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Abstract 
Findings from genome-wide association studies have facilitated the generation of genetic predictors for many 

common human phenotypes. Stratifying individuals misaligned to a genetic predictor based on common 

variants may be important for follow-up studies that aim to identify alternative causal factors. Using genome-

wide imputed genetic data, we aimed to classify 158,951 unrelated individuals from the UK Biobank as either 

concordant or deviating from two well-measured phenotypes. We first applied our methods to standing 

height: our primary analysis classified 244 individuals (0.15%) as misaligned to their genetically predicted 

height. We show that these individuals are enriched for self-reporting being shorter or taller than average at 

age 10, diagnosed congenital malformations, and rare loss-of-function variants in genes previously 

catalogued as causal for growth disorders. Secondly, we apply our methods to LDL cholesterol. We classified 

156 (0.12%) individuals as misaligned to their genetically predicted LDL cholesterol and show that these 

individuals were enriched for both clinically actionable cardiovascular risk factors and rare genetic variants 

in genes previously shown to be involved in metabolic processes. Individuals whose LDL-C was higher than 

expected based on the genetic predictor were also at higher risk of developing coronary artery disease and 

type-two diabetes, even after adjustment for measured LDL-C, BMI and age, suggesting upward deviation 

from genetically predicted LDL-C is indicative of generally poor health. Our results remained broadly 

consistent when performing sensitivity analysis based on a variety of parametric and non-parametric 

methods to define individuals deviating from polygenic expectation. Our analyses demonstrate the potential 

importance of quantitatively identifying individuals for further follow-up based on deviation from genetic 

predictions. 

Author Summary 
Human genetics is becoming increasingly useful to help predict human traits across a population owing to 

findings from large-scale genetic association studies and advances in the power of genetic predictors. This 

provides an opportunity to potentially identify individuals that deviate from genetic predictions for a 

common phenotype under investigation. For example, an individual may be genetically predicted to be tall, 

but be shorter than expected. It is potentially important to identify individuals who deviate from genetic 

predictions as this can facilitate further follow-up to assess likely causes. Using 158,951 unrelated individuals 

from the UK Biobank, with height and LDL cholesterol, as exemplar traits, we demonstrate that 

approximately 0.15% & 0.12% of individuals deviate from their genetically predicted phenotypes 

respectively. We observed these individuals to be enriched for a range of rare clinical diagnoses, as well as 

rare genetic factors that may be causal. Our analyses also demonstrate several methods for detecting 
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individuals who deviate from genetic predictions that can be applied to a range of continuous human 

phenotypes. 
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Introduction 1 

Since 2007 [1], genome-wide association studies (GWAS) have identified thousands of associations between 2 

common single nucleotide polymorphisms (SNPs) and human traits. This has resulted in an increase in the 3 

variance explained and out-of-sample prediction accuracy for common human traits [2–4]. For example, the 4 

largest published GWAS meta-analysis for height identified 12,111 SNP-associations that explained ∼40% of 5 

the variance in height among individuals of European genetic ancestry and between 10-20% in other genetic 6 

ancestries [3]. Although the amount of variance explained for common quantitative traits continues to 7 

increase, less is understood of how common genetic variation contributes to phenotypic variation in the 8 

extreme tails of quantitative trait distributions [5], and whether individuals who present relatively extreme 9 

deviation from their expected phenotype given their common SNP-based predictor can be identified. 10 

It may be important to identify individuals who deviate from their predicted phenotype based on an 11 

assumed polygenic model of association because they may be more likely to carry rarer and more penetrant 12 

pathogenic mutations or have some other cause to their phenotype. Specific alternative causes of an extreme 13 

phenotype may require targeted clinical investigations for an individual. 14 

Using height and LDL cholesterol (LDL-C) as exemplar traits, chosen for their high heritability and clinical 15 

relevance respectively, we aimed to classify individuals who deviate from their genetically predicted 16 

phenotype, using 158,951 unrelated individuals from the UK Biobank with whole exome-sequencing data. 17 

We subsequently aimed to determine if individuals classified as misaligned to their genetically predicted 18 

height were enriched for recall of being relatively short or tall in childhood, disproportionate body stature, 19 

clinical diagnoses of syndromes associated with extreme stature, carriers for rare genetic variation relevant 20 

to height, or environmental factors that may have influenced growth. Secondly, we aimed to determine if 21 

individuals classified as misaligned to their genetically predicted LDL-C were at higher risk of heart disease, 22 

more or less likely to have type 2 diabetes, or were carriers for rare genetic variation relevant to LDL-C. 23 

Finally, we assessed the sensitivity of our results based on four methods, each with two thresholds, that have 24 

the potential to be used to identify individuals whose phenotype deviates from the expectation based on their 25 

polygenic score. 26 

Results 27 

Standing Height 28 

A derived polygenic score for height explains 32% of the variance in the UK Biobank 29 

We derived a polygenic score using conditional effect estimates of 3,198 SNPs reaching P < 5 × 10−8 obtained 30 

from a meta-analysis of 1.2M individuals from European-based studies (excluding the UK Biobank) 31 

contributing to the Genetic Investigation of ANthropometric Traits (GIANT) consortium. The polygenic score 32 

explained 31.6% of the variance in height among 158,951 unrelated individuals of European genetic ancestry 33 

with exome sequencing in the UK Biobank (Fig 1). A 1SD increase in the polygenic score increased 34 

standardized height (adjusted for age, sex and assessment centre and five principal components) by 0.562 35 

