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Abstract 

Immune checkpoint inhibitor (ICI) modality has had a limited success (<20%) in treating 
metastatic recurrent Head & Neck Oropharyngeal Squamous cell carcinomas (OPSCCs). To improve 
response rates to ICIs, tailored approaches capable to capture the tumor complexity and dynamics of 
each patient’s disease are needed. Here, we performed advanced analyses of spatial proteogenomic 
technologies to demonstrate that: (i) compared to standard histopathology, spatial transcriptomics 
better-identified tumor cells and could specifically classify them into two different metabolic states 
with therapeutic implications; (ii) our new method (Spatial Proteomics-informed cell deconvolution 
method or SPiD) improved profiling of local immune cell types relevant to disease progression, (iii) 
identified clinically relevant alternative treatments and a rational explanation for checkpoint inhibitor 
therapy failure through comparative analysis of pre- and post-failure tumor data and, (iv) discovered 
ligand-receptor interactions as potential lead targets for personalized drug treatments.  Our work 
establishes a clear path for incorporating spatial-omics in clinical settings to facilitate treatment 
personalization. 
 

Introduction 
Immunotherapy and more specifically check-point inhibitors (ICIs) have revolutionized the 

management of solid tumors but despite the great advancements, ICIs have been limited by a lack of 
ability to confidently identify patients who are likely or unlikely to positively respond to treatment 1. 
A prime example is mucosal Head and Neck Squamous Cell Carcinomas (HNSCCs) where multiple 
studies have failed to show a benefit of ICIs over standard chemotherapy 2-4. This failure is partially 
explained by the high inter- and intra-tumor heterogeneity of mucosal HNSCCs with different tumor 
microenvironments (TME) influenced by the location of primary site and etiology (i.e., HPV+ vs 
HPV-) 5. Although there are over 4,000 active clinical trials testing the efficacy of PD-1/PD-L1 ICIs 
+/- additional agents and 300 trials for new targets, only a few predictors for their benefit in treating 
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metastatic recurrent HNSCCs are available (i.e., high PDL-1 levels in the tumor) 6,7. Therefore, for 
ICIs to reach their full therapeutic potential the oncology field needs to develop comprehensive 
analytical pipelines to categorize patients based on their tumor’s likelihood to respond to a specific 
treatment. The advent of new technologies has provided the knowledge that not only expression but 
also distribution of targets and interactions between malignant and non-malignant cells (immune 
system and stroma) can predict response to treatment, tumor development and progression 8-10. 
Recent development in spatial-based high-throughput technologies, such as spatial transcriptomics 
(ST) and spatial proteomics (SP), have the ability to assess information of cell subpopulations whilst 
maintaining the spatial architecture of the tissue, thus providing an unprecedented level of 
knowledge about complex biological systems including tumor development and response to 
treatment 11. Here, as illustrated by a case example, we show how spatial proteogenomic data can 
make precision medicine a reality by rapidly resolving patient’s disease heterogeneity and generating 
quantitative data that informs about druggable targets, which alone or in combination have the 
highest likelihood of delivering a desired therapeutic response.  

Results 

Spatial transcriptomic mapping of tumor and healthy tissue comprehensively distinguish cell 
distribution and composition at a level not achievable by traditional methods  

