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Abstract. The choice of which covariates to include in a Genome-Wide

Association Study (GWAS) is important since it a↵ects the ability to

detect true association signal of variants, to correct for confounders and

avoid false positives, and the running time of the analysis. Commonly

used covariates include age, sex, genotyping batches, genotyping array

type, as well as an arbitrary number of Principal Components (PCs) used

to adjust for population structure. Despite the importance of this issue,

there is no consensus or clear guidelines for the right choice of covariates.

Therefore, studies typically employ heuristics for their choice with no

clear justification. Here, we explore the dependence of the GWAS analysis

results on the choice of covariates for a wide range of quantitative and

binary human phenotypes. We propose guidelines for covariates choice

based on the phenotype’s type (quantitative vs. disease), the heritability,

and the disease prevalence, with the goal of maximizing the statistical

power to detect true associations and fit accurate polygenic scores while

avoiding spurious associations and minimizing computation time. We

analyze 36 traits in the UK-Biobank dataset. We show that the genotype

batch and assessment center can be safely removed as covariates, thus

significantly reducing the GWAS computational burden for these traits.

Keywords: Genome-Wide Association Study (GWAS) · Covariates ·
Principle Component Analysis · Linkage Disequilibrium · Polygenic Risk

Score · Population Genetics · UK Biobank.
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1 Introduction

A central goal in performing Genome-Wide Association Study (GWAS) is to

identify statistically significant associations between genetic variations and phe-

notype and thus point to the possible biological mechanisms underlying the

studied phenotype. However, GWAS is often prone to multiple uncontrolled

confounders and biases (e.g., selection bias and population structure) [29]. The

most common genetic variations tested in GWAS studies are Single Nucleotide

Polymorphisms (SNPs). The standard practice in GWAS is to test each SNP

independently for association with the trait, which may lead to a high rate of

false positives when confounders that are correlated with both the trait and the

variant are not included in the model as covariates (i.e. variants that are labeled

as statistically associated with the phenotypes but are actually false positives)

[2]. The routine GWAS protocol suggests including covariates whose purpose

is to control for the indirect e↵ects unrelated to the phenotype of interest and

eliminate the influence of confounders. These covariates include technical com-

ponents (e.g. the genomic center and SNP-chip technology used for collecting

data) but also covariates of biological and medical importance, such as the sex

and age of the individual, that may directly a↵ect the phenotype.

In recent years, increased GWAS sample sizes and improved statistical meth-

ods have lead to an interest in using GWAS results for genomic prediction using

Polygenic Scores (PGS). These scores, defined as weighted linear combination

of risk alleles, may include SNPs that do not reach genome-wide statistical sig-

nificance individually, but together can improve prediction accuracy, and were

demonstrated as e↵ective for predicting individuals at risk for disease [15]. Thou-

sands of PGSs were already fitted and are available in resources such as [16], with

the number of variants included in the score ranging from a few dozens to hun-

dreds of thousands. In similar to the search for genome-wide significant SNPs,

the fitting of a PGS may also be susceptible to confounders, and the fitted score

will vary depending on the covariates included. A major issue of current interest

is the transferability of the scores between di↵erent scenarios. In particular, the

scores may not transfer easily between human populations [1,24,30], mainly due

to di↵erences in allele frequencies, LD-structure, and e↵ect size. Moreover, scores

may show reduced accuracy even within a single population where most above

di↵erences are negligible [21], including in prediction of within-family variation

[27], with changes in covariates such as socioeconomic status, age and sex leading

to decreased accuracy, possibly due to Gene-by-Environment interactions. These

issues highlight the need to understand the possible confounders a↵ecting the

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2023. ; https://doi.org/10.1101/2023.02.07.527425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.07.527425
http://creativecommons.org/licenses/by-nc/4.0/


Selecting Covariates for Genome-Wide Association Studies 3

accuracy of the fitted PGSs, and the e↵ect of covariate inclusion on the scores,

with the hope that such better understanding will aid in the inclusion of the

right covariates when adapting a PGS to a new population or cohort.

Covariates can bias the GWAS results [2], but can also adjust for confounders

and prevent spurious associations. For example, population structure has been

shown to greatly a↵ect GWAS results [18,13], and including genetic principal

components (PCs) as covariates is often used to control for population structure

[28,23]. Failure to match cases and controls for the right covariates may also lead

to substantial inflation of false positive rate [7,19]. In addition to the e↵ect on the

false positive rate, adding covariates may also increase or reduce the statistical

power to detect true significant associations [22]. Finally, the addition of covari-

ates to the model comes at a computational price, since multiple regression is

performed with the covariates for each SNP repeatedly. Therefore, we may not

want to include additional covariates if they do not significantly improve the

statistical properties of the analysis.

