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ABSTRACT 

Neoantigens are derived from tumors but are absent in normal tissues. Emerging evidence 

suggests that neoantigens can stimulate tumor-specific T-cell-mediated antitumor immune 

responses, and neoantigens are potential immunotherapy targets. We developed 

ImmuneMirror as a stand-alone open-source pipeline 

(https://github.com/weidai2/ImmuneMirror/) and a web server 

(http://immunemirror.hku.hk/App/) incorporating a balanced random forest model for 

neoantigen prediction and prioritization; the model was trained and tested using known 

immunogenic neopeptides collected from 19 published studies. The area under the curve 

(AUC) of our model was 0.87. We utilized ImmuneMirror in gastrointestinal tract cancers 

and discovered a subgroup of microsatellite instability-high (MSI-H) colorectal cancer (CRC) 

patients with a low neoantigen load but a high tumor mutation burden (TMB>10 mutations 

per Mbp). Although the efficacy of PD-1 blockade has been demonstrated in advanced MSI-

H patients, almost half of such patients do not respond well. Our study may identify MSI-H 

patients who do not benefit from this treatment. Additionally, the neopeptide 

YMCNSSCMGV-TP53G245V, derived from a hotspot mutation restricted by HLA-A02, was 

identified as an actionable target in esophageal squamous cell carcinoma (ESCC). This is the 

largest study to comprehensively evaluate neoantigen prediction models using experimentally 

validated neopeptides. Our results demonstrate the reliability and effectiveness of 

ImmuneMirror for neoantigen prediction. 
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INTRODUCTION 

Immunotherapy uses the immune system to detect and fight against cancer cells. 

Accumulating evidence shows that the presence of neoantigens derived from somatic 

mutations in tumor cells elicits a potent immune response as a part of antitumor immunity 

through specific cytotoxic T cells (1,2). Previously, various methods have been proposed for 

neoantigen identification, such as MHCflurry (3), NetMHCpan (4-6) and NN-Align (7), 

which predict the binding affinity between peptides and their corresponding major 

histocompatibility complex (MHC) alleles. Binding affinity is a good reference to prioritize 

neoantigens because MHC classes I and II help the immune system bring the bonded 

complex to the surface of cancerous cells for recognition by T cells. Therefore, binding to 

MHC molecules is a prerequisite for immunogenicity. However, the actual variant expression, 

HLA presentation, peptide processing, and transportation, as well as the ultimate T-cell 

response to these neoantigens, have not been considered in these existing binding affinity-

based tools, therefore, these previous methods may fail to provide reliable predictions in real-

world scenarios. Recently, by integrating peptide features, Wells et al. developed a model of 

tumor epitope immunogenicity to filter out nonimmunogenic peptides, and the results 

improved the effectiveness of neoantigen prediction (8). This model is based on stringent 

cutoffs for several selected features, including binding affinity, binding stability, tumor 

abundance, the ratio of binding affinity between mutant and wild-type peptides (9), and T-

cell receptor recognition probability (foreignness); the model showed promising results with 

precision (true positive/(true positive + false positive)) above 0.7. However, Wells’ study (8) 

used different criteria during the training and validation steps to filter neoantigens, making it 

difficult to implement with other data sets. A continuous effort is still needed to further 

improve the prediction accuracy for clinical application by incorporating more relevant 

biological features that are involved in these complicated biological processes. 

In this study, we developed ImmuneMirror, an all-in-one multiomics data analysis 

bioinformatics pipeline, to access the key genomic and transcriptomic features associated 

with the cancer immunotherapy response. The ImmuneMirror pipeline and web server 1.0 

incorporate a machine learning model to incorporate significant biological features for 

neoantigen prediction. With this advanced machine learning model trained by known 

neopeptides with T-cell immunogenicity, ImmuneMirror overcomes the issue of unbalanced 

neoantigen distribution, i.e., immunogenic mutation-derived neoantigens are relatively rare 
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compared to the total number of mutations detected. We applied ImmuneMirror to real-world 

data to systematically investigate neoantigens in gastrointestinal tract (GIT) cancers using 

matched whole-exome sequencing (WES) and RNA Sequencing (RNASeq) data; furthermore, 

we compared the results with putative neoantigens that are derived from hotspot mutations in 

cancer-related genes restricted by the following four common HLA alleles: HLA-A02:07, 

HLA-A24:02, HLA-A02:01, and HLA-A11:01. The top candidate neopeptide, 

YMCNSSCMGV-TP53G245V, derived from a hotspot mutation restricted by HLA-A02, was 

evaluated experimentally. 

