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Graphical abstract 1 

 2 

Abstract 3 

Depicting gene expression in a spatial context through spatial transcriptomics would be 4 

beneficial for inferring cell function mechanisms. The identification of spatially variable 5 

genes is a crucial step in leveraging the spatial transcriptome to understand intricate spatial 6 

dynamics. In this study, we developed Spanve, a nonparametric statistical method for 7 

detecting spatially variable genes in large-scale ST data by quantifying expression differences 8 

between spots and their spatial neighbours. This method offers a nonparametric approach to 9 

identifying spatial dependencies in gene expression without assuming specific distributions. 10 

Compared to traditional methods, Spanve decreases the number of false-positive outcomes, 11 

leading to more accurate identification of spatially variable genes. Furthermore, Spanve could 12 

facilitate downstream spatial transcriptomics analyses, including spatial domain detection and 13 

cell type deconvolution. These results show the broad applications of Spanve in advancing 14 

our understanding of spatial gene expression patterns within complex tissue 15 

microenvironments. 16 
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Introduction 1 

Spatial transcriptomics (ST) maps mRNA molecules within tissue sections to their original 2 

locations using arrays of spatially barcoded primers on spots, leading to significant progress 3 

in various areas over the past few years 1,2. To describe intricate ST landscapes, identification 4 

of genes that exhibit differences in expression patterns across different locations within a 5 

tissue, which are defined as spatially variable (SV) genes, is crucial. Unlike highly variable 6 

genes (HVGs), which may vary between cells or groups of cells, SV genes exhibit spatial 7 

patterns across spatial locations. These spatial patterns are often characterized by distinct 8 

spatial domains where the expression of SV genes is homogenous, indicating shared 9 

functional attributes, cell composition or structural characteristics. Thus, SV genes can reflect 10 

a myriad of factors, including the localization of cell types or space-dependent interactions 11 

between cells 1, providing valuable biological signals for the complex interplay between gene 12 

expression, spatial organization, and functional processes within tissues and ultimately 13 

advancing our understanding of biological systems and their intricate spatial dynamics. 14 

As SV genes may contain important information about the underlying biological mechanisms 15 

within tissues, several studies have attempted to detect SV genes by modeling gene 16 

expression. The most common strategy uses Gaussian regression processes that assume gene 17 

expression follows a specific probability distribution, such as Gaussian 3 or Poisson 4, with a 18 

covariance matrix composed of spatial and nonspatial components. However, whether gene 19 

expression can be well described by these classical distributions is questionable. There is also 20 

a similar problem in single-cell RNA sequencing (scRNA-seq) data due to overdispersion and 21 

drop-out events 5. Two specialized distributions (negative binomial, NB, and zero-inflated 22 

negative binomial, ZINB) have been proposed to solve this problem. As these distributions 23 

may not adequately consider spatial effects on gene expression, algorithms based on the 24 

distribution hypothesis may lead to false-positive outcomes when modeling ST data, 25 

especially for genes with high spatial heterogeneity based on our observations. In other 26 

words, genes with low p values may not exhibit a spatial variation pattern, which may be 27 

caused by distribution assumption violations. Other methods, such as cluster-based 6,7 or 28 

graph-based methods 8–10, avoid arbitrary assumptions. However, these methods may have 29 

limitations in handling large-scale data. New sequencing technologies, such as stereo-seq 11, 30 

allow for the identification of cellular or subcellular transcripts 12 but also present new 31 

challenges due to the increased volume and complexity of data. Spatial autocorrelation 32 
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methods, including Moran’s I and Geary’s C 13,14, are scalable but have a large false-positive 1 

rate in our following experiments and a previous benchmark 15. 2 

To this end, we developed SPAtial Neighborhood Variable Expressed gene detection 3 

(Spanve), a statistical method for analyzing the dependence of gene expression on spatial 4 

location. Spanve was developed to enhance the specificity of SV gene identification without 5 

assuming specific distributions while maintaining low computational costs and promoting 6 

downstream tasks, such as clustering and deconvolution. Based on previous studies, we 7 

established benchmarks for SV gene identification, computational cost and downstream 8 

analyses. The results indicate that our proposed method enhances the specificity of 9 

identification with low computational costs and promotes downstream tasks, such as 10 

clustering and deconvolution. To demonstrate the practical application of Spanve, we 11 

analyzed a human breast cancer ST dataset to characterize the intratumor heterogeneity. 12 

Within the Spanve framework, we implemented a spotwise colocalization analysis, which 13 

may reveal potential cell‒cell interactions. Furthermore, we explored the associations 14 

between SV genes and potential contributing factors to enhance our understanding of 15 

underlying biological processes. These findings highlight the ability of Spanve to effectively 16 

identify important SV genes and facilitate downstream analyses of ST data. 17 

 18 

Design 19 

We developed Spanve, a non-parametric statistical method for measuring spatial variance in 20 

gene expression within ST data. Spanve enhances downstream analyses by reducing false 21 

positives in spatially variable gene detection. The fundamental premise of this study is that 22 

gene expression differences between spots are homogeneous in the absence of spatial effects. 23 

Rather than modeling gene expression directly using classical distributions, Spanve models 24 

spatial variance by quantifying differences between a spot and its spatial neighbors. We 25 

implemented two approaches for identifying spatial neighbors: k-nearest neighbor-based 26 

(Spanve-k) and Delaunay network-based (Spanve-d) methods. By adjusting the number of 27 

neighbors, researchers can tailor the resolution of the analysis to their specific aims. The 28 

Delaunay-based method is particularly suited for large-scale data analysis.  29 

The selection of spots and their spatial neighbors can be viewed as a form of sampling or 30 

network construction based on spatial location. In contrast, the null model randomly selects 31 
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spot pairs. Genes exhibiting spatial expression patterns will show significant differences 1 

between space-based and random sampling. This approach differs from current statistical 2 

methods that often compare to assumed distributions, such as Poisson. We posit that 3 

sampling from the data itself inherently accounts for background effects, potentially reducing 4 

false positives. Moreover, our analysis demonstrates that assumed distributions may not 5 

accurately represent gene expression, particularly for SV genes. We quantify the Kullback-6 

Leibler (KL) divergence between the two sampling distributions and perform a statistical test 7 

to identify genes with significant spatial variability (details in STAR Methods, Figure 1A). 8 

These sampling approaches also aid in characterizing spatial domains by considering spot 9 

pair expressions during spatially variable gene identification. To smooth expression within 10 

spatial domains, we developed a spatial imputation method within the Spanve framework. 11 

