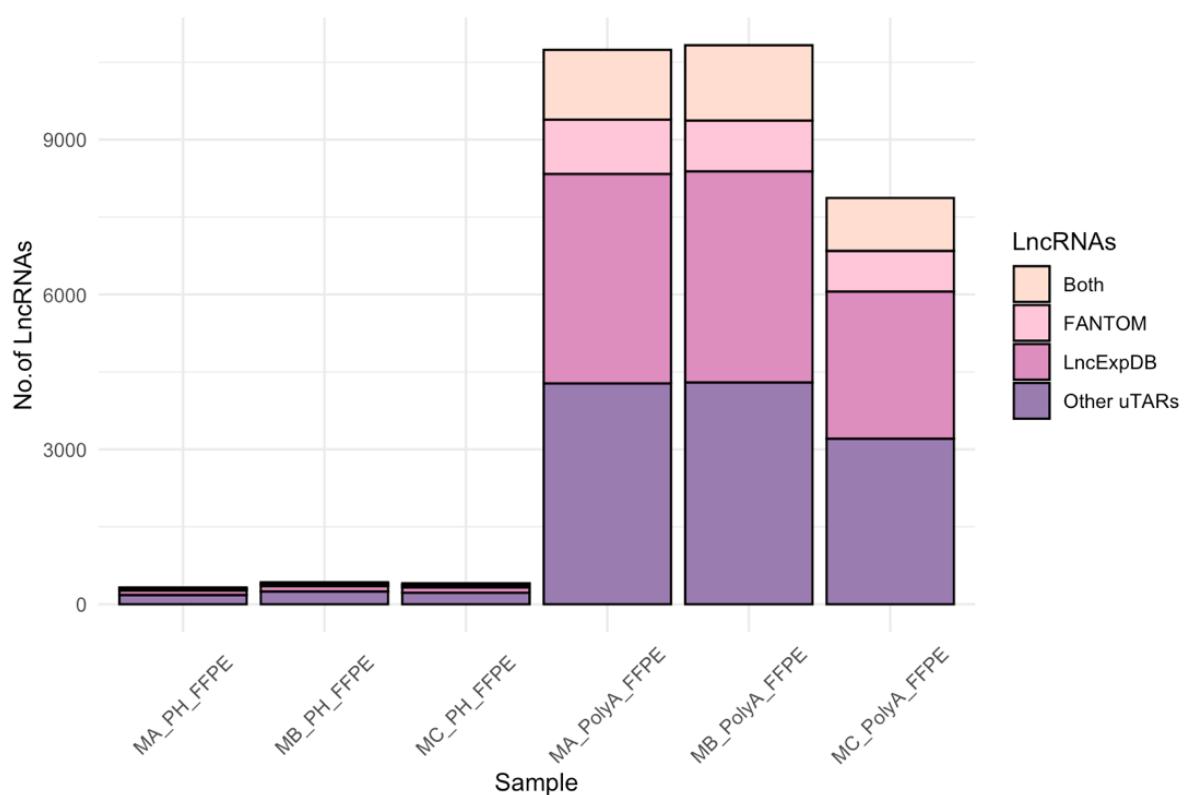

673 47 Ståhl, P. L. *et al.* Visualization and analysis of gene expression in tissue sections
674 by spatial transcriptomics. *Science* **353**, 78-82 (2016).
675 <https://doi.org/doi:10.1126/science.aaf2403>

676 48 Wilbrey-Clark, A., Roberts, K. & Teichmann, S. A. Cell Atlas technologies and
677 insights into tissue architecture. *Biochemical Journal* **477**, 1427-1442 (2020).
678 <https://doi.org/10.1042/bcj20190341>

679 49 Lewis, S. M. *et al.* Spatial omics and multiplexed imaging to explore cancer
680 biology. *Nature Methods* **18**, 997-1012 (2021). <https://doi.org/10.1038/s41592-021-01203-6>


682 50 Siena, Á. D. D. *et al.* Whole transcriptome analysis reveals correlation of long
683 noncoding RNA ZEB1-AS1 with invasive profile in melanoma. *Scientific Reports*
684 **9**, 11350 (2019). <https://doi.org/10.1038/s41598-019-47363-6>