MATERIALS AND METHODS 

Selection of machine learning models for neoantigen prediction 

To build the prediction model for identifying neoantigens and incorporating more 

relevant genomic and transcriptomic features, we first gathered a list of neopeptides with 

experimentally confirmed T-cell responses to use as the training data for model construction. 

The binding affinities of peptide amino acids were predicted through pVACtools (10) 

with multiple prediction methods for MHC class I. Feature selection was performed based on 

hypothesis tests to include the neoantigens that were detected by pVACtools (10); the 

hypothesis tests were the median binding affinity score of the epitope estimated from all 

prediction algorithms as well as the mean hydropathy of the last 7 residues on the C-terminus 

of the peptide. Additionally, considering that binding affinity is not the only parameter 

governing tumor epitope immunogenicity, we added the following relevant features for 

thorough analysis and to improve prediction accuracy: ‘agretopicity’ (9,11) and ‘foreignness’ 

(12-14), hydrophobicity, binding stability, peptide processing, and transportation scores. The 

final training data set included a total of 1199 peptides that were tested in vitro, 93 of which 

had positive T-cell responses. Ten of the 211 tested peptides were immunogenic. These 

neopeptides were identified from 19 published studies (Supplementary Tables S1 and S2). 

The class distribution of the data set is extremely unbalanced due to the low 

proportion of immunogenic neoantigens, which activate T cells. Consequently, conventional 

classification algorithms are largely affected by the majority class and thus give biased 

attention to the minority class, resulting in poor prediction performance. Therefore, we 

adapted balanced random forest learning algorithms to address this issue (15). These methods 

were evaluated using the area under the receiver operating characteristic curve (AUC) metric. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.09.527828doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.09.527828
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

5 
 

Random forests are ensemble learning algorithms for classification that construct 

multiple decision trees during the training process. Given a training set � � �� , . . . , �� ,   where 

�� � ��� , 	�
 � � 
 �, the algorithm repeatedly (� times) selects a bootstrap random sample 

with replacement and a random subset of the predictive features from the training data set and 

then fits decision trees ��  to each of those bootstrap random samples �� , ��,. When building 

decision trees, a random number of �predictors are selected as split candidates from the 

entire �  predictor pool; typically, we set � � �� . The Gini index, defined as � �

∑ �̂���1 � �̂��
�
�	� , where �̂�� is the proportion of training observations in the �th region 

belonging to the �th class; the Gini index is used as a criterion to make the binary split when 

growing a tree. The final classification output is based on majority voting from all the base 

decision trees or the classification can be made by taking the average of all predictions using 

the following equation: ���
���
 � �

�
∑ �����
�
�	�  (16). 

SMOTE and under-sampling combination + random forest 

Conventional random forest uses the standard bootstrap sampling strategy with equal 

sample probability for each observation, and this strategy does not perform well for an 

extremely imbalanced data set. Therefore, we proposed modifying the random forest 

algorithm using the advanced resampling technique, which over-samples from the minority 

class and under-samples observations from the majority class to increase the minority-

majority ratio from approximately 1:12 to 1:3. This under-sampling step can be achieved 

using the smote_and_undersample function in the R package hyperSMURF (17). This 

function first generates synthetic examples based on the synthetic minority over-sampling 

technique (SMOTE), which retains each minority class sample and introduces synthetic 

examples along the line segments joining some of the � minority class nearest neighbors (18). 

In our case, we set the multiplicative factor �
 to 2 and � to 5, so two neighbors from the five 

nearest neighbors were selected. Then, observations from the majority class were under-

sampled to reach the preset class ratio. We then fit the conventional random forest on the 

resampled data. These processes were repeated several times to guarantee that most of the 

data were involved in the training process. Finally, we selected the model with the best AUC 

(0.8294) using the testing data (Figure 1). 

Balanced random forest 

To address the imbalanced data issue, Chen and Breiman (19) developed the balanced 

random forest algorithm, which substantially improved the performance of the random forest 
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algorithm by replacing the equal-weight sampling strategy with random under-sampling for 

decision tree formation. More specifically, for each iteration in a random forest, we randomly 

drew a bootstrap sample from the minority class and obtained the same number of cases from 

the majority class with replacement. Then, we formed a classification tree based on the 

balanced data. We repeated the above steps many times and then determined the final 

prediction via majority voting (19). The balanced random forest algorithm was implemented 

in the train function in the R package caret (20), and the optimal value of parameters was 

tuned by a 5-fold cross-validation method. The AUC on the testing set was 0.8679 (Figure 1). 