However, it is often unclear which covariates should be included when per-

forming a GWAS, and what e↵ects will this choice have on the GWAS results

[20]. The question of whether under a predetermined setting, a preferred set of co-

variates should be used is critical to improve the detection power of GWAS while

also boosting the accuracy of the findings. To this end, we took an exploratory

approach, and performed GWAS for a broad range of traits in the UK-Biobank

(UKBB) dataset [5]. For each trait, we performed multiple GWAS with di↵erent

sets of covariates. We list multiple measures of power and false-positive rates

such as the estimated genomic control inflation factor [10] to explore the e↵ect

of covariates selection on GWAS. We determine the e↵ect of di↵erent covariates

for di↵erent traits. Specifically, we study how does the heritability of pheno-

types influence the e↵ects of di↵erent covariates. For binary disease traits (e.g.,

schizophrenia), we also test the dependence on the disease’s prevalence.

In this study, we propose a criterion for selecting a set of covariates by de-

signing quantitative measures that will enable high discovery power, as well as

avoid spurious discoveries. We suggest an optimal set of covariates for di↵erent

scenarios. Specifically, we will be interested in covariates sets that achieve mul-

tiple, possibly competing goals: to minimize the genomic inflation, to maximize

the prediction performance, while also minimizing run time.

In this study we propose recommendations for the choice of covariates as a

piece of practical advice when dealing with major human quantitative and binary

traits in the UK biobank data. By examining many di↵erent sets of covariates for

dozens of phenotypes in the UK-Biobank dataset, we find that for this dataset,
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the assessment center and genotyping batch can be excluded from the covariates

set without compromising GWAS performance. However, for binary traits, there

seems to be some e↵ect of the genotype batch and the assessment center when

estimating PGS.

2 Methods

2.1 GWAS model

Consider a covariates matrix Z 2 Rn⇥q with n individuals (rows) and q covariates

Z1, .., Zq divided into groups S1, .., SK (for example, S1 may contain the Principal

Components, S2 all categorical dummy variables representing assessment center

etc.). Consider also the genotypes matrix X 2 Rn⇥p with SNPs X1, .., Xp , and

the phenotypes matrix Y 2 Rn⇥m with phenotypes Y1, .., Ym.

We assume a linear model relating a single quantitative phenotype Y to

known genetic and non-genetic covariates:

yi = �0 +
pX

j=1

�jxij +
qX

j=1

↵jzij + ✏i , 8i = 1, .., n (1)

Where ✏i is an additive noise variable representing environmental e↵ects and

other unaccounted-for factors, for individual i. In this model, a SNP j is termed

as true (false) causal if �j 6= 0 (�j = 0). A false causal SNP declared as significant

in a GWAS analysis is termed false positive. For disease phenotypes, a similar

model is defined using logistic or probit regression.

2.2 The Dataset Used

We used the UKBB dataset which includes genotypic and phenotypic data of

about 500,000 subjects [5]. We analyzed 36 phenotypes representing a variety of

phenotypes with known genetic contribution, for 19 continuous phenotypes and

17 binary disease phenotypes (See Figure 1 and Table 1 for a detailed list). Data

from 488,377 samples was used. Samples without the phenotype of interest were

filtered out.

For the UKBB dataset, we examined q = 168 possible covariates divided

into K = 6 groups: Genotyping batch, assessment center, sex, age, First 5 PCs,

next 35 PCs. We chose to test nine subsets of covariates. Twenty-two assessment

centers were represented by 21 binary covariates (dummy variables). Similarly,

106 genotyping batches were represented by 105 binary covariates (see Table 2).
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Other diseases

12

Cancer

5

General continuous traits

7

Blood

12

Fig. 1: The number of traits in UKBB that were analyzed in this study. In yellow

- seventeen binary traits (diseases) and in red - nineteen continuous traits such

as blood tests and other physiological measurements. A complete list is shown

in Table 1.