This method identifies spot pairs with unexpected expression variations and constructs a 12 

network where edge weights represent the degree of deviation from expected expression 13 

differences between neighboring spots. The resulting network highlights unexpected 14 

differences in the overall dataset. A graph convolution strategy with self-loops (Figure 1B) 15 

helps mitigate technical errors and produces clustering-friendly imputed data. 16 

To demonstrate Spanve's advantages, we benchmarked its performance in spatially variable 17 

gene identification and downstream tasks, including spatial domain detection and spatial 18 

transcriptome deconvolution. We extended the classical spatial transcriptome analysis 19 

pipeline to include spatial pattern analysis and spatial co-localization analysis. Spatial pattern 20 

analysis groups spatially variable genes with similar spatial expression, helping researchers 21 

identify spatially-linked biological functions. Spatial co-localization generalizes spatially 22 

variable gene detection to gene pair detection, enabling exploration of cell-cell interactions 23 

and ligand-receptor relationships in a spatial context. These novel analytical approaches 24 

provide researchers with fresh insights into biological mechanisms. 25 

Spanve is implemented in Python and can be easily utilized with minimal code. We provide a 26 

detailed protocol for Spanve usage within our extended analysis framework (Supplementary 27 

File 3). 28 
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 1 

Figure 1. The framework and hypothesis of Spanve (A) In spatial transcriptomic data, 2 

Spanve considers two types of sampling of cell or spot pairs: random sampling as the null 3 

hypothesis and location-based sampling as the alternative hypothesis. The spatial variability 4 

of genes is defined as the difference between two sampling distributions. (B) Spatial 5 

imputation employs graph convolution on a weighted spatial graph based on spot pairs that 6 

deviate from the expected distribution. Figure C to G depict one of the datasets from 10x 7 
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Genomics. (C, D) The plots show the spatial variance, measured by Moran’s I, and the 1 

adjusted p values of the GOF test for the Poisson (C) and Gaussian (D) models. (E) The BIC 2 

value of the Poisson model shows a sigmoid-like relationship with the overall Moran’s I. (F) 3 

For four different distributions, genes with high Moran’s I values (> 0.5) tend to have higher 4 

BIC values. (G) The overlaps of non-Poisson, non-Gaussian, most SV 5000 genes and 5 

Spanve genes. (H) A general trend of high-SV genes with higher BIC values was observed in 6 

the 10x Genomics datasets. 7 

 8 

Results 9 

SV genes tend to violate the distribution assumption 10 

As location effects exist, including cell type distribution, local environment and cell 11 

interactions, gene expression may not be described under simple distribution assumptions, 12 

whereas complex distributions largely increase the number of parameters and fitting time. 13 

Here, we showed that SV genes tend to violate the distribution assumption, revealing the 14 

inherent limitations of current statistical models based on assuming specific distributions. To 15 

show the relationship between the spatial variance represented by Moran’s I and the 16 

distribution assumption, the goodness-of-fit (GOF) test and Bayesian information criterion 17 

(BIC) were used to quantify how well gene expression can be described by the distribution. 18 

The anomalousness of gene expression is defined as the inability to model using a common 19 

hypothesis. We initially reported our observations for a single dataset (dataset identifier abbv. 20 

as VMOB, Table S2), subsequently extending our analysis to 43 additional datasets from 10x 21 

Genomics to show the generality of our conclusions (Figure 1C-H). 22 

All genes were divided into 20 groups according to their Poisson divergence test p value. 23 

Genes with p values lower than 0.05 had a significantly greater Moran’s I than did the other 24 

genes (Figure 1C). After preprocessing, both the high-SV genes and low-SV genes differed 25 

from the Gaussian hypothesis (Figure 1D). We also compared the two test results with the 26 

spatial variance of the genes. Most SV genes could not be modeled considering the two 27 

hypotheses, while 3293 of 3297 genes identified by the Spanve model overlapped with the 28 

anomalous genes (Figure 1G). We then considered the NB and ZINB distributions. Overall, 29 

there was a sigmoidal relationship between the BIC score and Moran’s I (Figure 1E, Figure 30 
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S1A). For high-SV genes, drop-out-like events caused by spatial effects may occur, and there 1 

is a small advantage over Poisson fitting (Figure 1F). 2 

We then tested the generality of the findings using 43 datasets. The results showed that high-3 

SV genes always had significantly greater BIC values when modeled by four distributions 4 

(Figure 1H). Most SV genes detected by various methods exhibited distribution anomalies 5 

(Figure S1B). Notably, Spanve achieved the highest proportion of anomalous SV genes while 6 

identifying the lowest number of SV genes (approximately 20% of all genes), which is 7 

consistent with a recent study 15 showing that most SV detection methods are overly sensitive, 8 

thus assigning a majority of genes as SV genes. This result highlights the specificity of the 9 

Spanve method, which outperforms other methods in identifying a more specific set of SV 10 

genes. In summary, our observations have shown that assuming specific distributions may 11 

result in a high false-positive rate for SV gene detection, and avoiding the distribution 12 

assumption may increase the specificity of the Spanve. 13 

14 

15 
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Figure 2. Evaluations of Spanve and 10 other methods (A) datasets and evaluation across 1 

four aspects: computational cost, detection of spatially variable (SV) genes considering 2 

spatial heterogeneity and clustering awareness, and downstream tasks. (B) Time (left) and 3 

memory (right) costs for 1000 genes as cell numbers increase. (C) Spatial heterogeneity of 4 

detected SV genes. Box plot elements: centerline, median; box limits, upper and lower 5 

quartiles; whiskers, 1.5x interquartile range; color, performance. Bar plot error bars represent 6 

95% confidence intervals. (D) Example of Spanve imputation aiding tissue structure 7 

identification (DLPFC dataset No. 151672). (E) Cluster awareness of SV genes in 43 8 

datasets. Methods ranked by the median C-H index across datasets. Methods with stars only 9 

score genes without p values. Box and heatmap colors represent scores, and white indicates 10 

that no SV genes were detected. (F) Clustering results of the DLPFC dataset (n=12) with 11 

different preprocessing methods for the four spatial domain detection methods. 12 