SDs ([95% CI 0.558, 0.566], P < 1 × 10−128), equivalent to 5.19cm. Effects were similar in males and females 36 

(0.561 SDs [95% CI 0.555, 0.567] and 0.564 SDs [95% CI 0.558, 0.569], respectively). 37 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.10.528019doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.10.528019
http://creativecommons.org/licenses/by/4.0/


January 8, 2023 4/20 

Fig 1. Standardized polygenic scores for height plotted against standardized height for 158,951 unrelated 38 

individuals from the UK Biobank.39 

 40 
We classified 244 individuals as misaligned to genetically predicted height 41 

Using a simulated dataset of 158,951 individuals and 3,198 SNPs explaining 31.6% of the variance under an 42 

additive model (see methods), we classified 244 individuals of the 158,951 individuals from the UK Biobank 43 

as deviating from the polygenic expectation, using Mahalanobis distances based on means of the 44 

standardized polygenic scores and adjusted height measures, accounting for covariance between the two 45 

variables. Of the individuals deviating from expectation, 150 and 94 individuals were relatively short or tall 46 

for their polygenic score, respectively (Fig 2). 47 

Individuals misaligned to their genetically predicted height are more likely to recall being shorter or 48 
taller than average at age 10 49 

As a validation of our polygenic deviation classification for height, we first tested for enrichment of self-50 

reporting being shorter or taller than average at age 10 among individuals who were shorter or taller than 51 

genetically predicted, respectively. We observed evidence of enrichment in both the short and tall deviator 52 

groups relative to the group aligned to their genetic score with OR = 10.1 [95% CI 7.19, 14.2], P = 2 × 10−42 53 

and OR = 10.4 [95% CI 6.52, 16.5], P = 4 × 10−27, respectively. 54 

 55 

Fig 2. a) Observed (red) and simulated (black) polygenic scores and standardized height adjusted for age, 56 

sex and assessment centre. b) Individuals aligned (black) and misaligned (red) to genetically predicted 57 

height defined using Mahalanobis distance P < 0.001, and being more than 2 standard deviations away from 58 
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the mean of the residual distribution generated by regressing the polygenic score against height.59 

 60 
 61 

Individuals who deviate from their genetically predicted height are enriched for having a 62 
disproportionate body stature 63 

As individuals at the extremes of the polygenic score distribution for height are enriched for recalling being 64 

shorter or taller at age 10, we next hypothesised that individuals classified as deviating from their genetically 65 

predicted phenotype are also more likely to have disproportionate body sizes that affect standing height and 66 

have more extreme sitting-to-standing height ratios. We observed individuals who were shorter or taller 67 

than genetically predicted were enriched for extreme values of sitting-to-standing height ratio 68 

(greater than 1SD) with OR = 2.99 [95% CI 2.12, 4.15], P = 1.22 × 10−10, OR = 6.39 [95% CI 1.72, 53.4], P 69 

= 7.85 × 10−4, respectively. 70 

Individuals with shorter stature than genetically predicted are enriched for congenital malformations 71 
and deformations of the musculoskeletal system 72 

To identify potential reasons why individuals deviate from polygenic prediction, we first tested for 73 

enrichment of clinical diagnoses of congenital malformations and deformations of the musculoskeletal 74 

system as captured by ICD9 (754-756) and ICD10 (Q75-Q69) codes from Hospital Episode Statistics and 75 

primary care data where an ICD9 or ICD10 code could be extracted. We observed an enrichment within the 76 

group of individuals with shorter stature misaligned to the genetic predictor with an odds ratio of 3.45 [95% 77 

CI 2.11, 5.65], P = 2 × 10−5) of having a diagnosis of congenital malformations and deformations of the 78 

musculoskeletal system but observed a lack of enrichment among the taller group (OR = 1.00 [95% CI 0.999, 79 

1.00], P = 0.783). 80 

 81 

Individuals who are shorter relative to their genetically predicted height are enriched for loss-of-82 
function variants in genes most commonly associated with monogenic forms of short stature 83 
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We next hypothesised that individuals classified as having relatively short or tall stature given their 84 

polygenic score for height would be enriched for rare variants in dominantly inherited genes previously 85 

associated with growth disorders, including overgrowth. 86 

Using 238 genes catalogued in OMIM as causally associated with short or tall stature (see methods) with 87 

at least one dominant pattern of inheritance, we first tested whether individuals classified as deviating from 88 

polygenic expectation were enriched for any rare (minor allele frequency < 0.1%) loss-of-function (LoF) 89 

variants in those genes. We did not observe evidence (at P < 0.05) for enrichment of rare LoF variants 90 

present in people defined as relatively short for their polygenic prediction (OR = 1.39 [95% CI 1.00, 1.94], P = 91 

0.071). However, we did observe a stronger enrichment for LoF carriers when limiting the analysis to a 92 

subset of 6 genes (SHOX, NPR2, ACAN, IGF1, IGF1R, and FGFR3) in which variants are known to be relatively 93 

common Mendelian causes of short stature (OR = 78.4 [95% CI 40.1, 153.3], P = 6.83 × 10−16) (see methods). 94 

