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Abstract 

Tumor-associated antigens (TAAs) and their derived peptides constitute the chance to design off-the-

shelf mainline or adjuvant anti-cancer immunotherapies for a broad array of patients. Here, we 

present a computational pipeline that selects and ranks candidate antigens in a multi-pronged 

approach and applied it to the case of uveal melanoma. In addition to antigen expression in the 

tumor target and in healthy tissues, we incorporated a network analysis-derived antigen 

indispensability index motivated by computational modeling results, and candidate immunogenicity 

predictions from a machine learning ensemble model on peptide physicochemical characteristics.  
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Introduction 

Uveal melanoma (UM) is the most frequent primary ocular malignancy in adults, with an incidence of 

5.1 per million that has remained stable in the US over the past five decades ( PubMed identifier, 

PMID: 15651058). In general, overall survival (OS) times of UM have not improved over the past 

decades, emphasizing the need for alternative treatment options (PMID: 32273508). 

Recent research effort in different cancer entities has focused on targeting tumor-associated 

antigens (TAA) with different strategies like therapeutic mRNA vaccines encoding said antigens 

(PMID: 32244193) or direct vaccination with engineered peptides (PMID: 30524907), These 

approaches ultimately stimulate the adaptive immune response against the targeted antigen by 

engaging major histocompatibility complex class I (MHC-I) interactions with activated cytotoxic T 

lymphocytes (CTL, PMID: 28367149).  

Finding antigens that are well-suited for therapeutic immunotherapy has proven to be a challenging 

and up to now unrewarding undertaking. Our goal in this study was to develop a computational 

predictor for safe TAAs. Thus, we integrated models addressing the above complications into a 

practical and deployable algorithm. In an ensemble model approach, we combined multiple data 

sources and estimates to predict the treatment efficacy of TAAs and their derived epitopes. We 

provide the annotated results as a database publicly and free for non-commercial use at 

https://www.curatopes.com/uvealmelanoma. 

 

 

Methods 

Prioritization of genes from transcriptomics data. The underlying algorithm to prioritize genes was 

described in detail in a previous publication (PMID: 31416842). Briefly, genes needed to meet four 

criteria: 1) annotated as protein-coding, 2) no histological evidence of protein expression in normal 

tissue according to the Human Protein Atlas (HPA, proteinatlas.org, PMID: 25613900), 3) RNA-seq-

based expression of above 1 TPM in at least 90% of UM samples, 4) RNA-seq-based expression in 

90% of normal tissues according to GTEx (stratified by tissue, PMID: 26484571) lower than in 90% of 

UM samples. In sum, these combined the eligible-protein with the favorable-transcript set as defined 

previously.  

Network analysis and gene indispensability index. To reduce the risk of antigen loss rendering the 

targeted therapy ineffective, we implemented a network-based method to quantify a gene’s 
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indispensability for tumor growth and survival. In a first step, we calculated for each gene its inherent 

importance by adding the number of its associations with a manually curated list of 90 cancer-

relevant GO terms (Suppl. Table S1) and the number of its occurrences in the four databases 

Oncogene (PMID: 28162959), the Cancer Proteomics Database (http://apoptoproteomics.uio.no/), 

the Epithelial-Mesenchymal Transition Gene Database (PMID: 31941584), and DriverDBv3 (PMID: 

31701128). We performed this calculation for our prioritized genes and all genes annotated in 

DriverDBv3 to obtain a cancer entity-agnostic background distribution of gene importance. 

To incorporate the fact that proteins execute their functions embedded in biochemical networks, a 

gene’s indispensability index was designed to be higher when its loss disrupts close interactions with 

other genes of high importance. In a second step, we therefore automatically reconstructed an 

interaction network from our prioritized genes (PMID: 28137890), and all genes annotated in 

DriverDBv3 and expanded it with direct interactors extracted from the databases TRANSFAC, HTRIdb, 

miRecords, and miRTarBase. Each network node was then assigned a neighborhood importance (NI) 

calculated as the sum of its own and its direct interactors’ gene importance. The higher a gene’s NI, 

the more relevant it is for cancer development. See Supplementary Figure S1 for further details on 

the calculation. 

We conjectured that there is no real gain of importance above a certain threshold value of NI, or 

conversely that a gene whose NI equals the threshold and another gene with NI above threshold 

represent, in our context, almost identical liabilities for a cancer cell. Therefore, we decided to 

transform the NI’s empirical distribution into one with saturation characteristics. We defined the 

aforementioned threshold as 90% of the maximum in a saturation kinetics function of Michaelis-

Menten type. The threshold’s numerical value t was set by multiplying two cutoffs derived from the 

empirical distributions of two variables related to NI, i.e., node degree and gene importance: first, 

the node degree cutoff, as a measure for “sufficiently highly connected”, was set to 5, and then the 

gene importance cutoff, as a measure for “sufficiently important gene”, was found by calculating the 

empirical cumulative probability p of the value 5 in the node degree distribution and selecting the 

gene importance’s corresponding p-quantile. In this manner, the two cutoffs effectively mark the 

same upper-end fraction of their respective distributions as saturated. 