 13 

Spanve decreases the number of false-positive outcomes with efficient large-scale 14 

computing 15 

Then, we conducted comprehensive benchmarking (Figure 2A) of 11 SV gene identification 16 

methods, which can be roughly categorized into Gaussian process regression-based methods, 17 

clustering-based methods, spatial autocorrelation methods and others (Table S1). As there is 18 

currently no established gold standard for SV gene identification, we employed two global 19 

spatial autocorrelation metrics, Moran’s I and Geary’s C 13, to assess the statistical sensitivity 20 

of each method. Our benchmarking analysis was performed on 43 datasets (Table S2), which 21 

were preprocessed by Li et al. 16. For methods such as the sepal and silhouette coefficient 22 

rank in Giotto (Giotto-siRank), which only scores genes, the top 10% of genes were assigned 23 

as SV genes. The results (Figure 2C) showed that Spanve achieved the best score for both 24 

Moran’s I (0.41 ± 0.13) and Geary’s C (0.59 ± 0.13) while also identifying a moderate 25 

number of genes (95% confidence interval, 198 to 430). For the two different sampling 26 

strategies of Spanve, the K-nearest neighbor (KNN) network contains more edges than does 27 

the Delaunay network and is thus more specific to spatial variability but requires more 28 

computations. The improved performance in identifying SV genes is likely attributed to the 29 

reduced ratio of false positives, as the number of identified SV genes also decreased. 30 
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We then focused on estimating the computational cost of each method. The time and memory 1 

required to process the simulation data from a Poisson distribution with 1000 genes and 2 

varying numbers of cells were estimated. Each method was repeated thrice for each sample 3 

size to obtain stable results. The results (Figure 2B) showed that Spanve-d was the most 4 

efficient method, completing the analysis in 16 seconds and using 1500 megabytes of 5 

memory on data with up to 90000 cells. Spanve-k is fast and saves memory when the number 6 

of spots is less than 10000, but its performance deteriorates as the number of edges in the 7 

KNN network increases exponentially with the number of spots. These findings demonstrate 8 

that our method is scalable and suitable for the analysis of large-scale spatial transcriptome 9 

data. 10 

Utilizing the Spanve aids in delineating spatial domains 11 

Spanve considers the complicated interactions between spots in the detection of spatial 12 

patterns, which is helpful for identifying the next crucial downstream task of spatial domain 13 

identification. To benchmark the relationship between clusters and SV genes, 43 datasets 14 

from the 10x Genomics database were utilized. These datasets include cluster labels, which 15 

were assigned using Space Ranger. The Calinski‒Harabasz (CH) index was used as an 16 

indicator to demonstrate how well selected genes are related to clustering results by the 17 

dispersion of data between clusters and within clusters. The higher the CH index is, the more 18 

likely it is that SV genes reflect clustering labels, implying that SV genes are more 19 

representative of the raw data. Our study involved a comparison of the CH indices of genes 20 

identified through various approaches, thereby highlighting the superiority of Spanve in 21 

recognizing cluster-aware genes (Figure 2E). 22 

We also determined whether the Spanve imputation method could help with spatial domain 23 

detection or clustering. To validate whether imputation is beneficial for clustering, the spatial 24 

imputation process was aggregated with several clustering methods on a manually annotated 25 

human dorsolateral prefrontal cortex (DLPFC) ST dataset 17, which contains 12 samples. The 26 

four clustering technologies used include K-means, the Leiden algorithm, BayesSpace 18 and 27 

SpaGCN 19. BayesSpace is a clustering method that uses a Bayesian nonparametric model, 28 

and SpaGCN is a deep learning clustering method that integrates graph convolutional 29 

networks and ST data to learn the data cluster structure. We evaluated the performance of 30 

each clustering approach with different preprocessing methods and compared the resulting 31 

clusters with manual annotations by two clustering metrics, the adjusted Rand index (ARI) 32 
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and adjusted mutual information (AMI), which evaluate the consistency of the predicted label 1 

and ground truth. For preprocessing, we considered the default processing of cluster methods, 2 

gene selection with principal component analysis (PCA), and Spanve imputation. For gene 3 

selection, Cell Ranger’s HVG selection and Spanve SV gene selection were included. We 4 

first chose one sample to visualize (Figure 2D) the K-means and BayesSpace clustering 5 

results, indicating that a clearer boundary of tissue layers can be obtained with Spanve 6 

imputation. Then, the performances on all 12 samples in the DLPFC dataset were compared 7 

(Figure 2F). With K-means, Leiden and BayesSpace, there were large improvements in the 8 

ARI and AMI with Spanve imputation. Notably, SV selection with PCA outperformed HVG 9 

selection, providing further evidence that SV genes help to characterize spatial domains. For 10 

SpaGCN, as we recognize that SpaGCN performs clustering on a graph, spillover imputation 11 

may make use of spot similarity for clustering and thus has little impact on it. 12 

13 

14 

Figure 3. The Spanve enhances ST data deconvolution. (A) Different gene selection 15 

methods impact the deconvolution results across datasets and tools. The heatmap ranks the 16 

methods, labeling the top 2 performers in each run. (B) Astrocyte cell density and 17 

deconvolution results using different gene selection methods. (C) Venn diagram showing the 18 
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overlap of SV genes detected by three methods in the seqFish dataset. The top 10 genes with 1 

the highest Pearson correlation coefficient (PCC) to astrocyte cell density are labeled. (D) 2 

Maximum PCC with ground-truth cell distributions for distinct genes identified by each of 3 

the three methods. (E) Number of distinct genes from each method overlapping with the most 4 

correlated genes, which include the top 30 genes for each cell type. 5 

 6 

SV genes facilitate spotwise cell type deconvolution 7 

As each spot in an ST dataset may contain transcripts from multiple cell types, deconvolution 8 

algorithms are applied to estimate the proportional contribution of each cell type to the 9 

overall gene expression profile observed in a spot. In this section, we demonstrate that 10 

Spanve may also aid in cell composition inference. The rationale for leveraging SV genes for 11 

deconvolution lies in the assumption that the spatial distribution of these genes is correlated 12 

with underlying cellular heterogeneity. To accomplish this, we employed a previously 13 

reported standard benchmark 16 utilizing single-cell resolution ST data from the seqFish 20 and 14 

STARmap 21 datasets. These datasets allowed the generation of synthetic ST data with a 15 

known ground truth of the cell density at each spot. We evaluated the performance of three 16 

deconvolution tools (Cell2location 22, Tangram 23 and BayesTME 24) in conjunction with six 17 

gene selection methods and six combinations that integrate HVGs, marker genes of cell 18 

types, and SV genes identified using three different methods (Spanve, Moran’s I and 19 

SpatialDE). Overall, the performance was assessed using four metrics that were combined 20 

into a rank score. Details of the deconvolution estimation are included in the STAR Methods 21 