Among individuals with relatively tall stature for their genetic prediction, we did not observe evidence for 95 

enrichment of rare LoF variants residing in the 238 genes (OR 1.11 [95% CI 0.699, 1.75] P = 0.63). These 96 

results were nominally significant (P < 0.05) when limiting our analysis to 3 genes in which variants have 97 

previously been described as causal for some of the most prevalent syndromes associated with tall stature, 98 

specifically Marfan syndrome (FBN1) [6–8], Weaver syndrome (EZH2) [9], and Sotos syndrome (NDS1) [10] 99 

(OR= 43.7 [95% CI 1.06, 271], P = 0.024). 100 

Individuals misaligned to their genetically predicted height showed no enrichment of inbreeding 101 

Following on from previous research that has suggested an association between inbreeding and reduced 102 

adult height [11], we next tested whether inbreeding could be associated with our definition of deviation 103 

from polygenic expectation. We found no evidence of association between the inbreeding F-statistic when 104 

comparing individuals who were shorter than genetically predicted versus those who were concordant with 105 

their genetically predicted height (β = −0.0488 [95% CI -0.207, 0.109], P = 0.54). We also observed no 106 

evidence of association in those who were taller than expected (β = −0.0559 [95% CI -0.256, 0.144], P = 0.58). 107 

Individuals who are shorter relative to their genetic predictor for height are enriched for lower 108 
socioeconomic status 109 

Finally, we explored whether non-genetic factors could influence whether an individual was classified as 110 

deviating from their genetically predicted height given their observed height. Specifically, we assessed the 111 

effect of socioeconomic status as represented by the Townsend deprivation index (TDI). We observed an 112 

enrichment of higher TDI (representing lower socioeconomic status) among individuals who were relatively 113 

short given their genetically predicted height (OR = 2.69 [95% CI 1.92, 3.76], P = 5.97 × 10−8). We did not 114 

observe evidence that taller individuals were enriched for lower levels of TDI (OR = 1.122 [95% CI 115 

0.625,2.02], P= 0.64). 116 

 117 

Findings remain consistent after applying alternative methods to define individuals deviating from 118 
polygenic predictions 119 

Given our primary analysis was based on using Mahalanobis distances (P<0.001) to define individuals 120 
deviating from polygenic predictions, we performed several sensitivity analyses to determine if our overall 121 

findings would change if different thresholds and methods were applied to define individuals deviating from 122 
polygenic expectation (see methods). Briefly, alternative approaches to define polygenic deviators that 123 
assume trait normality included 1) using Mahalanobis distances with P < 0.05/n, 2) using absolute 124 

standardised residual values greater than a) 2 or b) 3 after regressing observed polygenic scores against 125 
observed height values, and 3) using empirical P-values based on 10,000 simulations of phenotypes and 126 

polygenic score whereby an observed phenotype at a given rank of polygenic score (PS-rank) is compared 127 
with 10,000 simulated phenotypes at the same simulated PS-rank. In addition, we implemented a non-128 
parametric centile approach that made no assumptions about the distribution of the quantitative phenotype 129 

under examination. While the number and intersection of individuals grouped into the taller and shorter 130 
groups differed depending on the method and threshold used (Supp Table 2, Supp Table 3, Supp Table 4), our 131 
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findings were largely unchanged (Supp Table 5, Supp Table 6). Figure 3 shows how the methods for defining 132 
deviator status vary visually. 133 

Fig 3. Scatter plots showing the distribution of individuals who deviate (red) and do not deviate (black) from 134 

their genetic predictor for height, based on a) Mahalanobis distances with P < 0.001 and b) P < 0.05/n, c) 135 

regression residuals at the 2SD and d) 3SD threshold, e) GRS centiles with a 1.5 IQR and f) 3 IQR threshold, 136 

and finally g) GRS rank with P < 0.001 and (h) P < (1/10000). 137 

 138 

 139 
LDL Cholesterol 140 

A polygenic score for LDL cholesterol explains 16.7% of the variance in the UK Biobank 141 

We derived an LDL-C polygenic score for 134,979 unrelated European individuals with measures of LDL-C 142 

(UKB Field 30780) and exome-sequencing data in the UK Biobank. We used 1,239,184 SNP effect estimates 143 

from the latest meta-analysis of LDL cholesterol (LDL-C) that excluded UK Biobank (REF). The polygenic 144 

score explained 16.7% of the variance in LDL-C. 145 

 146 

A 1SD increase in the polygenic score increased rank-inverse normalised residualised LDL-C (adjusted for 147 

statin use, age, sex and assessment centre and five genetic principal components) by 0.408 SDs ([95% CI 148 

0.403, 0.413], P < 1×10−128), equivalent to 0.866 mmol/l. When repeating this analysis in 61,598 males and 149 

73,377 females separately, the polygenic score explained 16.2% and 18.0% of the variance respectively. A 150 

1SD change in the polygenic score resulted in a 0.402 SD [95% CI 0.395, 0.409] and 0.424 SD [95% CI 0.417, 151 

