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Abstract

Findings from genome-wide association studies have facilitated the generation of genetic predictors for many
common human phenotypes. Stratifying individuals misaligned to a genetic predictor based on common
variants may be important for follow-up studies that aim to identify alternative causal factors. Using genome-
wide imputed genetic data, we aimed to classify 158,951 unrelated individuals from the UK Biobank as either
concordant or deviating from two well-measured phenotypes. We first applied our methods to standing
height: our primary analysis classified 244 individuals (0.15%) as misaligned to their genetically predicted
height. We show that these individuals are enriched for self-reporting being shorter or taller than average at
age 10, diagnosed congenital malformations, and rare loss-of-function variants in genes previously
catalogued as causal for growth disorders. Secondly, we apply our methods to LDL cholesterol. We classified
156 (0.12%) individuals as misaligned to their genetically predicted LDL cholesterol and show that these
individuals were enriched for both clinically actionable cardiovascular risk factors and rare genetic variants
in genes previously shown to be involved in metabolic processes. Individuals whose LDL-C was higher than
expected based on the genetic predictor were also at higher risk of developing coronary artery disease and
type-two diabetes, even after adjustment for measured LDL-C, BMI and age, suggesting upward deviation
from genetically predicted LDL-C is indicative of generally poor health. Our results remained broadly
consistent when performing sensitivity analysis based on a variety of parametric and non-parametric
methods to define individuals deviating from polygenic expectation. Our analyses demonstrate the potential
importance of quantitatively identifying individuals for further follow-up based on deviation from genetic
predictions.

Author Summary

Human genetics is becoming increasingly useful to help predict human traits across a population owing to
findings from large-scale genetic association studies and advances in the power of genetic predictors. This
provides an opportunity to potentially identify individuals that deviate from genetic predictions for a
common phenotype under investigation. For example, an individual may be genetically predicted to be tall,
but be shorter than expected. It is potentially important to identify individuals who deviate from genetic
predictions as this can facilitate further follow-up to assess likely causes. Using 158,951 unrelated individuals
from the UK Biobank, with height and LDL cholesterol, as exemplar traits, we demonstrate that
approximately 0.15% & 0.12% of individuals deviate from their genetically predicted phenotypes
respectively. We observed these individuals to be enriched for a range of rare clinical diagnoses, as well as
rare genetic factors that may be causal. Our analyses also demonstrate several methods for detecting
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individuals who deviate from genetic predictions that can be applied to a range of continuous human
phenotypes.
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Introduction

Since 2007 [1], genome-wide association studies (GWAS) have identified thousands of associations between
common single nucleotide polymorphisms (SNPs) and human traits. This has resulted in an increase in the
variance explained and out-of-sample prediction accuracy for common human traits [2-4]. For example, the
largest published GWAS meta-analysis for height identified 12,111 SNP-associations that explained ~40% of
the variance in height among individuals of European genetic ancestry and between 10-20% in other genetic
ancestries [3]. Although the amount of variance explained for common quantitative traits continues to
increase, less is understood of how common genetic variation contributes to phenotypic variation in the
extreme tails of quantitative trait distributions [5], and whether individuals who present relatively extreme
deviation from their expected phenotype given their common SNP-based predictor can be identified.

It may be important to identify individuals who deviate from their predicted phenotype based on an
assumed polygenic model of association because they may be more likely to carry rarer and more penetrant
pathogenic mutations or have some other cause to their phenotype. Specific alternative causes of an extreme
phenotype may require targeted clinical investigations for an individual.

Using height and LDL cholesterol (LDL-C) as exemplar traits, chosen for their high heritability and clinical
relevance respectively, we aimed to classify individuals who deviate from their genetically predicted
phenotype, using 158,951 unrelated individuals from the UK Biobank with whole exome-sequencing data.
We subsequently aimed to determine if individuals classified as misaligned to their genetically predicted
height were enriched for recall of being relatively short or tall in childhood, disproportionate body stature,
clinical diagnoses of syndromes associated with extreme stature, carriers for rare genetic variation relevant
to height, or environmental factors that may have influenced growth. Secondly, we aimed to determine if
individuals classified as misaligned to their genetically predicted LDL-C were at higher risk of heart disease,
more or less likely to have type 2 diabetes, or were carriers for rare genetic variation relevant to LDL-C.
Finally, we assessed the sensitivity of our results based on four methods, each with two thresholds, that have
the potential to be used to identify individuals whose phenotype deviates from the expectation based on their
polygenic score.