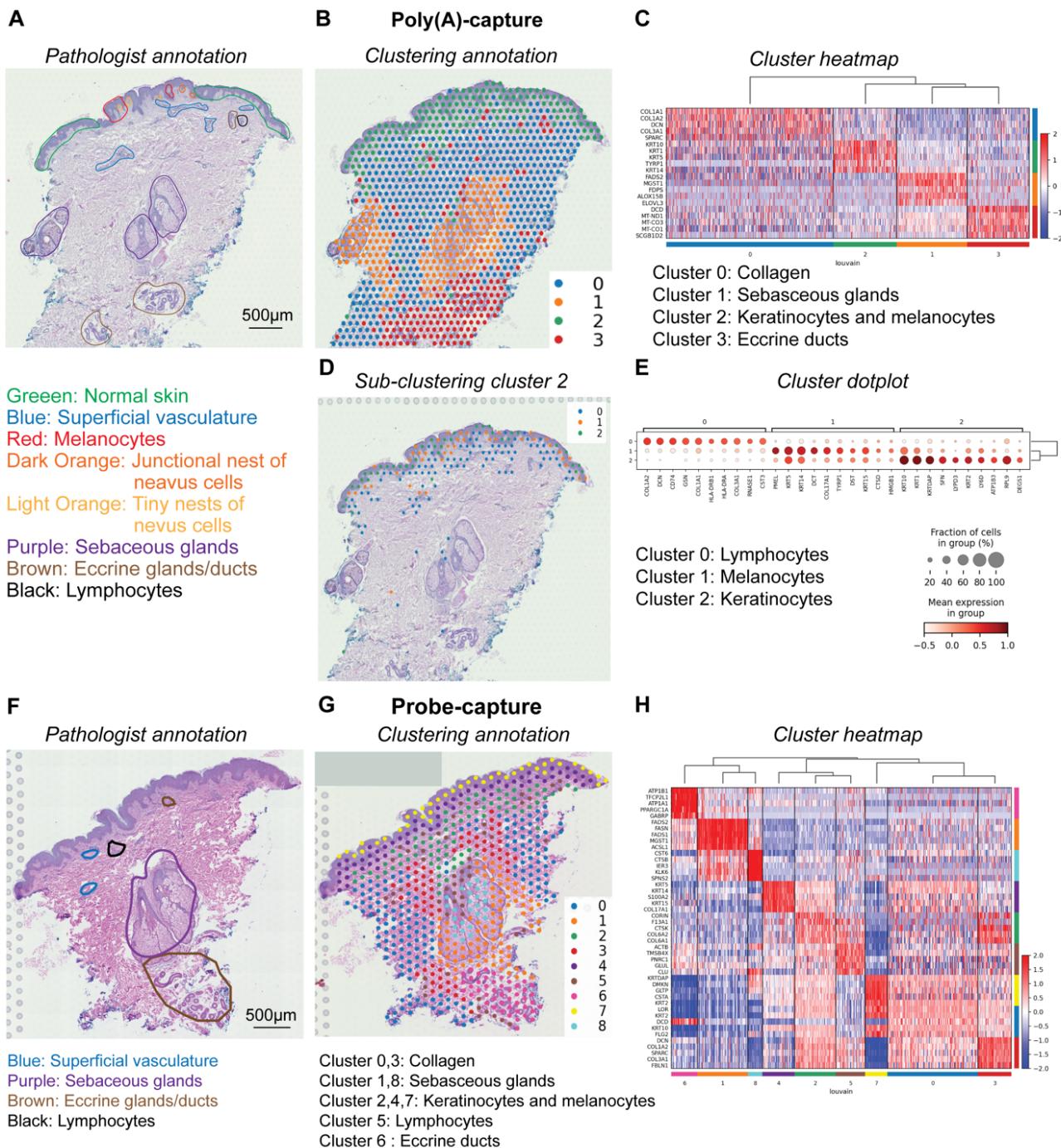
685


686 **Figure 1. Developing and implementing protocols to perform spatial transcriptomics for FFPE**
687 **tissue.** (A). Poly(A)-Capture required the optimisation of tissue permeabilization step. Probe-Capture
688 required a tissue adherence test. (B). The tissues were sectioned at 5 µm (Probe-Capture) or 7µm
689 (Poly(A)-Capture), then floated on water bath before picking up onto the slide. The water bath was set
690 at 37°C in Poly(A)-Capture protocol or at 42°C in Probe-Capture protocol. (C). Tissue staining was
691 processed in different conditions in two protocols. In Poly(A)-capture, slides were dehydrated with silica
692 bead desiccants at room temperature for 1 hour, overnight storage at 4°C in a sealed slide-box, dried
693 at 37°C for 15 minutes in next day, and then deparaffinised by incubated at 60°C for 30 minutes then
694 immerse in xylene (5 minutes, twice) before H&E staining. In Probe-capture protocol, the slides were
695 dried at 42°C for 3 hours, overnight stored with silica bead desiccants at room temperature,
696 deparaffinised by incubated at 60°C for 2 hours and immersed in xylene (10 minutes, twice) before H&E
697 staining. (D). Decrosslinking was performed in the same way (1 x TE buffer (pH 8.0) for 60 minutes at
698 70°C) to make RNA molecules accessible again – In poly(A)-capture, tissue was incubated in
699 collagenase for 20 minutes at 37°C before decrosslinking. (E). In permeabilisation, the mRNA
700 molecules or hybridized probes were released from cells and bound to the spatial oligos on the glass
701 slide. Reverse transcription produced cDNA products in Poly(A)-Capture protocol or extended probes
702 in Probe-Capture protocol. (F). Eluting captured molecules/probes and preparing the library for
703 long/short cDNA sequencing. Note: RNase inhibitors were additionally included in both protocols to
704 minimise further RNA degradation during high-temperature incubations.