0.430] change in LDL-C in the males and females, respectively. 152 

 153 
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Fig 4. Scatter plots showing the distribution of individuals who deviate (red) and do not deviate (black) 154 

deviate their genetic predictor for LDL cholesterol, based on a) Mahalanobis distances with P < 0.001 and b) 155 

P < 0.05/n, c) regression residuals at the 2SD and d) 3SD threshold, e) GRS centiles with a 1.5 IQR and f) 3 IQR 156 

threshold, and finally g) GRS rank with P < 0.001 and (h) P < (1/10000). 157 

 158 

 159 

We classified 159 individuals as misaligned to their genetically predicted LDL cholesterol 160 

We again used the Mahalanobis metric to classify individuals who deviated from their polygenic score.  Based 161 

on 134,979 individuals and 1,239,184 variants that explained 16.7% of the variance of a normally distributed 162 

outcome, we classified 159 individuals from the UK Biobank as deviating from the polygenic expectation 163 

(P<0.01), and 123,254 individuals as aligned to their polygenic score (P>0.05).  164 

Of those 159 individuals classified as misaligned, 91 and 68 had a relatively low or high LDL-C for their 165 

polygenic score, respectively. In a sex stratified analysis, motivated by the static sex-heterogeneous nature of 166 

lipid levels, 53 and 38 males had relatively low or high LDL-C respectively. Additionally, 41 and 44 females 167 

had relatively low or high LDL-C respectively. An additional 17 females were classified as misaligned to their 168 

polygenic score in the sex stratified analysis, 14 (82.4%) of which had a higher LDL-C than expected. The 169 

absolute number of males classified as misaligned to their polygenic score did not change in the sex-stratified 170 

analysis, but the relative number of individuals who had a polygenic score higher than expected increased by 171 

12.1%. Due to these differences, we used the sex-stratified analysis as our primary results. We provide 172 

scatter plots in Fig. 4 showing how these individuals are distributed as compared to controls, as well as 173 

scatter plots showing how this distribution changes for the different methods that we have introduced to 174 

classify polygenic misalignment. Counts of polygenic deviators for each method are also given in STable 7. 175 
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Individuals who deviate from their genetically predicted LDL-cholesterol had differing levels of 176 
common cardiovascular risk factors 177 

Compared to individuals classified as not deviating from their genetically predicted LDL-C levels, males with 178 

high LDL-C relative to their polygenic score had higher triglyceride levels (β = 0.695 [95% CI 0.403, 0.985], P 179 

= 2.87 × 10−6) and nominally higher HDL levels (β = 0.247 [95% CI -0.017, 0.510], P =0.0667). All effect sizes 180 

are in sex-specific SD units. Based on the same comparison in females, individuals with a high LDL-C for their 181 

polygenic score had higher triglyceride levels (β = 0.877 [95% CI 0.635, 1.12], P = 1.29 × 10−12), higher BMI (β 182 

= 0.636 [95% CI 0.321, 0.950], P = 7.35 × 10−5) and higher cigarette use (β = 0.303 [95% CI 0.0838, 0.523], P = 183 

6.76 × 10−3). 184 

Compared to individuals labelled as aligned to the genetically predicted LDL-C, males whose LDL-C was 185 

low for their polygenic score had lower triglyceride levels (β = −0.885 [95% CI -1.13, -0.638], P = 2.00 × 186 

10−12), lower HDL levels (β = −0.632 [95% CI -0.855 -0405], P = 3.00 × 10−8) and nominally lower diastolic 187 

blood pressure (β = −0.271 [95% CI [-0.507, -0.03], P = 0.0246). In females, individuals with a low LDL-C for 188 

their polygenic score had lower triglyceride levels (β = −0.983 [95% CI -1.23, -0.732], P = 1.64×10−14) and 189 

were nominally older (β = 0.353 [95% CI [0.0531, 0.652], P = 0.0210) - see Figure 5 and Supp Tables 8 & 9for 190 

all Q-risk factors that were assessed. 191 

 192 

Deviation from genetically predicted LDL-C increases the risk of having coronary artery disease and 193 
diabetes, even after adjusting for the effects of LDL-C, BMI and age 194 

Compared to individuals labelled as aligned to genetically predicted LDL-C levels, females whose LDL-C was 195 

high for their polygenic score had a nominally increased risk of T2D (OR = 7.07, [95% CI 1.38, 36.2], P = 196 

0.019), even after adjusting for the effects of measured LDL-C, age and BMI. We did not observe an 197 

association between of higher risk of T2D in males labelled as deviating from genetically predicted LDL. 198 

Among males classified as misaligned to their LDL-C genetic predictor and whose LDL-C was lower than 199 

expected, we observed an enrichment for coronary artery disease (OR = 4.82, [95% CI 2.57, 9.02], P = 8.87 × 200 

10−7) and nominally higher risk of type-two diabetes (OR = 2.32, [95% CI 1.10, 4.90], P = 0.0278). In females, 201 

individuals with a low LDL-C for their polygenic score showed no evidence of enrichment for T2D or CAD. 202 