Results
Standing Height

A derived polygenic score for height explains 32% of the variance in the UK Biobank

We derived a polygenic score using conditional effect estimates of 3,198 SNPs reaching P <5 x 10-8 obtained
from a meta-analysis of 1.2M individuals from European-based studies (excluding the UK Biobank)
contributing to the Genetic Investigation of ANthropometric Traits (GIANT) consortium. The polygenic score
explained 31.6% of the variance in height among 158,951 unrelated individuals of European genetic ancestry
with exome sequencing in the UK Biobank (Fig 1). A 1SD increase in the polygenic score increased
standardized height (adjusted for age, sex and assessment centre and five principal components) by 0.562
SDs ([95% CI 0.558, 0.566], P < 1 x 10-128), equivalent to 5.19cm. Effects were similar in males and females
(0.561 SDs [95% CI 0.555, 0.567] and 0.564 SDs [95% CI 0.558, 0.569], respectively).
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Fig 1. Standardized polygenic scores for height plotted against standardized height for 158,951 unrelated
individuals from the UK Biobank.
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We classified 244 individuals as misaligned to genetically predicted height

Using a simulated dataset of 158,951 individuals and 3,198 SNPs explaining 31.6% of the variance under an
additive model (see methods), we classified 244 individuals of the 158,951 individuals from the UK Biobank
as deviating from the polygenic expectation, using Mahalanobis distances based on means of the
standardized polygenic scores and adjusted height measures, accounting for covariance between the two
variables. Of the individuals deviating from expectation, 150 and 94 individuals were relatively short or tall
for their polygenic score, respectively (Fig 2).

Individuals misaligned to their genetically predicted height are more likely to recall being shorter or
taller than average at age 10

As a validation of our polygenic deviation classification for height, we first tested for enrichment of self-
reporting being shorter or taller than average at age 10 among individuals who were shorter or taller than
genetically predicted, respectively. We observed evidence of enrichment in both the short and tall deviator
groups relative to the group aligned to their genetic score with OR =10.1 [95% CI 7.19, 14.2], P=2 x 1042
and OR =10.4 [95% CI 6.52, 16.5], P = 4 x 10-%7, respectively.

Fig 2. a) Observed (red) and simulated (black) polygenic scores and standardized height adjusted for age,
sex and assessment centre. b) Individuals aligned (black) and misaligned (red) to genetically predicted
height defined using Mahalanobis distance P < 0.001, and being more than 2 standard deviations away from
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the mean of the residual distribution generated by regressing the polygenic score against height.
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Individuals who deviate from their genetically predicted height are enriched for having a
disproportionate body stature

As individuals at the extremes of the polygenic score distribution for height are enriched for recalling being
shorter or taller at age 10, we next hypothesised that individuals classified as deviating from their genetically
predicted phenotype are also more likely to have disproportionate body sizes that affect standing height and
have more extreme sitting-to-standing height ratios. We observed individuals who were shorter or taller
than genetically predicted were enriched for extreme values of sitting-to-standing height ratio

(greater than 1SD) with OR = 2.99 [95% CI 2.12, 4.15], P=1.22 x 10-10, OR = 6.39 [95% CI 1.72, 53.4], P
=7.85 x 104, respectively.

Individuals with shorter stature than genetically predicted are enriched for congenital malformations
and deformations of the musculoskeletal system

To identify potential reasons why individuals deviate from polygenic prediction, we first tested for
enrichment of clinical diagnoses of congenital malformations and deformations of the musculoskeletal
system as captured by ICD9 (754-756) and ICD10 (Q75-Q69) codes from Hospital Episode Statistics and
primary care data where an ICD9 or ICD10 code could be extracted. We observed an enrichment within the
group of individuals with shorter stature misaligned to the genetic predictor with an odds ratio of 3.45 [95%
Cl 2.11, 5.65], P =2 x 10-5) of having a diagnosis of congenital malformations and deformations of the
musculoskeletal system but observed a lack of enrichment among the taller group (OR = 1.00 [95% CI 0.999,
1.00], P =0.783).

Individuals who are shorter relative to their genetically predicted height are enriched for loss-of-
function variants in genes most commonly associated with monogenic forms of short stature
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84 We next hypothesised that individuals classified as having relatively short or tall stature given their

85 polygenic score for height would be enriched for rare variants in dominantly inherited genes previously

86 associated with growth disorders, including overgrowth.

87 Using 238 genes catalogued in OMIM as causally associated with short or tall stature (see methods) with

88 at least one dominant pattern of inheritance, we first tested whether individuals classified as deviating from

89 polygenic expectation were enriched for any rare (minor allele frequency < 0.1%) loss-of-function (LoF)

90 variants in those genes. We did not observe evidence (at P < 0.05) for enrichment of rare LoF variants

91 present in people defined as relatively short for their polygenic prediction (OR = 1.39 [95% CI 1.00, 1.94], P =

92 0.071). However, we did observe a stronger enrichment for LoF carriers when limiting the analysis to a

93 subset of 6 genes (SHOX, NPR2, ACAN, IGF1, IGF1R, and FGFR3) in which variants are known to be relatively

94 common Mendelian causes of short stature (OR = 78.4 [95% CI 40.1, 153.3], P = 6.83 x 10-16) (see methods).