Table 1: List of phenotypes used in the current study. Prevalence and mean/SE

were calculated from the UKBB data in this study. Heritability estimates were

taken from Neale lab heritability browser at https://nealelab.github.io/UKBB

ldsc/index.html.
Phenotype Type Prevalence (%) Heritability* ICD10 code

Asthma Binary 0.471 0.1090 J45

Bipolar disorder Binary 0.271 0.7560 F31

Breast cancer Binary 2.784 0.1100 C50

Chronic lymphocytic leukemia Binary 0.193 -0.1050 C91

Colorectal cancer Binary 0.676 0.1200 C18

Crohn and colitis Binary 1.222 0.2410 [K50, K51]

Epithelial ovarian cancer Binary 0.266 -0.0486 C56

Hypertension Binary 22.461 0.0789 I10

Lung cancer Binary 0.676 0.1170 C34

Melanoma Binary 0.611 0.0813 C43

Multiple sclerosis Binary 0.361 0.1170 G35

Parkinson’s disease Binary 0.391 -0.0582 G20

Rheumatoid arthritis Binary 1.338 0.0007 [M05, M06]

Schizophrenia Binary 0.143 0.2590 F20

Stroke Binary 1.018 0.0326 I63

Sudden cardiac arrest Binary 0.321 0.1460 I46

Type 2 diabetes Binary 5.404 0.1990 E11

Mean (units) Standard Error (SE) UKBB Field ID

BMI Continuous 27.403 (Kg/m2) 0.007497 0.2480 21001

Diastolic blood pressure Continuous 82.251 (mmHg) 0.017229 0.1430 4079

Eosinophil counts Continuous 0.173 (109 cells/Litre) 0.000217 0.1840 30150

Height Continuous 168.729 (cm) 0.014467 0.4850 50

High light scatter reticulocyte count Continuous 0.018 (1012 cells/Litre) 0.000016 0.2480 30300

High light scatter reticulocyte percentage of red cells Continuous 0.399 (%) 0.000520 0.2480 30290

Hip circumference Continuous 103.449 (cm) 0.014309 0.2232 49

Lymphocyte counts Continuous 1.951 (109 cells/Litre) 0.001846 0.2100 30120

Mean corpuscular hemoglobin Continuous 31.547 (picograms) 0.002882 0.2530 30050

Menarche age at onset Continuous 12.566 (years) 0.005964 0.2090 2714

Monocyte count Continuous 0.478 (109 cells/Litre) 0.000349 0.2300 30130

Neutrophil count Continuous 4.247 (109 cells/Litre) 0.002239 0.1640 30140

Platelet count Continuous 253.401 (109 cells/Litre) 0.094977 0.3080 30080

Red blood cell count Continuous 4.510 (1012 cells/Litre) 0.000646 0.2340 30010

Red cell distribution width Continuous 13.470 (%) 0.001510 0.2170 30070

Reticulocyte count Continuous 0.060 (1012 cells/Litre) 0.000062 0.2270 30250

Systolic blood pressure Continuous 140.204 (mmHg) 0.031777 0.1510 4080

Waist circumference Continuous 90.345 (cm) 0.021079 0.2060 48

White blood cell count Continuous 6.891 (109 cells/Litre) 0.003266 0.1910 30000
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Table 2: List of subsets of covariates and number of covariates in each.

Covariates Number of covariates

; 0

{Age} 1

{Sex} 1

{Sex, Age} 2

{First 5 PCs} 5

{Sex, Age, 40 PCs} 42

{Sex, Age, Assessment Center, 40 PCs} 63

{Sex, Age, Batch, 40 PCs} 147

{Sex, Age, Batch, Assessment Center, 40 PCs} 168

GWAS execution GWAS was performed using Plink2 [6][26] using ”--glm”

command. Covariates were standardized using the

”--covar-variance-standardize” flag.

2.3 Evaluation metrics

As ground truth for GWAS is not available, we considered multiple evaluation

metrics for assessing the quality and optimality of covariates’ selection.

Polygenic scores accuracy For each pair of a phenotype and a covariates

subset, we trained a PGS model using the GWAS’s summary statistics (addi-

tive e↵ect size �j and significance level (Pvalj) of every SNP j) with this set of

covariates. PGS was computed using PRSice-2 software [12]. The score is esti-

mated by removing SNPs in linkage disequilibrium (LD) and by thresholding the

p-values, where an optimal p-value threshold is chosen to optimize the prediction

accuracy of the resulting PGS.

We used as an evaluation metric the percent of phenotypic variance explained

(R2) by the PGS [11], a metric indicative of the prediction quality of the PGS

model trained based on the GWAS results with a particular covariates set [3].

R2 was computed by running PRSice-2 using all samples. The same subset of

covariates that was used to estimate the e↵ect sizes was also used for estimating

R2 of the PGS. In total, we trained 324 PGS models (36 phenotypes ⇥ 9 covari-

ates sets). The full R2 represents the variance explained by both the PGS and

the covariates.
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Genomic control inflation factor To control for inflation of discoveries in

GWAS, [10] introduced the � inflation factor statistic and proposed a method

called ’genomic control’, which utilizes this statistic to correct for false posi-

tive signals. We used the � inflation factor as an evaluation metric that mea-

sures the discrepancy between the empirical p-value distribution and the null

Uniform(0, 1) distribution. This statistic is defined as the scaled median of the

individual SNPs’ �2 test statistics, with � = 1 indicating a complete agreement

and a higher value indicating a large number of significant associations that can

be due to confounders and/or a true polygenic signal. Genomic � inflation factor

was computed using PLINK-2 [6].