Refer to Fig. 6 and Supp Table 10 for all results. 203 

 204 
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Fig 5. Odds ratio per standard deviation increase in Q-Risk exposure phenotypes with respect to being 205 

classified as a deviating for a polygenic score for LDL cholesterol.206 

 207 
Individuals who deviate from their genetically predicted LDL-cholesterol were more likely to be 208 
carriers of damaging exome-sequenced loss-of-function variants in LDLR, APOB and PCSK9 209 

Males and females whose LDL-C was high for their LDL-C polygenic score showed evidence of enrichment for 210 

rare (< 0.1%) loss-of-function variants in the LDLR gene (males: OR = 4.28 [95% CI 2.28, 8.02], P = 5.96 × 211 

10−6; females: OR = 4.02 [95% CI 2.17, 7.44], P = 1.02 × 10−5).  212 

 213 

Males and females whose LDL-C was low for their LDL-C polygenic score showed evidence of enrichment for 214 

rare loss-of-function variants in APOB (males: OR = 5.49 [95% CI 4.30, 7.02], P = 4.12 × 10−42; females: OR = 215 

5.29 [95% CI 4.11, 6.84], P = 1.34 × 10−37), and for males in PCSK9 (males: OR = 4.99 [95% CI 3.48, 7.17], P = 216 

2.54 × 10−18).  217 

 218 

Refer to Fig. 7 and Supp Table 10 for all exome-sequencing derived enrichment results. 219 

Fig 6. Odds ratios for an individual having either type two diabetes (T2D) or coronary artery disease if they 220 

classified as misaligned to their LDL-C polygenic score, adjusted for BMI, age and LDL-C. 221 
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 222 

Using the GRS-ranking method classifies more individuals as deviating from their polygenic LDL-C 223 
score, with similar features and some stronger statistical associations 224 

We additionally classified individuals who were misaligned to their polygenic score for LDL-C using the GRS 225 

ranking method, and based on interquartile ranges and the residual of regression of LDL-C on the polygenic 226 

score. Of the four methods, classifying deviation from a polygenic score using the results of which can be 227 

found in Supp Tables 7 & 8. Although the number of individuals who were classified as deviating from their 228 

polygenic score was 176.1% higher using the GRS-ranking method, the features of those individuals was 229 

similar, with the same sign of effect in 73.5% of all analyses. Additionally, with the higher number of 230 

individuals classified as deviating, the strength of the statistical association was stronger for some key 231 

analyses. For example, even after adjusting for BMI, age and measured LDL-C, individuals whose LDL-C was 232 

higher than expected based on the GRS-ranking method were much more likely to suffer from type-two 233 

diabetes (males: OR = 10.3 [95% CI 3.93, 26.9], P = 2.09 × 10−6). We present all GRS-ranking method results 234 

in STables 7&8 alongside those derived from the Mahalanobis method. 235 

Discussion 236 

We have established novel, robust methods for identifying individuals whose phenotype is misaligned to 237 

their polygenic prediction, which we referred to as deviating from a polygenic score, applied to two well-238 

known phenotypes: height, chosen for its high heritability and strongly predictive polygenic score, and LDL-239 

C, chosen for being clinically actionable into adulthood, with a range of associated co-morbidities. 240 

 241 
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 242 

Fig 7. Odds ratio of an individual being a carrier of a loss-of-function variant in one of three genes known to 243 

affect LDL-C levels: (LDLR, APOB and PCSK9) if they were classified as misaligned to their LDL-C polygenic 244 

score. 245 

 246 

Our results were broadly consistent across the methods tested and are thus likely to be applicable to a range 247 

of phenotypes. With ever-increasing sample sizes, we suspect more traits will have highly powered polygenic 248 

risk scores that increase the efficacy of this method. 249 

Several lines of evidence indicate that our approach is effective. First, we found, for both standing human 250 

height and LDL-C, individuals who deviated from their expected genetic score were enriched for rare genetic 251 

mutations in several genes known to be associated with extreme stature and LDL-C. These mutations were 252 

discovered using the whole exome sequence data in UK Biobank, and occurred in established genes, such as 253 

ACAN and SHOX for height and LDLR and PCSK9 for LDL-C. Second, individuals who deviated were also 254 

enriched for other factors known to be associated with differences in phenotype, such as differences in BMI, 255 

smoking, and socio-economic position for LDL-C. For LDL-C, these differences were also reflected in different 256 

risks of heart disease and type 2 diabetes. 257 

The number of individuals identified as deviators from their expected phenotype given their polygenic 258 

risk varied by method and statistical threshold used. For example, based on the less stringent statistical 259 

thresholds (fig 2a,c,e,g for height) the four methods identified between 244 and 7,316 individuals for height 260 

and between 158 and 6,402 individuals for LDL-C. Using the more stringent thresholds (fig 2b,d,f,h for 261 

height) the four methods identified between 10 and 702 individuals for height and between 3 and 577 262 

individuals for LDL-C.  Across all Q-risk outcomes, as compared to individuals who had either a lower or 263 

higher LDL-C than expected classified using Mahalanobis distance at the weaker threshold (P<0.001), the 264 

statistical evidence for association with Q-risk criteria was stronger (p<0.05) when individuals were 265 
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classified by either the IQR (1.5IQR) or GRS residual (2SD) methods: the two methods which classified the 266 

largest number of individuals as misaligned to their polygenic score. 267 

Given both height and the genetic predictor are normally distributed, we were able to use both 268 

parametric and non-parametric methods to define individuals who are phenotypically misaligned to their 269 

genetic prediction based on the additive model of inheritance. However, phenotypes such as body-mass-270 

index (BMI) are known to be skewed [12] and therefore the non-parametric approaches discussed in this 271 

study are more likely to be suitable for other phenotypes analysed on the raw scale and are recommended if 272 

rank-based normalisation of the phenotype, for example, is not implemented. 273 

There are some limitations of this study. First, while the primary method is suited for normally 274 

distributed phenotypes and genetic scores, as observed for height, no optimal Mahalanobis distance 275 

threshold is known. We have attempted to overcome this by demonstrating the efficacy of our method on 276 

