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Abstract13

In the analysis of both single-cell RNA sequencing (scRNA-seq) and spatially resolved14

transcriptomics (SRT) data, classifying cells/spots into cell/domain types is an essential15

analytic step for many secondary analyses. Most of the existing annotation methods have16

been developed for scRNA-seq datasets without any consideration of spatial information.17

Here, we present SpatialAnno, an efficient and accurate annotation method for spatial18

transcriptomics datasets, with the capability to effectively leverage a large number of19

non-marker genes as well as “qualitative” information about marker genes without using20

a reference dataset. Uniquely, SpatialAnno estimates low-dimensional embeddings for a21

large number of non-marker genes via a factor model while promoting spatial smoothness22

among neighboring spots via a Potts model. Using both simulated and four real spatial23

transcriptomics datasets from the 10x Visium, ST, Slide-seqV1/2, and seqFISH platforms,24

we showcase the method’s improved spatial annotation accuracy, including its robustness25

to the inclusion of marker genes for irrelevant cell/domain types and to various degrees of26

marker gene misspecification. SpatialAnno is computationally scalable and applicable27

to SRT datasets from different platforms. Furthermore, the estimated embeddings for28

cellular biological effects facilitate many downstream analyses.29
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Introduction30

With the rapid advancement of spatially resolved transcriptomics (SRT) technologies, it has31

become feasible to comprehensively characterize the gene expression profiles of tissues while32

retaining information on their physical locations. Among the already developed SRT methods,33

in situ hybridization (ISH) technologies, such as MERFISH1 and seqFISH2, provide single-34

molecule resolution for targeted genes but require prior knowledge of the genes of interest;35

while in situ capturing technologies, such as 10x Visium, Slide-seqV1/23, and Stereo-seq4,36

are unbiased and provide transcriptome-wide expression measurements. Among the in situ37

capturing technologies, there has been a dramatic improvement in spatial resolution, with38

spot sizes ranging from 55 µm in 10x Visium, 10 µm in Slide-seqV2, to <1 µm in Stereo-seq.39

These SRT technologies provide an opportunity to study how the spatial organization of gene40

expression in tissues relates to tissue functions5. To characterize the transcriptomic landscape41

within a spatial context, assigning cell/domain types in relation to tissue location is an essential42

analytic step that provides comprehensive spatially resolved maps of tissue heterogeneity6.43

Conventionally, spatial annotation relies on the manual assignment of cell/domain clusters44

using known marker genes that are readily available from existing studies or databases7,8. A45

general workflow begins with the unsupervised clustering of spots based on their transcriptomic46

profiles; this is followed by an examination of the differentially expressed genes (DEGs) specific47

to each cluster; and finally, the DEGs are manually matched with known marker genes to assign48

cell/domain types to spatial spots. This type of workflow requires sufficient knowledge of the49

biology and markers of the cell/domain types, but it can be time-consuming, labor-intensive,50

and less reproducible6,9. Moreover, these workflows are sensitive to the choice of clustering51

methods, presenting challenges in the downstream interpretations10. An improved strategy for52

spatial annotation is to automatically annotate the identified clusters using either reference53

data or leveraging existing information on the cell/domain types. Performing annotations with54

reference data has been shown to be successful in the context of single-cell RNA sequencing55

(scRNA-seq) analysis. For example, scmap performs cell annotation by projecting existing56

reference data with known cell types onto cells in the study data11. However, the success of57

this type of analysis relies on the availability of reference data that are “similar” to the study58

data. On the other hand, the availability of data on cell-type-specific maker genes from existing59

studies or databases, potentially obtained using either low-throughput or high-throughput60

systems, further necessitates the efficient utilization of marker-gene information in a “qualitative”61

manner. To this end, a number of methods have been developed for scRNA-seq data without62

any consideration of spatial information, including SCINA12, Garnett13, CellAssign14, and63

scSorter15.64

To efficiently utilize the existing knowledge base on marker genes for cell/domain types, an65

ideal annotation method for SRT datasets should be capable of leveraging this “qualitative”66

information on marker genes with data on non-marker genes while incorporating spatial67

information to promote spatial smoothness in the cell/domain-type annotation. Because the68

proportion of non-marker genes is much larger than that of marker genes, non-marker genes also69

harbor substantial amounts of biological information that can be used to separate cell/domain70

types. Annotation methods capable of leveraging marker with non-marker genes can improve71

our ability to detect spatial cell/domain clusters14,15. However, the high-dimensional nature of72
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non-marker genes makes the annotation task more challenging and, moreover, requires proper73

and efficient modeling of this information. Furthermore, for SRT datasets, especially those74

from tissue sections with laminar structures, e.g., brain regions, a desirable spatial annotation75

method would additionally be able to leverage spatial information.76

To address the challenges presented by spatial annotation, we propose the use of a proba-77

bilistic model, SpatialAnno, which performs cell/domain-type assignments for SRT data and78

has the capability of leveraging non-marker genes to assign cell/domain types via a factor79

model while accounting for spatial information via a Potts model16,17. To effectively leverage80

a large number of non-marker genes and overcome the curse of dimensionality, SpatialAnno81

uniquely models expression levels in a factor model governed by separable cell/domain-type low-82

dimensional embeddings. As a result, SpatialAnno not only performs spatial cell/domain-type83

assignments with better accuracy, but also estimates cell/domain-type-aware embeddings that84

can facilitate downstream analyses. We illustrate the benefits of SpatialAnno through extensive85

simulations and analyses of a diverse range of example datasets collated using different spatial86

transcriptomics technologies. To show the improved spatial annotation accuracy, we applied87

SpatialAnno to analyze a 10x Visium datasets for 12 human dorsolateral prefrontal cortex88

(DLPFC) samples. To illustrate the effectiveness of SpatialAnno in leveraging non-marker89

genes, we analyzed a mouse olfactory bulb (OB) dataset generated using the ST technology.90

Using Slide-seqV1/2 datasets for the mouse hippocampus, we demonstrated that SpatialAnno91

can correctly identify cell-type distribution at near-cell resolution. The utility of SpatialAnno92

to estimate low-dimensional embeddings is demonstrated by a seqFISH dataset for the mouse93

embryo.94

Results95

Overview of SpatialAnno96

Similarly to other methods that assign known cell/domain types to cells using information about97

marker genes, SpatialAnno takes as input normalized gene expression matrix, spatial location98

information, and a list of marker genes for known cell/domain types (Fig. 1a). SpatialAnno99

automatically performs cell/domain-type assignments while providing low-dimensional embed-100

dings for all spatial spots. Based on the latent cell/domain type for each spot, SpatialAnno101

builds a “semi-supervised” Gaussian mixture model to modulate the over-expression of marker102

genes and a hierarchical factor model to relate non-marker gene expression to the cell/domain103

separable latent embeddings while accounting for the spatial smoothness of the cell/domain104

types with a Potts model (Fig. 1b). Uniquely, SpatialAnno, via the factor model, allows for105

the assignment of cell/domain types that leverage a large number of non-marker genes, and,106

via the Potts model, is more likely to assign the same cell/domain type to neighboring spots,107

promoting spatial smoothness in the cell/domain types. Notably, with expression data for both108

marker and non-marker genes, SpatialAnno simultaneously assigns each spot known cell/domain109

types while obtaining low-dimensional embeddings for each spot, which can facilitate other110

downstream analyses. Similarly to other methods, SpatialAnno automatically labels spatial111

spots that do not belong to any known cell/domain type as “unknown”, preventing incorrect112

assignment when novel cell/domain types are present.113
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Validation using simulated data114