By evaluating the above two models, the balanced random forest model outperformed the 

others, making it the optimal model to predict neoantigens. 

Peptide synthesis and quality control 

The selected peptides were synthesized. The CI resins were selected and deprotected 

in 20% piperidine dimethylformamide (DMF) solution. The resin was filtered off and rinsed 

with DMF three times to remove Fmoc residues. The completeness of amino deprotection 

was measured by taking a sample of the resin and mixing it with detection reagents A and B. 

If there was a color change, the Fmoc groups were removed successfully. The amino acid 

solution was added into a mixture of the resin and di-isopropyl carbodiimide (DIC) in DMF, 

and the mixture was shaken at room temperature. The completeness of the coupling reaction 

was confirmed by taking a sample of the resin and mixing with detection reagents A and B, 

followed by resin washing with DMF three times. When all the amino acids were coupled 

onto the resins, the peptide chain was dissociated from the resins by treatment with 

TFA/DMF. The crude peptides were further purified by reversed-phase high-performance 

liquid chromatography (HPLC) and were frozen and dried under vacuum. The molecular 

weights of the selected peptides were analyzed by LC�MS. Endotoxin levels were detected 

using Horseshoe Crab Reagent. The peptide with an endotoxin level <10 EU/mg was used for 

the MHC binding assays. 

HLA-A02:01 peptide-binding assay 

The QuickSwitchTM Quant HLA-A02:01 Tetramer Kit-PE was used to investigate 

the binding affinity of the selected neoepitope to MHC HLA-A02:01. The synthesized 

peptides were incubated with the MHC HLA-A02:01 complex, which already contained a 

control peptide. The tested peptide competed with the control peptide, and the exchange rate 

was used to identify the peptide-binding affinity. QuickSwitch™ Quant HLA-A02:01 
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Tetramer Kit-PE and flow cytometry were used to investigate the exchange rate of the MHC 

HLA-A02:01 control peptide. The tested peptide was mixed with the tetramer and peptide 

exchange factor for 4.5 hours at room temperature. The peptide exchange rate was 

quantitated by flow cytometry (21,22). The reference positive peptide was provided by the 

QuickSwitch™ Quant HLA-A*02:01 Tetramer Kit-PE. 

RESULTS 

Overview 

The overall workflow of this study is depicted in Figure 2. The machine learning 

(ML) model was developed using the balanced random forest algorithm for neoantigen 

prediction with the incorporation of multiple biological features relevant to neoantigen 

biogenesis, transportation, presentation, and T-cell recognition (agretopicity, foreignness, 

hydrophobicity, binding stability, peptide processing, and transportation scores). This ML 

model was incorporated into the ImmuneMirror bioinformatics pipeline, which is also a web 

server for neoantigen prediction and prioritization from multiomics sequencing data. The 

pipeline takes the raw FASTQ reads as input, while the web server takes VCFs file 

containing the somatic mutations (Figure 3). This pipeline was applied to identify 

neoantigens derived from somatic mutations in cancer-related genes with common MHC 

class I subtypes in Pan-Cancer studies and from real-world WES and RNASeq data from GIT 

cancer patients. Experiments were carried out to confirm the binding affinity of the putative 

neoantigens with MHC class I HLA-A02:01. 

Implementation of the ImmuneMirror pipeline and web server 

We developed the ImmuneMirror pipeline for neoantigen prediction and prioritization 

based on multiple genomic and transcriptomic features. The workflow of the ImmuneMirror 

pipeline is depicted in Supplementary Figure S1. The pipeline was built as a docker 

container that can be run in any docker-supported operating system, such as Linux, Mac and 

Windows. The pipeline required FASTQ input of matched normal-tumor WES samples and 

tumor bulk RNASeq samples. It was implemented with various benchmark bioinformatics 

packages (see Supplementary Data file for details description), such as BWA-mem (23) for 

WES alignment, STAR (24) for RNAseq alignment, Genome Analysis Toolkit (GATK4) 

(25), Picard Toolkit (http://broadinstitute.github.io/picard/), etc. for preprocessing; 

MSIsensor-pro (26) for microsatellite instability analysis; GATK4 (25) for germline variant 

calling and somatic SNV and indel detection; OptiType (27) for HLA class I haplotyping and 
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PHLAT (28) for HLA class II haplotyping; and pVACtools (29) for predicting the binding 

affinity of HLA class I and II. The full list of packages and software that were used for 

