

Sema7A and Sema4D Heterodimerization is Essential for Membrane Targeting and Neocortical Wiring

Paraskevi Bessa^{1,§}, Andrew G. Newman^{1,§}, Kuo Yan¹, Theres Schaub¹, Rike Dannenberg¹, Denis Lajkó¹, Julia Eilenberger², Theresa Brunet^{3,4}, Kathrin Textoris-Taube^{5,6}, Emanuel Kemmler⁷, Priyanka Banerjee⁷, Ethiraj Ravindran¹, Michael Mülleder⁶, Robert Preissner⁷, Rudolf Grosschedl⁸, Marta Rosário¹, and Victor Tarabykin^{1,9,10*}

¹ Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany

² Dr. v. Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, 80337 Munich, Germany

³ Department of Pediatric Neurology, Dr. v. Hauner Kinderklinik, University of Munich, Munich, Germany.

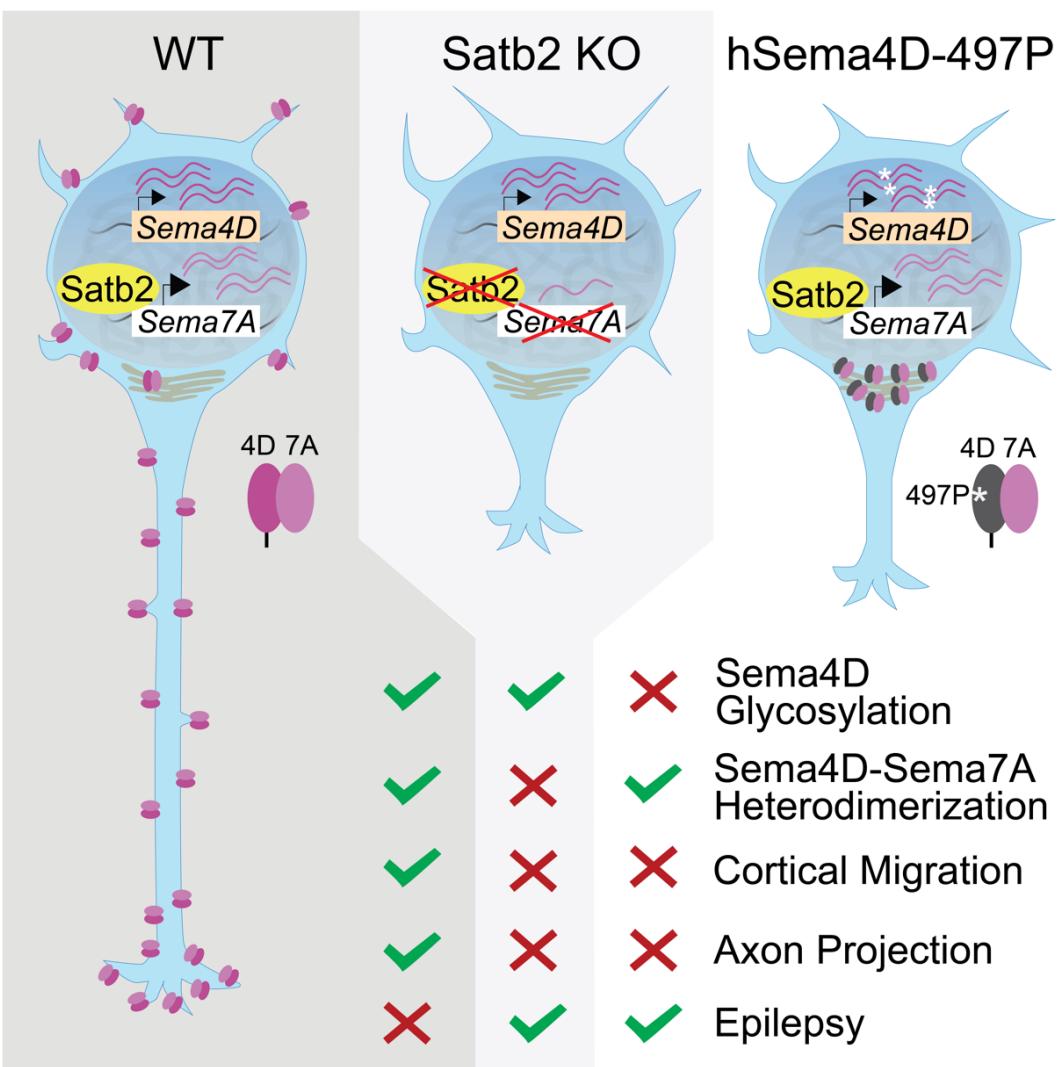
⁴ Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany

⁵ Institute of Biochemistry, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany

⁶ Core Facility – High-Throughput Mass Spectrometry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Core Facility – High-Throughput Mass Spectrometry, Am Charitéplatz 1, Berlin, Germany

⁷ Institute of Physiology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany

⁸ Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.


⁹ Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, 634009, Russia

¹⁰ Institute of Neuroscience, University of Nizhny Novgorod, pr. Gagarina 24, Nizhny Novgorod, Russia

§ These authors contributed equally to this work

* Correspondence: victor.tarabykin@charite.de

1 **GRAPHICAL ABSTRACT**

6 **HIGHLIGHTS**

- 8 • Sema7A is a direct Satb2 target that drives neuronal migration and
9 axon outgrowth
- 10
- 11 • Sema7A exerts its effect by heterodimerizing with Sema4D at
12 neurites and growth cones
- 13
- 14 • Sema7A increases cell surface localization of Sema4D
- 15
- 16 • *De novo* human Sema4D-Q497P mutation causes epilepsy, inhibits
17 post-translational processing & surface localization

18 **eTOC**

19 Sema7A is a direct target of the transcription factor Satb2. Sema7A
20 promotes normal migration and axon outgrowth in cortical neurons by
21 modulating reverse signaling via Sema4D. These processes are
22 dependent on Sema7A-Sema4D heterodimerization and membrane
23 localization; insufficient transcription of Sema7A or incomplete
24 glycosylation of Sema4D inhibit this progression.

25

26 **SUMMARY**

27

28 Disruption of neocortical circuitry and architecture in humans causes
29 numerous neurodevelopmental disorders. Neocortical cytoarchitecture is
30 orchestrated by various transcription factors such as Satb2 that control
31 target genes during strict time windows. In humans, mutations of SATB2
32 cause SATB2 Associated Syndrome (SAS), a multisymptomatic
33 syndrome involving intellectual disability, speech delay, epilepsy and
34 craniofacial defects. We show that Satb2 controls neuronal migration and
35 axonal outgrowth by inducing the expression of the GPI-anchored protein,
36 Sema7A. We find that heterodimerization with Sema4D increases
37 targeting of Sema4D to the membrane and is required for Sema7A
38 function. Finally, we report that membrane localization and pos-
39 translational modification of the Sema7A-Sema4D complex is disrupted
40 by a novel de novo mutation in Sema4D (Q497P) that is associated with
41 epilepsy in humans.

42

43 **KEYWORDS**

44 Axonal growth, neuronal migration, neocortex development,
45 Semaphorin4D, Semaphorin7A

46 **INTRODUCTION**

47 Accurate axonal navigation and neuronal migration are critical for the
48 establishment of functional neocortical circuits. Both specification and
49 initial extension of neocortical axons occurs in the subventricular zone
50 (SVZ) and intermediate zone (IZ) of the developing neocortex in a process
51 of neuronal polarization ^{1,2}. There are two major decisions that every
52 neuron in the SVZ must make: first, which neurite will become an axon
53 and which a leading process, and second, in what direction its axon will
54 extend: medially, to join cortico-cortical axonal bundle or laterally, to join
55 corticofugal tracts that leave the neocortex.

56 In the last two decades, several transcription factors have been
57 identified, whose ablation causes abnormal development of projections of
58 neocortical neurons (see reviews from ^{3–6}). Deletion of the *Satb2* gene
59 (Special AT-rich sequence binding 2) causes failure of callosal neurons
60 to form the corpus callosum ^{7,8}. In humans, mutations of SATB2 gene
61 cause SATB2 Associated Syndrome (SAS) and characterized by
62 symptoms such as developmental delay (DD)/ intellectual disability (ID),
63 absent or limited speech development, epilepsy, craniofacial
64 abnormalities including palatal and dental abnormalities, dysmorphic
65 features and behavior ^{9–12}.

66 It is widely known that transcription factors control long-range
67 neocortical projection neurons to reach their target regions, by regulating
68 the transcription of receptor-ligand pairs that can interpret environmental
69 signals. Previously, we identified Unc5C and DCC as targets of Satb2
70 and Ctip2 transcription factors that control a binary choice of layer V
71 neurons to project either medially or laterally ¹³. However, these
72 molecules were not involved in the control of proper development of layer
73 II-III projections that constitute most cortico-cortical connections.

74 The Semaphorin family of axon guidance molecules are important for

75 the development of the nervous system as well as in immune cell function.
76 Their fundamental role in growth cone collapse and axon fasciculation has
77 been thoroughly studied in different model organisms¹⁴⁻¹⁶. Mammalian
78 Semaphorins are divided into five subfamilies consisting of secreted and
79 membrane-bound proteins¹⁷⁻¹⁹. Semaphorin7A (Sema7A) is the only
80 Semaphorin that is attached to the cell membrane via a C-terminal Glyco-
81 Phosphatidyl-Inositol (GPI) anchor and lacks a cytoplasmic domain.
82 Semaphorin 7A forms homodimers through SEMA and IG domain
83 interactions and dimerization seems to be important for the Semaphorin
84 function in different cell systems^{20,21}.

85 Classically, Semaphorins have been observed to act as ligands and
86 stimulate signal transduction by binding *in trans* to their Plexin or
87 Neuropilin receptors^{15,22,23}. During the past few years, evidence is
88 mounting for the existence of reverse Semaphorin signaling, whereby
89 ligand-binding activity induces signal transduction in the Sema-containing
90 cell. Reverse signaling has been reported for Sema6A²⁴, Sema6B²⁵,
91 Sema6D²⁶ and Sema4A²⁷ and have extended implications for neuronal
92 development and axonal pathfinding²⁸. Semaphorins that can signal in
93 reverse all have cytoplasmic domain.

94 Here, we identify Sema7A as a Satb2 direct target, that cell-
95 intrinsically controls both radial migration and axon outgrowth of layer II-
96 III neocortical neurons. Additionally, we report that Sema7A forms a
97 heterodimer with Sema4D. Sema4D-Sema7A interaction is required for
98 both the migration and axonal elongation of upper layer (UL) neocortical
99 neurons. Moreover, we discovered the *de novo* mutation hSema4D-
100 Q497P in a patient with epilepsy. This mutation interferes with the post-
101 translational glycosylation of Sema4D and thus disrupts the localization
102 of Sema4D:Sema7A heterodimers to the plasma membrane and growth
103 cones. Furthermore, the hSema4D-497P mutation inhibits migration and

104 axon projections of cortical neurons in the murine developing neocortex.
105 Our results emphasize the importance of stabilizing/regulating the
106 membrane localization of Sema7A and demonstrate the role of Sema4D
107 and residue 497 in this process. Overall, we identify a crucial role of the
108 Sema4D-Sema7A heterodimer in initiating neuronal migration and axonal
109 growth downstream of Satb2. Our data shed light on new mechanisms
110 where traditionally ligand-considered molecules, such as Sema4D and
111 Sema7A, form signaling complexes that regulate core processes of
112 neocortical circuit formation. This work further contributes to our
113 understanding of the complex etiology of neurodevelopmental
114 pathologies.

115

116 **RESULTS**

117

118 **Satb2 controls neuronal migration and corpus callosum 119 development cell-intrinsically**

120

121 One of the most consistent features of Satb2 Associated Syndrome
122 (SAS), and the Satb2 knockout mouse is agenesis of the corpus
123 callosum^{8,10}. We previously found that layer II-III and layer V neurons use
124 distinct molecular programs downstream of Satb2 to project axons to form
125 this trans-hemispheric axonal tract¹³. In order to dissect how Satb2 is
126 required cell-autonomously for the axon development of late-born
127 projection neurons, we used a targeted *Satb2* mouse strain where exon
128 2 of *Satb2* is “floxed” (*Satb2*^{f/f}) and is then deleted by cre-mediated
129 recombination.

130 Satb2 distinctly orchestrates both cell extrinsic and cell intrinsic
131 transcriptional programs important for this developmental process. When
132 Satb2 is deleted from the developing dorsal neocortex using *Nex*^{Cre},

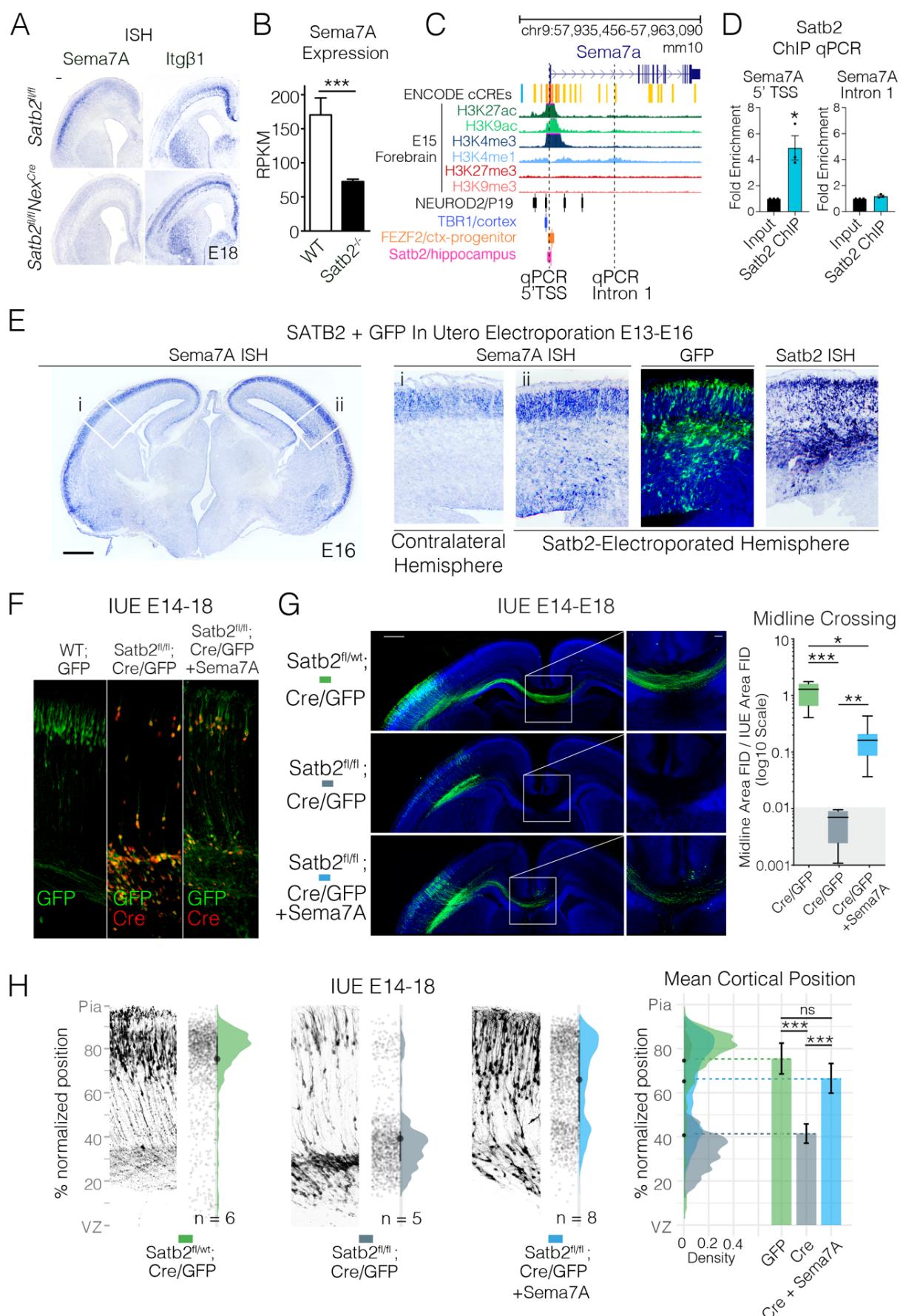
133 Satb2-deficient neurons are sensitive to *cell extrinsic* effects and project
134 their axons via the internal capsule, similar to what was observed in the
135 Satb2 constitutive mutant¹³ (Figure S1B).

136 However, when Satb2 is deleted in a mosaic fashion ie, *cell-*
137 *intrinsically* in a wild-type cortex, neuronal migration is perturbed, and
138 axons do not project at all (Figure S1C-E). Live imaging of these
139 organotypic slices revealed distinct differences in the behavior of wild type
140 and *Satb2*-deficient neurons in the intermediate zone (IZ, Figure S2).
141 While wild-type neurons started migrating radially after acquiring a single
142 leading process *Satb2*-deficient neurons failed to leave the IZ and often
143 formed bifurcated leading processes.

144 Given *cell-intrinsic* neuronal migration and axon extension can be
145 fully restored when re-introducing *Satb2*, while *cell-extrinsic* effects
146 cannot (Figure S1), we sought to understand which *Satb2* targets
147 contribute to *cell-intrinsic* development of the corpus callosum.

148

149 **Sema7A acts downstream of Satb2 to control radial migration and
150 axon elongation**


151 In order to identify *Satb2* downstream targets that control radial
152 migration and axonal growth, we performed an *in situ* hybridization (ISH)
153 screen with molecules known to be involved in axon formation and
154 guidance (reviewed in²⁹⁻³¹). In this screen we used the *Nex*^{Cre} mouse
155 strain in order to delete *Satb2* only in pyramidal neurons of the neocortex
156³². We focused on genes expressed mainly in the cortical plate whose
157 expression is altered in *Satb2*^{fl/fl}*Nex*^{Cre} brains at E18 as compared to wild
158 type brains (Figure S3). We hypothesized that the expression of a certain
159 ligand-receptor pair would be changed in *Satb2* mutants since our
160 previous experiments suggested both *cell-intrinsic* and *cell-extrinsic*
161 (Figure S1) roles of *Satb2* in neuronal migration and axon outgrowth. We

162 reasoned that, the molecule acting as ‘receptor’ should be expressed in
163 UL neurons where *Satb2* has a cell autonomous role while its potential
164 putative ‘ligand’ could be expressed in both deep layers and upper layers.

165 We found one receptor-ligand pair that satisfied these criteria,
166 *Semaphorin7A/Integrin β 1* (*Sema7A/Itg β 1*). Expression patterns of both
167 *Sema7A* and *Itg β 1* were changed in the *Satb2* mutant cortex. While
168 *Sema7A* expression was reduced in UL neurons, *Itg β 1* lost its lateral to
169 medial gradient of expression within deep layers of the neocortex (Figure
170 1A). We also re-analyzed published RNAseq data from a different *Satb2*
171 mutant ³³ and found that expression of *Sema7A* remains reduced at P0
172 (Figure 1B). In embryonic cortex, the *Sema7A* Transcription Start Site
173 (TSS) and intron 1 are well marked by histone modifications associated
174 with transcriptional activity such as H3K27ac, H3K9ac, and H3K4me1/3
175 (Figure 1C). ChIPseq peaks ³⁴ for transcription factors NeuroD2, Tbr1
176 and Fezf2 have also been found near the TSS of *Sema7A* (Figure 1C).