We conducted simulations to evaluate the performance of SpatialAnno and compared the results115

with those of non-spatial annotation methods commonly applied to scRNA-seq data: SCINA,116

Garnett, CellAssign, and scSorter (see Methods). The simulation details are provided in the117

Methods section. Briefly, we simulated gene expression counts using a splatter model18 for118

seven cortical layers using labels from the DLPFC data. Then, we selected five marker genes for119

each layer based on the log-fold change in expression (see Methods). In total, we obtained 35120

marker genes and 2000 non-marker genes for 3639 spots from seven layers. For each simulated121

SRT dataset, we applied SpatialAnno and the four other methods to perform spatial domain122

annotation. We used Cohen’s Kappa, mean F1 (mF1) score, and classification accuracy (ACC)123

(see Methods) to quantify the concordance between the detected spatial domains and the seven124

labeled cortical layers11,14. We performed 50 replicate simulations for each setting.125

When the correct number of layers was specified, SpatialAnno (Kappa=0.903, mF1=0.807,126

and ACC = 0.922) outperformed all other methods in terms of annotation accuracy (Fig. 1c;127

number of cell/domain types = 7). After varying the number of cell/domain types with marker128

genes, the SpatialAnno annotation still outperformed all other methods (Fig. 1c; number of129

cell/domain types = 5 or 9). Unsurprisingly, SpatialAnno performed worse when there were130

five cell/domain types with marker genes (Kappa=0.839, mF1=0.729, and ACC = 0.883)131

than seven or nine (Kappa=0.900, mF1=0.803, and ACC = 0.918). The latter two cases132

(seven and nine cell/domain types) led to comparable annotation performances for SpatialAnno133

and CellAssign. In contrast, annotation performance decreased for the other methods when134

we included marker genes for irrelevant cell/domain types. We examined the robustness of135

SpatialAnno when there were various degrees of marker gene misspecification (Fig. 1d). As136

the proportion of misspecified marker genes increased, the annotation performance decreased137

for all methods, but SpatialAnno still outperformed all other methods in terms of annotation138

accuracy (Kappa, mF1, and ACC).139

Next, we examined the effectiveness of SpatialAnno, which leverages various amounts of140

non-marker information compared with the scSorter and Garnett methods, also capable of141

leveraging non-marker genes (Supplementary Fig. 1a). As the number of non-marker genes142

increased from 60 to 2000, SpatialAnno showed 10.3%, 21.9% and 8.1% improvements in143

annotation accuracy for Kappa, mF1 and ACC, respectively, while the annotation accuracies144

of scSorter and Garnett were almost unchanged, with the changes being -0.6% and -0.6% for145

Kappa, 1.7% and -0.1% for mF1, and -0.1% and -0.7% for ACC, respectively. These results146

suggest that SpatialAnno can effectively leverage various numbers of non-marker genes.147

In addition to the spatial spots being accurately annotated, the low-dimensional embed-148

ding of non-marker genes from SpatialAnno was cell/domain-type informative. Clustering149

performance using low-dimensional embeddings with either marker genes or non-marker genes,150

or a combination of the two, with a comparable adjusted rand index (ARI) between marker151

and non-marker genes, is shown in Supplementary Fig. 1b & c. Not surprisingly, combining152

both embeddings for marker and non-marker genes led to improved ARIs in all scenarios,153

demonstrating the benefits of borrowing information from non-marker genes when annotating154

cell/domain types. In addition, the Pearson’s correlation coefficients for the relationship between155

the observed expression and the estimated labels, given the embeddings from SpatialAnno,156
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were much smaller than those for the principal component analysis (PCA), but comparable157

to those for the DR-SC19 (Supplementary Fig. 1d & e). These results suggest SpatialAnno158

embeddings can capture cell/domain-type-relevant information for each spot, thus facilitating159

the downstream analysis.160

Finally, we evaluated the computational efficiency of all methods for different numbers161

of cell/domain types, as shown in Supplementary Fig. 1f. SpatialAnno was computationally162

efficient and comparable in efficiency to SCINA and scSorter, and all three were faster than163

Garnett and CellAssign.164

SpatialAnno improves annotations of known layers in human dorso-165

lateral prefrontal cortex166

We applied SpatialAnno and the four methods to the analysis of human dorsolateral prefrontal167

cortex (DLPFC) 10x Visium data20. In this dataset, there were 12 tissue sections from three168

adult donors with a median depth of 291 million reads for each sample, a median of 3844169

spatial spots per section, and a mean of 33,538 genes per spot (Supplementary Table 1). Each170

tissue section was manually annotated to a DLPFC layer and white matter (WM) based on171

the cytoarchitecture20. Taking sample ID151507 as a reference, we constructed a marker-gene172

list that contained five marker genes for each of the seven layers (see Methods).173

Taking manual annotations as ground truth, we first evaluated the performance of spatial174

annotation using Kappa, mF1, and ACC for each of the 12 tissue sections (Fig. 2a). SpatialAnno175

annotated spatial domains more accurately (median Kappa=0.524, median mF1=0.494, and176

median ACC=0.628) than scSorter (median Kappa=0.381, median mF1=0.366, and median177

ACC=0.489), SCINA (median Kappa=0.209, median mF1=0.337, and median ACC=0.307),178

Garnett (median Kappa=0.24, median mF1=0.32, and median ACC=0.339), and CellAssign179

(median Kappa=0.253, median mF1=0.29 and median ACC=0.326). The heatmap of the180

spatial assignments from SpatialAnno and the other methods and the manual annotations for181

sample ID151673 are shown in Fig. 2b. SpatialAnno achieved the best annotation accuracy182

(Kappa=0.634, mF1=0.619, and ACC=0.685), while the annotations from scSorter, SCINA,183

and CellAssign were only accurate for the WM, and Garnett completely failed to assign the184

WM region. Notably, the domains identified in SpatialAnno were spatially smooth, continuous,185

and well matched with the elevated expression levels of marker genes for each layer (Fig. 2c186

and Supplementary Fig. 2-13), such as Pcp4 and Mobp that are marker genes for layer 5 and187

WM, respectively20,21.188

To evaluate the robustness of SpatialAnno, we obtained marker genes from the other DLPFC189

tissue section that contained seven layers and performed spatial annotation for the remainder190

of the 11 tissue sections (see Methods). Using the top 5/10/15 DEGs as marker genes for each191

layer, SpatialAnno achieved the best annotation accuracy according to Kappa, mF1, and ACC.192

The annotation accuracies of all other methods for the other tissue sections were slight worse193

than for those when sample ID151507 was used as a reference (Supplementary Fig. 14a), which194

is consistent with the simulations involving the misspecification of marker genes (Fig. 1d). This195

suggests that annotation accuracy can be impaired when inaccurate marker genes are used.196