LDL-C, a skewed phenotype. We have also shown that our results remain largely consistent when changing 277 

statistical thresholds that guide inclusion of individuals to follow-up who are deviating from polygenic 278 

expectation. Second, the UK Biobank is healthier than the general population [13], which may have affected 279 

our ability to identify people with rare genetic or non-genetic causes to their phenotype. Third, because the 280 

methods rely on a strong polygenic risk score, the utility to under-represented populations in GWAS studies 281 

is, currently, likely to be more limited. Finally, we note that analysis of socioeconomic status during 282 

adulthood may not necessarily serve as a good proxy for socioeconomic status at childhood during the key 283 

stages of growth and development when the living environment has the potential to act adversely on growth. 284 

In addition, we note that genetics can determine socioeconomic status [14] and is not strictly a measure of 285 

the effect of an individual’s environment. 286 

In conclusion, our results support the hypothesis that individuals who deviate from their genetically 287 

predicted phenotype, as defined by common variants and using a suite of statistical methods, are of clinical 288 

interest. These individuals are more likely to carry rare genetic variation, or be at greater risk of co-289 

morbidities, and should be considered in future discovery studies. 290 

Methods 291 

Ethics Statement 292 

The UK Biobank was granted ethical approval by the North West Multi-centre Research Ethics Committee 293 

(MREC) to collect and distribute data and samples from the participants 294 

http://www.ukbiobank.ac.uk/ethics/) and covers the work in this study, which was performed under UK 295 

Biobank application numbers 9072. All participants included in these analyses gave written consent to 296 

participate. 297 

Study population 298 

We analysed 158,951 unrelated individuals from the UK Biobank with inferred 299 

European genetic ancestry as previously described [15]. All individuals had measurements for height, genetic 300 

data derived from genome-wide array-based imputation, and whole-exome sequence data, as described in 301 

[16]. Of those 158,951 individuals, 134,979 also had measure of LDL cholesterol from blood biochemistry. 302 

Phenotypic Derivation 303 

Height (cm) was derived from the UK Biobank (field 50) and converted to standardized residuals, after 304 

adjustment for age, sex and UK Biobank assessment centre. We subsequently defined short/tall stature as a 305 

residualised height > 2 standard deviations from the mean. 306 

LDL cholesterol (mmol/l) was derived from the UK Biobank (field 30780) and converted to rank-inverse 307 

normalised residuals, after adjustment for medication, age, sex and UK Biobank assessment centre. 308 
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Derivation of a polygenic predictor for height 309 

We created a genetic predictor for height (Eq (1)) for each of the unrelated 158,951 individuals using 310 

conditional effect estimates of 3,198 SNPs reaching P ≤ 5×10−8 from an interim meta-analysis of height 311 

performed by the Genetic Investigation of Anthropometric Traits (GIANT) consortium in up to 1,400,860 312 

individuals (mean N=1,148,694) that excluded the UK Biobank. 313 

We created a genetic predictor for LDL-C (Eq (1)) for each of the unrelated 134,979 individuals using PRS-314 

Cs [17] applied to GWAS summary statistics of 1,239,184 SNPs from [4], based on an interim analysis that 315 

excluded UK Biobank. 316 

We calculated the genetic predictors using the following formula: 317 

 PSi = Xβn × Gn,i (1) 318 

where PSi refers to the ith individual’s polygenic score, summed over n genetic variants each with an effect 319 

size βn, multiplied by an individual’s genotype Gn,i. The genetic predictors were subsequently corrected for 320 

the first five principal components, calculated within a broader set of unrelated European individuals from 321 

the UK Biobank [18]. Finally, the distribution of the genetic predictors adjusted for genetic ancestry were 322 

standardized with µ=0 and σ=1. 323 

Identifying individuals who deviate from their expected phenotype 324 

For our primary analysis on standing height, we defined two statistical criteria for labelling individuals as 325 

deviating from their expected height given their genetic height score. First, we estimated the variance 326 

explained by the genetic predictor in the 158,951 individuals from the UK Biobank. Next, we simulated 327 

158,951 individuals and 3,198 SNPs under the additive polygenic model whereby the phenotypic variance 328 

explained by the simulated SNP effects approximated those observed in the UK Biobank. We subsequently 329 

calculated a polygenic score for each simulated individual (Eq (1)) prior to deriving the covariance matrix of 330 

the standardized simulated phenotypes and standardized polygenic scores. Next, we calculated Mahalanobis 331 

distances for the standardized observed height measures and polygenic scores using the covariance matrix 332 

from the simulated dataset. All Mahalanobis distances were subsequently converted to P-values based on a χ2 333 

distribution with 2 degrees of freedom to represent the probability of a data point being an outlier relative to 334 

the correlation between the genetic predictor and observed phenotype. We used P-value thresholds of < 335 

