

1

2

3 **Cyclical compression loading is the dominant mechanoregulator of synovial
4 joint morphogenesis**

5 Josepha Godivier¹, Elizabeth A. Lawrence², Mengdi Wang², Chrissy L. Hammond², Niamh C.
6 Nowlan^{1,3*}

7

8

9 ¹Department of Bioengineering, Imperial College London, London, United Kingdom

10 ²School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom,

11 ³School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland

12

13 * Corresponding author

14 E-mail: niamh.nowlan@ucd.ie

15

16 Short title: Cyclical compression loading is a key influence to joint morphogenesis

17 **Abstract**

18 Mechanical stimuli arising from fetal movements are critical factors underlying joint growth.
19 Abnormal fetal movements negatively affect joint shape features with important implications for
20 joint function and health, but the mechanisms by which mechanical forces due to fetal movements
21 influence joint growth are still unclear. In this research, we integrated cell-level data into a novel
22 mechanobiological model of zebrafish jaw joint morphogenesis to identify links between the
23 mechanical stimuli arising from movement and patterns of growth. Larval zebrafish jaw joint growth
24 patterns were quantified from tracked cell-data at several successive developmental stages in the
25 presence or absence of movements. Pharmacological immobilisation, prior to the onset of jaw
26 movements, resulted in growth rate decreases which were stronger along the ventrodorsal axis.
27 Simulations of joint morphogenesis, based on the quantified cell-level data and which integrated
28 mechanical stimuli arising from simulated jaw movements, were used to test hypotheses relating
29 specific mechanical stimuli with the local changes in size and shape. Different types of mechanical
30 stimulation were incorporated into the simulation to provide the mechanoregulated component on
31 growth in addition to the baseline (non mechanoregulated) growth which occurs in the immobilised
32 animals. We found that the magnitude of compression experienced during joint motion when
33 included as the stimulus for mechanoregulated growth could not predict the real, normally loaded
34 shaped joints. However, when the dynamic changes caused by the application of cyclical
35 compression was implemented as the stimulus for mechanoregulated growth, the sizes and shapes
36 of joints were correctly simulated. We conclude therefore that the cyclical application of
37 compression loading due to the dynamic nature of fetal movements underlies the
38 mechanoregulation of prenatal joint morphogenesis. Our results provide a fundamental advance in
39 our understanding of mechanoregulation of the developing joint and increase our understanding of
40 the origins of conditions such as hip dysplasia and arthrogryposis.

42 **Author summary**

43 The mechanical forces caused by fetal movements are important for normal development of the
44 skeleton, and in particular for joint shape. Several common developmental musculoskeletal
45 conditions such as developmental dysplasia of the hip and arthrogryposis are associated with
46 reduced or restricted fetal movements. Paediatric joint malformations impair joint function and can
47 be debilitating. To understand the origins of such conditions, it is essential to understand how the
48 mechanical forces arising from movements influence joint growth and shape. In this research, we
49 used a computational model of joint growth applied to the zebrafish jaw joint to study the impact of
50 fetal movements on joint growth and shape. We find that the cyclical application of compression
51 loading is critical to the normal growth and shape of the developing joint. Our findings implicate that
52 dynamic compression must be targeted when developing strategies for the treatment of
53 musculoskeletal conditions through targeted physiotherapy.

54

55 Introduction

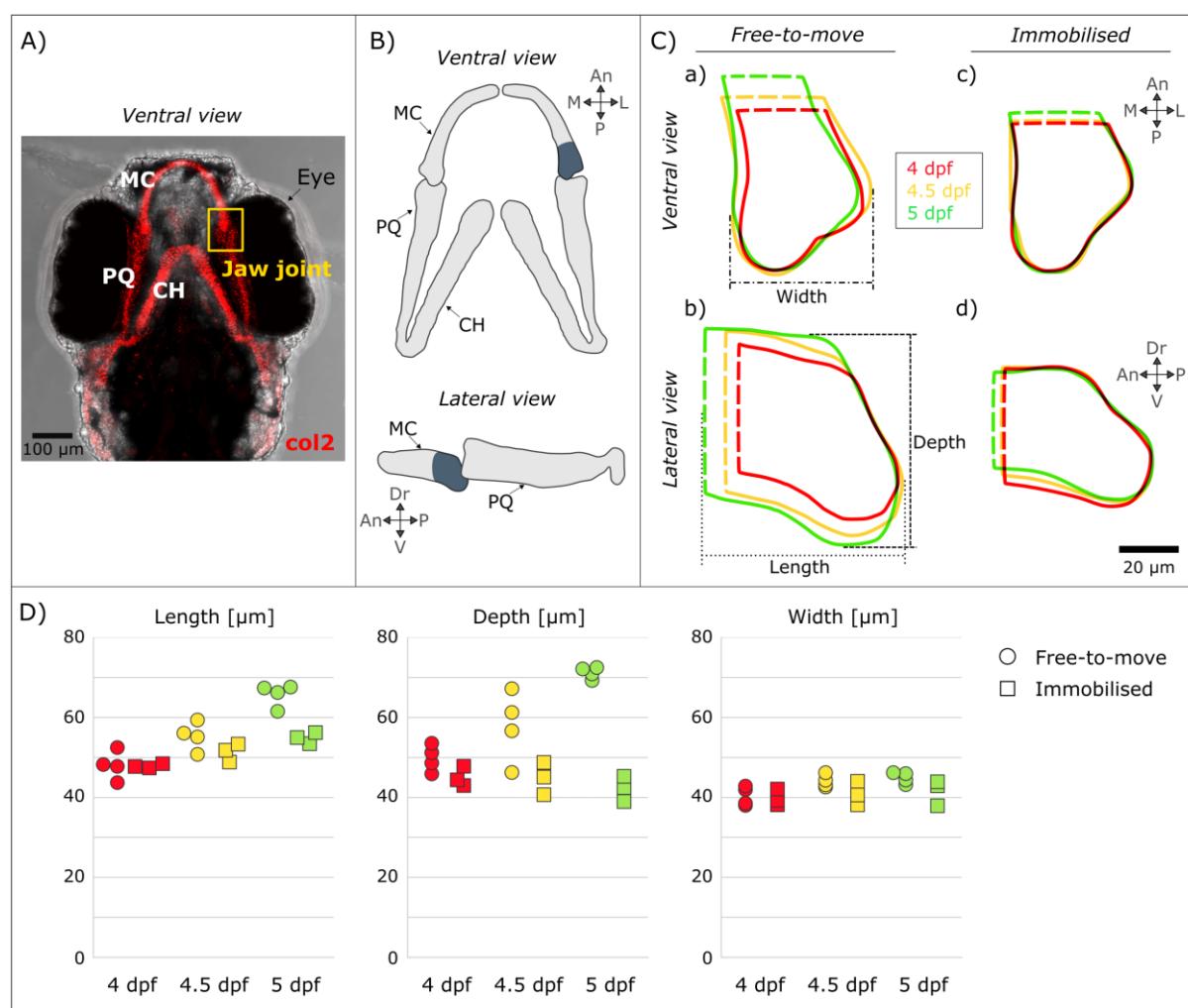
56 Fetal movements are critical for healthy skeletal development, and abnormal movement *in utero* is
57 associated with several conditions affecting babies in which the joint does not acquire the correct
58 shape. Developmental dysplasia of the hip and arthrogryposis are two examples of such conditions,
59 both of which can have lasting health consequences including the early onset of osteoarthritis [1, 2].
60 When skeletal muscle is absent or non-contractile in animal models, skeletal malformations include
61 the loss of interlocking joint shape features and fusion of the skeletal elements in some (but not all)
62 joints [3-16]. In pharmacologically paralysed chicks, for example, the femoral epiphyses are narrower
63 both at the level of the knee [12] and of the hip [4, 12] with a loss of the acetabulum depth [4], while
64 in muscleless-limb mice, the femoral condyles, though smaller than control littermates, are
65 abnormally protruding [3]. Joint morphogenesis, the process by which joints acquire their shapes, is
66 determined by co-ordinated cell activities including proliferation [5, 7, 8, 17] and changes in cell
67 orientation, size and intercalation [5, 7, 15, 18]. The mechanisms through which mechanical loading
68 from fetal movements regulates the cellular activities underlying joint morphogenesis are unclear.
69 Chondrocyte proliferation [5, 7, 8, 18] and intercalation [5, 7] are impaired in the absence of
70 embryonic movement. In paralysed zebrafish jaw joints and in muscleless-limb mice elbow joints,
71 chondrocytes are generally smaller and rounder than those of controls and have an altered
72 orientation, indicating cell immaturity [8, 15, 19]. The organisation of chondrocytes into columns in
73 the growth plate, which contributes to rudiments' elongation, is inhibited in animal models of
74 abnormal fetal movements [7, 15]. Despite observations at the tissue and cellular level, the
75 mechanisms by which fetal movements influence joint morphogenesis are still unclear.
76 Insights on cartilage mechanoregulation can be gained by studying the effects of mechanical loads on
77 cartilage *in vivo/in ovo*, cartilage explants *ex vivo* or chondrocytes *in vitro*. *In vivo* [5], *in ovo* [4, 9] and
78 *in vitro* [20] studies have shown that the development of functioning joints depends on the timing
79 and duration of movement. While early movements, prior to joint cavitation (the physical separation

80 of the skeletal elements), are crucial for the separation of joint elements [4, 5, 7, 9, 12, 15], short
81 periods of immobility after cavitation has taken place have only minor influence on joint morphology
82 [4]. However, long periods of immobilisation, even after cavitation has occurred, result in marked
83 shape changes which can lead to joint fusion in most extreme cases in chick limbs [4, 9, 12] and larval
84 zebrafish jaws [5, 7, 15]. Fetal chick knees cultured *in vitro* showed that the duration of loading is an
85 important factor influencing joint growth and morphogenesis, with longer durations resulting in
86 more normally developed joints [20]. Tissue engineering research has interrogated the effects of
87 dynamic loading on chondrocytes *in vitro*, either through direct compression or hydrostatic pressure
88 loading. Direct compression loading promotes extracellular matrix synthesis and tissue material
89 properties as reviewed in [21, 22]. Significant increases in glycosaminoglycan (GAG) content were
90 reported when dynamic compression was applied to juvenile bovine chondrocytes compared to
91 unloaded controls [23, 24]. Increased production of collagen due to dynamic loading is less evident; a
92 review compiling results from 63 studies reported that more studies reported no increase or a
93 decrease in collage content when dynamic compression was applied, as opposed to unloaded
94 controls, than studies which reported a positive effect [21]. Meanwhile, cyclic hydrostatic loading
95 significantly increases ECM synthesis with upregulation of both GAG and collagen productions [25-
96 27]. Compressive dynamic loading also leads to increased chondrocyte proliferation compared with
97 free-swelling controls [28]. The duration of loading is a key parameter for the positive effect of
98 dynamic compression on chondrogenesis, with long-duration studies tending to find increased GAG
99 or collagen contents compared to short-duration studies as reviewed in [21]. In contrast with
100 dynamic loading, static compression has a degenerative effect on chondrocyte metabolism leading
101 to, for example, decreased GAG content [29-31]. While valuable insights have been gained on the
102 specific parameters influencing chondrocyte mechanoregulation, mainly *in vitro*, the biomechanical
103 regulation of the cells underlying joint morphogenesis remains largely unclear.
104 Mechanobiological simulations offer a means to integrate mechanical and biological information to
105 bring about insights not possible with traditional approaches [32, 33]. Mechanobiological models of

