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ABSTRACT

Neoantigens are derived from tumors but are absent in normal tissues. Emerging evidence
suggests that neoantigens can stimulate tumor-specific T-cell-mediated antitumor immune
responses, and neoantigens are potential immunotherapy targets. We developed
ImmuneMirror as a stand-alone open-source pipeline
(https://github.com/weida 2/mmuneMirror/) and a web server
(http://immunemirror.hku.hk/App/) incorporating a balanced random forest model for
neoantigen prediction and prioritization; the model was trained and tested using known
immunogenic neopeptides collected from 19 published studies. The area under the curve
(AUC) of our model was 0.87. We utilized ImmuneMirror in gastrointestinal tract cancers
and discovered a subgroup of microsatellite instability-high (M SI-H) colorectal cancer (CRC)
patients with a low neoantigen load but a high tumor mutation burden (TMB>10 mutations
per Mbp). Although the efficacy of PD-1 blockade has been demonstrated in advanced M SI-
H patients, aimost half of such patients do not respond well. Our study may identify MSI-H
patients who do not benefit from this treatment. Additionaly, the neopeptide
YMCNSSCMGV-TP53%**V | derived from a hotspot mutation restricted by HLA-A02, was
identified as an actionable target in esophageal squamous cell carcinoma (ESCC). Thisis the
largest study to comprehensively evaluate neoantigen prediction models using experimentally
validated neopeptides. Our results demonstrate the reliability and effectiveness of

ImmuneMirror for neoantigen prediction.
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INTRODUCTION

Immunotherapy uses the immune system to detect and fight against cancer cells.
Accumulating evidence shows that the presence of neoantigens derived from somatic
mutations in tumor cells elicits a potent immune response as a part of antitumor immunity
through specific cytotoxic T cells (1,2). Previously, various methods have been proposed for
neoantigen identification, such as MHCflurry (3), NetMHCpan (4-6) and NN-Align (7),
which predict the binding affinity between peptides and their corresponding major
histocompatibility complex (MHC) alleles. Binding affinity is a good reference to prioritize
neoantigens because MHC classes | and Il help the immune system bring the bonded
complex to the surface of cancerous cells for recognition by T cells. Therefore, binding to
MHC molecules is a prerequisite for immunogenicity. However, the actual variant expression,
HLA presentation, peptide processing, and transportation, as well as the ultimate T-cell
response to these neoantigens, have not been considered in these existing binding affinity-
based tools, therefore, these previous methods may fail to provide reliable predictions in real-
world scenarios. Recently, by integrating peptide features, Wells et al. developed a model of
tumor epitope immunogenicity to filter out nonimmunogenic peptides, and the results
improved the effectiveness of neoantigen prediction (8). This model is based on stringent
cutoffs for several selected features, including binding affinity, binding stability, tumor
abundance, the ratio of binding affinity between mutant and wild-type peptides (9), and T-
cell receptor recognition probability (foreignness); the model showed promising results with
precision (true positive/(true positive + false positive)) above 0.7. However, Wells' study (8)
used different criteria during the training and validation steps to filter neocantigens, making it
difficult to implement with other data sets. A continuous effort is still needed to further
improve the prediction accuracy for clinical application by incorporating more relevant

biological features that areinvolved in these complicated biological processes.

In this study, we developed ImmuneMirror, an all-in-one multiomics data analysis
bioinformatics pipeline, to access the key genomic and transcriptomic features associated
with the cancer immunotherapy response. The ImmuneMirror pipeline and web server 1.0
incorporate a machine learning model to incorporate significant biological features for
neoantigen prediction. With this advanced machine learning model trained by known
neopeptides with T-cell immunogenicity, ImmuneMirror overcomes the issue of unbalanced

neoantigen distribution, i.e., immunogenic mutation-derived neoantigens are relatively rare
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compared to the total number of mutations detected. We applied ImmuneMirror to real-world
data to systematically investigate neoantigens in gastrointestinal tract (GIT) cancers using
matched whole-exome sequencing (WES) and RNA Sequencing (RNASeq) data; furthermore,
we compared the results with putative neoantigens that are derived from hotspot mutations in
cancer-related genes restricted by the following four common HLA aleles: HLA-A02:07,
HLA-A24:02, HLA-A02:01, and HLA-A11:01. The top candidate neopeptide,
YMCNSSCMGV-TP53%**" | derived from a hotspot mutation restricted by HLA-A02, was
evaluated experimentally.

