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Abstract

Depicting gene expression in a spatial context through spatial transcriptomics would be
beneficial for inferring cell function mechanisms. The identification of spatially variable
genes is a crucial step in leveraging the spatial transcriptome to understand intricate spatial
dynamics. In this study, we developed Spanve, a nonparametric statistical method for
detecting spatially variable genes in large-scale ST data by quantifying expression differences
between spots and their spatial neighbours. This method offers a nonparametric approach to
identifying spatial dependencies in gene expression without assuming specific distributions.
Compared to traditional methods, Spanve decreases the number of false-positive outcomes,
leading to more accurate identification of spatially variable genes. Furthermore, Spanve could
facilitate downstream spatial transcriptomics analyses, including spatial domain detection and
cell type deconvolution. These results show the broad applications of Spanve in advancing
our understanding of spatial gene expression patterns within complex tissue

microenvironments.
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Introduction

Spatial transcriptomics (ST) maps mRNA molecules within tissue sections to their original
locations using arrays of spatially barcoded primers on spots, leading to significant progress
in various areas over the past few years 2. To describe intricate ST landscapes, identification
of genes that exhibit differences in expression patterns across different locations within a
tissue, which are defined as spatially variable (SV) genes, is crucial. Unlike highly variable
genes (HVGs), which may vary between cells or groups of cells, SV genes exhibit spatial
patterns across spatial locations. These spatial patterns are often characterized by distinct
spatial domains where the expression of SV genes is homogenous, indicating shared
functional attributes, cell composition or structural characteristics. Thus, SV genes can reflect
a myriad of factors, including the localization of cell types or space-dependent interactions
between cells !, providing valuable biological signals for the complex interplay between gene
expression, spatial organization, and functional processes within tissues and ultimately

advancing our understanding of biological systems and their intricate spatial dynamics.

As SV genes may contain important information about the underlying biological mechanisms
within tissues, several studies have attempted to detect SV genes by modeling gene
expression. The most common strategy uses Gaussian regression processes that assume gene
expression follows a specific probability distribution, such as Gaussian * or Poisson *, with a
covariance matrix composed of spatial and nonspatial components. However, whether gene
expression can be well described by these classical distributions is questionable. There is also
a similar problem in single-cell RNA sequencing (scRNA-seq) data due to overdispersion and
drop-out events °. Two specialized distributions (negative binomial, NB, and zero-inflated
negative binomial, ZINB) have been proposed to solve this problem. As these distributions
may not adequately consider spatial effects on gene expression, algorithms based on the
distribution hypothesis may lead to false-positive outcomes when modeling ST data,
especially for genes with high spatial heterogeneity based on our observations. In other
words, genes with low p values may not exhibit a spatial variation pattern, which may be
caused by distribution assumption violations. Other methods, such as cluster-based ¢’ or
graph-based methods *°, avoid arbitrary assumptions. However, these methods may have
limitations in handling large-scale data. New sequencing technologies, such as stereo-seq ',
allow for the identification of cellular or subcellular transcripts !? but also present new

challenges due to the increased volume and complexity of data. Spatial autocorrelation


https://doi.org/10.1101/2023.02.08.527623
http://creativecommons.org/licenses/by-nc/4.0/

S O X 9 SN N s~ W

I e S e e S e T T =
N SN n bW N =

18

19

20
21
22
23
24
25
26
27
28
29

30
31

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.08.527623; this version posted September 22, 2024. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

methods, including Moran’s I and Geary’s C '*!4, are scalable but have a large false-positive

rate in our following experiments and a previous benchmark °.

To this end, we developed SPAtial Neighborhood Variable Expressed gene detection
(Spanve), a statistical method for analyzing the dependence of gene expression on spatial
location. Spanve was developed to enhance the specificity of SV gene identification without
assuming specific distributions while maintaining low computational costs and promoting
downstream tasks, such as clustering and deconvolution. Based on previous studies, we
established benchmarks for SV gene identification, computational cost and downstream
analyses. The results indicate that our proposed method enhances the specificity of
identification with low computational costs and promotes downstream tasks, such as
clustering and deconvolution. To demonstrate the practical application of Spanve, we
analyzed a human breast cancer ST dataset to characterize the intratumor heterogeneity.
Within the Spanve framework, we implemented a spotwise colocalization analysis, which
may reveal potential cell—cell interactions. Furthermore, we explored the associations
between SV genes and potential contributing factors to enhance our understanding of
underlying biological processes. These findings highlight the ability of Spanve to effectively

identify important SV genes and facilitate downstream analyses of ST data.

Design

We developed Spanve, a non-parametric statistical method for measuring spatial variance in
gene expression within ST data. Spanve enhances downstream analyses by reducing false
positives in spatially variable gene detection. The fundamental premise of this study is that
gene expression differences between spots are homogeneous in the absence of spatial effects.
Rather than modeling gene expression directly using classical distributions, Spanve models
spatial variance by quantifying differences between a spot and its spatial neighbors. We
implemented two approaches for identifying spatial neighbors: k-nearest neighbor-based
(Spanve-k) and Delaunay network-based (Spanve-d) methods. By adjusting the number of
neighbors, researchers can tailor the resolution of the analysis to their specific aims. The

Delaunay-based method is particularly suited for large-scale data analysis.