However, this difference became negligible when the number of marker genes for each layer was197

15. Furthermore, we examined the robustness of SpatialAnno using marker genes for irrelevant198
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cell types, those not present in the studied SRT dataset. For samples ID151669-151672 from199

Donor 2, which only contained five cortical layers, we applied SpatialAnno and other methods200

using marker genes for the seven layers. As shown in Supplementary Fig. 14b, SpatialAnno201

achieved the best annotation performance for these samples.202

Uniquely amongst the methods, SpatialAnno’s estimated embeddings were highly informative203

for the DLPFC layers in the 12 sections. The clustering accuracies, determined using the204

ARI for embeddings from marker, non-marker, and a combination of the two, respectively,205

were shown in Supplementary Fig. 14c, with the largest ARI value for embeddings from a206

combination of the two. Clearly, embeddings from non-marker genes harbored substantial207

amount of information about spatial domains, even more than the marker genes. When using208

a combination of marker and non-marker genes, the embeddings led to improved clustering209

performance, suggesting that annotation based on both marker and non-marker genes improved210

the annotation accuracy. Red/green/blue (RGB) plots using three tSNE components for the211

embeddings in sample ID151673 estimated by SpatialAnno revealed a more clear laminar212

structure for DLPFC than those by PCA or DR-SC (Fig. 2d). Such stronger structure213

predictivity from SpatialAnno is numerically supported by its higher ARI (0.450) compared to214

PCA (ARI=0.296) and DR-SC (ARI=0.365). Moreover, an estimated PAGA graph22 using215

SpatialAnno embeddings demonstrated the almost linear development trajectory from WM216

to layer 1, while the PAGA graphs using both PCA and DR-SC embeddings were less clearly217

delineated (Fig. 2e and Supplementary Fig. 2-13).218

SpatialAnno correctly identifies cells in mouse olfactory bulb219

To quantitatively demonstrate the performance of SpatialAnno compared with SCINA, scSorter,220

CellAssign, and Garnett in domain-type annotation, we analyzed one mouse OB data generated221

using ST technology. This dataset represented 12 tissue sections with a median of 16,024 gene222

expression measurements among a median of 266 spots (Supplementary Table 2).223

Taking the four anatomic layers manually annotated based on H&E staining as ground224

truth (Fig. 3a), we first evaluated the performance of the spatial annotation using Kappa, mF1,225

and ACC for section 12 (Fig. 3b). SpatialAnno annotated spatial domains more accurately226

(Kappa=0.739, mF1 = 0.812, and ACC=0.800) than scSorter (Kappa=0.608, mF1=0.718, and227

ACC=0.696), SCINA (Kappa=0.598, mF1=0.670, and ACC=0.689), CellAssign (Kappa=0.395,228

mF1=0.607, and ACC=0.707), and Garnett (Kappa=0.552, mF1=0.686, and ACC=0.646). We229

examined the robustness of SpatialAnno by including marker genes for two irrelevant cell types230

(endothelial and mural cells) that were not present in this section, and SpatialAnno achieved231

the best annotation performance (Supplementary Fig. 15a). To illustrate the effectiveness of232

leveraging non-marker information, we evaluated the performance of the spatial annotation233

by SpatialAnno, scSorter, and Garnett with 30, 300, or 3000 non-marker genes, as only these234

three methods are able to leverage non-marker gene information. SpatialAnno achieved higher235

annotation accuracy when more non-marker genes were used, while the difference in performance236

between 300 and 3000 non-marker genes was minimal for SpatialAnno (Supplementary Fig.237

15b). In contrast, scSorter and Garnett performed similarly with 30 or 300 non-marker genes,238

but their performance deteriorated when 3000 non-marker genes were applied.239

SpatialAnno recovered the laminar structure of the mouse OB across 12 sections (Supple-240
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mentary Fig. 16). The mouse OB has a multi-layered cellular architecture in the order, from241

the inner to outer layer, of granule cell layer (GCL), mitral cell layer (MCL), glomerular layer242

(GL), the nerve layer (ONL). Detailed assignments by SpatialAnno and the other four methods243

for section 12 are shown in Fig. 3a. The cell types annotated by SpatialAnno accurately244

represented this laminar structure, while CellAssign incorrectly assigned “unknown” cells to245

regions belonging to GCL, MCL, and GL. Moreover, the annotation patterns of Garnett were246

rather chaotic, while scSorter and SCINA failed to distinguish periglomerular cells (PGC) in247

the GL.248

We further examined the expressions of marker genes specific to each layer, including Kit249

for external plexiform layer interneuron (EPL-IN)23, Penk for granule cells (GC)24, Cdhr1250

for mitral and tufted cells (M/TC)25, S100a5 for olfactory sensory neurons (OSN)26, and251

Th for PGC27 (Fig. 3c). Although the three methods provided similar assignments for GC,252

M/TC, OSN, and PGC, their assignments for EPL-IN were quite different. EPL-IN are located253

adjacent to GL in the external plexiform layer comprised of PGC23. SpatialAnno assigned254

spots near PGC to EPL-IN; however, scSorter and Garnett did not (Supplementary Fig. 17).255

As the ground truth for the EPL-IN locations was unknown, we manually combined the inferred256

EPL-IN with the adjacent layers in different ways: (1) by combining the inferred EPL-IN and257

PGC and (2) by combining the inferred EPL-IN, M/TC, and PGC. SpatialAnno still achieved258

the best annotation accuracy (Supplementary Fig. 15c & d).259

Another key benefit of SpatialAnno is its ability to extract low-dimensional embeddings260

relevant to different cell types from the high-dimensional non-marker genes, which is useful261

for many downstream analyses. We summarized the low-dimensional embeddings inferred262

by SpatialAnno (Supplementary Fig. 15e), PCA, and DR-SC into three-dimensional tSNE263

components and visualized the resulting components in the RGB plot. The RGB plot (Fig. 3d)264

shows the multi-layered architecture of the mouse OB, with neighboring spots sharing more265

similar colors to those farther away. To compare the predictive powers of these low-dimensional266

embeddings for the four anatomic layers annotated based on H&E staining, we applied the267

Louvain community detection algorithm to spot clustering using the Seurat R package. The268

clusters identified by SpatialAnno depicted the multi-layered structures more accurately (ARI269

= 0.599) than those of PCA (ARI = 0.549) or DR-SC (ARI = 0.569).270

SpatialAnno reveals cell-type distribution in mouse hippocampus271

with SRT data at near-cell resolution272

To show the cell-type distribution in the mouse hippocampus, we applied SpatialAnno and273

the other methods to the analysis of a mouse hippocampus dataset generated using Slide-274

seqV2, which quantifies transcriptome-wide expression levels at near-cellular resolution with275