 While methods like MRI and PET-CT scanning can capture general changes in size and locations 
of the tumor, deeper analysis of the cancer cells, expression of drug targets, and tumor 
microenvironment is required for a more accurate view of disease status (Figure 1A-B). Due to its 
ability to produce whole-transcriptome resolution (>22,000 transcripts per tissue section) while 
maintaining spatial information and tissue morphology (a histopathological image accompanied by 
pathological annotation), spatial transcriptomic 10x Chromium Visium (ST) was chosen to analyze 
MAR21 OPSCC tumor and a healthy soft palate control sample. Following data quality control and 
integration (Supplementary appendix), unbiased clustering based on gene expression profile 
similarity (DEG) identified 11 distinct clusters that closely recapitulated the tissue architecture 
(Figure 1D). We annotated each spot cluster using the manually curated JENSEN tissue-gene 
association reference database (V2.0) (Figure 1E). Transcriptional-based annotations matched those 
independently supplied by the pathologists (Figure 1F), whereby cluster 4 (CL4) and 5 (CL5) 
overlayed the tumor sites (Figure 1D, F). In addition to the main cancer clusters, other cell/tissue 
types were annotated, providing a comprehensive view of the entire tissue section, including 
epithelium (CL3), muscle (CL7), blood vessels (CL10) and pharynx (CL2) (Figure 1F). Of note, 
carcinoma clusters were annotated as the cervical epithet due to the HPV+ OPSCC gene signature 
commonalities with cervical cancer and overrepresentation of the former disease in the JENSEN 
database 12. Thus, cancer clusters (annotated as “Cervical” carcinomas) orientated in a nest-like 
structure (differentiated OPSCC), with CL4 being the edge and CL5 the core of the tumor. In 
contrast to CL5, exclusively found within the tumor biopsy (Figure S1), 30% of CL4 was located 
within the healthy tissue (Figure 1D, E; Figure S1). In depth analysis of CL4 facilitated by the 
heterogeneity between spots in the ST data, allowed us to re-annotate spots in CL4 into three 
categories, whereby the spots present in both the healthy tissue and the tumor were confirmed as 
epithelium, whereas spots that were annotated as carcinoma were only present in the tumor (Figure 
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1G). These results highlight the heterogeneous nature of the tumor biopsy, and the capability of ST 
to successfully distinguish between tumor regions and healthy epithelial tissue based on 
transcriptional profiles. Most importantly, ST identified different tumor niches visually 
undistinguishable, but with clear metabolic signatures enriched in specific biological functions such 
as CD4+ T-cell activation (CL4) and angiogenesis (CL5). Such in depth source of information not 
achievable by standard pathological annotation is crucial to accurately assess the nature of the 
disease and the potential effects of drugs on various cell types across the tissue.  
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Figure 1. Case history and preliminary ST analysis of metastatic recurrent HPV+ OPSCCs. A. Timeline indicating 
disease progression and treatment history. B. Relative size and development of OPSCCs and lung metastases over time. 
Red line indicates the MAR21 soft palate OPSCC sample biopsied for Visium ST and Phenocycler SP analysis. Dark 
blue line represents recurrent SEP21 OPSCC analyzed using Visium ST. C. CT scans of lung metastases and OPSCCs 
over time. Circled regions highlight tumor tissue. D. Spatial representation of unsupervised ST-generated clustering 
results. Colored spots represent different populations of spots that share similar transcriptional profiles. E. Normalized 
expression values of the top 10 distinguishing markers for each cluster were displayed in a heatmap. JENSEN TISSUEs 
annotations and relative enriched Gene Ontology (GO) terms associated with differentially expressed genes (DEGs) for 
each cluster are also represented. Bar graph (left) represents the proportion of each cluster found within MAR21 tumor 
(red) and healthy (blue) samples. F. Pathologist annotations of MAR21 and paired healthy sample, defining general 
tissue structures including stroma (blue), skeletal muscle (green) and invasive carcinoma (yellow). G. Sub-clustering of 
cluster 4 identified distinct carcinoma sub-clusters which were localized only within the tumor sample (green and dark 
green). Blue spots represent the third sub-cluster (cluster 4.Epi) which was annotated as epithelial tissue based on DEGs 
(using JENSEN TISSUEs database).  
 

Unbiased, transcriptome-wide analysis of spatial gene expression identifies two distinct tumor 
microenvironments 