ImmuneMirror pipeline development are listed in Supplementary Table S3. Finally, we 

implemented the prediction model as an R function for prioritizing the neoantigens restricted 

by HLA class I. The germline and somatic mutations, estimated tumor mutation burden 

(TMB), microsatellite instability (MSI) status, HLA typing, neoantigen load for HLA class I 

and II, the top-ranked neoantigens with T-cell immunogenicity, and the expression of the 

selected gene signatures are the final outputs of the pipeline. Moreover, we evaluated the 

accuracy of MSI status prediction by ImmuneMirror using the known MSI status generated 

by The Cancer Genome Atlas (TCGA) studies; the sensitivity, specificity and accuracy were 

calculated to be 97.37%, 99.56% and 99.25%, respectively. Users can download the Docker 

image and the relevant files (reference files and example samples) from 

http://immunemirror.hku.hk/ and clone the ImmuneMirror pipeline from the GitHub 

repository (https://github.com/weidai2/ImmuneMirror/). 

Apart from the development of the stand-alone pipeline, we also developed an 

ImmuneMirror web server (Figure 3) that takes a VCF file containing the somatic mutations 

detected by MuTect2 as the input and identifies the potential neoantigens derived from 

somatic mutations for both HLA class I and class II molecules. Users can upload a VCF file, 

enter a set of alleles for both HLA class I and II, and select peptide lengths via the web 

interface. The uniform resource locator (URL) link for downloading the results will be sent to 

the user-provided e-mail automatically by the server upon job completion. The web server is 

freely available for users with detailed usage instructions at 

http://immunemirror.hku.hk/App/. 

Graphical analysis report 

With the advantages of our developed analysis database, ImmuneMirror produces a 

visual analysis report for each of the samples. The report, as illustrated in Supplementary 

Figure S2, includes TMB, HLA types, neoantigen load for HLA class I and II, MMR status, 

germline and somatic mutations, and innate anti-PD1 resistance (IPRES) gene expression 

signature (30). The TMB is shown as the number of mutations per Mb. The HLA typing of 

the sample is presented in a table for class I and class II. The number of neoantigens 

restricted by HLA class I and class II are illustrated as box plots and bar plots with indicators 

for high and low neoantigen loads, respectively. The MMR status of the sample is reported. 

The cutoff for the MSI-high group was determined by the optimal value of the MSIsensor-pro 
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score for distinguishing the MSI group from the other groups in CRC. The sample with a 

MSIsensor-pro score higher than the cutoff was defined as MMR deficient. Moreover, both 

germline variants and somatic mutations of selected genes, such as BRCA2, B2M, MLH1 and 

MSH2, and expression of the genes from the IPRES signature are included in the analysis 

report. It has been reported that these selected mutations and gene expression signatures are 

relevant to the immunotherapy response (30,31). 

Testing, computation speed evaluation, resources and comparison of features 

We tested the pipeline on Linux operating systems (ubuntu 20.04). It took 

approximately 30 hours to process one pair of samples with 13 threads. Moreover, we ran the 

pipeline with multiple pairs of samples from different cancer types, i.e., ESCC, HCC, and 

CRC. Users can run ImmuneMirror with a list of samples, and the actual run time depends on 

the computation speed and resources of their own devices. In general, we recommend a 

device with at least 64 GB of RAM and the necessary space for the pipeline, including docker 

image (79.6 GB), supporting files (483 GB) and analysis results (approximately 41 GB for 

one pair of samples), to successfully run the pipeline. The supporting files provide the 

necessary resources, such as the reference human genome (hg38), to run the pipeline; thus, no 

additional step is needed to download these files or to reconfigure the pipeline. The web 

server has been tested on Linux, macOS, and Windows platforms with various web browsers 

(Supplementary Table S4). The format of the input/output files and detailed instructions are 

provided on the website and will be updated regularly. 

We compared the bioinformatics tools available for neoantigen prediction 

(Supplementary Table S5). Compared to other existing pipelines, only ImmuneMirror has 

all of the following six unique features: methods for prioritization, docker image, web server, 

neoantigen prediction for HLA class I and II, and multiple prediction algorithms. As a docker 

image, the ImmuneMirror pipeline takes the raw FASTQ files from both WES (matched 

normal-tumor pairs) and RNASeq (tumor, optional) data as the input. On the one hand, 

similar to pVAC-Seq (10), ImmuneMirror can be used for neoantigen prediction restricted by 

HLA class I and class II using multiple algorithms. On the other hand, ImmuneMirror 

provides a unique web server taking the VCF file that contains the somatic mutations 

detected by MuTect2 as the input for neoantigen prediction, which makes ImmuneMirror 

user friendly. 