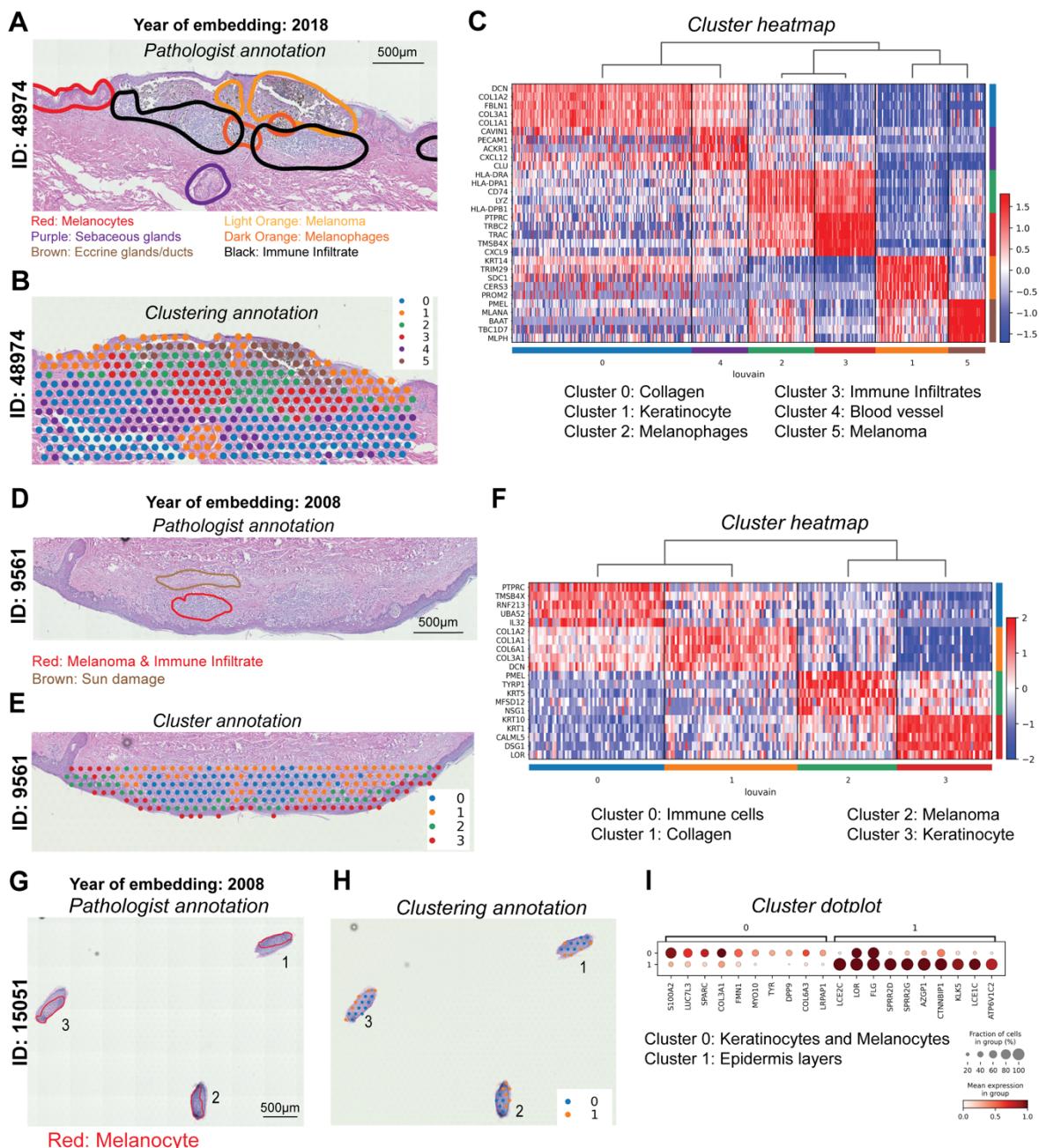
705

706

707 **Figure 2. Poly(A)-Capture and Probe-Capture spatial sequencing data. (A-B).** The
708 QC for the dysplastic naevus (A) and melanoma (B) from Poly(A)-Capture protocol.
709 (C-D). The QC for the dysplastic naevus (C) and melanoma (D) data produced by
710 Probe-Capture method. Melanoma patient 34960 had two tissues. Tissues 34960_2
711 were sectioned continuously to provide triplicates on the capture area of slide
712 (considered as technical triplicates, labelled as 34960_2_1, 34960_2_2, and
713 34960_2_3). (E-F). The QC for melanoma samples, which were stored for very
714 different periods of time. The melanoma patient sample 15051 had three continuous
715 sections from the same block, considered as three replicates which are labelled
716 15051_1, 15051_2, and 15051_3.