10-µm barcoded beads3. This dataset contains expressions for 23,264 genes over 53,208 spatial276

locations (Supplementary Table 3). As shown in the Allen Reference Atlas (Fig. 4a), the277

primary regions in the mouse hippocampus were composed of the cornu ammonis (CA1-3) and278

dentate gyrus (DG).279

SpatialAnno clearly identified a “cord-like” structure as well as an “arrow-like” structure280

in the hippocampal subfields in CA1, CA3, and DG (Fig. 4b), which is consistent with the281

annotation of hippocampus structures in the Allen Reference Atlas (Fig. 4a). In contrast to282
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SpatialAnno, the other methods SCINA, Garnett, and CellAssign showed blurred/incorrect283

localizations for the primary hippocampal subfields in CA3 and DG and were unable to reveal284

the main structures of the mouse hippocampus (Fig. 4b and Supplementary Fig. 18-20).285

The hippocampal subfields identified by scSorter were surrounded by a blurry border, with286

many different cell types allocated to the same region. Additionally, all the methods except287

SpatialAnno failed to accurately allocate the habenula (Hb)neurons, which should reside left to288

and below the choroid plexus. Careful examination of marker genes further demonstrated the289

superior accuracy of SpatialAnno (Fig. 4c), i.e., Wfs1, Cpne4, and C1ql2 for CA1, CA3, and290

DG, respectively.291

We quantified the annotation performance of the different methods by examining the292

correlations between the expression patterns of the marker genes and the three hippocampal293

subfields identified by the different methods. Pearson’s chi-squared test demonstrated a294

substantial improvement in the magnitude of associations provided by SpatialAnno (Fig.295

4d). The RGB plot for SpatialAnno displayed clear regional segregation of the hippocampus296

(Supplementary Fig. 21a). Specifically, compared with the RGB plots for PCA and DR-SC,297

the plot for SpatialAnno clearly depicted the Hb region.298

Finally, we validated the cell-type distributions identified for an independent slide from the299

mouse hippocampus profiled using Slide-seq. As with the initial version of Slide-seqV2, the300

transcript detection sensitivity of Slide-seq is relatively low (Fig. 4e). By applying SpatialAnno301

to this validation dataset, we showed the consistency of the cell-type distributions between302

the two slides, as illustrated in Fig. 4f. SpatialAnno successfully identified the hippocampal303

subfields in this Slide-seq data (Supplementary Fig. 21b-d and Supplementary Fig. 22-24).304

The annotated regions for CA1, CA3, and DG with their marker gene expressions are shown in305

Fig. 4g.306

Embeddings estimated by SpatialAnno lead to biologically relevant307

trajectories in mouse embryo308

We further applied SpatialAnno and the other methods to the analysis of a dataset obtained309

from three mouse embryo sections collated at the 8-12 somite stage using seqFISH2, which has310

the capability of probing the expression of a targeted gene set at the single-cell resolution2.311

Each of the three mouse embryo sections contained expression level measurements for 351 genes,312

chosen to recover the cell-type identities at these developmental stages, from around 20,000313

cells, as well as their physical locations (Supplementary Table 4). After selecting 168 marker314

genes for 21 cell types (see Methods), 183 non-marker genes remained for annotation analysis.315

The original study provided manual annotations for the cells based on their nearest neighbors316

in the Gastrulation atlas28. For each method, we summarized the annotation accuracy using317

both Kappa, mF1 and ACC for each embryo section (Fig. 5a and Supplementary Fig. 25).318

SpatialAnno achieved the highest Kappa, mF1 and ACC in two out of the three sections319

and was only surpassed by CellAssign for the second embryo section. For Embryo 1, the320

annotations of different methods are shown in Fig. 5b. Clearly, cell-type distributions identified321

by SpatialAnno were well matched with the expression of their corresponding marker genes322

(Fig. 5c).323

For the embeddings uniquely estimated by SpatialAnno, we performed trajectory inference324
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on the brain cells to investigate the spatiotemporal development of the mouse brain and detected325

two linear trajectories (Fig. 5d). We observed the lowest pseudotime values in the mesen-326

cephalon, which diffused smoothly towards the tegmentum followed by the rhombencephalon in327

one branch, and towards the prosencephalon in another branch (Fig. 5d). More importantly, the328

diffusion patterns were spatially continuous and smooth. The detected trajectories delineated329

the spatial trajectories of mouse brain development, which are in agreement with the findings330

of recent studies2,29. In contrast, the trajectories identified using embeddings from either PCA331

or DR-SC lacked spatial continuity (Supplementary Fig. 26a & b). We further examined332

genes associated with the inferred pseudotime, and a heatmap of the expression levels of the333

top 20 significant genes suggested there were interesting expression patterns over pseudotime334

(Supplementary Fig. 26c). A mesencephalon and prosencephalon maker gene, Otx2 30,31, showed335

higher expression levels in the early stage of development, while at a later stage, its expression336

levels were substantially suppressed (Supplementary Fig. 26d). In contrast, the expression levels337

of a gene enriched in the rhombencephalon, Sfrp1 32, changed from low to high (Supplementary338

Fig. 26d). These results concur with the formation of the midbrain-hindbrain boundary33,34,339

and this is supported by the observation that these two genes could be used to identify the340

precise boundary between the mesencephalon and rhombencephalon (Supplementary Fig. 26e).341

Discussion342

SpatialAnno takes, as input, the normalized gene expression matrix, the physical location of343

each spot, and a list of marker genes for known cell/domain types. The output of SpatialAnno344

comprises the estimated posterior probability of each spot belonging to each cell/domain type345

and the low-dimensional embeddings of each spot for non-marker genes. To efficiently capitalize346

on both marker and non-marker genes, SpatialAnno uniquely models the expression levels of347

non-marker genes via a factor model governed by cell/domain-type separable low-dimensional348

embeddings and simultaneously promotes spatial smoothness via a Potts model. As a result,349

SpatialAnno provides improved spatial cell/domain-type assignments, and its estimated low-350

dimensional embeddings are cell-type-relevant and can facilitate downstream analyses such351

as trajectory inference. SpatialAnno is computationally efficient, easily scalable to spatially352

resolved transcriptomics with tens of thousands of spatial locations and thousands of genes353

(Supplementary Table 5). With simulation studies, we demonstrated that SpatialAnno presents354

improved spatial annotation accuracy with either correct, under- or over-specification of the355

number of cell/domain types, robustness to the marker gene misspecification, and efficient356

leveraging of non-marker genes compared with other annotation methods.357

We examined the SRT data generated using different platforms, such as 10x Visium, ST,358

Slide-seqV1/2, and seqFISH, with various spatial resolutions. Using both DLPFC 10x Visium359

datasets and mouse OB ST datasets with manual annotations, we demonstrated the improved360

annotation accuracy of SpatialAnno with the capability of recovering laminar structures, while361

the identified PAGA graph using embeddings in SpatialAnno recovers an almost linear trajectory362

from WM to layer 1. In DLPFC datasets, the domains identified were well matched with363

the elevated expression for marker genes, such as Pcp4 and Mobp that are marker genes364

for layer 5 and WM, respectively20,21, whereas Pcp4 encodes Purkinje cell protein 4 and365