Linkage Disequilibrium Score Regression’s Intercept We run LD Score

Regression (LDSC) [4] to discriminate between confounders and a true polygenic

score for each pair of phenotype and covariates-subset. The measure of interest

was the intercept of LDSC-regression (LDSCI). LDSCI provides an estimate

of the confounder e↵ect [4] based on a simple yet powerful idea. Since SNPs

are correlated due to linkage-disequilibrium, the signal observed in GWAS for

a single SNP can be a proxy for the signal of other neighboring SNPs. The

LD-score of a SNP measures the cumulative correlations between this SNP and

neighboring SNPs. For a true polygenic signal that is spread across many SNPs,

we expect, on average more causal SNPs nearby a SNP with a higher LD-score,

hence a linear relationship between the �2 association statistic of a SNP and

its LD-score. In contrast, we expect confounders such as population structure to

a↵ect SNPs more uniformly and independently of their LD-score. Therefore, the

true polygenic signal is correlated with the LD-score of a SNP and is reflected

in the slope of the regression line between the LD-score and the �2 association

statistic. In contrast, the intercept of this regression analysis reflects the inflation

due to confounders. This metric measures the level of spurious associations in

a GWAS, with LDSCI = 1 indicative of no confounding, and values above 1

indicate confounding (see [17] for additional details). In contrast to the genomic

control �, this metric is not inflated by a true polygenic signal that is correlated

with the LD-level of individual SNPs. For computing LDSC we removed strand-

ambiguous SNPs, and used the European population from the 1,000 Genomes

project as a reference panel [8] and for computing the LD scores.
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Fig. 2: The number of genome-wide significant SNPs for each phenotype-

covariates combination. The color of each cell represents the percentage of sig-

nificant SNPs compared to the base value on the leftmost column, which is the

number of significant SNPs without any covariates. The top rows are binary

traits and the bottom rows are continuous.
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3 Results

A diverse set of 36 phenotypes was selected for this study covering a variety of

traits (Figure 1): 17 disease traits of di↵erent prevalence (five cancer diagnoses

and twelve diagnoses of other diseases) and 19 continuous phenotypes (twelve

blood test results and seven other continuous physiological measurements). The

number of cases for the di↵erent binary traits ranges from 62,000 for hypertension

to only 127 for systemic sclerosis. More details about the phenotypes are shown

in Table 1. For each phenotype, we executed multiple GWAS with nine di↵erent

sets of confounders, as shown in Table 2.

3.1 Genome-wide Significant SNPs

A possible measure of GWAS success is the number of genome-wide significant

SNPs. We first recorded this number for each combination of covariates and

phenotypes at ↵ = 5 ⇥ 10�8 [9]. The number of genome-wide significant SNPs

for each trait-covariates combination is shown in Figure 2. The color of each

cell represents the percentage of significant SNPs compared with the base value

on the left-most column, which is the number of significant SNPs without any

covariates.

3.2 Genomic Inflation factor

We computed � inflation factor across all (phenotype, covariates-subset) pairs.

Usually, adding covariates to the association test decreases this inflation factor.

As a rule of thumb, � < 1.1 is considered acceptable [31]. Therefore, we hypoth-

esized that the subset of covariates that minimizes inflation is more adequate as

it controls for the correct confounders of the population. However, adding more

covariates may lead to overcorrection and missing true SNPs while lowering the

� value. The � inflation factors for each run are summarized in Table 3.

3.3 Polygenic Score Accuracy

We evaluated the predictive power of the di↵erent GWAS results as used in

Polygenic risk scores. For every phenotype and covariates-subset pair, we add

the same set of covariates when computing the PGS’s R2. We found that for

most binary phenotypes (12 out of 17), using all covariates maximizes the R2.

The second best covariates subset was ’without genotype batch’. The subset of

covariates ’without genotype batch and assessment center’ achieved R2 within

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2023. ; https://doi.org/10.1101/2023.02.07.527425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.07.527425
http://creativecommons.org/licenses/by-nc/4.0/


10 E. Dor et al.

Table 3: � inflation factor for each set of covariates for each phenotype, using the

Plink2 software. Upper part contains binary phenotypes and lower part contain

continuous phenotypes. Minimal value in each row is in bold face. In each row,

the values within 105% from the minimal values are highlighted in magenta.