(Figure S1C–S1D). 22 

The results demonstrated that proper gene selection improved the deconvolution performance 23 

compared to that using all genes (Figure 3A). Among the six gene selection methods, Spanve, 24 

along with its detected SV genes, achieved the best overall performance and was the only one 25 

that outperformed all the genes. For the combination of genes, incorporating SV genes can 26 

boost the performance of all three deconvolution methods. In particular, the incorporation of 27 

Spanve genes resulted in the greatest enhancement of deconvolution accuracy (Figure 3A-28 

3B). This superior performance can be attributed to the ability of Spanve to detect the most 29 

relevant genes for cell type identification. We sought to determine whether genes that 30 

exhibited a high degree of correlation with specific cell types could be identified using SV 31 
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gene detection methods. In the seqFish dataset for astrocytes, we found that Spanve identified 1 

5 out of 10 such genes, SpatialDE identified 2 out of 10 genes, and Moran’s I identified 0 out 2 

of 10 genes (Figure 3C). By conducting an in-depth analysis of the distinct genes identified 3 

by the three spatial methods, it was evident that Spanve demonstrated the greatest overlap 4 

with the most crucial genes (Figure 3E) and exhibited the highest layer correlation (Figure 5 

3C). Although most existing methods overlook the contribution of SV genes, our findings 6 

underscore the importance of incorporating these genes to facilitate accurate spotwise cell 7 

type deconvolution. The Spanve framework capitalizes on this opportunity by identifying cell 8 

type-relevant SV genes, thereby enhancing the deconvolution process and enabling a more 9 

comprehensive characterization of cellular compositions within the ST data. 10 

 11 

 12 

Figure 4. Analysis of human breast cancer ST data using Spanve. (A) Analysis pipeline 13 

under the Spanve framework. (B) Spanve imputation enhanced the spatial expression pattern 14 

of the CD74 gene. (C) Clustering result obtained using Spanve imputed data. (D) Main cell 15 

types identified in each cluster. The bar width and color represent the enrichment score, 16 

indicating over- or underrepresentation of the cell type in the cluster compared with the 17 
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global distribution when the score is above or below 1, respectively. (E) Three distinct spatial 1 

patterns detected by Spanve. (F) Colocalization network of cell‒cell contact genes. Node 2 

colors represent cell types in which the genes are highly expressed. Edge colors denote 3 

signaling types associated with colocalized gene pairs. (G) Colocalization pattern of the 4 

genes APP and CD74. 5 

 6 

Characterization of intratumoral heterogeneity by Spanve 7 

A breast cancer dataset was used to demonstrate how Spanve helps in the analysis of ST data 8 

and identifies spatial microenvironment characteristics. We collected spatial transcriptomic 9 

data of human breast cancer tissue from the 10x Genomics Visium platform. This dataset 10 

provides whole transcriptome expression profiles and spatial coordinates of 4989 spots from 11 

a fresh-frozen tissue section derived from a patient with invasive ductal carcinoma, the most 12 

common type of breast cancer. 13 

We designed a pipeline to illustrate how Spanve is employed in ST analysis (Figure 4A), 14 

including spatial domain detection, deconvolution, spatial pattern identification and spotwise 15 

cell‒cell interaction. At the beginning of our analysis, we applied Spanve for the 16 

identification of 4025 SV genes and imputation. Spanve imputation can aid in clustering by 17 

smoothing gene expression within domains while preserving the boundaries of spatial 18 

domains with differences, as shown in Figure 4B. Subsequently, the K-means algorithm 19 

clustered all the spots into seven spatial domains (Figure 4C), with the number of clusters 20 

determined by the elbow method based on the BIC. To determine the tissue type of the seven 21 

spatial domains, we utilized a single-cell resolved atlas of human breast cancers as a 22 

reference 25 to infer the cell composition of each spot and listed the top three main cell types 23 

in each domain in Figure 4D. Enrichment scores are the ratio of the number of cells in the 24 

spatial domain compared to that in the whole tissue, indicating whether a cell type is enriched 25 

(score > 1) or depleted (score < 1). We also compared the spatial domain detection results 26 

obtained using different methods based on deconvolution results and manual annotations. We 27 

found that other methods may fail to delineate the tumor region with the surrounding immune 28 

layer (Figure S2), whereas under the Spanve framework, K-means also obtained reasonable 29 

spatial domains with clear boundaries. To better understand the biological signals underlying 30 

SV genes, we performed a spatial correlation clustering method to group SV genes into 31 
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several patterns (see STAR methods for details), followed by a commonly used gene set 1 

scoring method to show the consensus expression of spatial patterns (Figure 4E). 2 

Interestingly, visualizing the consensus expression of each pattern showed that spatial 3 

patterns were highly correlated with the spatial densities of some cell types. Thus, we linked 4 

the patterns to the factors and assigned a potential source of SV (Figure S3, Figure S4A). 5 

Overall, these can be categorized into three types: those related to cell number, those caused 6 

by unbalanced cell type spatial density, and those caused by local biological mechanisms, 7 

which have small correlations with each other but focus within a spatial domain. To validate 8 

whether genes in the spatial pattern can show the spatial variance source, we checked the 9 

genes in spatial pattern 0 (which is related to the cell number) against the housekeeping genes 10 

from the Housekeeping and Reference Transcript (HRT) atlas 26 and found a large overlap 11 

(350 of 722, chi-square p value < 0.001). Thus, we could also perform gene set enrichment 12 

analysis to match biological functions to spatial patterns (Figure S4B). 13 

We then investigated whether spatial colocalization could reveal the spatial characteristics of 14 

cancer tissue. We extended our algorithm to test whether a gene pair exhibits a spatial 15 

pattern, specifically by transforming coexpression into count-like data, inspired by the 16 

Pearson correlation formula. Spatial colocalization may indicate short-distance cell‒cell 17 

interactions (CCIs) at the resolution of a spot, which is often ignored by most current studies 18 

that focus on cell communication between spot clusters. We first checked the gene pairs from 19 

the CellChat DB 27 and displayed the significant gene pairs in a network (Figure 4F). We then 20 

detected a relationship between the CCI and CD74 and APP levels, which may exhibit a 21 

pattern correlated with the tumor region (Figure 4G). CD74 is a cell surface receptor that is 22 

involved in the formation and transport of MHC class II peptide complexes and is highly 23 

expressed in myeloid cells, B cells and endothelial cells according to reference scRNA-seq 24 

data. This cell interaction has been shown to be related to cancer development and 25 

immunotherapy in bladder cancer 28. Thus, the spatial variance in colocalization may indicate 26 

intratumor heterogeneity in the sensitivity to immunotherapy. 27 

We also collected the seven most commonly studied pathways in breast cancer and 28 

performed a spatial colocalization test for each gene pair in the pathways (Figure S4C). The 29 