Collectively, over 5,000 genes out of >22,000 genes were significantly over-expressed in the CL4 
and CL5 with signatures enriched for gene ontology terms associated with mRNA processing and 
transport, DNA regulation and repair, and cell cycle regulation (Figure 2A). Sustained proliferation 
is a hallmark of cancer, and mitoses are used for diagnosis and to grade these malignancies 13. 
Clinically, targeting vital cancer pathways activated to avoid mitotic catastrophe have proven to be 
of great therapeutic value 14. Therefore, we investigated the spot's proliferative status based on the 
expression of cell-cycle-related genes (Figure 2B). Previously defined clusters showed different 
proportions of spots in each G1, S and G2M phase. “Skin-related” (sharing epithelial origin) clusters 
such as CL2, 6 and 9 showed the least proliferative profiles (Figure 2C).  Remarkably, of all 11 
clusters, the CL4 was the only one that contained 100% spots in the proliferation phase (S with 
45.3% and G2M at 54.7%), indicating active cell division and expansion of this cancer cluster. As 
the cluster mapping and histopathological features suggested that CL4 and CL5 form two layers, 
with core (CL5) and peripheral (CL4), we then sought to analyze the genes that were differentially 
defining tumor CL4 and CL5 (Figure 2D). CL4’s differentially expressed genes (DEGs) confirmed 
the proliferative nature of the cluster with upregulation of HIST1H family genes, which participate in 
nucleosome assembly and chromatin organization, and GABRP which promotes cell proliferation in 
oral SSC models (Figure S2). Conversely, CL5’s DEGs were enriched with genes involved in innate 
immune response, inflammatory processes, cell migration and angiogenesis, such as CXCL8, which 
attracts neutrophils, basophils, and T-cells or S100A7, involved in activation of the innate immune 
response to viruses (Figure S2). The spatial distribution of cell-cycle-related genes allowed us to 
distinguish 2 distinctive tumor metabolic phenotypes with clinical implications specially when using 
replicative stress or DNA-damaging agents, as differences in replication can correlate with different 
response to treatment 15,16.  
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Figure 2. Transcriptional and functional profiles of the tumor microenvironment interface. A. Common GO terms 
enriched in all tumor-annotated spots based on DEGs relative to all other clusters. B.  Cell cycle states of each spot 
within MAR21 OPSCC and healthy paired samples. Teal, red and yellow represent spots in G1, G2/M and S phase 
respectively. C. Displays the proportions of spots in each cell cycle phase for each Visium defined cluster. Teal, red and 
yellow bars represent G1, G2/M and S phase respectively. Distinct tumor regions (cluster 4 and 5) are out-lighted in 
cluster-matched shades of green (dark green: cluster 4; light green: cluster 5). D. Gene ontology terms specifically 
enriched in each tumor cluster. Significant GO terms were generated based on DEGs between distinct cancer clusters, 
newly defined Visium clusters 4 (dark green) and 5 (light green). E. Single-cell resolution of cell types within the 
MAR21 sample based on integrated Phenocycler data. Cell phenotype was based on co-expression of marker antibodies. 
F. Stacked bar graphs highlight the percentage of different Phenocycler cell subtypes observed within each Visium 
cluster. Colors are paired to indicate similar cell types (e.g., pink and purple are T cell subtypes, blue shades are B-cell 
subtypes). G. Functional classification of DEGs (p<0.001) of the combined tumor clusters relative to all other clusters 
and at least 2-fold overexpressed (CL4 and CL5). Relative expression of poor prognosis markers (red), oncogenes 
(orange) and drug resistance genes (green) across each cluster. The top 9 genes of each category were displayed. Cluster 
‘4.Epi’ represents the sub-cluster 4 annotated as epithelial tissue, and ‘tumor group’ represents the carcinoma annotated 
spots from cluster 4 and 5 combined. Colors gradient represents average normalized expression values across all spots in 
each cluster, which were z-transformed by genes (rows of the heatmap). H. Spatial expression of PD-1/PD-L1 encoding 
genes across each spot. I. Spatial expression of genes targeted by current clinical therapies for various cancer types. J. 
Spatial expression of experimental targets informed by preclinical studies. Both clinical and preclinical druggable targets 
were identified based on genes significantly overexpressed (p-value < 0.001 and > 2-fold change) within the grouped 
tumor clusters. 
Integration of spatial proteomics data enabled the mapping of 14 immune subtypes to each spatial 
transcriptomics spot, further confirming distinct cancer microenvironments.  

As infiltration and localization of immune cells in the TME are biomarkers of disease progression 
and treatment outcome, we sought to identify the cell composition of each cluster in the tumor 
biopsy at single-cell resolution. Although Visium data produces high-resolution transcriptional data, 
each spot is a mixture of on average 1-9 cells. Typically, spot deconvolution is needed to identify the 
cell proportion in each spot. Since no ideal deconvolution method is currently available, we 
compared the performance of 4 established deconvolution methods (STdeconvolve, CARD, Seurat 
label transfer and RCTD)17-20. All these methods solely use transcriptomic data that comes from 
reference datasets or directly inferred by the tissue transcriptome. Importantly, to achieve single-cell 
resolution and subclassification of immune cells, we devised a new method to integrate Phenocycler 
spatial proteomics (SP) data with ST data. By mapping consecutive tissue sections, we were able to 
infer the signal of multiple lineage antibodies to map cell types to Visium spots (Figure 2E, S3). 
Overall,  our approach identified 14 different immune cell subsets, including T-cells, B cells, 
macrophages and antigen presenting cells, and allocated the spatial location of specific immune cell 
types, such as CD4+ T-cells and activated B cells, that were not identified using the other 4 indirect 
cell deconvolution methods. All deconvolution methods overestimated the proportion of cancer cells 
and were insensitive in detecting immune infiltration (Figure S3). Therefore, our Phenocycler SP-
informed cell deconvolution method (SPiD) outperformed the four most used spot resolution 
methods.  

