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Abstract. The choice of which covariates to include in a Genome-Wide
Association Study (GWAS) is important since it affects the ability to
detect true association signal of variants, to correct for confounders and
avoid false positives, and the running time of the analysis. Commonly
used covariates include age, sex, genotyping batches, genotyping array
type, as well as an arbitrary number of Principal Components (PCs) used
to adjust for population structure. Despite the importance of this issue,
there is no consensus or clear guidelines for the right choice of covariates.
Therefore, studies typically employ heuristics for their choice with no
clear justification. Here, we explore the dependence of the GWAS analysis
results on the choice of covariates for a wide range of quantitative and
binary human phenotypes. We propose guidelines for covariates choice
based on the phenotype’s type (quantitative vs. disease), the heritability,
and the disease prevalence, with the goal of maximizing the statistical
power to detect true associations and fit accurate polygenic scores while
avoiding spurious associations and minimizing computation time. We
analyze 36 traits in the UK-Biobank dataset. We show that the genotype
batch and assessment center can be safely removed as covariates, thus

significantly reducing the GWAS computational burden for these traits.

Keywords: Genome-Wide Association Study (GWAS) - Covariates -
Principle Component Analysis - Linkage Disequilibrium - Polygenic Risk
Score - Population Genetics - UK Biobank.
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1 Introduction

A central goal in performing Genome-Wide Association Study (GWAS) is to
identify statistically significant associations between genetic variations and phe-
notype and thus point to the possible biological mechanisms underlying the
studied phenotype. However, GWAS is often prone to multiple uncontrolled
confounders and biases (e.g., selection bias and population structure) [29]. The
most common genetic variations tested in GWAS studies are Single Nucleotide
Polymorphisms (SNPs). The standard practice in GWAS is to test each SNP
independently for association with the trait, which may lead to a high rate of
false positives when confounders that are correlated with both the trait and the
variant are not included in the model as covariates (i.e. variants that are labeled
as statistically associated with the phenotypes but are actually false positives)
[2]. The routine GWAS protocol suggests including covariates whose purpose
is to control for the indirect effects unrelated to the phenotype of interest and
eliminate the influence of confounders. These covariates include technical com-
ponents (e.g. the genomic center and SNP-chip technology used for collecting
data) but also covariates of biological and medical importance, such as the sex
and age of the individual, that may directly affect the phenotype.

In recent years, increased GWAS sample sizes and improved statistical meth-
ods have lead to an interest in using GWAS results for genomic prediction using
Polygenic Scores (PGS). These scores, defined as weighted linear combination
of risk alleles, may include SNPs that do not reach genome-wide statistical sig-
nificance individually, but together can improve prediction accuracy, and were
demonstrated as effective for predicting individuals at risk for disease [15]. Thou-
sands of PGSs were already fitted and are available in resources such as [16], with
the number of variants included in the score ranging from a few dozens to hun-
dreds of thousands. In similar to the search for genome-wide significant SNPs,
the fitting of a PGS may also be susceptible to confounders, and the fitted score
will vary depending on the covariates included. A major issue of current interest
is the transferability of the scores between different scenarios. In particular, the
scores may not transfer easily between human populations [1J24]30], mainly due
to differences in allele frequencies, LD-structure, and effect size. Moreover, scores
may show reduced accuracy even within a single population where most above
differences are negligible [21], including in prediction of within-family variation
[27], with changes in covariates such as socioeconomic status, age and sex leading
to decreased accuracy, possibly due to Gene-by-Environment interactions. These

issues highlight the need to understand the possible confounders affecting the
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accuracy of the fitted PGSs, and the effect of covariate inclusion on the scores,
with the hope that such better understanding will aid in the inclusion of the
right covariates when adapting a PGS to a new population or cohort.