WNT signaling pathway and immune-related pathway were found to be the most significant 30 

gene pairs. Some of the most significant gene pairs are shown in Figure S4C. An interesting 31 

gene pair was TNFB3 with BAMBI, which showed tumor heterogeneity, especially in Cluster 32 
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4. We noticed that this gene pair plays a role in the TNF-beta signaling pathway, suggesting 1 

that it may be correlated with tumor malignancy. Compared to other tumor regions, a marker 2 

SV gene of Cluster 4 is LINC00645, which has been shown to induce epithelial–3 

mesenchymal transition via TNF-beta in glioma 29. Based on the specific colocalization of the 4 

gene pair and the marker of Cluster 4, we assigned this strain to be invasive. 5 

For validation, the top 15 marker genes of Cluster 4 were used to determine the relationship 6 

between survival and these genes. By selecting only ductal carcinomas in the TCGA-BRCA 7 

project, the expression of these genes was significantly related to the progression-free interval 8 

(PFI). Interestingly, during the first 500 days, there was no significant difference between the 9 

two groups, whereas the hazard probability dramatically increased after more than 500 days 10 

(Figure S4D). This result supports our assumption. These findings demonstrate that Spanve 11 

can be used to dissect spatial heterogeneity within a tumor sample, elucidate 12 

microenvironmental factors influencing cancer progression, and provide insights into 13 

potential cell‒cell interactions and signaling events. 14 

Discussion 15 

In this study, we aimed to find a potential solution for balancing false-positive rates and 16 

computational costs. Our findings showed that SV genes tend to be difficult to model using 17 

normal, Poisson, NB, and ZINB distributions. As a result, current methods that depend on an 18 

expression distribution hypothesis may yield false-positive outcomes if the genes do not 19 

follow this hypothesis. To address the abovementioned challenge, a spatially variable gene 20 

identification method named Spanve has been proposed. 21 

Our method provides very close insight into Geary’s C, which also measures the differences 22 

in expression between neighboring spots. Notably, our method reduces the false-positive ratio 23 

by considering the deviation of the overall distribution, whereas Geary’s C only uses it to 24 

normalize the metric. In this respect, it can be thought that Spanve takes into account the 25 

background distribution. Some studies have attempted to modify Geary’s C, but false-26 

positive outcomes were not considered 30. Due to the improved specificity, Spanve boosts 27 

downstream tasks in ST analysis by better feature selection ability and a spatial imputation 28 

method, which can be integrated into existing analysis pipelines. A case study on a breast 29 

cancer sample showed that it is possible to characterize the microenvironment of the tissue 30 

under the Spanve framework. Spatial coexpression has been considered by some previous 31 
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studies 31–34, incorporating cluster or spatial domain information in the detection process. In 1 

contrast, our study proposes a spotwise gene colocation or coexpression method, enabling the 2 

quantification of coexpression at the spatial location level. This approach may be important 3 

when considering local biological mechanisms that exhibit specificity within discrete spatial 4 

domains. 5 

In addition to these benefits, the scalability of Spanve will become increasingly crucial as the 6 

volume of ST data expands. Compared with current methods, the Spanve method requires 7 

less time and has a lower computational cost for large-scale spatial transcriptomic data. The 8 

computational complexity of the Spanve algorithm depends on the data complexity, with 9 

sparser data leading to simpler counting probabilities. As the volume of spatial spots 10 

increases, they are expected to become increasingly sparse, as shown by single-cell 11 

sequencing 35. Therefore, Spanve may be of increasing importance when higher-resolution ST 12 

technology appears. 13 

Limitation of the study 14 

The current Spanve approach presents several limitations that warrant consideration. One key 15 

limitation is its inability to simultaneously process data from similar tissue slices to detect 16 

more robust SV genes and leverage prior knowledge. The integration of prior data or 17 

knowledge could potentially help identify more robust SV genes and uncover strongly related 18 

or even causal biomarkers, which would be particularly valuable for single-dataset studies. In 19 

future work, this issue might be addressed by modifying the spatial sampling strategy to 20 

incorporate prior data and knowledge. 21 

Another limitation is that Spanve is designed specifically for transcriptomics data, as its 22 

sampling method is most suitable for discrete data. This specificity may restrict its 23 

application in the rapidly evolving fields of spatial proteomics and spatial multi-omics. To 24 

extend the nonparametric statistical framework to discover spatial variance in other 25 

modalities, it may be necessary to develop appropriate methods for converting continuous 26 

data into discrete formats. 27 

Furthermore, the analysis of spatial patterns and spatial colocalization presents validation 28 

challenges. Some identified spatial patterns may not readily correlate with specific biological 29 

functions, local biological processes, or cell type differences, making interpretation 30 

challenging. Additionally, the current analysis framework may not be suitable for detecting 31 
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long-distance cell-cell interactions, such as those mediated by secreted factors. This 1 

limitation restricts the applicability of the spatial colocalization analysis to short-range 2 

interactions. Addressing these limitations in future iterations of Spanve will enhance its 3 

utility and broaden its applicability across various spatial omics technologies and biological 4 

questions. 5 

Overall, the Spanve method represents a significant advancement in ST analysis, providing 6 

researchers with a powerful tool to extract meaningful insights from spatial gene expression 7 

within biological samples. The improved specificity, enhanced downstream utility, and 8 

computational scalability of Spanve position it as a valuable addition to the ST analytical 9 

toolkit. 10 

  11 
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STAR Methods 1 

Key resource table 2 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Software and Algorithms 

Spanve This paper https://github.com/zjupgx/S
panve 

R https://www.r-project.org/ v4.1 

Python https://www.python.org/ v3.9 

SpatialDE Ref 3 v1.1.3 

SOMDE Ref 6 v0.1.8 

Giotto Ref 7 v1.1.2 

squidpy Ref 36 v1.2.2 

speal Ref 37 v1.0.0 

MERINGUE Ref 38 v1.0 

scanpy Ref 39 v1.9.1 

SPARK-X Ref 4 v1.1.1 

BayesSpace Ref 18 v1.4.1 

SpaGCN Ref 19 v1.2.5 

scikit-learn Ref 40 v1.1.3 

Space Ranger https://www.10xgenomics.c
om/support/software/space-
ranger/ 

v1.3.0 

Cell2location Ref 22 v0.1.3 

tangram Ref 23 v1.0.4 

bayesTME Ref 24 v0.0.1 

Deposited data 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

10X Genomics ST data https://www.10xgenomics.c
om/resources/datasets 

See TabS2 for detail 

Sorted ST datasets Ref 16 https://github.com/QuKunLa
b/SpatialBenchmarking 

Human breast cancer ST 
data 

https://www.10xgenomics.c
om/resources/datasets/ 

human-breast-cancer-
visium-fresh-frozen-whole-
transcriptome-1-standard 

TCGA-BRCA bulk RNA 
sequencing data 

https://xenabrowser.net/data
pages/ 

EB++AdjustPANCAN_Illu
minaHiSeq_RNASeqV2.gen
eExp.xena (version 2016-12-
29) 