MATERIALSAND METHODS
Selection of machine learning models for neoantigen prediction

To build the prediction model for identifying neoantigens and incorporating more
relevant genomic and transcriptomic features, we first gathered a list of neopeptides with

experimentally confirmed T-cell responses to use as the training data for model construction.

The binding affinities of peptide amino acids were predicted through pVACtools (10)
with multiple prediction methods for MHC class |. Feature selection was performed based on
hypothesis tests to include the neoantigens that were detected by pVACtools (10); the
hypothesis tests were the median binding affinity score of the epitope estimated from all
prediction algorithms as well as the mean hydropathy of the last 7 residues on the C-terminus
of the peptide. Additionally, considering that binding affinity is not the only parameter
governing tumor epitope immunogenicity, we added the following relevant features for
thorough analysis and to improve prediction accuracy: ‘agretopicity’ (9,11) and ‘foreignness’
(12-14), hydrophobicity, binding stability, peptide processing, and transportation scores. The
final training data set included a total of 1199 peptides that were tested in vitro, 93 of which
had positive T-cell responses. Ten of the 211 tested peptides were immunogenic. These
neopeptides were identified from 19 published studies (Supplementary Tables S1 and S2).

The class distribution of the data set is extremely unbalanced due to the low
proportion of immunogenic neoantigens, which activate T cells. Consequently, conventional
classification algorithms are largely affected by the mgjority class and thus give biased
attention to the minority class, resulting in poor prediction performance. Therefore, we
adapted balanced random forest learning algorithms to address this issue (15). These methods

were evaluated using the area under the receiver operating characteristic curve (AUC) metric.
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Random forests are ensemble learning agorithms for classification that construct
multiple decision trees during the training process. Given atraining set Z = z,,...,z,, Wwhere
z; = (x;,y;) € X XY, the algorithm repeatedly (B times) selects a bootstrap random sample
with replacement and arandom subset of the predictive features from the training data set and
then fits decision trees f}, to each of those bootstrap random samples X,, Y, . When building
decision trees, a random number of mpredictors are selected as split candidates from the
entire p predictor pool; typically, we set m = \/5 . The Gini index, defined as G =
YK Pmk(1 = Pmi), Where p,,,,. is the proportion of training observations in the mth region
belonging to the kth class; the Gini index is used as a criterion to make the binary split when
growing a tree. The final classification output is based on magjority voting from all the base

decision trees or the classification can be made by taking the average of all predictions using

the following equation: f,,,(x) = %zgzl fi () (16).
SMOTE and under-sampling combination + random forest

Conventional random forest uses the standard bootstrap sampling strategy with equal
sample probability for each observation, and this strategy does not perform well for an
extremely imbalanced data set. Therefore, we proposed modifying the random forest
algorithm using the advanced resampling technique, which over-samples from the minority
class and under-samples observations from the mgjority class to increase the minority-
majority ratio from approximately 1:12 to 1:3. This under-sampling step can be achieved
using the smote and undersample function in the R package hyperSMURF (17). This
function first generates synthetic examples based on the synthetic minority over-sampling
technique (SMOTE), which retains each minority class sample and introduces synthetic
examples along the line segments joining some of the k minority class nearest neighbors (18).
In our case, we set the multiplicative factor f,, to 2 and k to 5, so two neighbors from the five
nearest neighbors were selected. Then, observations from the majority class were under-
sampled to reach the preset class ratio. We then fit the conventional random forest on the
resampled data. These processes were repeated several times to guarantee that most of the
data were involved in the training process. Finally, we selected the model with the best AUC
(0.8294) using the testing data (Figure 1).

Balanced random forest

To address the imbalanced data issue, Chen and Breiman (19) developed the balanced

random forest algorithm, which substantially improved the performance of the random forest
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algorithm by replacing the equal-weight sampling strategy with random under-sampling for
decision tree formation. More specifically, for each iteration in arandom forest, we randomly
drew a bootstrap sample from the minority class and obtained the same number of cases from
the majority class with replacement. Then, we formed a classification tree based on the
balanced data. We repeated the above steps many times and then determined the final
prediction via majority voting (19). The balanced random forest algorithm was implemented
in the train function in the R package caret (20), and the optimal value of parameters was
tuned by a 5-fold cross-validation method. The AUC on the testing set was 0.8679 (Figure 1).
By evaluating the above two models, the balanced random forest model outperformed the
others, making it the optimal model to predict neoantigens.