High resolution cellular composition of the tumor defined by integrating SPiD suggests tumor 
functional organization 

SPiD deconvolution confirmed our cell-cycle prediction at the protein level by detecting high 
expression of Ki67 (S-G2/M phase surrogate) in the tumor nests (intra-tissue PanCKhigh) (Figure 
S4). Once more, CL4 recorded the highest proportion of Ki67+ PanCK+ cells (29% of CL4) (Figure 
2F, Figure S5) forming the walls of the tumor as previously seen in the Visium ST data (Figure 
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2C). Conversely, CL5, composed by the inner core of the tumor, displayed lower proportions of 
dividing tumor cells (18.4%) and higher levels of immune cells (21%) compared to CL4 (9.5% 
immune cells). Tumor CL5 displayed the largest proportions of activated and non-activated B cells 
across all clusters. This inner tumor core also contained high levels of macrophage/monocytes and 
CD4+ and CD8+ T-cells. Collectively, our spatial proteo-transcriptomics data confirmed the presence 
of two functionally distinct tumor regions representing the proliferating leading edge and immune 
infiltrated inner core of the patient’s OPSCC which phenotype and cell-type complexity could not be 
resolved by histopathological assessment (Figure 1E). 

The spatially defined tumor microenvironments informed the assessment of predictive biomarkers 
and druggable targets 

Traditional methods such as bulk RNA sequencing suffer from dilution of cancer specific signals 
within the pool of non-malignant tissue. We hypothesized that our ST data would over-come this by 
allowing us to focus on the most important part of the tumor, namely the proliferative cancer tissue 
depicted by only 2 clusters out of the 11 that composed the biopsy. This spatially-focused analysis 
strategy maximizes resolution while minimizing signal dilution as seen in bulk data analysis. By 
doing so, we identified 158 significantly up-regulated (p < 0.001) tumor genes which displayed at 
least a 2-fold increase compared to all other clusters (Figure S6). The majority of top genes were 
categorized as poor prognosis biomarkers (38%), oncogenes (13%) and drug resistance genes (9%) 
in contrast to only a 11% and 5% considered tumor suppressor and positive prognosis biomarkers, 
respectively (Figure 2G, Table S3). Notably, the function of 6% of the >2-fold increased tumor 
genes remain unknown, and hence may potentially be new markers. These results correlate with the 
observed recurrent and aggressive behavior of the patient’s tumor and highlights the potential of 
focused transcriptional profiles to predict disease progression. 

The patient’s treatment history pinpoints two specific proteins targeted by immunotherapy and 
chemotherapy: PD-1 (Nivolumab, Pembrolizumab) and VEGFR (Lenvatinib). Interestingly, we 
found that both PD-1 and its ligand PD-L1 encoding genes displayed low expression across the 
whole tissue (Figure 2H). Indeed, these two targets were not expressed in the two cancer regions, 
potentially explaining why ICIs failed. Conversely, amongst the 158-tumor overexpressed genes 
there were 8 targets commercially available or in clinical trials, including EGFR/cetuximab-
prochlorperazine (Figure 2I) 8 and 9 experimental targets supported by preclinical data  (Figure 2J, 
Table S4) 21. Consequently, the use of ST has the potential to prevent the use of treatments that are 
unlikely to be effective while simultaneously identifying novel therapeutic targets. 

Tumor clusters and targets were shared by pre- and post-treatment tumors and revealed potential 
causes of treatment failure/response 

In the recurrent settings, it is imperative to investigate whether information obtained from a tumor 
can predict the phenotype of tumors to come. Thus, we spatially sequenced the SEP21 OPSCC tumor 
(failed combinational therapy) and compared it to the previously sequenced MAR21 tumor (failed 
monotherapy) (Figure 3A). Annotations based on transcriptional profiles were consistent with 
pathologists’ evaluation, showing that ST was capable of successfully identifying tumor cells 
(Figure 3B). Furthermore, transcriptomic annotation aided the pathology team in resolving a 
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conflictive area where low stroma abundance made it difficult to assess the invasive cancer (tumor), 
highlighting the power of using unbiased molecular profiles to characterize tissue regions (Figure 
S7). To compare cancer cells in both biopsies, we performed the same cell-cycle analysis (Figure 
3C) and unbiased gene markers identification for clusters (Figure 3D) as for MAR21 (Figure 1D). 
The consistent results mapped the same carcinoma hubs in both biopsies, where MAR21 CL4 and 
CL5 correspond to SEP21 CL4 and CL7 (Figure 3D, S8). Importantly, most of the identified 
MAR21 druggable and experimental targets were also over-expressed by SEP21 tumor clusters 
(Figure 3E-G, S8, Table S3, S4). These druggable targets were identified in separate tissues and at 
different time points, suggesting the reproducibility of detecting potential targets, which colocalize to 
cancer regions and maintain a high expression level throughout time and space.  