0.001 to define individuals deviating from their expected phenotype. 336 

Second, to account for the possibility of outlying Mahalanobis distances being associated with individuals 337 

with both an extreme polygenic score and height measurement, consistent with the additive polygenic model, 338 

we regressed the observed standardized polygenic scores against the observed standardized heights and 339 

retained individuals reaching our P-value threshold if |z| > 2, where z represents the z-score of the 340 

normalised residuals of the regression model. Individuals with |z| < 1 were defined as being consistent with 341 

the additive polygenic model. 342 

Individuals classified as deviating from their expected phenotype were subsequently split into two groups 343 

dependent on whether their standardized height was below the mean (shorter) or above the mean (taller) 344 

for follow-up analyses. 345 

Testing for enrichment of characteristics among individuals deviating from 346 

genetically predicted height 347 

We performed separate enrichment analysis of several characteristics in the shorter and taller than predicted 348 
for their genetically predicted phenotype individuals defined above. 349 

Self-reporting of being shorter or taller than average at age 10 and sitting to Standing Height Ratio 350 

We tested whether individuals who were classified as deviating from the polygenic risk score were enriched 351 

for physical observations we may expect. This included self-reporting of bring shorter or taller at age 10 (UK 352 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.10.528019doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.10.528019
http://creativecommons.org/licenses/by/4.0/


January 8, 2023 15/20 

Biobank field 1697), and extreme values of the ratio of their sitting-to-standing height ratio (UK Biobank data 353 

fields 20015 and 50) adjusted for age, sex and centre. 354 

Congenital malformations and deformations of the musculoskeletal system defined using ICD9&10 355 
codes 356 

To identify individuals previously clinically diagnosed as having congenital malformations affecting the 357 

musculoskeletal system we used ICD9 and ICD10 codes available from Hospital Episode Statistics (HES), and 358 

primary care data where read codes could be converted to ICD9 or ICD10 codes. We selected ICD9 codes 754-359 

756 (UK Biobank data fields 41203, 41205) and ICD10 codes Q65-Q79 (UK Biobank data fields 41202, 360 

41204) (and the sub-classifications of these codes). 361 

Rare variants in genes with dominant inheritance catalogued in OMIM as associated with stature 362 
phenotypes 363 

Using whole-exome sequence data available in the UK Biobank, we tested for enrichment of rare (MAF < 364 

0.001) loss-of-function variants residing in a curated list of genes related to short and tall stature from OMIM 365 

(Online Mendelian Inheritance in Man) [19]. This list was generated from all genes published in [20] (curated 366 

from OMIM queries for short stature, tall stature, overgrowth, brachydactyly, or skeletal dysplasia), plus 367 

curated genes from the union of the list in [21] with OMIM queries for short stature in 2019 and 2020, as well 368 

as OMIM queries for tall stature, overgrowth, brachydactyly or skeletal dysplasia in 2020, and Endotext 369 

skeletal disorders. Specific skeletal phenotypes can be found in the Supplementary Information. From this 370 

query, we restricted analysis to a list of 238 genes for which OMIM had catalogued as having at least one 371 

dominant inheritance pattern (Supp Table 1). Based on the canonical transcripts of the 238 genes, we used 372 

VEP [22] and the LOFTEE plugin [23] to annotate variants as loss-of-function with high confidence. We also 373 

separately assessed a subset of 6 genes (SHOX, NPR2, ACAN, IGF1, IGF1R, and FGFR3) [24] and 3 genes (FBN1, 374 

EZH2 and NSD1) [6–10] established as common Mendelian causes of short and tall stature, respectively. 375 

 376 

Inbreeding Coefficients 377 

It has previously been shown that enhanced inbreeding can lead to lower height [25]. 378 

We thus assessed whether the F-statistic for inbreeding was significantly different for those individuals 379 

classified as deviating. The F-statistic for inbreeding was calculated using PLINK (v1.9) [26]. 380 

A proxy measure of socioeconomic status 381 

We tested for enrichment of socio-economic status using townsend deprivation index (UK Biobank data field 382 

189), to determine whether individuals who were short/tall had a depleted/enriched socio-economic status 383 

respectively. 384 

Sensitivity analyses 385 

To determine whether our findings for standing height were based on our primary definition of deviation 386 

from polygenic expectation would be generalisable to other definitions, we repeated our analysis using 387 

additional statistical thresholds and methods. These included a more stringent Mahalanobis distance 388 

threshold of P< 0.05/n, where n is the number of individuals in the analysis. As a second approach, we 389 

generated standardized residuals for height by regressing the polygenic score for height on height measures 390 

and subsequently labelling individuals as deviating from genetic predictions if their ∥z-score∥ was >2 or >3 391 