The selection of spots and their spatial neighbors can be viewed as a form of sampling or

network construction based on spatial location. In contrast, the null model randomly selects
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spot pairs. Genes exhibiting spatial expression patterns will show significant differences
between space-based and random sampling. This approach differs from current statistical
methods that often compare to assumed distributions, such as Poisson. We posit that
sampling from the data itself inherently accounts for background effects, potentially reducing
false positives. Moreover, our analysis demonstrates that assumed distributions may not
accurately represent gene expression, particularly for SV genes. We quantify the Kullback-
Leibler (KL) divergence between the two sampling distributions and perform a statistical test

to identify genes with significant spatial variability (details in STAR Methods, Figure 1A).

These sampling approaches also aid in characterizing spatial domains by considering spot
pair expressions during spatially variable gene identification. To smooth expression within
spatial domains, we developed a spatial imputation method within the Spanve framework.
This method identifies spot pairs with unexpected expression variations and constructs a
network where edge weights represent the degree of deviation from expected expression
differences between neighboring spots. The resulting network highlights unexpected
differences in the overall dataset. A graph convolution strategy with self-loops (Figure 1B)

helps mitigate technical errors and produces clustering-friendly imputed data.

To demonstrate Spanve's advantages, we benchmarked its performance in spatially variable
gene identification and downstream tasks, including spatial domain detection and spatial
transcriptome deconvolution. We extended the classical spatial transcriptome analysis
pipeline to include spatial pattern analysis and spatial co-localization analysis. Spatial pattern
analysis groups spatially variable genes with similar spatial expression, helping researchers
identify spatially-linked biological functions. Spatial co-localization generalizes spatially
variable gene detection to gene pair detection, enabling exploration of cell-cell interactions
and ligand-receptor relationships in a spatial context. These novel analytical approaches

provide researchers with fresh insights into biological mechanisms.

Spanve is implemented in Python and can be easily utilized with minimal code. We provide a
detailed protocol for Spanve usage within our extended analysis framework (Supplementary

File 3).
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Figure 1. The framework and hypothesis of Spanve (A) In spatial transcriptomic data,

Spanve considers two types of sampling of cell or spot pairs: random sampling as the null

hypothesis and location-based sampling as the alternative hypothesis. The spatial variability

of genes is defined as the difference between two sampling distributions. (B) Spatial

imputation employs graph convolution on a weighted spatial graph based on spot pairs that

deviate from the expected distribution. Figure C to G depict one of the datasets from 10x
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Genomics. (C, D) The plots show the spatial variance, measured by Moran’s I, and the
adjusted p values of the GOF test for the Poisson (C) and Gaussian (D) models. (E) The BIC
value of the Poisson model shows a sigmoid-like relationship with the overall Moran’s 1. (F)
For four different distributions, genes with high Moran’s I values (> 0.5) tend to have higher
BIC values. (G) The overlaps of non-Poisson, non-Gaussian, most SV 5000 genes and
Spanve genes. (H) A general trend of high-SV genes with higher BIC values was observed in

the 10x Genomics datasets.

Results

SV genes tend to violate the distribution assumption

As location effects exist, including cell type distribution, local environment and cell
interactions, gene expression may not be described under simple distribution assumptions,
whereas complex distributions largely increase the number of parameters and fitting time.
Here, we showed that SV genes tend to violate the distribution assumption, revealing the
inherent limitations of current statistical models based on assuming specific distributions. To
show the relationship between the spatial variance represented by Moran’s I and the
distribution assumption, the goodness-of-fit (GOF) test and Bayesian information criterion
(BIC) were used to quantify how well gene expression can be described by the distribution.
The anomalousness of gene expression is defined as the inability to model using a common
hypothesis. We initially reported our observations for a single dataset (dataset identifier abbv.
as VMOB, Table S2), subsequently extending our analysis to 43 additional datasets from 10x

Genomics to show the generality of our conclusions (Figure 1C-H).

All genes were divided into 20 groups according to their Poisson divergence test p value.
Genes with p values lower than 0.05 had a significantly greater Moran’s I than did the other
genes (Figure 1C). After preprocessing, both the high-SV genes and low-SV genes differed
from the Gaussian hypothesis (Figure 1D). We also compared the two test results with the
spatial variance of the genes. Most SV genes could not be modeled considering the two
hypotheses, while 3293 of 3297 genes identified by the Spanve model overlapped with the
anomalous genes (Figure 1G). We then considered the NB and ZINB distributions. Overall,

there was a sigmoidal relationship between the BIC score and Moran’s I (Figure 1E, Figure
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STA). For high-SV genes, drop-out-like events caused by spatial effects may occur, and there

is a small advantage over Poisson fitting (Figure 1F).
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We then tested the generality of the findings using 43 datasets. The results showed that high-

SV genes always had significantly greater BIC values when modeled by four distributions

(Figure 1H). Most SV genes detected by various methods exhibited distribution anomalies

(Figure S1B). Notably, Spanve achieved the highest proportion of anomalous SV genes while

identifying the lowest number of SV genes (approximately 20% of all genes), which is

consistent with a recent study '° showing that most SV detection methods are overly sensitive,

thus assigning a majority of genes as SV genes. This result highlights the specificity of the

Spanve method, which outperforms other methods in identifying a more specific set of SV

genes. In summary, our observations have shown that assuming specific distributions may

result in a high false-positive rate for SV gene detection, and avoiding the distribution

assumption may increase the specificity of the Spanve.
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Figure 2. Evaluations of Spanve and 10 other methods (A) datasets and evaluation across
four aspects: computational cost, detection of spatially variable (SV) genes considering
spatial heterogeneity and clustering awareness, and downstream tasks. (B) Time (left) and
memory (right) costs for 1000 genes as cell numbers increase. (C) Spatial heterogeneity of
detected SV genes. Box plot elements: centerline, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range; color, performance. Bar plot error bars represent
95% confidence intervals. (D) Example of Spanve imputation aiding tissue structure
identification (DLPFC dataset No. 151672). (E) Cluster awareness of SV genes in 43
datasets. Methods ranked by the median C-H index across datasets. Methods with stars only
score genes without p values. Box and heatmap colors represent scores, and white indicates
that no SV genes were detected. (F) Clustering results of the DLPFC dataset (n=12) with

different preprocessing methods for the four spatial domain detection methods.