The initial lack of response to anti-PD-1 treatment and subsequent resurgence of a new 
locoregional tumor suggests evasion by a drug resistance mechanism. The deep analysis of spatial 
proteo-transcriptomics of the MAR21 tumor showed no expression of  PD-1 in the tumor hubs, but 
rather scattered expression of this target across the tissue section in non-cancer cells, potentially 
being the cause for the lack of response. In contrast, the combinatorial therapies targeting PD-1 and 
VEGFR at the same time showed initial responses with tumor self-amputation, followed by tumor 
resurgence when VEGFR was reduced to aid with patient's coagulation/healing. Analysis of the 
SEP21 sample showed low PD-1/PDL-1 and high VEGFA levels at the tumor locations. Overall, our 
findings strongly suggest that the therapeutic response to MAR21 OPSCC was not driven by 
Pembrolizumab but lenvatinib, as its reduction caused the growth of recurrent VEGFAhigh tumors 
previously suppressed by the chemotherapy. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2023. ; https://doi.org/10.1101/2023.02.10.527955doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.10.527955
http://creativecommons.org/licenses/by-nc-nd/4.0/


Causer A. et al., 2023. 

 10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2023. ; https://doi.org/10.1101/2023.02.10.527955doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.10.527955
http://creativecommons.org/licenses/by-nc-nd/4.0/


Causer A. et al., 2023. 

 11

Figure 3. Transcriptional comparison between MAR21 and recurrent SEP21 and Ligand-receptor interaction 
analysis for therapeutic target selection. A. Spatial representation of unsupervised clusters identified between 
integrated tumor samples. MAR21 highlighted in red shades and recurrent tumor SEP21 highlighted in blue shades. B. 
Annotated cell cycle phase of each spot based on relative expression of specific cell phase genes. C. Pathologist 
annotations of SEP21, defining general tissue structures including epithelium (brown), dysplastic tissue (light blue) and 
tumor (dark blue). D. Chord diagram displays genetic correlation between new clusters corresponding to integration of 
the MAR21 and SEP21. Comparisons were based on gene expression levels of the top 3 upregulated genes expressed by 
each original MAR21 cluster (only one muscle gene was found in the new cluster) within each new cluster. Connecting 
ribbons define the correlation between original and new clusters which significantly over-express each gene. E. Spatial 
expression of genes across each spot targeted by current clinical therapies. F. Spatial expression of genes targeted by 
select experimental drug therapies. G. Spatial expression of genes targeted by select experimental drug therapies only 
seen in SEP21 samples. H. Spatial representation of gene expression for Nivolumab and Pembrolizumab targeted PD-
1/PD-L1 pathway. I. Ranking of top 35 Ligand/Receptor (L/R) pairs targeted by clinical and experimental therapies 
expressed by the healthy (red), MAR21 (red) recurrent SEP21 (blue) and additional patient (orange) samples. Rank was 
based on the number of significant spots expressing each L/R pair across each sample. Colors indicate the location of 
each specific LR pair. Orange spots represent the top 3 L/R pairs specific to the additional sample.  J. Spider-plot 
represents the top 5 most active L/R pairs found across tumor tissue based on the number of spots co-expressing both 
molecules. K. Spatial localization of ligand and receptor expression across tumor tissues (top: MAR21, bottom: SEP21). 
Red spots indicate co-expression of both ligand and receptor within the same spot. L. Significantly active IPA pathways 
associated with expression of the top two ranked L-R pairs (TF/TFRC and VEGFA/NRP1). Bars indicate negative-log p-
value of each pathway based on the proportion of genes within each canonical pathway that were also significantly up- or 
down-regulated within spots co-expressing both L-R pairs. M. Infographic representing the proposed protocol to 
incorporate spatial multiomics within a clinical setting.  