177 We performed Chromatin Immunoprecipitation using self-made
178 *Satb2* antibody ³⁵ followed by quantitative real-time PCR (ChIP-qPCR) on
179 E18 Cortical Lysates. We found *Satb2* enriched in the 5’ TSS region and
180 not in the H3K4me1-marked intron 1 of *Sema7A* (Figure 1C,D). This
181 result was simultaneously confirmed in a *Satb2*-V5 ChIPseq ³⁶ in adult
182 hippocampus, where a *Satb2* peak was observed at the TSS of *Sema7A*
183 (Figure 1C, pink row). To test whether *Satb2* expression is sufficient to
184 induce ectopic *Sema7A* transcription, we expressed a *Satb2* cDNA
185 construct in the cortical VZ/SVZ at E13 by IUE (Figure 1E). This resulted
186 in ectopic transcription of *Sema7A* mRNA at E16 in the VZ/SVZ as well
187 as IZ regions of the neocortex, where it is not normally expressed (Figure
188 1E).

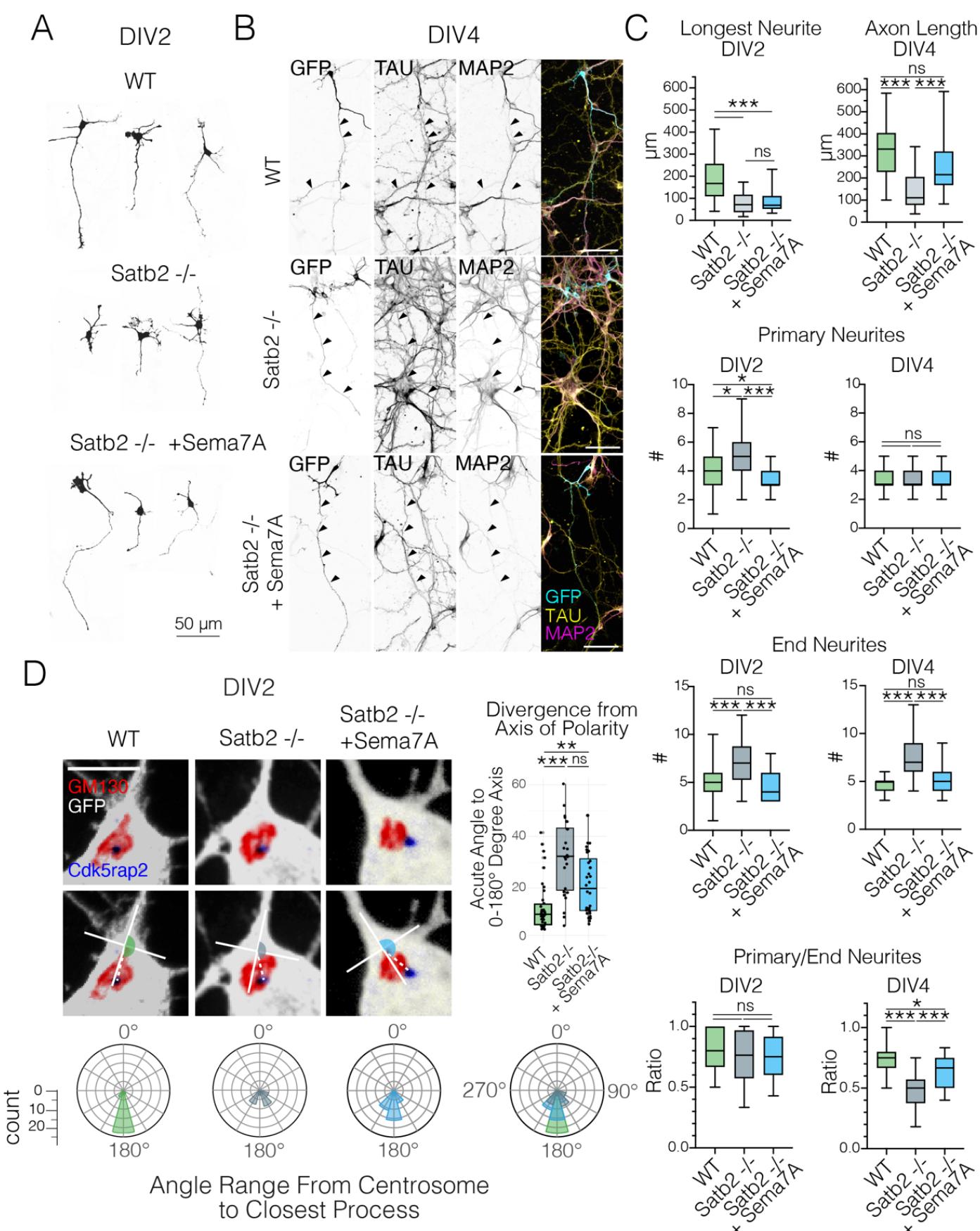
189

191 **Figure 1 (previous page) Semaphorin7A is downstream of Satb2 and can restore**
192 **migration and axon projection in Satb2 deficient neurons.** (A) In situ hybridization
193 (ISH) of Sema7A and Itg β 1 expression in the Satb2 cortex, scale bar is 100 μ m. (B)
194 Sema7A expression at P0 quantified by RNAseq. (C) UCSC genome browser view of
195 Sema7A gene locus with annotation tracks: ENCODE cis-regulatory elements
196 (cCREs), Histone ChIPseq from embryonic forebrain and ReMap ChIPseq tracks for
197 NeuroD2, Tbr1 and Fezf2, and Satb2-V5 Hippocampal ChIPseq³⁶ (D) Satb2 ChIP-
198 qPCR of 5'TSS and Intron 1 Sema7A regions. (E) Ectopic Sema7A expression is
199 observed after Satb2 overexpression in *wild type* cortices. E16 wild-type brains
200 electroporated at E13 with full-length Satb2 full-length cDNA and GFP show higher
201 expression of Sema7A RNA at the electroporation site (Scale bar 500 μ m). (F)
202 Overexpression of Sema7A into Satb2-deficient neurons restore migration cell-
203 intrinsically. Immunostaining with GFP and Cre in *wild type* and Satb2^{f/f} cortices after
204 IUE with GFP (left), Cre/GFP (middle) and Cre/GFP +Sema7A (right). (G) Re-
205 expression of Sema7A in Satb2 deficient cells restores migration and partially rescues
206 midline projections cell- intrinsically. *In utero* electroporations (IUE) into E14 embryos
207 collected at E18 are shown with midline magnifications. In all conditions pNeuroD1-
208 Cre + pCAG-FSF-GFP is abbreviated to Cre/GFP. Midline crossing was quantified by
209 normalizing GFP Fluorescent Integrated Density (FID) at the midline to the
210 Fluorescent Integrated Density of the electroporated area. Box and whisker plots
211 represent Min-Max with lower and upper quartiles and means (right). [GFP] n = 5,
212 [Cre] n = 4, [Cre + Sema7A] n = 8. Grey-ed out area at base of plot signifies
213 measurements in this area are likely at the level of noise due to the complete absence
214 of GFP fibers in [Cre] condition. Scale bar in the panoramic picture is 500 μ m, while
215 scale bar in midline magnification is 100 μ m. (H) Satb2 negative cells migrate into the
216 cortical plate after Sema7A re-expression. Adjacent to example electroporation
217 images are raw data points corresponding to cell positions, a half-violin showing the
218 total cell distribution across all brains in that condition and mean (point) and
219 interquartile range (line) between the raw data points and the half-violin. Cell
220 distributions for the different conditions are shown overlaid on the right along with
221 mean \pm SD cortical position. Statistics: qPCR in (D) used an unpaired t-test, midline
222 quantifications (G) passed Shapiro-Wilk Tests for lognormality and log-transformed
223 values were tested using one way ANOVA with Tukey's multiple comparison.
224 Migration profiles (H) passed Shapiro-Wilk test for normality and were tested using
225 one way ANOVA with Bonferroni, 'n' displayed on figure refers to one electroporated
226 cortex.

227

228

229 We then asked whether restoration of Sema7A expression in Satb2-
230 deficient neurons could rescue defects of axonal specification and/or
231 neuronal migration. Immunostaining showed that all GFP expressing
232 cells also expressed Cre but lacked Satb2 expression (Figure 1F). Re-
233 expression of Sema7A largely enabled midline crossing of Satb2-deficient
234 axons *in vivo* (Figure 1G). It also restored the laminar position of Satb2-
235 deficient neurons (Figure 1H). Our results show that Sema7A is a direct


236 *Satb2* target that promotes radial neuronal migration and axon outgrowth
237 during neocortical development.

238

239 **Sema7A is required for polarity acquisition and axon outgrowth**

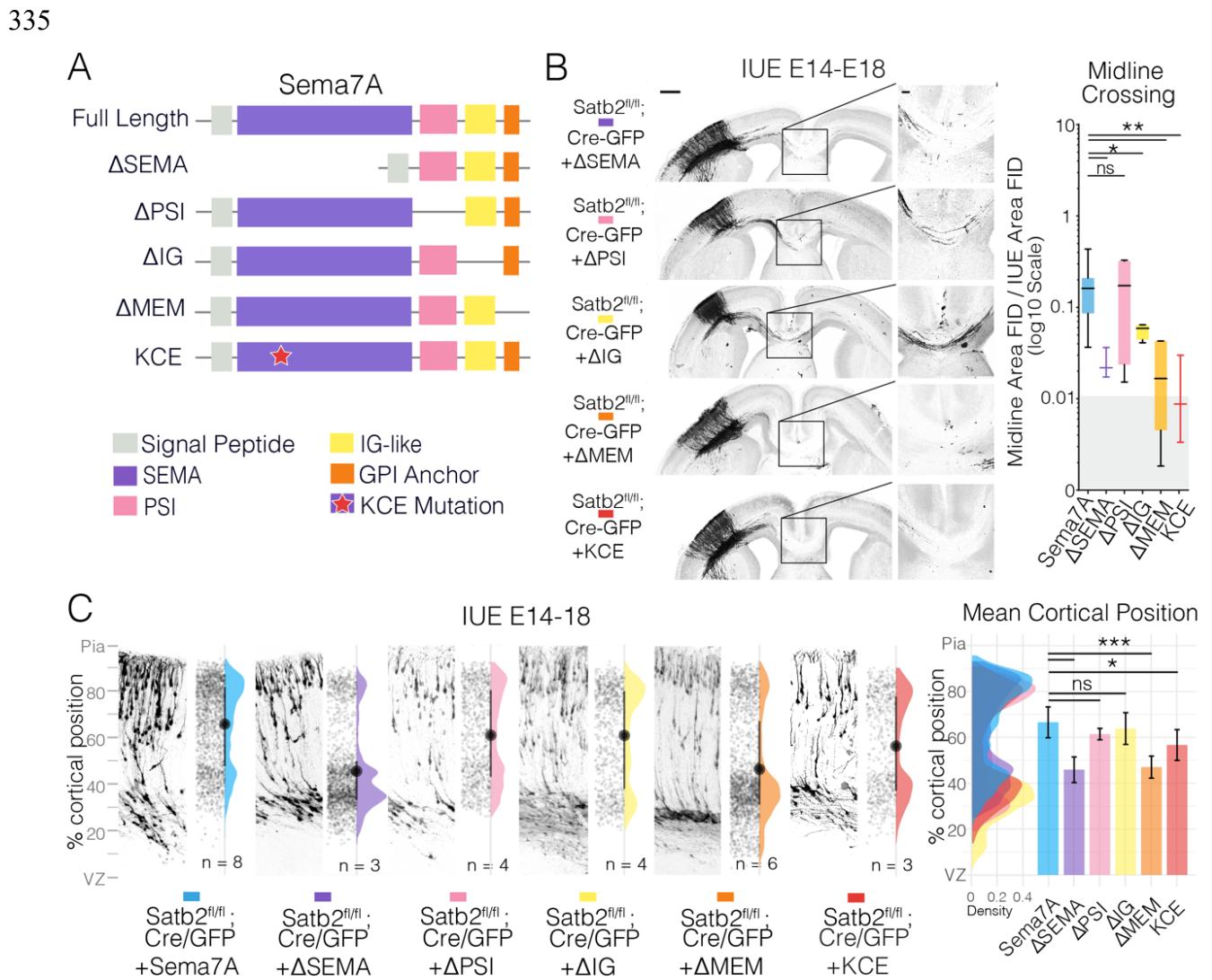
240 There are three crucial steps in the development of callosal
241 projections: the specification of the axon and the leading process, axonal
242 extension, and midline crossing. It is widely accepted that in the
243 neocortex, onset of axon extension coincides with initiation of neuronal
244 migration when a multipolar cell becomes polarized^{2,37}. To better
245 understand the phenotype of *Satb2*-deficient neurons (Figure S1), we
246 cultured dissociated *Satb2*-deficient (*Satb2*-/-) and wildtype (WT) neurons
247 *in vitro* and characterized their morphology (Figure 2). Future axons were
248 identified as the longest neurite at DIV2 and by counterstaining for the
249 axonal marker TAU at DIV4.

250 We observed that while *Satb2*-/- neurons do project axons *in vitro*,
251 these axons are markedly shorter than WT cells at DIV2 and DIV4 (Figure
252 2B,C). Furthermore, *Satb2*-/- cells possess more primary neurites than
253 WT cells at DIV2, which appears to result in increased branching (End
254 neurites) by DIV4 (Figure 2A,C). While *Satb2*-/- neurons do project axons
255 *in vitro*, these axons are markedly shorter than WT and these neurons do
256 not achieve complete polarization (Figure 2B,C). *Sema7A* re-expression
257 restored the number of primary and end neurites to WT levels (Figure
258 2A,C). By DIV4, most *Sema7A*-rescued *Satb2*-/- neurons also showed
259 recovered TAU+/MAP2- axon lengths.

262 **Figure 2 (Previous Page). Sema7A restores the polarization and axon outgrowth**
263 **in Satb2-deficient neurons also *in vitro*.** (A) Examples of WT, Satb2 deficient, and
264 Sema7A rescue conditions in E14 primary cortical neurons after 2 days in vitro (DIV2).
265 (B) After 4 days in vitro (DIV4), axons can be identified in all conditions by their
266 enrichment of TAU-1 and depletion of MAP2. Scale bar=50 μ m. (C) Quantification of
267 neuronal morphology at DIV2 (left column) and DIV 4 (right column). All box & whisker
268 plots in C plot min, max, interquartile range and median. Data were non-normally
269 distributed (D'Agostino & Pearson, Shapiro-Wilk tests). For all tests, Kruskal Wallis
270 test followed by Dunn's Multiple comparison was used, where adjusted p values <
271 0.001 = ***, < 0.01 = **, < 0.05 = *. DIV2 WT n= 48, Satb2 -/- n = 54, Satb2-/- +
272 Sema7A n = 37; DIV4 WT n = 20, Satb2 -/- n = 37, Satb2-/- + Sema7A n = 39 cells.
273 (D) Loss of Satb2 is associated with a random distribution of the centrosome which
274 can be restored by Sema7A. (Top row): Representative images of DIV2 primary
275 cortical neurons stained with the golgi marker Gm130 and centrosomal marker
276 Cdk5rap2 (scale bar 50 μ m). Radar plots depict the circularized histograms of angle
277 counts, where 360 degrees are binned in 30-degree increments. Measured blind using
278 a standardized 100 x 100 pixel cross, which was placed with the parallel axis centered
279 in the process and the perpendicular access touching the Golgi. Data were non-
280 normally distributed (D'Agostino & Pearson, Shapiro-Wilk tests). For all tests, Kruskal
281 Wallis test followed by Dunn's Multiple comparison was used, where adjusted p values
282 < 0.001 = ***, < 0.01 = **, < 0.05 = *. WT n=35, Satb2-/- n=25, Satb2-/- + Sema7A n
283 = 35.
284
285

286 Previous studies have reported that a young neuron becomes
287 polarized when the microtubule organizing center, the centrosome,
288 positions itself together with the Golgi apparatus in front of the neurite that
289 will become the axon, and prior to migration moves to specify the leading
290 process³⁸⁻⁴⁰. To examine the possible role of Satb2 in mediating
291 polarization, we measured the positions of the centrosome and Golgi
292 organelles with respect to the closest process. At DIV2 in wild type
293 neurons, the centrosome lies at the base of and in line with the longest
294 neurite along the 0-180° 'polarity' axis (Figure 2D, left). Loss of Satb2
295 was associated with a disturbance in the position of the centrosome was
296 disturbed and this structure was mostly found between neurites, resulting
297 in angles that are further away from the polarity axis (Figure 2D, middle).

298 We then analyzed the role of Sema7A in regulating neuronal
299 morphology and polarity downstream of Satb2 by overexpression of
300 Sema7A in these cells. We found that re-expression of Sema7A in Satb2


301 -/- neurons shifted the centrosome angle back towards the polarity axis
302 (Figure 2D, right). Collectively, our results show that Sema7A controls
303 neuronal polarity and outgrowth as well as initiation of both migration
304 *downstream of Satb2*.