Application of ImmuneMirror to real-world data 
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Identification of clonal mutations as neoantigens from TCGA Pan-Cancer studies 

The top 27 cancer-relevant genes with hotspot mutations (frequency >0.1%) from the 

OncoKB (32) cancer gene list were selected for analysis. Each mutant is paired with four 

common HLA alleles, HLA-A02:07, HLA-A24:02, HLA-A02:01, and HLA-A11:01, derived 

from Asian populations. The prediction scores of the mutant-HLA combinations as well as 

many other biological features were calculated by ImmuneMirror. Wells et al. (8) developed 

selection criteria (binding affinity < 34 nM; binding stability > 1.4 hours; tumor abundance > 

33 TPM; agretopicity < 0.1 or foreignness >10-16) to select neoantigens based on several 

experimental validation results (8). To present a thorough analysis, we also applied Wells’ 

criteria (8) to all the mutants identified from these 27 genes to compare with our prediction 

results. Neoantigen candidates were finalized if 1) the prediction score was greater than 0.515 

(sensitivity: 0.851; specificity: 0.7, evaluated by the testing data set) and 2) they fulfilled 

Well’s criteria (8) with an adapted gene expression cutoff of TPM >10. We finally identified 

a total of 9 neoantigens derived from the mutations of 27 genes with a mutation 

frequency >0.1% from TCGA Pan-Cancer studies. The results included multiple potential 

neoantigens derived from TP53P250L, TP53C242F, and TP53S241F (Table 1). 

In addition, our analysis also indicated that the hotspot mutations BRAFV600K, 

PIK3CAN345K, PIK3CAE542K, PIK3CAE545K, and PIK3CAH1047L are promising candidates for 

neoantigens derived from cancer-relevant genes. Nearly half of all cutaneous melanomas 

carry activating BRAFV600 mutations, among which 10–30% contain the BRFAV600K mutation, 

making it the second most common genotype after BRAFV600E (33,34). BRAFV600K lead to a 

gain in BraF protein function, as demonstrated by increased kinase activity, increased 

downstream signaling, and the ability to transform cells in vitro (35,36). Clinically, 

BRAFV600K tumors cause patients to experience distant metastases sooner, and these patients 

have a higher risk of relapse and shorter survival than those with V600E tumors (37). 

Identification of GIT cancer neoantigens 

 We further evaluated the genomic and transcriptomic data from colorectal cancer 

(CRC), esophageal squamous cell carcinoma (ESCC), and hepatocellular carcinoma (HCC) 

patients to further evaluate the putative neoantigens in these three types of cancers in the real 

world. We collected a total of 805 samples from different data sources (Supplementary 

Table S6). After quality checking, we analyzed a total of 691 samples, composed of 316 

CRC samples, 290 ESCC samples, and 85 HCC samples. On average, we identified 17 (0, 
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316), 5 (0, 76), and 6 (0, 64) neoantigens by ImmuneMirror for each CRC, ESCC, and HCC 

patient, respectively. Noticeably, the neoantigen load was significantly correlated with 

favorable clinical outcome in terms of longer overall survival in ESCC samples 

(Supplementary Figure S3). CRC patients can be categorized as high microsatellite 

instability (MSI-H), low microsatellite instability (MSI-L) and microsatellite stability (MSS) 

according to the status of the mismatch repair pathway (38). MSI-H tumors respond well to 

immunotherapy, presumably due to a high TMB and neoantigen load (39,40). More 

interestingly, although the neoantigen load was not correlated with overall survival in CRC 

samples, we found that a subgroup of MSI-H CRC patients with MMR deficiency had a 

much lower neoantigen load for both HLA class I and II and a high TMB that was 

comparable to other MSI-H CRC patients (Figure 4). These patients were subject to 

advanced T stage (T4 vs. others: 30.8% vs. 0%, Fisher’s exact test P = 0.011). 