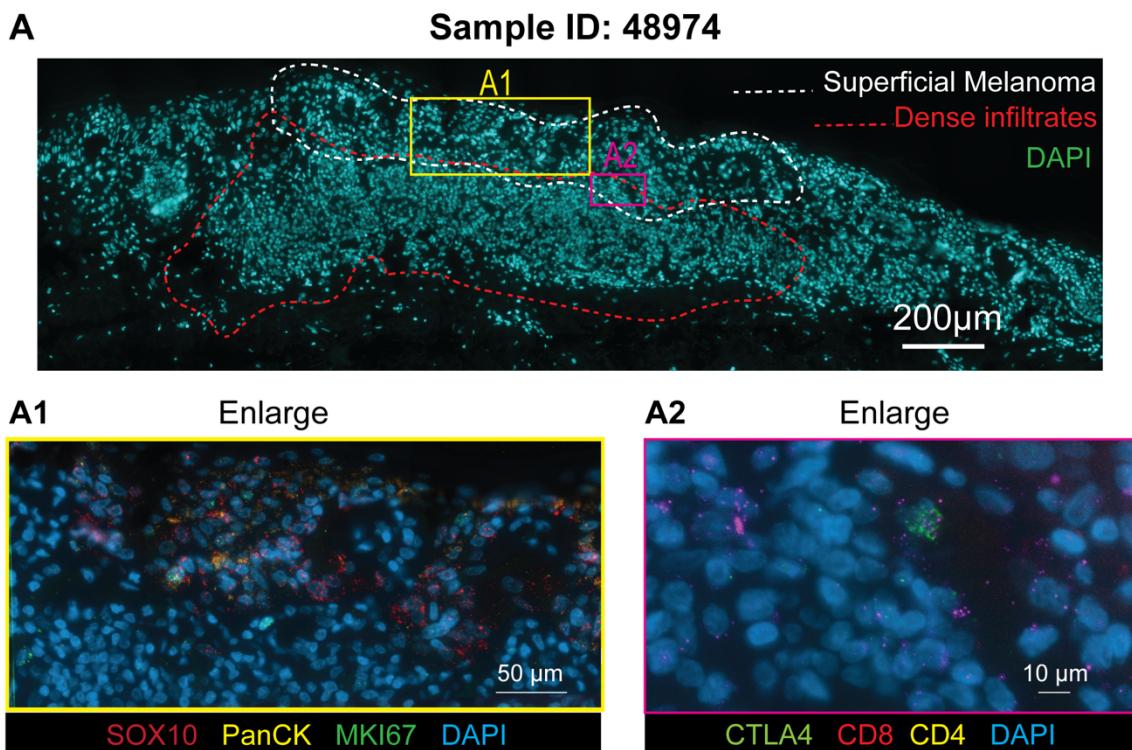

717

718 **Figure 3. Detection of noncoding RNA (lncRNA) in melanoma samples by the**
719 **polyA-capture (polyA_FFPE) and probe-capture (PH_FFPE) protocols.** The
720 captured lncRNAs are classified as belonging to previously reported lncRNA in the
721 lncExpDB and/or FANTOM protocol. Replicates are shown as MA, MB, and MC
722 representing samples from three melanoma patients.