106 joint growth and morphogenesis have indicated that mechanical stimuli arising from joint motion can
107 predict the emergence of shape features seen under normal or altered loading conditions [34-38].
108 For example, when simulating hip joint growth, asymmetric loading conditions resulted in shape
109 alterations of the femoral head [34-36] and the acetabulum [36] which were characteristic of shape
110 features seen in hip dysplasia [34, 36] or cerebral palsy [35]. Modelling muscle atrophy due to
111 brachial plexus birth injury enabled the prediction of deformed glenohumeral joint shapes as seen in
112 children [38]. A recent study of the regenerating axolotl humerus correlated interstitial pressure,
113 driven by cyclic loading, with joint growth and shape changes [37]. However, previous
114 mechanobiological models [34, 35, 37-39], including our own [36, 40], have not used accurate data
115 for cell-level inputs. The biological contributions to morphogenesis has been assumed to be
116 proportional to chondrocyte density which was considered either uniform across the rudiment [34,
117 35, 37, 38] or decreasing proportional to distance from the joint line [36, 39, 40]. A range of different
118 biophysical stimuli (peak, minimum or average hydrostatic stress [34-36, 39-43], octahedral shear
119 stress [34, 35, 41, 43, 44] and interstitial fluid pressure [37]) have been corelated with growth and
120 morphogenesis, but a framework to quantitatively compare the relationships between specific
121 stimuli and developmental change is lacking. To further explore the complex relationship between
122 mechanical loading and joint morphogenesis, precise and specific characterisation of the
123 contributions of cell-level dynamics to joint growth is necessary, in addition to modelling frameworks
124 which allow the testing of hypotheses relating specific biophysical stimuli to developmental change.

125 Over recent years, progress has been made in characterising the cellular dynamics involved in tissue
126 growth. Spatial morphometric analyses were conducted on light-sheet images of the embryonic
127 murine tibia, revealing that a number of cell morphological changes and growth strategies contribute
128 to growth plates' expansion, especially highly spatially-dependent cell volume expansions [45].
129 Quantification of tissue growth based on cell lineage tracking data in the developing chick limb bud
130 [46] and the Drosophila wing disc [47] showed that spatially and temporally heterogeneous growth
131 patterns coupled with growth anisotropy are major drivers of tissue morphogenesis. Recent work

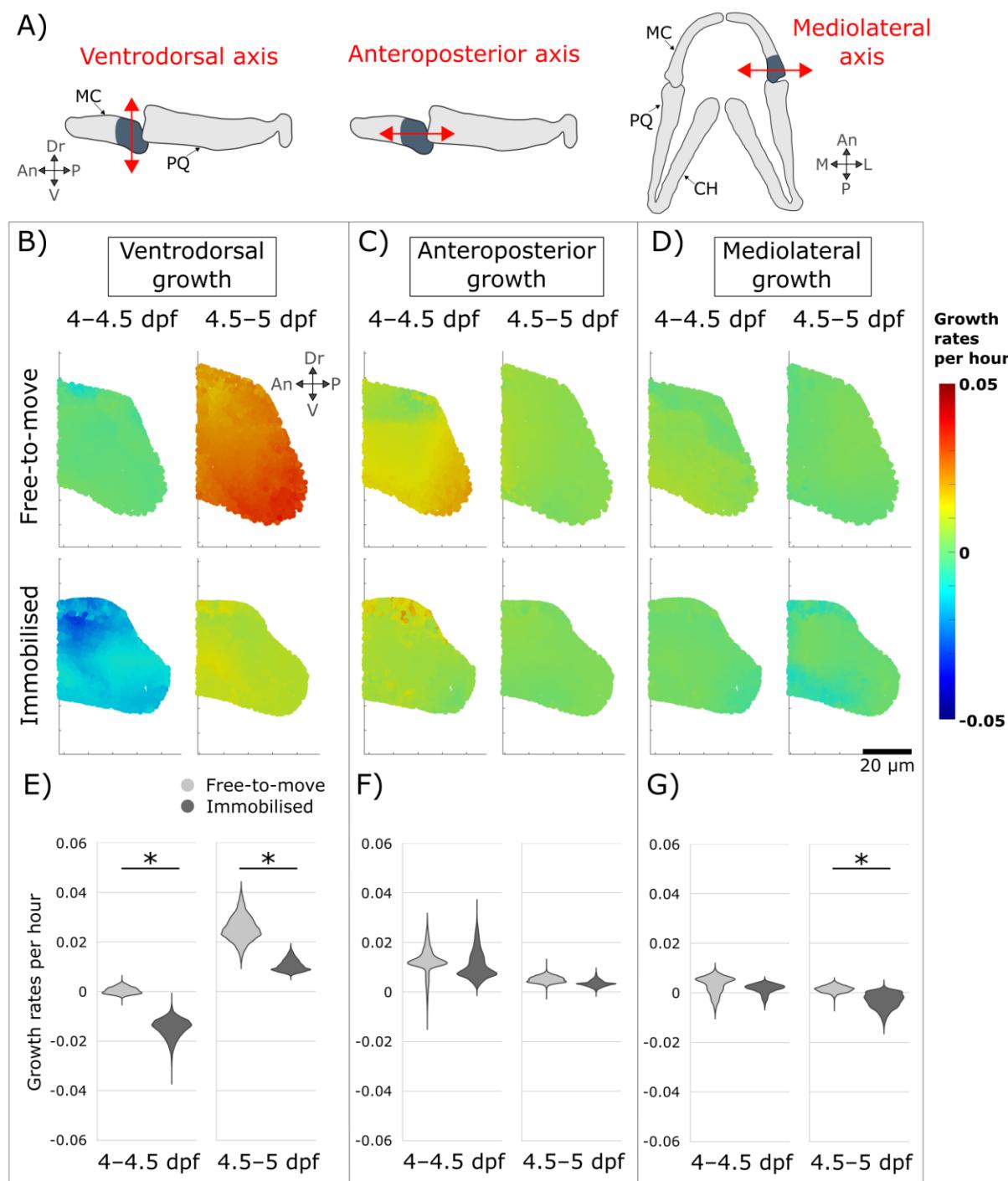
132 from our group reported that growth in the zebrafish jaw joint exhibits pronounced anisotropy likely
133 influenced by cell orientation [48]. Integrating accurately quantified cell-level data into new
134 mechanobiological models of joint growth will greatly deepen our understanding of the mechano-
135 regulatory processes involved.


136 In this research, we aimed to identify the causal relationship between specific aspects of the
137 biomechanical stimuli arising from embryonic movements and the patterns of joint growth and
138 morphogenesis. We quantified zebrafish jaw joint morphogenesis, and the underlying cell activities,
139 in the presence of normal and altered mechanical environments, and found that growth rates were
140 diminished along a specific anatomical axis (the ventrodorsal axis) between free-to-move and
141 immobilised larvae. Next, we designed a mechanobiological model of zebrafish jaw joint
142 morphogenesis integrating quantified cell-activities to test hypotheses on how biomechanical stimuli
143 arising from movements promote growth pattern changes. It emerged that, rather than the
144 magnitude of compressions experienced during movement alone, the most likely stimulus for
145 mechano-regulated growth is the dynamic changes arising from cyclic compression of the joint
146 elements.

147 **Results**

148 **Immobilisation leads to growth rate alterations along specific anatomical axes which
149 reflect joint shape changes**

150 The shapes of Meckel's cartilage (MC) joint elements (shown in Fig 1A and B) from larvae
151 immobilised from day 3 post fertilisation and from free-to-move larvae (controls) were measured at
152 4, 4.5 and 5 days post fertilisation (dpf). While there were no significant differences in shape
153 measurements between free-to-move and immobilised groups, or between timepoints within each
154 group, the free-to-move larvae exhibited higher increases of MC length over the whole timeframe
155 compared to immobilised larvae as seen with average shape outlines in Fig 1Cb, d. MC length

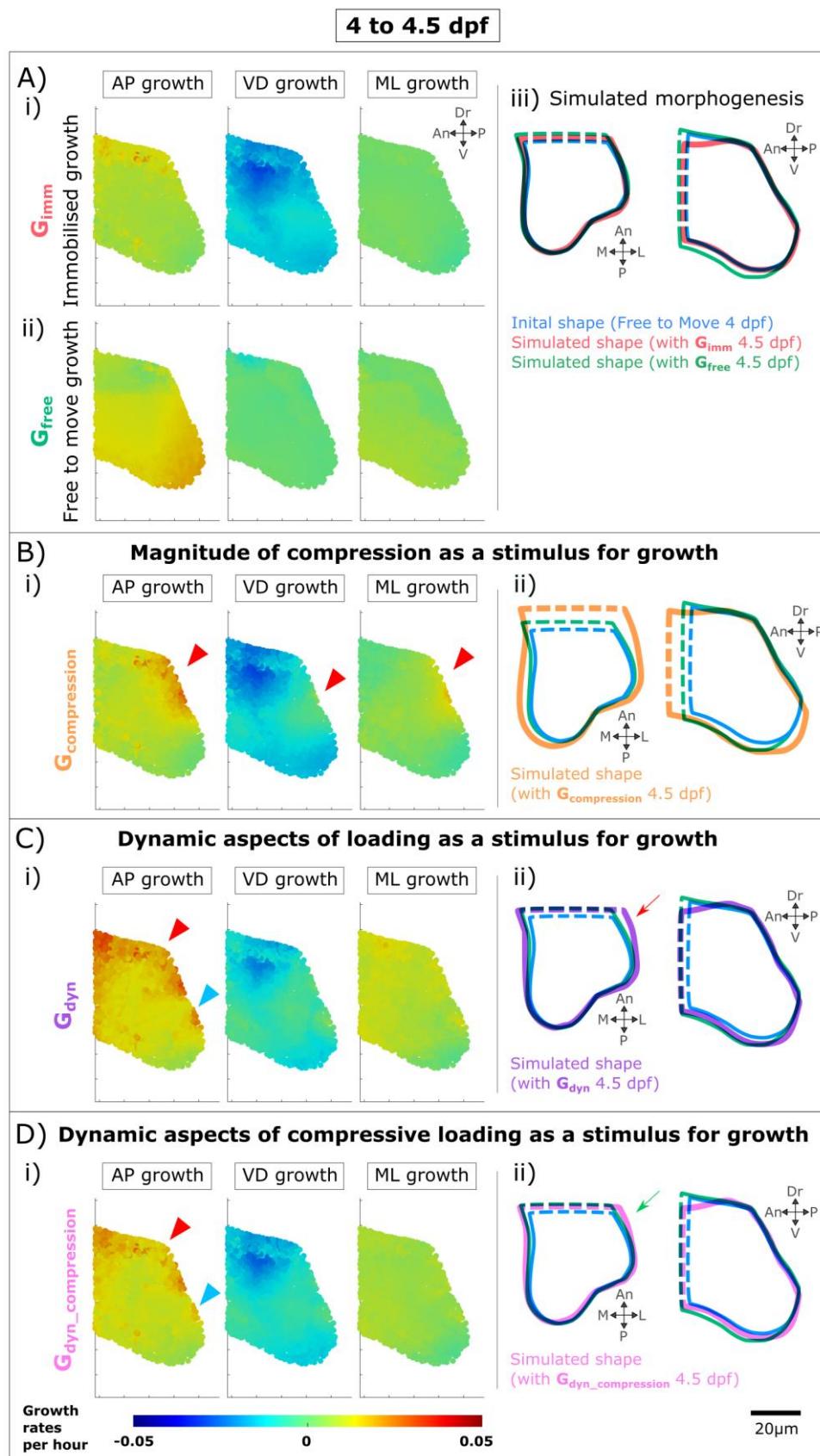

156 increased by approximately 37% from 4 to 5 dpf in the free-to-move larvae compared to an average
157 increase of 15% in the immobilised larvae over the same timeframe (Fig 1D). Immobilised MC depth
158 remained almost constant from 4 to 5 dpf whereas free-to-move MC depth markedly increased over
159 the same timeframe (43% increase in free-to-move larvae, compared to 6% decrease in the
160 immobilised larvae) (Fig 1Cb, d and Fig 1D). Free-to-move MC width at the level of the joint increased
161 slightly over the investigated timeframe (11% increase) whereas the immobilised MC width remained
162 almost unchanged over time (4% increase; Fig 1Ca, c and Fig 1D). Therefore, growth of the depth of
163 the MC was most severely affected by the absence of jaw movements, with growth of MC length and
164 width less affected.