305

306 **Sema7A Membrane localization and Dimerization are required to**
307 **mediate cell-intrinsic effects**

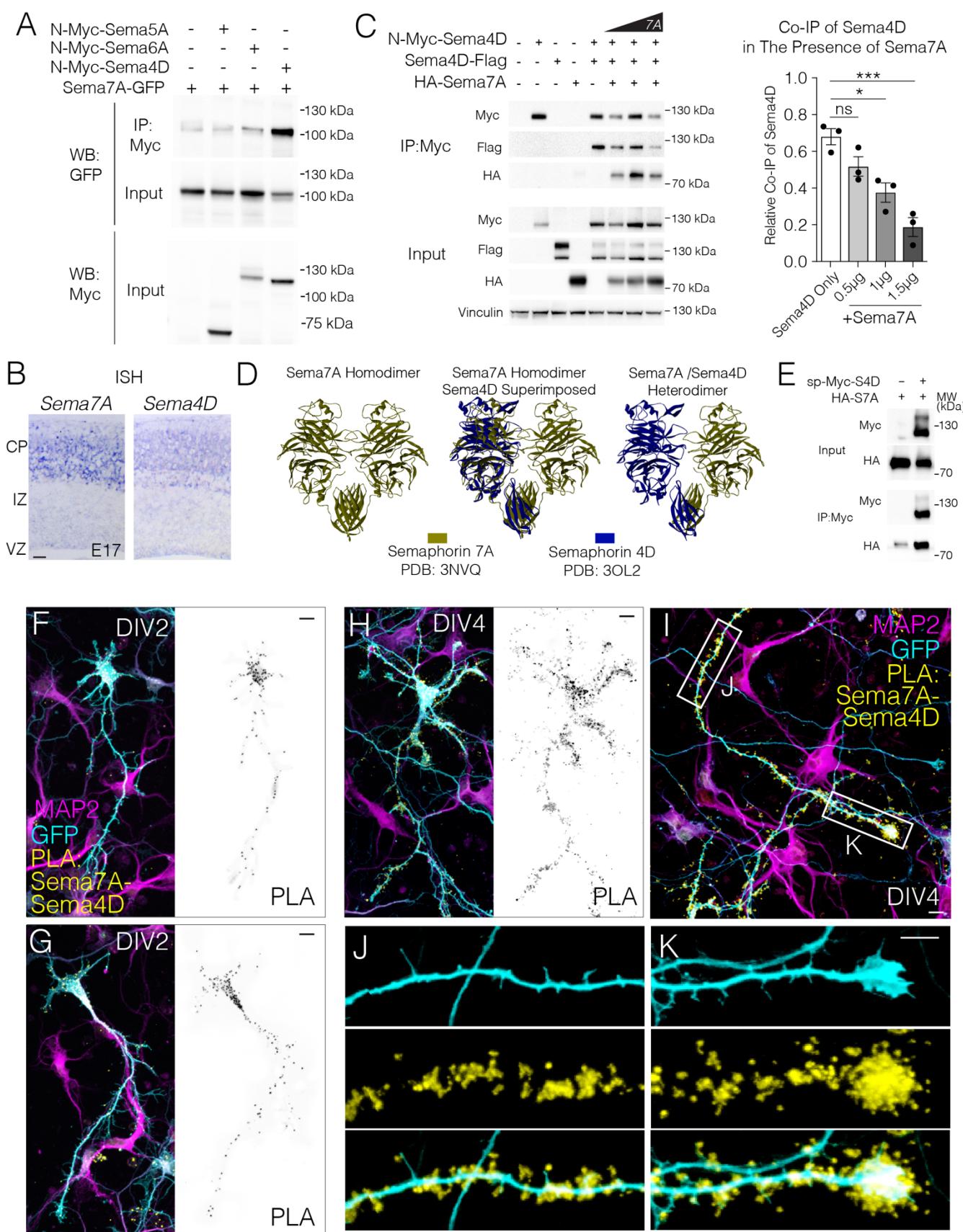
308 Since Sema7A lacks a cytoplasmic domain and is reported to act
309 as a ligand *in trans*⁴¹, it was difficult to envisage how it mediated a cell-
310 intrinsic rescue in Satb2 deficient neurons. One possibility was that
311 Sema7A was being secreted to act in an autocrine fashion on the cell
312 expressing it. We therefore repeated genetic rescue experiments with a
313 mutant form of Sema7A, where we removed the GPI membrane anchor
314 (Δ MEM). Expression of the secreted version of Sema7A (Δ MEM) was
315 neither capable of restoring migration, nor axon elongation in Satb2
316 mutants (Figure 3B, C). This indicates that Sema7A requires membrane
317 attachment in order to function cell intrinsically downstream of Satb2.
318 Another possibility is that Sema7A acts by complexing in *cis* with other
319 receptors, most likely transmembrane proteins capable of reverse
320 signaling. The seven-bladed beat-propeller SEMA domain has been
321 shown to mediate dimerization of Semaphorins, a characteristic essential
322 for their function^{42,43}, as well as interaction with other receptors (eg Nrp1,
323⁴⁴). Deletion of this important domain also interferes with Sema7A
324 function downstream of Satb2 (Figure 3B, C) indicating that dimerization
325 is essential for Sema7A function. We also generated a version of
326 Sema7A where we mutated the conserved Arginine Glycine Aspartate
327 (RGD) motif required for Integrin binding⁴⁵, (KCE mutant, Figure 3A).
328 Mutation of this site interestingly disrupted axon outgrowth but not
329 migration. We obtained a similar result upon deletion of the structural IG

330 or the PSI domain that in other SEMA members is required for the correct
331 positioning of the ligand-binding site⁴⁶, suggesting differences in the
332 signaling roles of Sema7A during these two processes. Together these
333 data show that Sema7A is acting as a membrane-associated receptor
334 most likely in complex with other receptors.

336

337 **Figure 3. Semaphorin 7A Domains associated with membrane localization and**
338 **dimerization are required for migration and axon outgrowth.** (A) Schematic of
339 Sema7A domains and deletion mutants. The scheme shows all currently annotated
340 domains of Sema7A and depicts the deletion constructs generated. Sema domain is
341 depicted in purple, the Plexin-Semaphorin-Integrin (PSI) domain in pink, the
342 immunoglobulin domain (IG) in yellow and the Glycosyl-Phosphatidyl-Inositol (GPI)
343 membrane anchor is depicted in orange. The Arginine-Glycine-Aspartic acid (RGD)
344 reported to be important for Integrin binding was mutated to Lysine-Cysteine-Glutamic
345 Acid (KCE) and is depicted as a red star. (B) Panoramas of *Satb2^{fl/fl}* IUE brains with
346 the indicated Sema7A deletion constructs together with pCAG-FSF-GFP and
347 pNeuroD1-Cre and midline magnifications and quantifications. Midline crossing is

348 quantified as described previously. Box and whisker plots represent min-max with
349 lower and upper quartiles and means. [Cre + Sema7A] (shown in Figure 2) n = 8, [Cre
350 + Sema7A- Δ SEMA] n = 3, [Cre + Sema7A- Δ PSI] n = 4, [Cre + Sema7A- Δ IG] n = 4,
351 [Cre + Sema7A- Δ MEM] n = 6, [Cre + Sema7A-KCE] n = 3. Grey-ed out area at base
352 of plot signifies measurements in this area are likely at the level of noise due to the
353 complete absence of GFP fibers in [Cre] only condition (Figure 2). Scale bar in
354 panoramic picture is 500 μ m, while scale bar in midline magnification is 100 μ m. (C)
355 (Left): Sema7A deletion mutant migration profiles from E14-18 IUEs. Each subplot is
356 comprised of a representative electroporation image on the left along with raw data
357 points, and a half violin plot marked with the mean (dot) and interquartile range (line).
358 (Right): Cell distribution plots distributions are overlaid on the right along with
359 mean \pm SD cortical position. *Statistics*: data in B were lognormally distributed and were
360 log-transformed prior to running a one way ANOVA with Bonferroni multiple
361 comparison. In C, Kruskal-Wallis with Dunn's multiple comparison.
362

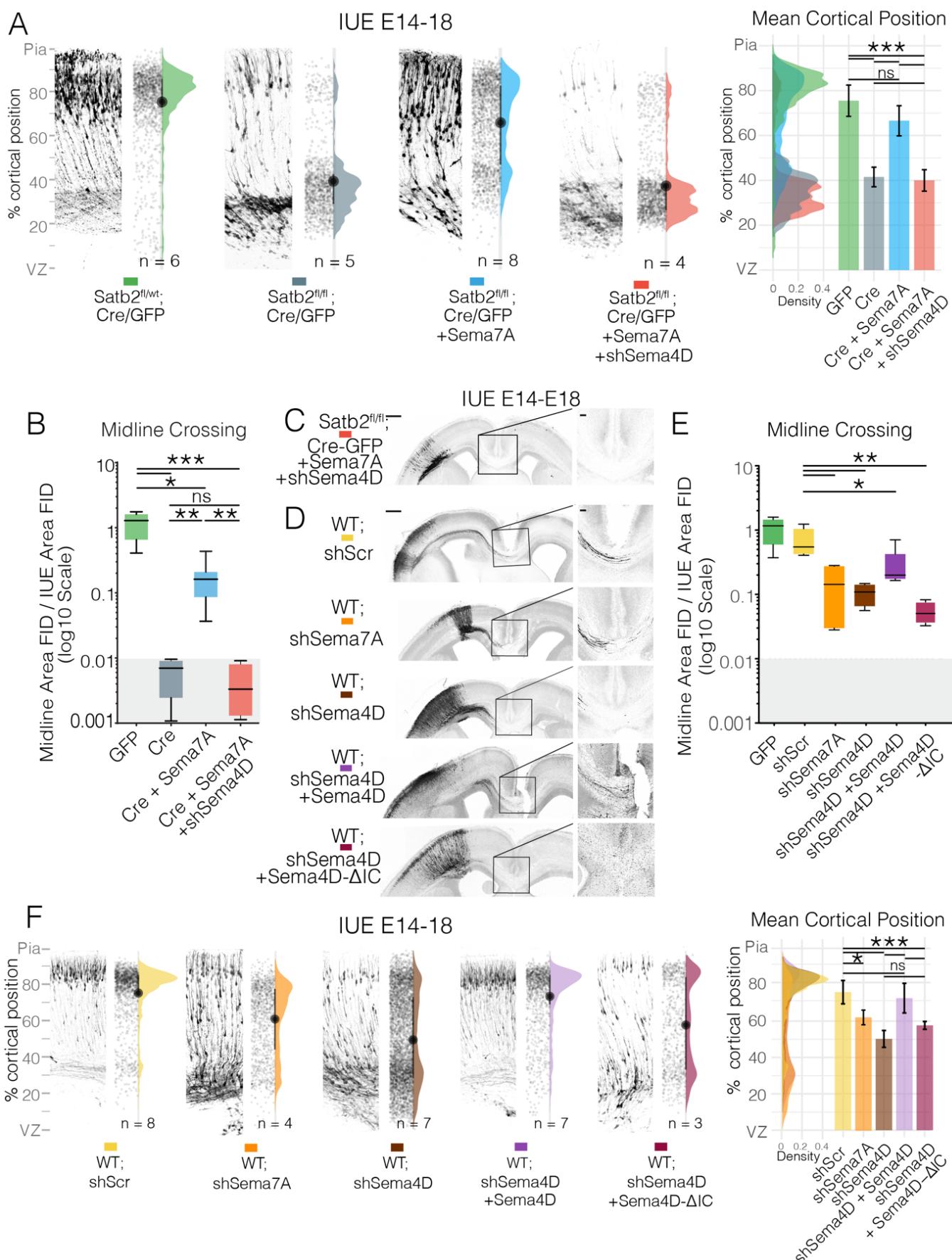

363 **Sema7A acts as a co-receptor of Sema4D**

364 We asked whether Sema7A could heterodimerize with other
365 semaphorin family members that could transmit signals into the
366 expressing cell in a cell autonomous manner. Members of Semaphorin
367 Class 4 and Class 6 had recently been shown to be involved in
368 reverse signaling during cell polarization and migration²⁴⁻²⁷. We focused
369 on semaphorins that contain a cytoplasmic domain and could thereby
370 transmit signals into the expressing cell in a cell autonomous fashion. We
371 also reasoned that the expression should overlap with that of Sema7A,
372 and should remain in Satb2 deficient cortex (Figure S3). We first
373 performed Co-Immunoprecipitation (Co-IP) in HEK293T cells using a C-
374 terminal GFP tagged Sema7A and N-terminal Myc-tagged versions of
375 Sema5A, Sema6A, and Sema4D – three putative receptors that meet
376 above mentioned criteria (Figure 4A). We detected a strong binding
377 affinity between Sema7A and Sema4D and a weak interaction with
378 Sema6A (Figure 4A). Notably, Sema4D is also expressed in the
379 developing cortical plate alongside Sema7A (Figure 4B). While Sema7A
380 is reduced in the Satb2 mutant, Sema4D is modestly upregulated (Figure
381 S2).

382 Sema4D is known to form homodimers⁴⁷. To test whether Sema7A
383 competes with Sema4D for dimerization, we additionally cloned a version
384 of Sema7A that contains an HA tag at an exposed loop of the Sema
385 domain at codon 352, (HA-Sema7A) and a Sema4D with a C-terminal
386 (cytoplasmic) flag tag. Increasing amounts of Sema7A resulted in
387 decreased amounts of Sema4D-Flag co-immunoprecipitated with N-Myc-
388 Sema4D, indicating that Sema7A competes with Sema4D monomers for
389 dimerization (Figure 4C). We observed 150kDa and 120kDa forms of
390 Sema4D similar to previous reports⁴⁸. 120kDa and 150kDa forms of
391 Sema4D are both ‘full length’ given the detection of the C terminal tag,
392 however, in the presence of N-Myc-Sema4D, Sema4D-flag is observed
393 more prominently as the 120kDa form, which is also the preferred form
394 pulled down by co-immunoprecipitation in flag lysis buffer (Figure 4C).
395 This suggests the existence of differential post-translational modification
396 of the homodimerized form of Sema4D as compared to Sema4D present
397 in Sema4D-Sema7A heterodimers.

398 Given N-Myc-Sema4D (addgene #51599) uses a chimeric signal
399 peptide and produces very little of the 150kDa form of Sema4D⁴⁹, we
400 cloned Sema4D to contain a myc tag after its endogenous signal peptide
401 based on structural data (termed sp-Myc-Sema4D). This construct
402 successfully yields both ~120kDa and 150kDa forms of Sema4D (Figure
403 4D).

404 We used the published crystal structures of Sema4D⁵⁰ and
405 Sema7A⁴¹ to model the Sema7A:4D heterodimer. We found that
406 superimposition of one Sema4D molecule over the one Sema7A molecule
407 from the published Sema7A homodimer, resulted in only a minor deviation
408 (RMSD:0.64 Å) in the C^α atoms of the proteins (Figure 4E), further
409 supporting the existence of a physiological competitive interaction
410 between these two proteins.



413 **Figure 4 (previous page). Sema4D binds with high affinity to Sema7A.** (A)
414 Sema7A binds to Sema4D and Sema6A. HEK293T cells were transfected with the
415 GFP tagged Sema7A (this paper) and the indicated Myc-tagged Sema family
416 members: N-Myc-Sema4D (addgene # 51599, ~120kDa), N-myc-Sema5A (~65kDa),
417 and N-myc-Sema6A (~120/130kDa). (B) Competition assay reveals Sema4D
418 homodimerization decreases with increasing concentrations of Sema7A. (C) *In Situ*
419 *Hybridization* (ISH) at E18 in wild type mouse cortex shows the expression of both
420 Semaphorins in the cortical plate. Scale bar= 100 μ m. (D) Co-immunoprecipitation of
421 HA-Sema7A using sp-myc-Sema4D. (E) Heterodimer alignment of Sema4D and
422 Sema7A using published crystal structures. (F-K) Localization and distribution of
423 Sema4D-Sema7A complexes in primary cortical neurons. Primary E14 neurons
424 transfected with sp-Myc-Sema4D, HA-Sema7A, and GFP were fixed at DIV2 and
425 DIV4 and subcellular localization of semaphorin complexes determined by Proximity
426 Ligation Assay (PLA). GFP signal (cell fill) can be seen in cyan, Sema4D-Sema7A
427 PLA signal in yellow, and MAP2 in magenta. Scale bars in F-K are 10 μ m.
428

429 To visualize the interaction of Sema7A with Sema4D *in vivo*, we
430 carried out a Proximity Ligation Assay (PLA) in wild type cortical neurons
431 transfected with sp-Myc-Sema4D and HA-Sema7A (Figure 4F-K).
432 Indeed, we observe a direct interaction of HA-Sema7A and Sema4D in
433 neurons. At DIV2, the Sema4D-Sema7A heterodimer can be seen in the
434 soma and axon hillock (Figure 4F,G). In more mature neurons at DIV4,
435 PLA signal is further enriched in the growing axon and is observed at the
436 tips of filopodia, branch points and with an enrichment at axonal growth
437 cones (Figure 4H-K).

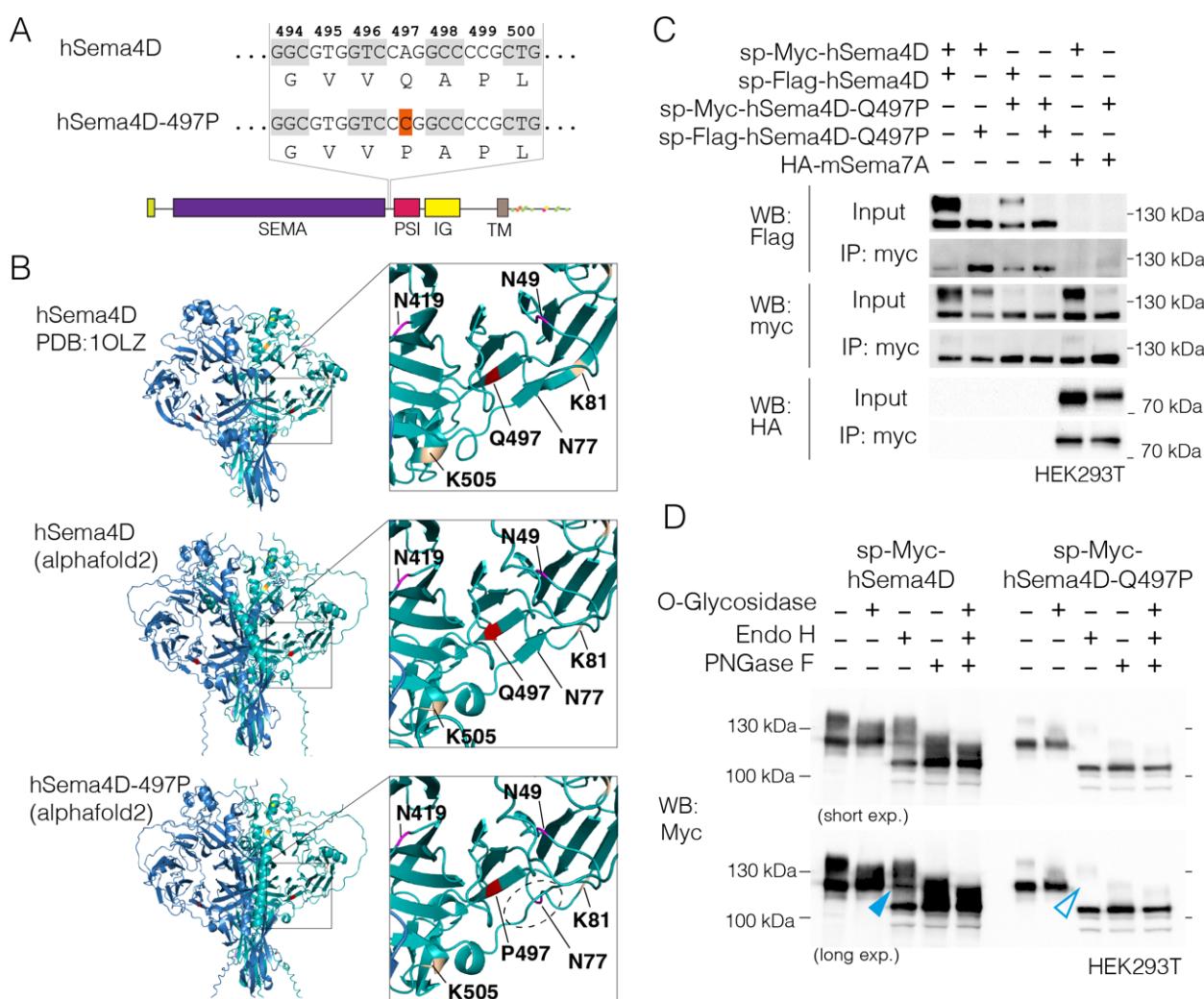
438
439 **Sema4D is required for cell-intrinsic Sema7A-mediated neuronal**
440 **migration and axonal growth**

441 To address whether Sema7A and Sema4D function together in
442 promoting neuronal migration and axonal growth cell-intrinsically, we
443 conducted loss-of-function experiments *in vivo*. We first addressed
444 whether the role of Sema7A downstream of Satb2 in promoting migration
445 and axon outgrowth was dependent on the function of Sema4D. This was
446 carried out by downregulating Sema4D expression using a specific
447 shRNA, while restoring Sema7A expression in Satb2-deficient neurons *in*
448 *vivo*.