Mobp encodes the myelin-associated oligodendrocyte basic protein. Using mouse hippocampus366
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Slide-seqV1/2 datasets, we demonstrated that SpatialAnno can successfully detect the primary367

hippocampal subfields for CA1, CA3, and DG, with almost a perfect correlation between368

cell-type proportions in both datasets and the elevated expression levels for Wfs1, Cpne4, and369

C1ql2 are well matched with CA1, CA3, and DG regions identified by SpatialAnno, respectively.370

Wfs1 showed differential expression in hippocampal field CA1 and has been reported to be371

highly expressed in the CA1 region35. Cpne4, a known marker gene for hippocampal subfield372

CA3, was highly expressed in a region identified as CA336. In addition, C1ql2, a marker gene373

for dentate principal cells, was expressed in a region identified as DG37. When applied to mouse374

embryo seqFISH datasets, SpatialAnno not only provided improved annotation accuracy, but375

uniquely estimated cell-type-aware embeddings leading to the identification of two trajectories in376

brain regions, originating in mesencephalon towards the rhombencephalon and prosencephalon,377

respectively. Moreover, cell-type distributions identified by SpatialAnno were well matched378

with the expression of their corresponding marker genes. For example, Popdc2, a cardiomyocyte379

marker, was expressed in the developing heart tube38. Foxa1, a gut endoderm marker, showed380

the highest expression levels in the developing gut tube along the anterior–posterior axis of381

the embryo39. In addition, Foxf1, a mesoderm marker that encodes a forkhead transcription382

factor expressed in the splanchnic mesenchyme surrounding the gut, was highly expressed at383

the identified splanchnic mesoderm40.384

SpatialAnno paves the way for future spatial annotation analyses in multiple scenarios.385

For example, a similar strategy can be applied to the problem of cell-type assignment in386

other spatial omics data, such as spatial resolved single-cell chromatin accessibility data41 and387

spatial proteomics42. To establish a complete spatial atlas of organism architecture, a critical388

bottleneck is to perform an automatic cell-type assignment with both considerations of molecular389

features with/without prior knowledge as well as their spatial organization, SpatialAnno can390

substantially reduce both the irreproducibility and human effort in the processes of manual391

cell/domain-type assignment42.392

The benefits of SpatialAnno come with some caveats that may require further exploration.393

First, SpatialAnno is applicable for spatial annotation in a single tissue slide. With multiple394

tissue slides available, methods that are capable of integrating multiple SRT datasets for395

cell/domain-type annotation are sincerely needed43. Second, SpatialAnno was designed to396

perform annotation analysis of data with a single modality. However, incorporating multi-modal397

data with data of other modalities can further improve annotation accuracy. Third, many of398

the early SRT technologies do not have a single-cell resolution, and SpatialAnno is only able to399

assign domains with prior knowledge of each spot for those datasets. Cell-type annotation for400

this type of dataset further requires simultaneous deconvolution with spatial cellular annotation.401

Methods402

SpatialAnno method overview403

Probabilistic models for marker and non-marker gene expression404

We herein present an overview of SpatialAnno, with its inference details provided in the405

Supplementary Notes. SpatialAnno requires both spatial transcriptomics data and a list of406
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gene names for known cell/domain-type markers. The marker-gene list can be obtained from407

either the available publications, databases, or DEGs in scRNA-seq data (see Methods). In the408

SpatialAnno model, we denote X as the spot-by-gene expression matrix on n spatial locations.409

These locations have known spatial coordinates and unknown labels yi, i = 1, . . . , n. We can410

separate genes into a group of m marker genes and a group of p non-marker genes, denoted as411

x1i = (xi1, . . . , xim)
⊤ and x2i = (xi,m+1, . . . , xi,m+p)

⊤, respectively. Suppose prior knowledge412

of marker genes for K cell/domain types is encoded as an indicator matrix ρ of dimension413

m×K, with ρjk = 1 if gene j is a maker for cell/domain type k and 0 otherwise. Following44–46,414

we assume that the expression measurements have already been normalized through variance415

stabilizing transformation and further centered for each gene to have zero mean (see Methods).416

SpatialAnno models the centered normalized expression vector, x1i, for marker genes in cell417

i, and latent label, yi, as418

x1i | yi = k ∼ N (µ1k,Σ1),

µ1jk = αj + ρjkβjk,
(1)

with the constraint that βjk ≥ 0. Here, αj is the base expression level for gene j in the marker419

group. The intuition is that if gene j is a marker for cell/domain type k, then we expect the420

expression of j to be higher in these cell/domain types14 with an increased magnitude βjk. Note421

that there is no restriction stating maker genes cannot be expressed in other cell/domain types.422

We assume the covariance Σ1 = diag(σ2
1, . . . , σ

2
m). This simplification significantly reduces the423

computational cost.424

For the high-dimensional non-marker genes, SpatialAnno models their centered normalized425

expression vector, x2i, and latent label, yi, as426

x2i | zi = Lzi + ei,

zi | yi = k ∼ N (mk, V ),
(2)

where factor zi ∈ Rq represents a q-dimensional embedding of x2i; L is a p× q factor loading427

matrix; mk ∈ Rq is the mean vector for the kth cell/domain type, and V is the covariance428

matrix that is shared across cell/domain types; and ei is the residual error and follows an429

independent normal distribution with mean zero and variance Λ, which is a diagonal matrix,430

or ei ∼ N (0,Λ).431

Potts model for cell/domain labels432

In the analysis of SRT datasets, the neighboring locations on the same tissue section often433

have similar cell/domain types. Thus, spots in neighboring locations contain immense amounts434

of information for annotating locations of interest. To promote neighborhood similarity in435

cell/domain types, we follow previous computation19,47 and assume that cell/domain type436

yi ∈ {1, . . . , K} follows a Potts model characterized by an interaction parameter ξ and a437

neighborhood graph S,438

p(y | S, ξ) = 1

C(ξ)
exp

{
−ξ

∑
i∼i′

[1− I(yi = yi′)]

}
, (3)

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.08.527590doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.08.527590
http://creativecommons.org/licenses/by-nc-nd/4.0/


where i ∼ i′ denotes all neighboring pairs in the neighborhood graph S; I(yi = yi′) is an indicator439

function that equals 1 if both the ith and i′th locations belong to the same cell/domain type440

and equals 0 otherwise; ξ is an unknown interaction parameter that determines the extent of441

cell/domain type similarity among neighboring locations; and C(ξ) is the normalizing constant,442

also known as the partition function that ensures the above probability mass function has a443

summation of one across all possible configurations of y.444

SpatialAnno modulates the over-expression of marker genes in Equation (1), the high-445

dimensional non-marker gene expressions in Equation (2), and the spatial smoothness across446

spots with a Potts model in Equation (3). The hierarchical probabilistic framework of Spa-447

tialAnno enables us to develop an efficient optimization algorithm through restricted expectation-448

maximization (EM)48 to estimate the probability of each location of a given cell/domain type.449