Spanve decreases the number of false-positive outcomes with efficient large-scale

computing

Then, we conducted comprehensive benchmarking (Figure 2A) of 11 SV gene identification
methods, which can be roughly categorized into Gaussian process regression-based methods,
clustering-based methods, spatial autocorrelation methods and others (Table S1). As there is
currently no established gold standard for SV gene identification, we employed two global
spatial autocorrelation metrics, Moran’s I and Geary’s C ", to assess the statistical sensitivity
of each method. Our benchmarking analysis was performed on 43 datasets (Table S2), which
were preprocessed by Li et al. '°. For methods such as the sepal and silhouette coefficient
rank in Giotto (Giotto-siRank), which only scores genes, the top 10% of genes were assigned
as SV genes. The results (Figure 2C) showed that Spanve achieved the best score for both
Moran’s 1 (0.41 &+ 0.13) and Geary’s C (0.59 + 0.13) while also identifying a moderate
number of genes (95% confidence interval, 198 to 430). For the two different sampling
strategies of Spanve, the K-nearest neighbor (KNN) network contains more edges than does
the Delaunay network and is thus more specific to spatial variability but requires more
computations. The improved performance in identifying SV genes is likely attributed to the

reduced ratio of false positives, as the number of identified SV genes also decreased.
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We then focused on estimating the computational cost of each method. The time and memory
required to process the simulation data from a Poisson distribution with 1000 genes and
varying numbers of cells were estimated. Each method was repeated thrice for each sample
size to obtain stable results. The results (Figure 2B) showed that Spanve-d was the most
efficient method, completing the analysis in 16 seconds and using 1500 megabytes of
memory on data with up to 90000 cells. Spanve-k is fast and saves memory when the number
of spots is less than 10000, but its performance deteriorates as the number of edges in the
KNN network increases exponentially with the number of spots. These findings demonstrate
that our method is scalable and suitable for the analysis of large-scale spatial transcriptome

data.
Utilizing the Spanve aids in delineating spatial domains

Spanve considers the complicated interactions between spots in the detection of spatial
patterns, which is helpful for identifying the next crucial downstream task of spatial domain
identification. To benchmark the relationship between clusters and SV genes, 43 datasets
from the 10x Genomics database were utilized. These datasets include cluster labels, which
were assigned using Space Ranger. The Calinski-Harabasz (CH) index was used as an
indicator to demonstrate how well selected genes are related to clustering results by the
dispersion of data between clusters and within clusters. The higher the CH index is, the more
likely it is that SV genes reflect clustering labels, implying that SV genes are more
representative of the raw data. Our study involved a comparison of the CH indices of genes
identified through various approaches, thereby highlighting the superiority of Spanve in

recognizing cluster-aware genes (Figure 2E).

We also determined whether the Spanve imputation method could help with spatial domain
detection or clustering. To validate whether imputation is beneficial for clustering, the spatial
imputation process was aggregated with several clustering methods on a manually annotated
human dorsolateral prefrontal cortex (DLPFC) ST dataset !7, which contains 12 samples. The
four clustering technologies used include K-means, the Leiden algorithm, BayesSpace '* and
SpaGCN ". BayesSpace is a clustering method that uses a Bayesian nonparametric model,
and SpaGCN is a deep learning clustering method that integrates graph convolutional
networks and ST data to learn the data cluster structure. We evaluated the performance of
each clustering approach with different preprocessing methods and compared the resulting

clusters with manual annotations by two clustering metrics, the adjusted Rand index (ARI)

10


https://doi.org/10.1101/2023.02.08.527623
http://creativecommons.org/licenses/by-nc/4.0/

00 9 N L R WD~

10
11
12

13

14

15
16
17
18

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.08.527623; this version posted September 22, 2024. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

and adjusted mutual information (AMI), which evaluate the consistency of the predicted label
and ground truth. For preprocessing, we considered the default processing of cluster methods,
gene selection with principal component analysis (PCA), and Spanve imputation. For gene
selection, Cell Ranger’s HVG selection and Spanve SV gene selection were included. We
first chose one sample to visualize (Figure 2D) the K-means and BayesSpace clustering
results, indicating that a clearer boundary of tissue layers can be obtained with Spanve
imputation. Then, the performances on all 12 samples in the DLPFC dataset were compared
(Figure 2F). With K-means, Leiden and BayesSpace, there were large improvements in the
ARI and AMI with Spanve imputation. Notably, SV selection with PCA outperformed HVG
selection, providing further evidence that SV genes help to characterize spatial domains. For
SpaGCN, as we recognize that SpaGCN performs clustering on a graph, spillover imputation

may make use of spot similarity for clustering and thus has little impact on it.
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overlap of SV genes detected by three methods in the seqFish dataset. The top 10 genes with
the highest Pearson correlation coefficient (PCC) to astrocyte cell density are labeled. (D)
Maximum PCC with ground-truth cell distributions for distinct genes identified by each of
the three methods. (E) Number of distinct genes from each method overlapping with the most

correlated genes, which include the top 30 genes for each cell type.