450 **Figure 5 (previous page). The Cytoplasmic Domain of Sema4D is required for**
451 **cell intrinsic migration and axon outgrowth.** (A) Simultaneous downregulation of
452 Semaphorin 4D by shRNA reverses Semaphorin 7A rescue of neuronal migration in
453 Satb2-deficient neurons. IUE into E14 embryos collected at E18. Cell distributions are
454 overlaid on the right along with mean \pm SD cortical position. (B) Quantification of midline
455 crossing after simultaneous downregulation of Semaphorin 4D in Sema7A-rescued
456 Satb2-deficient neurons with example depicted in (C). Panoramas of Sema4D and
457 Sema7A shRNA electroporations with midline magnifications. Midline crossing of
458 shRNA electroporation (D) is quantified as described previously. Scale bar in
459 panoramas is 500 μ m, while scale bar in midline magnification is 100 μ m. Box and
460 whisker plots (B, C) represent Min-Max with lower and upper quartiles and means.
461 Midline [GFP] n = 5, [Cre] n = 4, [Cre + Sema7A] n = 8, [Cre + Sema7A + shSema4D]
462 n = 4 [shScr] n = 5, [shSema7A] n = 4, [shSema4D] n = 4, [shSema4D + Sema4D] n
463 = 7, [shSema4D + Sema4D- Δ IC] n = 4. (F) Migration profiles of neurons after
464 downregulation of Sema4D. Control scrambled shRNA (shScr), shRNA against
465 Sema4D, shRNA against Sema4D + Sema4D cDNA, or shRNA against Sema4D plus
466 a version of Sema4D cDNA lacking the intracellular domain -IC (Sema4D- Δ IC).
467 Representative electroporations are shown adjacent to raw data points and half violin
468 plots of the total distribution with mean \pm SD cortical position on the right. *Statistics:*
469 (A,B,E) one way ANOVA with Bonferroni, values in (B & E) were lognormally
470 distributed and log-transformed prior to test. (F) Kruskal-Wallis test with Dunn's
471 Multiple comparison.
472

473 As previously observed, re-expression of Sema7A improved the
474 laminar position (Figure 5A) and callosal projections of Satb2-deficient
475 neurons (blue condition, Figure 5B,C). Downregulation of Sema4D,
476 however, prevented Sema7A-mediated rescue of both migration (Figure
477 5A) and axonal outgrowth in the Satb2-deficient neurons (Figure 5B-C,
478 red condition).

479 We also tested whether downregulation of Sema4D or Sema7A by
480 shRNA would phenocopy cell autonomous deletion of Satb2. In a similar
481 design, we introduced a construct expressing shRNA against Sema7A
482 into E14 cortex and analyzed the brains at E18. Indeed, Sema7A
483 knockdown resulted in reduced projection of axons into the contralateral
484 hemisphere (Figure 5D,E) and a migration deficit of upper layer neurons
485 (Figure 5F). Similar experiments using shRNA against Sema4D,
486 produced even stronger phenotypes, with strong disruption of both
487 migration and axon growth (Figure 5D-F).


488 Our hypothesis of Sema7A was based on its interaction in *cis* with a
489 transmembrane receptor that could thereby mediate reverse signaling.
490 We therefore addressed if the intracellular domain (ICD) of Sema4D is
491 required for its function in neuronal migration and axonal growth. To test
492 this, we downregulated Sema4D using a specific shRNA, and at the same
493 time overexpressed either full length Sema4D, or Sema4D lacking the
494 ICD (Sema4D-ΔIC). Only the construct encoding the full cDNA could
495 rescue defects of both migration and axon outgrowth caused by Sema4D
496 loss-of-function, while Sema4D-ΔIC was unable to repair these defects
497 (Figure 5D-F, light and dark purple conditions). Together, these data
498 show that the intracellular domain of Sema4D is essential for the cell-
499 autonomous effects of Sema7A on the radial migration and axonal
500 outgrowth of upper layer neurons in the developing neocortex.

501

502 **Human Sema4D-497P mutation inhibits trafficking to the membrane 503 and growth cone**

504 Over the course of this study, we identified a patient presenting with
505 generalized tonic-clonic seizures that has a *de novo* mutation in Sema4D
506 (see case report in supplemental note 1). Exome sequencing revealed a
507 non-synonymous mutation of adenosine to cytosine resulting in a
508 glutamine (Q) to proline (P) substitution at codon 497 (Figure 6A). Given
509 that the Q497 residue is involved in the formation of a beta sheet on a
510 propeller of the sema domain (Figure 6B), the sudden inclusion of a
511 proline ring was expected to alter secondary structure. To predict how
512 this mutation may affect protein folding, we used the most recent release
513 of alphaFold2⁵¹ to compare predicted structure with the known crystal
514 structure of hSema4D (PDB: 1OLZ). Interestingly, the predicted structure
515 of wildtype hSema4D (Figure 7B, middle panel) and hSema4D-497P are
516 extremely close to the 1OLZ crystal structure (Figure 6B, upper panel). In

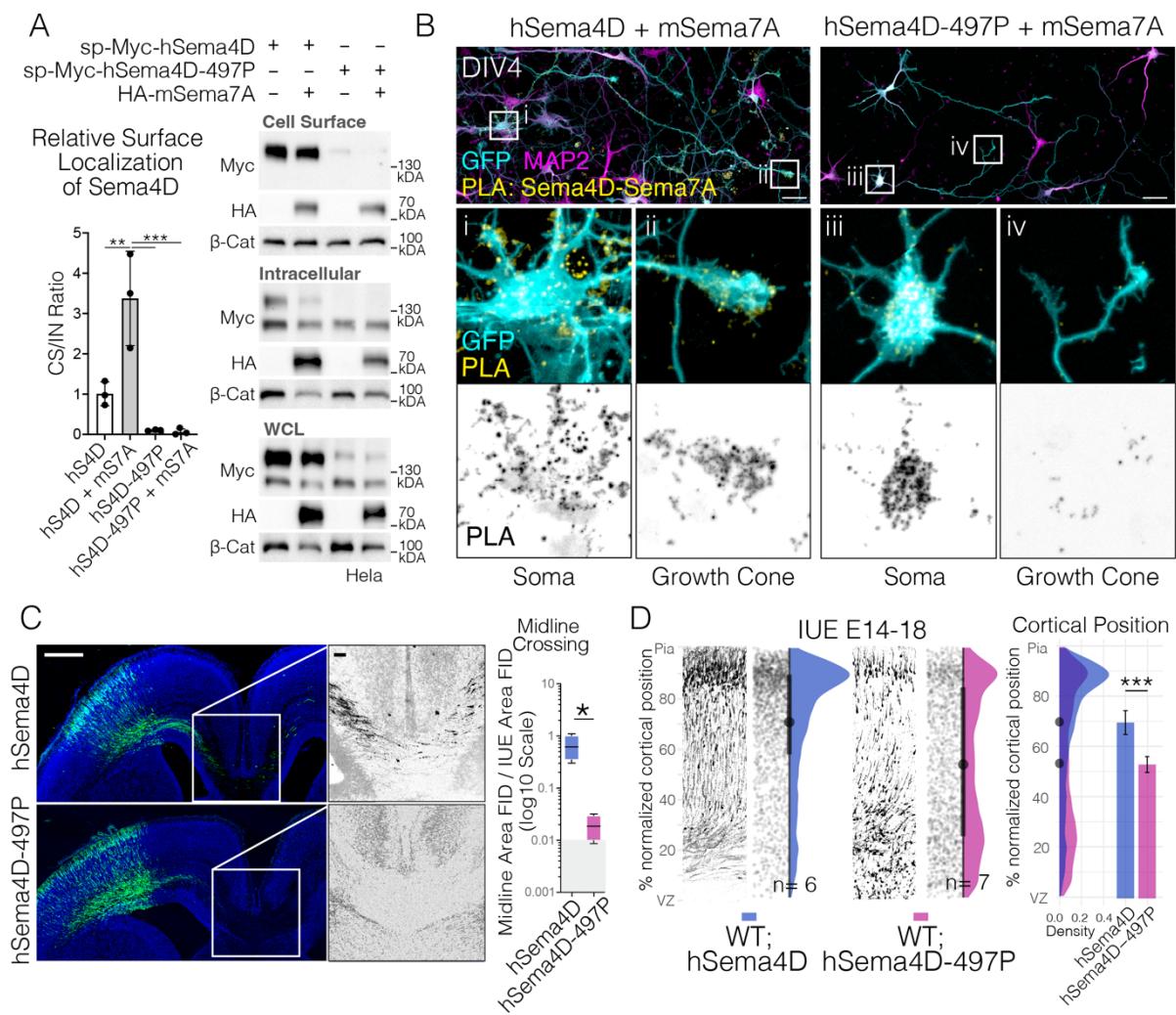
517 both WT and 497P predictions, upper segments of the sema domain form
 518 low confidence loops, due to a limitation of alphafold2 (Figure S4).
 519 However, the beta sheet containing codon 497 is consistent between
 520 1OLZ and the prediction for hSema4D, so the comparison between 497
 521 mutation structure to wildtype is useful at this level. While the beta sheet
 522 containing P497 is predicted to form correctly, the beta sheet below this
 523 is absent in the predicted model of hSema4D-Q497P. This lower beta
 524 sheet normally resides in close proximity to glycosylation site N77 (Figure
 525 6B, lower panel zoom). It is also possible that steric hindrance from the
 526 Q497P mutation may affect normal glycosylation at N49 and N419 or
 527 ubiquitination at K505 or K81 (Figure 6B, lower panel zoom).

529 **Figure 6 (previous page). Human Sema4D-497P Mutation retains homo and**
530 **heterodimerization ability but is improperly processed.** (A) Schematic of
531 adenosine to cytosine base mutation giving rise to a glutamine 'Q' to proline 'P'
532 substitution at codon 497 between SEMA and PSI domains. (B) Ribbon diagrams and
533 zooms of hSema4D solved crystal structure (1OLZ, top) with alphafold2 predictions of
534 wildtype hSema4D (middle) and hSema4D with 497P mutation (bottom). Codon 497
535 is highlighted red, glycosylation residues magenta, phosphorylation residues yellow,
536 and ubiquitination residues ochre. A beta sheet parallel to codon 497 (dotted ellipse)
537 is not predicted to form following 497P mutation. (C) Co-immunoprecipitation of myc-
538 tagged human Sema4D (sp-myc-hSema4D) and the 497P variant (sp-myc-hSema4D-
539 Q497P) confirms that the mutant form can still form homodimers with sp-flag-
540 hSema4D and heterodimers with HA-mSema7A. While hSema4D produces bands at
541 ~150kDa and ~120kDa, the hSema4D-Q497P variant predominantly generates the
542 120kDa band. (D) De-glycosylation assay of sp-myc-hSema4D and sp-myc-
543 hSema4D-Q497P using O-Glycosidase, Endo H and PNGase F. The same blot is
544 shown at short and long exposures.

545

546

547 We asked if Sema4D-497P can still form homo- and heterodimers
548 after immunoprecipitation of proteins overexpressed in HEK293T cells.
549 The Q497P mutation did not interfere with Sema4D homodimerization or
550 heterodimerization with Sema7A (Figure 7C). However, we observed a
551 shift of the Sema4D bands in an SDS-PAGE gel. While wildtype Sema4D
552 normally migrates as two sizes (~150kDa and ~120kDa), the heavier form
553 of the protein (~150kDa) was largely absent in Sema4D-497P (Figure
554 6C).


555 In line with our structural predictions, we hypothesized that the two
556 forms of Sema4D could correspond to different maturation states or
557 glycosylation states of the protein. To test this hypothesis, we incubated
558 hSema4D overexpressing lysates with de-glycosylation enzymes. De-
559 glycosylation with O-Glycosidase resulted in the loss of the 150kDa
560 migrating form of hSema4D and the presence of only a 120kDa form,
561 indicating that this higher migrating form results from O-linked
562 glycosylation of the protein. Treatment of hSema4D with PNGase F,
563 which cleaves all glycosylation types, results in further downwards shift of
564 the Sema4D band to 110kDa, indicating additional N-glycosylation is

565 present on Sema4D. Endo H, which cannot cleave complex glycans,
566 results in a mixed picture of 150, 120 and 110kDa migrating forms of
567 hSema4D.

568 We then analyzed glycosylation on the mutated form of hSema4D.
569 hSema4D-Q497P runs at 120kDa and lacks the 150kDa migrating form
570 that was associated with O-linked glycosylation in wildtype hSema4D.
571 Indeed hSema4D-Q497P was insensitive to O-Glycosidase indicating
572 that unlike the wildtype form, hSema4D-Q497P lacks O-linked
573 glycosylation. hSema4D-Q497P is still sensitive to PNGase F, showing
574 that the protein is nevertheless modified by other glycosylation types. The
575 incomplete glycosylation of hSema4D-Q497P is also evident upon
576 incubation with Endo H, which only yields a 110kDa form, compared to
577 the intermediate 120kDa fragments observed when digesting WT
578 hSema4D (Figure 6D, WT blue arrow vs Q497P empty blue arrow).

579 Notably however, treatment with PNGase F, which should cleave all
580 glycosylation, still results in two prominent WT bands, reduced to
581 ~120kDa and ~110kDa, suggesting that something additional to
582 glycosylation contributes to the difference in protein size.

583 Given that presence of the Sema7A receptor at the plasma
584 membrane is essential for its biological function, and glycosylation is
585 known to be important in protein localization⁵², we used surface
586 biotinylation followed by avidin pull down to address the role of Sema7A
587 and of the Q497P mutation in regulating the subcellular localization of
588 Semaphorin 4D (Figure 7A). Interestingly, only the 150KDa form of
589 Sema4D became biotinylated, indicating that this O-linked glycosylated
590 form is the membrane-localized form of the protein. We observed that co-
591 expression of Sema7A increased the proportion of surface-localized
592 Sema4D three-fold, while mutation of Sema4D at residue 497 abolished
593 its localization to the cell surface.

Figure 7. 497P Mutation abolishes localization of hSema4D and Sema7A to the cell surface and growth cones and reduces neuronal migration and axon projection in vivo. (A) Surface biotinylation followed by avidin pull down of sp-myc-hSema4D or sp-myc-hSema4D-497P in the presence or absence of HA-mSema7A. Cell Surface to Intracellular (CS/IN) ratio of Sema4D was calculated by first normalizing each fraction to all Sema4D detected in whole cell lysate (WCL) where the complete calculation is CS/IN = (CS/WCL)/(IN/WCL). Plotted is mean+SD, using n = 3 separate experiments. (B) Proximity Ligation Assay (PLA) detecting interaction between mouse HA-Sema7A and human sp-myc-Sema4D or human sp-myc-Sema4D-497P. (C) Midline panoramas and quantifications of human Sema4D + GFP (hSema4D) and human Sema4D-497P + GFP in utero electroporations. Midline fluorescence was quantified as before, fluorescence intensities are log-normally distributed, so were log-transformed prior to running an unpaired t-test with Welch's correction. hSema4D n = 4 sections over two biological replicates, hSema4D-497P n = 4 over 3 biological replicates. Scale bar in panoramas is 500 μ m, while scale bar in midline magnification is 100 μ m. (D) Migration profiles of cortical neurons following in utero electroporation with hSema4D or hSema4D-497P. hSema4D n = 6 sections over two biological replicates, hSema4D-497P n = 7 sections over 3 biological replicates.

616 To further characterize this effect, we nucleofected primary neurons
617 with HA-mSema7A and sp-myc-hSema4D or sp-myc-hSema4D-Q497P
618 and performed a proximity ligation assay to observe the location of the
619 semaphorin complex *in situ* (Figure 7B). We observed that while
620 hSema4D-mSema7A complexes are normally found on the outer side of
621 the cell membrane and the growth cone (as per Figure 4), hSema4D-
622 497P-Sema7A complexes are predominantly found intracellularly the
623 soma and absent from the growth cone (Figure 7Bi-iv), indicating loss of
624 Sema4D-Sema7A complexes from the plasma membrane.

625 Finally, we analyzed the functional consequences of mutation of
626 Sema4D during neocortical development. Overexpression of hSema4D-
627 Q497P in the developing neocortex by *in utero* electroporation, disrupted
628 radial migration and neurons collected in the lower portions of the
629 neocortex (Figure 7C,D). Furthermore, overexpression of hSema4D-
630 Q497P prevented axon projection across the corpus callosum (Figure
631 7C). Thus mutation of Sema4D at Q497 phenocopies downregulation of
632 either Sema7A or Sema4D. Given that the mutation does not interfere
633 with Sema4D homo- or heterodimerization (with Sema7A), together this
634 data suggests that the dominant negative actions of this mutation results
635 from defective O-linked glycosylation events and ensuring failure of
636 Sema4D-Sema7A complex localization to the plasma membrane.

637 In this study we observed that a direct target of Satb2,
638 Semaphorin7A, can mediate potent cell-autonomous signaling that
639 facilitates neuronal migration and axon projection in the developing cortex
640 (Figure 1). Membrane localization of Sema7A is essential for this function
641 as is interaction of this GPI-linked protein with Sema4D, a transmembrane
642 Semaphorin family member. Sema7A-Sema4D complexes can be found
643 at neurites and are enriched in the growth cone (Figure 4). Membrane
644 localization of the Sema7A-Sema4D complex is also dependent on

645 correct O-linked glycosylation of Sema4D. We identified a human
646 mutation in Sema4D, Q497P associated with tonic-clonic seizures, that
647 interferes with the membrane localization of the Sema7A-Sema4D
648 complex by disrupting most likely O-linked glycosylation events on
649 Sema4D. This mutant acts in a dominant negative fashion to interfere
650 with neuronal migration and axon projection during neocortical
651 development.