Peptide synthesis and quality control

The selected peptides were synthesized. The CI resins were selected and deprotected
in 20% piperidine dimethylformamide (DMF) solution. The resin was filtered off and rinsed
with DMF three times to remove Fmoc residues. The completeness of amino deprotection
was measured by taking a sample of the resin and mixing it with detection reagents A and B.
If there was a color change, the Fmoc groups were removed successfully. The amino acid
solution was added into a mixture of the resin and di-isopropyl carbodiimide (DIC) in DMF,
and the mixture was shaken at room temperature. The completeness of the coupling reaction
was confirmed by taking a sample of the resin and mixing with detection reagents A and B,
followed by resin washing with DMF three times. When all the amino acids were coupled
onto the resins, the peptide chain was dissociated from the resins by treatment with
TFA/DMF. The crude peptides were further purified by reversed-phase high-performance
liquid chromatography (HPLC) and were frozen and dried under vacuum. The molecular
weights of the selected peptides were analyzed by LCI™ MS. Endotoxin levels were detected
using Horseshoe Crab Reagent. The peptide with an endotoxin level <10 EU/mg was used for
the MHC binding assays.

HLA-A02:01 peptide-binding assay

The QuickSwitchTM Quant HLA-A02:01 Tetramer Kit-PE was used to investigate
the binding affinity of the selected neoepitope to MHC HLA-A02:01. The synthesized
peptides were incubated with the MHC HLA-A02:01 complex, which already contained a
control peptide. The tested peptide competed with the control peptide, and the exchange rate
was used to identify the peptide-binding affinity. QuickSwitch™ Quant HLA-A02:01
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Tetramer Kit-PE and flow cytometry were used to investigate the exchange rate of the MHC
HLA-A02:01 control peptide. The tested peptide was mixed with the tetramer and peptide
exchange factor for 4.5 hours a room temperature. The peptide exchange rate was
quantitated by flow cytometry (21,22). The reference positive peptide was provided by the
QuickSwitch™ Quant HLA-A*02:01 Tetramer Kit-PE.

RESULTS
Overview

The overall workflow of this study is depicted in Figure 2. The machine learning
(ML) model was developed using the balanced random forest algorithm for neoantigen
prediction with the incorporation of multiple biological features relevant to neoantigen
biogenesis, transportation, presentation, and T-cell recognition (agretopicity, foreignness,
hydrophobicity, binding stability, peptide processing, and transportation scores). This ML
model was incorporated into the ImmuneMirror bioinformatics pipeline, which is also a web
server for neoantigen prediction and prioritization from multiomics sequencing data. The
pipeline takes the raw FASTQ reads as input, while the web server takes VCFs file
containing the somatic mutations (Figure 3). This pipeline was applied to identify
neoantigens derived from somatic mutations in cancer-related genes with common MHC
class | subtypes in Pan-Cancer studies and from real-world WES and RNA Seq data from GIT
cancer patients. Experiments were carried out to confirm the binding affinity of the putative
neoantigens with MHC class | HLA-A02:01.

Implementation of the ImmuneMirror pipeline and web server

We developed the ImmuneMirror pipeline for necantigen prediction and prioritization
based on multiple genomic and transcriptomic features. The workflow of the ImmuneMirror
pipeline is depicted in Supplementary Figure S1. The pipeline was built as a docker
container that can be run in any docker-supported operating system, such as Linux, Mac and
Windows. The pipeline required FASTQ input of matched normal-tumor WES samples and
tumor bulk RNASeq samples. It was implemented with various benchmark bioinformatics
packages (see Supplementary Data file for details description), such as BWA-mem (23) for
WES aignment, STAR (24) for RNAseq alignment, Genome Analysis Toolkit (GATK4)
(25), Picard Toolkit (http://broadinstitute.github.io/picard/), etc. for preprocessing;