165
166 **Fig 1. In the Meckel's cartilage (MC) element, immobilisation affected growth in the depth more**
167 **than growth in the width or length.** (A) Brightfield ventral view of a 7 dpf zebrafish head
168 expressing *Tg(Col2a1aBAC:mCherry)* cartilage marker showing the location of the jaw joint (yellow

169 *box). (B) Sketches of the jaw in the ventral and lateral planes illustrating the anterior Meckel's*
170 *cartilage (MC) element. (C) Shape outlines of average MC shape at 4, 4.5 and 5 dpf for free-to-*
171 *move (a, b) and immobilised (c, d) larvae. (D) MC length, depth and width measurements taken on*
172 *individual larvae from the free-to-move (n=4 per group) and immobilised larvae (n=3 per group) at*
173 *4, 4.5 and 5 dpf. An: Anterior, CH: Ceratohyal, Dr: Dorsal, L: Lateral, M: Medial, MC: Meckel's*
174 *cartilage, P: Posterior, PQ: Palatoquadrate, V: Ventral.*

175 Growth rates were calculated from tracked cell-level data and visualised in the ventrodorsal,
176 anteroposterior and mediolateral axes in free-to-move and immobilised larvae and over two time-
177 windows: from 4 to 4.5 dpf and from 4.5 to 5 dpf. Ventrodorsal growth rates (along the depth) in
178 immobilised larvae were significantly lower in both time-windows than in free-to-move larvae as
179 shown in Fig 2A, B, E. Anteroposterior growth rates (along the length) were not different between
180 free-to-move and immobilised larvae as shown in Fig 2A, C, F. Mediолateral growth rates were
181 significantly lower in immobilised compared to free-to-move larvae from 4.5 to 5 dpf, as shown in Fig
182 2A, D, G, with the drop in the average mediolateral growth rate in the immobilised compared to the
183 free-to-move group being less pronounced than for ventrodorsal growth rates over the same time
184 window. To validate that the growth rates computed from tracked cell activities drive the observed
185 shape changes, morphogenesis was simulated in free-to-move and immobilised larvae using finite
186 element (FE) methods. The global patterns of free-to-move and immobilised jaw joint morphogenesis
187 were correctly simulated using the growth rates obtained from cell-level data, including the observed
188 depth increases in free-to-move controls but not in immobilised, and higher length increases in free-
189 to-move controls than in immobilised, as shown in S1 Appendix. In conclusion, decreases in growth
190 rates due to the elimination of jaw movements were most pronounced along the ventrodorsal axis,
191 explaining the pronounced decreases in MC depth due to immobilisation. Therefore, immobilisation
192 leads to growth rate alterations along specific anatomical axes meaning that growth anisotropy (the
193 direction of tissue deformation) is altered when jaw movements are absent.

194


195 **Fig 2. Immobilisation leads to altered growth rates, primarily along the ventrodorsal axis.** (A) 196 Illustration of the axes used for visualisation of growth anisotropy. (B, C, D) Ventrodorsal, 197 anteroposterior and mediolateral MC growth rates from 4–4.5 and 4.5–5 dpf for both free-to- 198 move and immobilised larvae. Results are displayed in one section in the mid-lateral plane. (E, F, 199 G) Quantitative comparison of ventrodorsal, anteroposterior and mediolateral growth rates 200 between free-to-move and immobilised groups. * indicates significant difference between free-to-

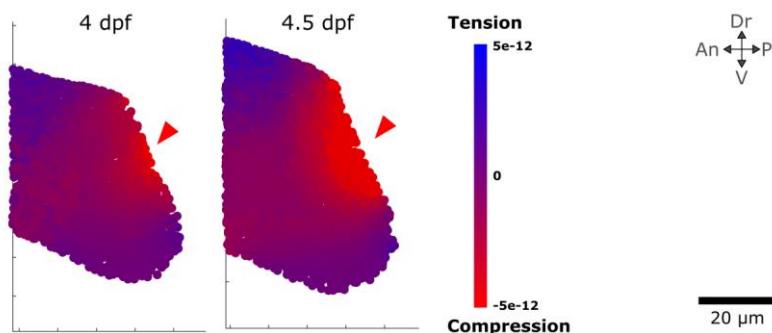
201 move and immobilised means ($p<0.05$). An: Anterior, CH: Ceratohyal, Dr: Dorsal, L: Lateral, M:
202 Medial, MC: Meckel's cartilage, P: Posterior, PQ: Palatoquadrate, V: Ventral.

203 **Dynamic changes in load patterns- but not average values of compression- accurately**

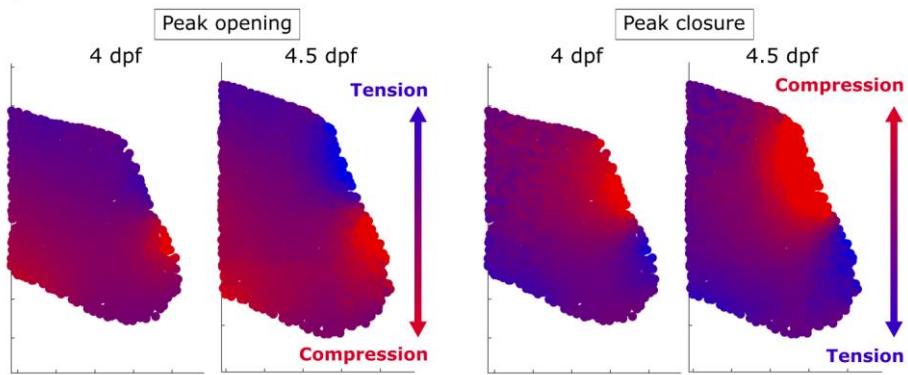
204 **simulate the mechanoregulation of jaw joint morphogenesis**

205 In order to test hypotheses relating different types of mechanical stimuli to joint morphogenesis, we
206 implemented simulations in which immobilised growth rates were applied to control joint shapes
207 serving as the baseline biological contribution to growth. Then, a mechanobiological component of
208 growth was combined to this biological baseline. Three different forms of mechanical stimuli arising
209 from jaw movements were tested to determine which of them led to the most physiological pattern
210 of growth; namely average hydrostatic stress, the dynamic switch from compression to tension over
211 the loading cycle, and lastly the dynamic switch to and from compression without considering the
212 influence of tension. Twelve-hour time intervals were simulated: from 4 to 4.5 dpf for which results
213 are described herein, and 4.5 to 5 dpf whose results were consistent with the first time-interval and
214 are therefore provided in S2 Appendix. The first stimulations used only the immobilised growth rates,
215 representing the biological contribution only (\mathbf{G}_{imm} in Figs 3A-i and S2A-i, red outlines in Figs 3A-iii
216 and S2A-iii). For both time windows, the shapes grown under the biological contribution did not grow
217 in depth, in contrast to when free-to-move growth rates were used (\mathbf{G}_{free} in Figs 3A-ii and S2A-ii,
218 green outlines in Fig 3A-iii and S2A-iii). Length increases were less pronounced using the immobilised
219 growth rates (\mathbf{G}_{imm} , red outlines) than using the free-to-move growth rates (\mathbf{G}_{free} , green outlines) as
220 shown in Figs 3A-iii and S2A-iii.

221


222 **Fig 3. Biological and mechanobiological contributions to jaw joint morphogenesis from 4 to 4.5**
 223 **dpf. A) Biological contributions to morphogenesis in the absence of movements lead to**

224 *undergrowth of MC depth and length compared to free-to-move. A-i) Immobilised ventrodorsal*
225 *(VD), anteroposterior (AP) & mediolateral (ML) growth rates applied to free-to-move 4 dpf shape.*
226 *A-ii) Free-to-move growth rates. A-iii) Outlines of simulated morphogenesis with immobilised or*
227 *free-to-move growth rates promoting growth. B) Average hydrostatic stress levels when used as*
228 *the mechanoregulatory factor fail to simulate physiological jaw joint morphogenesis. B-i)*
229 *Mechanobiological growth rates with compression promoting growth. Red arrowheads point to*
230 *local areas of elevated growth rates which are not physiological. B-ii) Outlines of simulated*
231 *morphogenesis. C) Dynamic patterns of mechanical stimuli (from compression to tension) lead to a*
232 *more physiological growth pattern than average hydrostatic stress levels. C-i) Mechanobiological*
233 *growth rates integrating the dynamic patterns of hydrostatic stress gradients. Red/blue*
234 *arrowheads point local areas of elevated/reduced growth rates which are not physiological. C-ii)*
235 *Outlines of simulated morphogenesis. Red arrow shows MC width overgrowth. D) Dynamic*
236 *patterns of compressive mechanical stimuli lead to the most physiologically correct simulation of*
237 *jaw joint morphogenesis. D-i) Mechanobiological growth rates integrating the dynamic patterns of*
238 *compressive hydrostatic stress gradients. D-ii) Outlines of simulated morphogenesis. Green arrow*
239 *shows the most physiological MC width as compared to previous simulations. An: Anterior, Dr:*
240 *Dorsal, L: Lateral, M: Medial, P: Posterior, V: Ventral.*


241 We first tested the hypothesis that joint mechanoregulated growth is proportional to the amount of
242 compression experienced over joint motion and generated the mechanobiological growth map
243 **G_{compression}**. When simulating jaw opening and closing, average hydrostatic stresses were mostly
244 spread in compression rather than in tension (Fig 4A), and a peak of compression was observed at
245 the level of the jaw joint at both 4 and 4.5 dpf (Fig 4A, red arrowheads). For both time windows, the
246 mechanobiological growth maps **G_{compression}** exhibited spots of locally increased growth rates at the
247 level of the joint line which were not seen in the free-to-move growth maps **G_{free}** (red arrows in Figs
248 3B-i and S2B-i). From 4 to 4.5 dpf, mechanobiological simulations of joint morphogenesis using
249 **G_{compression}** showed physiological MD depth growth compared to the shape grown under the biological
250 contributions **G_{imm}**, but overgrowth of both MC length and MC width compared to when the free-to-
251 move growth rates **G_{free}** were used (Fig 3B-ii). From 4.5 to 5 dpf, there was physiological growth of
252 MC length but no depth nor width increases using **G_{compression}** (Fig S2B-ii). Therefore, jaw joint

253 mechanoregulated morphogenesis could not be accurately simulated using the hydrostatic stress
254 levels averaged over joint motion as the mechanobiological stimulus.