95 Among individuals with relatively tall stature for their genetic prediction, we did not observe evidence for

96 enrichment of rare LoF variants residing in the 238 genes (OR 1.11 [95% CI1 0.699, 1.75] P = 0.63). These

97 results were nominally significant (P < 0.05) when limiting our analysis to 3 genes in which variants have

98 previously been described as causal for some of the most prevalent syndromes associated with tall stature,

99 specifically Marfan syndrome (FBN1) [6-8], Weaver syndrome (EZHZ2) [9], and Sotos syndrome (NDS1) [10]
100 (OR=43.7 [95% CI 1.06, 271], P = 0.024).

101 Individuals misaligned to their genetically predicted height showed no enrichment of inbreeding

102 Following on from previous research that has suggested an association between inbreeding and reduced

103 adult height [11], we next tested whether inbreeding could be associated with our definition of deviation

104 from polygenic expectation. We found no evidence of association between the inbreeding F-statistic when
105 comparing individuals who were shorter than genetically predicted versus those who were concordant with
106 their genetically predicted height (= -0.0488 [95% CI -0.207, 0.109], P = 0.54). We also observed no

107 evidence of association in those who were taller than expected (= -0.0559 [95% CI -0.256, 0.144], P = 0.58).

108 Individuals who are shorter relative to their genetic predictor for height are enriched for lower
109 socioeconomic status

110 Finally, we explored whether non-genetic factors could influence whether an individual was classified as
111 deviating from their genetically predicted height given their observed height. Specifically, we assessed the
112 effect of socioeconomic status as represented by the Townsend deprivation index (TDI). We observed an
113 enrichment of higher TDI (representing lower socioeconomic status) among individuals who were relatively
114 short given their genetically predicted height (OR = 2.69 [95% CI 1.92, 3.76], P = 5.97 x 10-8). We did not
115 observe evidence that taller individuals were enriched for lower levels of TDI (OR = 1.122 [95% CI

116 0.625,2.02], P= 0.64).

117

118 Findings remain consistent after applying alternative methods to define individuals deviating from
119 polygenic predictions

120 Given our primary analysis was based on using Mahalanobis distances (P<0.001) to define individuals
121 deviating from polygenic predictions, we performed several sensitivity analyses to determine if our overall
122 findings would change if different thresholds and methods were applied to define individuals deviating from
123 polygenic expectation (see methods). Briefly, alternative approaches to define polygenic deviators that
124 assume trait normality included 1) using Mahalanobis distances with P < 0.05/n, 2) using absolute
125 standardised residual values greater than a) 2 or b) 3 after regressing observed polygenic scores against
126 observed height values, and 3) using empirical P-values based on 10,000 simulations of phenotypes and
127 polygenic score whereby an observed phenotype at a given rank of polygenic score (PS-rank) is compared
128 with 10,000 simulated phenotypes at the same simulated PS-rank. In addition, we implemented a non-
129 parametric centile approach that made no assumptions about the distribution of the quantitative phenotype
130 under examination. While the number and intersection of individuals grouped into the taller and shorter

131 groups differed depending on the method and threshold used (Supp Table 2, Supp Table 3, Supp Table 4), our
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132 findings were largely unchanged (Supp Table 5, Supp Table 6). Figure 3 shows how the methods for defining
133 deviator status vary visually.

134 Fig 3. Scatter plots showing the distribution of individuals who deviate (red) and do not deviate (black) from
135 their genetic predictor for height, based on a) Mahalanobis distances with P < 0.001 and b) P < 0.05/n, c)

136 regression residuals at the 2SD and d) 3SD threshold, e) GRS centiles with a 1.5 IQR and f) 3 IQR threshold,
137 and finally g) GRS rank with P < 0.001 and (h) P <(1/10000).
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140  LDL Cholesterol
141 A polygenic score for LDL cholesterol explains 16.7% of the variance in the UK Biobank

142 We derived an LDL-C polygenic score for 134,979 unrelated European individuals with measures of LDL-C
143 (UKB Field 30780) and exome-sequencing data in the UK Biobank. We used 1,239,184 SNP effect estimates
144 from the latest meta-analysis of LDL cholesterol (LDL-C) that excluded UK Biobank (REF). The polygenic
145 score explained 16.7% of the variance in LDL-C.

146

147 A 1SD increase in the polygenic score increased rank-inverse normalised residualised LDL-C (adjusted for
148 statin use, age, sex and assessment centre and five genetic principal components) by 0.408 SDs ([95% CI
149 0.403, 0.413], P < 1x10-128), equivalent to 0.866 mmol/l. When repeating this analysis in 61,598 males and
150 73,377 females separately, the polygenic score explained 16.2% and 18.0% of the variance respectively. A
151 1SD change in the polygenic score resulted in a 0.402 SD [95% CI 0.395, 0.409] and 0.424 SD [95% CI1 0.417,
152 0.430] change in LDL-C in the males and females, respectively.