652

653

654 **DISCUSSION**

655

656 Here, we characterized a potent role of the Satb2-target Sema7A,
657 in mediating cell-intrinsic migration and axon elongation in cortical
658 projection neurons. Sema7A is expressed robustly in newly born
659 neurons, and in addition to being a Satb2- downstream gene, Sema7A
660 appears to be a target of several early neuronal transcription factors such
661 as NeuroD2, Tbr1, and Fezf2 (Figure 1). Previous studies have identified
662 Sema7A to be important for olfactory bulb, olfactory- and thalamo-cortical
663 tracts, as well as for hippocampal and cortical axonal outgrowth and
664 branching^{21,45,53}. However, in these studies, Sema7A was considered a
665 classical ligand that initiates signaling cascade in a neighboring cell, after
666 binding to its receptor Integrin β 1 or PlexinC1. The interpretation of these
667 previous studies may need to be adjusted to account for Semaphorin-
668 Semaphorin interactions and reverse signaling; of three Semaphorins
669 tested, in addition to the strong interaction between Sema7A and Sema4D,
670 we could detect weak binding between Sema7A and Sema6A.
671 Further experiments are needed to characterize the full extent of
672 Semaphorin-Semaphorin interactions and their capacity to carry out
673 reverse signaling.

674 It is known that some Semaphorins can homodimerize^{19,23} and act
675 as ligands which bind *in trans* to their respective receptors^{28,53}. Here, we
676 show the interaction of the two immune Semaphorins, Sema4D and
677 Sema7A, that heterodimerize (Figure 4). By downregulating each of them
678 independently, we observe disruption in the radial neuronal migration and
679 less axons crossing the midline. Moreover, by simultaneously knocking
680 down Sema4D in the Sema7A rescue condition, we show that migration
681 and axon defects return (Figure 5). Thus, Sema4D is required for the
682 Sema7A- mediated rescue in Satb2-negative cells. Additionally, our
683 computational protein structure model suggests that Sema4D-Sema7A
684 can interact via SEMA domain and form heterodimers, which is
685 concordant with previous studies about formation of multimeric
686 complexes while binding to their functional receptors^{14,23,54}.

687 How heterodimerization affects Sema4D signaling remains unclear,
688 and cannot be easily predicted by structural models, as Sema4D crystal
689 structures use only extracellular regions. One possibility is that compared
690 to homodimerization, heterodimerization exposes certain amino acids in
691 the Sema4D intracellular domain to enzymatic activities. Sema4D has a
692 107 amino acid cytoplasmic tail where post-translational modifications
693 have been observed, and have been implicated in the cleavage of
694 Sema4D⁵⁵⁻⁶¹.

695 Some evidence of receptor functions of Sema4D has also been
696 reported in non-neuronal cell types⁶², a notable example being in $\gamma\delta$ T
697 lymphocytes where antibody-mediated activation of Sema4D resulted in
698 phosphorylation of ERK, dephosphorylation of cofilin and activation of
699 integrins resulting in cell rounding required for wound healing⁶³.

700 The hSema4D-497P mutation is an exceptional example of the
701 consequence of a single amino acid substitution. While hSema4D-497P
702 can homo- and hetero- dimerize and is predicted to form almost the

703 identical protein structure, it is not correctly trafficked to the membrane
704 and shows evidence of incomplete glycosylation, yielding predominantly
705 the immature (~120kDa) version of the protein. Moreover, it is worth
706 noting that the 120kDa and 150kDa versions of Sema4D we observe here
707 are both full length (containing the cytoplasmic domain), given we detect
708 both molecular weights when using a C-Terminal flag tag (Figure 4B).
709 Notably, we could never detect a C-terminal cleaved fragment despite our
710 best efforts.

711 In neurons, glycan interactions are known to be essential in
712 regulating both the correct sorting of proteins to the plasma membrane
713 and for sorting between dendritic and axonal compartments⁶⁴. For
714 example, incomplete glycosylation of the neurotrophin receptor TrkA,
715 results in an immature, low molecular weight protein that prematurely
716 exists the golgi before reaching the *trans*-Golgi network (TGN). When
717 glycosylated, the heavier form of TrkA reaches the TGN and is
718 incorporated into exocytotic vesicles⁵². In another study, N-glycosylation
719 of Neural L1 is absolutely required for its sorting to the axon⁶⁵. It is likely
720 a similar case with the Semaphorin family, however this sorting may also
721 select between secretory (forward) and membrane bound (forward or
722 reverse) signaling. Indeed, it has been reported that Sema5A may
723 function as an attractant or as a repellent, depending on its glycosylation
724 state⁶⁶. To date, six O-linked glycosylation sites (T657, T663, S666,
725 T670, T716, S722) have been observed on hSema4D. These sites exist
726 between the IG domain and transmembrane region, an area that is
727 outside the bounds of the published crystal structure.

728 Given hSema4D-497P can still dimerize but is not correctly
729 trafficked, it functions as a potent dominant negative and is likely to inhibit
730 the normal function of hSema4D in clustering GABAergic synapses
731 reported previously^{49,67}; which may explain the epilepsy observed in our

732 patient. Similarly, Sema7A-deficient cortices show fewer presynaptic
733 puncta⁶⁸. Based on our observations that Sema7A is a target of Satb2,
734 and Sema4D is preferentially targeted to the plasma membrane in
735 presence of Sema7A, the origin of epileptic symptoms in Satb2-
736 Associated Syndrome (SAS)¹² may be partially due to incomplete
737 synapse clustering due to Semaphorin 4D-7A complex deficiency.

738 The presence or absence of Sema7A may also augment situations
739 where Sema4D has been identified to be instrumental in a neuro-immune
740 axis, where these Semaphorins have known roles. For example, the
741 Sema4D expressed in microglia has recently been observed to be one of
742 the primary mediators for interactions with plexin-containing astrocytes⁶⁹.
743 Similarly, neurons express higher levels of Sema4D in Alzheimer's and
744 Huntington's disease, and its blockade can reduce astrocyte reactivity⁷⁰.

745 Further work is required to delineate the pathways by which
746 Sema4D-Sema7A reverse signaling directs morphological changes in
747 neuronal and non-neuronal cells. Finally, a better understanding of how
748 glycosylation of individual members of these multimeric membrane
749 complexes may dictate attraction or repulsion has broad implications in
750 both inflammatory neurodegeneration and neurodevelopmental
751 disorders.

752

753 **ACKNOWLEDGEMENTS**

754 We would like to thank Dr. Ingo Bormuth for helping with the initial license
755 applications of IUE experiments. We also thank Magda Krejczy and Prof.
756 Dr. Britta Eickholt for the pCAG-FSF-GFP construct. Additionally, we
757 would like to thank Dr. Mateusz Ambroziewicz for helpful scientific
758 discussion. We also thank Roman Wunderlich and Ulrike Gunther for
759 excellent technical support.

760

761 **FUNDING:** This work was funded by DFG research grant #66413881.
762 V.T. was supported by Russian Science Foundation (project No21-65-
763 00017).

764

765 **AUTHOR CONTRIBUTIONS**

766 Conceptualization, P.B., A.G.N., and V.T.; Investigation, P.B., A.G.N.,
767 R.D., D.L., K.T-T., E.K., E.R., T.B., Pr.Ba, J.E. and M.R.; Formal Analysis,
768 P.B. and A.G.N., K.T-T., T.B., Visualization, P.B., A.G.N., E.K., and
769 Pr.Ba.; Writing – Original Draft, P.B. and A.G.N; Writing – Review &
770 Editing, P.B., A.G.N., M.R., V.T.; Resources, P.B., A.G.N., K.Y., T.S.,
771 R.G., R.P., J.E.; Supervision, V.T.

772

773 **DECLARATION OF INTERESTS**

774 The authors declare no conflict of interests.

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795 **STAR METHODS**

796

797 **Experimental Procedures**

798 For a list of antibodies and plasmids please see the key resources table.
799 Primers used are listed in Data S1.

800

801 **Mouse Mutants**

802 All mouse experiments were carried out in compliance with German law
803 approved by the Landesamt für Gesundheit und Soziales (LaGeSo),
804 Berlin. Wild type, *Satb2*^{fl/fl} *Nex*^{wt/wt}, *Satb2*^{fl/fl} *Nex*^{wt/wt}, and *Satb2*^{fl/fl} *Nex*^{Cre/wt}
805 were used interchangeably as controls. For ease of depiction and
806 consistency, controls have been labeled as *Satb2*^{fl/fl} *Nex*^{Cre} in all figures.
807 The day of vaginal plug was considered embryonic day (E) 0.5. Wild type
808 mice used were from a NMRI background.

809

810 ***In utero* electroporation (IUE) & Culture of Organotypic Cortical
811 Slices**

812 The procedure of IUE was performed as described before (Saito, 2006).
813 Briefly, DNA plasmid vectors were injected into the lateral ventricle of
814 mouse embryos at embryonic day 14 (E14) and electroporated brains
815 were isolated and fixed at E18 with 4% Paraformaldehyde in PBS. Fixed
816 brains were sectioned in 80 μ m thick cryosections. Slice culture for live
817 imaging was prepared according to published protocols with slight
818 modifications⁷¹. Briefly, 250 μ m thick cortical slices were sectioned in low
819 melting media-agarose using a MICROM vibratome 24 hours after IUE at
820 E14.

821

822

823 **Cloning**

824 Primers used for *in situ* probe templates and expression constructs are
825 found in Data S1. Cloned expression constructs were deposited in
826 addgene (plasmids #190643-190657).

827 Templates for *in situ* probes were amplified from mouse cortex
828 cDNA using GoTaq polymerase (Promega) and ligated into the pGEM-T
829 vector (Promega). Linearized probe templates were used to generate
830 RNA probes by *in vitro* transcription using T7 or SP6 polymerase and
831 dNTP DIG labelling mix (Roche).

832 Mouse Sema7A was amplified from mouse cortex cDNA using
833 'naked' primers in a first round of PCR with Q5-HF polymerase (NEB),
834 whose product was used as a template in a second PCR using primers
835 containing EcoRI and NotI restriction sites. EcoRI-Sema7A-NotI fragment
836 was ligated into pAL2-T vector (Evrogen) yielding pGEMT-Sema7A.
837 Domain deletion mutagenesis was performed on pAL2-T-Sema7A using

838 the Q5 site-directed mutagenesis kit (NEB). For expression, full length
839 Sema7A or domain mutated Sema7A was ligated into EcoRI/NotI
840 digested pCAG-eGFP (addgene# 164092), giving pCAG-Sema7A. After
841 several failed attempts at an N terminal tag, an internal HA tag was
842 designed after reviewing the crystal structure of Sema7A. Using pAL2-T-
843 Sema7A, an HA tag was inserted using the Q5 mutagenesis kit at an
844 exposed loop at amino acid 352, removing only 2 native amino acids to
845 preserve the loop. This HA tagged form was then ligated into EcoRI
846 linearized pCAG-eGFP to yield pCAG-HA-Sema7A.

847 As above, mouse Sema4D was amplified with Q5 polymerase using
848 'naked' primers, and a second round of PCR added NheI and NotI
849 restriction sites to the amplicon, which was ligated into the pAL2-T vector
850 (Evrogen) giving pAL2-T-NheI-Sema4D-NotI. After observing which
851 amino acid begins the published structure of Sema4D and factoring where
852 cleavage of the signal peptide (SP) is predicted to occur (SignalP-5.0), a
853 myc tag was inserted prior to the phenylalanine at codon 23 using Q5
854 mutagenesis (NEB). Digested NheI-SP-Myc-Sema4D-NotI was then
855 ligated into NheI/NotI digested pCAG-MCSAN, a pCAG vector with a
856 modified MCS. pCAG-Sema4D-flag was cloned by amplifying from pAL2-
857 T-Sema4D with primers containing flag sequence and also ligated into
858 NheI/NotI digested pCAG-MCSAN.

859 Human myc- and flag-tagged versions of Sema4D were designed
860 similar to mouse sp-myc-Sema4D, where the tag is inserted after the
861 predicted cleavage point of the signal peptide. hSema4D was amplified
862 in two fragments 'A' and 'B' from a human cDNA library using GXL
863 polymerase with the tag added via the primer to the first fragment. 'A' and
864 'B' fragments were inserted to EcoRI digested pCAG using NEBuilder to
865 give pCAG-hSema4D. Similarly, the hSema4D-Q497P point mutation was
866 introduced by amplifying two fragments from hSema4D and recombined
867 into EcoRI opened pCAG- using NEBuilder (NEB).

868

869 **Chromatin Immunoprecipitation & qPCR**

870 *Preparation of Chromatin*

871 E18 cortex was collected and snap frozen in liquid nitrogen and
872 stored at -80 until use. ~75mg of tissue was thawed by immediately
873 placing in 1ml of pre-cooled DMEM, and was homogenized by pipetting,
874 and brought to a final volume of 2ml. Tissue was then cross linked by
875 addition of 200 μ l of freshly made 10X crosslinking solution (16%
876 formaldehyde, methanol-free (Thermo #28906), 1mM EDTA, 0.5mM
877 EGTA, 100mM NaCl, 50mM HEPES-KOH pH 7.5) and rotated for 10
878 minutes. Fixation was stopped by addition of 250 μ l 1.25M glycine,
879 rotating 5 minutes. Following a 5 minute centrifugation (1350g, 4°C),
880 tissue was resuspended in 10ml ice-cold lysis buffer 1 (140mM NaCl,

881 1mM EDTA, 10% Glycerol, 0.5% NP-40, 0.25% Triton X-100, 10mM
882 Sodium Butyrate, 50mM HEPES-KOH pH 7.55 with 1X Protease Inhibitor
883 Cocktail (Roche) and rotated for 10 minutes at 4°C. Following a 5 minute
884 centrifugation (1350g, swing bucket rotor, 4°C), cell pellet was
885 resuspended in 10ml lysis buffer 2 (cell lysis, 10mM Tris-HCl, pH 8.0,
886 200mM NaCl, 1mM EDTA, 0.5mM EGTA, 10mM Sodium Butyrate with 1X
887 Protease Inhibitor Cocktail) and rotated 10 minutes at 4°C. 10ul was
888 removed to count nuclei in a hemocytometer to confirm optimal
889 concentration (aiming for 500ul lysis buffer 3 for every 10⁶ nuclei).
890 Following a 5 minute centrifugation (1350g, swing bucket rotor, 4°C),
891 nuclei were incubated for 10 minutes on ice in 100ul lysis buffer 3 (10mM
892 Tris-HCl, pH 8.0, 100mM NaCl, 1mM EDTA, 0.5mM EGTA, 0.1% Sodium
893 Deoxycholate, 0.5% N-lauroyl sarcosine, 10mM sodium Butyrate with 1X
894 Protease inhibitor Cocktail) supplemented with 1% SDS. Prior to
895 shearing, lysate was diluted in 1400ul lysis buffer 3 not containing SDS.
896 Chromatin was sonicated using a Bioruptor Plus (Diagenode) in v-
897 bottomed Eppendorf tubes for 45 cycles using the high energy setting with
898 a cycle of 30 seconds on 30 second off. 1/10 volume of 10% Triton X-100
899 was then added to chromatin and then spun at 4°C prior to decanting
900 soluble chromatin into a new tube. Chromatin was then stored at -80 for
901 long term storage. Resulting chromatin displayed 200bp-600bp smear of
902 DNA following purification.

903

904 *Chromatin Immunoprecipitation*

905 Protein G Dynabeads (50µl per IP, 25µl pre-clear per IP = 75µl per
906 IP) were washed 3 times in PBS + 0.25% BSA. Chromatin was pre-
907 cleared by incubating with 25µl of washed beads and rotating 2hrs at 4°C.
908 At the same time 12µg Rabbit anti-Satb2 antibody (self-generated,
909 against the peptide QQSQPTKESSPPREEA) was incubated with 50ul of
910 washed beads per IP, rotating 2hrs at 4°C. 10% of pre-cleared chromatin
911 was then set aside as input. Excess buffer was removed from the
912 antibody-bead mixture and incubated with the pre-cleared chromatin
913 rotating overnight at 4°C. Following the IP, beads were washed 6 times
914 in RIPA (10mM Tris-HCl, pH 8.0, 140mM NaCl, 1mM EDTA, 0.5mM
915 EGTA, 1% Triton X-100, 0.1% Sodium Deoxycholate, 0.1% SDS). Beads
916 were then washed once in TE buffer + 50mM NaCl, and following a 3
917 minute spin @ 960g, all remaining supernatant was removed. 210ul of
918 elution buffer (50mM Tris-HCl, pH 8.0, 10mM EDTA, 1% SDS) was added
919 to elute antibody-chromatin complexes from the beads at 65°C for 15
920 minutes. Supernatant was then transferred to a new tube.

921

922

923 **DNA Clean Up**

924 Eluted chromatin and Input chromatin were processed
925 simultaneously. Chromatin was mixed with 1/10 volume of 5M NaCl and
926 incubated overnight at 65°C. 4ul of RNase A was then added and
927 incubated for 30 minutes at 37°C. 4ul of Proteinase K was then added
928 and incubated for 30 minutes at 55°C. Samples were then transferred
929 to pre-spun phase lock tubes (5Prime, # 2302810) and an equal volume
930 of Phenol:chloroform saturated with TE buffer (OmniPur®, Millipore
931 #6805) was mixed by inversion prior to centrifugation at max speed. The
932 aqueous phase was drawn off into a new epi and 1/10 volume of 3M
933 Sodium Acetate (pH 5.2), 2.5 volumes of 100% EtOH and Glycogen (to a
934 final concentration of 0.05µg/ul) were added. Tubes were vortexed well
935 and DNA was allowed to precipitate overnight at -20°C. DNA pellet was
936 rinsed in ice cold 70% EtOH and dried until clear, then resuspended in
937 30ul ddH₂O.

938 **ChIP-qPCR**

939 The following primers were used for 150- 200 bp fragment
940 amplification within the selected region of Sema7A Intron1: F-
941 CAGCCTAGTGTGTTGGGATGGT, R- ACAAGCAGGCTTGATTCCAT, and
942 for the selected region of Sema7A 5' Transcription Start Site (TSS): F-
943 CGGGTAGCGAAGGTTTCCT, R- CAGCCTTTCTAGCTTGCCG.

944 qPCR was performed using Sybr Green qRT-PCR Mastermix
945 reagent. Efficiency of the primers was first tested using cDNA from cortex,
946 measuring 5 serial dilutions (1:5) and analyzed on a StepOne Plus
947 (Applied Biosystems) using the StepOne Software. The qPCR product
948 was also run on a 1.5% Agarose gel to confirm amplicon size. qPCR was
949 performed on 1 µl of 1:5 diluted cDNA from ChIP preparation, and 1:5
950 dilution of 1% Input.

951 Enrichment was calculated by first normalizing 1% of input used to
952 100% using equation (1), replicate 100% input Ct values (Ct_i) were then
953 averaged to get a mean adjusted input (2). Enrichment was calculated as
954 a percentage of input by calculating the ΔCt of IP'ed values compared to
955 the adjusted input Ct (3).