M Slsensor-pro (26) for microsatellite instability analysis, GATK4 (25) for germline variant
calling and somatic SNV and indel detection; OptiType (27) for HLA class | haplotyping and
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PHLAT (28) for HLA class Il haplotyping; and pVACtools (29) for predicting the binding
affinity of HLA class | and Il. The full list of packages and software that were used for
ImmuneMirror pipeline development are listed in Supplementary Table S3. Findly, we
implemented the prediction model as an R function for prioritizing the neoantigens restricted
by HLA class I. The germline and somatic mutations, estimated tumor mutation burden
(TMB), microsatellite instability (MSI) status, HLA typing, neoantigen load for HLA class |
and 11, the top-ranked neoantigens with T-cell immunogenicity, and the expression of the
selected gene signatures are the final outputs of the pipeline. Moreover, we evaluated the
accuracy of MS| status prediction by ImmuneMirror using the known MSl status generated
by The Cancer Genome Atlas (TCGA) studies; the sensitivity, specificity and accuracy were
calculated to be 97.37%, 99.56% and 99.25%, respectively. Users can download the Docker
image and the relevant files (reference files and example samples) from

http://immunemirror.hku.hk/ and clone the ImmuneMirror pipeline from the GitHub

repository (https://github.com/weidai2/lmmuneMirror/).

Apart from the development of the stand-alone pipeline, we also developed an
ImmuneMirror web server (Figure 3) that takes a VVCF file containing the somatic mutations
detected by MuTect2 as the input and identifies the potential neoantigens derived from
somatic mutations for both HLA class | and class Il molecules. Users can upload a VCF file,
enter a set of alleles for both HLA class | and Il, and select peptide lengths via the web
interface. The uniform resource locator (URL) link for downloading the results will be sent to
the user-provided e-mail automatically by the server upon job completion. The web server is
freely available for users  with detailed usage instructions at
http://immunemirror.hku.hk/App/.

Graphical analysisreport

With the advantages of our developed analysis database, ImmuneMirror produces a
visual analysis report for each of the samples. The report, as illustrated in Supplementary
Figure S2, includes TMB, HLA types, neoantigen load for HLA class | and II, MMR status,
germline and somatic mutations, and innate anti-PD1 resistance (IPRES) gene expression
signature (30). The TMB is shown as the number of mutations per Mb. The HLA typing of
the sample is presented in a table for class | and class II. The number of neoantigens
restricted by HLA class | and class Il are illustrated as box plots and bar plots with indicators
for high and low neoantigen loads, respectively. The MMR status of the sample is reported.
The cutoff for the M SI-high group was determined by the optimal value of the M Slsensor-pro
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score for distinguishing the MSI group from the other groups in CRC. The sample with a
M SlIsensor-pro score higher than the cutoff was defined as MMR deficient. Moreover, both
germline variants and somatic mutations of selected genes, such as BRCA2, B2M, MLH1 and
MSH2, and expression of the genes from the IPRES signature are included in the analysis
report. It has been reported that these selected mutations and gene expression signatures are

relevant to the immunotherapy response (30,31).
Testing, computation speed evaluation, resour ces and comparison of features

We tested the pipeline on Linux operating systems (ubuntu 20.04). It took
approximately 30 hours to process one pair of samples with 13 threads. M oreover, we ran the
pipeline with multiple pairs of samples from different cancer types, i.e., ESCC, HCC, and
CRC. Users can run ImmuneMirror with alist of samples, and the actual run time depends on
the computation speed and resources of their own devices. In general, we recommend a
device with at least 64 GB of RAM and the necessary space for the pipeline, including docker
image (79.6 GB), supporting files (483 GB) and analysis results (approximately 41 GB for
one pair of samples), to successfully run the pipeline. The supporting files provide the
necessary resources, such as the reference human genome (hg38), to run the pipeline; thus, no
additional step is needed to download these files or to reconfigure the pipeline. The web
server has been tested on Linux, macOS, and Windows platforms with various web browsers
(Supplementary Table $4). The format of the input/output files and detailed instructions are
provided on the website and will be updated regularly.

We compared the bioinformatics tools available for neoantigen prediction
(Supplementary Table S5). Compared to other existing pipelines, only ImmuneMirror has
all of the following six unique features: methods for prioritization, docker image, web server,
neoantigen prediction for HLA class | and 1, and multiple prediction algorithms. As a docker
image, the ImmuneMirror pipeline takes the raw FASTQ files from both WES (matched
normal-tumor pairs) and RNASeq (tumor, optional) data as the input. On the one hand,
similar to pVAC-Seq (10), ImmuneMirror can be used for neoantigen prediction restricted by
HLA class | and class Il using multiple algorithms. On the other hand, ImmuneMirror
provides a unique web server taking the VCF file that contains the somatic mutations
detected by MuTect2 as the input for neoantigen prediction, which makes ImmuneMirror

user friendly.