Covariates can bias the GWAS results [2], but can also adjust for confounders
and prevent spurious associations. For example, population structure has been
shown to greatly affect GWAS results [18[13], and including genetic principal
components (PCs) as covariates is often used to control for population structure
[28123]. Failure to match cases and controls for the right covariates may also lead
to substantial inflation of false positive rate [719]. In addition to the effect on the
false positive rate, adding covariates may also increase or reduce the statistical
power to detect true significant associations [22]. Finally, the addition of covari-
ates to the model comes at a computational price, since multiple regression is
performed with the covariates for each SNP repeatedly. Therefore, we may not
want to include additional covariates if they do not significantly improve the
statistical properties of the analysis.

However, it is often unclear which covariates should be included when per-
forming a GWAS, and what effects will this choice have on the GWAS results
[20]. The question of whether under a predetermined setting, a preferred set of co-
variates should be used is critical to improve the detection power of GWAS while
also boosting the accuracy of the findings. To this end, we took an exploratory
approach, and performed GWAS for a broad range of traits in the UK-Biobank
(UKBB) dataset [5]. For each trait, we performed multiple GWAS with different
sets of covariates. We list multiple measures of power and false-positive rates
such as the estimated genomic control inflation factor [10] to explore the effect
of covariates selection on GWAS. We determine the effect of different covariates
for different traits. Specifically, we study how does the heritability of pheno-
types influence the effects of different covariates. For binary disease traits (e.g.,
schizophrenia), we also test the dependence on the disease’s prevalence.

In this study, we propose a criterion for selecting a set of covariates by de-
signing quantitative measures that will enable high discovery power, as well as
avoid spurious discoveries. We suggest an optimal set of covariates for different
scenarios. Specifically, we will be interested in covariates sets that achieve mul-
tiple, possibly competing goals: to minimize the genomic inflation, to maximize
the prediction performance, while also minimizing run time.

In this study we propose recommendations for the choice of covariates as a
piece of practical advice when dealing with major human quantitative and binary
traits in the UK biobank data. By examining many different sets of covariates for
dozens of phenotypes in the UK-Biobank dataset, we find that for this dataset,
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the assessment center and genotyping batch can be excluded from the covariates
set without compromising GWAS performance. However, for binary traits, there
seems to be some effect of the genotype batch and the assessment center when

estimating PGS.

2 Methods

2.1 GWAS model

Consider a covariates matrix Z € R, x, with n individuals (rows) and g covariates
2, .., Zg divided into groups S, .., Sk (for example, S1 may contain the Principal
Components, Sy all categorical dummy variables representing assessment center
etc.). Consider also the genotypes matrix X € Ry, with SNPs X1, .., X, , and
the phenotypes matrix Y € R, «,, with phenotypes Y1, .., Y.

We assume a linear model relating a single quantitative phenotype Y to

known genetic and non-genetic covariates:

P q
Yi :BO—i—Zﬂjxij—}—Zajzij—f—q, Vi=1,.,n (1)

j=1 j=1
Where ¢; is an additive noise variable representing environmental effects and
other unaccounted-for factors, for individual 4. In this model, a SNP j is termed
as true (false) causal if 8; # 0 (8; = 0). A false causal SNP declared as significant
in a GWAS analysis is termed false positive. For disease phenotypes, a similar

model is defined using logistic or probit regression.

2.2 The Dataset Used

We used the UKBB dataset which includes genotypic and phenotypic data of
about 500,000 subjects [5]. We analyzed 36 phenotypes representing a variety of
phenotypes with known genetic contribution, for 19 continuous phenotypes and
17 binary disease phenotypes (See Figure and Tablefor a detailed list). Data
from 488,377 samples was used. Samples without the phenotype of interest were
filtered out.