153
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154 Fig 4. Scatter plots showing the distribution of individuals who deviate (red) and do not deviate (black)

155 deviate their genetic predictor for LDL cholesterol, based on a) Mahalanobis distances with P < 0.001 and b)
156 P <0.05/n, c) regression residuals at the 2SD and d) 3SD threshold, e) GRS centiles with a 1.5 IQR and f) 3 IQR
157 threshold, and finally g) GRS rank with P < 0.001 and (h) P < (1/10000).
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160 We classified 159 individuals as misaligned to their genetically predicted LDL cholesterol

161 We again used the Mahalanobis metric to classify individuals who deviated from their polygenic score. Based
162 on 134,979 individuals and 1,239,184 variants that explained 16.7% of the variance of a normally distributed
163 outcome, we classified 159 individuals from the UK Biobank as deviating from the polygenic expectation

164 (P<0.01), and 123,254 individuals as aligned to their polygenic score (P>0.05).

165 Of those 159 individuals classified as misaligned, 91 and 68 had a relatively low or high LDL-C for their

166 polygenic score, respectively. In a sex stratified analysis, motivated by the static sex-heterogeneous nature of
167 lipid levels, 53 and 38 males had relatively low or high LDL-C respectively. Additionally, 41 and 44 females
168 had relatively low or high LDL-C respectively. An additional 17 females were classified as misaligned to their
169 polygenic score in the sex stratified analysis, 14 (82.4%) of which had a higher LDL-C than expected. The

170 absolute number of males classified as misaligned to their polygenic score did not change in the sex-stratified
171 analysis, but the relative number of individuals who had a polygenic score higher than expected increased by
172 12.1%. Due to these differences, we used the sex-stratified analysis as our primary results. We provide

173 scatter plots in Fig. 4 showing how these individuals are distributed as compared to controls, as well as

174 scatter plots showing how this distribution changes for the different methods that we have introduced to
175 classify polygenic misalignment. Counts of polygenic deviators for each method are also given in STable 7.
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176 Individuals who deviate from their genetically predicted LDL-cholesterol had differing levels of
177 common cardiovascular risk factors

178 Compared to individuals classified as not deviating from their genetically predicted LDL-C levels, males with
179 high LDL-C relative to their polygenic score had higher triglyceride levels (5 = 0.695 [95% CI 0.403, 0.985], P
180 = 2.87 x 10-¢) and nominally higher HDL levels ( = 0.247 [95% CI -0.017, 0.510], P =0.0667). All effect sizes
181 are in sex-specific SD units. Based on the same comparison in females, individuals with a high LDL-C for their
182 polygenic score had higher triglyceride levels (8= 0.877 [95% CI 0.635, 1.12], P = 1.29 x 10-12), higher BMI (8
183 =0.636 [95% C1 0.321, 0.950], P = 7.35 x 10-°) and higher cigarette use (5= 0.303 [95% CI 0.0838, 0.523], P =
184 6.76 x 10-3).

185 Compared to individuals labelled as aligned to the genetically predicted LDL-C, males whose LDL-C was
186 low for their polygenic score had lower triglyceride levels (§ = -0.885 [95% CI -1.13, -0.638], P = 2.00 x

187 10-12), lower HDL levels (5= -0.632 [95% CI -0.855 -0405], P = 3.00 x 10-8) and nominally lower diastolic
188 blood pressure (f=-0.271 [95% CI [-0.507,-0.03], P = 0.0246). In females, individuals with a low LDL-C for
189 their polygenic score had lower triglyceride levels (= -0.983 [95% CI -1.23,-0.732], P = 1.64x10-14) and
190 were nominally older (= 0.353 [95% CI [0.0531, 0.652], P=0.0210) - see Figure 5 and Supp Tables 8 & 9for
191 all Q-risk factors that were assessed.

192

193 Deviation from genetically predicted LDL-C increases the risk of having coronary artery disease and
194 diabetes, even after adjusting for the effects of LDL-C, BMI and age

195 Compared to individuals labelled as aligned to genetically predicted LDL-C levels, females whose LDL-C was
196 high for their polygenic score had a nominally increased risk of T2D (OR =7.07, [95% CI 1.38, 36.2], P =

197 0.019), even after adjusting for the effects of measured LDL-C, age and BMI. We did not observe an

198 association between of higher risk of T2D in males labelled as deviating from genetically predicted LDL.

199 Among males classified as misaligned to their LDL-C genetic predictor and whose LDL-C was lower than
200 expected, we observed an enrichment for coronary artery disease (OR = 4.82, [95% CI 2.57,9.02], P = 8.87 x
201 10-7) and nominally higher risk of type-two diabetes (OR = 2.32, [95% CI 1.10, 4.90], P = 0.0278). In females,
202 individuals with a low LDL-C for their polygenic score showed no evidence of enrichment for T2D or CAD.
203 Refer to Fig. 6 and Supp Table 10 for all results.

204
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Fig 5. Odds ratio per standard deviation increase in Q-Risk exposure phenotypes with respect to being
classified as a deviating for a polygenic score for LDL cholesterol.
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Individuals who deviate from their genetically predicted LDL-cholesterol were more likely to be
carriers of damaging exome-sequenced loss-of-function variants in LDLR, APOB and PCSK9

Males and females whose LDL-C was high for their LDL-C polygenic score showed evidence of enrichment for
rare (< 0.1%) loss-of-function variants in the LDLR gene (males: OR = 4.28 [95% CI 2.28, 8.02], P =5.96 x
10-6; females: OR = 4.02 [95% CI 2.17, 7.44], P=1.02 x 10-5).