Application of ImmuneMirror to real-world data
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I dentification of clonal mutations as neoantigens from TCGA Pan-Cancer studies

The top 27 cancer-relevant genes with hotspot mutations (frequency >0.1%) from the
OncoKB (32) cancer gene list were selected for analysis. Each mutant is paired with four
common HLA alleles, HLA-A02:07, HLA-A24:02, HLA-A02:01, and HLA-A11:01, derived
from Asian populations. The prediction scores of the mutant-HLA combinations as well as
many other biological features were calculated by ImmuneMirror. Wells et al. (8) developed
selection criteria (binding affinity < 34 nM; binding stability > 1.4 hours; tumor abundance >
33 TPM; agretopicity < 0.1 or foreignness >10*°) to select neoantigens based on several
experimental validation results (8). To present a thorough analysis, we also applied Wells’
criteria (8) to all the mutants identified from these 27 genes to compare with our prediction
results. Neoantigen candidates were finalized if 1) the prediction score was greater than 0.515
(sensitivity: 0.851; specificity: 0.7, evaluated by the testing data set) and 2) they fulfilled
Well’s criteria (8) with an adapted gene expression cutoff of TPM >10. We finally identified
a total of 9 neoantigens derived from the mutations of 27 genes with a mutation
frequency >0.1% from TCGA Pan-Cancer studies. The results included multiple potential
neoantigens derived from TP53™%°" TP53C**#, and TP53%*'F (Table 1).

In addition, our analysis also indicated that the hotspot mutations BRAFY®
PIK3CAN™K PIKBCAP** | PIK3CA®*, and PIK3CAM!®"" are promising candidates for
neoantigens derived from cancer-relevant genes. Nearly half of all cutaneous melanomas
carry activating BRAF®® mutations, among which 10-30% contain the BRFA"Y*** mutation,
making it the second most common genotype after BRAF'®® (33,34). BRAF'®™ |ead to a
gain in BraF protein function, as demonstrated by increased kinase activity, increased
downstream signaling, and the ability to transform cells in vitro (35,36). Clinicaly,
BRAF'* tumors cause patients to experience distant metastases sooner, and these patients

have a higher risk of relapse and shorter survival than those with V600E tumors (37).
I dentification of GI T cancer neoantigens

We further evaluated the genomic and transcriptomic data from colorectal cancer
(CRC), esophageal squamous cell carcinoma (ESCC), and hepatocellular carcinoma (HCC)
patients to further evaluate the putative neoantigens in these three types of cancers in the real
world. We collected a total of 805 samples from different data sources (Supplementary
Table $6). After quality checking, we analyzed a total of 691 samples, composed of 316
CRC samples, 290 ESCC samples, and 85 HCC samples. On average, we identified 17 (0,
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316), 5 (0, 76), and 6 (0, 64) neoantigens by ImmuneMirror for each CRC, ESCC, and HCC
patient, respectively. Noticeably, the neoantigen load was significantly correlated with
favorable clinical outcome in terms of longer overall survival in ESCC samples
(Supplementary Figure S3). CRC patients can be categorized as high microsatellite
instability (MSI-H), low microsatellite instability (MSI-L) and microsatellite stability (MSS)
according to the status of the mismatch repair pathway (38). MSI-H tumors respond well to
immunotherapy, presumably due to a high TMB and neoantigen load (39,40). More
interestingly, although the neoantigen load was not correlated with overal survival in CRC
samples, we found that a subgroup of MSI-H CRC patients with MMR deficiency had a
much lower neoantigen load for both HLA class | and Il and a high TMB that was
comparable to other MSI-H CRC patients (Figure 4). These patients were subject to
advanced T stage (T4 vs. others: 30.8% vs. 0%, Fisher’s exact test P = 0.011).