For the UKBB dataset, we examined ¢ = 168 possible covariates divided
into K = 6 groups: Genotyping batch, assessment center, sex, age, First 5 PCs,
next 35 PCs. We chose to test nine subsets of covariates. Twenty-two assessment
centers were represented by 21 binary covariates (dummy variables). Similarly,

106 genotyping batches were represented by 105 binary covariates (see Table .


https://doi.org/10.1101/2023.02.07.527425
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.07.527425; this version posted February 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Selecting Covariates for Genome-Wide Association Studies 5

Other diseases

Cancer

General continuous traits

Blood

Fig. 1: The number of traits in UKBB that were analyzed in this study. In yellow
- seventeen binary traits (diseases) and in red - nineteen continuous traits such

as blood tests and other physiological measurements. A complete list is shown

in Table

Table 1: List of phenotypes used in the current study. Prevalence and mean/SE
were calculated from the UKBB data in this study. Heritability estimates were
taken from Neale lab heritability browser at |https://nealelab.github.io/UKBB_

ldsc/index.html.
Phenotype Type Prevalence (%) Heritability* ICD10 code
Asthma Binary 0.471 0.1090 J45
Bipolar disorder Binary 0.271 0.7560 F31
Breast cancer Binary 2.784 0.1100 C50
Chronic lymphocytic leukemia Binary 0.193 -0.1050 C91
Colorectal cancer Binary 0.676 0.1200 C18
Crohn and colitis Binary 1.222 0.2410 [K50, K51]
Epithelial ovarian cancer Binary 0.266 -0.0486 C56
Hypertension Binary 22461 0.0789 110
Lung cancer Binary 0.676 0.1170 C34
Melanoma Binary 0.611 0.0813 C43
Multiple sclerosis Binary 0.361 0.1170 G35
Parkinson’s disease Binary 0.391 -0.0582 G20
Rheumatoid arthritis Binary  1.338 0.0007 [MO05, M06]
Schizophrenia Binary 0.143 0.2590 F20
Stroke Binary 1.018 0.0326 163
Sudden cardiac arrest Binary 0.321 0.1460 146
Type 2 diabetes Binary 5.404 0.1990 E11
Mean (units) Standard Error (SE) UKBB Field ID
BMI Continuous 27.403 (K g/m?) 0.007497 0.2480 21001
Diastolic blood pressure Continuous 82.251 (mmHg) 0.017229 0.1430 4079
Eosinophil counts Continuous 0.173 (10° cells/Litre)  0.000217 0.1840 30150
Height Continuous 168.729 (cm) 0.014467 0.4850 50
High light scatter reticulocyte count Continuous 0.018 (10'? cells/Litre) 0.000016 0.2480 30300
High light scatter reticulocyte percentage of red cells Continuous 0.399 (%) 0.000520 0.2480 30290
Hip circumference Continuous 103.449 (cm) 0.014309 0.2232 49
Lymphocyte counts Continuous 1.951 (10° cells/Litre) ~ 0.001846 0.2100 30120
Mean corpuscular hemoglobin Continuous 31.547 (picograms) 0.002882 0.2530 30050
Menarche age at onset Continuous 12.566 (years) 0.005964 0.2090 2714
Monocyte count Continuous 0.478 (10° cells/Litre) ~ 0.000349 0.2300 30130
Neutrophil count Continuous 4.247 (10° cells/Litre)  0.002239 0.1640 30140
Platelet count Continuous 253.401 (10 cells/Litre) 0.094977 0.3080 30080
Red blood cell count Continuous 4.510 (10'? cells/Litre) 0.000646 0.2340 30010
Red cell distribution width Continuous 13.470 (%) 0.001510 0.2170 30070
Reticulocyte count, Continuous 0.060 (102 cells/Litre) 0.000062 0.2270 30250
Systolic blood pressure Continuous 140.204 (mmHg) 0.031777 0.1510 4080
‘Waist circumference Continuous 90.345 (cm) 0.021079 0.2060 48
White blood cell count Continuous 6.891 (10° cells/Litre)  0.003266 0.1910 30000
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Table 2: List of subsets of covariates and number of covariates in each.