723

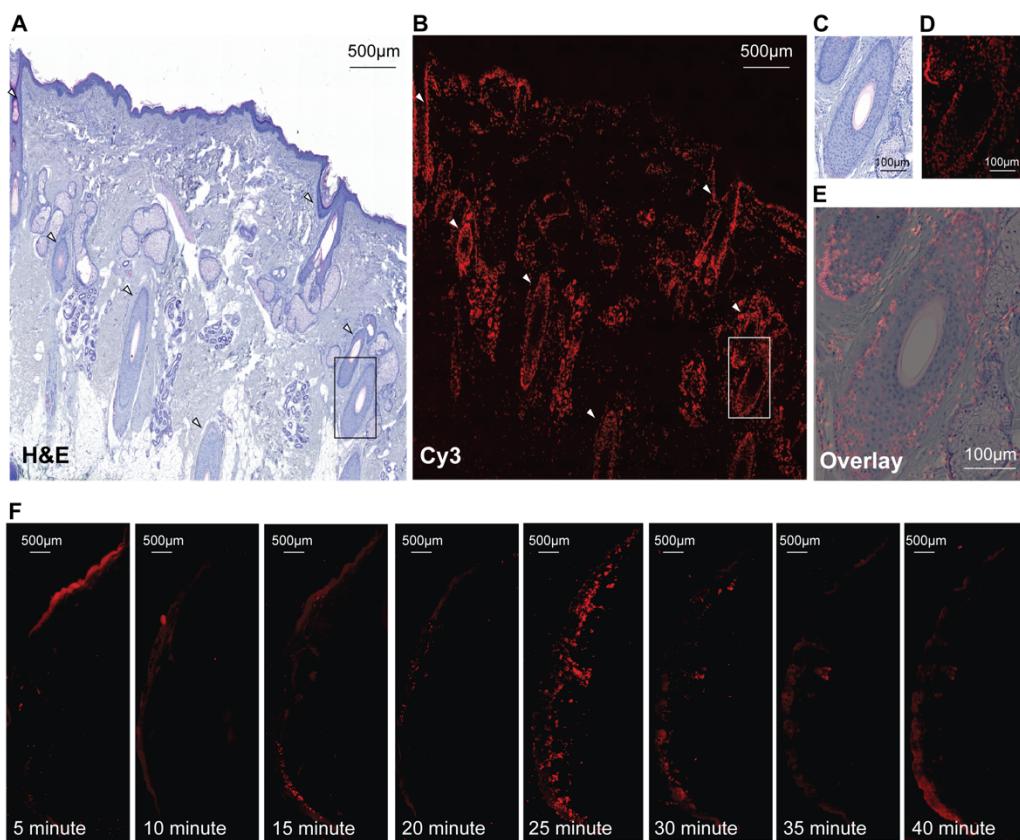
724

725


726 **Figure 4. The data-driven map of heterogeneous populations on dysplastic**
 727 **naevus tissues.** (A). The annotation of dysplastic naevus from poly(A)-capture by
 728 pathologist. Pathological annotation is shown as colour circles. (B-C). The spatial
 729 clustering (B) and heatmap (C) of dysplastic naevus from poly(A)-capture revealed the
 730 molecularly defined clusters that are heterogeneous and consistent with pathological
 731 annotation. (D-E). Spatial sub-clustering (D) and heatmap (E) of cluster 2 defined in
 732 the first round clustering of dysplastic naevus (as shown in B-C). (F). The annotation
 733 of dysplastic naevus from probe-capture by pathologist. Pathological annotation is
 734 shown as colour circles. (G-H). The clustering of dysplastic naevus tissue from probe-
 735 capture (G) shows more heterogeneity details. Heatmap (H) shows top gene markers
 736 for each cluster.

737

738 **Figure 5. Visium Probe-Capture for melanoma FFPE samples stored at different**
 739 **periods of time.** (A, D, and G). The pathological annotation as colour circles. (B, E
 740 and H). Corresponding clustering results from tissues in A, D, and G, respectively. (C,
 741 F and I). Heatmaps of gene marker expression for each cluster in B, E and H,
 742 respectively.


743
744

745 **Figure 6.** Targeted RNA molecule expression at a single cell level using RNAscope
746 assay. (A). An overview of the section with the nuclei stained with DAPI and