A) Average hydrostatic stress accross load history

B) Dynamic changes to hydrostatic stress during jaw movements

255

256 **Fig 4. Compression and tension levels arising from jaw movements.** A) Average hydrostatic stress
257 distribution experienced over one cycle of mouth opening and closure at 4 and 4.5 dpf. Red
258 arrowheads indicate a peak of compression at the level of the jaw joint. B) Dynamic changes to
259 hydrostatic stresses from peak opening to peak closure showing a shift of hydrostatic stress
260 gradients (from compression to tension) along the ventrodorsal axis. An: Anterior, Dr: Dorsal, P:
261 Posterior, V: Ventral.

262 Since average hydrostatic stress levels as a stimulus for mechanoregulated growth failed to simulate
263 physiological jaw joint morphogenesis, we next investigated the dynamic changes in hydrostatic
264 stress patterns over jaw motion. At peak opening, the dorsal aspect of the rudiment experiences
265 tension whereas the ventral aspect is in compression, creating a stress gradient from tension to
266 compression along the ventrodorsal axis (Fig 4B). At peak closure, the dorsal aspect is in compression
267 whereas the ventral aspect is in tension, creating a reversed gradient along the ventrodorsal axis

268 compared to peak opening (Fig 4B). We hypothesised that the switch in the ventrodorsal hydrostatic
269 stress gradient promotes growth along the rudiment's depth and thus influences growth anisotropy.
270 The time evolutions of hydrostatic stress gradients along the three anatomical axes were calculated
271 and combined with \mathbf{G}_{imm} to generate a new mechanobiological growth map called \mathbf{G}_{dyn} . From 4 to 4.5
272 dpf, simulating morphogenesis using the mechanobiological growth map \mathbf{G}_{dyn} resulted in a shape
273 which closely resembled the shape obtained using the free-to-move growth rates \mathbf{G}_{free} (Fig 3C-ii,
274 purple and green outlines). Increases in MC depth and length from 4–4.5dpf were almost the same
275 between the \mathbf{G}_{dyn} and \mathbf{G}_{free} simulated shapes (Fig 3C-ii, purple and green outlines). MC width distant
276 from the joint line was, however, bigger in the \mathbf{G}_{dyn} simulated shape than in the shape obtained using
277 \mathbf{G}_{free} from 4–4.5 dpf (red arrow in Fig 3C-ii). From 4.5 to 5 dpf, mechanobiological simulations using
278 \mathbf{G}_{dyn} also resulted in a shape much like that obtained using the free-to-move growth rates, albeit
279 slightly smaller (Fig S2C-ii, purple and green outlines). The mechanobiological growth maps \mathbf{G}_{dyn} from
280 4–4.5 and from 4.5–5 dpf were similar to the free-to-move growth maps \mathbf{G}_{free} , all of which showed
281 increased ventrodorsal (VD) growth rates compared to the immobilised growth maps \mathbf{G}_{imm} (Figs 3C-i
282 and S2C-i). A small number of differences between the free-to-move \mathbf{G}_{free} and the mechanobiological
283 \mathbf{G}_{dyn} growth maps were observed. Anteroposterior (AP) growth rates were higher at the dorsal aspect
284 in \mathbf{G}_{dyn} in comparison to \mathbf{G}_{free} where higher growth rates were observed at the ventral aspect for both
285 time-windows (Figs 3C-i and S2C-i, red and blue arrowheads). From 4–4.5 dpf, \mathbf{G}_{dyn} mediolateral (ML)
286 growth rates were overall slightly higher compared to \mathbf{G}_{free} explaining the MC width overgrowth (Fig
287 3C-i). Overall, from 4–4.5 and from 4.5–5 dpf, using the dynamic aspects of the hydrostatic stress
288 fields arising from jaw movement as a stimulus for mechanoregulated growth enabled almost
289 physiological jaw joint morphogenesis to be simulated.

290 Finally, we implemented simulations which included only the dynamic shift to and from compression
291 without considering the influence of hydrostatic tensile stresses. For both time windows, simulated
292 shapes when both tension and compression (\mathbf{G}_{dyn}) or only compression ($\mathbf{G}_{dyn_compression}$) were
293 considered exhibited few differences as shown in Figs 3D-ii and S2D-ii. From 4–4.5 and 4.5–5 dpf, MC

294 depth and length using $\mathbf{G}_{\text{dyn_compression}}$ were slightly smaller than when \mathbf{G}_{dyn} was used but still alike that
295 of the shape when the free-to-move growth rates \mathbf{G}_{free} were used (Figs 3D-ii and S2D-ii, pink and
296 green outlines). From 4–4.5 dpf, MC width increases were more physiological when only compressive
297 stresses were considered ($\mathbf{G}_{\text{dyn_compression}}$) compared to when the influence of hydrostatic tensile
298 stresses was considered (\mathbf{G}_{dyn}), (green arrow in Fig 3D-ii). Although the differences between both
299 simulation types (\mathbf{G}_{dyn} and $\mathbf{G}_{\text{dyn_compression}}$) are subtle, simulations using $\mathbf{G}_{\text{dyn_compression}}$ predicted shapes
300 which resembled the most the shapes when free-to-move growth rates \mathbf{G}_{free} were used. Therefore,
301 the application of cyclic compressive loads is likely to be a major stimulus for mechanoregulated
302 growth in the zebrafish jaw joint, while tension is probably not a key contributor to jaw joint
303 morphogenesis.

304 **Discussion**

305 In this research, growth patterns of zebrafish jaw joint morphogenesis were analysed and simulated
306 in the presence or absence of movement. Growth when jaw movements were absent was most
307 compromised along the ventrodorsal axis leading to pronounced decreases in MC depth in
308 immobilised larvae compared to controls. Integrating cell-level data into mechanobiological models
309 of jaw joint morphogenesis revealed that the dynamic patterns of mechanical stimuli arising from
310 movements are more likely to stimulate mechanoregulated joint growth compared to the magnitude
311 of loading alone. We showed that the application of cyclic compression, rather than the cyclical
312 switch from compression to tension, is likely to be the key contributor to jaw joint morphogenesis.

313 We demonstrated for the first time that mechanical stimuli arising from fetal movements influence
314 growth anisotropy in the developing joint. Chondrocyte orientation and intercalation have been
315 shown to be affected when muscle contractions are absent in both fish [7, 15] and mice [6], and we
316 propose that the effects on organ-level growth anisotropy we report could stem from these cell level
317 changes. In support of this theory, computational models of limb bud elongation have demonstrated
318 that anisotropic tissue deformation strongly influences the shape of the organ during chick [46, 49]

319 and mouse [50, 51] hindlimb development, and that this anisotropy is correlated with patterns in cell
320 orientations and with a bias in the orientation of cell divisions [51].

321 Previous mechanobiological models of joint morphogenesis have used a range of stimuli to promote
322 growth and shape change, including average and peak hydrostatic stress [34-36, 38-41], peak
323 octahedral shear stress [34, 35, 41], interstitial fluid pressure resulting from static or dynamic loading
324 [37], or a combination of these. In the current research, when average hydrostatic stress
325 distributions were used as promoters of mechanoregulated growth, morphogenesis of the zebrafish
326 jaw joint was not accurately predicted. Rather, we found that the dynamic changes in the patterns of
327 mechanical stimuli, and especially the cyclical application of compression, are the most likely stimuli
328 influencing morphogenesis by altering growth anisotropy. This indicates that joint mechanoregulated
329 growth is unlikely to be determined by solely the magnitude of mechanical stimuli experienced over
330 motion. The importance of the dynamic nature of loading concurs with *in vitro* experimental data in
331 which static loading downregulates chondrogenesis whereas dynamic loading upregulates it [21, 30,
332 31]. In the embryo, static loading—through rigid paralysis where the muscles are in continuous
333 tetanus—disrupts joint morphology in larval zebrafish jaws and embryonic chick limbs [12, 15]. We
334 propose that the dynamic nature of loading affects growth anisotropy and in turn morphogenesis,
335 while acknowledging that the rates of growth are possibly influenced by the magnitude of
336 mechanical stimuli.

337 A strength of this research is the direct incorporation of tracked cell-level data in the
338 mechanobiological models when previous mechanobiological simulations of joint growth used
339 extrapolated cell data and hypothesised how they impact growth rates. Previous computational
340 simulations, including those from our group, assumed that the biological contributions to joint
341 growth were proportional to chondrocyte density [36, 38, 52]. In this research, zebrafish jaw joint
342 growth at the macro-scale was directly quantified from tissue geometry changes at the cellular level.
343 This enabled precise and specific quantification of the cell-level growth and therefore less

344 uncertainty when testing different hypotheses regarding to how mechanical stimuli influence
345 growth.

346 There are some limitations to the current work. The zebrafish jaw joint has many similarities with
347 mammalian synovial joints [53], but cavitation occurs later in development relative to the main
348 events of morphogenesis in other animals including mice and humans [53]. However, this research
349 investigates a critical time of joint morphogenesis, right after movements are established, and the
350 advantages of the zebrafish (especially the transparency of the tissues enabling live cell tracking)
351 outweigh its disadvantages. Another limitation of the zebrafish larval model when extrapolating to
352 mouse or human is that the jaw joint has a very small number of cells and relatively low quantity of
353 matrix in the tissue [48], and it is possible that individual cell behaviours have a greater impact on
354 tissue shape than in organisms with more cells and proportionally more matrix. Therefore, our
355 conclusions could be slightly altered in bigger animal models such as mammals. Another limitation is
356 the use of linear elastic material properties when modelling zebrafish cartilage. Nano-indentation
357 measurements showed that zebrafish cartilage rather exhibits viscoelastic properties. However,
358 when jaw movement simulations were run using either material properties, inconsequential
359 differences were observed.

360 In conclusion, in the absence of movement the directionality of growth in the joint is disturbed which
361 affects joint morphogenesis. The magnitude of loading alone is not sufficient to explain the
362 morphological changes observed at the organ-level during joint morphogenesis. Rather, changes in
363 growth anisotropy are likely triggered by the dynamic changes in the mechanical stimuli experienced
364 when cyclic compression is applied to the joint elements over joint motion. Overall, this research
365 offers avenues for improvement in simulations of joint development and potentially other organs. It
366 provides fundamental advance in our understanding of mechanoregulation in the developing joint
367 and increases our understanding of the origins of conditions such as hip dysplasia and arthrogryposis.

368 **Materials and Methods**

369 **Zebrafish husbandry, lines and anaesthetisation**

370 Fish were maintained as described previously [54, 55]. All experiments were approved by the local
371 ethics committee (Bristol AWERB) and performed under a UK Home Office Project Licence
372 (PP4700996). Transgenic lines *Tg(col2a1aBAC:mCherry)* [56] and *Tg(-4.9sox10:eGFP)* [57] provide
373 expression of fluorescent reporters for the immature chondrocytes in the interzone (*sox10-positive*
374 and *col2-negative*) and the mature chondrocytes (positive for both *sox10* and *col2*). To study
375 immobilised growth, wild type larvae were anaesthetised in 0.1 mg.ml⁻¹ tricaine methanesulphonate
376 (MS222) in Danieau's buffer from 3 dpf prior to the start of recorded jaw movements [58]. The
377 solution was refreshed twice daily until 5 dpf. Larvae were mounted in low melting point agarose
378 (N.B. free to move larvae were briefly immobilised for image acquisition), and imaged on a Leica sp8
379 confocal.