Covariates Number of covariates
0 0

{Age} 1

{Sex} 1

{Sex, Age} 2

{First 5 PCs} 5

{Sex, Age, 40 PCs} 42

{Sex, Age, Assessment Center, 40 PCs} 63

{Sex, Age, Batch, 40 PCs} 147

{Sex, Age, Batch, Assessment Center, 40 PCs} 168

GWAS execution GWAS was performed using Plink2 [6][26] using ”--glm”
command. Covariates were standardized using the

”--covar-variance-standardize” flag.

2.3 Evaluation metrics

As ground truth for GWAS is not available, we considered multiple evaluation

metrics for assessing the quality and optimality of covariates’ selection.

Polygenic scores accuracy For each pair of a phenotype and a covariates
subset, we trained a PGS model using the GWAS’s summary statistics (addi-
tive effect size 3; and significance level (Pval;) of every SNP j) with this set of
covariates. PGS was computed using PRSice-2 software [12]. The score is esti-
mated by removing SNPs in linkage disequilibrium (LD) and by thresholding the
p-values, where an optimal p-value threshold is chosen to optimize the prediction
accuracy of the resulting PGS.

We used as an evaluation metric the percent of phenotypic variance explained
(R?) by the PGS [11], a metric indicative of the prediction quality of the PGS
model trained based on the GWAS results with a particular covariates set [3].
R? was computed by running PRSice-2 using all samples. The same subset of
covariates that was used to estimate the effect sizes was also used for estimating
R? of the PGS. In total, we trained 324 PGS models (36 phenotypes x 9 covari-
ates sets). The full R? represents the variance explained by both the PGS and

the covariates.
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Genomic control inflation factor To control for inflation of discoveries in
GWAS, [10] introduced the A inflation factor statistic and proposed a method
called ’genomic control’, which utilizes this statistic to correct for false posi-
tive signals. We used the A inflation factor as an evaluation metric that mea-
sures the discrepancy between the empirical p-value distribution and the null
Uniform(0,1) distribution. This statistic is defined as the scaled median of the
individual SNPs’ x? test statistics, with A = 1 indicating a complete agreement
and a higher value indicating a large number of significant associations that can
be due to confounders and/or a true polygenic signal. Genomic \ inflation factor
was computed using PLINK-2 [6].

Linkage Disequilibrium Score Regression’s Intercept We run LD Score
Regression (LDSC) [4] to discriminate between confounders and a true polygenic
score for each pair of phenotype and covariates-subset. The measure of interest
was the intercept of LDSC-regression (LDSCI). LDSCI provides an estimate
of the confounder effect |4] based on a simple yet powerful idea. Since SNPs
are correlated due to linkage-disequilibrium, the signal observed in GWAS for
a single SNP can be a proxy for the signal of other neighboring SNPs. The
LD-score of a SNP measures the cumulative correlations between this SNP and
neighboring SNPs. For a true polygenic signal that is spread across many SNPs,
we expect, on average more causal SNPs nearby a SNP with a higher LD-score,
hence a linear relationship between the x? association statistic of a SNP and
its LD-score. In contrast, we expect confounders such as population structure to
affect SNPs more uniformly and independently of their LD-score. Therefore, the
true polygenic signal is correlated with the LD-score of a SNP and is reflected
in the slope of the regression line between the LD-score and the x? association
statistic. In contrast, the intercept of this regression analysis reflects the inflation
due to confounders. This metric measures the level of spurious associations in
a GWAS, with LDSCI = 1 indicative of no confounding, and values above 1
indicate confounding (see [17] for additional details). In contrast to the genomic
control A, this metric is not inflated by a true polygenic signal that is correlated
with the LD-level of individual SNPs. For computing LDSC we removed strand-
ambiguous SNPs, and used the European population from the 1,000 Genomes

project as a reference panel [8] and for computing the LD scores.
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Asthma