We identified a total of 12 putative neoepitopes that fulfilled Well’s criteria (8) and 

had an ImmuneMirror prediction score >0.5. These neoepitopes were derived from TP53, 

STAT3 and RAB35 with high affinity for the HLA-A*02:01, HLA-A*11:01, HLA-A*33:03, 

HLA-A*33:01, HLA-A*03:01, and HLA-A*02:06 HLA alleles (Table 2). More specifically, 

the neoepitope TP53G245V (YMCNSSCMGV) restricted by HLA-A*02 was identified in the 

real-world data analysis of ESCC patient samples. This mutation affects the binding of p53 to 

DNA and interferes with the protein’s transcription activity. The RNASeq data indicated that 

this mutant is widely expressed in the tumor tissue (Supplementary Figure S4). 

Validation of HLA-A02 binding with TP53.pG245V 

We evaluated HLA-A02 binding affinity with neoepitopes derived from multiple 

mutations at G245 in TP53 using the QuickSwitch Quant HLA-A*02:01 Tretramer Kit-PE. 

The neoepitope TP53G245V (YMCNSSCMGV) had a higher reference peptide exchange rate 

of 97.03% than the wild-type peptide YMCNSSCMGG (80.8%) (Figure 5A). The binding 

affinity of neoepitope-TP53G245V (YMCNSSCMGV) was the highest among TP53G245R, 

TP53G245D, TP53G245C, and TP53G245S (Figure 5B), and the Pearson’s correlation between the 

ImmuneMirror prediction scores and binding affinities was as high as 0.875 (Figure 5C). 

This result confirmed the effectiveness and reliability of ImmuneMirror as an advanced tool 

for neoantigen prediction. 

DISCUSSION 
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By integrating a balanced random forest model, we developed ImmuneMirror as a 

self-standing open-source pipeline and a web server for neoantigen prediction and 

prioritization. ImmuneMirror was trained and tested using immunogenic neoantigens 

collected from 19 studies. To our knowledge, this is the largest study to comprehensively 

evaluate the neoantigen prediction model using experimentally validated neopeptides to date. 

Accurate neoantigen prediction depends on including the biological features that essentially 

govern epitope immunogenicity. Referring to published studies, our model thoroughly 

integrates important biological features of immunogenic neoantigens. Additionally, we 

applied statistical methods to keep the most relevant features and developed a prediction 

model based on advanced machine learning algorithms. The effectiveness and reliability of 

ImmuneMirror have been confirmed by analyzing 805 samples of gastrointestinal tract 

cancers and experimental validation of selected candidates. 

Both the ImmuneMirror and Wells’ study (8) models indicate that neopeptides with 

strong MHC binding affinity, long half-life and low agretopicity are most likely to be 

neoantigens. However, when analyzing the same data set, Wells’ criteria (8) tend to be very 

stringent about binding affinity, agretopicity and peptide stability to accommodate the needs 

of high specificity for clinical application, while the ImmuneMirror model offers an 

integrated approach considering more relevant biological features, including binding affinity, 

‘agretopicity’ (9,11) and ‘foreignness’ (12-14), hydrophobicity, binding stability, peptide 

processing, and transportation scores without cutoffs, which provides more potential 

candidates for the purpose of research for further downstream experimental validation. 

In our real-world data analysis, we found that neoantigen load was a predictor of good 

clinical outcomes in ESCC patients. Although it is known that MSI-H is an important 

molecular biomarker for selecting CRC patients who may benefit from anti-PD-1/PDL-1 

therapy, we further identified a subgroup of MSI-H CRC patients enriched for advanced T 

stage that had relatively low neoantigen loads for HLA class I and II by ImmuneMirror. 

Promising results for immunotherapy have been demonstrated in a previous study that 

evaluated the efficacy of PD-1 blockade in advanced MSI-H patients across twelve different 

cancer types with an objective response rate in 53% of patients and complete response in 21% 

of patients; nevertheless, almost half of MSI-H cancer patients do not respond well to this 

treatment. This previous study also showed in vivo expansion of T-cell clones specifically 

activated by neoantigens in patient responses (40). Our results suggest that further 

stratification of MSI-H cancer patients based on neoantigen loads may be necessary, and a 
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more detailed evaluation of the objective response rate of this unique subset of MSI-H 

patients to anti-PD-1/PDL-1 therapy is needed in a clinical trial. 

The TP53G245V mutation occurs at a total frequency of 0.13% in diverse cancers, such 

as diffuse glioma, non-small cell lung cancer, bladder urothelial carcinoma, endometrial 

carcinoma, head and neck squamous cell carcinoma, pancreatic adenocarcinoma, and 

esophageal squamous cell carcinoma, according to the records in the cBio Cancer Genomic 

portal (41). The discovery of the neoepitope TP53G245V (YMCNSSCMGV) derived from this 

mutation restricted by HLA-A*02, a common HLA class I type in Caucasians and Asians, 

showed the effectiveness and great potential of ImmuneMirror for detecting the neoantigens. 