SV genes facilitate spotwise cell type deconvolution

As each spot in an ST dataset may contain transcripts from multiple cell types, deconvolution
algorithms are applied to estimate the proportional contribution of each cell type to the
overall gene expression profile observed in a spot. In this section, we demonstrate that
Spanve may also aid in cell composition inference. The rationale for leveraging SV genes for
deconvolution lies in the assumption that the spatial distribution of these genes is correlated
with underlying cellular heterogeneity. To accomplish this, we employed a previously
reported standard benchmark !¢ utilizing single-cell resolution ST data from the seqFish ?° and
STARmap *' datasets. These datasets allowed the generation of synthetic ST data with a
known ground truth of the cell density at each spot. We evaluated the performance of three
deconvolution tools (Cell2location 2, Tangram * and BayesTME %) in conjunction with six
gene selection methods and six combinations that integrate HVGs, marker genes of cell
types, and SV genes identified using three different methods (Spanve, Moran’s I and
SpatialDE). Overall, the performance was assessed using four metrics that were combined
into a rank score. Details of the deconvolution estimation are included in the STAR Methods

(Figure S1IC-S1D).

The results demonstrated that proper gene selection improved the deconvolution performance
compared to that using all genes (Figure 3A). Among the six gene selection methods, Spanve,
along with its detected SV genes, achieved the best overall performance and was the only one
that outperformed all the genes. For the combination of genes, incorporating SV genes can
boost the performance of all three deconvolution methods. In particular, the incorporation of
Spanve genes resulted in the greatest enhancement of deconvolution accuracy (Figure 3A-
3B). This superior performance can be attributed to the ability of Spanve to detect the most
relevant genes for cell type identification. We sought to determine whether genes that

exhibited a high degree of correlation with specific cell types could be identified using SV

12
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gene detection methods. In the seqFish dataset for astrocytes, we found that Spanve identified
5 out of 10 such genes, SpatialDE identified 2 out of 10 genes, and Moran’s I identified 0 out
of 10 genes (Figure 3C). By conducting an in-depth analysis of the distinct genes identified
by the three spatial methods, it was evident that Spanve demonstrated the greatest overlap
with the most crucial genes (Figure 3E) and exhibited the highest layer correlation (Figure
3C). Although most existing methods overlook the contribution of SV genes, our findings
underscore the importance of incorporating these genes to facilitate accurate spotwise cell
type deconvolution. The Spanve framework capitalizes on this opportunity by identifying cell
type-relevant SV genes, thereby enhancing the deconvolution process and enabling a more

comprehensive characterization of cellular compositions within the ST data.
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Figure 4. Analysis of human breast cancer ST data using Spanve. (A) Analysis pipeline

under the Spanve framework. (B) Spanve imputation enhanced the spatial expression pattern

of the CD74 gene. (C) Clustering result obtained using Spanve imputed data. (D) Main cell

types identified in each cluster. The bar width and color represent the enrichment score,

indicating over- or underrepresentation of the cell type in the cluster compared with the
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global distribution when the score is above or below 1, respectively. (E) Three distinct spatial
patterns detected by Spanve. (F) Colocalization network of cell—cell contact genes. Node
colors represent cell types in which the genes are highly expressed. Edge colors denote
signaling types associated with colocalized gene pairs. (G) Colocalization pattern of the

genes APP and CD74.

Characterization of intratumoral heterogeneity by Spanve

A breast cancer dataset was used to demonstrate how Spanve helps in the analysis of ST data
and identifies spatial microenvironment characteristics. We collected spatial transcriptomic
data of human breast cancer tissue from the 10x Genomics Visium platform. This dataset
provides whole transcriptome expression profiles and spatial coordinates of 4989 spots from
a fresh-frozen tissue section derived from a patient with invasive ductal carcinoma, the most

common type of breast cancer.

We designed a pipeline to illustrate how Spanve is employed in ST analysis (Figure 4A),
including spatial domain detection, deconvolution, spatial pattern identification and spotwise
cell—cell interaction. At the beginning of our analysis, we applied Spanve for the
identification of 4025 SV genes and imputation. Spanve imputation can aid in clustering by
smoothing gene expression within domains while preserving the boundaries of spatial
domains with differences, as shown in Figure 4B. Subsequently, the K-means algorithm
clustered all the spots into seven spatial domains (Figure 4C), with the number of clusters
determined by the elbow method based on the BIC. To determine the tissue type of the seven
spatial domains, we utilized a single-cell resolved atlas of human breast cancers as a
reference » to infer the cell composition of each spot and listed the top three main cell types
in each domain in Figure 4D. Enrichment scores are the ratio of the number of cells in the
spatial domain compared to that in the whole tissue, indicating whether a cell type is enriched
(score > 1) or depleted (score < 1). We also compared the spatial domain detection results
obtained using different methods based on deconvolution results and manual annotations. We
found that other methods may fail to delineate the tumor region with the surrounding immune
layer (Figure S2), whereas under the Spanve framework, K-means also obtained reasonable
spatial domains with clear boundaries. To better understand the biological signals underlying