Males and females whose LDL-C was low for their LDL-C polygenic score showed evidence of enrichment for
rare loss-of-function variants in APOB (males: OR = 5.49 [95% CI 4.30, 7.02], P = 4.12 x 10-42; females: OR =
5.29 [95% CI 4.11, 6.84], P = 1.34 x 10-37), and for males in PCSK9 (males: OR =4.99 [95% CI1 3.48,7.17],P =
2.54 x 10-18),

Refer to Fig. 7 and Supp Table 10 for all exome-sequencing derived enrichment results.

Fig 6. Odds ratios for an individual having either type two diabetes (T2D) or coronary artery disease if they
classified as misaligned to their LDL-C polygenic score, adjusted for BMI, age and LDL-C.
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OR

222

223 Using the GRS-ranking method classifies more individuals as deviating from their polygenic LDL-C
224 score, with similar features and some stronger statistical associations

225 We additionally classified individuals who were misaligned to their polygenic score for LDL-C using the GRS
226 ranking method, and based on interquartile ranges and the residual of regression of LDL-C on the polygenic
227 score. Of the four methods, classifying deviation from a polygenic score using the results of which can be
228 found in Supp Tables 7 & 8. Although the number of individuals who were classified as deviating from their
229 polygenic score was 176.1% higher using the GRS-ranking method, the features of those individuals was
230 similar, with the same sign of effect in 73.5% of all analyses. Additionally, with the higher number of

231 individuals classified as deviating, the strength of the statistical association was stronger for some key

232 analyses. For example, even after adjusting for BMI, age and measured LDL-C, individuals whose LDL-C was
233 higher than expected based on the GRS-ranking method were much more likely to suffer from type-two
234 diabetes (males: OR = 10.3 [95% CI 3.93, 26.9], P = 2.09 x 10-¢). We present all GRS-ranking method results
235 in STables 7&8 alongside those derived from the Mahalanobis method.

236 Discussion

237 We have established novel, robust methods for identifying individuals whose phenotype is misaligned to
238 their polygenic prediction, which we referred to as deviating from a polygenic score, applied to two well-
239 known phenotypes: height, chosen for its high heritability and strongly predictive polygenic score, and LDL-
240 C, chosen for being clinically actionable into adulthood, with a range of associated co-morbidities.

241
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242

243 Fig 7. 0dds ratio of an individual being a carrier of a loss-of-function variant in one of three genes known to
244 affect LDL-C levels: (LDLR, APOB and PCSK9) if they were classified as misaligned to their LDL-C polygenic
245 score.

Male
APOB LoF N
MISALIGNMENT
PCSK9 LoF LDL-C Low (Male)
LDL-C High (Male)
LDLR LoF
1 2 3 5 7
OR
Female
APOB LoF
MISALIGNMENT
LDL-C Low (Female)
LDL-C High (Female)
LDLR LoF
1 2 3 5 7
OR

246

247 Our results were broadly consistent across the methods tested and are thus likely to be applicable to a range
248 of phenotypes. With ever-increasing sample sizes, we suspect more traits will have highly powered polygenic
249 risk scores that increase the efficacy of this method.

250 Several lines of evidence indicate that our approach is effective. First, we found, for both standing human
251 height and LDL-C, individuals who deviated from their expected genetic score were enriched for rare genetic
252 mutations in several genes known to be associated with extreme stature and LDL-C. These mutations were
253 discovered using the whole exome sequence data in UK Biobank, and occurred in established genes, such as
254 ACAN and SHOX for height and LDLR and PCSK9 for LDL-C. Second, individuals who deviated were also

255 enriched for other factors known to be associated with differences in phenotype, such as differences in BMI,
256 smoking, and socio-economic position for LDL-C. For LDL-C, these differences were also reflected in different
257 risks of heart disease and type 2 diabetes.

258 The number of individuals identified as deviators from their expected phenotype given their polygenic
259 risk varied by method and statistical threshold used. For example, based on the less stringent statistical

260 thresholds (fig 2a,c,e,g for height) the four methods identified between 244 and 7,316 individuals for height
261 and between 158 and 6,402 individuals for LDL-C. Using the more stringent thresholds (fig 2b,d,fh for

262 height) the four methods identified between 10 and 702 individuals for height and between 3 and 577

263 individuals for LDL-C. Across all Q-risk outcomes, as compared to individuals who had either a lower or

264 higher LDL-C than expected classified using Mahalanobis distance at the weaker threshold (P<0.001), the
265 statistical evidence for association with Q-risk criteria was stronger (p<0.05) when individuals were

12/20


https://doi.org/10.1101/2023.02.10.528019
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.10.528019; this version posted February 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

266 classified by either the IQR (1.5IQR) or GRS residual (2SD) methods: the two methods which classified the
267 largest number of individuals as misaligned to their polygenic score.