 1 

Methods details 2 

For the spatial transcriptome raw count data 𝑋𝑋 ∈ ℕ𝑁𝑁×𝑀𝑀 with 𝑁𝑁 sequencing spots and 𝑀𝑀 genes 3 

and any gene expression 𝑥𝑥 ∈ ℕ𝑁𝑁, the two-dimensional location 𝐿𝐿 ∈ ℝ𝑁𝑁×2 of each spot is also 4 

obtained. The aim of SV gene identification is to identify genes whose expression is 5 

dependent on spatial locations 𝑥𝑥 ⊥ 𝐿𝐿. From an intuition of spatial variance that can be treated 6 

as the difference between cells and their neighbors, Spanve uses absolute subtraction to 7 

evaluate the difference and transforms the dependence problem into a contrast of two 8 

samplings, one null sampling, and the other spatial sampling. Three steps are involved in the 9 

identification of SV genes: 1) from observation to build a null sampling distribution, 2) build 10 

a spatial network and perform spatial sampling, and 3) take a statistical test for the spatial 11 

variance. 12 

ST data preprocessing 13 

Spanve takes spatial transcriptomic data as inputs, which consists of two parts: the raw count 14 

expression of genes and locations. Although preprocessing may play an important role in 15 

denoising spatial transcriptomes, a special strategy is used, where the median of the data 16 

remains consistent for each gene: 17 

𝑥𝑥� = �𝐹𝐹(𝑥𝑥) ×
𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥)

𝑀𝑀𝑀𝑀𝑀𝑀�𝐹𝐹(𝑥𝑥)�
� ∈ ℕ0

+  (1) 18 
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where 𝑥𝑥� is the preprocessed data, 𝐹𝐹 is any of the preprocessing functions, [. ] transforms the 1 

variable into a discrete value and 𝑀𝑀𝑀𝑀𝑀𝑀 calculates the median of the data. It is notable that 2 

preprocessing is not a necessary step for Spanve, and a worse result may be obtained if data 3 

have only parts of the genes or if some cells have very low counts. In this study, 4 

preprocessing was performed only when the data were undivided. 5 

Sampling Strategy 6 

We aim to quantify the spatial effects of gene expression by measuring differences in the 7 

expression levels of the two cells. A simple and intuitive way to do this is to use the absolute 8 

subtraction difference (ASD) of any two cells, which reflects the magnitude of their 9 

expression discrepancy, regardless of the direction. To calculate the ASD of any two spots, 10 

we define a new matrix 𝑋𝑋� ∈ ℕ𝑁𝑁×𝑁𝑁×𝑀𝑀, where each entry 𝑋𝑋�𝑖𝑖𝑖𝑖 is a vector of length 𝑀𝑀 that 11 

contains the ASD values for each gene between cell 𝑖𝑖 and cell 𝑗𝑗. Formally, we have 12 

𝑋𝑋�𝑖𝑖𝑖𝑖 =∣ 𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗 ∣   (2) 13 

where 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗 are the rows of 𝑋𝑋 corresponding to cell 𝑖𝑖 and cell 𝑗𝑗, respectively. Note that 14 

obtaining the entire matrix 𝑋𝑋� is not scalable, and our sampling strategy only considers a part 15 

of the matrix. In this step, our goal is to compare the distribution of ASD values for each gene 16 

under two different scenarios: spatial and random sampling. Spatial sampling means that we 17 

only consider cell pairs that are close to each other in physical space, whereas random 18 

sampling means that we consider all possible cell pairs regardless of their spatial proximity. 19 

By comparing these two distributions, we could assess whether the expression of a gene is 20 

influenced by its spatial location. For each gene 𝑔𝑔, we denote the distribution of ASD values 21 

under spatial sampling as 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜�𝑥𝑥�𝑔𝑔 ∣ 𝑥𝑥; 𝐿𝐿� and under random sampling as 𝑃𝑃exp�𝑥𝑥�𝑔𝑔�, where 𝑥𝑥�𝑔𝑔 22 

is the vector of ASD values for gene 𝑔𝑔 across all cell pairs. As the expression of all cells is 23 

observed, it is easy to obtain the expected random sampling result of the distribution of ASD 24 

𝑃𝑃exp�𝑋𝑋�𝑔𝑔� by listing all combinations. 25 

𝑃𝑃exp(𝑥𝑥� = 𝑘𝑘 ∣ 𝑥𝑥) = � 𝑃𝑃
max(𝑥𝑥)−𝑘𝑘

𝑖𝑖=𝑘𝑘

(𝑖𝑖 ∣ 𝑥𝑥)𝑃𝑃(𝑖𝑖 ± 𝑘𝑘 ∣ 𝑥𝑥)  (3) 26 

The spatial sampling in this study is based on a spot network that represents the spatial 27 

proximity of spots 𝑆𝑆 = {𝑆𝑆𝑛𝑛, 𝑆𝑆𝑒𝑒}, where nodes 𝑆𝑆𝑛𝑛 are cells and edges 𝑆𝑆𝑒𝑒 indicates that the two 28 
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cells are sufficiently close. The edges in the network represent sampled spot pairs. We use 1 

two types of networks: K-neighbor and Delaunay networks. The K-neighbor network 2 

connects each cell with its K-nearest neighbors based on Euclidean distance (by default, the 3 

number of neighbors is set to [𝑁𝑁/100]), whereas the Delaunay network connects each cell 4 

with its neighbors to form a Delaunay triangulation. A Delaunay network is a type of 5 

triangulation used to model data points where no point is inside the circumcircle of any 6 

triangle. The Delaunay network has shown scalability as the number of edges in Delaunay 7 

networks (< 3𝑁𝑁 − 3) is smaller than that in KNN (𝑁𝑁 × [𝑁𝑁/100]). Based on our research, we 8 

have determined that the optimal method for constructing a network is contingent upon the 9 

number of available spots. The KNN network of spatial location is used when the sample size 10 