SV genes, we performed a spatial correlation clustering method to group SV genes into
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several patterns (see STAR methods for details), followed by a commonly used gene set
scoring method to show the consensus expression of spatial patterns (Figure 4E).
Interestingly, visualizing the consensus expression of each pattern showed that spatial
patterns were highly correlated with the spatial densities of some cell types. Thus, we linked
the patterns to the factors and assigned a potential source of SV (Figure S3, Figure S4A).
Overall, these can be categorized into three types: those related to cell number, those caused
by unbalanced cell type spatial density, and those caused by local biological mechanisms,
which have small correlations with each other but focus within a spatial domain. To validate
whether genes in the spatial pattern can show the spatial variance source, we checked the
genes in spatial pattern O (which is related to the cell number) against the housekeeping genes
from the Housekeeping and Reference Transcript (HRT) atlas * and found a large overlap
(350 of 722, chi-square p value < 0.001). Thus, we could also perform gene set enrichment

analysis to match biological functions to spatial patterns (Figure S4B).

We then investigated whether spatial colocalization could reveal the spatial characteristics of
cancer tissue. We extended our algorithm to test whether a gene pair exhibits a spatial
pattern, specifically by transforming coexpression into count-like data, inspired by the
Pearson correlation formula. Spatial colocalization may indicate short-distance cell—cell
interactions (CCIs) at the resolution of a spot, which is often ignored by most current studies
that focus on cell communication between spot clusters. We first checked the gene pairs from
the CellChat DB #’ and displayed the significant gene pairs in a network (Figure 4F). We then
detected a relationship between the CCI and CD74 and APP levels, which may exhibit a
pattern correlated with the tumor region (Figure 4G). CD74 is a cell surface receptor that is
involved in the formation and transport of MHC class II peptide complexes and is highly
expressed in myeloid cells, B cells and endothelial cells according to reference scRNA-seq
data. This cell interaction has been shown to be related to cancer development and
immunotherapy in bladder cancer ?*. Thus, the spatial variance in colocalization may indicate

intratumor heterogeneity in the sensitivity to immunotherapy.

We also collected the seven most commonly studied pathways in breast cancer and

performed a spatial colocalization test for each gene pair in the pathways (Figure S4C). The
WNT signaling pathway and immune-related pathway were found to be the most significant
gene pairs. Some of the most significant gene pairs are shown in Figure S4C. An interesting

gene pair was TNFB3 with BAMBI, which showed tumor heterogeneity, especially in Cluster
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4. We noticed that this gene pair plays a role in the TNF-beta signaling pathway, suggesting
that it may be correlated with tumor malignancy. Compared to other tumor regions, a marker
SV gene of Cluster 4 is LINC00645, which has been shown to induce epithelial—
mesenchymal transition via TNF-beta in glioma #. Based on the specific colocalization of the

gene pair and the marker of Cluster 4, we assigned this strain to be invasive.

For validation, the top 15 marker genes of Cluster 4 were used to determine the relationship
between survival and these genes. By selecting only ductal carcinomas in the TCGA-BRCA
project, the expression of these genes was significantly related to the progression-free interval
(PFD). Interestingly, during the first 500 days, there was no significant difference between the
two groups, whereas the hazard probability dramatically increased after more than 500 days
(Figure S4D). This result supports our assumption. These findings demonstrate that Spanve
can be used to dissect spatial heterogeneity within a tumor sample, elucidate
microenvironmental factors influencing cancer progression, and provide insights into

potential cell—cell interactions and signaling events.

Discussion

In this study, we aimed to find a potential solution for balancing false-positive rates and
computational costs. Our findings showed that SV genes tend to be difficult to model using
normal, Poisson, NB, and ZINB distributions. As a result, current methods that depend on an
expression distribution hypothesis may yield false-positive outcomes if the genes do not
follow this hypothesis. To address the abovementioned challenge, a spatially variable gene

identification method named Spanve has been proposed.

Our method provides very close insight into Geary’s C, which also measures the differences
in expression between neighboring spots. Notably, our method reduces the false-positive ratio
by considering the deviation of the overall distribution, whereas Geary’s C only uses it to
normalize the metric. In this respect, it can be thought that Spanve takes into account the
background distribution. Some studies have attempted to modify Geary’s C, but false-
positive outcomes were not considered *. Due to the improved specificity, Spanve boosts
downstream tasks in ST analysis by better feature selection ability and a spatial imputation
method, which can be integrated into existing analysis pipelines. A case study on a breast
cancer sample showed that it is possible to characterize the microenvironment of the tissue

under the Spanve framework. Spatial coexpression has been considered by some previous
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studies 3", incorporating cluster or spatial domain information in the detection process. In
contrast, our study proposes a spotwise gene colocation or coexpression method, enabling the
quantification of coexpression at the spatial location level. This approach may be important
when considering local biological mechanisms that exhibit specificity within discrete spatial

domains.

In addition to these benefits, the scalability of Spanve will become increasingly crucial as the
volume of ST data expands. Compared with current methods, the Spanve method requires
less time and has a lower computational cost for large-scale spatial transcriptomic data. The
computational complexity of the Spanve algorithm depends on the data complexity, with
sparser data leading to simpler counting probabilities. As the volume of spatial spots
increases, they are expected to become increasingly sparse, as shown by single-cell
sequencing ¥. Therefore, Spanve may be of increasing importance when higher-resolution ST

technology appears.
Limitation of the study

The current Spanve approach presents several limitations that warrant consideration. One key
limitation is its inability to simultaneously process data from similar tissue slices to detect
more robust SV genes and leverage prior knowledge. The integration of prior data or
knowledge could potentially help identify more robust SV genes and uncover strongly related
or even causal biomarkers, which would be particularly valuable for single-dataset studies. In
future work, this issue might be addressed by modifying the spatial sampling strategy to

incorporate prior data and knowledge.