We identified a total of 12 putative neoepitopes that fulfilled Well's criteria (8) and
had an ImmuneMirror prediction score >0.5. These neoepitopes were derived from TP53,
STAT3 and RAB35 with high affinity for the HLA-A*02:01, HLA-A*11:01, HLA-A*33:03,
HLA-A*33:01, HLA-A*03:01, and HLA-A*02:06 HLA alleles (Table 2). More specifically,
the neoepitope TP53%*** (YMCNSSCMGV) restricted by HLA-A*02 was identified in the
real-world data analysis of ESCC patient samples. This mutation affects the binding of p53 to
DNA and interferes with the protein’s transcription activity. The RNASeq data indicated that
this mutant is widely expressed in the tumor tissue (Supplementary Figure $4).

Validation of HLA-AO2 binding with TP53.pG245V

We evaluated HLA-A02 binding affinity with neoepitopes derived from multiple
mutations at G245 in TP53 using the QuickSwitch Quant HLA-A*02:01 Tretramer Kit-PE.
The neoepitope TP53%**Y (YMCNSSCMGV) had a higher reference peptide exchange rate
of 97.03% than the wild-type peptide YMCNSSCMGG (80.8%) (Figure 5A). The binding
affinity of neoepitope-TP53%**Y (YMCNSSCMGY) was the highest among TP53%%*R,
TP53%%%P TP53%2%5C and TP53%%*° (Figure 5B), and the Pearson’s correlation between the
ImmuneMirror prediction scores and binding affinities was as high as 0.875 (Figure 5C).
This result confirmed the effectiveness and reliability of ImmuneMirror as an advanced tool

for neoantigen prediction.

DISCUSSION
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By integrating a balanced random forest model, we developed ImmuneMirror as a
self-standing open-source pipeline and a web server for neoantigen prediction and
prioritization. ImmuneMirror was trained and tested using immunogenic neoantigens
collected from 19 studies. To our knowledge, this is the largest study to comprehensively
evaluate the neoantigen prediction model using experimentally validated neopeptides to date.
Accurate neoantigen prediction depends on including the biological features that essentially
govern epitope immunogenicity. Referring to published studies, our model thoroughly
integrates important biological features of immunogenic neoantigens. Additionally, we
applied statistical methods to keep the most relevant features and developed a prediction
model based on advanced machine learning algorithms. The effectiveness and reliability of
ImmuneMirror have been confirmed by analyzing 805 samples of gastrointestinal tract

cancers and experimental validation of selected candidates.

Both the ImmuneMirror and Wells' study (8) models indicate that neopeptides with
strong MHC binding affinity, long half-life and low agretopicity are most likely to be
neoantigens. However, when analyzing the same data set, Wells' criteria (8) tend to be very
stringent about binding affinity, agretopicity and peptide stability to accommodate the needs
of high specificity for clinical application, while the ImmuneMirror model offers an
integrated approach considering more relevant biological features, including binding affinity,
‘agretopicity’ (9,11) and ‘foreignness (12-14), hydrophobicity, binding stability, peptide
processing, and transportation scores without cutoffs, which provides more potential

candidates for the purpose of research for further downstream experimental validation.

In our real-world data analysis, we found that neoantigen load was a predictor of good
clinical outcomes in ESCC patients. Although it is known that MSI-H is an important
molecular biomarker for selecting CRC patients who may benefit from anti-PD-1/PDL-1
therapy, we further identified a subgroup of MSI-H CRC patients enriched for advanced T
stage that had relatively low neoantigen loads for HLA class | and Il by ImmuneMirror.
Promising results for immunotherapy have been demonstrated in a previous study that
evaluated the efficacy of PD-1 blockade in advanced MSI-H patients across twelve different
cancer types with an objective response rate in 53% of patients and complete response in 21%
of patients; nevertheless, ailmost half of MSI-H cancer patients do not respond well to this
treatment. This previous study also showed in vivo expansion of T-cell clones specificaly
activated by neoantigens in patient responses (40). Our results suggest that further

stratification of MSI-H cancer patients based on neoantigen loads may be necessary, and a
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more detailed evaluation of the objective response rate of this unique subset of MSI-H
patients to anti-PD-1/PDL-1 therapy is needed in aclinical trial.