380 **Characterising growth from cell-level data**

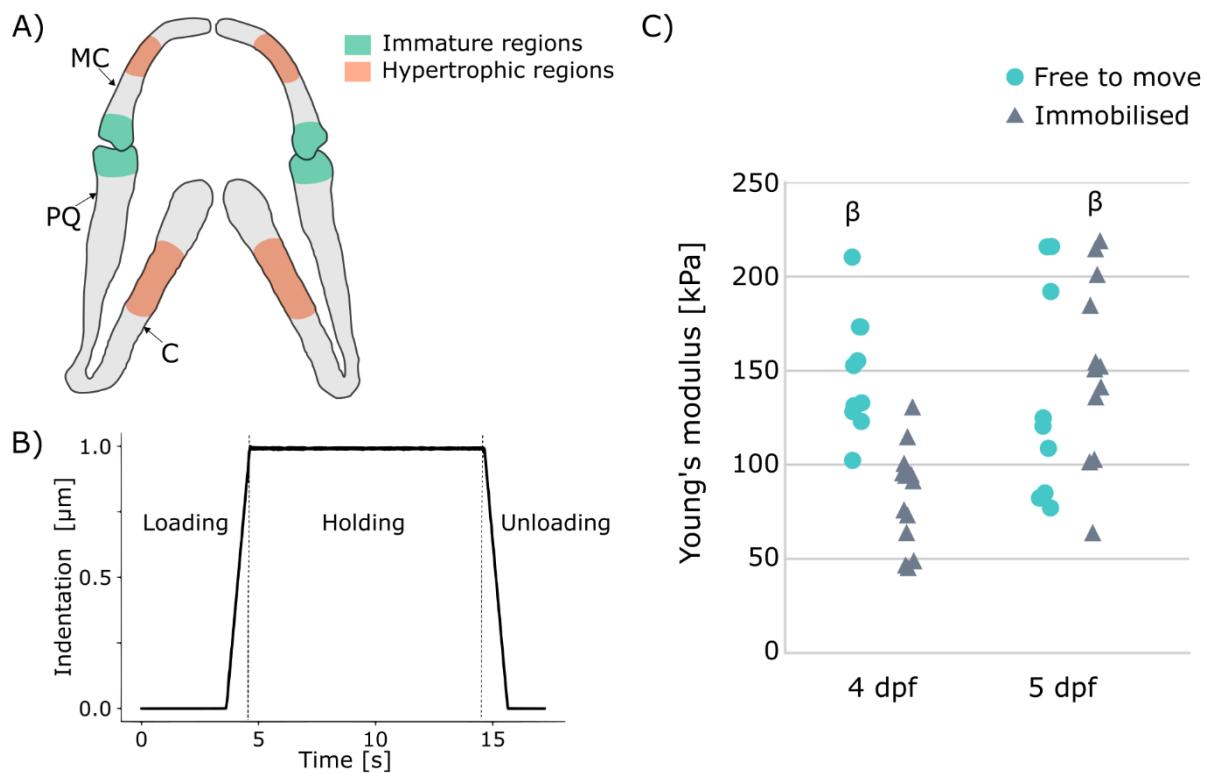
381 Growth maps were calculated for 12-hour interval time windows (4–4.5 and 4.5–5 dpf) for free-to-
382 move and immobilised specimens following the methodology previously published [48]. In free-to-
383 move larvae consistent jaw movements are visible by 4 dpf [19]. Confocal image stacks centred on
384 the jaw joint line were obtained at 4, 4.5 and 5 dpf for double transgenic *Tg(col2a1aBAC:mCherry; -*
385 *4.9sox10:eGFP)* free-to-move and anaesthetised larvae. In immobilised specimens, cells in the
386 posterior palatoquadrate joint element could not be reliably segmented and tracked due to a weaker
387 expression of fluorescent markers. Growth analyses were therefore performed solely on the anterior
388 Meckel's cartilage (MC) joint element. Cells were segmented in Fiji and the 3D cell centroid's
389 coordinates in the MC joint element were extracted at each time point [59, 60]. MC joint cells were
390 manually tracked between images from two consecutive timepoints using manual labelling in
391 MATLAB (R2018a, The MathWorks, Inc., Natick, Massachusetts, United States). The position of cell

392 centroids with respect to each other over time was used to calculate the local rate of deformation in
393 cubic regions of interests (ROIs) using the “statistical velocity gradient” equation from [61]. The cubic
394 ROIs were of size length 15 μm and mapped the MC joint element. After calculations, the local
395 growth in each ROI is represented by an ellipsoid whose axes represent the three directions for
396 growth and their radius the rate of growth along these directions. Growth maps displaying the local
397 deformation rates and directions were generated from the local growth ellipsoids for each time
398 window. Interpolation between ROIs centres was performed in Abaqus CAE (Dassault Systemes,
399 2019) by importing the growth maps as analytical mapped fields (refer to “Simulating zebrafish jaw
400 joint morphogenesis” section). In this study, ventrodorsal (VD)/anteroposterior (AP)/mediolateral
401 (ML) growth is defined as the growth rates of the growth ellipsoid axis whose angle from the
402 anatomical VD/AP/ML axis is the smallest amongst the three ellipsoid axes. All growth maps were
403 analysed following this terminology. The growth ellipsoid axes are displayed in S3 Appendix, along
404 with the angles between the growth ellipsoid axes and the anatomical VD/AP/ML axes. The number
405 of samples analysed per time window are listed in Table 1. The p-value for growth rates mean
406 differences along each direction for growth between free-to-move and immobilised groups for each
407 time window were obtained by running Shapiro-wilk test of normally followed by Mann-Whitney U-
408 test with Bonferroni adjustments for multiple comparisons.

409 **Table 1. Sample number per time window for growth rates analyses in the anterior joint**
410 **element of free-to-move and immobilised larvae.**

	4–4.5 dpf	4.5–5 dpf	5–5.5 dpf
Free-to-move	7	7	7
Immobilised	8	6	7

411 **Average shape generation**


412 Average shapes were generated at 4, 4.5 and 5 dpf for free to move and immobilised larvae following
413 the methodology previously described [48]. Confocal image stacks of four to five larval zebrafish jaws
414 (encapsulating the Meckel’s cartilage, the palatoquadrate and the ceratohyal) from the transgenic

415 line *Tg(col2a1aBAC:mCherry)* were taken with a Leica SP8 confocal microscope at each time point in
416 the ventral plane. A 3D Gaussian grey filter was applied to the image stacks in Fiji. Image stacks were
417 imported in Mimics (Materialise NV, Leuven, Belgium) to be segmented. Only half-jaws (separated at
418 the level of the midsagittal plane) were segmented. Each segmented half-jaw was divided into slices
419 in the transversal plane. For each slice, an average shape outline was generated in MATLAB from the
420 shape vertices of each segmented half-jaw. Averaged shape outlines were saved as image stacks and
421 imported into Mimics where the resultant average half-jaw shape was generated. In the figures, the
422 outlines of the average MC joint element were consistently cropped based on measured increases
423 overtime of the distances between the tracked cells and the joint line.

424 **Material properties characterisation using nano-indentation**

425 Jaw cartilage material properties in hypertrophic and immature regions were measured in wild type
426 free-to-move and immobilised specimens at 4 and 5 dpf using nano-indentation. The indentation
427 methodology was previously described [62]. Whole larvae were fixed in 4% PFA and stored in 100%
428 MeOH. Prior to nano-indentation, samples were rehydrated to 1 x PBS before being stored in 30%
429 sucrose in PBS. The samples were then submerged in a 1:1 mix of 30% sucrose and optimum cutting
430 temperature (OCT) at room temperature until the samples sunk to the bottom of an Eppendorf tube.
431 Samples were then embedded in fresh 30% sucrose and OCT mix and flash-frozen on dry-ice.
432 Embedded samples were sectioned sagittally at a thickness of 10 μ m using an NX70 Cryostat
433 (CryostarTM, ThermoFisher, France). Nano-indentation was performed on sections featuring the
434 Meckel's cartilage (hypertrophic cartilage), the ceratohyal (hypertrophic cartilage) and/or the jaw
435 joint (immature cartilage) using a Chiaro nanoindenter (Optics11 Life, The Netherlands) as shown in
436 Fig 5A. All measurements were taken in PBS at room temperature. A spherical nano-indentation
437 probe with an 8 μ m radius and stiffness of 0.49 N/m was used. Indentation was performed to a
438 depth of 1 μ m with velocity of 1 μ m/s, and the tip held at a constant depth for 10s (Fig 5B). Nano-
439 indentation was performed across all sections containing relevant cartilage regions, with one

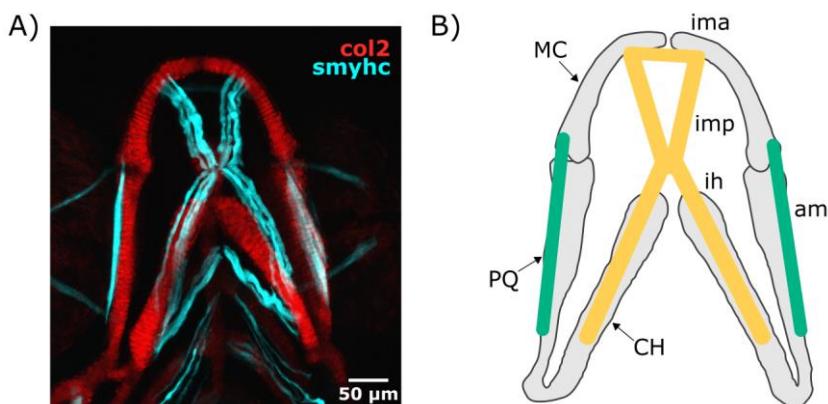
440 measurement collected per region of interest in each section. This was performed for six larvae in
441 each group except in the immobilised 4 dpf group where seven larvae were used. Young's moduli
442 were estimated using the Hertzian contact model, assuming a Poisson's ratio of 0.3 (value which was
443 previously used for AFM testing of the larval zebrafish jaw cartilage [62]). The resulting Young's
444 Moduli were averaged for each region across multiple sections of each fish. The Shapiro-Wilks test
445 for normality was performed on each group. To test for significant differences between the
446 hypertrophic and immature regions within each age and larva type group, paired t-tests were
447 performed in groups which were normally distributed, and Wilcoxon signed-rank tests were used in
448 groups which were not normally distributed. No difference was observed between hypertrophic and
449 immature cartilage material properties as shown in S4 Appendix. Young's moduli obtained from
450 measurements taken in the immature regions are shown in Fig 5C.