956 (1)Adjusted Input: $\forall Ct_i; (Ct_i - 6.644) = Ct_i$ adjusted

957 (2)Mean adjusted Input = $\Sigma(Ct_i \text{ adjusted})/(n Ct_i \text{ adjusted})$

958 (3)Fold Enrichment = $2^{(\text{Mean adjusted Input Ct}) - (\text{IP Ct})}$

959

960 **Culture of Primary Cortical Neurons**

961 For the analysis of axon specification *in vitro*, primary neuronal cultures
962 were prepared as described before with minor modifications ⁷². For PLA
963 experiments, isolated neurons were nucleofected with the selected DNA
964 plasmid according to manufacturer's protocols (Mouse Neuron
965 Nucleofector Kit, VPG-1001, and Amaxa 2b Nucleofection system,

966 Lonza). For DIV2 and DIV4 measures of polarity in wildtype and *Satb2*-/-
967 neurons, plasmid DNA was introduced by chemical transfection using
968 Lipofectamine 2000 (Thermo Fischer) according to the manufacturer's
969 protocol. Isolated neurons were transfected with the appropriate plasmids
970 as above. *Satb2*^{fl/fl} (for simplicity here labelled as WT), *Satb2*^{fl/fl} (labelled
971 as *Satb2* -/-) and Sema7A rescue neurons were cultured for 2 days and 4
972 days in vitro (DIV2, DIV4, respectively). Neurons were then cultivated in
973 Neurobasal media (Gibco) supplemented with Glutamax, Penicillin-
974 Streptomycin, and B27 at 37°C in 5% CO₂. Neurons were fixed at the
975 appropriate time using 4% paraformaldehyde (PFA) for 20 minutes at
976 room temperature. For quantification of number of axons, cells were
977 immunostained with markers for axons and dendrites and counted
978 neurites were positive for Tau1 (1:1000, Millipore) and negative for MAP2
979 (1:1000, Novus). For unbiased measurements, we used a standardized
980 pixel cross along with pre-defined criteria to measure the acute angle of
981 the centrosome to the closest process at DIV2.

982

983 **De-Glycosylation Assay**

984 Two wells of a six well plate of HEK293T cells were transfected with
985 hSema4D or hSema4D-Q497P using lipofectamine 2000 and cultured for
986 24hrs. Each well was lysed in 100ul Flag lysis buffer (50mM Tris pH 7.4,
987 150mM NaCl, 1mM EDTA, 1% Triton X100) supplemented with 1X
988 Protease Inhibitor Cocktail (Roche). For each enzymatic condition
989 including undigested, 9ul of lysate was incubated with Glycoprotein
990 Denaturing Buffer (NEB) & heated for 10 minutes at 100°C. Denatured
991 lysates were then chilled on ice & briefly centrifuged before incubating with
992 respective enzymes. For PNGase F lysates, reaction was brought to 20
993 µl by addition of 2µl Glycobuffer 2 (NEB), 2µl 10% NP-40, 5 µl H₂O & 1µl
994 PNGase F (NEB). For O-Glycosidase lysates each reaction was brought
995 to 20ul by addition of 2µl Glycobuffer 2 (NEB), 2µl 10% NP-40, 2µl H₂O,
996 2 µl Neuramidase (NEB) & 2 µl O-Glycosidase (NEB). For Endo H lysates,
997 each reaction was brought to 20µl by addition of 2 µl GlycoBuffer 3 (NEB),
998 6µl H₂O, 2µl Endo H (NEB). Incubation with all three enzymes was
999 performed in Glycobuffer 2. Reactions were incubated for 1hr at 37°C,
1000 and supplemented with 7ul of 4X Lammeli Buffer prior to boiling at 95°C
1001 for 5 minutes for SDS-PAGE and western blot.

1002

1003

1004

1005 **Immunofluorescence, *In situ* Hybridization (ISH) & Proximity 1006 Ligation Assay (PLA)**

1007 Immunofluorescence was performed in 2% BSA in PBS containing 1%

1008 Triton X-100 (Blocking solution). If Draq5 was to be used for nuclear stain,
1009 it was included in the blocking solution with secondary antibodies. *In situ*
1010 hybridization was performed according to ⁷³. For the Proximity Ligation
1011 Assay (PLA), cultured neurons were rinsed once in PBS containing 1 mM
1012 MgCl₂ and 0.1 mM CaCl₂ (PBS-MC) and fixed in PBS-MC containing 4%
1013 sucrose and 4% PFA for 20 minutes. PLA was performed according to
1014 manufacturer's instructions (Sigma). Following amplification, coverslips
1015 with PLA neurons were incubated in blocking solution for 30 minutes and
1016 then incubated with chicken anti-MAP2 (Novus) overnight in blocking
1017 solution at 4°C, followed by secondary antibody incubation and final
1018 mounting of coverslips for imaging.

1019 **Microscopy & Image Processing**

1020 Imaging of fixed cortical sections was performed using an SL-1 confocal
1021 microscope (Leica). Specifically, after z stack acquisition, images were
1022 flattened to a maximum projection. Neuronal cell culture images and slice
1023 culture live imaging were carried out with a Spinning disc microscope
1024 (Zeiss).

1025

1026 **Co-Immunoprecipitations & Surface Biotinylation Assay**

1027 Twenty-four hours prior to isolation of protein, HEK293T or Hela cells were
1028 transfected (Lipofectamine 2000) with the appropriate DNA constructs.
1029 pCAG-MCSAN empty vector was used to equilibrate the total amount of
1030 DNA to 1µg/µl in all transfections, where 3ug of total DNA was applied to
1031 one well of a six well plate.

1032 For lysis, media was removed and cells were lysed in 200µl ice-cold
1033 Flag lysis buffer (50mM Tris pH 7.4, 150mM NaCl, 1mM EDTA, 1% Triton
1034 X100) supplemented with 1X Protease inhibitor cocktail (Roche). For
1035 phosphorylation-sensitive lysates, flag lysis buffer was supplemented to
1036 contain final concentrations of 1X Phosstop (Roche), 5µg/ml Pepstatin,
1037 10µg/ml Leupeptin, 2.5mM Sodium-Ortho-Vanadate, 10mM
1038 Benzamidine, 1mM β-Glycerophosphate, 5mM NaF, 5µg/ml Aprotinin.
1039 Lysates were agitated 4x by gentle pipetting and nuclei were pelleted by
1040 10mins centrifugation at max speed on a tabletop centrifuge at 4°C.
1041 Supernatant lysate was then transferred to a new tube and protein
1042 concentration was measured by BCA.

1043 For Biotinylation, Hela cells transfected in a six well plate were
1044 rinsed once in 0.5ml ice-cold rinsing solution (0.1mM CaCl₂, 1mM MgCl₂
1045 in PBS) and then incubated for 15 minutes with 0.5ml Sulfo-NHS-SS biotin
1046 (1 mg/ml in rinsing solution) on ice. Cells were then rinsed briefly in
1047 quenching solution (Rinsing solution + 100mM Glycine pH 2.5) on ice,

1048 then rinsed again 10 minutes in quenching solution at 4 degrees to quench
1049 unbound biotin. Cells were rinsed once more in rinsing solution and then
1050 lysed in Flag lysis buffer supplemented with 1X Protease inhibitor cocktail
1051 (Roche), spun 10 minutes (max) at 4°C, then supernatant transferred to a
1052 new tube and protein concentration measured by BCA. 50µg of lysate
1053 was set aside as whole cell lysate, and 50µg of lysate was incubated with
1054 40µl of avidin agarose beads (NeutrAvidin, Thermo #29201) for 2 hrs at
1055 4°C. Following a brief centrifugation, the supernatant (containing
1056 unbiotinylated intracellular fraction) was retained. Beads containing the
1057 biotinylated cell surface fraction were then washed 2x with Flag buffer and
1058 2x with TBS, spinning down between washes at 6000rpm for 5 seconds
1059 on a tabletop centrifuge. Samples were then boiled at 95°C for 5 minutes
1060 in lammeli buffer before running on SDS-PAGE.

1061

1062 **Data Analysis and Statistics**

1063 Statistics were performed using either GraphPad Prism 9.0 or using R.
1064 Values and statistical details for all experiments are listed in the figure
1065 legends. Normality was tested using the Shapiro-Wilk test of normality.
1066 Normally distributed data was analyzed using ANOVA with Bonferroni post
1067 hoc test for multiple comparisons. Non-normally distributed data was
1068 analyzed using Kruskal-Wallis test with Dunn's Multiple comparison.
1069 Probabilities were consistently presented as follows: adjusted p < 0.001
1070 = ***, p < 0.01 = **, p < 0.05 = *.

1071

1072

1073 **Structural Modeling**

1074 *Sema4D-Sema7A Heterodimer Superposition*
1075 Protein structures of Semaphorin 4D (blue) and Semaphorin 7A (yellow)
1076 were superimposed using Discovery Studio 5.0 to investigate the
1077 structural similarity. The crystal structures were retrieved from the RCSB
1078 Protein Data Bank (PDB) database ⁷⁴, using the accession ID for
1079 Semaphorin 4D and Semaphorin 7A - 3OL2 and 3NVQ, respectively. The
1080 alignment was based on specified residues. The best superimposition is
1081 determined based on a least-squares algorithm minimizing the interatomic
1082 distances of the equivalent atoms of the superimposed PDB structures.
1083 Only the C^α atoms were used since they show the least variation and are
1084 well determined ⁷⁵. The superimposition of both the protein structures
1085 showed a minor deviation (RMSD:0.64 Å) in the C^α atoms of the proteins.

1086

1087 *Prediction of hSema4D-Q497P structure using AlphaFold2*

1088 The colabfold implementation of alphaFold2 using MMSeqs2
1089 (<https://colab.research.google.com/github/sokrypton/ColabFold/blob/main>

1090 n/AlphaFold2.ipynb)⁵¹ was used to predict the folding of monomers of
1091 hSema4D and hSema4D-497P using protein sequences without signal
1092 peptides and default parameters. With predicted monomers, the
1093 published crystal structure of Sema4D (1OLZ⁷⁶) was used as a scaffold
1094 for dimerization using PyMOL⁷⁷. Codon 497 and relevant post-
1095 translational sites (phosphosite.org, ⁷⁸) were highlighted and images
1096 exported.

1097

1098 **Analysis of Published Datasets**

1099 Computation has been performed on the HPC for Research/Clinic cluster
1100 of the Berlin Institute of Health. Raw read data (fastq) from paired-end
1101 RNAseq experiments from P0 wldtype (SRR2027113, SRR2027115,
1102 SRR2027117) and Satb2 -/- (SRR2027107, SRR2027109, SRR2027111)
1103 cortices was downloaded from GEO. Reads were aligned to mm10 using
1104 STAR and a count matrix generated using built-in --quantMode
1105 GeneCounts. RPKM for the Sema7A gene was calculated using the
1106 RPKM function in edgeR. For Satb2 ChIPseq, processed narrowPeak
1107 files from GSM2046905 were visualized in IGV browser.

1108

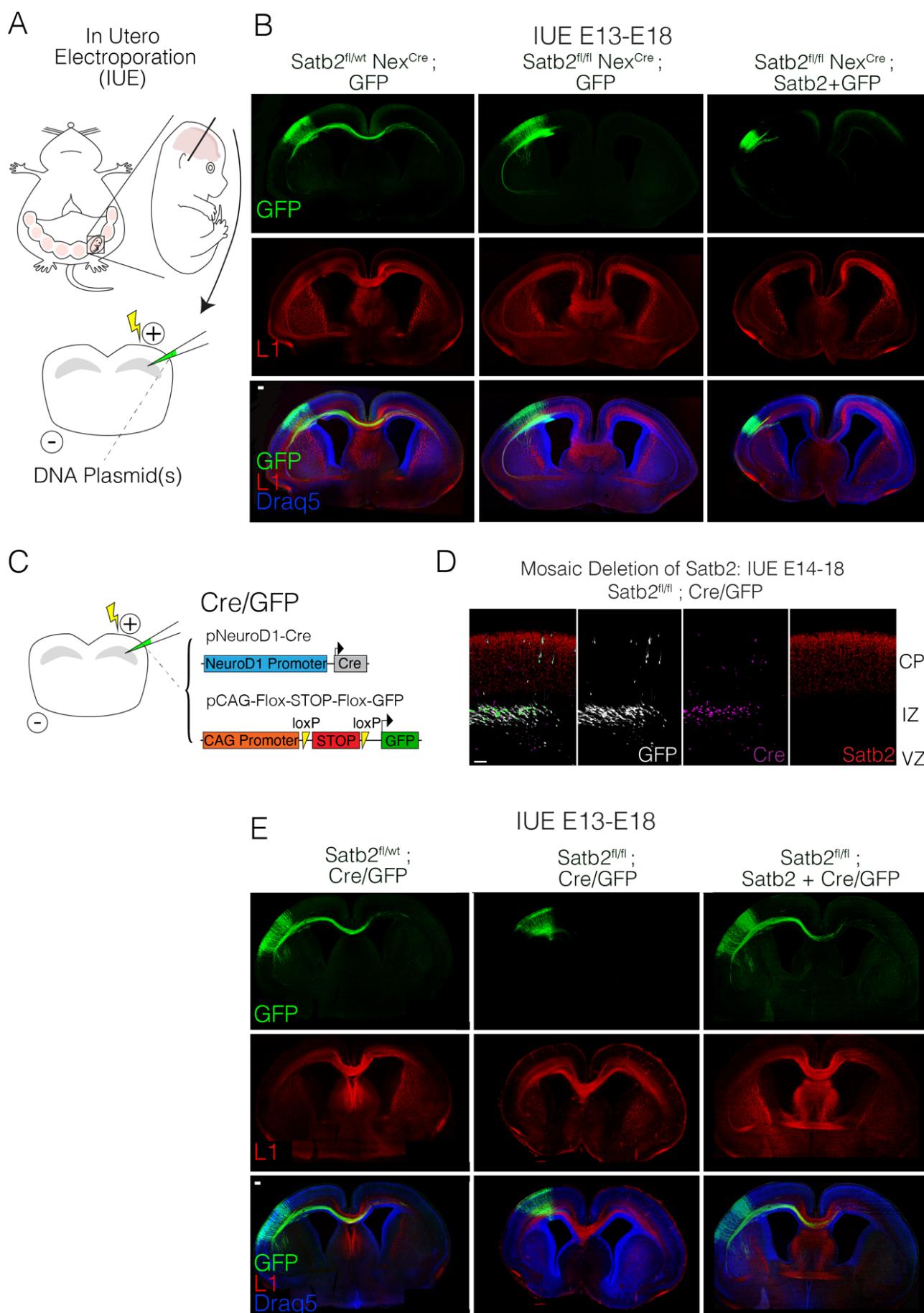
1109

1110

1111 **Exome Sequencing**

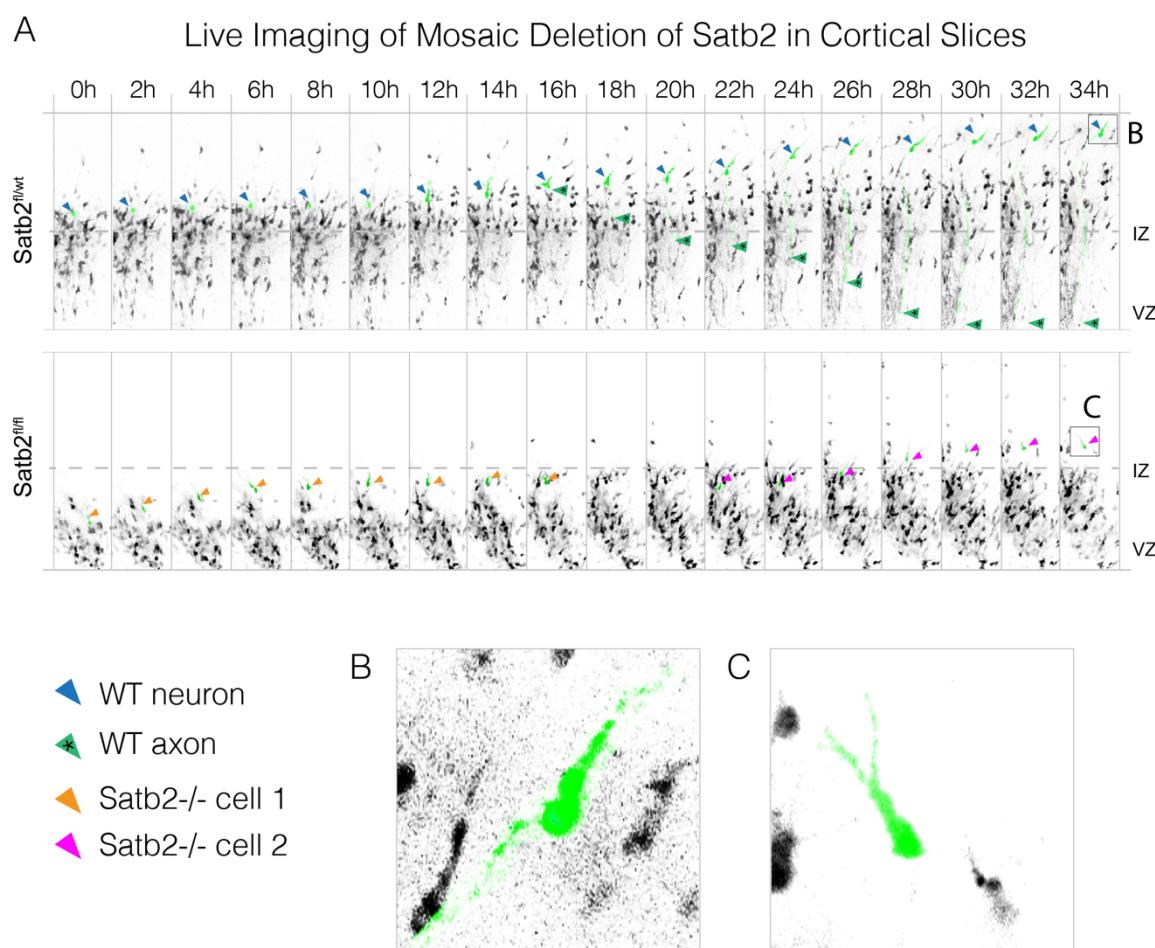
1112 Trio exome sequencing was performed using a Sure Select Human All
1113 Exon 60Mb V6 Kit (Agilent) for enrichment and an Illumina NovaSeq6000
1114 system (Illumina, San Diego, California, USA). Reads were aligned to the
1115 UCSC human reference assembly (hg19) with BWA v.0.5.8.1. Single-
1116 nucleotide variants (SNVs) and small insertions and deletions were
1117 detected with SAMtools v.0.1.7. Copy number variations (CNVs) were
1118 detected with ExomeDepth and Pindel. Variant prioritization was
1119 performed based on an autosomal recessive (MAF <0.1%) and
1120 autosomal dominant (de novo variants, MAF <0.01%) inheritance. This
1121 study was approved by the Ethics Committee of the Technical University
1122 of Munich, Munich, Germany (#5360/12S).