747 pathological annotation circled by white and red lines. The zoomed-in of a superficial
748 melanoma region, showing two windows A1 and A2. (A1). With the display of cancer
749 markers SOX10, PanCK, MKI67. These genes are expressed in the melanoma
750 metastasis region near the epithelial layers. Each punctate dot represents a single
751 copy of an mRNA molecule. (A2). The expression of CD4 T cell marker (CD4, CTL4A)
752 and CD8 T cell is observed in the immune cell infiltration area.

753 .
754

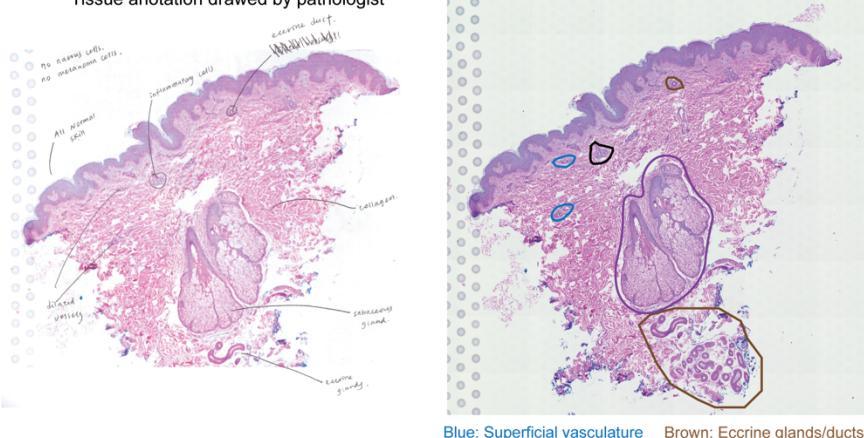
755

756

757 **Figure S1. Tissue Optimisation experiment performed prior to the Poly(A)-**
758 **Capture workflow.** (A). Brightfield (H&E-stained) image of the tissue section. (B).
759 Fluorescent (Cy3-tagged, poly(dT)-bound cDNA) image of the issue section. (C). Box
760 denotes an enlarged region on the brightfield image. (D). Box denotes an enlarged
761 region on the fluorescent image. (E). Overlays can be used as a measure of quality
762 control by assessing that Cy3 signal is consistent to H&E morphology, with cDNA
763 concentrated to the densely nucleated follicular tissue. (F). Cy3 images as a time
764 series of tissue section permeabilisations, beginning with 5 minutes and proceeding
765 to 40 minutes (incubation with 0.1% pepsin). The 25 minute permeabilisation was
766 chosen as optimal from the series, with highly concentrated poly(dT)-bound cDNA
767 evidenced as the most intense and tissue-specific Cy3 signal.