451
452 **Fig 5. Indentation testing.** A) Location of measurements in immature (green) and hypertrophic
453 cartilaginous regions (orange) of larval lower jaw. MC: Meckel's cartilage, PQ: palatoquadrate, C:
454 ceratohyal. B) Indentation profile consisting of a loading phase during which a depth of 1 μm was
455 reached, a holding phase of 10 s and an unloading phase. C) Young's moduli of free-to-move and

456 *immobilised larvae at 4 and 5 dpf obtained from nano-indentation measurements taken in*
457 *immature regions. 6 indicates significant difference (p<0.05) with 4 dpf immobilised group.*

458 **Simulating zebrafish jaw joint morphogenesis**

459 Morphogenesis in free-to-move and immobilised zebrafish jaws was simulated for each 12-hour
460 interval time window (4–4.5 and 4.5–5 dpf) following the methodology previously described [48]. A
461 non-manifold assembly combining the average half-jaw and the interzone (added as a volume filling
462 the gap between the two joint elements using Boolean operations) was generated in Mimics and
463 meshed in 3-matic (Materialise NV, Leuven, Belgium) with ten node tetrahedral elements. In Abaqus
464 CAE, a finite element (FE) model for each twelve-hour time window was created. Cartilaginous
465 regions were assigned homogeneous isotropic elastic material properties with Poisson's ratio 0.3 and
466 Young's Modulus (YM) based on the nanoindentation measurements displayed in Table 2. Simulation
467 tests were also performed using viscoelastic rather than linear elastic material properties (the tissue
468 exhibiting viscoelastic behaviours) and resulted in inconsequential differences (S5 Appendix). No
469 difference was observed between hypertrophic and immature cartilage material properties (S4
470 Appendix), therefore all cartilaginous elements were assigned the same material properties with no
471 distinction between regions. The interzone was assigned isotropic elastic material properties with
472 Poisson's ratio 0.3 and YM set at 0.025% of the cartilaginous YM [62] and physiological boundary
473 conditions were applied [48]. For each 12-hour period, growth strains derived from the growth maps
474 were imported into Abaqus CAE as three distinct analytical mapped fields (one for each axis of the
475 growth ellipsoids) and applied to the model. The Abaqus user subroutine UEXPAN was used to apply
476 spatially varying expansion based on the strain fields to provide a prediction of growth and shape for
477 each time-window. Outlines of the simulated shapes were obtained for the anterior MC joint
478 element and cropped based on Abaqus results.


479

480 **Table 2. Zebrafish jaw cartilage Young's Moduli [kPa] in free-to-move and immobilised larvae**
481 **based on nanoindentation measurements used in FE models.**

	4–4.5 dpf	4.5–5 dpf	5–5.5 dpf
Free-to-move	142.01	142.01	142.01
Immobilised	82.91	117.44	151.96

482 **Simulating zebrafish jaw movements**

483 Jaw movement simulations were performed on free-to-move 4 and 4.5 dpf FE models in Abaqus CAE.
484 Muscle contractions engaged during opening/closure as shown in Fig 6 were applied to the models
485 [63]. Muscle attachment points and directions were estimated from confocal scans of double
486 transgenic *Tg(col2a1aBAC:mCherry;smyhc1:EGFP)* larvae (Fig 6). Muscle forces enabling physiological
487 jaw displacement (jaw opening of 37.2 μ m based on the average jaw displacement for 5 dpf larvae
488 [19]) were used and are listed in Table 3. Jaw closure and opening were simulated in subsequent
489 steps with each step decomposed into five increments. Hydrostatic stress and strain fields were
490 extracted into MATLAB for each time increment from peak closure to peak opening.

492 **Fig 6. Lower jaw muscles.** A) Maximum projection of ventral confocal image stacks expressing
493 *Col2a1aBAC:mcherry* (red) and *smyhc1:EGFP* (cyan) of a 4 dpf larva. B) Scheme of the muscles
494 engaged during lower jaw opening (yellow) and closure (green) in the ventral plane. CH:
495 ceratohyal, MC: Meckel's cartilage, PQ: palatoquadrate, am: adductor mandibularis, ih: interhyal,
496 ima: intermandibularis anterior, imp: intermandibularis posterior.

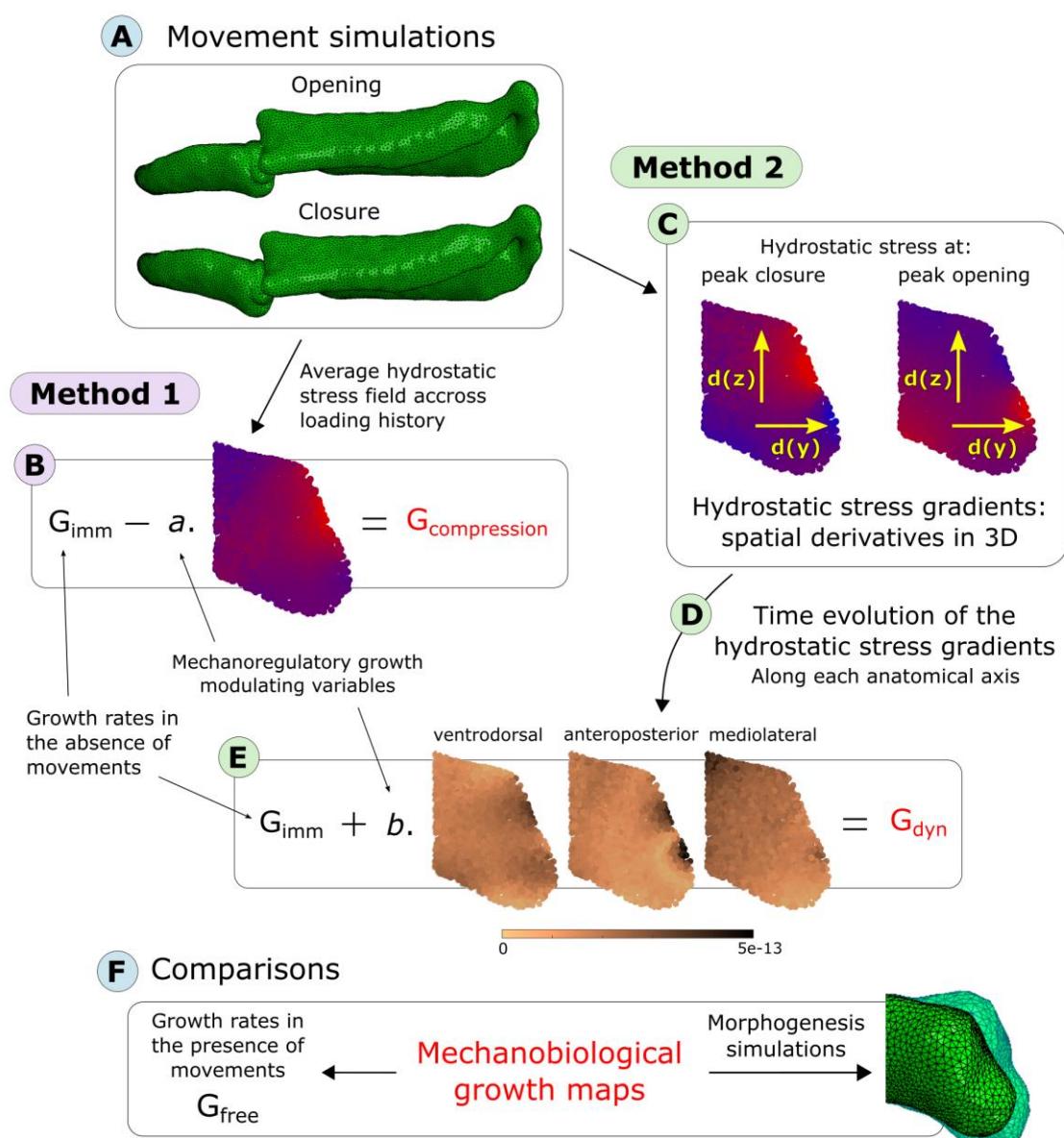
497

498 **Table 3. Muscle forces [nN] in the lower jaw enabling physiological movement in FE simulations.**

	4 dpf	4.5 dpf
adductor mandibularis (am)	2.84	4.35
intermandibularis anterior (ima)	1.25	2.90
intermandibularis posterior (imp)	1.50	3.47
interhyal (ih)	1.50	3.47

499 **Investigating zebrafish jaw joint mechanoregulation**

500 Loading fields were extracted from jaw movement simulations at 4 and 4.5 dpf and integrated into
501 4–4.5 and 4.5–5 dpf growth simulations respectively. The baseline levels of biological contributions
502 to growth were assumed to be the growth rates calculated from immobilised larvae but applied to
503 the free-to-move shapes (called \mathbf{G}_{imm}). Loading fields were used to alter \mathbf{G}_{imm} and obtain new
504 mechanobiological growth maps which were applied in growth simulations. Two different methods
505 to calculate the mechanobiological growth maps were implemented to test different hypotheses.
506 Since hydrostatic stress and strain patterns were similar (S6 Appendix), only the hydrostatic stress
507 fields were used in the calculations for simplicity and uniformity with previous studies [34, 40].


508 First, we tested the hypothesis that the average hydrostatic stresses across loading history direct jaw
509 joint morphogenesis with compression promoting growth. The average hydrostatic stress field across
510 loading history \mathbf{S} was calculated from the hydrostatic stress fields of all step increments in MATLAB:

511
$$\mathbf{S} = \frac{\sum_{i=1}^N \sigma_{hi}}{N}$$

512 where σ_h is the hydrostatic stress field and N the number of step increments from peak opening to
513 peak closure. To test the hypothesis that compression promotes growth [24], a mechanobiological
514 growth map $\mathbf{G}_{compression}$ was calculated based on the following equation (see Fig 7A and B):

515
$$\mathbf{G}_{compression} = \mathbf{G}_{imm} - \alpha \cdot \mathbf{S}$$

516 where a is a mechanoregulatory growth modulating variable which influences the impact of the
 517 average hydrostatic stress field S on the mechanobiological growth map. From 4 to 4.5 dpf, a was
 518 incrementally increased from $1e9 \text{ N}^{-1}\text{s}^{-1}$, a value with which it had minor influence on the
 519 mechanobiological growth map, to $4e9 \text{ N}^{-1}\text{s}^{-1}$ where joint overgrowth was obvious as shown in S7
 520 Appendix. The modulating variable value which predicted physiological MC depth growth was chosen
 521 ($a = 3e9 \text{ N}^{-1}\text{s}^{-1}$). The same value was used from 4.5 to 5 dpf.

522

523 **Fig 7. Process of integration of mechanical stimuli arising from movements into**
 524 **mechanobiological growth maps of zebrafish jaw joint morphogenesis. A) Jaw opening and**
 525 **closure were simulated. B) Method 1: Average hydrostatic stress across the loading history**

526 was extracted and added to the growth rates in the absence of movements \mathbf{G}_{imm} after being
527 weighted by a mechanoregulatory growth modulating variable a . The newly obtained
528 mechanobiological growth map was called $\mathbf{G}_{compression}$. C) Method 2: The time evolution of the
529 hydrostatic stress gradients was used. Hydrostatic stress gradients at peak closure and peak
530 opening were calculated along each anatomical axis. D) The time evolution of the hydrostatic
531 stress gradients between peak opening to peak closure along each anatomical axis was calculated.
532 E) and was added to \mathbf{G}_{imm} after being weighted by a mechanoregulatory growth modulating
533 variable b . The newly obtained mechanobiological growth map was called \mathbf{G}_{dyn} . F) The obtained
534 mechanobiological growth maps $\mathbf{G}_{compression}$ and \mathbf{G}_{dyn} were compared to the growth map in the
535 presence of movements \mathbf{G}_{free} . Morphogenesis simulations were run using $\mathbf{G}_{compression}$ and \mathbf{G}_{dyn} and
536 compared to growth simulations using \mathbf{G}_{free} .