Briefly, our algorithm treats all parameters θ = ({αj}, {βjk}, {σ2
j}, ξ,m, V, L,Λ) as unknown450

and estimates these parameters based on the data at hand to ensure optimal annotation451

performance. Algorithm details are provided in the Supplementary Notes.452

SpatialAnno has several advantages that facilitate highly accurate assignments and various453

downstream analyses of spatial transcriptomics. First, by modelling the spatial correlation454

as labels, SpatialAnno borrows the cell-type information across spatial locations for spatially455

informed cell/domain type annotation. Second, SpatialAnno models the high-dimensional456

expression values of non-marker genes with the factor model, which can efficiently utilize the457

expression of non-marker genes to help verify and adjust label assignments. Third, modelling458

the high-dimensional expression values of non-marker genes allows SpatialAnno to infer cell-459

type-relevant embeddings, facilitating effective spatial transcriptomics visualization and spatial460

trajectory inference.461

Spatial annotation and cell/domain relevant embeddings462

To leverage the spatial location information, we construct a neighborhood graph S among

locations by identifying the nearest neighbors for each spot. Specifically, the neighborhood Ni

for a spot i is defined by applying a proximity threshold. Let yNi
denote the configurations of

the neighbors of spot i. The probability that spot i is associated with cell/domain type k given

xi1, xi2 and its neighbor configuration yNi
is specified by the following equation (Supplementary

Notes) :

γik = C−1p(xi1 | yi = k)p(xi2 | yi = k)p(yi = k | yNi
), (4)

where C is a normalization constant. In the right-hand side, p(xi1 | yi = k) and p(xi2 | yi = k)463

model the effect of the expression levels of marker and non-marker genes, respectively, whereas464

p(yi = k | yNi
) accounts for the effect of the neighbor configuration. The last term is determined465

by Eq. (3).466

A key feature of SpatialAnno is its ability to extract cell/domain relevant embeddings

for each spot. By modelling the expression levels of non-marker genes with factor models,

SpatialAnno can extract cell/domain-type aware embeddings that can facilitate downstream

analyses. Based on Eq. (2) and Bayes’ theorem, the conditional distribution of latent factors

zi given (xi1,xi2, yi = k) follows a multivariate normal distribution N (wik,M) with mean

wik and variance M (Supplementary Notes). The low-dimensional embeddings for spot i are
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estimated by the posterior expectation of its latent factors zi:

E(zi | xi1,xi2,yNi
) =

∑
k

γikwik, (5)

which are weighted averages that take into account the relative importance of each type. In467

this way, the embeddings are encouraged to be label-relevant.468

Compared methods and evaluation metrics469

On all the simulated datasets and real datasets, we compared SpatialAnno with four annotation470

methods: (1) SCINA12 implemented in the R package SCINA (version 1.2.0); (2) Garnett13471

implemented in the R package garnett (version 0.1.21); (3) CellAssign14 implemented in the R472

package cellassign (version 0.99.21); and (4) scSorter15 implemented in the R package scSorter473

(version 0.0.2). We used the recommended default parameter settings in their tutorials. Among474

these methods, SCINA and CellAssign only use the expression of marker genes, and scSorter475

and Garnett can borrow information from the expression of non-marker genes. We evaluated476

the annotation performance using three metrics, i.e., Kappa, mF1 score, and ACC, as suggested477

in previous annotation studies of single-cell data11,49. ACC was defined as the proportion of478

spots that were classified into the correct types. Kappa is generally thought to be a more479

robust measure than ACC, as it takes into account the possibility of the agreement occurring480

by chance. The cell-level F1 score considers each cell to be an individual classification task481

with a true cell-type assignment (and potentially multiple incorrect cell-type assignments) for482

the purposes of calculating precision and recall (Supplementary Notes).483

We also compared the low-dimensional embeddings estimated in SpatialAnno with those484

from PCA and DR-SC19. In detail, we first extracted the top 15-dimensional components485

and then summarized those top components as three tSNE components and visualizing the486

resulting tSNE components with RGB colors in the RGB plot. To show that the estimated487

embeddings carry the most information about cell/domain types, we evaluated the conditional488

correlation coefficients between the true cell/domain labels and the observed gene expression,489

given the estimated embeddings in SpatialAnno. Furthermore, the embeddings in SpatialAnno490

improve clustering performance. With embeddings from SpatialAnno, PCA, and DR-SC, we491

performed clustering analysis using the Louvain community detection algorithm implemented492

in the R package Seurat (version 4.1.1), and evaluated clustering performance using the ARI50.493

Simulations494

We performed comprehensive simulations to evaluate the performance of SpatialAnno and495

compared it with that of alternative annotation methods. The spatial locations of 3639 spots496

were taken from DLPFC section 151673. Cell/domain types were assigned with the manually497

annotations from the original studies20. We simulated gene expression data for each spot using498

the splatter package (version 1.20.0). The parameter for the proportion of DEGs (de.prob)499

in each layer was set to 0.5. The DE strength was determined by both the mean parameter500

de.facloc and scale parameter de.facScale, the former ranges from 0.1 to 0.8, and the latter501

was set to within [0.1,1], corresponding to the log fold change in expression from one-fold to502
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two-fold across different types. All the other parameters were set based on their estimates in503

the seven layers from DLPFC section 151673.504

Five marker genes for each cell/domain type were selected from the top DEGs based on505

log-fold change in expression. We tested the accuracy and robustness of SpatialAnno with the506

following settings that reflect real-world scenarios.507

I. To test the robustness of SpatialAnno to the erroneous specification of the number of508

cell/domain types, we considered three scenarios. In the first scenario, marker genes for509

all seven cell/domain types were provided and no unknown cell/domain types existed510

in the expression data. In the second scenario, marker genes for two cell/domain types511

were removed to create a scenario in which fewer cell/domain types were specified in512

the marker gene matrix than actually exist in the data. Thus, cells from these two513

cell/domain types should be assigned to ”unknown”. In the third scenario, the marker514

genes for nine cell/domain types were added, but two cell/domain types did not appear515

in the expression data. This mimics a scenario in which there are more cell/domain types516

are specified in the marker gene matrix than actually exist in the data.517

II. To evaluate the robustness of SpatialAnno to the marker gene misspecification, we next518

created a scenario in which marker genes may be incomplete or incorrect. We randomly519

flipped a fraction of entries in the binary marker gene matrix ρ to introduce errors.520

Specifically, the procedure consisted of two steps. In the first step, a proportion of entries521

in ρ that contained one were flipped. In the second step, the same number of entries522

flipped in the first step were flipped for the entries that contained zero in the original ρ.523

The considered proportions were set to be either 10%, 20%, or 30%. Other settings were524

similar to those in the first scenario in Simulation I.525

III. To assess the capability of SpatialAnno to utilize high-dimensional non-marker genes, we526

varied the number of non-marker genes as 60, 100, 500, 1000, and 2000. In this setting,527

we only compared scSorter and Garnett, as only these methods can utilize non-marker528

genes. Other settings were similar to those in the first scenario in Simulation I.529

For each simulation setting, we performed 50 replicate simulations. In each replicate, we applied530