268 Given both height and the genetic predictor are normally distributed, we were able to use both

269 parametric and non-parametric methods to define individuals who are phenotypically misaligned to their
270 genetic prediction based on the additive model of inheritance. However, phenotypes such as body-mass-
271 index (BMI) are known to be skewed [12] and therefore the non-parametric approaches discussed in this
272 study are more likely to be suitable for other phenotypes analysed on the raw scale and are recommended if
273 rank-based normalisation of the phenotype, for example, is not implemented.

274 There are some limitations of this study. First, while the primary method is suited for normally

275 distributed phenotypes and genetic scores, as observed for height, no optimal Mahalanobis distance

276 threshold is known. We have attempted to overcome this by demonstrating the efficacy of our method on
277 LDL-C, a skewed phenotype. We have also shown that our results remain largely consistent when changing
278 statistical thresholds that guide inclusion of individuals to follow-up who are deviating from polygenic

279 expectation. Second, the UK Biobank is healthier than the general population [13], which may have affected
280 our ability to identify people with rare genetic or non-genetic causes to their phenotype. Third, because the
281 methods rely on a strong polygenic risk score, the utility to under-represented populations in GWAS studies
282 is, currently, likely to be more limited. Finally, we note that analysis of socioeconomic status during

283 adulthood may not necessarily serve as a good proxy for socioeconomic status at childhood during the key
284 stages of growth and development when the living environment has the potential to act adversely on growth.
285 In addition, we note that genetics can determine socioeconomic status [14] and is not strictly a measure of
286 the effect of an individual’s environment.

287 In conclusion, our results support the hypothesis that individuals who deviate from their genetically
288 predicted phenotype, as defined by common variants and using a suite of statistical methods, are of clinical
289 interest. These individuals are more likely to carry rare genetic variation, or be at greater risk of co-

290 morbidities, and should be considered in future discovery studies.

291 Methods

292 Ethics Statement

293 The UK Biobank was granted ethical approval by the North West Multi-centre Research Ethics Committee
294 (MREC) to collect and distribute data and samples from the participants

295 http://www.ukbiobank.ac.uk/ethics/) and covers the work in this study, which was performed under UK
296 Biobank application numbers 9072. All participants included in these analyses gave written consent to
297 participate.

298  Study population

299 We analysed 158,951 unrelated individuals from the UK Biobank with inferred

300 European genetic ancestry as previously described [15]. All individuals had measurements for height, genetic
301 data derived from genome-wide array-based imputation, and whole-exome sequence data, as described in
302 [16]. Of those 158,951 individuals, 134,979 also had measure of LDL cholesterol from blood biochemistry.

303 Phenotypic Derivation

304 Height (cm) was derived from the UK Biobank (field 50) and converted to standardized residuals, after

305 adjustment for age, sex and UK Biobank assessment centre. We subsequently defined short/tall stature as a
306 residualised height > 2 standard deviations from the mean.

307 LDL cholesterol (mmol/1) was derived from the UK Biobank (field 30780) and converted to rank-inverse
308 normalised residuals, after adjustment for medication, age, sex and UK Biobank assessment centre.
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309 Derivation of a polygenic predictor for height

310 We created a genetic predictor for height (Eq (1)) for each of the unrelated 158,951 individuals using

311 conditional effect estimates of 3,198 SNPs reaching P < 5x10-8 from an interim meta-analysis of height

312 performed by the Genetic Investigation of Anthropometric Traits (GIANT) consortium in up to 1,400,860

313 individuals (mean N=1,148,694) that excluded the UK Biobank.

314 We created a genetic predictor for LDL-C (Eq (1)) for each of the unrelated 134,979 individuals using PRS-
315 Cs [17] applied to GWAS summary statistics of 1,239,184 SNPs from [4], based on an interim analysis that
316 excluded UK Biobank.

317 We calculated the genetic predictors using the following formula:

318 PSi=Xpnx Gn,i (1)

319 where PSirefers to the ithindividual's polygenic score, summed over n genetic variants each with an effect
320 size n, multiplied by an individual’s genotype Gn:. The genetic predictors were subsequently corrected for
321 the first five principal components, calculated within a broader set of unrelated European individuals from
322 the UK Biobank [18]. Finally, the distribution of the genetic predictors adjusted for genetic ancestry were
323 standardized with ¢=0 and o=1.

324 Identifying individuals who deviate from their expected phenotype

325 For our primary analysis on standing height, we defined two statistical criteria for labelling individuals as
326 deviating from their expected height given their genetic height score. First, we estimated the variance

327 explained by the genetic predictor in the 158,951 individuals from the UK Biobank. Next, we simulated

328 158,951 individuals and 3,198 SNPs under the additive polygenic model whereby the phenotypic variance
329 explained by the simulated SNP effects approximated those observed in the UK Biobank. We subsequently
330 calculated a polygenic score for each simulated individual (Eq (1)) prior to deriving the covariance matrix of
331 the standardized simulated phenotypes and standardized polygenic scores. Next, we calculated Mahalanobis
332 distances for the standardized observed height measures and polygenic scores using the covariance matrix
333 from the simulated dataset. All Mahalanobis distances were subsequently converted to P-values based on a y?
334 distribution with 2 degrees of freedom to represent the probability of a data point being an outlier relative to
335 the correlation between the genetic predictor and observed phenotype. We used P-value thresholds of <

336 0.001 to define individuals deviating from their expected phenotype.