After plugging the threshold value t and a saturation level of 90% into the Michaelis-Menten 

equation and reordering, the saturation kinetics’ KM parameter was calculated according to equation 

I. 

�� � 1 � 0.90.9 � � 1 � 0.90.9 · 5 · ���������	
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The transformed neighborhood importance of a gene G according to equation II, displaying 

saturation behavior and confined to the unit interval, was labeled indispensability index. 

�����
��� � ����� � �������  

 

Generalized binding and activity prediction using machine learning. We enumerated MHC-I-

restricted peptides from the Ensembl-derived canonical FASTA protein sequences corresponding to 

the prioritized genes. To rule out autoimmune reactions due to coincidental sequence identity, we 

compared the enumerated peptides against all non-prioritized genes in the human proteome and 

discarded peptides for which we found an exact sequence match. For the remaining peptide set, we 

predicted their allele-specific MHC binding affinities with netMHCpan v4.0 for all 36 HLA alleles 

available in this version (PMID: 32406916, Suppl. Table S2). To complement these with an allele-

independent measure of peptide immunogenicity, we constructed two random forest (RF) machine 

learning models to predict which peptides have a high chance of generalized MHC-I binding (gBP) or 

of eliciting an immune response (gAP). 

The models were implemented in R with the library randomForest and designed to accept the 

following physiochemical peptide features as input: hydrophobicity, isoelectrical point, molecular 

weight, stability index, polarity, and sequence length. Apart from polarity, whose derivation relied on 

our own code founded on literature, the features were predicted with the Biopython (PMID: 

19304878) module ‘ProtParam’. Training MHC-I-restricted peptides for both models were extracted 

from the MHCBN database (PMID: 19379493) 4.0 by selecting only peptides with unambiguous 

annotation (i.e., yes or no) for binding or activity, respectively. This yielded 3610 binders vs 368 non-

binders, and 788 active vs 475 non-active peptides. The training set for binding was supplemented 

with 101 binders and 100 non-binders identified through crystallography experiments.  

To more closely model the expected distribution of binders to non-binders in empirical data, we 

performed weighted sub-samplings of the relevant training data by constructing the input set in such 

a manner that the ratio of binders to non-binders was 1:10. Since this in combination with the set-

wide binder-to-non-binder ratio of roughly 10:1 reduced the effective input set size considerably, we 

performed 100 iterations of weighted sub-sampling from the training data and for each trained an RF 

model with 10,000 trees. For the activity probability, we used a balanced split (active to not active, 

1:1) because, in theory, any peptide can elicit an immune response when engaging a complementary 

T-cell receptor. For both models, responses were discretized at the threshold of 0.5 and predictive 
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power evaluation was performed against the entirety of the input datasets. The respective averages 

of the 100 RF models’ discretized classifications were used as the probability output of gBP and gAP.  

Derivation of peptide efficacy score. The efficacy score ES of an epitope results from a multi-criteria 

function that aggregates five components derived in the above computations. Each individual 

component was constrained to the range between 0 and 1 to ensure unbiased contribution. The full 

formula is 

����� � ���� !�"#����$�% & �����
"#����$�% & #'$�$� & #($�$� & consIC50��������  

with P denoting a peptide, gene(P) denoting its corresponding gene of origin, and E denoting a full 

epitope, i.e., a combination of P with a specific HLA allele. The components and outputs are efficacy 

score ES, constrained tumor median expression consTME, indispensability index Indisp, generalized 

binding predictor gBP, generalized activity predictor gAP, and constrained binding affinity consIC50. 

Constrained in the cases of consTME and consIC50 means that we transformed the observed value 

range to the unit interval [0,1] with piece-wise rules as follows: 

���� !���� � / 1�0�1
2��� 3 1001100 & �1
2�����4�25���6
��7�
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with G and E denoting gene(P) and epitope(P), respectively, Expr(G) denoting G’s RNA expression, 

and IC50(E) denoting the binding affinity predicted with netMHCpan. The upper bound for gene 

expression (100 TPM) was selected according to the rationale utilized in Lischer et al. The binding 

affinity bounds, 2000 nM and 30 nM, respectively, were derived from a logistic regression applied to 

the training dataset of the RF models above and were optimized for a high positive predictive value 

to reliably discard non-binders (see further discussion in Supplementary Material). 