SpatialAnno and the other methods to annotate each spot.531

Data analysis532

Normalization of SRT data533

For all datasets, we normalized the raw expression count matrix using the variance stabilizing534

transformation function, SCTranscorm, provided in Seurat (version 4.1.1). We performed gene535

filtering using SPARK (version 1.1.1)51 for data with transcriptome-wide measurements. The536

most spatially variable genes (see Data resource) were selected as input for the annotation537

methods SpatialAnno, scSorter, SCINA, and Garnett. CellAssign took the raw count matrix of538

these genes as input.539

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.08.527590doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.08.527590
http://creativecommons.org/licenses/by-nc-nd/4.0/


Selection of marker genes540

We obtained a marker gene list primarily following the protocols of CellAssign. We (1) performed541

differential expression analysis of a reference scRNA-seq/SRT data using the FindAllMarkers542

function in the R package Seurat (version 4.1.1) and selected the top 30 DEGs ordered by the543

log2(fold-change) with upregulation, (2) removed those with an insignificant adjusted p-value544

and those detection percentages across different cell/domain types were similar (differences545

between pct.1 and pct.2 values from the FindAllMarkers function are lower than 0.3), and (3)546

filtered out genes that were of low expression in the spatial transcriptomic data. We finally547

selected the top-ranked genes with the smallest p-values.548

Clustering analysis549

To examine the information captured by SpaitalAnno embeddings of non-marker genes, we550

performed clustering analysis using three different sets of embeddings as input in both the551

simulated and DLPFC data. The three embedding sets include the top 15 PCs in marker genes552

by PCA, 15-dimensional embeddings in non-marker genes by SpatialAnno, and combined. We553

then performed clustering analysis using the Louvain community detection algorithm.554

Spatial trajectory inference555

To construct a spatial map of the DLPFC Visium data, we employed the PAGA algorithm22
556

implemented in the Python package SCANPY (version 1.9.1) to preserve the global topology557

in the embeddings of non-marker genes. The cluster labels for PCA embeddings and DR-SC558

embeddings were estimated using the spatial clustering methods implemented in the R packages559

BayesSpace (version 1.5.1)52 and DR-SC (version 2.9.0)19, respectively.560

To estimate the developmental trajectories among the various locations in the brain regions,561

we applied Slingshot53 to the low-dimensional embeddings. As SpatialAnno only extracts562

embeddings of non-marker genes, we combined them with the embeddings of marker genes by563

PCA. The cluster labels used in Slingshot were obtained from the spatial clustering method DR-564

SC19. To detect DEGs along the estimated pseudotime, we used the function testPseudotime565

in the R package TSCAN (version 1.37.0)54.566

Data resources567

Human dorsolateral prefrontal cortex data obtained by 10x Visium568

We downloaded a human DLPFC data set20 that was generated by the 10x Visium platform569

from http://spatial.libd.org/spatialLIBD/. In this dataset, there were 12 tissue sections,570

which contained a total of 33,538 genes measured on average over 3973 spots. We used the571

sample ID151673, which contains expression measurements of 33,538 genes on 3639 spots,572

as the main analysis example. We presented the results for the other 11 samples in the573

Supplementary Figures. For all the sections, we extracted the top 2000 spatially variable genes574

with SPARK-X51 before performing annotations.575

To identify layer-specific marker genes for annotation, we used tissue section 151507 as the576

reference data. This dataset contained 33,538 genes for 4,226 spots. For each layer, the top 5577
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DEGs were selected as its marker genes. The final marker gene list is available in Supplementary578

Table 6.579

Mouse olfactory bulb data by spatial transcriptomics (ST)580

We obtained the mouse olfactory bulb ST data from the spatial transcriptomics research website581

(https://www.spatialresearch.org/). This data consists of gene expression levels in the582

form of read counts that were collected for a number of spatial locations. We followed the583

methods of previous studies55,56 to focus on the mouse OB section 12, which contains 16,034584

genes and 282 spatial locations. We presented the results for the other 11 sections in the585

Supplementary Figures. We extracted the top 3000 most highly variable genes with function586

SCTransform implemented in Seurat (version 4.0.5)57 before performing annotations.587

To construct the marker gene list for annotation, we perform differential expression analysis588

on scRNA-seq data23 from the Gene Expression Omnibus (GEO; accession number GSE121891).589

This scRNA-seq data was collected from the mouse olfactory bulb and contains 18,560 genes590

and 12,801 cells for five cell types: granule cells (GC, n=8614), olfactory sensory neurons591

(OSNs, n = 1200), periglomerular cells (PGC, n = 1693), mitral and tufted cells (M-TC, n =592

1133), and external plexiform layer interneurons (EPL-IN, n = 161). For each cell type, the593

top four DEGs were selected as its marker genes. The final marker gene list is available in594

Supplementary Table 7.595

Mouse hippocampus Slide-seq data and Slide-seqV2 data596

We obtained the mouse hippocampus Slide-seq dataset and Slide-seqV2 dataset3 from the597

Broad Institute’s Single Cell Portal (https://singlecell.broadinstitute.org/single_598

cell/study/SCP948/robust-decomposition-of-cell-type-mixtures-in-spatial-transcriptomics).599

The Slide-seq dataset consists of gene expression measurements in the form of read counts for600

22,457 genes and 34,199 spatial locations. The Slide-seqV2 dataset consists of gene expression601

measurements in the form of read counts for 23,264 genes and 53,208 spatial locations. In the602

analysis, we filtered out genes that had fewer than 20 counts on all locations and filtered out603

locations that had fewer than 20 genes with nonzero counts. These filtering criteria led to final604

sets of 14,481 genes and 31,664 cells for Slide-seq dataset, and 16,121 genes and 51,212 cells for605

Slide-seqV2 dataset. In addtion, for both datasets, we extracted the top 2000 most spatially606

variable genes with SPARK-X51 before performing annotations.607

To construct marker genes for annotation, we obtained the DropViZ scRNA-seq dataset58608

from the Broad Institute’s Single Cell Portal. This data was collected from the mouse609

hippocampus, which contained 22,245 genes and 52,846 cells for 19 cell types. For each cell610

type, the top five DEGs were selected as marker genes. Besides the 19 cell types, we added611

another two cell types, Slc17a6 neurons and Hb neurons, and their marker genes were extracted612

from the original study58. The final marker gene list used is available in Supplementary Table613

8.614
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Mouse embryo data by seqFISH615

We obtained the mouse embryo seqFISH data2 from https://marionilab.cruk.cam.ac.uk/616

SpatialMouseAtlas/. This dataset consists of 387 selected target genes from three mouse617

embryo tissue sections for 19,451 , 14,891, and 23,194 cells, respectively. We calculated618

normalized expression log counts for each cell using logNormCounts function in the R package619

scuttle 59 with cell-specific size factors.620

To construct the marker gene list, we used Embryo 3 as a reference; this dataset contains 24621

cell types. For each cell type, the top eight DEGs were selected as marker genes. We removed622

marker genes for two cell types, ExE endoderm cells and blood progenitors, as there were too623

few (less than 30) of these cells. The cell type “Low quality” was also removed. The final624

marker gene list used contained 21 cell types and is available in Supplementary Table 9.625

Data availability626

This study made use of publicly available datasets. These include the mouse OB dataset627

(https://www.spatialresearch.org/), DLPFC dataset on the 10x Visium platform are ac-628

cessible at (https://github.com/LieberInstitute/spatialLIBD), seqFISH dataset (https:629