AC-Assessment center; Batch-Genotype measurement batch.
None Age Sex Sex & Age 5Pcs W/O Batch & AC W/O AC W/O Batch All

Asthma 1.162 1.162 1.162 1.165 1.159 1.143 1.14 1.143 1.14

Bipolar Disorder 1.02 1.02 1.02 1.02 1.02 1.02 1.023 1.02 1.02

Breast Cancer 1.083 1.08 1.083 1.08 1.08 1.08 1.083 1.08 1.08

Chronic Lymphocytic Leukemia 1.023 1.023 1.023 1.023 1.026 1.023 1.023 1.023 1.023

Colorectal Cancer 1.047 1.047 1.047 1.047 1.044 1.041 1.044 1.041 1.044

Crohn And Colitis 1.047 1.047 1.047 1.047 1.044 1.044 1.038 1.044 1.038

Epithelial Ovarian Cancer 1.005 1.002 1.005 1.002 1.002 1.002 1.005 1.002 1.005

Hypertension 1.398 1.418 1.389 1.418 1.396 1.355 1.351 1.355 1.337

Lung Cancer 1.029 1.029 1.029 1.029 1.02 1.02 1.026 1.02 1.023

Melanoma 1.032 1.032 1.029 1.032 1.032 1.032 1.032 1.032 1.032

Multiple Sclerosis 1.026 1.029 1.029 1.029 1.026 1.026 1.032 1.026 1.032

Parkinson Disease 1.029 1.029 1.032 1.023 1.026 1.032 1.029 1.032 1.029

Rheumatoid Arthritis 1.056 1.056 1.056 1.056 1.053 1.053 1.053 1.053 1.053

Schizophrenia 1.008 1.008 1.011 1.011 1.002 1.008 1.011 1.008 1.011

Stroke 1.014 1.011 1.011 1.014 1.011 1.011 1.011 1.011 1.011

Sudden Cardiac Arrest 1.005 1.005 1.005 1.005 1.005 1.008 1.008 1.008 1.005

Type 2 Diabetes 1.22 1.22 1.217 1.217 1.217 1.21 1.207 1.21 1.207

Bmi 1.893 1.901 1.897 1.91 1.832 1.816 1.797 1.816 1.785

Diastolic Blood Pressure 1.46 1.464 1.46 1.457 1.457 1.446 1.446 1.446 1.432

Eosinophil Counts 1.403 1.403 1.407 1.407 1.375 1.372 1.369 1.372 1.372

Height 1.988 2.034 2.67 2.842 2.26 2.172 2.159 2.172 2.142

High Light Scatter Reticulocyte Count 1.533 1.536 1.544 1.547 1.507 1.5 1.496 1.5 1.482

High Light Scatter Reticulocyte Percentage Of Red Cells 1.256 1.256 1.256 1.256 1.23 1.23 1.227 1.23 1.22

Hip Circumference 1.741 1.741 1.741 1.741 1.737 1.73 1.722 1.73 1.71

Lymphocyte Counts 1.24 1.243 1.24 1.24 1.227 1.22 1.214 1.22 1.214

Mean Corpuscular Hemoglobin 1.562 1.577 1.577 1.588 1.386 1.369 1.369 1.369 1.372

Menarche Age At Onset 1.425 1.421 1.425 1.421 1.414 1.403 1.403 1.403 1.403

Monocyte Count 1.31 1.317 1.317 1.32 1.307 1.307 1.3 1.307 1.3

Neutrophil Count 1.507 1.507 1.507 1.507 1.496 1.482 1.475 1.482 1.471

Platelet Count 1.668 1.656 1.675 1.672 1.592 1.581 1.573 1.581 1.573

Red Blood Cell Count 1.649 1.649 1.73 1.733 1.581 1.573 1.566 1.573 1.57

Red Cell Distribution Width 1.3 1.303 1.303 1.303 1.3 1.303 1.297 1.303 1.293

Reticulocyte Count 1.29 1.29 1.293 1.293 1.29 1.283 1.28 1.283 1.276

Systolic Blood Pressure 1.449 1.482 1.449 1.489 1.485 1.471 1.467 1.471 1.457

Waist Circumference 1.607 1.615 1.718 1.733 1.733 1.714 1.702 1.714 1.691

White Blood Cell Count 1.507 1.507 1.504 1.507 1.489 1.478 1.471 1.478 1.464
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between 98% and 100% of the maximal R2 for all phenotypes except for Col-

orectal cancer for which it achieved 62% of the maximal R2 of 0.58 which was

found only using all covariates (Table 4).