Novel method to prioritize targets based on Ligand/Receptor interactions 

Treatment personalization is considered the future of many medical disciplines including 
oncology. As many targeted anti-cancer drugs act by blocking ligand/receptor interactions (L/R), we 
explored the possibility of tailored treatment directed against patient’s tumor core upregulated genes 
by ranking the relative functionality of these targets based on the colocalization and activity of L/R 
pairings in the tumor microenvironment (Figure 3I). Based on the expression levels of co-localized 
L/Rs in each sample (healthy, MAR21 and SEP21), we implemented stlearn methods 22 to rank the 
50 L/R pairs that are known to be potential genetic targets of previously identified clinical and 
preclinical drugs (Figure 2I-J, Table S3-4). This classification allowed us to select the top-5 most 
active L/Rs in the tumor vs the healthy tissue, being VEGFA/NRP1 and TF/TFRC highly active in 
both the original and recurrent OPSCCs (Figure 15J). Importantly, spatial analysis identified the co-
expression of these L/R pairs primarily within the malignant regions of both tumor samples, which 
would specifically focalize the treatment to the malignant tumor clusters (Figure 3K). The selected 
targets were patient-specific, as the analysis of another individual’s HPV+ OPSCC, showed that 
although some interactions, such as VEGFA/NRP1 were present, the most active L/Rs in the tumor 
were ITGA2-related pathways (Figure 3I, S9). The analysis of the additional patient sample showed 
that this patient had a high expression of PD-1 and PD-L1 in the cancer core region, a contrasting 
pattern compared to the case reported here, suggesting that this patient might be responsive to PD-
1/PD-L1 drug. Thus, spatial gene expression profiling can detect specific expression patterns of drug 
targets in each patient sample.  Lastly, we confirmed that both VEGFA/NRP1 and TF/TFRC 
interactions were biologically functional as DEGs from L/R-positive vs the L/R-negative spots were 
significantly enriched in canonical pathways associated with the downstream activation of these L/R 
pairs (Ingenuity Pathway Analysis (IPA), Figure 3L). Overall, we identified that L/R co-expression 
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and downstream pathway analysis can be used to prioritize clinical targets allowing clinicians to 
combine multiple strategies that will interfere with known tumor-activated pathways in a 
personalized manner. 

Discussion 

Although the value of the global personalized medicine market is expected to reach USD 922.72 
billion by 2030, a 6th of which will account for Oncology Precision Medicine alone 23, very few 
biomarkers are capable of predicting cancer response to treatment with reasonable certainty.  In fact, 
tumor heterogeneity and constant disease evolution indicate that patients will only benefit long-term 
from tailored medicine if they are based on analytical pipelines that are as holistic and dynamic as 
the disease itself is. Studies using spatial-omics techniques to understand cancer disease development 
and progression are increasingly more common in the field of oncology research 24. Here, we sought 
to explore the use of spatial multi-omics in a clinical context, to determine its appropriateness as a 
potential medical tool for recapitulating patient disease progression and aiding in the drug selection 
and combination processes. 

Based on spatially defined, differentially expressed genes, we resolved intra-tumor heterogeneity 
and confidently annotated diverse tissue types including malignant and healthy, stroma and 
infiltrating immune cell populations.  Two clusters (CL4 and 5), which overlayed the cancerous and 
necrotic regions defined by pathologist annotations, were highlighted by multiple lines of unbiased 
analyses as carcinoma tumor communities showing differential metabolic signatures: CL4, highly 
proliferative leading-edge vs CL5, core enriched in immune infiltrates interacting with tumor cells 
(Figure 1). Detection of two cancer clusters, with distinct molecular, but not morphological 
phenotypes, was an important result of our data-driven approach. Although, Ki67 protein detection 
confirmed the proliferative nature of CL4, expression of cell-cycle-phase associated genes predicted 
a higher degree of cells in S-G2M phases (Figure 2C). This suggests that ST method was more 
sensitive at detecting dividing cells by assessing hundreds of cell-cycle-related genes in contrasts to a 
sole marker as immunohistochemistry methods usually use 13. Therefore, this method could aid the 
assessment of the tissue mitotic activity in an unbiased manner, pinpointing regions with 
heterogeneous metabolic profiles that could impact prognosis and response to treatment targeting 
replicative stress. Importantly, the cytotoxicity of certain chemotherapies such as Cisplatin and 
Paclitaxel, depend on the tumor proliferative state 15,16. For instance, repeated dosages of Paclitaxel 
were more efficient when given in cell culture to cells preparing for G2M phase 16. ST data of core 
biopsies taken at different time-points during the treatment could be an excellent tool to test whether 
timing optimization of sequential chemotherapeutics improves their cytotoxic capacity in a clinical 
setting. 

To be noted, all analyses performed were conducted prior to receiving tissue annotations, 
emphasizing the true unbiased and discovery strengths of our approach and findings. For the second 
tumor (SEP21), the transcriptomic signature also informed pathologists of tissue areas with 
suspicious features, which facilitated the resolution of conflict zones resulting in a more assertive 
annotation of the dysplastic regions. We have proven that unbiased annotation based on ST data 
recapitulates clinical annotations and can assist pathologists especially when the quality/size of the 
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sample is not optimal for visual macroscopic characterization. Although, more data needs to be 
collected and included in reference databases to enhance the accuracy of the annotations (i.e., HPV+-
cervical cancer vs HPV+-OPSCC), overall, the ability to precisely define these cancer regions and 
assess specific markers differentially expressed by them has a great potential for drug selection. 