Another limitation is that Spanve is designed specifically for transcriptomics data, as its
sampling method is most suitable for discrete data. This specificity may restrict its
application in the rapidly evolving fields of spatial proteomics and spatial multi-omics. To
extend the nonparametric statistical framework to discover spatial variance in other
modalities, it may be necessary to develop appropriate methods for converting continuous

data into discrete formats.

Furthermore, the analysis of spatial patterns and spatial colocalization presents validation
challenges. Some identified spatial patterns may not readily correlate with specific biological
functions, local biological processes, or cell type differences, making interpretation
challenging. Additionally, the current analysis framework may not be suitable for detecting
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long-distance cell-cell interactions, such as those mediated by secreted factors. This
limitation restricts the applicability of the spatial colocalization analysis to short-range
interactions. Addressing these limitations in future iterations of Spanve will enhance its
utility and broaden its applicability across various spatial omics technologies and biological

questions.

Overall, the Spanve method represents a significant advancement in ST analysis, providing
researchers with a powerful tool to extract meaningful insights from spatial gene expression
within biological samples. The improved specificity, enhanced downstream utility, and
computational scalability of Spanve position it as a valuable addition to the ST analytical

toolkit.
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STAR Methods

Key resource table

REAGENT or RESOURCE SOURCE IDENTIFIER
Software and Algorithms
Spanve This paper https://github.com/zjupgx/S
panve
R https://www.r-project.org/ v4.1
Python https://www.python.org/ v3.9
SpatialDE Ref? v1.1.3
SOMDE Ref'¢ v0.1.8
Giotto Ref’ vl.1.2
squidpy Ref 36 v1.2.2
speal Ref3’ v1.0.0
MERINGUE Ref 38 v1.0
scanpy Ref %’ v1.9.1
SPARK-X Ref* vl.1.1
BayesSpace Ref '8 vl4.1
SpaGCN Ref ¥ v1.2.5
scikit-learn Ref % vl.1.3
Space Ranger https://www.10xgenomics.c  v1.3.0
om/support/software/space-
ranger/
Cell2location Ref 2 v0.1.3
tangram Ref % v1.0.4
bayesTME Ref 2 v0.0.1

Deposited data


https://doi.org/10.1101/2023.02.08.527623
http://creativecommons.org/licenses/by-nc/4.0/

O o0 9 N n h~ W

10
11
12

13

14
15
16
17

18

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.08.527623; this version posted September 22, 2024. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

REAGENT or RESOURCE SOURCE IDENTIFIER
10X Genomics ST data https://www.10xgenomics.c ~ See TabS2 for detail
om/resources/datasets
Sorted ST datasets Ref 16 https://github.com/QuKunLa
b/SpatialBenchmarking
Human breast cancer ST https://www.10xgenomics.c  human-breast-cancer-
data om/resources/datasets/ visium-fresh-frozen-whole-

transcriptome- 1-standard

TCGA-BRCA bulk RNA https://xenabrowser.net/data EB++AdjustPANCAN Illu

sequencing data pages/ minaHiSeq RNASeqV2.gen
eExp.xena (version 2016-12-
29)
Methods details

For the spatial transcriptome raw count data X € N¥*™ with N sequencing spots and M genes
and any gene expression x € NV, the two-dimensional location L € RV*? of each spot is also
obtained. The aim of SV gene identification is to identify genes whose expression is
dependent on spatial locations x L L. From an intuition of spatial variance that can be treated
as the difference between cells and their neighbors, Spanve uses absolute subtraction to
evaluate the difference and transforms the dependence problem into a contrast of two
samplings, one null sampling, and the other spatial sampling. Three steps are involved in the
identification of SV genes: 1) from observation to build a null sampling distribution, 2) build
a spatial network and perform spatial sampling, and 3) take a statistical test for the spatial

variance.
ST data preprocessing

Spanve takes spatial transcriptomic data as inputs, which consists of two parts: the raw count
expression of genes and locations. Although preprocessing may play an important role in
denoising spatial transcriptomes, a special strategy is used, where the median of the data

remains consistent for each gene:

Med(x) Nt o

X = F(X)Xm € Ny

20
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where X is the preprocessed data, F is any of the preprocessing functions, [.] transforms the
variable into a discrete value and Med calculates the median of the data. It is notable that
preprocessing is not a necessary step for Spanve, and a worse result may be obtained if data
have only parts of the genes or if some cells have very low counts. In this study,

preprocessing was performed only when the data were undivided.
Sampling Strategy

We aim to quantify the spatial effects of gene expression by measuring differences in the
expression levels of the two cells. A simple and intuitive way to do this is to use the absolute
subtraction difference (ASD) of any two cells, which reflects the magnitude of their
expression discrepancy, regardless of the direction. To calculate the ASD of any two spots,

we define a new matrix X € NV*V*M where each entry X;; is a vector of length M that

contains the ASD values for each gene between cell i and cell j. Formally, we have
X=X X1 (2)

where X; and X ; are the rows of X corresponding to cell i and cell j, respectively. Note that
obtaining the entire matrix X is not scalable, and our sampling strategy only considers a part
of the matrix. In this step, our goal is to compare the distribution of ASD values for each gene
under two different scenarios: spatial and random sampling. Spatial sampling means that we
only consider cell pairs that are close to each other in physical space, whereas random
sampling means that we consider all possible cell pairs regardless of their spatial proximity.
By comparing these two distributions, we could assess whether the expression of a gene is
influenced by its spatial location. For each gene g, we denote the distribution of ASD values
under spatial sampling as P, (J?g | x; L) and under random sampling as Py, (fg), where X,
is the vector of ASD values for gene g across all cell pairs. As the expression of all cells is
observed, it is easy to obtain the expected random sampling result of the distribution of ASD