Bipolar disorder

Breast cancer
Chronic lymphocytic leukemia
Colorectal cancer

Crohn and colitis

Epithelial ovarian cancer

200

Hypertension
Lung cancer
Melanoma
Multiple sclerosis

Parkinson disease

Rheumatoid arthritis
Schizophrenia
Stroke

Sudden cardiac arrest
Type 2 diabetes
BMI

Diastolic blood pressure

Eosinophil counts

Height

High light scatter reticulocyte count

High light scatter reticulocyte percentage of red cells
Hip circumference
Lymphocyte counts

Mean corpuscular hemoglobin
Menarche age at onset
Monocyte count
Neutrophil count
Platelet count

Red blood cell count

Red cell distribution width
Reticulocyte count
Systolic blood pressure
Waist circumference
White blood cell count

"

Sex, age & 40 PCs

Sex, age, 40 PCs & batch

Sex, age, 40 PCs & assessment center

Fig.2: The number of genome-wide significant SNPs for each phenotype-
covariates combination. The color of each cell represents the percentage of sig-
nificant SNPs compared to the base value on the leftmost column, which is the
number of significant SNPs without any covariates. The top rows are binary
traits and the bottom rows are continuous.
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3 Results

A diverse set of 36 phenotypes was selected for this study covering a variety of
traits (Figure : 17 disease traits of different prevalence (five cancer diagnoses
and twelve diagnoses of other diseases) and 19 continuous phenotypes (twelve
blood test results and seven other continuous physiological measurements). The
number of cases for the different binary traits ranges from 62,000 for hypertension
to only 127 for systemic sclerosis. More details about the phenotypes are shown
in Table[l] For each phenotype, we executed multiple GWAS with nine different

sets of confounders, as shown in Table

3.1 Genome-wide Significant SNPs

A possible measure of GWAS success is the number of genome-wide significant
SNPs. We first recorded this number for each combination of covariates and
phenotypes at o = 5 x 107% [9]. The number of genome-wide significant SNPs
for each trait-covariates combination is shown in Figure [2l The color of each
cell represents the percentage of significant SNPs compared with the base value
on the left-most column, which is the number of significant SNPs without any

covariates.

3.2 Genomic Inflation factor

We computed A inflation factor across all (phenotype, covariates-subset) pairs.
Usually, adding covariates to the association test decreases this inflation factor.
As a rule of thumb, A < 1.1 is considered acceptable [31]. Therefore, we hypoth-
esized that the subset of covariates that minimizes inflation is more adequate as
it controls for the correct confounders of the population. However, adding more
covariates may lead to overcorrection and missing true SNPs while lowering the

A value. The )\ inflation factors for each run are summarized in Table Bl

3.3 Polygenic Score Accuracy

We evaluated the predictive power of the different GWAS results as used in
Polygenic risk scores. For every phenotype and covariates-subset pair, we add
the same set of covariates when computing the PGS’s R2. We found that for
most binary phenotypes (12 out of 17), using all covariates maximizes the R?.
The second best covariates subset was 'without genotype batch’. The subset of

covariates 'without genotype batch and assessment center’ achieved R? within
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Table 3: A inflation factor for each set of covariates for each phenotype, using the
Plink2 software. Upper part contains binary phenotypes and lower part contain
continuous phenotypes. Minimal value in each row is in bold face. In each row,
the values within 105% from the minimal values are highlighted in magenta.

AC-Assessment center; Batch-Genotype measurement batch.

None Age Sex Sex & Age 5Pcs W/O Batch & AC W/O AC W/O Batch All
1.162 1.162 1.162 1.165 1.159

Asthma,
Bipolar Disorder

Breast Cancer

Chronic Lymphocytic Leukemia
Colorectal Cancer

Crohn And Colitis

Epithelial Ovarian Cancer
Hypertension 1.389 1.418 1.396 1.355 1.351 1.355
1.029 1.029 1.026

1.047 1.047
1.047 1.047

1.044 1.044

Lung Cancer
Melanoma
Multiple Sclerosis 1.032
Parkinson Disease 1.029 1.032
Rheumatoid Arthritis
Schizophrenia