The interactions between myeloid cells and lymphocytes with tumor cells play an important role 
in the functioning TME and can determine treatment outcome 25,26. Such interactions ideally require 
single-cell resolution data and detailed identification of immune cell types. However, the current 
Visium ST technology suffers from relatively low single-cell resolution as ST ‘spots’ encompass 
average gene expression across several cells (1-9 cells). To address this issue, we developed a novel 
spatial multi-omics deconvolution approach (SPiD) by integrating Visium ST and Phenocylcer SP 
data which outperformed the currently 4 most used methods. Importantly, our method has the 
additional advantage of considering both protein and transcriptional data when studying tumor and 
TME interactions, which increases the robustness of cell identification, especially of immune cell 
populations, by overcoming the problem of the non-linear relationship between RNA expression and 
protein levels 27-30. Using our protein/RNA-based method we identified 14 different immune sub-
types including activated CD4+ and CD8+ T cells, macrophages and B cells present within the inner 
tumor, which would otherwise be impossible by sole visual evaluation of the sample. Our method 
enables the association of the cell type to their corresponding transcriptional profile. This 
information can correlate cell subsets with disease progression and response to treatment as 
previously seen for HNSCC, where certain CD4+ and CD8+ T-cell phenotypes correlated with longer 
progression-free survival 31,32. 

The spatial component of our analysis allowed us to focus on the critical tumor (CL4-5), where 
we observed that most upregulated genes were either oncogenes, poor prognosis biomarkers or drug 
resistance genes confirming the active and aggressive nature of our patient’s disease 33. In the clinic, 
this information could help stratify patients and tailor surveillance plans based on expected disease 
behavior. The high-throughput nature of our approach allows answering questions such as, which 
suitable targets the tumor hubs are expressing. Although PD-1/PD-L1 expression was very low, we 
identified 8 over-expressed druggable targets (i.e., EGFR, TF, VEGF) and 9 preclinical targets in 
CL4-5. Although, more work is needed to prove the robustness between the presence/distribution of 
a target and therapy response, being able to interrogate the patient’s tissue whether a target is present 
or not will save time, resources and psychological burden to patients and their families. In fact, these 
drugs and downstream analysis results were patient-specific, reinforcing the real need for tailor 
approaches. Nonetheless, targets were mostly shared by the recurrent tumors of the same area, 
indicating that in this case the information gained from the first patient’s OPSCC biopsy still applied 
to his potentially preventable subsequent malignancy. However, considering the time and health 
constraints of recurrent non-responsive cancer patients, a list of targets might not guarantee patient’s 
long-term clinical response, thus a way to rank the target candidates is equally vital. We reasoned 
that the likelihood of a drug having an impact on tumor growth and progression would be linked with 
its capacity to interfere with vital and active pathways in the malignancy. Therefore, we conceived a 
novel way to rank each drug’s potential success, based on the co-expression of each target ligand-
receptor pair (L/R), assuming that co-expression would lead to interaction hence pathway activation. 
After our analysis, our patient’s list of 17 clinical/preclinical targets was reduced to 3 top druggable 
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pathways active in the patient’s tumor clusters: TFRC, NRP1 and EGFR. Of note, NRP1 is a SARS-
CoV2 receptor, for which dozens of new drugs have recently been developed 34,35, and hence may 
justify further clinical applicability in cancer. 

Overall, our work clearly demonstrates the power of Spatial proteogenomic data to resolve tumor 
intra- and inter-heterogeneity and enables the real possibility for oncologists to personalize cancer 
management. We envision that spatial RNA/protein analysis can be adopted in the clinical settings, 
as whole genome sequencing is now a routine test requested by clinicians. Importantly, the cost of 
these technologies and high technical requirements can already be drastically reduced by the 
implementation of artificial intelligence (AI) models capable to predict in situ gene expression 
inferred from fast/low-cost H&E images using curated disease Spatial-omics training data sets 36,37. 
Thus, after an initial investment dedicated to create standardized disease-specific AI training 
material, the spatial data of each patient’s tumor biopsy can be obtained (experimentally or AI-
inferred) and contrasted against spatial databases of the disease to help with different steps along 
each patient’s journey: (i) aid in the annotation of the tumor, (ii) stratify patients based on disease 
risk progression to personalize surveillance plans; and (iii) to generate a list based on a patient’s own 
disease features which informs oncologists of targets with quantifiable likelihood to have an impact 
on the disease. This information can be used to implement combinatorial therapeutic programs to 
prevent drug resistance minimizing off-target effects (Figure 3M).  