The TP53%**" mutation occurs at a total frequency of 0.13% in diverse cancers, such
as diffuse glioma, non-small cell lung cancer, bladder urothelial carcinoma, endometrial
carcinoma, head and neck squamous cell carcinoma, pancreatic adenocarcinoma, and
esophageal sgquamous cell carcinoma, according to the records in the cBio Cancer Genomic
portal (41). The discovery of the neoepitope TP53%*** (YMCNSSCMGYV) derived from this
mutation restricted by HLA-A*02, a common HLA class | type in Caucasians and Asians,
showed the effectiveness and great potential of ImmuneMirror for detecting the neoantigens.
In addition to developing the neoantigen vaccine targeting this neoepitope, further
identification of T cells that are specifically reactivated by this neoepitope is necessary for

developing adoptive T-cell therapies for cancer patients carrying this specific mutation.

In summary, ImmuneMirror is an integrative analysis pipeline that can be applied for
genomic and transcriptomic data anaysis, especially for neoantigen prediction, in samples
from a variety of cancer types. This tool could assist biologists in systematically evaluating
the genomic and transcriptomic features relevant to the response to immunotherapy,
including TMB, neoantigen load, MSI status, HLA typing, and the expression of the IPRES.
More importantly, ImmuneMirror will be strategically useful as a guide for clinicians to tailor
treatment strategies according to the genomic and transcriptomic profiles for precision
medicine and to facilitate clinical trial design and patient selection with broad prospects for
clinical applications. Additional experimental and clinical validation of the putative
neoantigens identified in this study are warranted to determine the usefulness of these

putative neoantigens for immunotherapy.
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WES data: European Genome-phenome Archive (EGA): EGAS00001000932 (42); NCBI
Sequence Read Archive (SRA): SRP033394 (43), NCBI Bioproject: PRINA399748 (44); and
TCGA ESCC, CRC and HCC samples from NCI Genomic Data Commons
(https://portal.gdc.cancer.gov/). Data from a previous study carried out by Dai et al. (45).

RNASeg data: TCGA ESCC, CRC and HCC samples from the NCI Genomic Data

Commons (https://portal .gdc.cancer.gov/)

13


https://doi.org/10.1101/2023.02.09.527828
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.09.527828; this version posted February 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The open source ImmumeMirror pipeline and usage guide ae available at
https://github.com/weidai2/I[mmuneMirror. The source code is released under the GNU
General Public License version 3 (GPL >=3). The web server is freely available at

http://immunemirror.hku.hk/App/ and does not have alogin reguirement.
SUPPLEMENTARY DATA

Supplementary Data are available online.
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Table 1. The neoantigens identified from hotspot mutationsin TCGA Pan-Cancer studies

Gene M Utation Neoepitope HLA ImmuneMirror
(mutation) restriction  Score
BRAF V600K KIGDFGLATK A*11:01 0.7
PIK3CA N345K KILCATYVK A*11:01 0.9
PIK3CA E542K AISTRDPLSK A*11:01 0.6
PIK3CA E545K STRDPLSEITK A*11:01 0.7
PIK3CA H1047L ALHGGWTTK A*11:01 0.7
TP53 G245V YMCNSSCMGV  A*02:01 05
TP53 P250L RLILTITL A*02:01 0.6
TP53 C242F HYNYMCNSSF A*24:02 0.7
TP53 S241F HYNYMCNSF A*24:02 0.8
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Table 2: The neoantigensidentified in GI T cancer samples

Protein Neoepitope ImmuneMirror
Sample 1D Type Gene Mutation position (mutation) HLA restriction Score
WES_E09039T ESCC CREBBP RI/L 1408 LLTAVYHEI HLA-A*02:01 0.6
TCGA-F4-6570-T CRC CTNNA1 FEK 529 HVNPVQALSK  HLA-A*11:01 0.5
TCGA-CA-6719-T CRC PCSK7 E/K 357 VTIGAVDEK HLA-A*11:01 0.7
TCGA-CA-6718-T CRC POLE P/R 286 TTKLPLKFR HLA-A*33:03 0.7
TCGA-CK-5916-T CRC PPP6C L/R 19 EIARLCKYR HLA-A*33:01 0.7
TCGA-AY-6197-T CRC PRKAR1A T/M 106 YMEEDAASYV HLA-A*02:01 0.6
TCGA-CM-5349-T CRC RAB35 E/K 94 VVYDVTSAK HLA-A*03:01 0.9
TCGA-BC-A3KF-T HCC STAT3 M/K 28 QLY SDSFPK HLA-A*03:01 0.8
TCGA-D5-6922-T CRC TP53 R/L 213 YLDDRNTFL HLA-A*02:01 0.5
TCGA-LN-A49Y-T ESCC TP53 G/IV 245 YMCNSSCMGV HLA-A*02:06 0.5
WES_E12230T ESCC TP53 H/R 179 EVVRRCPHR HLA-A*33:03 0.7
TCGA-D5-6923-T CRC TSC2 E/K 134 KVIKDYPSNK HLA-A*11:01 0.7