Stroke

Sudden Cardiac Arrest
Type 2 Diabetes

1.011 1.011 1.011 1.008

1.22 122 1.217 1.217

Bmi 1.893 1.901 1.897 1.91

Diastolic Blood Pressure 146 1.464 1.46 1.457

Eosinophil Counts 1.403 1.403 1.407 1.407

Height [8882.034 2.67 2842 2172
High Light Scatter Reticulocyte Count 1.533 1.536 1.544 1.547 1.5
High Light Scatter Reticulocyte Percentage Of Red Cells 1.256 1.256 1.256 1.256 1.23 1.23 1.227 1.23
Hip Circumference 1.741 1.741 1.741 1.741 1.737 1.73
Lymphocyte Counts 124 1.243 1.24 1.24 1.227

Mean Corpuscular Hemoglobin 1.562 1.577 1.577 1.588 1.386

Menarche Age At Onset 1.425 1.421 1.425 1.421 1.414

Monocyte Count 1.31 1.317 1.317 1.32 1.307

Neutrophil Count 1.507 1.507 1.507 1.507 1.496

Platelet Count 1.668 1.656 1.675 1.672 1.592

Red Blood Cell Count 1.649 1.649 1.73 1.733 1.581

Red Cell Distribution Width 1.3 1.303 1.303 1.303 1.3 1.303
Reticulocyte Count 1.29 1.29 1.293 1.293 1.29 1.283

Systolic Blood Pressure 1.482 1.489 1.485 1.467 1.471
Waist, Circumference 1.718 1.733 1.733 1.714 1.702 1.714

White Blood Cell Count 1507 1.507 1.504 1.507 1.489 1.478 [ s
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between 98% and 100% of the maximal R? for all phenotypes except for Col-
orectal cancer for which it achieved 62% of the maximal R? of 0.58 which was
found only using all covariates (Table Ié-_l[)

For quantitative phenotypes, removing either the genotype batch or the as-
sessment center improved the R? compared to using all covariates, and one of the
subsets 'without genotype batch and assessment center’ and ’without genotype
batch’ yielded the maximal R? for all 19 phenotypes.

Table 4: Percent variance explained (R?) of PGS for each set of covariates for
each phenotype. The R? indicates the predictive power of each set of covariates.
The upper part contains binary phenotypes and lower part contain continuous
phenotypes. Highest value in each phenotype (row) is marked in bold. In each
row, the values within 99.5% from the maximal values are highlighted. AC-