537 The mechanoregulatory growth modulating variable a encapsulates the number of jaw openings
538 occurring over twelve hours (approximatively 57 thousand openings between 4 and 4.5 dpf [19]). The
539 contribution of the average hydrostatic stress field to growth was isotropic: the same hydrostatic
540 stress field and modulating variable was applied along all directions. The obtained mechanobiological
541 growth maps $\mathbf{G}_{compression}$ was qualitatively compared to the growth map calculated from free-to-move
542 larvae \mathbf{G}_{free} . Morphogenesis simulations were run in Abaqus CAE using $\mathbf{G}_{compression}$ based on the same
543 methodology than explained in section “Simulating zebrafish jaw joint morphogenesis” and
544 qualitatively compared to growth simulations using \mathbf{G}_{free} (Fig 11F).

545 Next, we tested the hypothesis that the dynamic changes in hydrostatic stress patterns over jaw
546 motion direct jaw joint growth. The hydrostatic stress gradients $\nabla\sigma_h$ at peak closure and peak
547 opening were calculated along each anatomical axis in MATLAB, using the mathematical equations
548 developed by [64] (Fig 7C). Along each anatomical axis, the time evolution of the pressure gradients
549 between peak opening to peak closure was calculated: the absolute value of the difference between
550 peak opening and peak closure was taken (Fig 7D). A new growth map \mathbf{G}_{dyn} was calculated based on
551 the following equation (see Fig 7E):

552
$$\mathbf{G}_{dyn} = \mathbf{G}_{imm} + b \cdot |\nabla\sigma_h \text{ peak opening} - \nabla\sigma_h \text{ peak closure}|$$

553 where b is a mechanoregulatory growth modulating variable which influences the impact of the
554 hydrostatic stress field gradients on the mechanobiological growth map. From 4 to 4.5 dpf, b was
555 incrementally increased from $1\text{e}10 \text{ m.N}^{-1}$, a value with which it had minor influence on the
556 mechanobiological growth map, to $1.5\text{e}11 \text{ m.N}^{-1}$ where joint overgrowth was obvious as shown in S7
557 Appendix. The modulating variable value which predicted physiological MC depth growth was chosen
558 ($b = 5\text{e}10 \text{ m.N}^{-1}$). The same value of b was used from 4.5 to 5 dpf. The number of jaw openings which
559 occur over twelve hours is once again encapsulated in the modulating variable. The contribution of
560 mechanical fields to growth was anisotropic: the same modulating variable value b was used along all
561 anatomical axes, but the pressure gradients varied between axes. The newly obtained
562 mechanobiological growth map \mathbf{G}_{dyn} was qualitatively compared to the growth map calculated from
563 free-to-move larvae \mathbf{G}_{free} . Morphogenesis simulations were run in Abaqus CAE using \mathbf{G}_{dyn} and
564 qualitatively compared to growth simulations using \mathbf{G}_{free} (Fig 7F). To assess the contribution of the
565 application of cyclic compression to joint morphogenesis specifically, we run more simulations where
566 tensile hydrostatic stresses were left out. A mechanobiological growth map $\mathbf{G}_{\text{dyn_compression}}$ was
567 calculated using the same methodology than for \mathbf{G}_{dyn} except only the compressive hydrostatic
568 stresses were considered. The same value for the mechanoregulatory growth modulating variable b
569 was used ($b = 5\text{e}10 \text{ m.N}^{-1}$). Terminologies and methods for calculation of the mechanobiological
570 growth maps are summarised in Table 4.

571

572 **Table 4: Overview of growth maps terminologies and methods.**

Growth map	Description	Contribution of mechanical loads	Hypothesis tested	Mechanoregulatory growth modulating variable
G_{free}	Growth rates obtained from free-to-move cell-level data	Normal baseline	Growth simulations with tracked free to move cell data accurately predict free to move morphogenesis	-
G_{imm}	Growth rates obtained from immobilised cell-level data	None	Growth simulations with tracked immobilised cell data do not accurately predict free to move morphogenesis	-
$G_{\text{compression}}$	Mechanobiological growth maps	Average hydrostatic field across load history	Compression levels promote growth	$a = 3e9 \text{ N}^{-1}\text{s}^{-1}$
G_{dyn}		Time evolution of the hydrostatic stress gradients	Dynamic load patterns promote growth	$b = 5e10 \text{ m.N}^{-1}$
$G_{\text{dyn_compression}}$		Time evolution of the compressive hydrostatic stress gradients	Dynamic patterns of compression promote growth	$b = 5e10 \text{ m.N}^{-1}$

573

574 All data underlying this article can be accessed on zenodo at
 575 <https://doi.org/10.5281/zenodo.7586155>. Confocal images, MATLAB scripts, Abaqus CAE models and
 576 simulated shapes are available.

577 **Acknowledgements**

578 We thank James Monsen for providing the methodology and MATLAB script which was used for
 579 generating average shapes. We would like to thank Mat Green for zebrafish husbandry and the staff

580 of the Wolfson Bioimaging centre Bristol for imaging support. We thank Dr. Labonte and his team for
581 sharing nano-indentation equipment with us and Dr. Kaimaki for her valuable help during nano-
582 indentation experiments.

583 **References**

- 584 1. Nowlan, N.C., *Biomechanics of foetal movement*. Eur Cell Mater, 2015. **29**: p. 1-21; discussion
585 21.
- 586 2. Vaquero-Picado, A., G. Gonzalez-Moran, E.G. Garay, and L. Moraleda, *Developmental*
587 *dysplasia of the hip: update of management*. EFORT Open Rev, 2019. **4**(9): p. 548-556.
- 588 3. Sotiriou, V., R.A. Rolfe, P. Murphy, and N.C. Nowlan, *Effects of Abnormal Muscle Forces on*
589 *Prenatal Joint Morphogenesis in Mice*. J Orthop Res, 2019. **37**(11): p. 2287-2296.
- 590 4. Bridglal, D.L., C.J. Boyle, R.A. Rolfe, and N.C. Nowlan, *Quantifying the tolerance of chick hip*
591 *joint development to temporary paralysis and the potential for recovery*. Dev Dyn, 2020.
- 592 5. Roddy, K.A., R.E.H. Skinner, L.H. Brunt, E. Kague, S. Cross, E.J. Rayfield, et al., *A zebrafish*
593 *model of developmental joint dysplasia: Manipulating the larval mechanical environment to*
594 *drive the malformation and recovery of joint shape*. bioRxiv preprint, 2017.
- 595 6. Shwartz, Y., S. Viukov, S. Krief, and E. Zelzer, *Joint Development Involves a Continuous Influx*
596 *of Gdf5-Positive Cells*. Cell Rep, 2016. **15**(12): p. 2577-87.
- 597 7. Shwartz, Y., Z. Farkas, T. Stern, A. Aszodi, and E. Zelzer, *Muscle contraction controls skeletal*
598 *morphogenesis through regulation of chondrocyte convergent extension*. Dev Biol, 2012.
599 **370**(1): p. 154-63.
- 600 8. Kahn, J., Y. Shwartz, E. Blitz, S. Krief, A. Sharir, D.A. Breitel, et al., *Muscle contraction is*
601 *necessary to maintain joint progenitor cell fate*. Dev Cell, 2009. **16**(5): p. 734-43.
- 602 9. Rolfe, R.A., D. Scanlon O'Callaghan, and P. Murphy, *Joint development recovery on*
603 *resumption of embryonic movement following paralysis*. Dis Model Mech, 2021. **14**(4).

604 10. Pollard, A.S., I.M. McGonnell, and A.A. Pitsillides, *Mechanoadaptation of developing limbs: shaking a leg*. J Anat, 2014. **224**(6): p. 615-23.

605

606 11. Pacifici, M., E. Koyama, and M. Iwamoto, *Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries*. Birth Defects Res C Embryo Today, 2005. **75**(3): p. 237-48.

607

608 12. Osborne, A.C., K.J. Lamb, J.C. Lewthwaite, G.P. Dowthwaite, and A.A. Pitsillides, *Short-term rigid and flaccid paralyses diminish growth of embryonic chick limbs and abrogate joint cavity formation but differentially preserve pre-cavitated joints*. J Musculoskelet Neuronal Interact, 2002. **2**(5): p. 448-56.

609

610 13. Nowlan, N.C., J. Sharpe, K.A. Roddy, P.J. Prendergast, and P. Murphy, *Mechanobiology of embryonic skeletal development: Insights from animal models*. Birth Defects Res C Embryo Today, 2010. **90**(3): p. 203-13.

611

612 14. Holder, N., *An experimental investigation into the early development of the chick elbow joint*. J. Embryol. Exp. Morphol., 1977. **39**: p. 115-127.

613

614 15. Brunt, L.H., R.E. Skinner, K.A. Roddy, N.M. Araujo, E.J. Rayfield, and C.L. Hammond, *Differential effects of altered patterns of movement and strain on joint cell behaviour and skeletal morphogenesis*. Osteoarthritis Cartilage, 2016. **24**(11): p. 1940-1950.

615

616 16. Murray, P.D. and D.B. Drachman, *The role of movement in the development of joints and related structures: the head and neck in the chick embryo*. J Embryol Exp Morphol, 1969. **22**(3): p. 349-71.

617

618 17. Roddy, K.A., G.M. Kelly, M.H. van Es, P. Murphy, and P.J. Prendergast, *Dynamic patterns of mechanical stimulation co-localise with growth and cell proliferation during morphogenesis in the avian embryonic knee joint*. J Biomech, 2011. **44**(1): p. 143-9.

619

620 18. Brunt, L.H., K. Begg, E. Kague, S. Cross, and C.L. Hammond, *Wnt signalling controls the response to mechanical loading during zebrafish joint development*. Development, 2017. **144**(15): p. 2798-2809.

621

622

623

624

625

626

627

628

629

630 19. Brunt, L.H., J.L. Norton, J.A. Bright, E.J. Rayfield, and C.L. Hammond, *Finite element modelling*
631 *predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw*
632 *development.* J Biomech, 2015. **48**(12): p. 3112-22.

633 20. Khatib, N., C. Parisi, and N.C. Nowlan, *Differential effect of frequency and duration of*
634 *mechanical loading on fetal chick cartilage and bone development.* Eur Cell Mater, 2021. **41**:
635 p. 531-545.

636 21. Anderson, D.E. and B. Johnstone, *Dynamic Mechanical Compression of Chondrocytes for*
637 *Tissue Engineering: A Critical Review.* Front Bioeng Biotechnol, 2017. **5**: p. 76.

638 22. Salinas, E.Y., J.C. Hu, and K. Athanasiou, *A Guide for Using Mechanical Stimulation to Enhance*
639 *Tissue-Engineered Articular Cartilage Properties.* Tissue Eng Part B Rev, 2018. **24**(5): p. 345-
640 358.

641 23. Mauck, R.L., M.A. Soltz, C.C. Wang, D.D. Wong, P.H. Chao, W.B. Valhmu, et al., *Functional*
642 *tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded*
643 *agarose gels.* J Biomech Eng, 2000. **122**(3): p. 252-60.