//doi.org/10.18129/B9.bioc.MouseGastrulationData), and mouse hippocampus Slide-seq630

and Slide-seqV2 datasets (https://singlecell.broadinstitute.org/single_cell/study/631

SCP948/robust-decomposition-of-cell-type-mixtures-in-spatial-transcriptomics).632

Code availability633

The SpatialAnno software and source code have been deposited at https://github.com/634

Shufeyangyi2015310117/SpatialAnno. Example codes for using SpatialAnno are publicly635

available at https://shufeyangyi2015310117.github.io/SpatialAnno/index.html. All636

scripts used to reproduce all the analyses can be found at https://github.com/Shufeyangyi2015310117/637

SpatialAnno_Analysis and https://doi.org/10.5281/zenodo.7413083.638
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[56] Edsgärd, D., Johnsson, P. & Sandberg, R. Identification of spatial expression trends in766

single-cell gene expression data. Nature methods 15, 339–342 (2018).767

[57] Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587768

(2021).769

[58] Saunders, A. et al. Molecular diversity and specializations among the cells of the adult770

mouse brain. Cell 174, 1015–1030 (2018).771

[59] Lun, A. T., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level772

analysis of single-cell rna-seq data with bioconductor. F1000Research 5 (2016).773

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.08.527590doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.08.527590
http://creativecommons.org/licenses/by-nc-nd/4.0/


K
ap
pa

m
F1

A
cc

SpatialAnno scSorter SCINA Garnett CellAssign

0.00
0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

Confusion 0.1 0.2 0.3

e

Prior knowledge of 
marker genes

Spatial resolved 
transcriptomics

MARKERS: Cdhr1, Gng13, Gria2, Gria3 , Nppa
NONMARKERS

𝒙!" ∣ 𝑧" = 𝐿𝒛" + 𝒆"

𝒛" ∣ 𝑦" = 𝑘 ∼ 𝒩 𝒎# , 𝑉

𝒙$" ∣ 𝑦" = 𝑘 ∼ 𝒩 𝝁$# , Σ	

𝜇%# = 𝛼% + 𝜌%#𝛽%#

Locations

𝛽%# ≥ 0

a

b

	y		 ∼ 	Potts(𝜉; 	𝒮	)

Cell type 
annotation

RGB plot 
of embeddings

Expression of non-marker genes

𝒆" ∼ 𝒩 0, Λ

SpatialAnno

Gene pool after preprocessing
high

low

Ge
ne

s

Gria
2

Nppa
Cdhr1
Gng13
Gria

3

c d

!!
!!!"

K
ap
pa

m
F1

A
cc

SpatialAnno scSorter SCINA Garnett CellAssign

0.25

0.50

0.75

1.00

0.2
0.4
0.6
0.8
1.0

0.4
0.6
0.8
1.0

Number of cell types 5 7 9

Figure 1: Schematic overview of SpatialAnno and its performance in simulation studies. a
SpatialAnno employs spatial transcriptomics data along with a known marker-gene list in its
analysis. With these two datasets as input, SpatialAnno performs spatial annotation via a
probabilistic model that combines both marker and non-marker gene expression data, and
produces both domain/cell-type assignments and low-dimensional embeddings for all spatial
locations as output. b Overview of the SpatialAnno probabilistic model. Latent cell/domain
types (shown in the grey circle) and observed data (shown in the blue boxes) are shown
along with the distributional assumptions. c Kappa, mF1, and ACC of SpatialAnno, scSorter,
SCINA, Garnett, and CellAssign for simulation data from seven cortical layers; different
numbers of cell/domain types are provided as a list of marker genes. d Kappa, mF1 and
ACC of SpatialAnno, scSorter, SCINA, CellAssign and Garnett for simulation data from seven
cortical layers; different proportions of marker genes are erroneously specified.
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Figure 2: Spatial domain annotation in the DLPFC 10x Visium dataset. a Boxplots of
Kappa, mF1, and ACC showing the accuracy of different methods for domain annotation
across 12 tissue sections. b Spatial domain annotation in tissue sample ID151673 for ground
truth, SpatialAnno, scSorter, SCINA, Garnett and CellAssign. c Top, expression levels of
corresponding layer-specific marker genes. Bottom, annotations by SpatialAnno are shown
on each spot. d RGB plots for low-dimensional embedding inferred by SpatialAnno, PCA,
and DR-SC. As end-to-end annotation approaches, scSorter, SCINA, Garnett, and CellAssign
cannot be utilized to extract low-dimensional embeddings. e PAGA graphs generated by
SpatialAnno, PCA, and DR-SC embeddings for DLPFC Section ID151673.
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Figure 3: Spatial domain annotation in the mouse olfactory bulb dataset. a Spatial domain
annotations for ground truth, SpatialAnno, scSorter, SCINA, Garnett, and CellAssign. b
Bar plots of Kappa, mF1 and ACC showing the domain-type annotation accuracy of different
methods. c Top, expression levels of corresponding cell-type-specific marker genes. Bottom,
annotations by SpatialAnno are shown on each spot. d, RGB plots of low-dimensional
embeddings inferred by SpatialAnno, PCA, and DR-SC. As end-to-end annotation approaches,
scSorter, SCINA, Garnett, and CellAssign cannot be utilized to extract low-dimensional
embeddings.
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Figure 4: Spatial cell-type annotation of the mouse hippocampus dataset. a Annotation of
hippocampus structures from the Allen Reference Atlas of an adult mouse brain. b Spatial
annotation of the Slide-seqV2 hippocampus section by SpatialAnno, scSorter, SCINA, Garnett,
and CellAssign. c Top, expression levels of corresponding cell-type-specific marker genes.
Bottom, annotations by SpatialAnno of the Slide-seqV2 hippocampus section are shown on
each spot. The examined cell types were CA1 cells, CA3 cells and dentate cells. d Results
of Pearson’s chi-squared test of correlation between expression patterns of marker genes and
the three hippocampal subfields identified by different methods. e Total UMIs per bead for
Slide-seq (yellow, n = 34, 199 spots) versus Slide-seqV2 (blue, n = 53, 208 spots) in the mouse
hippocampus sections. f Scatter plot of cell-type proportions identified by SpatialAnno in
Slide-seq and Slide-seqV2 datasets. g Top, expression levels of corresponding cell type specific
marker genes. Bottom, annotation by SpatialAnno of the Slide-seq hippocampus section is
shown on each spot.
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Figure 5: Spatial cell-type annotation of the mouse embryo dataset. a Bar plots of Kappa,
mF1 and ACC showing the cell-type annotation accuracy of different methods. b Spatial
annotations for ground truth, SpatialAnno, scSorter, SCINA, Garnett, and CellAssign. c
Top, expression levels of corresponding cell-type-specific marker genes. Bottom, annotations
of ground truth and SpatialAnno are shown on each spot. d, Left: latent time trajectory
generated by slingshot on low dimensional embeddings of SpatialAnno. Right: clustering of the
forebrain/midbrain/hindbrain cells into four spatially distinct clusters representing different
regions of the developing brain.
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