768

A Dysplastic nevus 54013: Tissue for Poly(A)-Capture


Tissue annotation drawn by pathologist

Green: Normal skin
Blue: Superficial vasculature
Red: Melanocytes
Dark Orange: Junctional nest of nevus cells
Light Orange: Tiny nests of nevus cells
Purple: Sebaceous glands
Brown: Eccrine glands/ducts
Black: Lymphocytes

B Dysplastic nevus 54013: Tissue for Probe-Capture

Tissue annotation drawn by pathologist

Blue: Superficial vasculature
Purple: Sebaceous glands
Black: Eccrine glands/ducts
Brown: Lymphocytes

769

770 **Figure S2. The pathological annotational of the Dysplastic naevus section**

771 **used in Poly(A)-Capture protocol and Probe-Capture protocol. (A). Dysplastic**
772 **naevus section used for poly(A)-capture protocol. Left is the original annotation and**
773 **right is the transfer of the selected regions with colour coding. (B). Dysplastic naevus**
774 **section from the same block, but was cut deeper, used for probe-capture protocol.**
775 **The annotation from left is transferred to the right with colour codes.**

776

A

Melanoma 48974

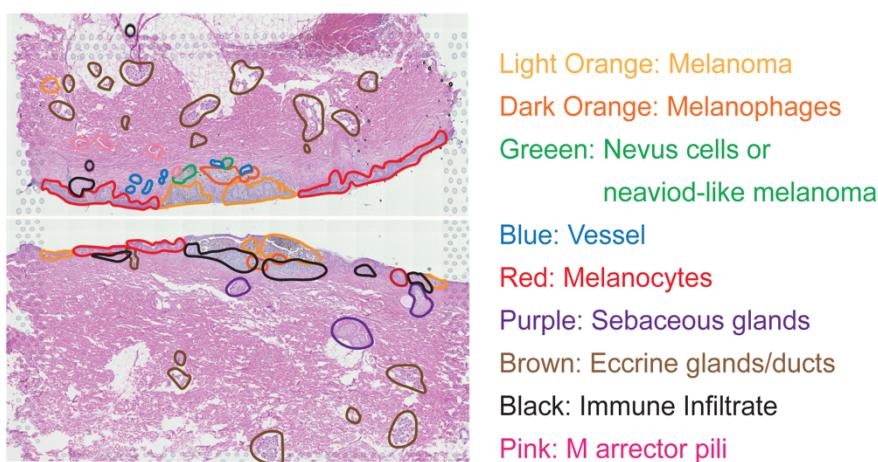
B

Melanoma 9561

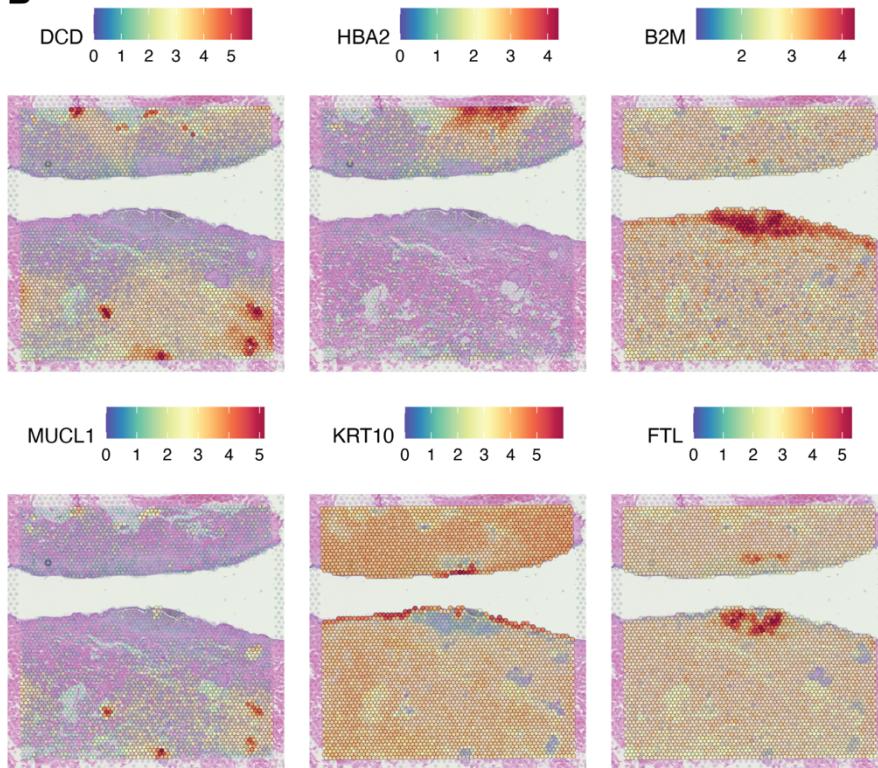
C