"8sUud9I| [reuoneuIBIul 0"t AN-DN-Ag-DDR Japun a|qe|iene
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TABLE AND FIGURE LEGENDS

Figures

Figure 1. Evaluation of different random forest algorithms used for neoantigen prediction
with AUC performance: Left panel: Balanced random forest; Right panel: Random forest
with under sampling.

Figure 2. Overal study workflow. Neopeptides with experimentally confirmed T-cell
responses were gathered as training data for model construction. Relevant features were
selected through feature selection. The prediction model (ImmuneMirror) was established
with an advanced machine learning algorithm. ImmuneMirror was subsequently applied to
the hotspot mutations derived from the common cancer gene list from OncoKB to predict
potential neocantigens. Wells' criteria (8) were aso applied to hotspot mutations for the
selection of neoantigens. The publicly available data from ESCC, CRC & HCC patients were
processed and analyzed by ImmuneMirror. We compared the results obtained from the two
data resources and identified overlapping candidates that were then subject to experimental
validation of binding affinity with HLA-AQ2.

Figure 3. The overal workflow of ImmuneMirror, mgor analysis steps involved in the
ImmuneMirror pipeline, and the ImmuneMirror web server. The ImmuneMirror pipeline
preprocesses raw FASTQ files, including multiple analysis steps (e.g., prediction of HLA
subtypes, SNV and indel detection, variant annotation, neoantigen prediction and
prioritization), and generates a graphical analysis report for each sample. The input for the
web server is a VCF file, and the analysis result (list of prioritized neoantigens) is sent as a
web link to the email address of the end user.

Figure 4. Lower neoantigen loads were detected in a subgroup of MSI-H CRC patients. A:
TMB. B: MSISensor score for MSI status. C: The neoantigen load for HLA class . D: The
neoantigen load for HLA class II.

Figure 5. Validation of binding affinity between HLA-AO2 and neoepitopes derived from
TP53 mutations. A) The exchange ratios (mean + SD) of the TP53°**Y mutant compared
with the matched wild type (exchange ratio over 80% is used as the cutoff for positive and

G245
3

negative values). B) The exchange ratio (mean + SD) of TP5 mutants compared with the

positive control (an exchange ratio of 80% was considered biologicaly relevant). C)
Scatterplot of the prediction score versus the exchange ratio (mean + SD) for TP53%%%*

mutants.
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Tables
Table 1. Neoantigens identified from hotspot mutations in TCGA Pan-Cancer studies.
Table 2. Neoantigensidentified from GIT cancers, including CRC, ESCC and HCC.

Supplementary Figures

Supplementary Figure S1. ImmuneMirror pipeline workflow. The diagram focuses on the
bioinformatics analysis steps and their workflows with intermediate processes involved, from
raw FASTQ file preprocessing to neocantigen prediction and prioritization. RNA, Ribonucleic
acid; WES, whole-exome sequencing; N, normal; T, tumor; L, lymph node; BAM, binary
alignment map; QC, quality control; TPM, transcripts per million; SNV, single nucleotide
variant; VCF, variant call format; Indel, insertion or deletion; MSI, microsatellite instability;
HLA, human leukocyte antigen; MHC, major histocompatibility complex.

Supplementary Figure S2. Graphical analysis report of a patient sample produced by the
ImmuneMirror pipeline as an example.

Supplementary Figure S3. Survival analysis of Pan-Cancer studies, including (A) CRC, (B)
ESCC, and (C) HCC patients.

Supplementary Figure S4. The expression of the TP53**V mutation was detected by
RNASeq asillustrated by Integrative Genomics Viewer (IGV).

Supplementary Tables

Supplementary Table S1. The list of published studies used for construction and evaluation
of the machine learning models for neoantigen prediction.

Supplementary Table S2. The list of peptides that were used for model training and testing.
Supplementary Table S3. The list of software and packages that were used in
ImmuneMirror implementation.

Supplementary Table $4. Compatibility of ImmuneMirror with various operating systems
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