1123

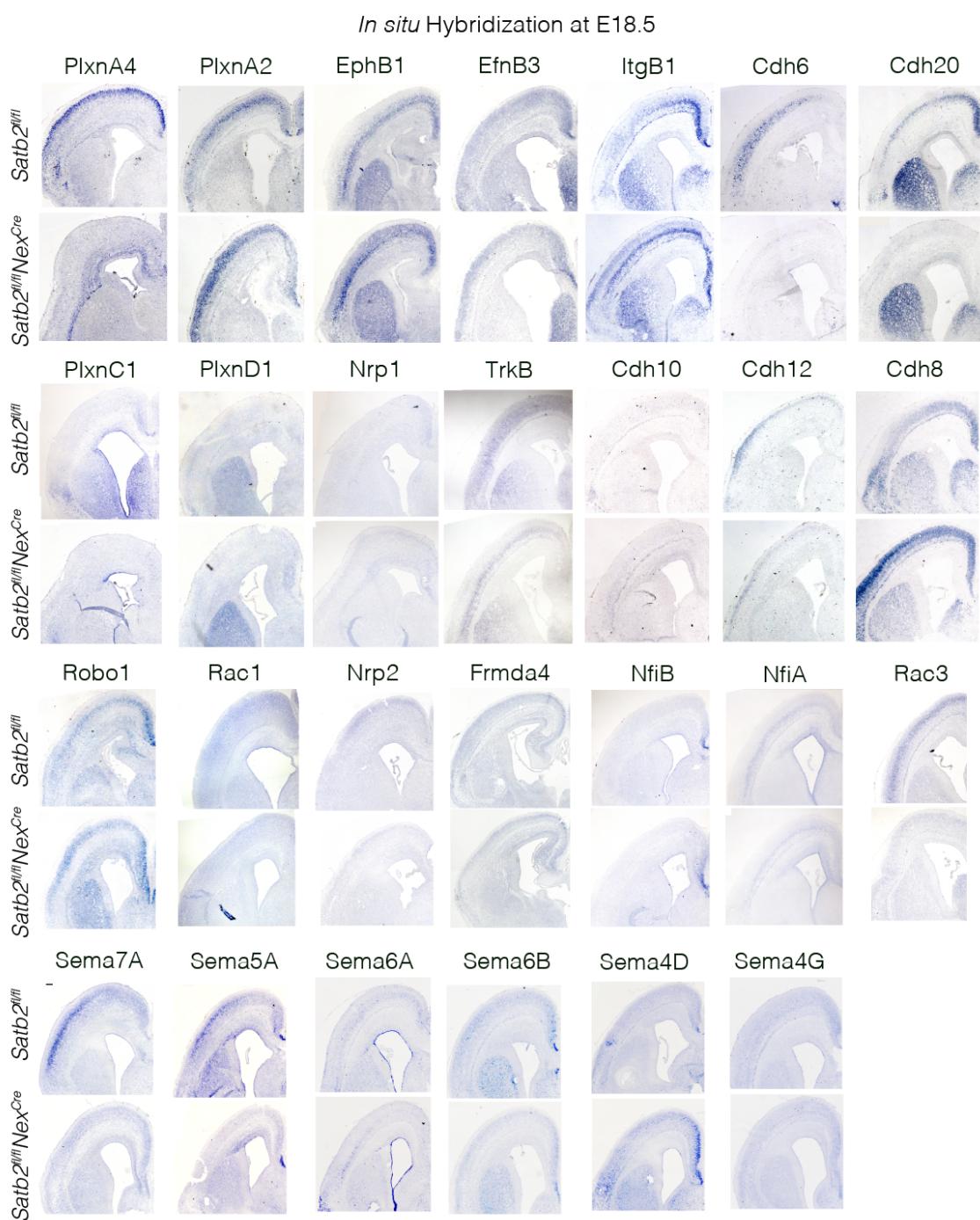

1124

1125

1126


1127

1128 **SUPPLEMENTARY FIGURES**


1130 **Figure S1 (previous page). Cell-intrinsic Satb2 deficits can be rescued by re-**
1131 **expressing Satb2.** (A) Schematic showing In Utero Electroporation (IUE) technique
1132 involving the introduction of plasmid DNA into the lateral ventricle of live embryos
1133 using a capillary and an electric pulse. (B) Satb2 re-expression cannot rescue
1134 migration and axon extension in a completely Satb2-deficient cortex. (Left) IUE of
1135 GFP into a $\text{Satb2}^{\text{fl}/\text{wt}}$ Nex^{Cre} cortex results in normal migration and axon projection via
1136 the corpus callosum. IUE of GFP into a $\text{Satb2}^{\text{fl}/\text{fl}}$ Nex^{Cre} cortex results in cells that
1137 project via the internal capsule. Re-expression of Satb2 along with GFP into a $\text{Satb2}^{\text{fl}/\text{fl}}$
1138 Nex^{Cre} cortex abolishes axon projections via the internal capsule and does not rescue
1139 axon projection to the midline (Right). L1 marks axonal tracts whereas Draq5 marks
1140 nuclei. Scale bar 100 μm . (C) Strategy for mosaic deletion of Satb2 from newly born
1141 neurons by in utero electroporation. pNeuroD1-Cre confines Cre to post-mitotic
1142 neurons expressing NeuroD1. Upon Cre expression, floxed genomic Satb2 is excised,
1143 and the STOP cassette from pCAG-FSF-GFP is excised, resulting in GFP expression.
1144 (D) Cre/GFP plasmid strategy ensures all green cells observed are Cre positive and
1145 also Satb2 negative. These Cre positive, Satb2 negative cells that are labelled with
1146 GFP in the Ventricular zone (VZ) do not enter the cortical plate (CP) and remain in the
1147 Intermediate Zone (IZ). (E) Satb2 re-expression can rescue cells where Satb2 has
1148 been deleted in a mosaic fashion. Cre-injected neurons in $\text{Satb2}^{\text{fl}/\text{wt}}$ (left) migrate and
1149 project axons normally. IUE of Cre into a $\text{Satb2}^{\text{fl}/\text{fl}}$ cortex (middle) results in halted
1150 migration and an absence of axon projection. (Right): when Satb2 is deleted by Cre
1151 and re-introduced into a $\text{Satb2}^{\text{fl}/\text{fl}}$ cortex, migration into the cortical plate and axonal
1152 projections to the midline are restored. Scale bar 100 μm .

1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

1166

1167 **Figure S2.** Live imaging of *Satb2* mosaic deletion in organotypic cortical slices. (A)
1168 pNeuroD1-Cre + pCAG-FSF-GFP *in utero* electroporation (IUE) visualized in live
1169 organotypic slice culture (250 μ m thick). A *Satb2*^{fl/wt} single cell (pseudocoloured green,
1170 yellow arrow) migrates towards the cortical plate and extends an axon (yellow arrow
1171 with asterisk) during the imaging time (B). The bottom panel in (A) shows a *Satb2*^{fl/fl}
1172 pseudocoloured cell (orange arrow) that fails to polarize and remains in the
1173 intermediate zone, and another *Satb2*^{fl/fl} pseudocoloured cell (magenta arrow) that
1174 barely exits the IZ showing a bifurcated leading process (C).
1175

1176

1177 **Figure S3.** *In situ* hybridization screen aiming to identify *Satb2*- downstream related
1178 genes that are expressed in the cortical plate (CP) and are known to influence
1179 neuronal polarization and guidance.

1180

1181

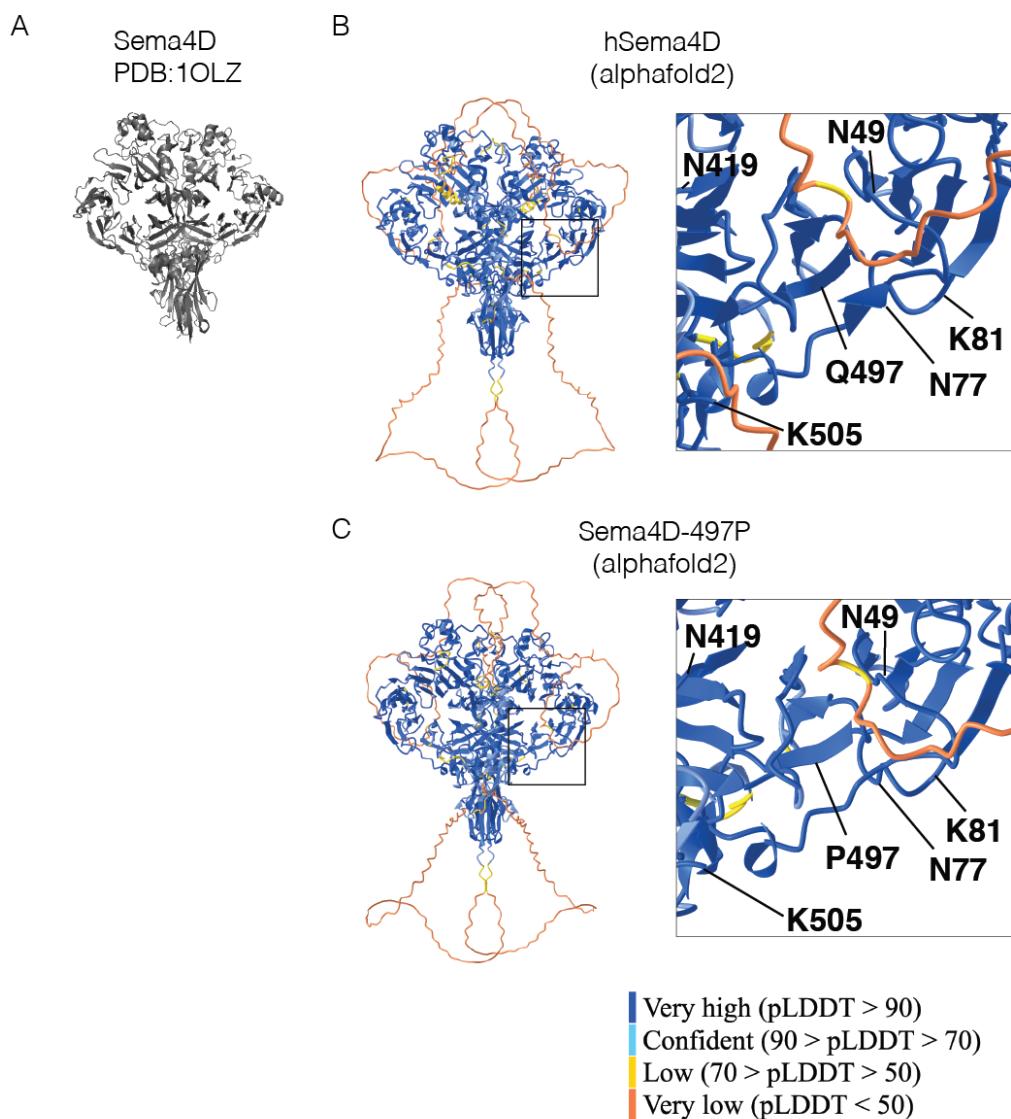
1182

1183

1184

1185

1186 **Supplemental Note 1**


1187 **Case Report: SEMA4D LMU Dr. von Hauner Children Hospital**

1188

1189 This boy is the first child of healthy non-consanguineous parents with German-
1190 Romanian ancestry. He was born at 40+2 gestational weeks after an uncomplicated
1191 pregnancy (weight 3390 g, APGAR 10/10). Delivery was by C-section due to
1192 obstructed labor. Newborn hearing and metabolic screening were normal. Due to a
1193 mild systolic heart murmur, echocardiography was performed showing a grade 1-2
1194 tricuspid insufficiency. The further postnatal period was unremarkable. At the age of 5
1195 months, the boy presented with a cluster of first generalized tonic-clonic seizures.
1196 Electroencephalography (EEG) showed left temporal spikes as well as intermittent
1197 slowing on the left parietal side. A brain MRI was performed showing only slightly
1198 hyperintense white matter that was interpreted as probably within normal range.
1199 Furthermore, he underwent several additional diagnostic procedures (lumbar
1200 puncture, laboratory and metabolism tests) that provided normal results. The family
1201 history was unremarkable except for the father, who had a simple febrile seizure when
1202 he was a baby.

1203 The boy was seizure-free upon anti-seizure treatment with Levetiracetam and
1204 Oxcarbazepine. Seizures reoccurred with a monotherapy of Levetiracetam, so
1205 monotherapy was switched to Oxcarbazepine. Afterwards he did not show any
1206 seizures with Oxcarbazepine monotherapy until the age of 22 months and after that
1207 without any medication until the current age of 28 months. Following EEGs showed
1208 normal results. Psychomotor development was normal. He was walking at the age of
1209 14 months and spoke short sentences at the age of 2 years. Clinical examination
1210 showed no dysmorphic features. Growth was regular, since weight, length, and OFC
1211 were 10 kg (17th centile), 80 cm (8th centile), and 51 cm (93th centile) respectively.
1212 Trio-based whole exome sequencing (WES) analysis detected the de novo missense
1213 variant (c.1490A>C, p.Gln497Pro) in SEMA4D (NM_006378.3).

1214

1215
1216
1217
1218
1219

Figure S4. Alphafold2 predicted sema4D structures colored by prediction confidence.
(A) Solved crystal structure of human Sema4D. (B) Alphafold2 predicted structure of wild-type human Sema4D. (C) Alphafold2 predicted structure of human Sema4D with 497P mutation.

1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230

1231 REFERENCES

- 1233 1. Barnes, A.P., and Polleux, F. (2009). Establishment of Axon-Dendrite Polarity in
1234 Developing Neurons. *Annual Review of Neuroscience* 32, 347–381.
1235 10.1146/annurev.neuro.31.060407.125536.
- 1236 2. Bradke, F., and Dotti, C.G. (2000). Establishment of neuronal polarity: lessons from
1237 cultured hippocampal neurons. *Current opinion in neurobiology* 10, 574–581.
- 1238 3. Leone, D.P., Srinivasan, K., Chen, B., Alcamo, E., and McConnell, S.K. (2008). The
1239 determination of projection neuron identity in the developing cerebral cortex. *Curr Opin
1240 Neurobiol* 18, 28–35. 10.1016/j.conb.2008.05.006.
- 1241 4. Leyva-Díaz, E., and López-Bendito, G. (2013). In and out from the cortex: development
1242 of major forebrain connections. *Neuroscience* 254, 26–44.
1243 10.1016/j.neuroscience.2013.08.070.
- 1244 5. Moldrich, R.X., Gobius, I., Pollak, T., Zhang, J., Ren, T., Brown, L., Mori, S., De Juan
1245 Romero, C., Britanova, O., and Tarabykin, V. (2010). Molecular regulation of the
1246 developing commissural plate. *Journal of Comparative Neurology* 518, 3645–3661.
- 1247 6. Paolino, A., Fenlon, L.R., Suárez, R., and Richards, L.J. (2018). Transcriptional control
1248 of long-range cortical projections. *Current Opinion in Neurobiology* 53, 57–65.
- 1249 7. Alcamo, E.A., Chirivella, L., Dautzenberg, M., Dobreva, G., Fariñas, I., Grosschedl, R.,
1250 and McConnell, S.K. (2008). Satb2 Regulates Callosal Projection Neuron Identity in the
1251 Developing Cerebral Cortex. *Neuron* 57, 364–377. 10.1016/j.neuron.2007.12.012.
- 1252 8. Britanova, O., de Juan Romero, C., Cheung, A., Kwan, K.Y., Schwark, M., Gyorgy, A.,
1253 Vogel, T., Akopov, S., Mitkovski, M., Agoston, D., et al. (2008). Satb2 Is a Postmitotic
1254 Determinant for Upper-Layer Neuron Specification in the Neocortex. *Neuron* 57, 378–
1255 392. 10.1016/j.neuron.2007.12.028.
- 1256 9. Döcker, D., Schubach, M., Menzel, M., Munz, M., Spaich, C., Biskup, S., and Bartholdi,
1257 D. (2014). Further delineation of the SATB2 phenotype. *European Journal of Human
1258 Genetics* 22, 1034–1039.
- 1259 10. Zarate, Y.A., and Fish, J.L. (2017). SATB2 -associated syndrome: Mechanisms,
1260 phenotype, and practical recommendations. *American Journal of Medical Genetics Part A*
1261 173, 327–337. 10.1002/ajmg.a.38022.
- 1262 11. Zarate, Y.A., Perry, H., Ben-Omran, T., Sellars, E.A., Stein, Q., Almureikhi, M.,
1263 Simmons, K., Klein, O., Fish, J., Feingold, M., et al. (2015). Further supporting evidence
1264 for the SATB2-associated syndrome found through whole exome sequencing. *Am. J.
1265 Med. Genet.* 167, 1026–1032. 10.1002/ajmg.a.36849.
- 1266 12. Lewis, H., Samanta, D., Örsell, J.-L., Bosanko, K.A., Rowell, A., Jones, M., Dale, R.C.,
1267 Taravath, S., Hahn, C.D., Krishnakumar, D., et al. (2020). Epilepsy and
1268 Electroencephalographic Abnormalities in SATB2-Associated Syndrome. *Pediatric
1269 Neurology* 112, 94–100. 10.1016/j.pediatrneurol.2020.04.006.

1270 13. Srivatsa, S., Parthasarathy, S., Britanova, O., Bormuth, I., Donahoo, A.-L., Ackerman,
1271 S.L., Richards, L.J., and Tarabykin, V. (2014). Unc5C and DCC act downstream of Ctip2
1272 and Satb2 and contribute to corpus callosum formation. *Nature Communications* 5.
1273 10.1038/ncomms4708.

1274 14. Kolodkin, A.L., and Ginty, D.D. (1997). Steering clear of semaphorins: neuropilins sound
1275 the retreat. *Neuron* 19, 1159–1162.

1276 15. Nakamura, F., Kalb, R.G., Strittmatter, S.M., and others (2000). Molecular basis of
1277 semaphorin-mediated axon guidance. *Journal of neurobiology* 44, 219–229.

1278 16. Tamagnone, L., and Comoglio, P.M. (2004). To move or not to move? *EMBO reports* 5,
1279 356–361. 10.1038/sj.embor.7400114.

1280 17. Pasterkamp, R.J., and Giger, R.J. (2009). Semaphorin function in neural plasticity and
1281 disease. *Current Opinion in Neurobiology* 19, 263–274. 10.1016/j.conb.2009.06.001.

1282 18. Rizzolio, S., and Tamagnone, L. (2007). Semaphorin signals on the road to cancer
1283 invasion and metastasis. *Cell adhesion & migration* 1, 62–68.

1284 19. Yazdani, U., and Terman, J.R. (2006). The semaphorins. *Genome biology* 7, 211.

1285 20. Jongbloets, B.C., Ramakers, G.M.J., and Pasterkamp, R.J. (2013). Semaphorin7A and its
1286 receptors: Pleiotropic regulators of immune cell function, bone homeostasis, and neural
1287 development. *Seminars in Cell & Developmental Biology* 24, 129–138.
1288 10.1016/j.semcdb.2013.01.002.