Pexp ()? g) by listing all combinations.

max(x)—k

Pp@=kI = > PGI0OPGLEID) ()
i=k

The spatial sampling in this study is based on a spot network that represents the spatial

proximity of spots S = {S,, S.}, where nodes S, are cells and edges S, indicates that the two
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cells are sufficiently close. The edges in the network represent sampled spot pairs. We use
two types of networks: K-neighbor and Delaunay networks. The K-neighbor network
connects each cell with its K-nearest neighbors based on Euclidean distance (by default, the
number of neighbors is set to [N/100]), whereas the Delaunay network connects each cell
with its neighbors to form a Delaunay triangulation. A Delaunay network is a type of
triangulation used to model data points where no point is inside the circumcircle of any
triangle. The Delaunay network has shown scalability as the number of edges in Delaunay
networks (< 3N — 3) is smaller than that in KNN (N X [N/100]). Based on our research, we
have determined that the optimal method for constructing a network is contingent upon the
number of available spots. The KNN network of spatial location is used when the sample size
N < 10000; otherwise, the Delaunay network is used. By calculating the ASD values for all

cell pairs connected by an edge in the network, we obtain the distribution of the spatial

sampling P, (5c‘g | x; L) for each gene.
Statistics of spatial variance

Here, we take the Kullback-Leibler divergence, Dk, to quantify the difference in the

distribution:

Pop
DKL(PObSHPexp) = ZpobSIOg PO s (4)

exp

To determine how large a KL divergence can be considered to be spatially variable, we
determined the threshold by a modified G-test process. As the expression counts of genes are
discrete, the ASD value is also discrete. We treated X as a categorical variable, and its
possible value, that is, the degree of freedom, is from zero to the maximum expression
max(x). The KL divergence can be related to the G test, where G statistics are proportional

to Dy 4.

0; 0;
G=2 E Oi-ln(?>=2n E ol--ln(e—l)=2nDKL(0 le)~ x2 (5)
. i . i
l

l

where n is the total number of observations n = )'0;. However, having strong weights
between neighbors also means that those locations provide “redundant” information, since
neighbors tend to be similar, and they do not provide independent data points. If the

expression of one of the spots changes, each edge link to the spot will change, that is, The
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ASD value here is not independent. Consequently, we modified the formula of the G-statistic
to avoid false positives by replacing n (in our methods, it represents the number of all pairs)
with the number of spots N. Intuitively, the effective sample size over all observations X is N

under the null hypothesis.
G = 2NDg;, ~ )(Iznax(x) (6)
Spanve Imputation

The imputation of the Spanve is performed based on the previous SV gene results. Overall, it
is a simple graph convolution method for a modified spatial network. We first modified the
previous networks that reflect the spatial locations by adding edge weights as the fraction of
SV genes that significantly (by default, with a confidence level a of 0.05) break the

expectation. The new network can be viewed as a boost in spatial effects.

_ 1 {SFp (%) S as g €SV} |
v | SV |

(7)

Then, graph convolution with a self-loop is performed under the expression matrix to obtain

the imputation matrix X’ = X (A4 + I)?, where [ is the identity matrix.
Spatial patterns detection

The space matrix S, € RV*V is the affinity matrix of neighborhood network S. For genes a

and B, x, and xp are the expressions. The space covariance is defined as C,p = anAxE , and

C
Jdiag(C)xdiag(c)T

the spatial correlation is R = € RM*M To construct a gene network, a

correlation threshold is selected based on finding the maximum change in frequency, which is
a heuristic approach. By Louvain algorithm, the gene network is divided into several gene

community, or gene patterns.
Spatial co-localization

For any two gene a and S, let

af __ (xa - E)(xﬁ - @)
' 040p
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where o is the standard variance of a gene and x is the mean of the expression. The mean of

C was equal to the Pearson’s correlation coefficient p.

_ap _ N X it (Xa — Xg) (x5 — Xg) _
Qe = = Pap )
O'a,O'/g

Thus, o can be considered as the sample-resolution co-expression strength of the two genes.
Thus, a similar strategy can be used to explore gene pairs with spatially variable co-
localization. In this study, the pathway structure for the spatial co-localization test was
collected from Pathway Commons **. Prior knowledge of cell-cell interactions is collected

from the CellChat DB 7.
Computational cost evaluation

We simulated spatial transcriptomic datasets by assuming that gene expression follows a
Poisson distribution, Pois(A = 5). A Gamma distribution (k = 2,60 = 5) is used to create
gene-specific variability by scaling gene maximums to improve realism. All spots are
regularly distributed in a square pseudo-splice, where the distances between the horizontal
and vertical spots are equal (10, 30, 50, 80, 100, 150, 200, 250, and 300). Under each

condition, all methods were run three times using different random seeds.