For quantitative phenotypes, removing either the genotype batch or the as-

sessment center improved the R2 compared to using all covariates, and one of the

subsets ’without genotype batch and assessment center’ and ’without genotype

batch’ yielded the maximal R2 for all 19 phenotypes.

Table 4: Percent variance explained (R2) of PGS for each set of covariates for

each phenotype. The R2 indicates the predictive power of each set of covariates.

The upper part contains binary phenotypes and lower part contain continuous

phenotypes. Highest value in each phenotype (row) is marked in bold. In each

row, the values within 99.5% from the maximal values are highlighted. AC-

Assessment center; Batch-Genotype measurement batch
None Age Sex Sex & Age 5Pcs W/O Batch & AC W/O AC W/O Batch All

Asthma 0.176907 0.183716 0.176426 0.183139 0.181878 0.198238 0.195514 0.199345 0.197075

Bipolar Disorder 0.759259 0.758495 0.758699 0.758565 0.758842 0.760468 0.766036 0.763049 0.768458

Breast Cancer 0.60117 0.603884 0.648812 0.651716 0.639314375 0.653294 0.650205 0.654144 0.65129

Chronic Lymphocytic Leukemia 0.680206 0.684271 0.689766286 0.686704 0.680713 0.689766286 0.701258 0.692259 0.702953

Colorectal Cancer 0.036229757 0.0407673 0.00455048 0.0421024 0.00345742 0.036229757 0.0562653 0.0481774 0.058288

Crohn And Colitis 0.731435 0.731939 0.731601 0.731964 0.732347 0.733512 0.734327 0.734396 0.735227

Epithelial Ovarian Cancer 0.667381 0.669405 0.685326 0.687685 0.667482 0.690308 0.697756 0.692375 0.700252

Hypertension 0.321378 0.448498 0.333611 0.45842 0.408663 0.539991 0.525548 0.544823 0.532295

Lung Cancer 0.708452125 0.706394 0.699145 0.706558 0.702632 0.711418 0.713269 0.713089 0.715112

Melanoma 0.614372 0.615796 0.614348 0.615731 0.615237 0.618309 0.621796 0.623592 0.627046

Multiple Sclerosis 0.759828 0.759462 0.760724 0.761164 0.75906 0.763045 0.76848 0.764093 0.769575

Parkinson Disease 0.763048 0.77316 0.763549 0.767823 0.759515 0.775876 0.780987 0.777738 0.782861

Rheumatoid Arthritis 0.703014 0.706695 0.706145 0.709938 0.703443 0.711657 0.710824 0.713176 0.712635

Schizophrenia 0.768676 0.768461 0.768991 0.769128 0.768402 0.773321 0.785785 0.776503 0.789035

Stroke 0.71972 0.729285 0.723017 0.731454 0.720696 0.73358 0.734189 0.734599 0.735387

Sudden Cardiac Arrest 0.733326 0.737344 0.73822 0.741809 0.733651 0.743628 0.747937 0.745696 0.749957

Type 2 Diabetes 0.64917575 0.649 0.635014 0.655753 0.626909 0.661072 0.651036 0.66176 0.652862

BMI 0.266313 0.263294 0.266814 0.264066 0.37541 0.392171 0.380359 0.39215 0.382912

Diastolic Blood Pressure 0.267545 0.268902 0.283461 0.284174 0.259099 0.29183 0.282401 0.296418 0.28872

Eosinophil Counts 0.281054 0.2804 0.281799 0.281464 0.337361 0.345903 0.331365 0.343617 0.331781

Height 0.165523 0.171083 0.634123 0.648699 0.221728 0.76901 0.764686 0.770324 0.766625

High Light Scatter Reticulocyte Count 0.286089 0.283968 0.290115 0.288014 0.351981 0.368696 0.35588 0.367896 0.357491

High Light Scatter Reticulocyte Percentage Of Red Cells 0.277094 0.27524 0.276706 0.274556 0.354123 0.35809 0.344698 0.358026 0.345653

Hip Circumference 0.351245 0.353305 0.351682 0.353441 0.369623 0.377247 0.363526 0.378476 0.367524

Lymphocyte Counts 0.228428 0.228727 0.232479 0.231641 0.257995 0.264321 0.246929 0.262593 0.247778

Mean Corpuscular Hemoglobin 0.182728 0.180437 0.188824 0.18723 0.361246 0.380889 0.367301 0.381347 0.369923

Menarche Age At Onset 0.138983 0.139413 0.147028 0.147387 0.144194 0.156847 0.152624 0.156502 0.152928