Assessment center; Batch-Genotype measurement batch

None Age Sex Sex & Age 5Pcs W/O Batch & AC W/O AC W/O Batch All |
Asthma 0.176907 0.183716  0.176426 0.183139  0.181878 0.198238 0.195514 .19 B
Bipolar Disorder 0.750250  0.758495 0.758699  0.758565 0.758842  0.760468
Breast Cancer 060117 0.603884 0.64s812  [IGHIIGNN 0.639314375
Chronic Lymphocytic Leukemia 0680206 0.684271 0.689766286 0.686704 0.680713  0.689766286
Colorectal Cancer 0.036229757 0.0407673 0.00455048 0.0421024 0.00345742 0.036229757 0.0562653 0.0481774
Crohn And Colitis 0.731435
Epithelial Ovarian Cancer 0.667381  0.669405 0.685326  0.687685 0.667482  0.690308
Hypertension 0321378 0.448498 0333611 045842  0.408663  0.539991
Lung Cancer 0708452125 0.706394 0.699145 0706558 0.702632  0.711418
Melanoma 0614372 0.615796 0614348  0.615731 0.615237  0.618309
Multiple Sclerosis 0759828 0.759462 0760724 0761164 0.75906  0.763045
Parkinson Discase 0763048  0.77316 0763549  0.767823 0.759515  0.775876
Rheumatoid Arthritis 0703014 0.706695 0.706145 [IONGSSHN 0.703443
Schizophrenia 0768676 0.768461 0.768091  0.769128 0.768402  0.773321
Stroke 071972 0.729285 0723017 0731454  0.720696
Sudden Cardiac Arrest 0733326 0.737344 073822  0.741809 0.733651  0.743628
Type 2 Diabetes 0.64917575 0.649  0.635014  0.655753  0.626909
BMI 0.266313 0.263294  0.266814 0.264066  0.37541
Diastolic Blood Pressure 0267545  0.268002 0283461  0.284174 0.250099  0.29183
Eosinophil Counts 0281054 0.2804 0281799  0.281464 0.337361 5 0.343617
Height 0165523 0.171083 0.634123  0.648699 0.221728 0.764686
High Light Scatter Reticulocyte Count 0286080  0.283968 0.290115  0.288014  0.351981 0.35588
High Light Scatter Reticulocyte Percentage Of Red Cells 0277094 0.27524 0276706 0.274556  0.354123 0.344698
Hip Circumference 0351245 0.353305 0351682 0353441  0.369623 0.363526
Lymphocyte Counts 0228128  0.228727 0232479 0231641  0.257995 0.246929
Mean Corpuscular Hemoglobin 0182728 0.180437 0.188824  0.18723  0.361246 0.367301
Menarche Age At Onset 0138083 0.139413 0.147028  0.147387 0.144194 0.152624
Monocyte Count 032473 0.319854 0338878  0.333125  0.332496 0.350578
Neutrophil Count 0317717 0.316808 0317443  0.316219 0.34126 0337514
Platelet Count 0257853 0.269839 0.309315 032005  0.388477 5 0.438915
Red Blood Cell Count 0189942 0.189336 040777 0406255 0.203416 054028
Red Cell Distribution Width 0308922 0318027 0.308787  0.318387 0.322714 0.315935
Reticulocyte Count 0205111 0.205526 0301908  0.301956 0.29343 0.292088
Systolic Blood Pressure 0265741  0.344743 0280878 0353023 0.240541 0360118
Waist Circumference 0359712 0.365055 0498278  0.497498  0.290535 0.505542
White Blood Cell Count 0261694 0.260435 0261774  0.260086  0.304578 0301933

3.4 LDSCI

We next calculated the LD-Score regression’s intercept (LDSCI) using LDSC
v1.0.1 [4]. The LDSCI values for each run are summarized in Table [5} Overall,


https://doi.org/10.1101/2023.02.07.527425
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.07.527425; this version posted February 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

12 E. Dor et al.

the results are similar to the result of the genomic control metric. For binary
traits the effect of covariates on the LDSCI metric is minimal for most traits
except Asthma, Hypertension, and Lung cancer, where the exclusion of Prin-
cipal Components decreases the LDSCI. For continuous traits, the inclusion of

Principal Components seems more critical and may decrease substantially the
LDSCI metric.

Table 5: Intercept of LDSC for each set of covariates for each phenotype, us-
ing the LDSC software. Upper part contains binary phenotypes and lower part
contains continuous phenotypes. Minimal value in each row is in bold face. In
each row, the values within 105% from the minimal values are highlighted in

magenta. AC-Assessment center; Batch-Genotype measurement batch.

None Age Sex Sex & Age 5Pcs W/O Batch & AC W/O AC W/O Batch All
1.017 1.017 1.018 1.018 1.016