In addition to developing the neoantigen vaccine targeting this neoepitope, further 

identification of T cells that are specifically reactivated by this neoepitope is necessary for 

developing adoptive T-cell therapies for cancer patients carrying this specific mutation. 

In summary, ImmuneMirror is an integrative analysis pipeline that can be applied for 

genomic and transcriptomic data analysis, especially for neoantigen prediction, in samples 

from a variety of cancer types. This tool could assist biologists in systematically evaluating 

the genomic and transcriptomic features relevant to the response to immunotherapy, 

including TMB, neoantigen load, MSI status, HLA typing, and the expression of the IPRES. 

More importantly, ImmuneMirror will be strategically useful as a guide for clinicians to tailor 

treatment strategies according to the genomic and transcriptomic profiles for precision 

medicine and to facilitate clinical trial design and patient selection with broad prospects for 

clinical applications. Additional experimental and clinical validation of the putative 

neoantigens identified in this study are warranted to determine the usefulness of these 

putative neoantigens for immunotherapy. 

DATA AVAILABILITY 

The published article includes all data sets generated or analyzed during this study. 

Accession codes. 

WES data: European Genome-phenome Archive (EGA): EGAS00001000932 (42); NCBI 

Sequence Read Archive (SRA): SRP033394 (43), NCBI Bioproject: PRJNA399748 (44); and 

TCGA ESCC, CRC and HCC samples from NCI Genomic Data Commons 

(https://portal.gdc.cancer.gov/). Data from a previous study carried out by Dai et al. (45). 

RNASeq data: TCGA ESCC, CRC and HCC samples from the NCI Genomic Data 

Commons (https://portal.gdc.cancer.gov/) 
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The open source ImmumeMirror pipeline and usage guide are available at 

https://github.com/weidai2/ImmuneMirror. The source code is released under the GNU 

General Public License version 3 (GPL >=3). The web server is freely available at 

http://immunemirror.hku.hk/App/ and does not have a login requirement. 

SUPPLEMENTARY DATA 

Supplementary Data are available online. 
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Table 1: The neoantigens identified from hotspot mutations in TCGA Pan-Cancer studies 

Gene Mutation 
Neoepitope 

(mutation) 

HLA 

restriction 

ImmuneMirror 

Score 

BRAF V600K KIGDFGLATK A*11:01 0.7 

PIK3CA N345K KILCATYVK A*11:01 0.9 

PIK3CA E542K AISTRDPLSK A*11:01 0.6 

PIK3CA E545K STRDPLSEITK A*11:01 0.7 

PIK3CA H1047L ALHGGWTTK A*11:01 0.7 

TP53 G245V YMCNSSCMGV A*02:01 0.5 

TP53 P250L RLILTIITL A*02:01 0.6 

TP53 C242F HYNYMCNSSF A*24:02 0.7 

TP53 S241F HYNYMCNSF A*24:02 0.8 
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Table 2: The neoantigens identified in GIT cancer samples 

Sample_ID Type Gene Mutation 
Protein 
position 

Neoepitope 
(mutation) HLA restriction 

ImmuneMirror 
Score 

WES_E09039T ESCC CREBBP R/L 1408 LLTAVYHEI HLA-A*02:01 0.6 

TCGA-F4-6570-T CRC CTNNA1 E/K 529 HVNPVQALSK HLA-A*11:01 0.5 

TCGA-CA-6719-T CRC PCSK7 E/K 357 VTIGAVDEK HLA-A*11:01 0.7 

TCGA-CA-6718-T CRC POLE P/R 286 TTKLPLKFR HLA-A*33:03 0.7 

TCGA-CK-5916-T CRC PPP6C L/R 19 EIARLCKYR HLA-A*33:01 0.7 

TCGA-AY-6197-T CRC PRKAR1A T/M 106 YMEEDAASYV HLA-A*02:01 0.6 

TCGA-CM-5349-T CRC RAB35 E/K 94 VVYDVTSAK HLA-A*03:01 0.9 

TCGA-BC-A3KF-T HCC STAT3 M/K 28 QLYSDSFPK HLA-A*03:01 0.8 

TCGA-D5-6922-T CRC TP53 R/L 213 YLDDRNTFL HLA-A*02:01 0.5 

TCGA-LN-A49Y-T ESCC TP53 G/V 245 YMCNSSCMGV HLA-A*02:06 0.5 

WES_E12230T ESCC TP53 H/R 179 EVVRRCPHR HLA-A*33:03 0.7 

TCGA-D5-6923-T CRC TSC2 E/K 134 KVIKDYPSNK HLA-A*11:01 0.7 
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TABLE AND FIGURE LEGENDS 

Figures 

Figure 1. Evaluation of different random forest algorithms used for neoantigen prediction 

with AUC performance: Left panel: Balanced random forest; Right panel: Random forest 

with under sampling. 