𝑁𝑁 < 10000; otherwise, the Delaunay network is used. By calculating the ASD values for all 11 

cell pairs connected by an edge in the network, we obtain the distribution of the spatial 12 

sampling 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜�𝑥𝑥�𝑔𝑔 ∣ 𝑥𝑥; 𝐿𝐿� for each gene. 13 

Statistics of spatial variance 14 

Here, we take the Kullback-Leibler divergence, 𝐷𝐷𝐾𝐾𝐾𝐾, to quantify the difference in the 15 

distribution: 16 

𝐷𝐷𝐾𝐾𝐾𝐾�𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜||𝑃𝑃exp� = ∑𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜log
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜
𝑃𝑃exp

  (4) 17 

To determine how large a KL divergence can be considered to be spatially variable, we 18 

determined the threshold by a modified G-test process. As the expression counts of genes are 19 

discrete, the ASD value is also discrete. We treated 𝑥𝑥� as a categorical variable, and its 20 

possible value, that is, the degree of freedom, is from zero to the maximum expression 21 

max(𝑥𝑥). The KL divergence can be related to the G test, where G statistics are proportional 22 

to 𝐷𝐷𝐾𝐾𝐾𝐾 41. 23 

𝐺𝐺 = 2�𝑂𝑂𝑖𝑖
𝑖𝑖

⋅ ln �
𝑂𝑂𝑖𝑖
𝐸𝐸𝑖𝑖
� = 2𝑛𝑛�𝑜𝑜𝑖𝑖

𝑖𝑖

⋅ ln �
𝑜𝑜𝑖𝑖
𝑒𝑒𝑖𝑖
� = 2𝑛𝑛𝐷𝐷𝐾𝐾𝐾𝐾(𝑜𝑜 ∥ 𝑒𝑒) ∼ 𝜒𝜒2  (5) 24 

where 𝑛𝑛 is the total number of observations 𝑛𝑛 = ∑𝑂𝑂𝑖𝑖. However, having strong weights 25 

between neighbors also means that those locations provide “redundant” information, since 26 

neighbors tend to be similar, and they do not provide independent data points. If the 27 

expression of one of the spots changes, each edge link to the spot will change, that is, The 28 
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ASD value here is not independent. Consequently, we modified the formula of the G-statistic 1 

to avoid false positives by replacing 𝑛𝑛 (in our methods, it represents the number of all pairs) 2 

with the number of spots 𝑁𝑁. Intuitively, the effective sample size over all observations 𝑥𝑥� is 𝑁𝑁 3 

under the null hypothesis. 4 

𝐺𝐺 = 2𝑁𝑁𝐷𝐷𝐾𝐾𝐾𝐾 ∼ 𝜒𝜒max(𝑥𝑥)
2   (6) 5 

Spanve Imputation 6 

The imputation of the Spanve is performed based on the previous SV gene results. Overall, it 7 

is a simple graph convolution method for a modified spatial network. We first modified the 8 

previous networks that reflect the spatial locations by adding edge weights as the fraction of 9 

SV genes that significantly (by default, with a confidence level 𝛼𝛼 of 0.05) break the 10 

expectation. The new network can be viewed as a boost in spatial effects. 11 

𝐴𝐴𝑖𝑖𝑖𝑖 =
∣ {𝑆𝑆𝐹𝐹exp�𝑋𝑋�𝑖𝑖𝑖𝑖� ≤ 𝛼𝛼;𝑔𝑔 ∈ 𝑆𝑆𝑆𝑆} ∣

∣ 𝑆𝑆𝑆𝑆 ∣
  (7) 12 

Then, graph convolution with a self-loop is performed under the expression matrix to obtain 13 

the imputation matrix 𝑋𝑋′ = 𝑋𝑋(𝐴𝐴 + 𝐼𝐼)2, where 𝐼𝐼 is the identity matrix. 14 

Spatial patterns detection 15 

The space matrix 𝑆𝑆𝐴𝐴 ∈ ℝ𝑁𝑁×𝑁𝑁 is the affinity matrix of neighborhood network 𝑆𝑆. For genes 𝛼𝛼 16 

and 𝛽𝛽, 𝑥𝑥𝛼𝛼 and 𝑥𝑥𝛽𝛽 are the expressions. The space covariance is defined as 𝐶𝐶𝛼𝛼𝛼𝛼 = 𝑥𝑥𝛼𝛼𝑆𝑆𝐴𝐴𝑥𝑥𝛽𝛽𝑇𝑇, and 17 

the spatial correlation is 𝑅𝑅 = 𝐶𝐶
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐶𝐶)×𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐶𝐶)𝑇𝑇

∈ ℝ𝑀𝑀×𝑀𝑀. To construct a gene network, a 18 

correlation threshold is selected based on finding the maximum change in frequency, which is 19 

a heuristic approach. By Louvain algorithm, the gene network is divided into several gene 20 

community, or gene patterns. 21 

Spatial co-localization 22 

For any two gene 𝛼𝛼 and 𝛽𝛽, let 23 

ϱ𝑖𝑖
𝛼𝛼𝛼𝛼 =

(𝑥𝑥𝛼𝛼 − 𝑥𝑥𝛼𝛼)�𝑥𝑥𝛽𝛽 − 𝑥𝑥𝛽𝛽�
𝜎𝜎𝛼𝛼𝜎𝜎𝛽𝛽

  (8) 24 
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where 𝜎𝜎 is the standard variance of a gene and 𝑥𝑥 is the mean of the expression. The mean of 1 

𝐶𝐶 was equal to the Pearson’s correlation coefficient 𝜌𝜌. 2 

ϱ𝛼𝛼𝛼𝛼 =
1/𝑁𝑁 × ∑ (𝑥𝑥𝛼𝛼 − 𝑥𝑥𝛼𝛼)𝑁𝑁

𝑖𝑖=1 �𝑥𝑥𝛽𝛽 − 𝑥𝑥𝛽𝛽�
𝜎𝜎𝛼𝛼𝜎𝜎𝛽𝛽

≡ 𝜌𝜌𝛼𝛼,𝛽𝛽  (9) 3 

Thus, ϱ can be considered as the sample-resolution co-expression strength of the two genes. 4 

Thus, a similar strategy can be used to explore gene pairs with spatially variable co-5 

localization. In this study, the pathway structure for the spatial co-localization test was 6 

collected from Pathway Commons 42. Prior knowledge of cell-cell interactions is collected 7 

from the CellChat DB 27. 8 

Computational cost evaluation 9 

We simulated spatial transcriptomic datasets by assuming that gene expression follows a 10 