337 Second, to account for the possibility of outlying Mahalanobis distances being associated with individuals
338 with both an extreme polygenic score and height measurement, consistent with the additive polygenic model,
339 we regressed the observed standardized polygenic scores against the observed standardized heights and

340 retained individuals reaching our P-value threshold if |z| > 2, where z represents the z-score of the

341 normalised residuals of the regression model. Individuals with |z| < 1 were defined as being consistent with
342 the additive polygenic model.

343 Individuals classified as deviating from their expected phenotype were subsequently split into two groups
344 dependent on whether their standardized height was below the mean (shorter) or above the mean (taller)
345 for follow-up analyses.

346  Testing for enrichment of characteristics among individuals deviating from
347  genetically predicted height

348  We performed separate enrichment analysis of several characteristics in the shorter and taller than predicted
349 for their genetically predicted phenotype individuals defined above.
350 Self-reporting of being shorter or taller than average at age 10 and sitting to Standing Height Ratio

351 We tested whether individuals who were classified as deviating from the polygenic risk score were enriched
352 for physical observations we may expect. This included self-reporting of bring shorter or taller at age 10 (UK
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353 Biobank field 1697), and extreme values of the ratio of their sitting-to-standing height ratio (UK Biobank data
354 fields 20015 and 50) adjusted for age, sex and centre.

355 Congenital malformations and deformations of the musculoskeletal system defined using ICD9&10
356 codes

357 To identify individuals previously clinically diagnosed as having congenital malformations affecting the

358 musculoskeletal system we used ICD9 and ICD10 codes available from Hospital Episode Statistics (HES), and
359 primary care data where read codes could be converted to ICD9 or ICD10 codes. We selected ICD9 codes 754-
360 756 (UK Biobank data fields 41203, 41205) and ICD10 codes Q65-Q79 (UK Biobank data fields 41202,

361 41204) (and the sub-classifications of these codes).

362 Rare variants in genes with dominant inheritance catalogued in OMIM as associated with stature
363 phenotypes

364 Using whole-exome sequence data available in the UK Biobank, we tested for enrichment of rare (MAF <

365 0.001) loss-of-function variants residing in a curated list of genes related to short and tall stature from OMIM
366 (Online Mendelian Inheritance in Man) [19]. This list was generated from all genes published in [20] (curated
367 from OMIM queries for short stature, tall stature, overgrowth, brachydactyly, or skeletal dysplasia), plus

368 curated genes from the union of the list in [21] with OMIM queries for short stature in 2019 and 2020, as well
369 as OMIM queries for tall stature, overgrowth, brachydactyly or skeletal dysplasia in 2020, and Endotext

370 skeletal disorders. Specific skeletal phenotypes can be found in the Supplementary Information. From this
371 query, we restricted analysis to a list of 238 genes for which OMIM had catalogued as having at least one

372 dominant inheritance pattern (Supp Table 1). Based on the canonical transcripts of the 238 genes, we used
373 VEP [22] and the LOFTEE plugin [23] to annotate variants as loss-of-function with high confidence. We also
374 separately assessed a subset of 6 genes (SHOX, NPR2, ACAN, IGF1, IGF1R, and FGFR3) [24] and 3 genes (FBN1,
375 EZH2 and NSD1) [6-10] established as common Mendelian causes of short and tall stature, respectively.

376

377 Inbreeding Coefficients

378 It has previously been shown that enhanced inbreeding can lead to lower height [25].
379 We thus assessed whether the F-statistic for inbreeding was significantly different for those individuals
380 classified as deviating. The F-statistic for inbreeding was calculated using PLINK (v1.9) [26].

381 A proxy measure of socioeconomic status

382 We tested for enrichment of socio-economic status using townsend deprivation index (UK Biobank data field
383 189), to determine whether individuals who were short/tall had a depleted/enriched socio-economic status
384 respectively.

385  Sensitivity analyses

386 To determine whether our findings for standing height were based on our primary definition of deviation
387 from polygenic expectation would be generalisable to other definitions, we repeated our analysis using

388 additional statistical thresholds and methods. These included a more stringent Mahalanobis distance

389 threshold of P< 0.05/n, where n is the number of individuals in the analysis. As a second approach, we

390 generated standardized residuals for height by regressing the polygenic score for height on height measures
391 and subsequently labelling individuals as deviating from genetic predictions if their [|z-score|| was >2 or >3
392 ('Regression’ - STable 2). A third approach combined observed data with simulated data. First, each

393 individual was ranked according to their height PS and the corresponding phenotypic values stored. Next, we
394 simulated 158,951 individuals and 3,198 genetic variants matched on the observed allele frequencies and
395 variances explained. Subsequently, a PS was generated for each simulated individual, ranked, and their