Methods 

Clinical history of the patient  

A 60-year-old male ex-smoker with a 10 pack-year history presented with de novo oligometastatic 
disease, having been diagnosed with a p16 positive SCC primary tumor of the right tonsil and 
biopsy-proven left upper lobe lung metastasis (Figure 1A-B). He received concurrent 
chemoradiotherapy comprising weekly cisplatin and 70Gy in 35 fractions of radiation targeting the 
primary tumor and bilateral level II and III neck nodes. Additionally, he received stereotactic 
radiation to the left lung nodule of 50Gy in 5 fractions, completed in June 2019. 

The patient underwent disease re-assessment three months later transfer of care, with PET/CT 
demonstrating multiple new bilateral pulmonary metastases and no locoregional disease. He 
commenced treatment of 480mg nivolumab every 4 weeks and a CT scan after three cycles revealed 
resolution of two nodules and significant reduction in a third but minor growth of a left lower lobe 
nodule. This single nodule was then treated with stereotactic radiation of 48Gy in four fractions and 
nivolumab was continued. Regular imaging confirmed stable intrathoracic disease for a further 13 
months but a PET/CT scan in February 2021 demonstrated local recurrence of disease with a 22mm 
lesion of the left soft palate (biopsy MAR21) and progression of metastatic lesions in the lungs 
bilaterally. 

The patient was then enrolled in a clinical trial (LEAP-009) and randomized to treatment of 
pembrolizumab 200mg every 3 weeks and 20mg lenvatinib orally daily. After demonstrating an early 
partial response radiologically, including autoamputation of the oropharyngeal recurrence with 
absence of measurable disease and a reduction in lung metastases, a treatment delay was required 
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due to oropharyngeal pain and severe non-healing ulceration of the oropharynx. This subsequently 
settled and the patient recommenced pembrolizumab and dose-reduced lenvatinib (14mg orally 
daily) in July 2021.  The measurable disease remained stable radiologically until January 2022, 
although mucosal changes over the tonsillar fossa and soft palate were suspicious clinically from 
September (biopsy SEP21). Pembrolizumab and Lenvatinib were ceased, and the patient came off 
trial in early February 2022 when MRI scan confirmed definite disease progression involving the 
oropharynx. 

Spatial transcriptomics   

 Five μm sections were taken and multiplexed onto Visium Spatial Gene Expression Slides (10x 
Genomics). Gene expression quantification per spot was performed following 10X Chromium 
LIT000128 - Rev B (Supplementary appendix).   

Spatial proteomics 

A serial tissue section (4μm thick) from the MAR21 FFPE block was taken and analyzed using 
Phenocycler. Coverslip preparation, antibody conjugation, tissue staining, Phenocycler rendering, 
and imaging were completed in accordance with Phenocycler manufacturer instructions (Akoya 
Biosciences User Manual, Revision-C)38. Antibodies used for tissue staining and their respective 
targets are described in Table S1 (Supplementary appendix).  

List of Supplementary Materials 

Provided in Supplementary appendix: 

Supplemental Methods  

Supplemental Table S1 Spatial proteomics: phenocycler antibody panel. 
Supplemental Table S2 Identified target genes of preclinical drugs. 
Supplemental Figure S1 UMAP representation of unbiased Visium clustering of MAR21 and 

healthy paired samples. 
Supplemental Figure S2 Transcriptional profiles of distinct cancer clusters. 
Supplemental Figure S3 PHENOCYCLER-informed deconvolution outperforms established 

transcription-based deconvolution methods. 
Supplemental Figure S4 Localization of proliferating tumor cells. 
Supplemental Figure S5 Integrated Spatial-Omic characterization of tumor immune cell 

microenvironments. 
Supplemental Figure S6 Transcriptional profile of tumor clusters within MAR21 OPSCC. 
Supplemental Figure S7 Initial Pathologist annotation of SEP21 OPSCC sample. 
Supplemental Figure S8 Tumor transcriptional profile recapitulated in recurrent OPSCC. 
Supplemental Figure S9 Top druggable targets differ between additional OPSCC patients. 
Supplemental Table S3 Gene classification based on function reported in the literature in the cancer 

setting. 
Supplemental Table S4 Identified clinical and preclinical targets. 
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