Figure 2. Overall study workflow. Neopeptides with experimentally confirmed T-cell 

responses were gathered as training data for model construction. Relevant features were 

selected through feature selection. The prediction model (ImmuneMirror) was established 

with an advanced machine learning algorithm. ImmuneMirror was subsequently applied to 

the hotspot mutations derived from the common cancer gene list from OncoKB to predict 

potential neoantigens. Wells’ criteria (8) were also applied to hotspot mutations for the 

selection of neoantigens. The publicly available data from ESCC, CRC & HCC patients were 

processed and analyzed by ImmuneMirror. We compared the results obtained from the two 

data resources and identified overlapping candidates that were then subject to experimental 

validation of binding affinity with HLA-A02. 

Figure 3. The overall workflow of ImmuneMirror, major analysis steps involved in the 

ImmuneMirror pipeline, and the ImmuneMirror web server. The ImmuneMirror pipeline 

preprocesses raw FASTQ files, including multiple analysis steps (e.g., prediction of HLA 

subtypes, SNV and indel detection, variant annotation, neoantigen prediction and 

prioritization), and generates a graphical analysis report for each sample. The input for the 

web server is a VCF file, and the analysis result (list of prioritized neoantigens) is sent as a 

web link to the email address of the end user. 

Figure 4. Lower neoantigen loads were detected in a subgroup of MSI-H CRC patients. A: 

TMB. B: MSISensor score for MSI status. C: The neoantigen load for HLA class I. D: The 

neoantigen load for HLA class II. 

Figure 5. Validation of binding affinity between HLA-A02 and neoepitopes derived from 

TP53 mutations. A) The exchange ratios (mean ± SD) of the TP53G245V mutant compared 

with the matched wild type (exchange ratio over 80% is used as the cutoff for positive and 

negative values). B) The exchange ratio (mean ± SD) of TP53G245 mutants compared with the 

positive control (an exchange ratio of 80% was considered biologically relevant). C) 

Scatterplot of the prediction score versus the exchange ratio (mean ± SD) for TP53G245 

mutants. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.09.527828doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.09.527828
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

  
 

 

Tables 

Table 1. Neoantigens identified from hotspot mutations in TCGA Pan-Cancer studies. 

Table 2. Neoantigens identified from GIT cancers, including CRC, ESCC and HCC. 

 

Supplementary Figures 

Supplementary Figure S1. ImmuneMirror pipeline workflow. The diagram focuses on the 

bioinformatics analysis steps and their workflows with intermediate processes involved, from 

raw FASTQ file preprocessing to neoantigen prediction and prioritization. RNA, Ribonucleic 

acid; WES, whole-exome sequencing; N, normal; T, tumor; L, lymph node; BAM, binary 

alignment map; QC, quality control; TPM, transcripts per million; SNV, single nucleotide 

variant; VCF, variant call format; Indel, insertion or deletion; MSI, microsatellite instability; 

HLA, human leukocyte antigen; MHC, major histocompatibility complex. 

Supplementary Figure S2. Graphical analysis report of a patient sample produced by the 

ImmuneMirror pipeline as an example. 

Supplementary Figure S3. Survival analysis of Pan-Cancer studies, including (A) CRC, (B) 

ESCC, and (C) HCC patients. 

Supplementary Figure S4. The expression of the TP53G245V mutation was detected by 

RNASeq as illustrated by Integrative Genomics Viewer (IGV). 

 

Supplementary Tables 

Supplementary Table S1. The list of published studies used for construction and evaluation 

of the machine learning models for neoantigen prediction. 

Supplementary Table S2. The list of peptides that were used for model training and testing. 

Supplementary Table S3. The list of software and packages that were used in 

ImmuneMirror implementation. 

Supplementary Table S4. Compatibility of ImmuneMirror with various operating systems 

and browsers. 

Supplementary Table S5. Comparison of bioinformatics tools available for neoantigen 

prediction. 

Supplementary Table S6. List of data sources for the WES and RNASeq data for this study. 
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