396 corresponding phenotype stored. This was repeated 10,000 times. Finally, at each PS rank based on the

397 observed data, we compared the observed phenotype associated with the PS rank with the 10,000 simulated
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398 phenotypic values associated with the simulated PS rankings. An empirical p-value was calculated as (r +
399 1)/10001, where r represented the number of simulated phenotypes that were as extreme as that observed
400 at the given PS rank. ('GRS Ranks’ - STable 2). Finally, we used a non-parametric approach that made no

401 assumption about the distributions of the phenotype or polygenic scores. Specifically, within each centile of
402 the polygenic score, we defined phenotypic outliers as those outside 1) Q1-1.5xIQR to Q3+1.5xIQR (Inter
403 Quartile Range) and 2) Q1-3xIQR to Q3+3xIQR of the standardized height measure, where Q1 and Q3 are the
404 25th and 75th centiles of the observed height distribution within the GRS centile ("GRS Centiles’ - STable 2).

405  Identifying individuals who deviate from their expected LDL-C

406 We next identified individuals whose LDL-C was higher or lower than predicted by a polygenic score, again
407 using the Mahalanobis distance as a measure of deviation from polygenic score. The distribution of LDL-C is
408 right-skewed, and as such we applied the GRS-ranking method as a sensitivity analysis because of its less
409 restrictive parameterisation assumptions. We additionally performed a stratified analysis of males and

410 females separately for LDL-C due it being a static measure influenced by sex-heterogenous effects, and the
411 associated differing downstream risk of related outcomes such as coronary artery disease. To maximise the
412 normality of the distributions considered, we rank-inverse normalised LDL-C distributions for each sex

413 independently.

414

415  Testing for enrichment of characteristics among individuals deviating from
416  genetically predicted LDL-C

417 We performed separate enrichment analysis of several characteristics in the higher LDL-C and lower LDL-C
418 than predicted for their genetically predicted phenotype individuals defined above.

419 Cardiovascular Q-Risk Phenotypes and Disease

420 Individuals in the U.K. who are thought to be at risk of cardiovascular complications in the UK are measured
421 on a QRISK scale [27]. The QRISK model accounts for phenotypes such as sex, ethnicity, ancestry, economic
422 deprivation etc. We tested whether individuals who deviated from their polygenic score for LDL-C had

423 higher/lower (as appropriate) QRISK factors. For a complete list of Q-risk factors tested, and the UKB fields
424 from which they were derived, see Supp Table 8. For each QRISK factor in Supp Table X, we performed a
425 linear regression with the LDL-C misalignment (higher or lower) as an exposure, corrected for sex, UKB
426 assessment centre, age and BMI, excluding when those factors were outcomes. The QRISK outcomes were
427 additionally rank inverse normalised so that effect sizes were scaled by the standard deviation. For

428 downstream risk factors (diabetes, type 2 diabetes and coronary artery disease), we performed a logistic
429 regression where LDL-C misalignment was a risk factor to one of the three outcomes.

430 Rare variants in genes with established associations with LDL-C

431 Using whole-exome sequence data available in the UK Biobank, we tested for enrichment of rare (MAF <

432 0.001) loss-of-function variants in one of three genes known to affect levels of LDL-C:LDLR, APOB and PCSK9,
433 as in [28]. As for height, based on the canonical transcripts of the 3 genes, the LOFTEE plugin to annotate
434 variants as loss-of-function with high confidence within VEP.
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Data Availability

Data cannot be shared publicly because of data availability and data return policies of the UK Biobank. Data
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Supporting Information Legends

Supp Info 1 Phenotypic criteria for filtering genes catalogued in OMIM and described as causal for
syndromes associated with stature

STable 1 238 Genes with prior evidence for a causal association with height, filtered on those with
evidence of a dominant inheritance relationship

STable 2 Number of individuals, and percentage of population, identified as deviating from their
polygenic score for height according to each methodology.

STable 3 % of overlap between the methods used to determine shorter than expected deviators for height

STable 4 % of overlap between the methods used to determine taller than expected deviators for height

STable 5 Empirical P-values for enrichment in individuals who are short relative to their genetically
predicted height across all deviator definitions. SS = Short Stature
Specific; LoF = Loss of Function; SSHR = Sitting Standing Height Ratio

STable 6 Empirical P-values for enrichment in individuals who are tall relative to their genetically
predicted height across all deviator definitions. TS = Tall Stature Specific; TDI = Townsend Deprivation Index;
SSHR = Sitting Standing Height Ratio

STable 7 Number of individuals, and percentage of population, identified as deviating from their
polygenic score according to each methodology.
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STable 8 UKB Fields used for Q-Risk Factor definition

STable 9 Continuous Q-risk outcome regression results for LDL-C polygenic deviators, for all methods

STable 10 Binary outcome regression results for LDL-C polygenic deviators, for all methods. Analyses
where the logistic regression model did not converge are labelled with “NA”.
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