Selection of peptide candidates for validation. For validation, we selected three distinct tiers from 

our pipeline output – high efficacy (HE), low efficacy (LE), and alternative predictor (AP). 

The high-efficacy (HE) tier contained the top-ranked peptides we deemed well-suited for therapy. To 

maximize donor availability for experimental validation, we selected peptides with high efficacy 
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scores for the locally prevalent HLA allele A*02:01 (abbreviated A2) as follows: For each scored 

peptide, we first assessed its potential to engage bystander alleles, i.e., any of the 35 considered 

alleles beyond A2 (Suppl. Table 2), which would wrongfully inflate the observed experimental signal 

due to non-A2-mediated stimulation. The probability of engaging at least one bystander allele was 

estimated by interpreting a peptide’s bystander efficacy scores as probabilities of success and 

calculating the probability of at least one success across all bystander alleles, i.e., the non-failure 

probability PNF: 

$�� � 1 � H �1 � 
��
�����
��
�	

, 5��4
� � ������
�7��  

In addition, the maximum of the bystander efficacy scores per peptide were calculated. Peptides 

were then ranked by multisorting their attributes in the following order: bystander non-failure 

probability (ascending), maximum of bystander efficacy scores (ascending), and A2 efficacy score 

(descending). This multisort step gives priority to discarding peptides with undesirable binding to 

bystander HLA alleles. In a subsequent step coined Levenshtein filter, we ensured that no two 

peptides in the final selection are highly similar. For this, we sequentially discarded peptides whose 

sequences differed by only one amino acid substitution, insertion, or deletion (i.e., showed a 

Levenshtein string distance of 1) from a peptide of higher rank. The top 20 peptides from the 

remaining list made up the HE tiers. 

Low-efficacy (LE) peptides were those with minimal efficacy scores across all 36 considered HLA 

alleles. To ensure a randomized order of the large number of peptides with efficacy scores of 0 across 

all alleles, peptide order was shuffled before sorting. Then, for each peptide, the product, maximum, 

and mean of its scores across all 36 alleles were calculated and the amount of its non-zero scores 

counted. A subsequent all-ascending multisort on these four features in the aforementioned order 

ranked the peptides in order of increasing efficacy profile. After applying a Levenshtein filter as 

described above, the top twenty peptides were selected for the LE tier. 

The 20 peptides in the alternative-predictor (AP) tier served as theoretically efficacious counterparts 

to the HE peptides to examine how our selection pipeline performs in comparison to established 

methods. They were chosen from the set of peptides assigned an A2 efficacy score of zero. After 

application of the Levenshtein filter, the AP tier was filled by selecting the 20 peptides with the 

closest marginally better IC50 value predictions to the HE tiers. 
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Results 

In this work, we construct and deploy a methodology to rank the therapeutic efficacy of potential 

antigenic peptides for a specific tumor of interest (Figure 1). Apart from properties relating to the 

antigen’s efficacy in stimulating an immune response, we gauge safety in other tissues and risk of 

immune evasion, and finally check the plausibility of our predictions in in vitro experiments.  

Gene prioritization and peptide evaluation 

In the first step, we applied the first phase of the algorithm described in Lischer et al. (PMID: 

31416842) to identify protein-coding genes with a high-in-tumor, low-in-tissue expression profile 

from the empirical mRNA abundancies of 80 primary uveal melanoma (UM) samples (Robertson, 

PMID: 28810145) (see Method section for details). Twenty-two genes were selected (CCDC140, 

TRAPPC9, C14orf169, C11orf71, ACCSL, SMIM10L1, MLANA, PMEL, TYRP1, TSPAN10, RAB38, ABCB5, 

CABLES1, OCA1, TRPM1, SLC45A. FNDC10, TMEM200C, PNMA6A, ALX1, ELFN1). 

To estimate a gene’s indispensability, we extracted from GO terms and databases the amount of its 

associations that benefit tumor survival. Projecting these numbers onto a reconstructed UM-tailored 

signal interaction network, we derived a normalized gene-specific indispensability index (Fig. 2B and 

Suppl. Figure 1) that was used in the later ranking of epitopes. 

From the 22 prioritized genes’ protein sequences, we proceeded to enumerate all MHC-I-restricted 

peptides whose sequence does not appear elsewhere in the human proteome. We then took 

advantage of published databases of MHC-peptide interactions and T-cell reactivity (MHCBN) to build 

machine learning-based predictors of MHC binding and immunogenicity (i.e., activity) derived from 

the peptides’ physicochemical properties. From prior knowledge, it is clear that the above naïve 

peptide enumeration generates a training set with a large majority of non-binders due to inclusion of 

ineligible peptides that would be discarded during the process leading up to MHC loading. The 

predictors’ performance was customized to handle this imbalance in dataset composition (see 

Methods). By maximizing positive predictive value and specificity (Figure 3B), we aimed to actively 

exclude false positives from the result list. 