Monocyte Count 0.32473 0.319854 0.338878 0.333125 0.332496 0.370327 0.350578 0.36496 0.352213

Neutrophil Count 0.317717 0.316808 0.317443 0.316219 0.34126 0.351543 0.337514 0.350101 0.338207

Platelet Count 0.257853 0.269839 0.309315 0.32005 0.388477 0.450706 0.438915 0.457588 0.447697

Red Blood Cell Count 0.189942 0.189336 0.40777 0.406255 0.293416 0.550335 0.54028 0.551001 0.542628

Red Cell Distribution Width 0.308922 0.318027 0.308787 0.318387 0.322714 0.331795 0.315935 0.330266 0.316305

Reticulocyte Count 0.295111 0.295526 0.301908 0.301956 0.29343 0.305233 0.292988 0.305493 0.294866

Systolic Blood Pressure 0.265741 0.344743 0.280878 0.353923 0.240541 0.36858 0.360118 0.372083 0.365203

Waist Circumference 0.359712 0.365055 0.498278 0.497498 0.290535 0.515721 0.505542 0.516025 0.50826

White Blood Cell Count 0.261694 0.260435 0.261774 0.260086 0.304578 0.314863 0.301933 0.314067 0.301941

3.4 LDSCI

We next calculated the LD-Score regression’s intercept (LDSCI) using LDSC

v1.0.1 [4]. The LDSCI values for each run are summarized in Table 5. Overall,
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the results are similar to the result of the genomic control metric. For binary

traits the e↵ect of covariates on the LDSCI metric is minimal for most traits

except Asthma, Hypertension, and Lung cancer, where the exclusion of Prin-

cipal Components decreases the LDSCI. For continuous traits, the inclusion of

Principal Components seems more critical and may decrease substantially the

LDSCI metric.

Table 5: Intercept of LDSC for each set of covariates for each phenotype, us-

ing the LDSC software. Upper part contains binary phenotypes and lower part

contains continuous phenotypes. Minimal value in each row is in bold face. In

each row, the values within 105% from the minimal values are highlighted in

magenta. AC-Assessment center; Batch-Genotype measurement batch.
None Age Sex Sex & Age 5Pcs W/O Batch & AC W/O AC W/O Batch All

Asthma 1.017 1.017 1.018 1.018 1.016 1.005 1.004 1.004 1.003

Bipolar Disorder 0.99 0.99 0.99 0.99 0.99 0.99 0.994 0.991 0.994

Breast Cancer 1.014 1.013 1.014 1.013 1.013 1.012 1.012 1.012 1.013

Chronic Lymphocytic Leukemia 0.981 0.982 0.982 0.982 0.982 0.982 0.985 0.982 0.984

Colorectal Cancer 0.999 1.0 1.0 1.0 0.997 0.998 0.998 0.997 0.998

Crohn And Colitis 1.028 1.028 1.028 1.028 1.028 1.027 1.029 1.027 1.029

Epithelial Ovarian Cancer 0.986 0.985 0.986 0.985 0.986 0.986 0.988 0.986 0.988

Hypertension 1.091 1.089 1.087 1.088 1.071 1.046 1.048 1.043 1.045

Lung Cancer 0.999 1.002 0.999 1.002 0.994 0.993 0.993 0.994 0.994

Melanoma 1.013 1.013 1.013 1.013 1.011 1.011 1.007 1.01 1.007

Multiple Sclerosis 1.028 1.028 1.028 1.028 1.028 1.027 1.026 1.027 1.026

Parkinson Disease 0.993 0.993 0.993 0.994 0.995 0.994 0.998 0.995 0.999

Rheumatoid Arthritis 1.019 1.019 1.02 1.02 1.018 1.018 1.019 1.018 1.018

Schizophrenia 0.991 0.991 0.992 0.991 0.99 0.99 0.989 0.991 0.99

Stroke 1.003 1.002 1.003 1.003 1.002 1.001 1.004 1.002 1.005

Sudden Cardiac Arrest 1.0 1.001 0.999 1.0 1.0 1.0 1.001 1.001 1.001

Type 2 Diabetes 1.033 1.033 1.033 1.034 1.034 1.031 1.029 1.029 1.027

Bmi 1.144 1.15 1.149 1.154 1.1 1.083 1.084 1.078 1.079

Diastolic Blood Pressure 1.063 1.064 1.066 1.066 1.065 1.056 1.055 1.053 1.05

Eosinophil Counts 1.134 1.135 1.136 1.137 1.106 1.105 1.1 1.105 1.101

Height 1.392 1.428 1.664 1.757 1.367 1.296 1.294 1.291 1.287

High Light Scatter Reticulocyte Count 1.096 1.099 1.104 1.106 1.076 1.073 1.067 1.072 1.066