The computational cost was evaluated under the simulation data using the GNU time tool on
a Linux server with Intel(R) Xeon(R) CPU E7-4850 v3 @ 2.20GHz (56 kernels) and 976 GB

memory. All kernels are used if multi-thread is available.
Benchmarking of spatially variable genes

Eleven SV identification methods were used here, which can be roughly categorized into
spatial autocorrelation-based (Moran test, Geary test, MERINGUE), Gaussian process
regression-based (SpatialDE °, SPARK-X *), cluster-based (SOMDE ¢, Giotto-rank and
Giotto-silhouette-rank 7), and others (sepal *’, Spanve-k, and Spanve-d). For nine of them, the
adjusted p-value is the output, while for Giotto-silhouette-rank and speal, only the score is
given. Thus, for score-only methods, the top 10% of score genes were treated as SV genes;
for others, the threshold of the adjusted p-value was set to 0.05. For MERINGUE, the
computational cost is too high to benchmark. The benchmarking runs on 44 datasets with
only HVGs sorted by Li et al. '°. Furthermore, gene relationships with clustering results were

scanned in silver standard datasets, which are the result of the Louvain algorithm in the
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decomposition of whole data. The CH index is used as an indicator to show how easy it is for
genes to obtain a cluster label. With a higher CH index, the genes used as features were more

closely related to cell types.
Identification of spatial domains

Four clustering methods are used to identify the layer structure of the DLPFC: K-means
(distance-based), Louvain (graph-based), BayesSpace (Bayesian-based), and SpaGCN (deep
learning-based). Default parameters were used for benchmarking, and principal component
analysis (PCA) embeddings used by the four methods were replaced with the PCA results of
Spanve imputation. As K-Means clustering requires the parameter of cluster number, the
elbow method based on inertia determines it. The inertia of K-means is defined as the sum of
the squared distances of the samples to their closest cluster centers. For BayesSpace, there is
no such method; thus, the ground-truth number of clusters is used. For SpaGCN, the tissue
images were not included in the analysis. The gold standard for the tissue layers was manual

annotation performed by Maynard et al. !".
Benchmarking of cell type deconvolution

For benchmarking cell type deconvolution, we followed a previous study ' to perform and
evaluate the performance. Specifically, two single-cell-resolution ST datasets were collected
to generate multi-cell-resolution ST data. Based on spatial location, the data were split into
grid-like sequencing spots containing multiple cells. By doing so, the simulated ST data and
ground truth cell densities were obtained. Here, we use three deconvolution utilities,
Cell2location, Tangram and bayesTME, to perform deconvolution based on the 12 different
gene selection methods. For each gene selection method, 1000 out of 9684 genes from
STARmap Dataset ?' and 200 out of 882 genes from seqFish Dataset 2° were selected based
on the simulation. Spanve, Moran’s I, spatial DE, and Cell Ranger methods were applied to
the ST data. Marker genes for single cells were selected using Student’s t-test on log-
transformed counts, implemented by scanpy’s rank genes group. The most significantly
differentially expressed genes were selected based on the sum of the t-statistics for each cell
type. The combination of the two methods selects the union of genes that are detected by the
two methods. Four metrics were used for evaluation: the Pearson Correlation Coefficient
(PCC), Structural Similarity Index (SSIM), Root Mean Square Error (RMSE), and Jensen—

Shannon Divergence (JSD). For each run, that is, a dataset with a deconvolution method and
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all gene selection methods, a rank score was calculated to combine the four metrics and

g = ymetric(1 _#Rank/N)
= " )

highlight the differences. The rank score (AS) was defined as A

representing the average rank of each method across the four metrics.
Analysis of breast cancer spatial transcriptomics

To perform a case study, we used public human breast cancer ST data available from 10x
Genomics (Table S2). We initially performed quality control by removing cells with total
counts less than 10 and genes expressed in fewer than 5 cells, obtaining 4898 spots and
20227 genes. The Spanve analysis framework was then used to obtain the results (Figure
S4A). To determine the function of spatial patterns, GSEA was performed using library
annotation from enrichr ** by pygsea *. To check the relationship between the top 15 markers
of Cluster 4, we investigated the survival time of ductal carcinoma in preprocessed TCGA-
BRCA data collected from xenahubs (https://xenabrowser.net/datapages/). The log-rank test

was performed in the two groups by selecting the top or bottom 20% expression.

Data and Code Availability

The source code of Spanve and reproducibility of the analysis can be accessed by FishShare

4 or Github (https://github.com/zjupgx/Spanve). The data underlying this article were all

derived from sources in the public domain (See TabS2 for detail). 10X Genomics ST data can

be achieved from https://www.10xgenomics.com/resources/datasets. Sorted ST datasets !¢ are

provide by authors: https://github.com/QuKunlLab/SpatialBenchmarking. Human breast

cancer ST data is downloaded from

https://www.10xgenomics.com/resources/datasets/human-breast-cancer-visium-fresh-frozen-

whole-transcriptome-1-standard. TCGA-BRCA bulk RNA sequencing pre-processed data is
from

https://xenabrowser.net/datapages/EB++AdjustPANCAN IlluminaHiSeq RNASeqV2.geneE

xp.xena (version 2016-12-29).

Supplementary data

Supplementary file 1: Supplementary figures for this article.

Supplementary file 2: Supplementary Tables for this article.
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