1289 21. Jongbloets, B.C., Lemstra, S., Schellino, R., Broekhoven, M.H., Parkash, J., Hellemons,
1290 A.J.C.G.M., Mao, T., Giacobini, P., van Praag, H., De Marchis, S., et al. (2017). Stage-
1291 specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on
1292 distinct receptors. *Nature Communications* 8, 14666. 10.1038/ncomms14666.

1293 22. Negishi, M., Oinuma, I., and Katoh, H. (2005). Plexins: axon guidance and signal
1294 transduction. *Cellular and Molecular Life Sciences* 62, 1363–1371. 10.1007/s00018-005-
1295 5018-2.

1296 23. Tamagnone, L., Artigiani, S., Chen, H., He, Z., Ming, G., Song, H., Chedotal, A.,
1297 Winberg, M.L., Goodman, C.S., Poo, M., et al. (1999). Plexins are a large family of
1298 receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates.
1299 *Cell* 99, 71–80.

1300 24. Perez-Branguli, F., Zagar, Y., Shanley, D.K., Graef, I.A., Chédotal, A., and Mitchell, K.J.
1301 (2016). Reverse Signaling by Semaphorin-6A Regulates Cellular Aggregation and
1302 Neuronal Morphology. *PLOS ONE* 11, e0158686. 10.1371/journal.pone.0158686.

1303 25. Hernandez-Fleming, M., Rohrbach, E.W., and Bashaw, G.J. (2017). Sema-1a Reverse
1304 Signaling Promotes Midline Crossing in Response to Secreted Semaphorins. *Cell Reports*
1305 18, 174–184. 10.1016/j.celrep.2016.12.027.

1306 26. Kang, S., Nakanishi, Y., Kioi, Y., Okuzaki, D., Kimura, T., Takamatsu, H., Koyama, S.,
1307 Nojima, S., Nishide, M., Hayama, Y., et al. (2018). Semaphorin 6D reverse signaling

1308 controls macrophage lipid metabolism and anti-inflammatory polarization. *Nat Immunol*
1309 19, 561–570. 10.1038/s41590-018-0108-0.

1310 27. Sun, T., Yang, L., Kaur, H., Pestel, J., Looso, M., Nolte, H., Krasel, C., Heil, D.,
1311 Krishnan, R.K., Santoni, M.-J., et al. (2017). A reverse signaling pathway downstream of
1312 Sema4A controls cell migration via Scrib. *The Journal of Cell Biology* 216, 199–215.
1313 10.1083/jcb.201602002.

1314 28. Battistini, C., and Tamagnone, L. (2016). Transmembrane semaphorins, forward and
1315 reverse signaling: have a look both ways. *Cellular and Molecular Life Sciences* 73, 1609–
1316 1622. 10.1007/s00018-016-2137-x.

1317 29. Chilton, J.K. (2006). Molecular mechanisms of axon guidance. *Developmental Biology*
1318 292, 13–24. 10.1016/j.ydbio.2005.12.048.

1319 30. Dudanova, I., and Klein, R. (2013). Integration of guidance cues: parallel signaling and
1320 crosstalk. *Trends in Neurosciences* 36, 295–304. 10.1016/j.tins.2013.01.007.

1321 31. Kim, S.W., and Kim, K.-T. (2020). Expression of Genes Involved in Axon Guidance:
1322 How Much Have We Learned? *Int J Mol Sci* 21, 3566. 10.3390/ijms21103566.

1323 32. Goebbels, S., Bormuth, I., Bode, U., Hermanson, O., Schwab, M.H., and Nave, K.-A.
1324 (2006). Genetic targeting of principal neurons in neocortex and hippocampus of NEX-
1325 Cre mice. *genesis* 44, 611–621. 10.1002/dvg.20256.

1326 33. McKenna, W.L., Ortiz-Londono, C.F., Mathew, T.K., Hoang, K., Katzman, S., and Chen,
1327 B. (2015). Mutual regulation between Satb2 and Fezf2 promotes subcerebral projection
1328 neuron identity in the developing cerebral cortex. *PNAS* 112, 11702–11707.
1329 10.1073/pnas.1504144112.

1330 34. Hammal, F., de Langen, P., Bergon, A., Lopez, F., and Ballester, B. (2022). ReMap 2022:
1331 a database of Human, Mouse, Drosophila and Arabidopsis regulatory regions from an
1332 integrative analysis of DNA-binding sequencing experiments. *Nucleic Acids Res* 50,
1333 D316–D325. 10.1093/nar/gkab996.

1334 35. Britanova, O., Alifragis, P., Junek, S., Jones, K., Gruss, P., and Tarabykin, V. (2006). A
1335 novel mode of tangential migration of cortical projection neurons. *Developmental
1336 Biology* 298, 299–311. 10.1016/j.ydbio.2006.06.040.

1337 36. Jaitner, C., Reddy, C., Abentung, A., Whittle, N., Rieder, D., Delecate, A., Korte, M.,
1338 Jain, G., Fischer, A., Sananbenesi, F., et al. (2016). Satb2 determines miRNA expression
1339 and long-term memory in the adult central nervous system. *eLife* 5, e17361.
1340 10.7554/eLife.17361.

1341 37. Stiess, M., and Bradke, F. (2011). Neuronal polarization: The cytoskeleton leads the way.
1342 *Developmental Neurobiology* 71, 430–444. 10.1002/dneu.20849.

1343 38. de Anda, F.C., Pollarolo, G., Da Silva, J.S., Camoletto, P.G., Feiguin, F., and Dotti, C.G.
1344 (2005). Centrosome localization determines neuronal polarity. *Nature* 436, 704–708.
1345 10.1038/nature03811.

1346 39. Sakakibara, A., Sato, T., Ando, R., Noguchi, N., Masaoka, M., and Miyata, T. (2014).
1347 Dynamics of Centrosome Translocation and Microtubule Organization in Neocortical
1348 Neurons during Distinct Modes of Polarization. *Cerebral Cortex* 24, 1301–1310.
1349 10.1093/cercor/bhs411.

1350 40. Yoshimura, T., Arimura, N., and Kaibuchi, K. (2006). Signaling Networks in Neuronal
1351 Polarization. *Journal of Neuroscience* 26, 10626–10630. 10.1523/JNEUROSCI.3824-
1352 06.2006.

1353 41. Liu, H., Juo, Z.S., Shim, A.H.-R., Focia, P.J., Chen, X., Garcia, K.C., and He, X. (2010).
1354 Structural Basis of Semaphorin-Plexin Recognition and Viral Mimicry from Sema7A and
1355 A39R Complexes with PlexinC1. *Cell* 142, 749–761. 10.1016/j.cell.2010.07.040.

1356 42. Kong-Beltran, M., Stamos, J., and Wickramasinghe, D. (2004). The Sema domain of Met
1357 is necessary for receptor dimerization and activation. *Cancer Cell* 6, 75–84.
1358 10.1016/j.ccr.2004.06.013.

1359 43. Marita, M., Wang, Y., Kaliszewski, M.J., Skinner, K.C., Comar, W.D., Shi, X., Dasari,
1360 P., Zhang, X., and Smith, A.W. (2015). Class A Plexins Are Organized as Preformed
1361 Inactive Dimers on the Cell Surface. *Biophysical Journal* 109, 1937–1945.
1362 10.1016/j.bpj.2015.04.043.

1363 44. Janssen, B.J., Malinauskas, T., Weir, G.A., Cader, M.Z., Siebold, C., and Jones, E.Y.
1364 (2012). Neuropilins lock secreted semaphorins onto plexins in a ternary signaling
1365 complex. *Nature structural & molecular biology* 19, 1293–1299.

1366 45. Pasterkamp, R.J., Peschon, J.J., Spriggs, M.K., and Kolodkin, A.L. (2003). Semaphorin
1367 7A promotes axon outgrowth through integrins and MAPKs. *Nature* 424, 398–405.

1368 46. Kozlov, G., Perreault, A., Schrag, J.D., Park, M., Cygler, M., Gehring, K., and Ekiel, I.
1369 (2004). Insights into function of PSI domains from structure of the Met receptor PSI
1370 domain. *Biochemical and Biophysical Research Communications* 321, 234–240.
1371 10.1016/j.bbrc.2004.06.132.

1372 47. Liu, H., Juo, Z.S., Shim, A.H.-R., Focia, P.J., Chen, X., Garcia, K.C., and He, X. (2010).
1373 Structural Basis of Semaphorin-Plexin Recognition and Viral Mimicry from Sema7A and
1374 A39R Complexes with PlexinC1. *Cell* 142, 749–761. 10.1016/j.cell.2010.07.040.

1375 48. Elhabazi, A., Lang, V., Hérold, C., Freeman, G.J., Bensussan, A., Boumsell, L., and
1376 Bismuth, G. (1997). The Human Semaphorin-like Leukocyte Cell Surface Molecule
1377 CD100 Associates with a Serine Kinase Activity. *J. Biol. Chem.* 272, 23515–23520.
1378 10.1074/jbc.272.38.23515.

1379 49. Raissi, A.J., Staudenmaier, E.K., David, S., Hu, L., and Paradis, S. (2013). Sema4D
1380 localizes to synapses and regulates GABAergic synapse development as a membrane-
1381 bound molecule in the mammalian hippocampus. *Mol Cell Neurosci* 57, 23–32.
1382 10.1016/j.mcn.2013.08.004.

1383 50. Janssen, B.J.C., Robinson, R.A., Pérez-Brangulí, F., Bell, C.H., Mitchell, K.J., Siebold,
1384 C., and Jones, E.Y. (2010). Structural basis of semaphorin-plexin signalling. *Nature* 467,
1385 1118–1122. 10.1038/nature09468.

1386 51. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M.
1387 (2022). ColabFold: making protein folding accessible to all. *Nat Methods* *19*, 679–682.
1388 10.1038/s41592-022-01488-1.

1389 52. Vaegter, C.B., Jansen, P., Fjorback, A.W., Glerup, S., Skeldal, S., Kjolby, M., Richner,
1390 M., Erdmann, B., Nyengaard, J.R., Tessarollo, L., et al. (2011). Sortilin associates with
1391 Trk receptors to enhance anterograde transport and neurotrophin signaling. *Nat Neurosci*
1392 *14*, 54–61. 10.1038/nn.2689.

1393 53. Pasterkamp, R.J. (2012). Getting neural circuits into shape with semaphorins. *Nature*
1394 *Reviews Neuroscience* *13*, 605–618. 10.1038/nrn3302.

1395 54. Gherardi, E., Love, C.A., Esnouf, R.M., and Jones, E.Y. (2004). The sema domain.
1396 *Current opinion in structural biology* *14*, 669–678.

1397 55. Barberis, D. (2005). p190 Rho-GTPase activating protein associates with plexins and it is
1398 required for semaphorin signalling. *Journal of Cell Science* *118*, 4689–4700.
1399 10.1242/jcs.02590.

1400 56. Basile, J.R., Gavard, J., and Gutkind, J.S. (2007). Plexin-B1 Utilizes RhoA and Rho
1401 Kinase to Promote the Integrin-dependent Activation of Akt and ERK and Endothelial
1402 Cell Motility. *Journal of Biological Chemistry* *282*, 34888–34895.
1403 10.1074/jbc.M705467200.

1404 57. Elhabazi, A., Delaire, S., Bensussan, A., Boumsell, L., and Bismuth, G. (2001).
1405 Biological Activity of Soluble CD100. I. The Extracellular Region of CD100 Is Released
1406 from the Surface of T Lymphocytes by Regulated Proteolysis. *The Journal of*
1407 *Immunology* *166*, 4341–4347. 10.4049/jimmunol.166.7.4341.

1408 58. Giordano, S., Corso, S., Conrotto, P., Artigiani, S., Gilestro, G., Barberis, D.,
1409 Tamagnone, L., and Comoglio, P.M. (2002). The Semaphorin 4D receptor controls
1410 invasive growth by coupling with Met. *Nature Cell Biology* *4*, 720–724. 10.1038/ncb843.

1411 59. Nishide, M., Nojima, S., Ito, D., Takamatsu, H., Koyama, S., Kang, S., Kimura, T.,
1412 Morimoto, K., Hosokawa, T., Hayama, Y., et al. (2017). Semaphorin 4D inhibits
1413 neutrophil activation and is involved in the pathogenesis of neutrophil-mediated
1414 autoimmune vasculitis. *Annals of the Rheumatic Diseases* *76*, 1440–1448.
1415 10.1136/annrheumdis-2016-210706.

1416 60. Swiercz, J.M., Kuner, R., and Offermanns, S. (2004). Plexin-B1/RhoGEF-mediated
1417 RhoA activation involves the receptor tyrosine kinase ErbB-2. *The Journal of Cell*
1418 *Biology* *165*, 869–880. 10.1083/jcb.200312094.

1419 61. Swiercz, J.M., Worzfeld, T., and Offermanns, S. (2008). ErbB-2 and Met Reciprocally
1420 Regulate Cellular Signaling via Plexin-B1. *Journal of Biological Chemistry* *283*, 1893–
1421 1901. 10.1074/jbc.M706822200.

1422 62. Kuklina, E.M. (2019). Receptor Functions of Semaphorin 4D. *Biochemistry Moscow* *84*,
1423 1021–1027. 10.1134/S0006297919090049.

1424 63. Witherden, D.A., Watanabe, M., Garijo, O., Rieder, S.E., Sarkisyan, G., Cronin, S.J.F.,
1425 Verdino, P., Wilson, I.A., Kumanogoh, A., Kikutani, H., et al. (2012). The CD100

1426 Receptor Interacts with Its Plexin B2 Ligand to Regulate Epidermal $\gamma\delta$ T Cell Function.
1427 *Immunity* 37, 314–325. 10.1016/j.immuni.2012.05.026.

1428 64. Abad-Rodríguez, J., and Díez-Revuelta, N. (2015). Axon glycoprotein routing in nerve
1429 polarity, function, and repair. *Trends in Biochemical Sciences* 40, 385–396.
1430 10.1016/j.tibs.2015.03.015.

1431 65. McFarlane, I., Breen, K.C., Di Giamberardino, L., and Moya, K.L. (2000). Inhibition of
1432 N-glycan processing alters axonal transport of synaptic glycoproteins in vivo.
1433 *Neuroreport* 11, 1543–1547.

1434 66. Kantor, D.B., Chivatakarn, O., Peer, K.L., Oster, S.F., Inatani, M., Hansen, M.J.,
1435 Flanagan, J.G., Yamaguchi, Y., Sretavan, D.W., Giger, R.J., et al. (2004). Semaphorin
1436 5A Is a Bifunctional Axon Guidance Cue Regulated by Heparan and Chondroitin Sulfate
1437 Proteoglycans. *Neuron* 44, 961–975. 10.1016/j.neuron.2004.12.002.

1438 67. Kuzirian, M.S., Moore, A.R., Staudenmaier, E.K., Friedel, R.H., and Paradis, S. (2013).
1439 The class 4 semaphorin Sema4D promotes the rapid assembly of GABAergic synapses in
1440 rodent hippocampus. *J Neurosci* 33, 8961–8973. 10.1523/JNEUROSCI.0989-13.2013.

1441 68. Fukunishi, A., Maruyama, T., Zhao, H., Tiwari, M., Kang, S., Kumanogoh, A., and
1442 Yamamoto, N. (2011). The action of Semaphorin7A on thalamocortical axon branching:
1443 Thalamocortical axon branching by Sema7A. *Journal of Neurochemistry* 118, 1008–
1444 1015. 10.1111/j.1471-4159.2011.07390.x.

1445 69. Clark, I.C., Gutiérrez-Vázquez, C., Wheeler, M.A., Li, Z., Rothhammer, V., Linnerbauer,
1446 M., Sanmarco, L.M., Guo, L., Blain, M., Zandee, S.E.J., et al. (2021). Barcoded viral
1447 tracing of single-cell interactions in central nervous system inflammation. *Science* 372,
1448 eabf1230. 10.1126/science.abf1230.

1449 70. Evans, E.E., Mishra, V., Mallow, C., Gersz, E.M., Balch, L., Howell, A., Reilly, C.,
1450 Smith, E.S., Fisher, T.L., and Zauderer, M. (2022). Semaphorin 4D is upregulated in
1451 neurons of diseased brains and triggers astrocyte reactivity. *Journal of*
1452 *Neuroinflammation* 19, 200. 10.1186/s12974-022-02509-8.

1453 71. Polleux, F., and Ghosh, A. (2002). The Slice Overlay Assay: A Versatile Tool to Study
1454 the Influence of Extracellular Signals on Neuronal Development. *Science's STKE* 2002,
1455 p19–p19. 10.1126/stke.2002.136.p19.

1456 72. Franzoni, E., Booker, S.A., Parthasarathy, S., Rehfeld, F., Grosser, S., Srivatsa, S., Fuchs,
1457 H.R., Tarabykin, V., Vida, I., and Wulczyn, F.G. (2015). miR-128 regulates neuronal
1458 migration, outgrowth and intrinsic excitability via the intellectual disability gene Phf6.
1459 *eLife* 4, e04263. 10.7554/eLife.04263.

1460 73. Bormuth, I., Yan, K., Yonemasu, T., Gummert, M., Zhang, M., Wichert, S., Grishina, O.,
1461 Pieper, A., Zhang, W., Goebels, S., et al. (2013). Neuronal Basic Helix-Loop-Helix
1462 Proteins Neurod2/6 Regulate Cortical Commissure Formation before Midline
1463 Interactions. *Journal of Neuroscience* 33, 641–651. 10.1523/JNEUROSCI.0899-12.2013.

1464 74. Burley, S.K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G.V., Christie, C.H.,
1465 Dalenberg, K., Di Costanzo, L., Duarte, J.M., et al. (2021). RCSB Protein Data Bank:
1466 powerful new tools for exploring 3D structures of biological macromolecules for basic

1467 and applied research and education in fundamental biology, biomedicine, biotechnology,
1468 bioengineering and energy sciences. *Nucleic Acids Research* *49*, D437–D451.
1469 10.1093/nar/gkaa1038.

1470 75. Sumathi, K., Ananthalakshmi, P., Roshan, M.N.A.M., and Sekar, K. (2006). 3dSS: 3D
1471 structural superposition. *Nucleic Acids Res* *34*, W128-132. 10.1093/nar/gkl036.

1472 76. Love, C.A., Harlos, K., Mavaddat, N., Davis, S.J., Stuart, D.I., Jones, E.Y., and Esnouf,
1473 R.M. (2003). The ligand-binding face of the semaphorins revealed by the high-resolution
1474 crystal structure of SEMA4D. *Nat Struct Biol* *10*, 843–848. 10.1038/nsb977.

1475 77. Schrödinger, LLC (2015). The PyMOL Molecular Graphics System, Version 1.8.

1476 78. Hornbeck, P.V., Zhang, B., Murray, B., Kornhauser, J.M., Latham, V., and Skrzypek, E.
1477 (2015). PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. *Nucleic acids
1478 research* *43*, D512–D520.

1479