Peptide ranking according to predicted efficacy 

Antigenic peptide efficacy was calculated by plugging the obtained results into equation III. The 

product structure of the right-hand formula is modeled as a chained probability, with every factor 

representing a probability of success. Consequently, the efficacy scores fall within the interval 
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between 0 and 1. Comparing the 60 efficacy score values against their constituent factors and the 

corresponding peptide properties, we observed no linear dependence, which rules out the possibility 

that the efficacy score is dominated by one or two of the constituents while the others contribute 

nothing. 

The tumor expression consTME(gene(P)) and binding affinity consIC50(E) were integrated with 

the following rationale: With the first, we recover the median expression in the tumor as a measure 

of antigen availability for different genes. With the second, we complement our own binding 

predictor with the results of netMHCpan, in part to recover MHC allele specificity and also to enable 

the validation strategy described in the next section. 

 

Discussion 

Metastatic uveal melanoma (UM) is a cancer with a bleak prognosis. Aiming to discover additional 

therapy options, we provide and validate an antigen selection algorithm for targeted therapies like 

autologous T-Cell transfer or therapeutic antitumor vaccination. Our approach for MHC-I-restricted 

antigens explicitly optimizes for self-tolerance and anti-tumor immunogenicity at the selection level.  

While there are many MHC-I binding prediction algorithms published that focus on the interaction of 

peptide and HLA-Allele, we show that a tumor entity-specific approach incorporating the relevant 

transcriptomic landscapes can yield promising results. In particular, our efficacy score and validation 

pipeline can be extended to other cancer entities for which transcriptomic information is available 

with little need for adaptation. 

Compared to other antigen and peptide selection algorithms, ours starts from expression data 

without prior knowledge but integrates two mechanisms to avoid potentially life-threatening 

autoimmune reactions in non-tumor tissues: discarding genes with high expression in critical tissues 

and discarding peptides showing coincidental sequence identity with non-selected antigens.  

The methodology presented in this study lends itself to the design of targeted anti-UM 

immunotherapies in both the non-personalized and the personalized setting. With contemporary 

turn-around times in RNA-sequencing and GMP-grade peptide synthesis, an individual patient’s 

tumor biopsy transcriptome can inform therapeutic decisions with only marginal delay. Beyond that, 

however, large cohort studies of the UM transcriptome will potentially allow the identification of 

antigens and peptides that are simultaneously efficacious and tolerable in a high percentage of UM 

patients. This, in turn, will make it possible to generate pre-manufactured libraries of peptides that 
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are immediately available for use and bring the vision of off-the-shelf antigen therapies closer to 

reality. 
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Figure 1. Overview of the algorithm. We evaluated and filtered genes based on their expression profiles to create
a database of tumor antigens that we propose as optimized candidates for targeted anti-cancer therapy.
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Figure 2. Selection and network evaluation of candidate genes. (A) Selection funnel representing a cascade of
in-silico filters for genes. Each slice of the funnel lists the feature criterion and the number of genes meeting it.
Tumor expression statistics were calculated based on a published set of 80 primary UM samples. Ultimately, 22
candidate genes passed all filters. (B) Workflow for deriving the gene indispensability index as a measure of the
survival disadvantage a tumor cell incurs when it downregulates a specific gene.
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Figure 3. Training approach and performance of the dedicated machine learning predictors of MHC binding
and T-cell receptor engagement (Immune activity). (A) For each of the two ensemble models, the training data
was subsampled 100 times at a target-to-control sample ratio of 1:10 (binding) or 1:1 (activity) and used to construct
100 random forest (RF) models with 10,000 trees each. Weighted sampling was performed to reproduce the
empirically observed surplus of non-binding peptides. (B) Receiver operating characteristics (ROC) and precision-
recall plots for the binding and the activity model. Area under the ROC curve (AUC) for the binding model was 0.86
while AUC for the activity model was 0.65.
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Figure 4. Heat map visualizing pat terns in the factors contribut ing to the ef ficacy scores of the 60 
selected pept ide candidates. The columns show the physicochemical pept ide features used to train the 
binding and act ivity predictors (lef t) and the factors in the ef ficacy score (ES) equat ion (right) af ter z-
score transformat ion. The IC50 column holds the pept ides’ netMHCpan-predicted binding af finity to 
MHC for the HLA-A*02:01 allele. Rows are labeled with the pept ide’s amino acid sequence and 
annotated with the ES, the computat ionally calculated binding energy to MHC (A*02:01), and the 
allocated ES t ier. The high-ef ficacy group pept ides are characterized by high hydrophobicity, an 
observat ion that is in line with established knowledge1,2.
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