Melanoma 15051

Tissue annotation drawn by pathologist


Red: Melanoma

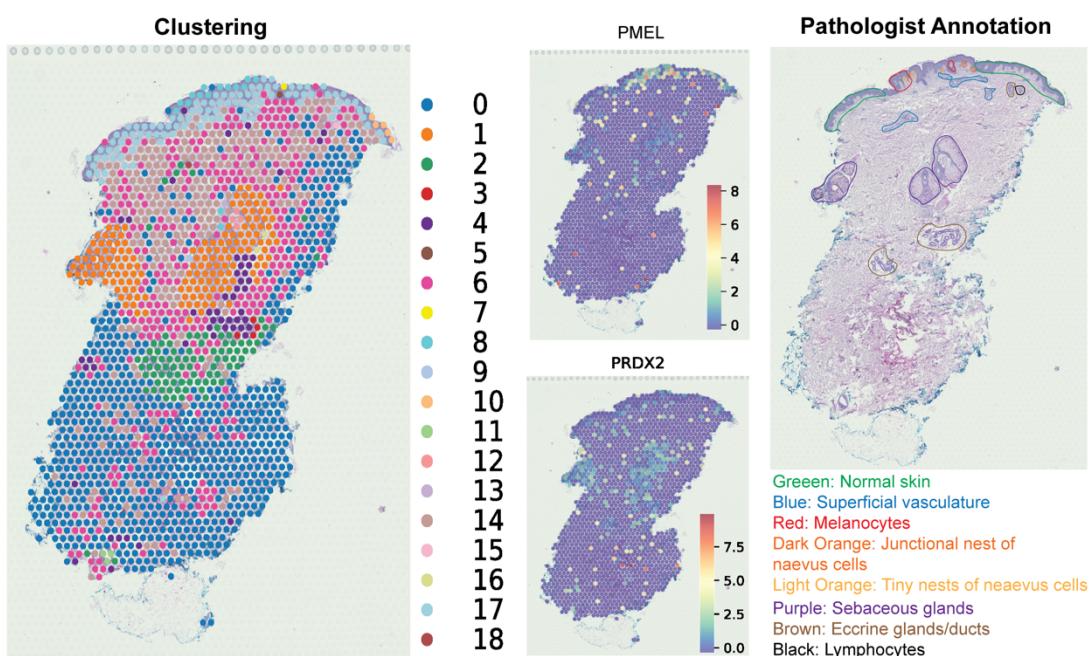
777


778 **Figure S3. The pathological annotational of the melanoma tissue sections that**
779 **used in this paper.** (A) Annotation for patient 48974. The six regions are coloured
780 coded and transferred from left to right. (B) Annotation for patient 9561. The
781 annotated melanoma and sun-damaged regions are transferred from left to right
782 images. (C) Annotation for patient 15051. Three sections are three technical
783 replicates.

784

A

B



785

786 **Figure S4. Spatial heterogeneity at gene level.** (A). Pathological annotation for the
787 two tissues. (B). The heatmap gradient colours show the expression level across the
788 tissue section. The top six most spatially variable genes are shown. These genes
789 were identified without human inputs from prior knowledge.

790

791

792

793 **Figure S5. Spatial heterogeneity at gene level.** The clustering results are shown
794 on the left, histopathological on the right. The heatmap gradient colours in the middle
795 show the expression level of two melanoma markers across the tissue section.

796