Asthma
Bipolar Disorder

Breast Cancer

Chronic Lymphocytic Leukemia
Colorectal Cancer

Crohn And Colitis

Epithelial Ovarian Cancer
Hypertension 1.087 1.088
0.999 1.002
1.013 1.013

Lung Cancer

Melanoma

Multiple Sclerosis
Parkinson Disease
Rheumatoid Arthritis
Schizophrenia

Stroke

Sudden Cardiac Arrest
Type 2 Diabetes

1.033 1.033 1.033 1.034

Bmi 1.144 1.15 1.149 1.154

Diastolic Blood Pressure 1.063 1.064 1.066 1.066

Eosinophil Counts 1.134 1.135 1.136 1.137

Height 1.392 1.428 1.664 1.757

High Light Scatter Reticulocyte Count 1.096 1.099 1.104 1.106

High Light Scatter Reticulocyte Percentage Of Red Cells 1.048 1.049 1.048 1.05

Hip Circumference 1.105 1.105 1.105 1.105

Lymphocyte Counts 1.06 1.06 1.058 1.059

Mean Corpuscular Hemoglobin 1.22 1.229 1.23 1.24

Menarche Age At Onset 1.037 1.037 1.037 1.037

Monocyte Count 68 1 085 1.081 1.087

Neutrophil Count 1.092 1.094 1.093 1.095

Platelet Count, 1.216 1.206 1.214 1.208

Red Blood Cell Count 1.252 1.253 1.267 1.27

Red Cell Distribution Width 1.036 1.035 1.035

Reticulocyte Count _% 1.025

Systolic Blood Pressure 1.089 1.096 1.089 1.096 1.093 1.085
Waist Circumference [EGERGEGY 1 .0s3 1.001 1.087 1.077 1.071

‘White Blood Cell Count 1.116 1.118 1.116 1.119 1.1



https://doi.org/10.1101/2023.02.07.527425
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.07.527425; this version posted February 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Selecting Covariates for Genome-Wide Association Studies 13

3.5 Comparison across covariate subsets

Figure[3|shows the distribution of the evaluation metrics for each covariate subset
across the phenotypes, thus enabling a high-level view of the effects of covariate
subsets on the evaluation metrics across phenotypes. For example, for continuous
phenotypes, LDSCI decreases when adding more covariates and saturates when
40 PCs are included. A similar observation can be seen when considering PGS’s
R2.

Binary Continuous
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Fig. 3: Evaluation metrics summary phenotypes. Top row: A inflation fac-
tor; Middle row: LDSCI, Bottom row: PGS’s R?. Left columns: binary traits,
Right columns: continuous traits. The box plots are per subset of covariates

across the different phenotypes.
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4 Conclusions

In this study, we conducted an empirical evaluation of the set of covariates
included in a GWAS study on various metrics representing the GWAS results.

Based on our exploratory analysis, we set to determine a practical recom-
mendation for the choice of covariates to include in the GWAS analysis. The
goal is to minimize the LDSCI, A-control, and running time while maximizing
the number of genome-wide significant discoveries and the PGS R?. Based on
these criteria, we recommend that PGS estimations include age, sex, and all 40
principal components as covariates for both binary and quantitative traits. It
balanced between getting a A inflation factor close to the minimum, and min-
imized LDSCI, while PGS R? is maximized (Figure |[3)). For binary traits, the
effect of the genotype batch and assessment center seems to be more critical
in terms of the PGS’s R?, and we recommend including all covariates of the
analysis if this is the goal of the study. That makes sense if genotyping batch
and assessment center have no correlation with the genotype, but are correlated
with the trait.

While our recommendations are applicable to the UKBB dataset, our em-
pirical approach can be utilized to suggest the set of covariates for other GWAS
studies in other cohorts as well, with differences in population structure, sample
size, case-control balances, etc. Specifically, our approach suggests balancing the
running time and the statistical properties of the results. The running time is
quadratic in the number of covariates and could increase substantially, especially
when including multiple PCs and dummy variables with many categories such
as batches and assessment centers - hence it is desirable to limit the number of
covariates if there is no evidence for significant changes in the GWAS results.

A recent study [25] explored the choice of covariates for GWAS in the UKBB
dataset. However, this study focused only on Principal Components and their
effect on population structure, concluding that 16-18 PCs should be taken for the
UKBB population. The authors did not consider the effect of phenotype on the
choice of covariates. Our analysis extends these findings, showing that multiple
PCs are indeed required, but also exploring the effect on the phenotype on the
choice of covariates, the differences between binary traits and quantitative traits,
and the inclusion of additional covariates such as batch and assessment center.
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