644 24. Kisiday, J.D., M. Jin, M.A. DiMicco, B. Kurz, and A.J. Grodzinsky, *Effects of dynamic*
645 *compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds.* J

646 Biomech, 2004. **37**(5): p. 595-604.

647 25. Kraft, J.J., C. Jeong, J.E. Novotny, T. Seacrist, G. Chan, M. Domzalski, et al., *Effects of*
648 *Hydrostatic Loading on a Self-Aggregating, Suspension Culture-Derived Cartilage Tissue*
649 *Analog.* Cartilage, 2011. **2**(3): p. 254-64.

650 26. Correia, C., A.L. Pereira, A.R. Duarte, A.M. Frias, A.J. Pedro, J.T. Oliveira, et al., *Dynamic*
651 *culturing of cartilage tissue: the significance of hydrostatic pressure.* Tissue Eng Part A, 2012.
652 **18**(19-20): p. 1979-91.

653 27. Elder, B.D. and K.A. Athanasiou, *Hydrostatic pressure in articular cartilage tissue engineering:*
654 *from chondrocytes to tissue regeneration.* Tissue Eng Part B Rev, 2009. **15**(1): p. 43-53.

655 28. Wang, P.Y., H.H. Chow, J.Y. Lai, H.L. Liu, and W.B. Tsai, *Dynamic compression modulates*
656 *chondrocyte proliferation and matrix biosynthesis in chitosan/gelatin scaffolds*. J Biomed
657 Mater Res B Appl Biomater, 2009. **91**(1): p. 143-52.

658 29. Davisson, T., S. Kunig, A.C. Chen, R.L. Sah, and A. Ratcliffe, *Static and dynamic compression*
659 *modulate matrix metabolism in tissue engineered cartilage*. Journal of Orthopaedic Research,
660 2002. **20**: p. 842-848.

661 30. Grodzinsky, A.J., M.E. Levenston, M. Jin, and E.H. Frank, *Cartilage tissue remodeling in*
662 *response to mechanical forces*. Annu Rev Biomed Eng, 2000. **2**: p. 691-713.

663 31. Sharma, G., R.K. Saxena, and P. Mishra, *Differential effects of cyclic and static pressure on*
664 *biochemical and morphological properties of chondrocytes from articular cartilage*. Clin
665 Biomech (Bristol, Avon), 2007. **22**(2): p. 248-55.

666 32. Jones, G.W. and S.J. Chapman, *Modeling Growth in Biological Materials*. SIAM Review, 2012.
667 **54**(1): p. 52-118.

668 33. Rodriguez, E.K., A. Hoger, and A.D. McCulloch, *Stress-dependent finite growth in soft elastic*
669 *tissues*. J Biomech, 1994. **27**(4): p. 455-67.

670 34. Shefelbine, S.J. and D.R. Carter, *Mechanobiological predictions of growth front morphology in*
671 *developmental hip dysplasia*. J Orthop Res, 2004. **22**(2): p. 346-52.

672 35. Shefelbine, S.J. and D.R. Carter, *Mechanobiological Predictions of Femoral Anteversion in*
673 *Cerebral Palsy*. Annals of Biomedical Engineering, 2004. **32**(2): p. 297-305.

674 36. Giorgi, M., A. Carriero, S.J. Shefelbine, and N.C. Nowlan, *Effects of normal and abnormal*
675 *loading conditions on morphogenesis of the prenatal hip joint: application to hip dysplasia*. J
676 Biomech, 2015. **48**(12): p. 3390-7.

677 37. Comellas, E., J.E. Farkas, G. Kleinberg, K. Lloyd, T. Mueller, T.J. Duerr, et al., *Local mechanical*
678 *stimuli correlate with tissue growth in axolotl salamander joint morphogenesis*. Proc Biol Sci,
679 2022. **289**(1975): p. 20220621.

680 38. Dixit, N.N., D.C. McFarland, M.B. Fisher, J.H. Cole, and K.R. Saul, *Integrated iterative*
681 *musculoskeletal modeling predicts bone morphology following brachial plexus birth injury*
682 *(BPBI)*. J Biomech, 2020. **103**: p. 109658.

683 39. Heegaard, J.H., G.S. Beaupre, and D.R. Carter, *Mechanically modulated cartilage growth may*
684 *regulate joint surface morphogenesis*. J Orthop Res, 1999. **17**(4): p. 509-17.

685 40. Giorgi, M., A. Carrier, S.J. Shefelbine, and N.C. Nowlan, *Mechanobiological simulations of*
686 *prenatal joint morphogenesis*. J Biomech, 2014. **47**(5): p. 989-95.

687 41. Stevens, S.S., G.S. Beaupre, and D.R. Carter, *Computer Model of Endochondral Growth and*
688 *Ossification in Long Bones: Biological and Mechanobiological Influences*. Journal of
689 Orthopaedic Research, 1999. **17**(5): p. 646-653.

690 42. Carter, D.R. and M. Wong, *Modelling cartilage mechanobiology*. Philos Trans R Soc Lond B
691 Biol Sci, 2003. **358**(1437): p. 1461-71.

692 43. Carter, D.R., G.S. Beaupre, M. Wong, R.L. Smith, T.P. Andriacchi, and D.J. Schurman, *The*
693 *mechanobiology of articular cartilage development and degeneration*. Clin Orthop Relat Res,
694 2004(427 Suppl): p. S69-77.

695 44. Carter, D.R. and M. Wong, *The role of mechanical loading histories in the development of*
696 *diarthrodial joints*. Journal of Orthopaedic Research, 1988. **6**(6): p. 804-816.

697 45. Rubin, S., A. Agrawal, J. Stegmaier, S. Krief, N. Felsenthal, J. Svorai, et al., *Application of 3D*
698 *MAPs pipeline identifies the morphological sequence chondrocytes undergo and the*
699 *regulatory role of GDF5 in this process*. Nat Commun, 2021. **12**(1): p. 5363.

700 46. Morishita, Y., A. Kuroiwa, and T. Suzuki, *Quantitative analysis of tissue deformation dynamics*
701 *reveals three characteristic growth modes and globally aligned anisotropic tissue*
702 *deformation during chick limb development*. Development, 2015. **142**(9): p. 1672-83.

703 47. Tozluoglu, M., M. Duda, N.J. Kirkland, R. Barrientos, J.J. Burden, J.J. Munoz, et al., *Planar*
704 *Differential Growth Rates Initiate Precise Fold Positions in Complex Epithelia*. Dev Cell, 2019.
705 **51**(3): p. 299-312 e4.

706 48. Godivier, J., E.A. Lawrence, M. Wang, C.L. Hammond, and N.C. Nowlan, *Growth orientations,*
707 *rather than heterogeneous growth rates, dominate jaw joint morphogenesis in the larval*
708 *zebrafish.* J Anat, 2022. **241**(2): p. 358-371.

709 49. Suzuki, T. and Y. Morishita, *A quantitative approach to understanding vertebrate limb*
710 *morphogenesis at the macroscopic tissue level.* Curr Opin Genet Dev, 2017. **45**: p. 108-114.

711 50. Marcon, L., C.G. Arques, M.S. Torres, and J. Sharpe, *A computational clonal analysis of the*
712 *developing mouse limb bud.* PLoS Comput Biol, 2011. **7**(2): p. e1001071.

713 51. Boehm, B., H. Westerberg, G. Lesnicar-Pucko, S. Raja, M. Rautschka, J. Cotterell, et al., *The*
714 *role of spatially controlled cell proliferation in limb bud morphogenesis.* PLoS Biol, 2010. **8**(7):
715 p. e1000420.

716 52. D'Costa, A. and I.T. Shepherd, *Zebrafish development and genetics: introducing*
717 *undergraduates to developmental biology and genetics in a large introductory laboratory*
718 *class.* Zebrafish, 2009. **6**(2): p. 169-77.

719 53. Askary, A., J. Smeeton, S. Paul, S. Schindler, I. Braasch, N.A. Ellis, et al., *Ancient origin of*
720 *lubricated joints in bony vertebrates.* Elife, 2016. **5**.

721 54. Alestrom, P., L. D'Angelo, P.J. Midtlyng, D.F. Schorderet, S. Schulte-Merker, F. Sohm, et al.,
722 *Zebrafish: Housing and husbandry recommendations.* Lab Anim, 2020. **54**(3): p. 213-224.

723 55. Westerfield, M., *The Zebrafish book. A Guide for the Laboratory Use of Zebrafish (danio*
724 *rerio).* 2000, University of Oregon: OR: University of Oregon Press.

725 56. Mitchell, R.E., L.F. Huitema, R.E. Skinner, L.H. Brunt, C. Severn, S. Schulte-Merker, et al., *New*
726 *tools for studying osteoarthritis genetics in zebrafish.* Osteoarthritis Cartilage, 2013. **21**(2): p.
727 269-78.

728 57. Carney, T.J., K.A. Dutton, E. Greenhill, M. Delfino-Machin, P. Dufourcq, P. Blader, et al., *A*
729 *direct role for Sox10 in specification of neural crest-derived sensory neurons.* Development,
730 2006. **133**(23): p. 4619-30.

731 58. Kimmel, C.B., W.W. Ballard, S.R. Kimmel, B. Ullmann, and T.F. Schilling, *Stages of Embryonic*
732 *Development of the Zebrafish*. Developmental Dynamics, 1995. **232**: p. 253-310.

733 59. Legland, D., I. Arganda-Carreras, and P. Andrey, *MorphoLibJ: integrated library and plugins*
734 *for mathematical morphology with ImageJ*. Bioinformatics, 2016. **32**(22): p. 3532-3534.

735 60. Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, et al., *Fiji: an*
736 *open-source platform for biological-image analysis*. Nat Methods, 2012. **9**(7): p. 676-82.

737 61. Graner, F., B. Dollet, C. Raufaste, and P. Marmottant, *Discrete rearranging disordered*
738 *patterns, part I: robust statistical tools in two or three dimensions*. Eur Phys J E Soft Matter,
739 2008. **25**(4): p. 349-69.

740 62. Lawrence, E.A., J. Aggleton, J. van Loon, J. Godivier, R. Harniman, J. Pei, et al., *Exposure to*
741 *hypergravity during zebrafish development alters cartilage material properties and strain*
742 *distribution*. Bone Joint Res, 2021. **10**(2): p. 137-148.

743 63. Brunt, L.H., K.A. Roddy, E.J. Rayfield, and C.L. Hammond, *Building Finite Element Models to*
744 *Investigate Zebrafish Jaw Biomechanics*. J Vis Exp, 2016(118).

745 64. Xing, J.Z., G., *Stress Field Gradient Analysis Technique Using Lower-Order ?0 Elements*.
746 Mathematical Problems in Engineering, 2015.

747 **Supporting information captions**

748 **S1 Appendix: Growth simulations from cell-level data**

749 **S2 Appendix: Biological and mechanobiological contributions to jaw joint morphogenesis from 4.5**
750 **to 5 dpf**

751 **S3 Appendix. Jaw joint growth orientations**

752 **S4 Appendix. Comparisons between the material properties of immature and hypertrophic regions**

753 **S5 Appendix: Comparison between linear elastic and viscoelastic material properties in jaw**
754 **movement simulations**

755 **S6 Appendix. Comparison between hydrostatic strain and stress fields**

756 **S7 Appendix. Sensitivity analyses of mechanoregulatory growth modulating variables**