Poisson distribution, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆 = 5). A Gamma distribution (𝑘𝑘 = 2,𝜃𝜃 = 5) is used to create 11 

gene-specific variability by scaling gene maximums to improve realism. All spots are 12 

regularly distributed in a square pseudo-splice, where the distances between the horizontal 13 

and vertical spots are equal (10, 30, 50, 80, 100, 150, 200, 250, and 300). Under each 14 

condition, all methods were run three times using different random seeds. 15 

The computational cost was evaluated under the simulation data using the GNU time tool on 16 

a Linux server with Intel(R) Xeon(R) CPU E7-4850 v3 @ 2.20GHz (56 kernels) and 976 GB 17 

memory. All kernels are used if multi-thread is available. 18 

Benchmarking of spatially variable genes 19 

Eleven SV identification methods were used here, which can be roughly categorized into 20 

spatial autocorrelation-based (Moran test, Geary test, MERINGUE), Gaussian process 21 

regression-based (SpatialDE 3, SPARK-X 4), cluster-based (SOMDE 6, Giotto-rank and 22 

Giotto-silhouette-rank 7), and others (sepal 37, Spanve-k, and Spanve-d). For nine of them, the 23 

adjusted p-value is the output, while for Giotto-silhouette-rank and speal, only the score is 24 

given. Thus, for score-only methods, the top 10% of score genes were treated as SV genes; 25 

for others, the threshold of the adjusted p-value was set to 0.05. For MERINGUE, the 26 

computational cost is too high to benchmark. The benchmarking runs on 44 datasets with 27 

only HVGs sorted by Li et al. 16. Furthermore, gene relationships with clustering results were 28 

scanned in silver standard datasets, which are the result of the Louvain algorithm in the 29 
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decomposition of whole data. The CH index is used as an indicator to show how easy it is for 1 

genes to obtain a cluster label. With a higher CH index, the genes used as features were more 2 

closely related to cell types. 3 

Identification of spatial domains 4 

Four clustering methods are used to identify the layer structure of the DLPFC: K-means 5 

(distance-based), Louvain (graph-based), BayesSpace (Bayesian-based), and SpaGCN (deep 6 

learning-based). Default parameters were used for benchmarking, and principal component 7 

analysis (PCA) embeddings used by the four methods were replaced with the PCA results of 8 

Spanve imputation. As K-Means clustering requires the parameter of cluster number, the 9 

elbow method based on inertia determines it. The inertia of K-means is defined as the sum of 10 

the squared distances of the samples to their closest cluster centers. For BayesSpace, there is 11 

no such method; thus, the ground-truth number of clusters is used. For SpaGCN, the tissue 12 

images were not included in the analysis. The gold standard for the tissue layers was manual 13 

annotation performed by Maynard et al. 17. 14 

Benchmarking of cell type deconvolution 15 

For benchmarking cell type deconvolution, we followed a previous study 16 to perform and 16 

evaluate the performance. Specifically, two single-cell-resolution ST datasets were collected 17 

to generate multi-cell-resolution ST data. Based on spatial location, the data were split into 18 

grid-like sequencing spots containing multiple cells. By doing so, the simulated ST data and 19 

ground truth cell densities were obtained. Here, we use three deconvolution utilities, 20 

Cell2location, Tangram and bayesTME, to perform deconvolution based on the 12 different 21 

gene selection methods. For each gene selection method, 1000 out of 9684 genes from 22 

STARmap Dataset 21 and 200 out of 882 genes from seqFish Dataset 20 were selected based 23 

on the simulation. Spanve, Moran’s I, spatialDE, and Cell Ranger methods were applied to 24 

the ST data. Marker genes for single cells were selected using Student’s t-test on log-25 

transformed counts, implemented by scanpy’s rank_genes_group. The most significantly 26 

differentially expressed genes were selected based on the sum of the t-statistics for each cell 27 

type. The combination of the two methods selects the union of genes that are detected by the 28 

two methods. Four metrics were used for evaluation: the Pearson Correlation Coefficient 29 

(PCC), Structural Similarity Index (SSIM), Root Mean Square Error (RMSE), and Jensen–30 

Shannon Divergence (JSD). For each run, that is, a dataset with a deconvolution method and 31 
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all gene selection methods, a rank score was calculated to combine the four metrics and 1 

highlight the differences. The rank score (AS) was defined as 𝐴𝐴𝐴𝐴 = ∑ (1−#𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅/𝑁𝑁)metric

4
, 2 

representing the average rank of each method across the four metrics. 3 

Analysis of breast cancer spatial transcriptomics 4 

To perform a case study, we used public human breast cancer ST data available from 10x 5 

Genomics (Table S2). We initially performed quality control by removing cells with total 6 

counts less than 10 and genes expressed in fewer than 5 cells, obtaining 4898 spots and 7 

20227 genes. The Spanve analysis framework was then used to obtain the results (Figure 8 

S4A). To determine the function of spatial patterns, GSEA was performed using library 9 

annotation from enrichr 43 by pygsea 44. To check the relationship between the top 15 markers 10 

of Cluster 4, we investigated the survival time of ductal carcinoma in preprocessed TCGA-11 

BRCA data collected from xenahubs (https://xenabrowser.net/datapages/). The log-rank test 12 

was performed in the two groups by selecting the top or bottom 20% expression. 13 

 14 

Data and Code Availability 15 

The source code of Spanve and reproducibility of the analysis can be accessed by FishShare 16 
45 or Github (https://github.com/zjupgx/Spanve). The data underlying this article were all 17 

derived from sources in the public domain (See TabS2 for detail). 10X Genomics ST data can 18 

be achieved from https://www.10xgenomics.com/resources/datasets. Sorted ST datasets 16 are 19 

provide by authors: https://github.com/QuKunLab/SpatialBenchmarking. Human breast 20 

cancer ST data is downloaded from 21 

https://www.10xgenomics.com/resources/datasets/human-breast-cancer-visium-fresh-frozen-22 

whole-transcriptome-1-standard. TCGA-BRCA bulk RNA sequencing pre-processed data is 23 

from 24 

https://xenabrowser.net/datapages/EB++AdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneE25 

xp.xena (version 2016-12-29).  26 

Supplementary data 27 

Supplementary file 1: Supplementary figures for this article. 28 

Supplementary file 2: Supplementary Tables for this article. 29 
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Supplementary file 3: Detailed protocol of Spanve. 1 
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