(’Regression’ - STable 2). A third approach combined observed data with simulated data. First, each 392 

individual was ranked according to their height PS and the corresponding phenotypic values stored. Next, we 393 

simulated 158,951 individuals and 3,198 genetic variants matched on the observed allele frequencies and 394 

variances explained. Subsequently, a PS was generated for each simulated individual, ranked, and their 395 

corresponding phenotype stored. This was repeated 10,000 times. Finally, at each PS rank based on the 396 

observed data, we compared the observed phenotype associated with the PS rank with the 10,000 simulated 397 
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phenotypic values associated with the simulated PS rankings. An empirical p-value was calculated as (r + 398 

1)/10001, where r represented the number of simulated phenotypes that were as extreme as that observed 399 

at the given PS rank. (’GRS Ranks’ - STable 2). Finally, we used a non-parametric approach that made no 400 

assumption about the distributions of the phenotype or polygenic scores. Specifically, within each centile of 401 

the polygenic score, we defined phenotypic outliers as those outside 1) Q1-1.5×IQR to Q3+1.5×IQR (Inter 402 

Quartile Range) and 2) Q1-3×IQR to Q3+3×IQR of the standardized height measure, where Q1 and Q3 are the 403 

25th and 75th centiles of the observed height distribution within the GRS centile (’GRS Centiles’ - STable 2). 404 

Identifying individuals who deviate from their expected LDL-C 405 

We next identified individuals whose LDL-C was higher or lower than predicted by a polygenic score, again 406 

using the Mahalanobis distance as a measure of deviation from polygenic score. The distribution of LDL-C is  407 

right-skewed, and as such we applied the GRS-ranking method as a sensitivity analysis because of its less 408 

restrictive parameterisation assumptions. We additionally performed a stratified analysis of males and 409 

females separately for LDL-C due it being a static measure influenced by sex-heterogenous effects, and the 410 

associated differing downstream risk of related outcomes such as coronary artery disease. To maximise the 411 

normality of the distributions considered, we rank-inverse normalised LDL-C distributions for each sex 412 

independently. 413 

 414 

Testing for enrichment of characteristics among individuals deviating from 415 

genetically predicted LDL-C 416 

We performed separate enrichment analysis of several characteristics in the higher LDL-C and lower LDL-C 417 

than predicted for their genetically predicted phenotype individuals defined above. 418 

Cardiovascular Q-Risk Phenotypes and Disease 419 

Individuals in the U.K. who are thought to be at risk of cardiovascular complications in the UK are measured 420 

on a QRISK scale [27]. The QRISK model accounts for phenotypes such as sex, ethnicity, ancestry, economic 421 

deprivation etc. We tested whether individuals who deviated from their polygenic score for LDL-C had 422 

higher/lower (as appropriate) QRISK factors. For a complete list of Q-risk factors tested, and the UKB fields 423 

from which they were derived, see Supp Table 8. For each QRISK factor in Supp Table X, we performed a 424 

linear regression with the LDL-C misalignment (higher or lower) as an exposure, corrected for sex, UKB 425 

assessment centre, age and BMI, excluding when those factors were outcomes. The QRISK outcomes were 426 

additionally rank inverse normalised so that effect sizes were scaled by the standard deviation. For 427 

downstream risk factors (diabetes, type 2 diabetes and coronary artery disease), we performed a logistic 428 

regression where LDL-C misalignment was a risk factor to one of the three outcomes. 429 

Rare variants in genes with established associations with LDL-C 430 

Using whole-exome sequence data available in the UK Biobank, we tested for enrichment of rare (MAF < 431 

0.001) loss-of-function variants in one of three genes known to affect levels of LDL-C:LDLR, APOB and PCSK9, 432 

as in [28]. As for height, based on the canonical transcripts of the 3 genes, the LOFTEE plugin to annotate 433 

variants as loss-of-function with high confidence within VEP. 434 
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are available from the UK Biobank for researchers who meet the criteria for access to datasets to UK Biobank 

(http://www.ukbiobank.ac.uk). 

Supporting Information Legends 
Supp Info 1 Phenotypic criteria for filtering genes catalogued in OMIM and described as causal for 

syndromes associated with stature 

STable 1 238 Genes with prior evidence for a causal association with height, filtered on those with 

evidence of a dominant inheritance relationship 

STable 2 Number of individuals, and percentage of population, identified as deviating from their 

polygenic score for height according to each methodology. 

STable 3 % of overlap between the methods used to determine shorter than expected deviators for height 

STable 4 % of overlap between the methods used to determine taller than expected deviators for height 

STable 5 Empirical P-values for enrichment in individuals who are short relative to their genetically 

predicted height across all deviator definitions. SS = Short Stature 

Specific; LoF = Loss of Function; SSHR = Sitting Standing Height Ratio 

STable 6 Empirical P-values for enrichment in individuals who are tall relative to their genetically 

predicted height across all deviator definitions. TS = Tall Stature Specific; TDI = Townsend Deprivation Index; 

SSHR = Sitting Standing Height Ratio 

STable 7 Number of individuals, and percentage of population, identified as deviating from their 

polygenic score according to each methodology. 
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STable 8 UKB Fields used for Q-Risk Factor definition 

STable 9 Continuous Q-risk outcome regression results for LDL-C polygenic deviators, for all methods 

STable 10 Binary outcome regression results for LDL-C polygenic deviators, for all methods. Analyses 

where the logistic regression model did not converge are labelled with “NA”.  
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