High Light Scatter Reticulocyte Percentage Of Red Cells 1.048 1.049 1.048 1.05 1.028 1.025 1.02 1.024 1.022

Hip Circumference 1.105 1.105 1.105 1.105 1.099 1.091 1.089 1.088 1.087

Lymphocyte Counts 1.06 1.06 1.058 1.059 1.051 1.048 1.047 1.047 1.046

Mean Corpuscular Hemoglobin 1.22 1.229 1.23 1.24 1.093 1.077 1.081 1.079 1.082

Menarche Age At Onset 1.037 1.037 1.037 1.037 1.028 1.017 1.019 1.02 1.018

Monocyte Count 1.08 1.085 1.081 1.087 1.077 1.076 1.075 1.077 1.076

Neutrophil Count 1.092 1.094 1.093 1.095 1.086 1.077 1.072 1.075 1.072

Platelet Count 1.216 1.206 1.214 1.208 1.138 1.13 1.126 1.132 1.129

Red Blood Cell Count 1.252 1.253 1.267 1.27 1.157 1.15 1.145 1.151 1.146

Red Cell Distribution Width 1.036 1.035 1.034 1.035 1.034 1.033 1.03 1.031 1.029

Reticulocyte Count 1.023 1.023 1.025 1.025 1.025 1.022 1.022 1.018 1.018

Systolic Blood Pressure 1.089 1.096 1.089 1.096 1.093 1.085 1.086 1.079 1.08

Waist Circumference 1.061 1.066 1.083 1.091 1.087 1.077 1.078 1.071 1.071

White Blood Cell Count 1.116 1.118 1.116 1.119 1.1 1.091 1.088 1.092 1.088
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3.5 Comparison across covariate subsets

Figure 3 shows the distribution of the evaluation metrics for each covariate subset

across the phenotypes, thus enabling a high-level view of the e↵ects of covariate

subsets on the evaluation metrics across phenotypes. For example, for continuous

phenotypes, LDSCI decreases when adding more covariates and saturates when

40 PCs are included. A similar observation can be seen when considering PGS’s

R2.

Binary Continuous

Fig. 3: Evaluation metrics summary phenotypes. Top row: � inflation fac-

tor; Middle row: LDSCI, Bottom row: PGS’s R2. Left columns: binary traits,

Right columns: continuous traits. The box plots are per subset of covariates

across the di↵erent phenotypes.
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4 Conclusions

In this study, we conducted an empirical evaluation of the set of covariates

included in a GWAS study on various metrics representing the GWAS results.

Based on our exploratory analysis, we set to determine a practical recom-

mendation for the choice of covariates to include in the GWAS analysis. The

goal is to minimize the LDSCI, �-control, and running time while maximizing

the number of genome-wide significant discoveries and the PGS R2. Based on

these criteria, we recommend that PGS estimations include age, sex, and all 40

principal components as covariates for both binary and quantitative traits. It

balanced between getting a � inflation factor close to the minimum, and min-

imized LDSCI, while PGS R2 is maximized (Figure 3). For binary traits, the

e↵ect of the genotype batch and assessment center seems to be more critical

in terms of the PGS’s R2, and we recommend including all covariates of the

analysis if this is the goal of the study. That makes sense if genotyping batch

and assessment center have no correlation with the genotype, but are correlated

with the trait.

While our recommendations are applicable to the UKBB dataset, our em-

pirical approach can be utilized to suggest the set of covariates for other GWAS

studies in other cohorts as well, with di↵erences in population structure, sample

size, case-control balances, etc. Specifically, our approach suggests balancing the

running time and the statistical properties of the results. The running time is

quadratic in the number of covariates and could increase substantially, especially

when including multiple PCs and dummy variables with many categories such

as batches and assessment centers - hence it is desirable to limit the number of

covariates if there is no evidence for significant changes in the GWAS results.

A recent study [25] explored the choice of covariates for GWAS in the UKBB

dataset. However, this study focused only on Principal Components and their

e↵ect on population structure, concluding that 16-18 PCs should be taken for the

UKBB population. The authors did not consider the e↵ect of phenotype on the

choice of covariates. Our analysis extends these findings, showing that multiple

PCs are indeed required, but also exploring the e↵ect on the phenotype on the

choice of covariates, the di↵erences between binary traits and quantitative traits,

and the inclusion of additional covariates such as batch and assessment center.
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